
 

c 
 
 

  

 
OPC UA Data 
Acquisition of 
Arrays of Scalar 
Values for 
Software 
Engineers  

Rockwell Automation Publication OPCUA-WP001A, December 2019 

 

David A. Levine, Senior Software Engineer, Rockwell Automation 
 
 
This paper discusses using OPC UA arrays in control systems, focusing on 
how an OPC UA client can implement data acquisition with arrays in UA 
servers, including the costs and benefits of using different strategies. 
Additionally, it provides background information on a UA server's address 
space and the objects within it used for data acquisition. 
 
This paper was written to version 1.04 of the OPC UA Specification. Some 

details may have changed since this was written. 

 



 

Rockwell Automation   OPCUA-WP001A-EN-E 2 

Introduction 
This paper is targeted primarily at software engineers who are planning to or are already adopting OPC 
UA into their products.  Control systems engineers, support personnel and product managers will also 
find the information useful to better understand the strengths and weaknesses of arrays in OPC UA, its 
capabilities, potential support issues, and how it can fit into existing products. 
This paper assumes the reader is familiar with OPC UA; background material on nodes, NodeIds, 
Variable nodes, and node attributes is provided.  
OPC UA is gaining market acceptance and is anticipated to be widely adopted as a result of its official 
approval by Industrie 4.0, Made in China 2025, and other international organizations and efforts. OPC UA 
supports features that were nearly impossible to build using older technology (such as methods and 
transactions), includes built-in security, is multi-platform and is technology agnostic. An advantage of 
particular note is the extensible type system which makes it possible to create domain specific extensions 
that are industry specific. New types can be created by a single organization or created by a consortium 
and made public and available for an entire industry (for example, MDIS - undersea oil & gas). With the 
recent addition of publish and subscribe (pub/sub) and communications to the cloud it supports Industrial 
Internet of Things (IIoT). 
The focus of this paper is on data acquisition from a control system, where the control system contains 
programmable logic controllers (PLCs) which the UA server uses as its data source. The data types 
discussed are limited to acquisition of arrays of scalar values – structures and arrays of structures are not 
discussed except as background information. 
The practices recommended for OPC UA arrays are not limited to systems based on PLCs – they can be 
applied to any system – but their emphasis is on operations and data supported by PLCs.  

Caveats 
This paper is written from the perspective of a UA client, not a UA server. It does not discuss what a UA 
server must do to support arrays, it focuses on the client side. There are pitfalls with reading and writing 
arrays and this paper discusses those that were discovered when writing a UA client. 
The OPC UA Specification is over 1000 pages and complex. Inevitably different engineers in different 
parts of the world will interpret the same specification in many different ways, leading to incompatibilities, 
inconsistencies, and other unexpected defects, faults, or flaws in a program. To help mitigate this the 
OPC Foundation has a certification process to help ensure that OPC UA clients and servers are in 
compliance with the specification. This certification process helps heterogeneous applications from 
different vendors achieve interoperability. 
Even with interoperability and certification a general-purpose client may find it difficult to support all 
servers and still achieve a high level of performance. Servers, ranging from low-end embedded devices to 
high-end desktop servers, are built to support different profiles and feature sets, and will operate at 
different levels of performance – all of these can impact throughput available to a client. This paper is 
intended to help developers create OPC UA clients which use strategies that are best suited to achieve 
their goals, both functional and for performance.    
In many cases the OPC UA Specification was so well written that this paper reprints some sections 
directly from it. 



 

Rockwell Automation   OPCUA-WP001A-EN-E 3 

Background 
This section summarizes key points about the OPC UA address space and the objects it contains. For the 
full definition, refer to the OPC UA Part 3 – Address Space Model.  

Address space 
A UA server’s address space is an object-oriented model of the underlying system; different components 
of the model are represented in the address space as nodes and references between nodes. The 
purpose of the OPC UA model is to provide a standard way for servers to represent objects to clients. 
The objects are presented to clients as nodes. 
One of the differences between the nodes in an OPC UA server and the data variables in a PLC is how 
the address space is organized. Most PLCs have a relatively simple hierarchy – a single starting point 
(the root or parent) with a single path through the hierarchy (children) to reach DataVariables. There are 
no cycles (loops) allowed, meaning a child cannot have a link to a node that would lead back to the child’s 
parent. 
OPC UA is more flexible and complex. It too has a single starting point (Root node) along with 3 nodes 
that are always below it – Objects, Types, and Views. There is a default address space that almost all 
servers must contain which includes diagnostics, information about the server's capabilities, and the base 
type system.  
Beyond this the server has a lot of flexibility in how it defines its address space. It can have loops and 
relationships between nodes other than the simple parent-child relationship present in the PLC. This 
allows the server to model the underlying system more closely and more meaningfully than is possible 
with a simple hierarchal address space. 
Client browsers must be aware that the same node can be reached through many different paths through 
the hierarchy. When uploading/browsing the address space it must guard against evaluating the same 
node multiple times and getting stuck in an infinite loop. 

Nodes 
An OPC UA server exposes objects of interest to an OPC UA client as nodes. An object is defined in 
terms of Variables and Methods and can have relationships to other nodes. Nodes come in a variety of 
types, called a NodeClass. NodeClasses are defined in terms of Attributes and References that are given 
values when a node is created in the address space. Each node in the address space is an instance of 
one of these NodeClasses. 

NodeId 
The NodeId is formally defined in the OPC UA Part 3, section 8.2 NodeId 
Nodes are unambiguously identified by its NodeId, a built-in data type. Every item in a UA server is 
represented by a node and all nodes are identified by a NodeId, including objects, variables, references, 
data types, and so on. All nodes within a UA server must have a unique NodeId. 
A NodeId consists of three fields: a NamespaceIndex, an IdentifierType, and an Identifier. The Identifier 
portion can be one of four basic data types: an integer, a string, a GUID, or a byte string (opaque stream 
of bytes). The type used is determined by the value of IdentifierType. 



 

Rockwell Automation   OPCUA-WP001A-EN-E 4 

Here are examples of each type: 
 

 

 

Figure 1: Screen shots of all four types of NodeIds 

 
 

The NamespaceIndex is an index into a table of URIs constructed by the server each time it starts. This is 
used to identify the naming authority which assigned the identifier in the NodeId. The namespace index 
can change from session to session but the URI it points to cannot change. The UA server typically does 
not change the indexes unless the address space has changed. It is the client’s responsibility to fixup 
NodeIds each time it creates a new session with a server.  
The combination of the fields Index and Identifier make it unique. It is legal and valid for multiple nodes at 
the same hierarchal level to have the same Identifier – as long as each has a different Index it is unique.  
For example, there may be two nodes under the Objects folder with NodeIds set to ( index=4; 
identifier=”MyObject”) and ( index=5; identifier=”MyObject”). Even though they each use the same 
identifier value, each NodeId is unique because of the different index value. 

Attributes 
A node consists of attributes and a table of references to other nodes. There are attributes common to all 
node classes, four of which are mandatory, and the others are optional. Each node class has additional 
attributes specific to that class, some of which are mandatory, and some are optional – the set of 
additional attributes varies with the NodeClass. 
There are eight different NodeClasses. Some types are used to help organize the address space, some 
to represent objects, such folders and data, and some to identify data types, such as integers, structures, 
and custom data types. 



 

Rockwell Automation   OPCUA-WP001A-EN-E 5 

The set of NodeClasses cannot be extended and each node in the UA server must be one of these 
classes. They are all derived from a common base class – the base class itself is never directly 
instantiated. 
 

An attribute is a chunk of data which has a name, data type, and a value – the value may be a scalar or a 
structure. Some attributes, such as references, may have multiple entries. Some attributes are optional - 
for a given attribute refer to the OPC UA to determine whether it is Mandatory or Optional. If an attribute 
is listed as optional and not implemented in the server then it cannot be accessed by the client - attempts 
to access it will fail. If the attribute is optional and the server implements it then it may be accessed the 
same way that all attributes are accessed. 
A reference can be in either direction, to another node or from another node, so references can function 
like a doubly linked list. The type of reference defines the relationship – for example, an Object can 
contain a Variable; the Object will contain a forward reference such as HasComponent and the Variable 
will contain a reverse reference, e.g. ComponentOf.  References are optional – a node may not have any 
references at all. 
The base class from which all other classes are derived is formally defined in OPC UA Part 3 – Address 
Space Model, section 5.2.1. Table 7 – Base NodeClass defines its attributes. 
The Mandatory attributes that all nodes possess are:  

 NodeClass 

 NodeId 

 BrowseName 

 DisplayName 

The Optional attributes that all nodes may possess are: 
 Description 

 WriteMask 

 UserWriteMask 

 RolePermissions 

 UserRolePermissions 

 AccessRestrictions 

NodeClass defines what type of object the node is. 

NodeId defines how to unambiguously refer to the object. 
BrowseName defines an alternative way to refer to the object, but it is not unambiguous – there may be 
multiple objects at the same hierarchal level with the identical BrowseName. Clients can use a service to 
translate relative symbolic paths (referred to as a BNF path) into a NodeId and must be prepared to 
handle multiple NodeIds for the same path + BrowseName. This field is not localized and does not 
change with the locale. 
DisplayName: contains a string and a locale. The intended usage for this field is that client applications 
use the contents of this field to display to end users instead of any other data, such as the BrowseName. 
The content of this field may change with the locale. 
Attributes are data fields that can potentially be read, written and monitored for changes – the server may 
not support all operations for all attributes and optional attributes may not be present.  
Data acquisition is interested in DataItems. This is an abstract term which refers to “live” automation data. 



 

Rockwell Automation   OPCUA-WP001A-EN-E 6 

There are several concrete types of DataItems, including AnalogItem and DiscreteItem. DataItems are 
represented in the address space by nodes whose NodeClass attribute is set to Variable. Variable nodes 
have a Value attribute which is the DataItem. Variable nodes are the only NodeClass containing a Value 
attribute.  
 

Variable nodes contain both mandatory and optional attributes that used in data acquisition - here is a 
partial listing: 
Mandatory attributes: 

 Value: this can be simple or complex and can be of any data type as specified by the DataType 
attribute 

 DataType: the NodeId of the DataType 

 ValueRank: defines if it is a scalar, an array, or either. 
 

Optional attributes: 

 ArrayDimensions: 
These are later discussed in detail. A complete listing of the Variable class’s attributes is in 
OPC UA Part 3, section 5.6.2 Variable NodeClass. 
 

Figure 2: Screenshot of a Variable node, its attributes and references 

 
This screenshot shows a node and its relative location in the address space. The NodeId, NodeClass, 
DataType and References to other nodes are highlighted. 



 

Rockwell Automation   OPCUA-WP001A-EN-E 7 

Metadata 
Variables can have Properties that act as metadata applied to the value of the Variable and characterize 
what the value represents. A Property is when a Variable node has a HasProperty reference to another 
Variable node whose Value is the metadata. 
This definition of metadata allows domain specific metadata to be created. A limited set of properties is 
defined by the OPC UA Specification. These are all structures that must be read or written as a single 
transaction - it is not possible to read/write sub-elements without reading or writing them all.  
An example of a property that acts as metadata is EURange. EURange defines a range of values the 
Variable can have and consists of two elements: low and high. Its datatype is Range, which is defined in 
OPC UA Part 8 DataAccess, section 5.6.2. 
Although DataVariables and Properties are used for different purposes and have different constraints they 
are both instances of the Variable NodeClass. 
The next screenshot shows an example of a DataItem named Humidity with metadata defined using 
EURange. 

Figure 3: A Variable with Metadata attached to it: EURange is metadata applied to Humidity 

 

Data Types 
Before tackling arrays, the UA client must handle scalars, but this does not mean that it must handle all 
the different scalar data types. When initially developing a component in a new technology start with what 
is needed (start small), get that working correctly, and build on that. 
One way to limit the scope of the initial development effort is to support only the data types required by 
your product. When interacting with PLCs this typically means restricting data types to integers, from 8 to 
64 bit signed and unsigned, floats, doubles, and strings.  
UA defines many native structured data types, such as LocalizedText (contains 2 strings, text and locale), 



 

Rockwell Automation   OPCUA-WP001A-EN-E 8 

QualifiedName (1 integer, 1 string), and many others. If your system does not directly support structures 
or all the other data types, you can support a subset of these. Another option is to encode the values of 
unsupported types as a string so it can be displayed or logged – this may not be directly usable in the 
application, but it might provide useful diagnostic information.  
 

Mapping between OPC UA and OPC DA 
Many existing and successful products were built to the original OPC DA specification and are being 
updated to work with OPC UA. It’s relatively easy to go from OPC DA to OPC UA – UA is a superset of 
DA - but the reverse is not true.  
Mapping numeric values is the easy part but many UA data types cannot be directly supported. There are 
also many error and quality codes in OPC UA that do not map directly into OPC DA and must be mapped 
into a few quality codes. This results in generic error and warning messages instead of detailed 
messages that help users diagnose and fix problems. 
One of the harder parts of mapping OPC UA into OPC DA is identifying items of interest – converting from 
a string-based identification system (DA) to a system based on NodeIds (UA). Doing this for a UA server 
whose data source is a DA-based system is relatively easy – the string identifier used in the DA system is 
made the identifier portion of the NodeId.  
UA Clients that map into DA systems cannot do this because the client does not define the NodeIds – the 
server does. Clients need a way to map UA NodeIds defined by a server into DA string identifiers 
consumed by the DA client and back again. If the OPC DA system preserves the DA string identifier from 
the string displayed to the user, then this mapping process becomes easier. If the OPC DA system uses 
one string for both, then this process is harder – displaying NodeIds directly to the user instead of human-
readable text is user-hostile and should be avoided.  

Operations 
OPC UA clients used for data acquisition primarily read and write data to and from Variable nodes – 
almost all other operations are related to connection and configuration activities and are not relevant to 
the subject of arrays.  
A UA Variable node can expose a single scalar value, an array of scalars, a structure, an array of 
structures, and an array of both scalars and structures, where each element can be a different type. 
A UA server may support none, some, or all of these, in increasing degrees of sophistication and 
complexity. Each of these requires a client at the same level of sophistication in order to work correctly 
and efficiently with these. 
A UA server may expose an array from its underlying data source in three different ways. It can:  
 Create a folder that represents the array and create a Variable node for each element and assign each 

a NodeId - the clients access each element as individual nodes.  

 Create a Variable node whose Value is the array. Clients must access it as a UA array. 

 Both. 
Exposing each element individually makes it compatible with unsophisticated clients that do not support 
UA arrays. However, this requires more operations to read/write the entire array and may degrade 
performance, and it increases the size of the address space, which may become so large it causes 
undesirable side effects. This consumes additional memory and CPU cycles on both the client and 



 

Rockwell Automation   OPCUA-WP001A-EN-E 9 

server. 
Exposing arrays as UA arrays may make it incompatible with some clients. Its benefits include reduced 
memory consumption and higher performance – a single operation can be performed on multiple 
elements. 
A server can do both – expose the Variable as an array for high performance clients and expose each 
element in the array as individual nodes for unsophisticated clients.  

Commercial servers have implemented all three options. 

Data Encodings and Transport Protocols.  
All communications between clients and servers is based on the exchange of messages. The format of a 
message is specified by the encoding and transport. Each combination of an encoding and transport (plus 
serialization and security) comprise a stack. 
A data encoding describes how to construct a message. OPC UA supports 3 types of encoding: UA 
Binary, UA XML, and UA JSON. These bind to different transport protocols: UA TCP, HTTPS, and AMQP. 
The combination of encoding and transport is called a stack. 
UA JSON and AMQP are used for publish-subscribe messaging to the cloud and JavaScript clients; high 
speed data acquisition uses UA Binary and TCP. 
Arrays should be supported in all encodings and transports, however there may be restrictions imposed 
by some stacks. 

Reading Data 
All attributes, including values, are accessed using the same set of services – this is a great feature 
because it unifies the service set. The same read command will read the value of a DataItem and any 
other attribute’s value as well; all that changes in the request is the attribute’s identifier. This holds true for 
all items in the address space. 
Multiple requests can be combined into a single packet sent to the UA server. Each request is an 
individual operation which arrives in the same packet over the network. The order of processing matches 
the order within the packet and the replies match the requests by position within the packet. 

To read data the client constructs an array of ReadValueIds which it sends to the server. 
Each of these contains  

 The NodeId of the target node  

 The identifier of the attribute to read (a non-zero unsigned integer) 

 An optional IndexRange  
When determining if the node is an array the client reads the ValueRank and ArrayDimensions attributes, 
usually during configuration and validation. When running data acquisition operations, the client reads the 
Value attribute. 
Reading attributes and values can be more difficult than expected because most data objects exchanged 
between the server and client are encoded as a Variant, which contains both the data and its data type. 
The safest approach to reading the data value is to extract the data using the type information contained 
in the reply data (if present), not necessarily what the specification or configuration data calls for. It may 
not work correctly if the data is extracted based on assumed knowledge of the data type. Some servers 
are dynamic (or have unexpected behaviors) that cause unanticipated changes to the data type. 



Rockwell Automation   OPCUA-WP001A-EN-E 10 

Unless you are writing your own OPC UA stack (not recommended!) you are using an OPC UA toolkit. It 
may have methods to extract data from a DataValue using APIs that are specific to a data type. If so, then 
if the API does not match the actual type you will get unexpected results. The technology you are using 
may also impact this. Developer beware! 

Writing Data 
To write data the client constructs an array of WriteValues and sends it to the server. Each WriteValue 
instance contains: 

 The NodeId of the target node

 The identifier of the attribute to write

 An optional IndexRange

 The value(s) to write

Subscriptions and Monitoring Items 
To monitor items for data changes the client first creates a subscription which defines the update rate and 
then adds items to the subscription.  

Each item contains: 
 The NodeId of the target node to monitor

 Optional IndexRange

 Optional Filters

Multiple items can be added to the subscription at the same time. 

Constraints on Reading, Writing, and Other Operations 
There are limits, both server and system imposed, on the amount of operations and data that can be 
requested or transmitted in a single packet. There is support in OPC UA for runtime discovery of some 
constraints, but many of these are optional and may not be present. 
When a client initially connects to the OPC UA server it should read the nodes under folder  
Root/Objects/Server/ServerCapabilities and Root/Objects/Server/ServerCapabilities/OperationLimits 
for constraint information. These are defined in OPC UA Part 5 – Information Model, section 6.3.2 and 
OPC UA Part 5 – Information Model, section 6.4.11 respectively. 
The ServerCapabilities object is a mandatory object and contains nodes which can be useful for data 
acquisition. For example, node MaxBrowseContinuationPoints is mandatory and specifies the maximum 
number of parallel continuation points the Browse Service supports – this is used when uploading the 
address space.  
The property ServerCapabilities/MaxArrayLength indicates the maximum overall number of elements in 
all dimensions that may be contained in an array, regardless whether it is a one or multi-dimensional 
array. The server may put further restrictions on individual variables and may even support a larger size 
than is specified by this property. A client should be flexible and adapt to handle whatever the server 
supports.  
The nodes below the OperationLimits node are useful but all are optional and may not be present. If a 
constraint is present, then the client should read the value and use them.  



Rockwell Automation   OPCUA-WP001A-EN-E 11 

Some of these nodes to be aware of are MaxNodesPerRead, MaxNodesPerWrite, MaxNodesPerBrowse, 
and MaxMonitoredItemsPerCall. If these nodes are present and have a positive value then the client must 
chunk its requests to stay within these limits, otherwise the call will probably fail.  

Many servers do not implement these optional properties or do implement them but set the value to 0 or 
to a very large value (such as 65536). A missing property or a property with a 0 or large value may mean 
that it can handle unlimited requests, but not always. The OPC UA Specification does not define what a 
client can assume when the property is missing or has a value of 0 or an extremely large value. 



Rockwell Automation   OPCUA-WP001A-EN-E 12 

The Basics of Reading/Writing Arrays of Scalars 
An OPC UA server exposes nodes to UA clients. Nodes can be constructed to contain scalars or arrays. 
It can even be either of these and its type must be discovered at runtime. 
Arrays come in an infinite variety of sizes and dimensions. The OPC UA Specification does not impose 
any limits on the number of dimensions or size of a dimension – this is totally up to the server. It can 
range from an array with 1 element to millions of elements and beyond, from 1 dimension to 1000 and 
beyond – the spec does not require servers to be practical.  
Array elements use 0-based indexing, so the 1st element’s index in a dimension is always equal to 0. 

The contents of the array are entirely up to the server. Arrays can consist of elements of the same data 
type, either a scalar (single value) or a structure (many values). Arrays can consist of Variants where 
each element can be a different datatype from the other elements – one element can be a scalar and the 
next can be a structure. 
This paper assumes arrays of scalars where all elements are the same data type; arrays whose elements 
contain different data types, structures and arrays, are not addressed. 
When a node is defined as “either” a scalar or an array then the server must be queried at runtime to 
discover what it is for the current session. The node can change to the other type on a new session - this 
is up to the server. 
Determination of a node’s array characteristics is done by reading attributes from the node. The attributes 
associated with arrays are DataType, ValueRank, ArrayDimensions, and Value.   
The meaning of these attributes is defined in OPC UA Part 3 – Address Space Model, section 5.6.2, 
Table 13 – Variable NodeClass and is summarized here. 
 DataType: for scalars this is the actual data type in each element. If it can vary then it is a Variant data

type.

 ValueRank: Defines whether the node contains a scalar, an array, or if it can be either.

 ArrayDimensions: the number and size of each dimension. This is optional and may not be present.

 Value: the data content of the Variable node. This includes the source and server timestamp, the
status code, and the scalar or the full contents of the array.



Rockwell Automation   OPCUA-WP001A-EN-E 13 

Data Type 
This is a required attribute and must be present. For standard types, this field is the NodeId assigned by 
the OPC UA Foundation to represent that data type.  
Most servers contain the complete set of all data types used within its address space, located beneath 
the Root/Types node. Clients use this to decode all objects and types within the server’s address space. 
Servers are constructed to match a Profile, which is a minimum set of required features. Nano and Micro 
profiles are not required to contain this information. 
OPC UA base data type definitions are located within each UA server at 
Root/Types/DataTypes/BaseDataType. 
 Numeric data types are located at: Root/Types/DataTypes/BaseDataType/Number.

 Integer types are located at: Root/Types/DataTypes/BaseDataType/Number/Integer, and include
Int16, Int32, Int64, and SByte.

A Variable node that contains simple scalar values has a DataType attribute which contains a NodeId 
which refers to one of these types.  

ValueRank 
This is a required attribute and must be present. The possible values are: 
 n ≥ 1: An array with 1 or more dimensions as specified by the value of n. (The specification

distinguishes between 1 dimension and more than 1, but does not explain the rationale for this
distinction)

 0: value is an array with one or more dimensions. (the actual number must be determined by reading
the contents of the array)

 -1: the value is not an array (a scalar).

 -2: the value may be a scalar or an array of any number of dimensions. (the only way to determine if it
is a scalar or array is to read the entire value and examine the result to see what the server sent)

 -3: the value may be a scalar or a one-dimensional array (to find out do same as n == -2)
All datatypes are considered to be scalar even if they have array-like semantics, like a String or 
ByteString 
The values of ValueRank that require runtime evaluation are n == 0, -2, or -3. Any other value is either 
invalid or directly provides the information. The client must read the Value attribute at runtime to 
determine what it is dealing with. The Value is required to not change its nature during a session but can 
for each new session.  
If the array is not fully specified by the ValueRank and ArrayDimensions fields then the client should 
evaluate the Value’s actual type and array dimensions each time it opens a session with the server to get 
the missing details. 
For example, if the ValueRank = 3 you know the number of dimensions of the array (3), but you do not yet 
know the size of each dimension. If that is important (and it probably is) the client has more work to do. 
If your product needs to know what the node is at runtime then it should read the DataType, ValueRank 
and ArrayDimensions attributes and, if necessary, the Value. If the node is a scalar, then the 
ArrayDimensions result will be missing and is ignored. 



Rockwell Automation   OPCUA-WP001A-EN-E 14 

ArrayDimensions 
ArrayDimensions is an optional attribute and may not be present. If it is not present it is considered to be 
null. It specifies the maximum supported length of each dimension. If the maximum is unknown the value 
for that dimension shall be 0. The number of dimensions must match the value of the ValueRank attribute 
if the ValueRank > 0. 
The value of the ArrayDimensions shall be null (missing) if the value of ValueRank ≤ 0. 

If the node is a scalar (ValueRank is -1) this attribute is null. If the node can change at runtime between a 
scalar and an array it is null. If the size of the array can change at runtime it may be null or set to the 
current value – the server chooses what to do. 
Beware – even if you know the number of dimensions when the session begins, either by reading the 
attribute ArrayDimensions or by reading the Value and getting its size (as described below), it can change 
during the session. Both the number of dimensions and the length of an array’s dimensions can change 
during a session. The server is not required to update either the ValueRank or ArrayDimensions attributes 
when it changes. 
Discovering the number of dimensions in an array can be easy or hard, depending on the UA server’s 
implementation. The easiest way is to directly read the attribute ArrayDimensions – if it exists and has a 
non-zero value then you can use the value directly. But remember that even if this value is present the 
actual array may change at any time – always use the data itself to determine dimensions and size. 
If that fails and your client must know this value, then the only other way to determine the size is to read 
the Value attribute and get the entire contents of the array. When a ReadValueId is issued to the Read 
Service with a null (missing) IndexRange the server will return the entire contents of the array.  
The length of the serialized data (number of elements) is always in the reply data, and if it is a multi-
dimensional array, the dimensions are also in the reply data. This holds true whether an IndexRange was 
used or not – the reply data is always self-describing. The client must interpret that data based on how 
the command was sent. If an IndexRange was included the client must map the reply data into the correct 
elements by using offsets adjusted with a relative offset. If an IndexRange was not included, then the 
reply data maps directly to the array element and the size contains the actual dimensions of the array. 
This may be the only way to determine the actual size of the array.  
The OPC UA specification defines the maximum number of elements that may be transferred on the wire 
as 2,147 483,647 (max Int32).  



 

Rockwell Automation   OPCUA-WP001A-EN-E 15 

Locating Array Elements in Buffers – Serializing Data 
OPC UA is meant to be used in distributed systems where the UA client and server are separated by 
networks. All data must support transfer over a network and must be serialized into a stream of bytes to 
get it on the wire and deserialized from a stream of bytes to get it into a component. Both sides must 
understand how this is done so that the values get mapped to the correct array location.  
For one-dimensional arrays when indexing is not used this is quite simple – simply copy the bytes starting 
at element 0.  
For multi-dimensional arrays it is not simple and getting it wrong can have catastrophic results. How the 
data is encoded is defined in OPC UA Part 6 – Mappings, section 5.2.2.16 Variant, Table 15 – Variant 
Binary DataEncoding.  

In the table column titled ArrayLength, it says:  

“Multi-dimensional arrays are encoded as a one-dimensional array and this field 
specifies the total number of elements. The original array can be reconstructed from 

the dimensions that are encoded after the value field. Higher rank dimensions are 
serialized first. For example, an array with dimensions [2,2,2] is written in this order:  

  [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], [1,1,1]” 

 “Higher rank dimensions are serialized first” means the dimension with the highest value for its rank.  

Think of higher rank as the innermost dimension (furthest to the right) and the lowest rank dimension 
(furthest to the left) as the outermost. Computer scientists call this depth-first ordering. 
Figure 4 shows a matrix [2, 4, 3] and the order in which its elements are serialized into a flat buffer.  
 The highest rank (2 or innermost) dimension has length 3 and is shown as moving from top-to-bottom 

(y axis). Think of these as buckets of data. 

 The middle rank (1) dimension has length 4 and is shown as moving from left-to-right (x axis). 

 The lowest rank (0, or outermost) dimension has length 2 and is shown moving from front-to-back (z 
axis). 

The transmitted data is shown serialized into a stream. 

Figure 4: Serialization of a matrix 

 
The order in which elements are serialized/deserialized must be consistent for all clients and servers 
regardless of platform and operating system, otherwise data will get corrupted. 



 

Rockwell Automation   OPCUA-WP001A-EN-E 16 

Algorithms 
In the case where the entire contents of the matrix are used, locating an element within a serialized buffer 
can be done using these algorithms (represented below using pseudo-C):  
LocationToFlatOffset: 

 offset = 0 

 sizeOfInnerDimensions = 1 

 for ( element = dimensions – 1; element < dimensions && element >= 0; 
element-- ) 

  offset = offset + location[element] * sizeOfInnerDimensions 

  sizeOfInnerDimensions = sizeOfInnerDimensions * 
dimensions[element] 

 return offset 

Using the example from the specification, in matrix [2,2,2] for element [1, 1, 0] there are 3 iterations of the 
for loop  

1. [0 + (0*1)]  = 0     

2. [0 + (1*2)]  = 2 
3. [2 + (1*4)]  = 6 

Buffer[6] contains the data for array element [1, 1, 0] – this is the 7th element in the buffer. 
Going the opposite way is a little more complex. Mapping from a flat buffer to a specific array element 
requires knowing the actual size of the array and the offset into the flat buffer. 
FlatOffsetToArrayElement( offset, ArrayDimensions ) 

 for ( dimension = 0; dimension < ArrayDimensions; dimensions++ ) 

  sizeOfInnerDimensions = 
CalculateSizeOfInnerDimensions(ArrayDimensions, dimension) 

  location = offset/ sizeOfInnerDimensions  

  arrayLocation.Add( location ) 

  offset = offset – (location * sizeOfInnerDimensions) 

 return arrayLocation 

When dividing integer values the result is a whole integer and the remainder is dropped. For example, 5/4 
= 1. This applies to line location = offset/size 

Using the same example as above there are 3 iterations of the for loop: (offset = 6) 
1. sizeOfInnerDimensions = 4; location = 6/4 -> 1; offset = 6-4 -> 2 

2. sizeOfInnerDimensions = 2; location = 2/2 -> 1; offset = 2-2 -> 0 

3. sizeOfInnerDimensions = 1; location = 0/1 -> 0; offset = 0-0 -> 0 
This produces arrayLocation [1, 1, 0]. 

This algorithm starts at the lowest rank dimension (outermost/leftmost) and moves inwards towards the 
higher ranks. The element location for the current dimension is calculated by dividing the offset by the 
size of all the inner dimensions – these are the number of elements that must get “used up” for the 
outermost dimension to increment by 1.   
CalculateSizeOfInnerDimensions is left as an exercise for the reader   (hint: multiply together all 



 

Rockwell Automation   OPCUA-WP001A-EN-E 17 

dimensions whose rank is larger than the current one). 
For example, an array of size [100, 10] contains 1000 total elements.  There are 10 elements between 
[0,0] and [1,0]. Before the leftmost dimension can be incremented by 1, the elements [0, 0], [0, 1], [0, 2], 
etc. must first be traversed. 
These algorithms are provided here because unless someone provides a library that contain these 
conversion functions, you will need to write your own.  Additional algorithms are needed to calculate 
offsets when using Indexes – those will be discussed in the next section. 

Accessing Array Elements 
There are two different ways of accessing the data in an array. One is by reading or writing the entire 
contents of the array. This is suitable for small size arrays and for arrays which change value very slowly. 
This mode is referred to as Read-Modify-Write, or RMW because this is the manner used for writing data 
to the array. 
The other way is by specifying a range of elements using a NumericRange. This is suitable for large 
arrays and for arrays that are changing value quickly. This mode has pitfalls and will be discussed in 
detail. This mode is referred to as Indexed and is optional – servers are not required to support it. 
Both approaches have advantages and disadvantages.  

Read-Modify-Write (RMW) 
It is always “safe” to read the array in its entirety; however, if the array is large it may have problems 
being transmitted over a network and the OPC UA stack may generate encoding errors. “Safe” in this 
context refers to data integrity –the data read or written has not been corrupted, nor has data in the OPC 
UA server been incorrectly changed. 
TCP can handle the fragmentation and reassembly but tools like Wireshark may not be able to decode 
large packets. For example, an array with 15,000 elements causes Wireshark to display a packet like this: 

Figure 5: Wireshark cannot display packets that are "too large" 

 

 
While it is always “safe” to read the entire array, writing to all the elements of an array using RMW may 



 

Rockwell Automation   OPCUA-WP001A-EN-E 18 

not be safe.  
If the client is intending to write to all the elements in the array then, assuming there are not any network 
errors, the integrity of the data is not at risk – the client is intentionally setting all the values and 
overwriting whatever is there. 
However, if the goal is to write to only a subset of elements then it may or may not be “safe” – it depends 
on the timing of the write operation and the current operations of the server. RMW mode means the client 
first reads all the elements in the array, and then as fast as it can modifies a subset of values, leaves the 
others alone, and writes them all back to the server.  If the data in the server has not changed between 
the moment when the array was read and the time the modified array arrives back at the UA server then 
the data is uncorrupted.  
If the UA server changed the value in any of the unmodified elements before the modified array is 
received, those changes will get overwritten with old values when the data arrives. This will result in the 
UA server containing old values intermixed with new values from the client. In a production environment 
the consequences can vary from having no impact to a system failure. 
Some servers allow the client to change the size of an array. Another potential problem with RMW is in 
accidentally changing the size of an array. When the client writes an array without using indexing the 
server may simply replace the current array with the new one, regardless of the new size.   
A production server should apply suitable constraints to data written to it to prevent accidental changes 
like these, but some may omit this check. If these risks are unacceptable in your environment, then your 
other option is to use Index Ranges. However, the server may not support indexed write operations.  

  



 

Rockwell Automation   OPCUA-WP001A-EN-E 19 

Indexing Mode (NumericRange) 
All servers are required to support indexed reads but support for indexed writes is optional. However, 
even though the OPC UA specification requires support of indexed reads there are servers that do not 
support it, and the specification does not define a way to determine if a server supports indexing mode.  
An IndexRange is the field name in the data that is transmitted over a network. This field contains a 
NumericRange, which is a data type defined in OPC UA Specification. You can find the formal definition 
of a NumericRange in OPC UA Part 4 – Services, section 7.22 NumericRange and Table 164. If an 
IndexRange is not used, then the field in the transmitted data is null and the operation is performed on 
the entire array (RMW).  

Index Range 
A subset of contiguous elements is specified by defining one or more NumericRanges (NR), one for each 
dimension of the array. Contiguous means in its serialized form, not just within a single dimension. 
An NR defines a range of elements within a dimension by specifying a starting and ending offset – these 
are referred to as the lower and upper bounds. 
There must be one NR for each dimension of the array. For a 1D array there is a single NR, a 2D requires 
2 NRs, and so on.  
When constructing an NR: 

 All dimensions are indexed starting with 0. 

 Start ≤ End - the starting element must always be less than or equal to the ending element.  

 A range defines a continuous set of elements with no gaps, so if you need to skip some elements you 
must create a new NR. 

 Each NR must be specified in the same order as the array dimensions. 

 The first NR is used for the dimension with the lowest rank value (the outermost or leftmost 
dimension). 

String Representation of a NumericRange 
There are two types of constructs, an individual element or a range of elements.  
When a single element is specified, such as, element 34, the NR contains NR.Start = 34 and NR.End = 
34. The string representation is “34”. When a range of elements is specified, such as, elements 42 
through 56, the NR contains NR.Start = 42 and NR.End = 56. The string representation is “42:56”. 
For multi-dimensional arrays each NR is separated by a comma (,). Dimensions are specified in the same 
order they appear in the ArrayDimensions attribute. A complete NumericRange for a three-dimensional 
array would be represented: “1:2,3,4:10”. 

White spaces are not allowed in the string. 
All indexes start with 0. The maximum value for any index is one less than the length of the dimension. 

Equivalent Arrays from NumericRange 
One NR defines a 1D array and a list of NR defines an array with multiple dimensions. The size of each 



 

Rockwell Automation   OPCUA-WP001A-EN-E 20 

dimension is calculated by size = end – start + 1 and the size of the overall array is the size of each 
dimension multiplied together.  
This can be used to validate the constructed NR to ensure it does not read or write more elements than 
what you intended. For a simple validation test, compare the number of elements you intend to write to 
the calculated size of the array that the NR defines – if the comparison doesn’t match then an error has 
occurred, the operation should be aborted and the NR should not be used. 

Server Failure Codes Related to Arrays 
When reading a value, if the lower bound is out of range the server should return error code 
Bad_IndexRangeNoData.  
When reading a value, if the upper bound is out of range the server can return partial results and the 
overall status code is Bad_IndexRangeNoData. Partial results mean that the data returned will be less 
than what was expected. The elements that are in range are returned and the elements that are out of 
range are missing. Clients must be prepared to examine both the overall status code for the operation 
and the length of the returned array – when extracting data for an element do not exceed the length of the 
reply buffer. 
If the syntax of NumericRange is invalid the server should return Bad_IndexRangeInvalid. 
Other error codes may be returned – it depends on the operation requested and the server and should 
match the error codes specified by the operation. The client should be prepared to deal with both 
expected and unexpected error codes. 

NumericRange Construction for 1 Dimension Arrays 
Constructing a NR for a one-dimension array is straightforward. 
For any given subset of elements construct an NR using the starting and ending offsets. Each NR gets 
bound to a ReadValueId or WriteValue for specific reads or writes, or to a MonitoredItem for subscribing 
for notifications to a subset of elements. Just remember you need a separate NR for each consecutive 
subset of elements. 
For example, in M[1000] if you want to read elements 3 through 10 and 12 through 15 you must use two 
ReadValueId, one with NR = “3:10” and the other with NR=”12:15”.  You can send both ReadValueIds in 
the same read command – the Read Service takes an array of ReadValueId structures and each is a 
separate operation on the server. 

NumericRange Construction for n Dimension Arrays 
This construction has subtle pitfalls and the risks are high when writing data or acting on data read. The 
prime directive for reads is that the value returned from a read must be from the correct source with 
correct status. When the client wants the value from element 4 it must be that value and not from element 
3, 5, or anywhere else.  
In practice this means that the UA client can request more data than what is needed – the elements can 
be picked out of the reply buffer and the rest ignored. 
The prime directive for writes is more stringent – only the intended targets are to be written, no other 
elements should be changed. There is no way of telling the server to ignore elements so the data written 
must contain only those elements that are to be written, and the Indexes used must specify only those 
elements. 



 

Rockwell Automation   OPCUA-WP001A-EN-E 21 

Why is this hard you ask? Because it is a lot harder to correctly specify a subset of a matrix than it 
appears - it might be time to take a refresher class on matrix math. 
An NR does more than specify a subset of elements, it also defines a new array because a subset of 
elements is an array which contains only those elements.  
For example, a matrix M(10,10,10) contains 1,000 elements (multiply all the dimensions together). An 
index range of “3:4,2:4, 3:5” defines a matrix R(2,3,3) and contains 18 elements.  It will read or write 
elements (3,2,3), (3,2,4), (3,2,5), (3,3,3), (3,3,4), (3,3,5), (3,4,3), (3,4,4), (3,4,5), (4,2,3), (4,2,4), (4,2,5), 
(4,3,3), (4,3,4), (3,3,5), (3,4,3), (3,4,4), (3,4,5). Easy, right? It’s not. 

Indexed Reading – Imprecise Mode 
Reading can be imprecise and still do little harm other than waste some network bandwidth. Writing can 
never be imprecise, and the technique described here should not be used for writes. “Imprecise” in this 
case means that even if there are gaps between the elements you want, you can read all the values with 
a single NumericRange that starts at the first element and ends at the last element. 
For example, if you want data from M(10,10) for elements (2,4), (3,5) and (6,2), you can use NR = “2:6, 
2:5”. This NR defines a matrix of size (5,4) which contains 20 elements. The server will return an array 
that contains 20 values, and the client must extract from it the 3 values it wants.   
To extract the values the client must calculate the offset into the buffer for each element using some pre-
processing of the array location to determine the locations. For each element subtract the NR starting 
offset for each dimension from the element’s location to create a relative location within the buffer.  
This pseudo-C code illustrates the technique: 
ConstructRelativeLocation:  

 for ( dimension = 0; dimension < ArrayDimensions; dimensions++ ) 

  relativeLocation = elementLocation[ dimension ] – NR[ dimension 
].start 

  relativeArray.Add(relativeLocation) 

 return relativeArray 

Pass relativeArray to LocationToFlatOffset to get to the actual offset within the reply buffer.   
This technique can be used to reduce the number of individual read operations that the server must 
perform at the expense of wasted bandwidth and larger buffers. How large is too large? There’s no 
answer that is always correct - it depends on too many factors. At some point it should be broken up into 
smaller subsets but where to draw that line depends on many factors: your product, the system it is in, 
products it interacts with, and so on. 
If this mode is unsuitable for your system and exact elements must be extracted, then Precise mode 
should be used. 

Indexed Reading and Writing– Precise Mode 
Precise means exactly that – the NR specifies only those elements it wants, and no other elements are 
included.  
The prime directive here is that the ranges must be absolutely correct - this is more difficult than it 
appears. To be contiguous all elements must be adjacent, either within all inner dimensions or within a 
single dimension. Adjacency is required because NRs do not support all forms of dimension overflow (my 
term). In fact, it only supports a single type of dimension overflow. 
This author defines Dimension Overflow as occurring when a dimension’s offset is incremented such that 
the next outer (lower rank) dimension’s offset increments and the inner (higher rank) dimension’s offset 



 

Rockwell Automation   OPCUA-WP001A-EN-E 22 

resets to 0. 
For example, in M[4,6,5] this occurs when traversing from element (2, 2, 4) to (2, 3, 0). The innermost 
dimension has 5 elements and the last offset within that dimension is 4.  
If you wanted to write to only elements (2, 2, 4) and (2, 3, 0) it would be incorrect to define the NR as “2, 
2:3, 4:0”.  
This definition is incorrect because the third part, “4:0” specifies a starting element that is larger than the 
last offset. This violates the OPC UA Specification so either the toolkit or the server will return an error. 
Reversing the definition will not work either. NR = “2,2:3,0:4” is syntactically correct but semantically 
incorrect – it specifies an array of size (1 *2 * 5) = 10 elements, not the 2 elements you want. This NR 
specifies elements (2,2,0), (2,2,1), (2,2,2), (2,2,3), (2,2,4), (2,3,0), (2,3,1), (2,3,2), (2,3,3), (2,3,4) and 
affects elements other than the ones intended. Even worse, depending on the technology, language and 
libraries you use, it may get data from random places in the client’s memory and write that to unintended 
places in the server – alarms will not sound and you will not be warned, but it will not work correctly. 
Hopefully the toolkit or server you are using will reject this definition or the effect will be harmless, but you 
may have just sent a forklift through a wall. 

TIP: One way to validate a constructed NR is to calculate the size of the matrix it defines and 
compare it to the number of elements you want to access – if they are not exactly equal then the 
NR definition is not correctly constructed. 

One way to avoid mistakes is to construct a separate NR for each element, but unless you are 
reading/writing to a single element this is also the least efficient – each NR is acted on as a separate 
operation by the server, including validation and verification of the NR, moving data around, replying to 
the request, and so on. If you did this for a large number of elements it might take an unreasonably long 
time, cause operation timeouts, and have other undesirable side-effects. 
The best approach is to optimize the construction of NRs so that it uses the fewest number of NRs and 
operations that will still be precise. After analyzing NumericRanges and how they are applied I developed 
these rules for constructing optimized NRs for an arbitrary subset of elements.  
 All elements in an NR must be adjacent (with one exception – see Adjacent across a single 

dimension)  
When incrementing offsets within a dimension, elements are numerically adjacent only in the 
innermost (highest rank) dimension. For example, in M[4,6,5], elements ( 2,3,1 ) and ( 2,3,2 ) are 
adjacent, but elements ( 2,3,1 ) and ( 2,4,1 ) are not adjacent. It is possible to optimize across other 
dimensions - see rule Elements must be adjacent across a single dimension. 

 Dimension Overflow is adjacent if and only if all the elements in the inner dimensions are 
included 
This means that when wrapping dimension boundaries all the inner dimensions (to the right of the 
wrapped dimension) must be intended to be included in the NR. If this is not suitable then you need 
another NR. For example, in M[4,6,5], to wrap from element ( 2,3,x ) to ( 2,4,x ) requires that all the 
elements in dimension 2 are included in the NR. This includes elements (2,3,0) through (2,3,4) and 
(2,4,0) through (2,4,4). This defines an NR = “2,3:4,0:4”, which is matrix [1,2,5] with 10 elements. 
Using the same source matrix, to wrap from elements ( 1,5,x ) to ( 2,0,x ) requires that all the elements 
in both dimensions 1 and 2 are included in the NR. This specifies an NR = “1:2,0:5,0:4”, which defines 
a matrix [2,6,5] which contains 60 elements. 

 Elements must be adjacent within a single dimension 



 

Rockwell Automation   OPCUA-WP001A-EN-E 23 

Elements in dimensions other than the highest rank (innermost) are adjacent within a dimension if and 
only if all the other dimension’s offsets are exactly equal. For example, elements (1,4,2) and (1,5,2) 
can be specified in a single NR = “1,4:5,2”. This defines a matrix of size (1,2,1) which contains 2 
elements. This is valid and will work correctly.  \Elements (1,4,2) and (1,5,3) cannot be specified in a 
single NR because there are two dimensions that are changing. If a single NR were used it would be 
NR=”1, 4:5, 2:3”, which is a matrix of size [1,2,2] and contains 4 elements, not the 2 elements 
expected. 

Monitoring Subsets of Elements in an Array 
When creating a subscription and monitoring nodes a client can optionally include an NR with the 
request.  
If the MonitoredItem does not include an NR, then when any element in the array changes the server 
sends a notification with the entire array as the data. This works great for relatively small arrays, but with 
large arrays it may degrade performance and might create other problems (timeouts, etc.).  
If the server supports Indexing, then a client can specify an NR when establishing the MonitoredItem. The 
server monitors only the range of elements specified and send a notification with the data just from the 
specified elements. 
Some differences between using and not using an NR with MonitoredItems are: 

 When a data notification is sent for a MonitoredItem that was created without an NR then the entire 
array is sent with each notification. That makes it possible for the client to determine the actual size of 
the array with each notification. 

 The buffer contents start with the first element and ends with the last element. 

 When a data notification is sent for a MonitoredItem that was created with an NR then a subset of the 
array is sent, and it is not possible for the client to determine the actual size of the entire array. 

 The buffer starts with the first specified element, ends with the last, and only includes elements that 
were specified. 

 Some toolkits may define a method that allows a client to “read” a MonitoredItem that was created with 
an NR. This is a convenience provided by the toolkit as there is no service that “reads” a monitored 
item. The toolkit is actually using the Read Service using the NR that is part of the MonitoredItem. It 
will produce the same results as directly invoking the Read Service with the same NR. 

Possible Issues when Using Index Range 
The technology and toolkits you use will influence the degree to which you need to use caution. Higher 
level languages, such as C# and Java, offer built-in type safety and range validation, and probably more 
error checking, so that it is less likely to encounter problems due to a miscalculated index range. C++ and 
C work directly with low-level pointers and so are subject to buffer overruns – a miscalculation can go 
undetected and data can be read/written from or to unintended locations. 
For example, some APIs for writing matrices take a pointer to a buffer and the NR. If there is a 
miscalculation due to a Dimension Overflow it may index past the end of the buffer into random data, 
either on the heap or the stack, and result in writing incorrect data to the PLC.  
Thoroughly test all operations during development.  
Developers creating UA servers should test it using clients written by others, otherwise it may validate 



 

Rockwell Automation   OPCUA-WP001A-EN-E 24 

your misconceptions about how a client will interact with it. Developers creating UA clients should test 
with as many servers as they can. OPC UA Foundation interop workshops are an ideal venue for this. 
If your server will be used to contain large arrays then indexing mode is the only practical way to interact 
with it, so it should be supported. 

Runtime Considerations 
An adaptive client may try to recover from errors or missing features in a server by attempting the same 
operation using different or less powerful techniques. For clients that are working with OPC UA array data 
if the server does not support indexing then the only other way for the client to read/write array data is 
Read-Modify-Write (RMW).  
For reads RMW is always “safe” but may not be practical due to array size, and RMW is not “safe” for 
writes because of the risk of data loss. Due to these constraints, implementing automatic client error 
recovery by switching the data access mode from indexed to RMW is not recommended for general 
purpose clients.  

Testing Observations on the Consistency and Quality of 
Servers 
During testing of our OPC UA client some servers supported indexing mode, and some did not. One 
embedded server was especially problematic in that it supported indexing mode incorrectly – it reversed 
the inner and outer dimensions, so all the reads and writes were in the wrong elements. 
Perhaps one reason why some servers do not support indexing at all, and others may get it wrong is the 
lack of clients that use this technique – this makes testing the server difficult. Demo clients used during 
testing all used RMW mode. 
Another interesting fact found during testing was that some servers allow the client to change the size of 
the array. The two demo servers used (Softing and UnifiedAutomation) supported this and the 
UnifiedAutomation demo browser, UAExpert, supported this. In our tests this only worked when the NR 
was not specified in the write. 
Some servers sit on top of the actual data source, such as a controller. If the data source exposed an 
actual array of values some of the desktop servers would expose them as OPC arrays and others 
converted each element into a separate node (not an array), and some embedded servers did both. 
The downside of treating each element as a separate node is scalability, both in memory consumption 
and performance. More nodes consume more memory in both the client and the server. More nodes 
require more operations to read the same data – a client can read the entire array in one operation but 
must read each node as a separate operation. 
Some demo servers change the size of the array dynamically - each time the client reads the data the 
size of the array is different. This was great for testing and validating the client but not as effective for 
getting a steady stream of changing values. 

Development and Testing Practices 
Due to the lack of sample code and UA clients that read and write arrays using indexing it was difficult to 
determine if the client being written was correct – there was nothing to compare it to. Since writing to a 



 

Rockwell Automation   OPCUA-WP001A-EN-E 25 

PLC is potentially dangerous, we used extensive internal tests and where necessary wrote custom test 
tools to validate the operations.  

Internal Tests 
During development the logic that creates the NumericRange indexes was separated from external 
interaction logic so that it could be thoroughly unit tested. Unit tests are code modules that directly call 
code in the production system. These are great for basic validation and for testing edge and failure cases 
that are otherwise difficult to test. 

Tools 
WireShark is a tool that captures packets on a network and can dissect the OPC UA protocol. It is 
currently the best source of information for how the client is interacting with the server, and it’s free! This 
tool is invaluable in understanding what is really going on between the client and the server. 
One of the custom tools I wrote cycles through multiple sets of elements, each time using a different set 
of elements that requires different NRs. In each pass it sets all the elements in the array to a known value 
(e.g. 0), writes new values to the selected elements, reads back the entire array, and then verifies that all 
the elements are set to the correct value, including those that should have been left alone. It stops when it 
detects an anomaly. This can be used for both RMW and Indexed mode testing. 
Another tool I wrote is a generic client that connects to any UA server and provides independent 
evaluation of array support in any UA server. It is written in .NET (requires Windows) and runs completely 
independently of any products. It can set up a Subscription and MonitoredItems for the entire array 
(RMW) and for any subset of the array using Indexed operations. Multiple MonitoredItems can be created 
for the same node so you can see how the system behaves. This tool includes an element picker to 
select the subsets to observe.  

The use of these tools does not eliminate the need for thorough functional testing.  

Conclusion and Final Thoughts 
A control system’s primary job is to control a process with hard real-time determinism. This requires 
knowing how long it will take to execute operations, so the control system needs advance knowledge of 
types and sizes.  
Clients that map into these systems have a similar need – when it connects a control system variable to 
an OPC UA node’s data the client must know that the operation is compatible and safe. I hope that the 
techniques discussed here help you achieve these goals. 



 

Rockwell Automation   OPCUA-WP001A-EN-E 26 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
PLEASE CONTACT THE FOLLOWING PEOPLE FOR MORE INFORMATION. 
 

Rockwell Automation 
David A. Levine 
Senior Software Engineer  
dalevine@ra.rockwell.com 
 
Rockwell Automation 
Rosanna (Dyer) Navarro 
Engineering Team Lead  
rnavarro@ra.rockwell.com 
 
  



 

Rockwell Automation   OPCUA-WP001A-EN-E 27 

 

Rockwell Automation is a trademark of Rockwell Automation, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies. 
 

Publication OPCUA-WP001A-EN-P — December2019 
Copyright© 2019 Rockwell Automation, Inc.  All rights reserved.  Printed in USA. 


	OPC UA Data Acquisition of Arrays of Scalar Values for Software Engineers
	1 - Introduction
	Caveats

	2 - Background
	Address space
	Nodes
	NodeId
	Attributes
	Metadata
	Data Types
	Mapping between OPC UA and OPC DA


	3 - Operations
	Data Encodings and Transport Protocols. 
	Reading Data
	Writing Data
	Subscriptions and Monitoring Items 
	Constraints on Reading, Writing, and Other Operations

	The Basics of Reading/Writing Arrays of Scalars
	Data Type
	ValueRank
	ArrayDimensions

	Locating Array Elements in Buffers – Serializing Data
	Algorithms

	Accessing Array Elements
	Read-Modify-Write (RMW)
	Indexing Mode (NumericRange)
	Index Range
	String Representation of a NumericRange
	Equivalent Arrays from NumericRange
	Server Failure Codes Related to Arrays
	NumericRange Construction for 1 Dimension Arrays
	NumericRange Construction for n Dimension Arrays
	Indexed Reading – Imprecise Mode
	Indexed Reading and Writing– Precise Mode



	4 - Monitoring Subsets of Elements in an Array
	Possible Issues when Using Index Range
	Runtime Considerations
	Testing Observations on the Consistency and Quality of Servers
	Development and Testing Practices
	Internal Tests
	Tools


	5 - Conclusion and Final Thoughts

	Back cover


<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /All

  /Binding /Left

  /CalGrayProfile (Dot Gain 20%)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Error

  /CompatibilityLevel 1.6

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Default

  /DetectBlends true

  /DetectCurves 0.0000

  /ColorConversionStrategy /LeaveColorUnchanged

  /DoThumbnails false

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams true

  /MaxSubsetPct 1

  /Optimize false

  /OPM 1

  /ParseDSCComments false

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments false

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts false

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Remove

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 300

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Average

  /ColorImageResolution 300

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 2.00000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages false

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 300

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Average

  /GrayImageResolution 300

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 2.00000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages false

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Average

  /MonoImageResolution 1200

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile (None)

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

  >>

  /Namespace [

    (Adobe)

    (Common)

    (1.0)

  ]

  /OtherNamespaces [

    <<

      /AsReaderSpreads false

      /CropImagesToFrames true

      /ErrorControl /WarnAndContinue

      /FlattenerIgnoreSpreadOverrides false

      /IncludeGuidesGrids false

      /IncludeNonPrinting false

      /IncludeSlug false

      /Namespace [

        (Adobe)

        (InDesign)

        (4.0)

      ]

      /OmitPlacedBitmaps false

      /OmitPlacedEPS false

      /OmitPlacedPDF false

      /SimulateOverprint /Legacy

    >>

    <<

      /AddBleedMarks false

      /AddColorBars false

      /AddCropMarks false

      /AddPageInfo false

      /AddRegMarks false

      /ConvertColors /NoConversion

      /DestinationProfileName ()

      /DestinationProfileSelector /NA

      /Downsample16BitImages true

      /FlattenerPreset <<

        /PresetSelector /MediumResolution

      >>

      /FormElements false

      /GenerateStructure true

      /IncludeBookmarks false

      /IncludeHyperlinks false

      /IncludeInteractive false

      /IncludeLayers false

      /IncludeProfiles true

      /MultimediaHandling /UseObjectSettings

      /Namespace [

        (Adobe)

        (CreativeSuite)

        (2.0)

      ]

      /PDFXOutputIntentProfileSelector /NA

      /PreserveEditing true

      /UntaggedCMYKHandling /LeaveUntagged

      /UntaggedRGBHandling /LeaveUntagged

      /UseDocumentBleed false

    >>

  ]

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [612.000 792.000]

>> setpagedevice





