User Manual Addendum, Traffic Lights
Although every effort is made to keep this document accurate and up to date, MagneMotion®
assumes no responsibility for any errors, omissions, or inaccuracies. Information that is
provided in this document is subject to change without notice. Any sample code that is
referenced in this document or included with MagneMotion software is included for
illustration only and is, therefore, unsupported.

MagneMotion®, MagneMover®, QuickStick®, MML™, MM LITE™, and SYNC It™ are
trademarks or registered trademarks of MagneMotion, a Rockwell Automation Company.
Rockwell Automation® is a registered trademark of Rockwell Automation, Inc. EtherNet/IP™
is a trademark of ODVA®, Inc. All other trademarks are properties of their respective
owners.

This product is protected under one or more U.S. and International patents. Additional U.S.
and International patents are pending.

Copyright © 2018 MagneMotion, Inc., a Rockwell Automation Company. All Rights
Reserved.

The information included in this document is proprietary or confidential to Rockwell
Automation, Inc. Any disclosure, reproduction, use, or redistribution of this information by
or to an unintended recipient is prohibited.

MagneMotion, Inc.
A Rockwell Automation Company
139 Barnum Road
Devens, MA 01434
USA

Phone: +1 978-757-9100
Fax: +1 978-757-9200

www.magnemotion.com
Contents

Overview .. 5
Related Documents .. 5
NCHost TCP Interface Utility User Manual Addendum ... 6
 Monitoring Transport System Status ... 6
 Traffic Lights Status Window ... 6
Host Commands .. 7
 Create a Traffic Light .. 7
 Set a Traffic Light ... 8
 Delete a Traffic Light ... 9
Host Controller TCP/IP Communication Protocol User Manual Addendum 10
 Host Controller to HLC Communications .. 10
 Create Traffic Light (0xBF 02 01) .. 11
 Set Traffic Light (0xBF 02 02) .. 13
 Get Traffic Light Status (0xBF 02 03) ... 15
 Delete Traffic Light (0xBF 02 04) .. 17
HLC to Host Controller Communications ... 19
 Command Status (0xD0) ... 20
 Traffic Light Status (0xDF 02 01) .. 22
Host Controller EtherNet/IP Communication Protocol User Manual Addendum 24
 Host Controller to HLC Communications ... 24
 MMI_create_traffic_light_cmd .. 25
 MMI_set_traffic_light_cmd ... 28
 MMI_delete_traffic_light_cmd .. 32
HLC to Host Controller Communications ... 35
 MMI_traffic_light_status ... 36
 MMI_traffic_light_cmd_status ... 39
HLC Status Codes ... 42
Traffic Light Configuration ... 43
 Node Controller Configuration File XML Reference ... 43
 PLC_traffic_light_enable .. 44
 PLC_max_traffic_light_id ... 45
Node Controller Configuration File Example ... 46
More Information ... 47
Rockwell Automation Support ... 48

Figures

 Figure 1: NCHost TCP Interface Utility for MagneMover LITE .. 6
Figure 2: Launch Status Windows Section ... 6
Figure 3: Traffic Light Status Window ... 7
Figure 4: Host Commands Section .. 7
Figure 5: Host Commands Section - Traffic Light Tab .. 7
Figure 6: Traffic Light with Initial Settings ... 8
Figure 7: Host Commands Section - Traffic Light Tab .. 8
Figure 8: Green Traffic Light .. 8
Figure 9: Red Traffic Light .. 9
Figure 10: Host Commands Section - Traffic Light Tab .. 9
Figure 11: UDT udt_MMI_create_traffic_light_cmd ... 25
Figure 12: Example Create Traffic Light Command Explicit Message Configuration 27
Figure 13: UDT udt_MMI_set_traffic_light_cmd ... 29
Figure 14: Example Set Traffic Light Command Explicit Message Configuration 30
Figure 15: UDT MMI_delete_traffic_light_cmd ... 32
Figure 16: Example Delete Traffic Light Command Explicit Message Configuration 34
Figure 17: UDT udt_MMI_traffic_light_status ... 37
Figure 18: UDT udt_MMI_traffic_light_cmd_status ... 40
Figure 19: Example Traffic Light Node Controller EtherNet/IP Configuration 46

Tables

Table 1: Host Controller to HLC Commands ... 10
Table 2: HLC to Host Controller Responses ... 19
Table 3: PLC to HLC Explicit Message Requests ... 24
Table 4: HLC to PLC Status Memory Tags ... 25
Table 5: HLC to PLC Response Memory Tags .. 35
Table 6: HLC Status Codes ... 42
Table 7: Traffic Light Configuration XML Elements ... 43
Overview

The Traffic Light feature allows the creation of traffic lights for use during system operation. Traffic lights are used to control vehicle movement at defined positions in the transport system. Traffic lights are associated with specific motor blocks.

When the traffic light is set to green, vehicles are granted permission to move beyond the position of the traffic light. When the traffic light is set to red, vehicles are not granted permission to move beyond the position of the traffic light.

There is a limit of one traffic light per motor block and 32 traffic lights per path. Commands to create traffic lights on a motor block where a traffic light is already located or create more than 32 traffic lights on a path are rejected.

This document describes the changes to the NCHost TCP Interface Utility, the Host Controller TCP/IP Communication Protocol, the Host Controller EtherNet/IP Communication Protocol, and the Node Controller Configuration File.

Related Documents

This document references the following manuals:

NOTE: Distribution of this manual and all addendums and attachments are not controlled. Changes to the document set or the software can be made at any time. To identify the current revisions or to obtain a current version, contact Customer Support at +1 978-757-9102 or ICTSupport@ra.rockwell.com.
NCHost TCP Interface Utility User Manual Addendum

This section is an addendum to the NCHost TCP Interface Utility User Manual and describes additions to the NCHost User Interface for support of traffic lights.

Figure 1: NCHost TCP Interface Utility for MagneMover LITE

Monitoring Transport System Status

Transport system status is available through the Launch Status Windows section. See Figure 2 and the Launch Status Windows section in the NCHost TCP Interface Utility User Manual for detailed descriptions of all items).

Figure 2: Launch Status Windows Section

Traffic Lights Status Window

To monitor the traffic light status:

1. In the Launch Status Windows section (see Figure 2), select Traffic Lights.

The Traffic Light Status window is displayed as shown in Figure 3.
Traffic lights can only be created while the system is operational. If no traffic lights have been created, the Traffic Light Status window is empty as displayed in the upper figure in Figure 3. If traffic lights have been created, they are displayed in the Traffic Light Status window as displayed in the lower figure in Figure 3.

Figure 3: Traffic Light Status Window

2. Move the status window to a convenient location.
3. When finished using the Traffic Light Status window, select the X in the upper-right corner to close the window.

Host Commands

All Host Commands available to be sent from NCHost to the HLC are in the Host Commands section (see Figure 4).

Create a Traffic Light

To create a Traffic Light:

1. Open the Traffic Light Status window to view the traffic light status if desired.
2. In the Host Commands section, select the Traffic Light tab (see Figure 5).
3. Enter the desired **Path ID** and **Position** of the traffic light.

4. Select **Create**.

 The traffic light is created with an initial Color of green as shown in Figure 6.

![Traffic Light Status](image)

Figure 6: Traffic Light with Initial Settings

Set a Traffic Light

To set the traffic light to **Green**:

1. Open the **Traffic Light Status** window to view the traffic light status if desired.

2. In the **Host Commands** section, select the **Traffic Light** tab (see Figure 7).

![Host Commands](image)

Figure 7: Host Commands Section - Traffic Light Tab

3. Enter the ID of the desired traffic light to set in the **TL ID** field.

 NOTE: A TL ID of 0 cannot be used to set all traffic lights.

4. Select the **Green** button.

 If the traffic light was Red, the Color turns Green. If the traffic light was Green, the Color remains Green.

![Traffic Light Status](image)

Figure 8: Green Traffic Light

To set the traffic light to **Red**:

1. Open the **Traffic Light Status** window to view the traffic light status if desired.

2. In the **Host Commands** section, select the **Traffic Light** tab (see Figure 7).

3. Enter the ID of the desired traffic light to set in the **TL ID** field.

 NOTE: A TL ID of 0 cannot be used to set all traffic lights.

4. Select the **Red** button.

 If the traffic light was Green, the Color turns Red as shown in Figure 9. If the traffic light was Red, the Color remains Red.
Delete a Traffic Light

To delete a traffic light:

1. Open the Traffic Light Status window to view the traffic light status if desired.
2. In the Host Commands section, select the Traffic Light tab (see Figure 10).
3. Enter the ID of the desired traffic light to be deleted in the TL ID field.
4. Select Delete.

The traffic light is deleted from the Traffic Light Status window.
Host Controller TCP/IP Communication Protocol User Manual
Addendum

This section is an addendum to the Host Controller TCP/IP Communication Protocol User Manual to support the traffic light feature. The additions to the protocol for communication between the high level controller (HLC) and a host controller that is equipped with a TCP/IP interface are described.

Host Controller to HLC Communications

This section describes the commands (listed in Table 1) sent from the host controller to the HLC as asynchronous requests for the transport system to perform an action. These requests are responded to by the HLC by routing the command to the appropriate node controller for completion and sending responses to the host controller (listed in Table 2).

Table 1: Host Controller to HLC Commands

<table>
<thead>
<tr>
<th>Description and Value</th>
<th>Use</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create Traffic Light (0xBF 02 01)</td>
<td>MM LITE</td>
<td>11</td>
</tr>
<tr>
<td>Set Traffic Light (0xBF 02 02)</td>
<td>MM LITE</td>
<td>13</td>
</tr>
<tr>
<td>Get Traffic Light Status (0xBF 02 03)</td>
<td>MM LITE</td>
<td>15</td>
</tr>
<tr>
<td>Delete Traffic Light (0xBF 02 04)</td>
<td>MM LITE</td>
<td>17</td>
</tr>
</tbody>
</table>
Create Traffic Light (0xBF 02 01)

Type

Host Controller → HLC

Purpose

Creates a traffic light at the specified position on the designated path. When created, a traffic light is set to green to allow vehicles to move beyond the traffic light position.

There is a limit of one traffic light per motor block and 32 traffic lights per path. The HLC rejects commands that attempt to create a traffic light on a motor block where a traffic light is already located or create more than 32 traffic lights on a path.

Support

This command is supported in the latest software release for the following product lines:

- MagneMover LITE transport systems.

Format

<table>
<thead>
<tr>
<th>Offset</th>
<th>Item</th>
<th>Bytes</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Header</td>
<td>1</td>
<td>0xBF</td>
</tr>
<tr>
<td>1</td>
<td>Extension Type</td>
<td>1</td>
<td>0x02</td>
</tr>
<tr>
<td>2</td>
<td>Extension Subtype</td>
<td>1</td>
<td>0x01</td>
</tr>
<tr>
<td>3</td>
<td>Path ID</td>
<td>2</td>
<td>1–65535</td>
</tr>
<tr>
<td>5</td>
<td>Position</td>
<td>4</td>
<td>0.0–41.0m (floating-point)</td>
</tr>
<tr>
<td>9</td>
<td>Host Command Count</td>
<td>4</td>
<td>0x0–0xFFFFFFFF</td>
</tr>
</tbody>
</table>

Arguments

Command Header – Fixed message type that identifies this message as a Host Extension command.

Extension Type – Fixed extension type that identifies this command as a Traffic Light extension command.

Extension Subtype – Fixed extension subtype that identifies this command as a Create Traffic Light extension command.

Path ID – The ID of the path where a traffic light is to be placed.

Position – The position (in meters) relative to the start of the specified path where a traffic light is to be placed. Expressed as a 32-bit single-precision floating-point number.
Host Command Count – A unique value that is supplied by the host controller when this message is sent. It aids the host controller in the execution of this command.

The Host Command Count field is always returned in Command Status (0xD0) messages.

Response

After receiving the command and verifying the command parameters, the HLC sends either a ‘Command Accepted’ or ‘Command Rejected’ response as appropriate (refer to Command Status (0xD0)). If the command is accepted, the HLC handles setting the traffic light to green on the targeted motor block.

On command completion, the HLC sends a ‘Command Complete’ or a ‘Command Failed’ response. For Command Complete messages, the ID of the new traffic light is included in the Command Status (0xD0) message.

See Also

- Command Status (0xD0) on page 20
- Traffic Light Status (0xDF 02 01) on page 22
Set Traffic Light (0xBF 02 02)

Type

Host Controller → HLC

Purpose

Set the color for a traffic light to either green or red. Depending on color, a traffic light controls vehicle movement as follows:

- When set to green, vehicles are granted permission to move beyond the position of the traffic light.
- When set to red, vehicles are not granted permission to move into or beyond the motor block at the position of the traffic light. The obstructed status bit for the vehicle is set if the vehicle is stopped at a traffic light. The obstructed status bit is also set if the vehicle is waiting in a queue of vehicles or waiting at a switch.

If a traffic light is commanded to turn red, and a vehicle has not yet reached the commanded traffic light position but has permission to enter or move past the motor block at the position of the traffic light, the vehicle does not stop at the traffic light and continues its commanded move.

Support

This command is supported in the latest software release for the following product lines:

- MagneMover LITE transport systems.

Format

<table>
<thead>
<tr>
<th>Offset</th>
<th>Item</th>
<th>Bytes</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Header</td>
<td>1</td>
<td>0xBF</td>
</tr>
<tr>
<td>1</td>
<td>Extension Type</td>
<td>1</td>
<td>0x02</td>
</tr>
<tr>
<td>2</td>
<td>Extension Subtype</td>
<td>1</td>
<td>0x02</td>
</tr>
<tr>
<td>3</td>
<td>Traffic Light ID</td>
<td>2</td>
<td>1–4096</td>
</tr>
<tr>
<td>5</td>
<td>Color</td>
<td>1</td>
<td>Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 – Green (allows traffic to pass)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 – Red (stops traffic)</td>
</tr>
<tr>
<td>6</td>
<td>Host Command Count</td>
<td>4</td>
<td>0x0–0xFFFFFFFF</td>
</tr>
</tbody>
</table>

Arguments

Command Header – Fixed message type that identifies this message as a Host Extension command.

Extension Type – Fixed extension type that identifies this command as a Traffic Light extension command.
Extension Subtype – Fixed extension subtype that identifies this command as a Set Traffic Light extension command.

Traffic Light ID – The ID of the specified traffic light to change.

Color – Color to set for the specified traffic light.

Host Command Count – A unique value that is supplied by the host controller when this message is sent. It aids the host controller in the execution of this command.

The Host Command Count field is always returned in Command Status (0xD0) messages.

Response

After receiving the command and verifying the command parameters, the HLC sends either a ‘Command Accepted’ or ‘Command Rejected’ response as appropriate (refer to Command Status (0xD0)). If the command is accepted, the HLC handles setting the traffic light to the specific color on the targeted motor block.

On completion of the command, the HLC sends a ‘Command Complete’ or a ‘Command Failed’ response.

See Also

Command Status (0xD0) on page 20
Traffic Light Status (0xDF 02 01) on page 22
Get Traffic Light Status (0xBF 02 03)

Type

Host Controller → HLC

Purpose

Requests the status for a specific traffic light or for all traffic lights in a transport system.

Support

This command is supported in the latest software release for the following product lines:

- MagneMover LITE transport systems.

Format

<table>
<thead>
<tr>
<th>Offset</th>
<th>Item</th>
<th>Bytes</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Header</td>
<td>1</td>
<td>0xBF</td>
</tr>
<tr>
<td>1</td>
<td>Extension Type</td>
<td>1</td>
<td>0x02</td>
</tr>
<tr>
<td>2</td>
<td>Extension Subtype</td>
<td>1</td>
<td>0x03</td>
</tr>
<tr>
<td>3</td>
<td>Traffic Light ID</td>
<td>2</td>
<td>Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 – Get the status for all traffic lights</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1–4096 – Get status for a specific traffic light</td>
</tr>
</tbody>
</table>

Arguments

Command Header – Fixed message type that identifies this message as a Host Extension command.

Extension Type – Fixed extension type that identifies this command as a Traffic Light extension command.

Extension Subtype – Fixed extension subtype that identifies this command as a Get Traffic Light Status extension command.

Traffic Light ID – The ID of the traffic light for which status is being requested.

If the Traffic Light ID field is nonzero, the HLC gets status only for the specified traffic light. If the specified traffic light does not exist, a Traffic Light Status (0xDF 02 01) response message is returned with the failing Traffic Light ID and the Command Status field set to indicate that no such traffic light exists in the transport system.

If the Traffic Light ID field is 0, the HLC gets status for all currently defined traffic lights. A Traffic Light Status (0xDF 02 01) response message is returned for each traffic light with its success or failure status. If no traffic lights exist, the HLC accepts the command and a Traffic Light ID of 0 and a Command Status of ‘Command Accepted’ is returned in the Traffic Light Status (0xDF 02 01) response message.
If the HLC rejects a Get Traffic Light Status command, the ID of the traffic light and the command failure status are included in the Traffic Light Status (0xDF 02 01) response message.

Response

After receiving the command and verifying the command parameters, the HLC sends one or more Traffic Light Status (0xDF 02 01) response messages to the host controller.

See Also

- Command Status (0xD0) on page 20
- Traffic Light Status (0xDF 02 01) on page 22
Delete Traffic Light (0xBF 02 04)

Type

Host Controller → HLC

Purpose

Delete the specified traffic light. When a traffic light is deleted, the associated motor block is set to green to allow vehicles to move beyond the traffic light position.

Support

This command is supported in the latest software release for the following product lines:

- MagneMover LITE transport systems.

Format

<table>
<thead>
<tr>
<th>Offset</th>
<th>Item</th>
<th>Bytes</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Command Header</td>
<td>1</td>
<td>0xBF</td>
</tr>
<tr>
<td>1</td>
<td>Extension Type</td>
<td>1</td>
<td>0x02</td>
</tr>
<tr>
<td>2</td>
<td>Extension Subtype</td>
<td>1</td>
<td>0x04</td>
</tr>
<tr>
<td>3</td>
<td>Traffic Light ID</td>
<td>2</td>
<td>1–4096</td>
</tr>
<tr>
<td>5</td>
<td>Host Command Count</td>
<td>4</td>
<td>0x0–0xFFFFFFFF</td>
</tr>
</tbody>
</table>

Arguments

- **Command Header** – Fixed message type that identifies this message as a Host Extension command.

- **Extension Type** – Fixed extension type that identifies this command as a Traffic Light extension command.

- **Extension Subtype** – Fixed extension subtype that identifies this command as a Delete Traffic Light extension command.

- **Traffic Light ID** – The ID of the specified traffic light to delete.

- **Host Command Count** – A unique value that is supplied by the host controller when this message is sent. It aids the host controller in the execution of this command.

The Host Command Count field is always returned in Command Status (0xD0) messages.

Response

After receiving the command and verifying the command parameters, the HLC sends either a ‘Command Accepted’ or ‘Command Rejected’ response as appropriate (refer to Command...
Status (0xD0)). If the command is accepted, the HLC handles setting the traffic light to green on the targeted motor block.

On command completion, the HLC sends a ‘Command Complete’ or a ‘Command Failed’ response.

See Also

Command Status (0xD0) on page 20
Traffic Light Status (0xDF 02 01) on page 22
HLC to Host Controller Communications

This section describes the responses that are sent from the high level controller (HLC) to the host controller as asynchronous responses from the transport system after performing an action. Table 2 lists the responses that are used with the traffic light functionality.

Table 2: HLC to Host Controller Responses

<table>
<thead>
<tr>
<th>Description and Value</th>
<th>Use</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Status (0xD0)</td>
<td>MM LITE</td>
<td>20</td>
</tr>
<tr>
<td>Traffic Light Status (0xDF 02 01)</td>
<td>MM LITE</td>
<td>22</td>
</tr>
</tbody>
</table>
Command Status (0xD0)

Type

HLC → Host Controller

Purpose

Acknowledges the reception or rejection of a command, signals command execution failure, or signals command completion.

NOTE: Receipt of a valid command or the event of a command completion is required.

Support

This response is supported in the latest software release for the following product lines:

- MagneMover LITE transport systems.

Format

<table>
<thead>
<tr>
<th>Offset</th>
<th>Item</th>
<th>Bytes</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Response Header</td>
<td>1</td>
<td>0xD0</td>
</tr>
<tr>
<td>1</td>
<td>Command</td>
<td>1</td>
<td>0xB0–0xBC, 0xBF</td>
</tr>
<tr>
<td>2</td>
<td>Command Status</td>
<td>1</td>
<td>0x00–0x80</td>
</tr>
<tr>
<td>3</td>
<td>Command Data Detail</td>
<td>Varies</td>
<td>Varies for each command</td>
</tr>
</tbody>
</table>

Arguments

Response Header – Fixed message type that identifies this message as a Command Status response message.

Command – Header of the command that this message is acknowledging.

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Ext</th>
<th>Sub</th>
<th>Command</th>
<th>Valid Command Status Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xBF</td>
<td>0x02</td>
<td>0x01</td>
<td>Create Traffic Light</td>
<td>0x00, 0x03, 0x04, 0x09, 0x0A, 0x0C, 0x0D, 0x0E, 0x10, 0x14, 0x41, 0x42, 0x80</td>
</tr>
<tr>
<td>0xBF</td>
<td>0x02</td>
<td>0x02</td>
<td>Set Traffic Light</td>
<td>0x00, 0x0B, 0x0C, 0x0E, 0x11, 0x41, 0x42, 0x80</td>
</tr>
<tr>
<td>0xBF</td>
<td>0x02</td>
<td>0x04</td>
<td>Delete Traffic Light</td>
<td>0x00, 0x0C, 0x0E, 0x11, 0x41, 0x42, 0x80</td>
</tr>
</tbody>
</table>

Command Status – The status of the command that this message is acknowledging, see HLC Status Codes on page 42.

Command Data Detail – Variable amount of data that provides the details of the command that is specified in the Command field.
<table>
<thead>
<tr>
<th>Cmd</th>
<th>Ext</th>
<th>Sub</th>
<th>Command Description</th>
<th>Command Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xBF</td>
<td>0x02</td>
<td>0x01</td>
<td>Create Traffic Light</td>
<td>Extension Type (1 byte)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extension Subtype (1 byte)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Path ID (2 bytes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Position (4 bytes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Host Command Count (4 bytes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Traffic Light ID (2 bytes)</td>
</tr>
<tr>
<td>0xBF</td>
<td>0x02</td>
<td>0x02</td>
<td>Set Traffic Light</td>
<td>Extension Type (1 byte)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extension Subtype (1 byte)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Traffic Light ID (2 bytes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Color (1 byte)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Host Command Count (4 bytes)</td>
</tr>
<tr>
<td>0xBF</td>
<td>0x02</td>
<td>0x04</td>
<td>Delete Traffic Light</td>
<td>Extension Type (1 byte)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extension Subtype (1 byte)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Traffic Light ID (2 bytes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Host Command Count (4 bytes)</td>
</tr>
</tbody>
</table>

See Also

Create Traffic Light (0xBF 02 01) on page 11
Set Traffic Light (0xBF 02 02) on page 13
Get Traffic Light Status (0xBF 02 03) on page 15
Delete Traffic Light (0xBF 02 04) on page 17
Traffic Light Status (0xDF 02 01)

Type

HLC \(\rightarrow\) Host Controller

Purpose

Reports status for one or more traffic lights that are specified in a Get Traffic Light Status (0xBF 02 03) command message to the host controller.

Support

This response is supported in the latest software release for the following product lines:

- MagneMover LITE transport systems.

Format

<table>
<thead>
<tr>
<th>Offset</th>
<th>Item</th>
<th>Bytes</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Response Header</td>
<td>1</td>
<td>0xDF</td>
</tr>
<tr>
<td>1</td>
<td>Extension Type</td>
<td>1</td>
<td>0x02</td>
</tr>
<tr>
<td>2</td>
<td>Extension Subtype</td>
<td>1</td>
<td>0x01</td>
</tr>
<tr>
<td>3</td>
<td>Command Status</td>
<td>1</td>
<td>0x00, 0x0C, 0x0E, 0x11</td>
</tr>
<tr>
<td>4</td>
<td>Traffic Light ID</td>
<td>2</td>
<td>0–40967</td>
</tr>
<tr>
<td>6</td>
<td>Path ID</td>
<td>2</td>
<td>1–65535</td>
</tr>
<tr>
<td>8</td>
<td>Position</td>
<td>4</td>
<td>0–41.0m (floating-point)</td>
</tr>
<tr>
<td>12</td>
<td>Color</td>
<td>1</td>
<td>Values are:</td>
</tr>
</tbody>
</table>

- 0 – Green (allows traffic to pass)
- 1 – Red (stops traffic)

Arguments

Response Header – Fixed message type that identifies this message as a Host Extension message.

Extension Type – Fixed extension type that identifies this message as a Traffic Light extension message.

Extension Subtype – Fixed extension subtype that identifies this message as a Traffic Light Status extension message.

Command Status – The status of the command that this message is acknowledging, see HLC Status Codes on page 42.

Traffic Light ID – The ID of the traffic light for which status is being requested.

Path ID – The ID of the path where the traffic light is located.
Position – The position (in meters) relative to the start of the specified path where a traffic light is located. Expressed as a 32-bit single-precision floating-point number.

Color – Color of the specified traffic light.

See Also

Create Traffic Light (0xBF 02 01) on page 11
Set Traffic Light (0xBF 02 02) on page 13
Get Traffic Light Status (0xBF 02 03) on page 15
Delete Traffic Light (0xBF 02 04) on page 17
Host Controller EtherNet/IP Communication Protocol User Manual Addendum

This section is an addendum to the Host Controller EtherNet/IP Communication Protocol User Manual to support the traffic light feature. The additions to the protocol for communication between the high level controller (HLC) and a host controller that is equipped with an EtherNet/IP interface are described.

Host Controller to HLC Communications

This section describes Explicit Message types and Tag memory formats that traverse TCP connections between the host controller (PLC) and the HLC.

Command (explicit) messages (listed in Table 3) are sent from the host controller to the HLC to request the HLC to perform an action. These requests are responded to by the HLC by routing the command to the appropriate node controller for completion and updating the corresponding response tags in PLC memory (listed in Table 4 and Table 5).

Table 3: PLC to HLC Explicit Message Requests

<table>
<thead>
<tr>
<th>Message Name</th>
<th>Message Element</th>
<th>Use</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMI_create_traffic_light_cmd</td>
<td>udt_MMI_create_traffic_light_cmd</td>
<td>MM LITE</td>
<td>25</td>
</tr>
<tr>
<td>MMI_set_traffic_light_cmd</td>
<td>udt_MMI_set_traffic_light_cmd</td>
<td>MM LITE</td>
<td>28</td>
</tr>
<tr>
<td>MMI_delete_traffic_light_cmd</td>
<td>udt_MMI_delete_traffic_light_cmd</td>
<td>MM LITE</td>
<td>32</td>
</tr>
</tbody>
</table>
MMI_create_traffic_light_cmd

Type

Host Controller → HLC

Purpose

Contains one or more entries of type `udt_MMI_create_traffic_light_cmd` used to create a traffic light at the specified position on the designated path. When created, a traffic light is set to green to allow vehicles to move beyond the traffic light position.

There is a limit of one traffic light per motor block and 32 traffic lights per path. The HLC rejects commands that attempt to create a traffic light on a motor block where a traffic light is already located or create more than 32 traffic lights on a path.

Each command can be monitored via its corresponding `udt_MMI_traffic_light_cmd_status` entry in the `MMI_traffic_light_cmd_status` tag.

Support

This command is supported in the latest software release for the following product lines:

- MagneMover LITE transport systems.

Message Element Data Type

The UDT type editor that is shown in Figure 11 shows the type of each element comprising the `udt_MMI_create_traffic_light_cmd` type.

![Figure 11: UDT udt_MMI_create_traffic_light_cmd](image-url)
UDT Field Descriptions

This section describes the format of the UDT used to define Create Traffic Light commands. UDT fields are described in more detail following the table.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Style</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>path_id</td>
<td>INT</td>
<td>Decimal</td>
<td>1–65535</td>
</tr>
<tr>
<td>position</td>
<td>REAL</td>
<td>Float</td>
<td>0.0–41.0 (m, floating-point)</td>
</tr>
<tr>
<td>command_index</td>
<td>SINT</td>
<td>Decimal</td>
<td>0–31</td>
</tr>
<tr>
<td>active_flag</td>
<td>SINT</td>
<td>Hex</td>
<td>Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x00 – HLC skips this entry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x01 – HLC processes this entry</td>
</tr>
<tr>
<td>command_count</td>
<td>DINT</td>
<td>Hex</td>
<td>0x00–0xFFFFFFFF</td>
</tr>
</tbody>
</table>

path_id – The ID of the path where the traffic light is to be placed. The ID must be a nonzero integer that references a path that exists in the configuration.

position – The position (in meters), relative to the start of the specified path (expressed as a 32-bit single-precision floating-point number), where a traffic light is to be placed.

command_index – The index of the entry in the MMI_traffic_light_cmd_status tag to update when this MMI_create_traffic_light_cmd completes.

active_flag – This flag is used in configurations where a static table of udt_MMI_create_traffic_light_cmd entries is used and the same table is sent every time. The HLC only processes those entries with the active_flag set.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>The HLC skips the entry for this traffic light.</td>
</tr>
<tr>
<td>0x01</td>
<td>The HLC processes the entry for this traffic light.</td>
</tr>
</tbody>
</table>

command_count – Host controller derived unique counter, which is used to confirm that the HLC has received the command and to determine command status. This counter provides a convenient handshake mechanism to determine command status by matching the counter with the fields in the MMI_traffic_light_cmd_status array.

Using a scratch DINT tag as a counter is suggested. The scratch DINT tag can be incremented and copied to the command_count field each time a new traffic light command is issued so the new command can be tracked against the various count fields that are described in MMI_traffic_light_cmd_status.

Message Configuration

<table>
<thead>
<tr>
<th>Source Element Type</th>
<th>Number of Elements</th>
<th>Destination Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>udt_MMI_create_traffic_light_cmd</td>
<td>Min: 1</td>
<td>MMI_create_traffic_light_cmd</td>
</tr>
<tr>
<td></td>
<td>Max: 32</td>
<td></td>
</tr>
</tbody>
</table>
The source element `create_traffic_light_cmd` shown in Figure 12 is an array of type `udt_MMI_create_traffic_light_cmd`. It can be a single tag with the Number of Elements set to 1, or it can an array with the Number of Elements set to the maximum of 32.

![Figure 12: Example Create Traffic Light Command Explicit Message Configuration](image)

Response

After receiving the command, the HLC verifies the command parameters and updates `MMI_traffic_light_cmd_status` as appropriate. If the command is accepted, the HLC handles creating the traffic light on the targeted motor block and setting it to green. Once the command completes, the HLC updates `MMI_traffic_light_cmd_status` to indicate completion.

Additionally, the HLC updates the corresponding traffic light status entry in `MMI_traffic_light_status` to reflect the status of the new traffic light. The ID of the new traffic light is returned in the `last_command_accepted_traffic_light_id` field of the `MMI_traffic_light_cmd_status` tag.

See Also

- `MMI_traffic_light_status` on page 36
- `MMI_traffic_light_cmd_status` on page 39
MMI_set_traffic_light_cmd

Type

Host Controller → HLC

Purpose

Contains one or more entries of type udt_MMI_set_traffic_light_cmd use to set the color of a traffic light to either green or red. Depending on color, a traffic light controls vehicle movement as follows:

- When set to green, vehicles are granted permission to move beyond the position of the traffic light.
- When set to red, vehicles are not granted permission to move into or beyond the motor block at the position of the traffic light. The obstructed status bit for the vehicle is set if the vehicle is stopped at a traffic light. The obstructed status bit is also set if the vehicle is waiting in a queue of vehicles or waiting at a switch.

If a traffic light is commanded to turn red, and a vehicle has not yet reached the commanded traffic light position but has permission to enter or move past the motor block at the position of the traffic light, the vehicle does not stop at the traffic light and continues its commanded move.

Each command can be monitored via its corresponding udt_MMI_traffic_light_cmd_status entry in the MMI_traffic_light_cmd_status tag.

Support

This command is supported in the latest software release for the following product lines:

- MagneMover LITE transport systems.

Message Element Data Type

The UDT type editor that is shown in Figure 13 shows the type of each element comprising the udt_MMI_set_traffic_light_cmd type.
Figure 13: UDT udt_MMI_set_traffic_light_cmd

UDT Field Descriptions

This section describes the format of the UDT used to define Set Traffic Light commands. UDT fields are described in more detail following the table.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Style</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic_light_id</td>
<td>INT</td>
<td>Decimal</td>
<td>1–4096</td>
</tr>
<tr>
<td>color</td>
<td>SINT</td>
<td>Decimal</td>
<td>Values are: 0 – Green (allows traffic to pass) 1 – Red (stops traffic)</td>
</tr>
<tr>
<td>command_index</td>
<td>SINT</td>
<td>Decimal</td>
<td>0–31</td>
</tr>
<tr>
<td>active_flag</td>
<td>SINT</td>
<td>Hex</td>
<td>Values are: 0x00 – HLC skips this entry 0x01 – HLC processes this entry</td>
</tr>
<tr>
<td>command_count</td>
<td>DINT</td>
<td>Hex</td>
<td>0x0–0xFFFFFFFF</td>
</tr>
</tbody>
</table>

traffic_light_id – The ID of the specified traffic light to change. The ID must be a nonzero integer that references a traffic light that exists in the configuration.

color – Color to set for the specified traffic light.

command_index – The index of the entry in the MMI_traffic_light_cmd_status tag to update when this MMI_set_traffic_light_cmd completes.

active_flag – This flag is used in configurations where a static table of udt_MMI_set_traffic_light_cmd entries is used and the same table is sent every time. The HLC only processes those entries with the active_flag set.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>The HLC skips the entry for this traffic light.</td>
</tr>
<tr>
<td>0x01</td>
<td>The HLC processes the entry for this traffic light.</td>
</tr>
</tbody>
</table>
command_count – Host controller derived unique counter, which is used to confirm that the HLC has received the command and to determine command status. This counter provides a convenient handshake mechanism to determine command status by matching the counter with the fields in the `MMI_traffic_light_cmd_status` array.

Using a scratch DINT tag as a counter is suggested. The scratch DINT tag can be incremented and copied to the command_count field each time a new traffic light command is issued so the new command can be tracked against the various count fields that are described in `MMI_traffic_light_cmd_status`.

Message Configuration

<table>
<thead>
<tr>
<th>Source Element Type</th>
<th>Number of Elements</th>
<th>Destination Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>udt_MMI_set_traffic_light_cmd</td>
<td>Min: 1 Max: 32</td>
<td>MMI_set_traffic_light_cmd</td>
</tr>
</tbody>
</table>

The source element set_traffic_light_cmd shown in Figure 14 is an array of type udt_MMI_set_traffic_light_cmd. It can be a single tag with the Number of Elements set to 1, or it can an array with the Number of Elements set to the maximum of 32.

Figure 14: Example Set Traffic Light Command Explicit Message Configuration

Response

After receiving the command, the HLC verifies the command parameters and updates the `MMI_traffic_light_cmd_status` as appropriate. If the command is accepted, the HLC handles setting the specified traffic light to the specified color. Once the command completes, the HLC updates `MMI_traffic_light_cmd_status` to indicate completion.

Additionally, the HLC updates the corresponding traffic light status entry in `MMI_traffic_light_status` to reflect the new status of the traffic light.
See Also

- MMI_traffic_light_status on page 36
- MMI_traffic_light_cmd_status on page 39
MMI_delete_traffic_light_cmd

Type

Host Controller → HLC

Purpose

Contains one or more entries of type udt_MMI_delete_traffic_light_cmd used to delete the specified traffic light. When a traffic light is deleted, the associated motor block is set to green to allow vehicles to move beyond the traffic light position.

Each command can be monitored via its corresponding udt_MMI_traffic_light_cmd_status entry in the MMI_traffic_light_cmd_status tag.

Support

This command is supported in the latest software release for the following product lines:

- MagneMover LITE transport systems.

Message Element Data Type

The UDT type editor that is shown in Figure 15 shows the type of each element comprising the udt_MMI_delete_traffic_light_cmd type.

![UDT MMI_delete_traffic_light_cmd](image)

Figure 15: UDT MMI_delete_traffic_light_cmd

UDT Field Descriptions

This section describes the format of the UDT used to define Delete Traffic Light commands. UDT fields are described in more detail following the table.
traffic_light_id – The ID of the specified traffic light to delete. The ID must be a nonzero integer that references a traffic light that exists in the configuration.

command_index – The index of the entry in the MMI_traffic_light_cmd_status tag to update when this MMI_delete_traffic_light_cmd completes.

active_flag – This flag is used in configurations where a static table of udt_MMI_delete_traffic_light_cmd entries is used and the same table is sent every time. The HLC only processes those entries with the active_flag set.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>The HLC skips the entry for this traffic light.</td>
</tr>
<tr>
<td>0x01</td>
<td>The HLC processes the entry for this traffic light.</td>
</tr>
</tbody>
</table>

command_count – Host controller derived unique counter, which is used to confirm that the HLC has received the command and to determine command status. This counter provides a convenient handshake mechanism to determine command status by matching the counter with the fields in the MMI_traffic_light_cmd_status array.

Using a scratch DINT tag as a counter is suggested. The scratch DINT tag can be incremented and copied to the command_count field each time a new traffic light command is issued so the new command can be tracked against the various count fields that are described in MMI_traffic_light_cmd_status.

Message Configuration

<table>
<thead>
<tr>
<th>Source Element Type</th>
<th>Number of Elements</th>
<th>Destination Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>udt_MMI_delete_traffic_light_cmd</td>
<td>Min: 1, Max: 32</td>
<td>MMI_delete_traffic_light_cmd</td>
</tr>
</tbody>
</table>

The source element delete_traffic_light_cmd shown in Figure 16 is an array of type udt_MMI_delete_traffic_light_cmd. It can be a single tag with the Number of Elements set to 1, or it can an array with the Number of Elements set to the maximum of 32.
Figure 16: Example Delete Traffic Light Command Explicit Message Configuration

Response

After receiving the command, the HLC verifies the command parameters and updates the MMI_traffic_light_cmd_status as appropriate. If the command is accepted, the HLC handles deleting the specified traffic light. Once the command completes, the HLC updates MMI_traffic_light_cmd_status to indicate completion.

Additionally, the HLC updates the corresponding traffic light status entry in MMI_traffic_light_status to reflect the deletion of the traffic light.

See Also

MMI_traffic_light_status on page 36
MMI_traffic_light_cmd_status on page 39
HLC to Host Controller Communications

This section describes the Status and Response Memory Tags that the HLC updates to interoperate with the PLC.

The HLC updates the Status Tags (listed in Table 4) on state change or when the EtherNet/IP link between the HLC and the PLC has been re-established after going down. Status Tags are informational for the PLC for disseminating status about the traffic light functions. The HLC updates the Response Tags (listed in Table 5) only in response to specific commands from the PLC issued via explicit messages.

Table 4: HLC to PLC Status Memory Tags

<table>
<thead>
<tr>
<th>Message Name</th>
<th>Message Element</th>
<th>Use</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMI_traffic_light_status</td>
<td>udt_MMI_traffic_light_status</td>
<td>MM LITE</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 5: HLC to PLC Response Memory Tags

<table>
<thead>
<tr>
<th>Message Name</th>
<th>Message Element</th>
<th>Use</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMI_traffic_light_cmd_status</td>
<td>udt_MMI_traffic_light_cmd_status</td>
<td>MM LITE</td>
<td>39</td>
</tr>
</tbody>
</table>
MMI_traffic_light_status

Type

HLC \(\rightarrow\) Host Controller

Purpose

Reports the status of all traffic lights in the transport system. This tag is a one-dimensional array of type udt_MMI_traffic_light_status indexed by Traffic Light ID. Index 0 is not used since a Traffic Light ID of 0 in the transport system is invalid. An entry is in use when the traffic_light_id field in the entry is nonzero. If the traffic_light_id field is zero, the entry is not in use, that is, no such traffic light at the index corresponding to the Traffic Light ID exists.

This array must be sized to the maximum Traffic Light ID configured in the transport system plus 1. Use the PLC_max_traffic_light_id parameter (see PLC_max_traffic_light_id on page 45) to establish the size of the MMI_traffic_light_status tag in PLC memory. When sizing this tag, make sure that the number of traffic lights does not exceed the number of entries in the MMI_traffic_light_status tag.

The HLC updates the MMI_traffic_light_status array whenever the link between the HLC and the PLC is re-established and on content change.

Support

This command is supported in the latest software release for the following product lines:

- MagneMover LITE transport systems.

Tag Format

<table>
<thead>
<tr>
<th>Tag Name</th>
<th>MMI_traffic_light_status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>udt_MMI_traffic_light_status[(Traffic\ Lights)+1]</td>
</tr>
<tr>
<td>Array</td>
<td>Yes</td>
</tr>
<tr>
<td>Array Dimension Limits</td>
<td></td>
</tr>
<tr>
<td>Minimum array size: 2</td>
<td></td>
</tr>
<tr>
<td>Maximum array size: max (Traffic\ Lights)+1</td>
<td></td>
</tr>
<tr>
<td>Array index corresponds to HLC Traffic Light ID.</td>
<td></td>
</tr>
<tr>
<td>Since Traffic Light ID 0 is invalid, array element [0] is not used.</td>
<td></td>
</tr>
</tbody>
</table>

The UDT type editor that is shown in Figure 17 shows the type of each element in the MMI_traffic_light_status array. This type must be created with the type editor first. Then a tag of name MMI_traffic_light_status must be created as an array of the UDT dimensioned to at most the maximum number of traffic lights plus 1.

If the transport system has a known maximum number of traffic lights that will not be exceeded that is less than the maximum, the array can be dimensioned to the smaller value to save on tag memory space, but it must not be fewer than 2 entries.
Figure 17: UDT udt_MMI_traffic_light_status

UDT Field Descriptions

This section describes the format of the UDT used to report status for all traffic lights in a transport system. UDT fields are described in more detail following the table.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Style</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic_light_id</td>
<td>INT</td>
<td>Decimal</td>
<td>0–4096</td>
</tr>
<tr>
<td>path_id</td>
<td>INT</td>
<td>Decimal</td>
<td>1–65535</td>
</tr>
<tr>
<td>position</td>
<td>REAL</td>
<td>Float</td>
<td>0.0–41.0 (m, floating-point)</td>
</tr>
<tr>
<td>color</td>
<td>SINT</td>
<td>Decimal</td>
<td>Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 – Green (allows traffic to pass)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 – Red (stops traffic)</td>
</tr>
<tr>
<td>status_change_count</td>
<td>DINT</td>
<td>Hex</td>
<td>0x0–0xFFFFFFFF</td>
</tr>
</tbody>
</table>

traffic_light_id – The ID of the traffic light that is associated with this traffic light status entry. This field is zero if the traffic light at this index in the MMI_traffic_light_status tag is not in use.

path_id – The ID of the path where the traffic light is located.

position – The position (in meters), relative to the start of the specified path, where this traffic light is located (expressed as a 32-bit single-precision floating-point number).

color – Color of the specified traffic light.

status_change_count – A sequence count, unique to the targeted traffic light, which the HLC increments whenever status for the traffic light is updated.
The HLC maintains the status_change_count for each traffic light metric. It is initialized to 0 when the HLC restarts.

See Also

MMI_create_traffic_light_cmd on page 25
MMI_set_traffic_light_cmd on page 28
MMI_delete_traffic_light_cmd on page 32
MMI_traffic_light_cmd_status

Type

HLC \rightarrow Host Controller

Purpose

Reports the status of traffic light commands in the transport system. This tag is an array of type udt_MMI_traffic_light_cmd_status indexed by its associated command index. The MMI_traffic_light_cmd_status array is updated only in response to a Create Traffic Light, Set Traffic Light, or Delete Traffic Light command sent from the PLC to the HLC.

This tag array is used to handshake traffic light commands so the PLC logic can know that the HLC received a command, and either accepted it for processing, or rejected it with an appropriate error code. The tag array can be consulted to determine if a command completed and whether it completed successfully or an error occurred.

Support

This command is supported in the latest software release for the following product lines:

- MagneMover LITE transport systems.

Tag Format

<table>
<thead>
<tr>
<th>Tag Name</th>
<th>MMI_traffic_light_cmd_status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>udt_MMI_traffic_light_cmd_status[command-index]</td>
</tr>
<tr>
<td>Array</td>
<td>Yes</td>
</tr>
<tr>
<td>Array Dimension Limits</td>
<td>Minimum array size: 1</td>
</tr>
<tr>
<td></td>
<td>Maximum array size: max 32</td>
</tr>
<tr>
<td></td>
<td>Array index corresponds to command index.</td>
</tr>
</tbody>
</table>

The UDT type editor that is shown in Figure 18 shows the type of each element in the MMI_traffic_light_cmd_status array. This type must be created with the type editor first. Then a tag of name MMI_traffic_light_cmd_status must be created as a one-dimensional array of the UDT with a maximum size of 32.
UDT Field Descriptions

This section describes the format of the UDT used to report the status of traffic light commands. UDT fields are described in more detail following the table.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Style</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>last_command_received_count</td>
<td>DINT</td>
<td>Hex</td>
<td>0x0–0xFFFFFFFF</td>
</tr>
<tr>
<td>last_command_accepted_count</td>
<td>DINT</td>
<td>Hex</td>
<td>0x0–0xFFFFFFFF</td>
</tr>
<tr>
<td>last_command_received</td>
<td>SINT</td>
<td>Hex</td>
<td>Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x01 – Create Traffic Light command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x02 – Set Traffic Light command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x04 – Delete Traffic Light command</td>
</tr>
<tr>
<td>last_command_received_status</td>
<td>SINT</td>
<td>Hex</td>
<td>0x00, 0x03, 0x04, 0x09, 0x0A, 0x0B,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x0C, 0x0D, 0x0E, 0x10, 0x11, 0x14,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x41</td>
</tr>
<tr>
<td>last_command_accepted</td>
<td>SINT</td>
<td>Hex</td>
<td>Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x01 – Create Traffic Light command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x02 – Set Traffic Light command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x04 – Delete Traffic Light command</td>
</tr>
<tr>
<td>last_command_accepted_completion_status</td>
<td>SINT</td>
<td>Hex</td>
<td>0x00, 0x41, 0x42, 0x80</td>
</tr>
<tr>
<td>last_command_accepted_traffic_light_id</td>
<td>INT</td>
<td>Decimal</td>
<td>0–4096</td>
</tr>
</tbody>
</table>

last_command_received_count – The HLC writes the command_count field of the most recently received traffic light command to this field. PLC logic can use this field to determine if a traffic light command was received by the HLC.
last_command_accepted_count – The HLC writes the command_count field of the most recently accepted traffic light command to this field when a command has been accepted by the HLC. PLC logic can use this field to determine whether a traffic light command received by the HLC has been accepted or not.

last_command_received – The HLC writes the command type of the most recently received traffic light command to this field.

last_command_received_status – The HLC writes an acceptance or rejection status to this field upon receiving a new traffic light command from the PLC. See HLC Status Codes on page 42 for the meaning of the status codes.

last_command_accepted – The HLC writes the command type of the most recently accepted traffic light command to this field. Note that this field is not updated when a received command is rejected.

last_command_accepted_completion_status – The HLC writes the completion status of the last_command_accepted to this field when a traffic light command actually completes or fails. See HLC Status Codes on page 42 for the meaning of the status codes.

last_command_accepted_traffic_light_id – The HLC writes the traffic light id of the last_command_accepted to this field when a traffic light command actually completes or fails.

See Also

MMI_create_traffic_light_cmd on page 25
MMI_set_traffic_light_cmd on page 28
MMI_delete_traffic_light_cmd on page 32
HLC Status Codes

Table 6 lists the status codes that the HLC returns when it accepts, rejects, or completes Traffic Light commands.

Table 6: HLC Status Codes

<table>
<thead>
<tr>
<th>Status Value</th>
<th>Status Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Command Accepted</td>
</tr>
<tr>
<td>0x03</td>
<td>Command Rejected – Invalid path ID</td>
</tr>
<tr>
<td>0x04</td>
<td>Command Rejected – Invalid position</td>
</tr>
<tr>
<td>0x09</td>
<td>Command Rejected – Startup sequence already started</td>
</tr>
<tr>
<td>0x0A</td>
<td>Command Rejected – Startup sequence not initiated/not complete</td>
</tr>
<tr>
<td>0x0B</td>
<td>Command Rejected – Invalid parameter</td>
</tr>
<tr>
<td>0x0C</td>
<td>Command Rejected – Initialization has not completed</td>
</tr>
<tr>
<td>0x0D</td>
<td>Command Rejected – Reset active</td>
</tr>
<tr>
<td>0x0E</td>
<td>Command Rejected – No record available</td>
</tr>
<tr>
<td>0x10</td>
<td>Command Rejected – Programming active</td>
</tr>
<tr>
<td>0x11</td>
<td>Command Rejected – Invalid traffic light ID</td>
</tr>
<tr>
<td>0x14</td>
<td>Command Rejected – Duplicate record</td>
</tr>
<tr>
<td>0x41</td>
<td>Command Failed – Unable to complete</td>
</tr>
<tr>
<td>0x42</td>
<td>Command Failed – Timed out</td>
</tr>
<tr>
<td>0x80</td>
<td>Command Completed Successfully</td>
</tr>
</tbody>
</table>
Traffic Light Configuration

See the MagneMover LITE Configurator User Manual for information on the Node Controller Configuration File.

Node Controller Configuration File XML Reference

This section describes the additional XML elements that are used to enable traffic lights and tailor the reporting of traffic light status to a PLC, shown in Table 7. These elements must be used in the EtherNet/IP section of the Node Controller Configuration File.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Use</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC_traffic_light_enable</td>
<td>Enables use of the traffic light commands</td>
<td>MM LITE</td>
<td>44</td>
</tr>
<tr>
<td>PLC_max_traffic_light_id</td>
<td>Defines the maximum number of traffic lights</td>
<td>MM LITE</td>
<td>45</td>
</tr>
</tbody>
</table>
PLC_traffic_light_enable

Purpose

Controls whether the HLC pushes traffic light status and response memory tags to PLC memory. If this element is not included in the Node Controller Configuration File, the default value of False is used.

Syntax

```
<PLC_traffic_light_enable>Enable</PLC_traffic_light_enable>
```

Contents

- **Enable:**
 - **True** – Push traffic light tags to the PLC memory.
 - **False** – Do not push traffic light tags to the PLC memory.

Example

The following example enables the high level controller to report Traffic Light Status and Response Memory Tags to a PLC.

```
<PLC_traffic_light_enable>True</PLC_traffic_light_enable>
```
PLC_max_traffic_light_id

Purpose

This element defines the maximum number of traffic lights to accommodate in PLC memory. The default value for this element is 128 traffic lights.

Syntax

```xml
<PLC_max_traffic_light_id>ID</PLC_max_traffic_light_id>
```

Contents

<table>
<thead>
<tr>
<th>ID:</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>4096</td>
</tr>
</tbody>
</table>

Example

The following example sets the maximum number of traffic lights to accommodate in PLC memory to 24.

```xml
<PLC_max_traffic_light_id>24</PLC_max_traffic_light_id>
```
Node Controller Configuration File Example

Figure 19 is an example of the EtherNet/IP configuration section from a Node Controller Configuration File that shows the configuration to report traffic light status and memory tags to a PLC.

```xml
<Ethernet_IP>
  <PLC_IP_address>192.168.110.72</PLC_IP_address>
  <PLC_CPU_slot>0</PLC_CPU_slot>
  <PLC_max_vehicle_ID>64</PLC_max_vehicle_ID>
  <PLC_send_vehicle_status_period>100</PLC_send_vehicle_status_period>
  <PLC_tag_request_retry_timeout>250</PLC_tag_request_retry_timeout>
  <PLC_traffic_light_enable>True</PLC_traffic_light_enable>
  <PLC_max_traffic_light_id>40</PLC_max_traffic_light_id>
</Ethernet_IP>
```

Figure 19: Example Traffic Light Node Controller EtherNet/IP Configuration
More Information

MagneMotion website: www.magnemotion.com
Questions and Comments: www.magnemotion.com/about-magnemotion/contact.cfm

Revision History

<table>
<thead>
<tr>
<th>Ver.</th>
<th>Change Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Initial release</td>
</tr>
<tr>
<td>01</td>
<td>Added EtherNet/IP Communication Protocol and Node Controller Configuration File XML Reference</td>
</tr>
</tbody>
</table>
Rockwell Automation Support

Use the following resources to access support information.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Dial Codes</td>
<td>Find the Direct Dial Code for your product. Use the code to route your call directly to a technical support engineer.</td>
<td>http://www.rockwellautomation.com/global/support/direct-dial.page</td>
</tr>
</tbody>
</table>

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the How Are We Doing? form at http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_en-e.pdf.

Allen-Bradley, Compact I/O, CompactLogix, ControlLogix, DH+, DriveLogix, FactoryTalk, FLEX, Logix5000, PanelBuilder, PanelView, PLC-2, PLC-3, PLC-5, POINT I/O, PowerFlex, Rockwell Automation, Rockwell Software, RSLinx, RSLogix, RSNetWorx, RSVIEW, SLC, SoftLogix, Studio 5000, and Studio 5000 Logix Designer are trademarks of Rockwell Automation, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com
Power, Control and Information Solutions Headquarters
Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846