FactoryTalk® Batch PhaseManager
Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation, and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

<table>
<thead>
<tr>
<th>WARNING:</th>
<th>Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTENTION:</td>
<td>Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence</td>
</tr>
<tr>
<td>SHOCK HAZARD:</td>
<td>Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.</td>
</tr>
<tr>
<td>BURN HAZARD:</td>
<td>Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.</td>
</tr>
<tr>
<td>Important:</td>
<td>Identifies information that is critical for successful application and understanding of the product.</td>
</tr>
</tbody>
</table>

Allen-Bradley, Rockwell Software, and Rockwell Automation ControlLogix, eProcedure, FactoryTalk, RSView, RSView BatchHistorian, RSView Historian, RSView MaterialTrack, and RSLogix are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.
Table of contents

Chapter 1

PhaseManager introduction

- Software requirements ... 8
- Intended audience .. 9
- What is PhaseManager? .. 9
 - FactoryTalk Batch features .. 10
 - Logix Designer features .. 10
 - Logix5000 Controller features ... 11
- How PhaseManager works in a FactoryTalk Batch system 11
 - Common Industrial Protocol (CIP) .. 12
 - Equipment phases in Logix Designer 13
 - Equipment phase synchronization ... 14
- Integration of FactoryTalk Batch Equipment Editor with Logix Designer ... 15
- Benefits of using PhaseManager and CIP instead of OPC 15
 - Reduced phase logic programming 16
 - Eliminates duplicate equipment phase and tag configuration 17
 - Compatible tag data types ... 18
 - Open phase logic in Logix Designer from FactoryTalk Batch Equipment Editor ... 19
 - Improved implementation of phase logic routines 19
- Additional resources .. 20

Chapter 2

Area model PhaseManager configuration

- Add a Logix5000 CIP data server ... 22
- Specify the data server name and type 23
- Select a project file ... 25
 - Select a project file - error messages 27
- Select the controller network path ... 28
- Optimize the timing of the server communication connection to the controller .. 30
- Edit a Logix5000 CIP data server .. 31
- Assign a Logix5000 CIP data server to a phase 32
 - Assign a data server to all phases in a unit 33
Chapter 3

FactoryTalk Batch phases in Logix Designer

- Synchronize the area model with the project file ... 36
- Save the area model and select a data server .. 37
- Select phases and synchronize .. 38
- Review results and save files .. 39
- Results of creating equipment phases in a project by synchronizing 41
- Open an equipment phase in Logix Designer from FactoryTalk Batch Equipment Editor .. 44
- Project file equipment phase changes ... 44
- Synchronize to update equipment phases in the project file 46
- Updated project file ... 50
- Deleted parameters and reports ... 51
- View synchronization issues ... 51
- Cannot Synchronize messages - create or update project .. 52

Chapter 4

Logix Designer equipment phases in the area model

- Synchronize to create phases in the area model .. 54
- Save the area model and select a data server .. 55
- Select phases .. 56
- Select a phase and unit to synchronize ... 57
- Create a new phase and select a unit ... 59
- Phases in the area model ... 61
- Synchronize to update phases in the area model .. 62
- View synchronization issues ... 63
- Cannot synchronize messages - create or update area model 64

Chapter 5

Data from FactoryTalk Batch Server

- Phase Logic programming model .. 66
- Download parameters (input parameters) request .. 66
- Phase parameter tags array.. 67
- Types of download parameter requests ... 67
- Download all parameters (input parameters) ... 68
- Download a range of parameters (input parameters) .. 69
- Download a single parameter (input parameter) ... 70
- Download the parameters configured for download on start 70
- Download the parameters configured for download on transfer of control ... 71
- Download report limits ... 71
- Types of download report limits requests .. 72
- Download all report limits information .. 72
- Download limits configuration for a single report ... 72
Table of contents

- Upload report overview .. 73
- Report array .. 73
- Electronic batch record entries .. 73
- Types of upload report requests .. 74
- Upload all reports (output parameters) .. 74
- Upload a range of reports (output parameters) .. 75
- Upload a single report (output parameter) ... 76
- Upload the reports configured for upload on transfer of control 76
- Upload the reports configured for upload on terminal state 77
- Send message to the operator and clearing message requests 78
- Send message to operator values ... 78
- Clear currently displayed message to operator values .. 78
- Acquire resource request .. 79
- Types of acquire requests ... 79
- Acquire a single resource value ... 79
- Acquire multiple resource values .. 80
- Release resources ... 80
- Types of release requests ... 81
- Release a single resource values .. 81
- Release multiple resource values ... 82
- Release all currently acquired resources values ... 82
- Phase communication ... 83
- Completion of messages .. 84
- Process send and receive messages .. 84
- Types of messages to other phases .. 85
- Send a message to one or more linked phase values .. 85
- Send message to one or more linked phases and wait values 86
- Message removal ... 86
- Cancel a single message .. 87
- Cancel all messages .. 87
- Receive message from linked phase request .. 88
- Download batch data values ... 88
- Generate an electronic signature request .. 90
- PXRQ instruction values .. 90
- How phase tag requests map to PXRQ requests .. 94
Chapter 6

Data from the Material Server

- Standard attributes ... 98
 - Material standard attributes ... 99
 - Lot standard attributes ... 100
 - Container standard attributes .. 101
- Custom attributes .. 102
 - Material custom attribute .. 103
 - Lot custom attribute .. 103
 - Container custom attributes .. 104
- Considerations for writing material phase logic .. 105
 - Phase process diagram ... 106
 - FEED_COMPLETE report parameter values... 107
- Recipe execution requests ... 108
 - Download data from container currently in use ... 109
 - Upload container data into container currently in use 110
 - Download data from material in container currently in use 110
 - Upload material data into material in container currently in use 110
 - Download data from lot in container currently in use 111
 - Upload lot data into lot in container currently in use 112
 - Download a container selection priority for the current binding 113
 - Upload a container selection priority for the current binding 113
 - Download sufficient material data .. 114
- Material database requests .. 115
 - Download one attribute of a material .. 116
 - Upload one attribute of a material .. 116
 - Download lot attributes .. 117
 - Upload lot attributes ... 117
 - Download container attributes ... 118
 - Upload container attributes ... 118
 - Download container attributes ... 118
 - Upload container priority assignments .. 119
 - Upload container priority assignments .. 120
- How phase tag requests map to PXRQ requests ... 121
- Legal Notices ... 125

Legal Notices

Index
Chapter 1

PhaseManager introduction

PhaseManager is a collection of features that integrates the FactoryTalk® Batch software with the Studio 5000 Logix Designer™ application and the Logix5000™ family of controllers. The integration of these products simplifies the configuration and maintenance of the FactoryTalk Batch automation system, provides a superior means of communication between the FactoryTalk Batch Server and the Logix5000 controller, and significantly reduces the programming effort required to develop the phase logic code that resides in the Logix5000 controller.

See also

- Software requirements on page 8
- Intended audience on page 9
- What is PhaseManager? on page 9
- How PhaseManager works in a FactoryTalk Batch system on page 11
- Benefits of using PhaseManager and CIP instead of OPC on page 15
Software requirements

The PhaseManager features require these versions of software:

- FactoryTalk Batch, version 13.0
- Logix Designer, version 29
- Logix Designer, redundancy support, versions 8, 11, 13, 15, 16, 19, 20, and 24
- RSLinx Classic version 3.81

Software Platform\Hardware Compatibility Matrix: For the latest compatibility information for the Rockwell Automation software suite of products, consult Rockwell Automation Product Compatibility and Download Center.

- Operating System:
 - Microsoft® Windows™ Server:
 - Microsoft Windows Server 2008 R2 Service Pack 1, Standard or Enterprise (64-bit)
 - Microsoft Windows Server 2012 Standard Edition or DataCenter (64-bit)
 - Microsoft Windows Server 2012 R2 Standard Edition or DataCenter (64-bit)
 - Microsoft Windows operating system
 - Windows 7 Service Pack 1 Professional or Enterprise (32-bit and 64-bit)
 - Windows 8.1 Professional or Enterprise (32-bit and 64-bit)
 - Windows 10 Professional or Enterprise on version 1607 (64-bit) (Batch Clients only)

See also

PhaseManager introduction on page 7
Intended audience

The information in this guide is for FactoryTalk Batch system designers, process engineers, and control engineers who are using PhaseManager to develop a batch automation system with FactoryTalk Batch and Logix Designer to develop phase logic for Logix5000 controllers.

Logix Designer users who do not use FactoryTalk Batch and only want to create sequence routines and develop code for a specific piece of equipment that may be incorporated into a FactoryTalk Batch system use PhaseManager.

See also

PhaseManager introduction on page 7

What is PhaseManager?

In FactoryTalk Batch Equipment Editor, create a phase class to represent a group of equipment that performs a minor processing activity in a manufacturing plant, and create a phase when a specific instance of a phase is added to a unit.

PhaseManager is a collection of features in FactoryTalk Batch, Logix Designer, and an addition of capabilities in the Logix5000 family of controllers that extend the concept and definition of phases to the Logix Designer software and the Logix5000 family of controllers.

An equipment phase is a special kind of program. A state machine built into the program manages the state of the equipment phase. The state specifies which routine the phase executes. The phase can be commanded to change states, and change the routine it is executing. Equipment phase programs have input and output parameters. Parameters can be configured as Sequencing parameters, marking these tags as requiring data to be supplied from an internal sequencer (Equipment Sequence Manager) or external sequencer (FTBatch).

PhaseManager adds an equipment phase object to the Logix5000 family of controllers and gives the ability to create equipment phases in the Logix Designer programming software. Create or update equipment phases in Logix Designer by adding or modifying them directly in the project, or by synchronizing the project with an area model that contains PhaseManager phases. Likewise, create or update phases in the area model by synchronizing with a Logix Designer project file that contains PhaseManager equipment phases.

See also

FactoryTalk Batch features on page 10

Logix Designer features on page 10

Logix5000 Controller features on page 11
PhaseManager adds these features to the FactoryTalk Batch software:

- **Common Industrial Protocol (CIP) support**
 The FactoryTalk Batch Server can sequence equipment phases in Logix5000 controllers using the industry standard CIP (Common Industrial Protocol). In FactoryTalk Batch Equipment Editor, add a Logix5000 CIP data server for each Logix controller that contains PhaseManager equipment phases.

- **Equipment phase synchronization**
 Synchronize the area model in FactoryTalk Batch Equipment Editor with the project file in Logix Designer. Create or update an equipment phase once in either application and add or update it to the other application by synchronizing the FactoryTalk Batch area model with its corresponding Logix Designer project file.

- **Navigation from FactoryTalk Batch Equipment Editor to phase logic in a Logix Designer project**
 Directly navigate from a phase in FactoryTalk Batch Equipment Editor to corresponding phase logic in the Logix Designer project file.

See also

What is PhaseManager? on page 9

PhaseManager adds these features to the Logix Designer programming software:

- **Equipment phase as a type of program**
 Add equipment phases to Logix Designer projects.

- **PHASE data type**
 Use the PHASE data type to link equipment phases to higher-level systems.

- **Special instructions for equipment phases**
 Use instructions in phase logic provided specifically for interacting with the FactoryTalk Batch Server and sequencing a PhaseManager equipment phase.

See also

What is PhaseManager? on page 9

Logix5000 Controller features on page 11
PhaseManager adds these features to the Logix5000 family of controllers:

- **Equipment phase objects**

 Equipment phase objects in the Logix5000 family of controllers communicate with the FactoryTalk Batch Server through direct Common Industrial Protocol (CIP) messaging. The equipment phase objects embed the Phase Logic Interface (PLI) capabilities into all Logix5000 controllers, eliminating the need for separate PLI code in the project.

- **Equipment Phase State Model**

 Modularize and organize equipment phase logic by developing the code for each S88 state in a routine. Using this programming structure provides consistency of implementation throughout the project.

See also

- [What is PhaseManager?](#) on page 9

How PhaseManager works in a FactoryTalk Batch system

PhaseManager features work together to provide a seamless workflow that improves the designing, troubleshooting, and commissioning phases of the development life cycle. This discussion includes some background information about the components of FactoryTalk Batch systems and how FactoryTalk Batch terminology and concepts are implemented in FactoryTalk Batch and Logix Designer.

In a FactoryTalk Batch system using PhaseManager, the FactoryTalk Batch Server provides batch control, including recipe execution, allocation and arbitration of equipment, binding of resources, and generation of journals. Use FactoryTalk Batch Equipment Editor and FactoryTalk Batch Recipe Editor to configure the FactoryTalk Batch system. Use Logix Designer to program the phase logic code that defines the behavior of equipment phase states, including Running, Stopping, Aborting, Holding, Restarting, and Resetting. PhaseManager links a phase in FactoryTalk Batch Equipment Editor to a corresponding equipment phase and its phase logic in Logix Designer.

See also

- [Common Industrial Protocol (CIP)](#) on page 12

- [Equipment phases in Logix Designer](#) on page 13

- [Equipment phase synchronization](#) on page 14

- [Integration of FactoryTalk Batch Equipment Editor with Logix Designer](#) on page 15
PhaseManager uses the Common Industrial Protocol (CIP) as the communication mechanism between the FactoryTalk Batch Server and the Logix5000 controller. In FactoryTalk Batch, each Logix5000 controller is represented as a CIP data server that was added and configured in FactoryTalk Batch Equipment Editor. Logix5000 CIP data servers require RSLinx Classic for the CIP communications from the FactoryTalk Batch Server to the controller.

The FactoryTalk Batch Server and Logix Designer communicate with the Logix5000 controller by sending and receiving CIP (Common Industrial Protocol) messages through RSLinx Classic.

See also

How PhaseManager works in a FactoryTalk Batch system on page 11
Equipment phases in Logix Designer

FactoryTalk Batch Equipment Editor provides the ability to create a model of the equipment in a manufacturing plant. The phases defined in FactoryTalk Batch Equipment Editor define the capabilities of a piece of equipment, or what the equipment can do. When adding an instance of a phase class to a specific unit, create a phase. Each phase represents a unique piece of equipment that can perform the processing activity described by the phase.

Using Logix Designer with PhaseManager, can also create equipment phases in Logix Designer controllers. An equipment phase in Logix Designer is a type of program that represents both the specific piece of equipment and its capabilities, or the processing activity it performs. The Logix Designer equipment phase is a combination of the FactoryTalk Batch phase and the phase it was created from. PhaseManager adds special Relay Ladder Logic (RLL) and Structured Text instructions to Logix Designer used when developing phase logic to interact with the FactoryTalk Batch Server, and for internally manipulating the equipment phase objects in the Logix5000 controller.

See also

- Equipment phase synchronization on page 14
- How PhaseManager works in a FactoryTalk Batch system on page 11
- Integration of FactoryTalk Batch Equipment Editor with Logix Designer on page 15
Equipment phase synchronization

With PhaseManager, create a phase in FactoryTalk Batch Equipment Editor or edit the definition of equipment phases, including parameters and reports, in either FactoryTalk Batch Equipment Editor or in Logix Designer and synchronize them in FactoryTalk Batch Equipment Editor. FactoryTalk Batch Equipment Editor contains the tools to view synchronization status and manage the synchronization process.

Tip: These types of phases must be initially created and edited in FactoryTalk Batch Equipment Editor and added to Logix Designer through the synchronization process:
- Material phases
- Phases that contain control strategies
- Phases that contain parameter deviations

See also

Integration of FactoryTalk Batch Equipment Editor with Logix Designer on page 15
PhaseManager adds the ability to double-click a phase in FactoryTalk Batch Equipment Editor and open its corresponding equipment phase in Logix Designer to view and edit its phase logic.

Place the pointer over a phase that is assigned a CIP data server, the pointer changes to the Logix Designer equipment phase symbol, indicating to double-click to open Logix Designer.

See also

- How PhaseManager works in a FactoryTalk Batch system on page 11

PhaseManager improves existing functionality, and how using PhaseManager and the Common Industrial Protocol (CIP) differs from using FactoryTalk Batch with the OPC communication protocol.

See also

- Reduced phase logic programming on page 16
- Eliminates duplicate equipment phase and tag configuration on page 17
- Compatible tag data types on page 18
- Open phase logic in Logix Designer from FactoryTalk Batch Equipment Editor on page 19
- Improved implementation of phase logic routines on page 19
Without PhaseManager, a control engineer must implement the Phase Logic Interface (PLI), which is a set of ladder logic (RLL) routines that provides the controller interface to the FactoryTalk Batch Server and executes the command handshake protocol required by the server to communicate with the controller. This communication protocol is implemented using OPC and communication tags or other memory locations in the controller to hold commands, requests, and other data needed by the PLI. When OPC is used, the FactoryTalk Batch Server is compatible with any type of controller, including Logix5000 controllers, PLC-5s, or controllers manufactured by any vendor.

In Logix Designer with PhaseManager, the functionality associated with the PLI is embedded into the Logix5000 controller by means of equipment phase objects and instructions. Since PhaseManager implements the PLI functionality in the Logix5000 controller, do not implement PLI routines when using PhaseManager to create and maintain equipment phases in the FactoryTalk Batch system.

With PhaseManager, the FactoryTalk Batch Server communicates with the Logix5000 controller through direct CIP (Common Industrial Protocol) messaging targeted at the new objects in the Logix5000 controller. CIP messaging provides a faster and more reliable communication mechanism, a preferred connectivity path, and increased throughput. The combination of embedding the PLI functionality in the Logix5000 controller and using CIP messaging for communication provides a seamless integration between FactoryTalk Batch, RSLogix5000, and the Logix5000 family of controllers.

All commands previously supported from the FactoryTalk Batch Server to the controller, such as sending a parameter value to the controller, are also supported by PhaseManager. Likewise, all requests from the controller to the FactoryTalk Batch Server, such as the controller requesting a new parameter value, are also supported by PhaseManager. How these commands are sent is different when PhaseManager is used, due to the use of CIP messaging.

See also

Data from FactoryTalk Batch Server on page 65
In a FactoryTalk Batch system using the OPC communication protocol and the Logix Designer programming software, manually enter communication tag data for each of the ten standard tags and for each parameter, report, and additional request tag on each phase in FactoryTalk Batch Equipment Editor. In Logix Designer, manually create the corresponding tags. Each Tag Name entered in Logix Designer must match the Tag Item Name entered in FactoryTalk Batch Equipment Editor. Additionally, in Logix Designer manually create the tags required for the PLI and FactoryTalk Batch Server communications.

In a FactoryTalk Batch system using Logix Designer with PhaseManager, the FactoryTalk Batch Server communicates directly to the equipment phase objects in the Logix5000 controller; therefore, it is not necessary to enter any communication tag data in either application. In FactoryTalk Batch Equipment Editor, tag names that match the parameters and reports defined on the phase are automatically created for each phase.

Through synchronization, these tag names from the phase are automatically created on the corresponding equipment phases in Logix Designer.

With PhaseManager, create or modify phases in FactoryTalk Batch Equipment Editor or equipment phases in Logix Designer, and synchronize the FactoryTalk Batch area model with the Logix Designer project file. When synchronizing the area model with the project file, data types and tags automatically create for each equipment phase and for all parameters and reports in Logix Designer. It is not necessary to enter this information twice, in FactoryTalk Batch and in Logix Designer, as is required if OPC data servers are used with FactoryTalk Batch.

Any new equipment phases added in Logix Designer, or modifications to existing equipment phases in Logix Designer, can also be transferred to the FactoryTalk Batch area model when the FactoryTalk Batch phases are synchronized with the Logix Designer project.

See also

Logix Designer equipment phases in the area model on page 53
Compatible tag data types

The data types of the input and output parameter tags defined in Logix Designer must be compatible with the data types supported in FactoryTalk Batch Equipment Editor. These data types are supported:

<table>
<thead>
<tr>
<th>Logix Designer Data Type</th>
<th>Corresponding FactoryTalk Batch Equipment Editor Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>Real</td>
</tr>
<tr>
<td>DINT, INT, SINT</td>
<td>Integer</td>
</tr>
<tr>
<td>DINT, INT, SINT</td>
<td>Enumeration</td>
</tr>
<tr>
<td>String</td>
<td>String</td>
</tr>
</tbody>
</table>

See also

- [Open phase logic in Logix Designer from FactoryTalk Batch Equipment Editor](#) on page 19
- [Improved implementation of phase logic routines](#) on page 19
PhaseManager gives the ability to double-click a phase in FactoryTalk Batch Equipment Editor and directly view and edit its phase logic in Logix Designer. Logix Designer opens to the equipment phase in the project file that corresponds to the phase selected in FactoryTalk Batch Equipment Editor. It is not necessary to manually open Logix Designer and navigate to the equipment phase to view or edit the phase logic for a phase in FactoryTalk Batch.

- If the phase has a corresponding equipment phase in Logix Designer with existing phase logic, Logix Designer opens the project file to the Running routine of the equipment phase.
- If the phase has a corresponding equipment phase in Logix Designer, and the phase logic has not been developed yet, Logix Designer opens the project file to the equipment phase.
- If the phase does not have a corresponding equipment phase in Logix Designer, Logix Designer opens the project file for the CIP data server that is assigned to the phase.

Tip: To open the Logix Designer project file from FactoryTalk Batch Equipment Editor, the correct revision of Logix Designer must be installed on the same computer as FactoryTalk Batch Equipment Editor with an activation for each product. The PhaseManager activation is included in the Logix Designer Professional Version, but other versions of Logix Designer require a separate PhaseManager activation to enable the PhaseManager features in Logix Designer.

See also

Improved implementation of phase logic routines on page 19

Logix Designer with PhaseManager improves the implementation of equipment phases in Logix5000 controllers. Using OPC and the PLI, a phase is typically executed in a single relay ladder logic (RLL) routine that implements logic for all of the active states defined by the S88 standard. These active states include Stopping, Starting, Running, Holding, Aborting, and Restarting.

Tip: PhaseManager also provides an additional active state in Logix Designer, Resetting, that can be used for other types of projects not based on the S88 standard.

PhaseManager supports a modularized approach to developing state routine logic by facilitating the development of each active state in its own routine. PhaseManager represents an equipment phase as a type of program in Logix Designer. Since programs can contain multiple routines, develop a separate routine for each active state required for the equipment phase. Developing separate routines for each active state also provides the ability to develop each routine in different programming languages.
Use other Logix Designer program features when developing equipment phase logic. These features include the ability to use timing diagnostics information, Max and Last Scan, for debugging equipment phases in Logix Designer, and the ability to configure a fault routine for the equipment phase.

See also

- Benefits of using PhaseManager and CIP instead of OPC on page 15

Additional resources

These documents contain additional information concerning related Rockwell Automation products.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FactoryTalk Batch Equipment Editor User Guide</td>
<td>The FactoryTalk Batch Equipment Editor is a graphical interface used to create and maintain an equipment database. This process equipment database is called an area model. The area model is stored in a file with a .cfg file extension and is available to all other FactoryTalk Batch programs, including the Recipe Editor, View, and Phase Simulator.</td>
</tr>
<tr>
<td>Logix Designer online help.</td>
<td>The Logix Designer application provides one programming software for sequential, process, drive, and motion control programming that is compliant with the EC61131-3 standard. The Logix Designer application supports symbolic programming with structures and arrays, and an instruction set that serves many types of applications in an environment that is common to the Rockwell Automation® Logix platforms: ControlLogix and CompactLogix. The Logix Designer application is designed to work with Rockwell Automation Logix Platforms and the Logix5000™ family of controllers.</td>
</tr>
</tbody>
</table>
| Logix5000 Controllers PhaseManager User Manual | Provides set up and program information for a Logix5000 controller to use Equipment Phases. It gives guidance and examples to:
- Lay-out code in sections that include Equipment Phases.
- Set up a state model for equipment.
- Program equipment to run by the state model.
Use Equipment Phase instructions to transition to a different state, handle faults, set up break points, and so forth. |
| FactoryTalk Batch PCD Programmer Technical Reference Guide | Provides information and instructions about the FactoryTalk® Batch-PCD interface design. It is intended to be used as a reference guide. |

View or download publications at http://www.rockwellautomation.com/literature. To order paper copies of technical documentation, contact the local Rockwell Automation distributor or sales representative.
Chapter 2

Area model PhaseManager configuration

Use FactoryTalk Batch with PhaseManager to configure the area model in FactoryTalk Batch Equipment Editor, or develop the phase logic in Logix Designer. If designing an entire FactoryTalk Batch system, use FactoryTalk Batch Equipment Editor to create an area model that describes the capabilities of the equipment, down to the phase level, and use the synchronization feature to create corresponding equipment phases in the Logix Designer project file.

This section describes how to configure data servers and phases in FactoryTalk Batch Equipment Editor so these PhaseManager features can be used:

- CIP for FactoryTalk Batch Server communications to the Logix5000 controller
- Synchronization of phases in the FactoryTalk Batch area model with the Logix Designer project file
- Ability to open phase logic in Logix Designer from the phase in FactoryTalk Batch Equipment Editor

Tip: To fully use the PhaseManager features, install FactoryTalk Batch Equipment Editor and Logix Designer on the same computer.

To configure the FactoryTalk Batch system with PhaseManager:

- Add Logix5000 CIP data servers
- Assign a Logix5000 CIP data server to PhaseManager phases

After these configuration tasks are completed, automatically create the FactoryTalk Batch phases in the Logix Designer project file by synchronizing the area model with the project file.

See also

- [FactoryTalk Batch phases in Logix Designer](#) on page 35
- [Add a Logix5000 CIP data server](#) on page 22
- [Edit a Logix5000 CIP data server](#) on page 31
- [Assign a Logix5000 CIP data server to a phase](#) on page 32
Add a Logix5000 CIP data server

Add data servers either before creating the rest of the elements in the area model, or after the process cells, unit classes, phase classes, and resources in the area model are defined. Define at least one data server before creating the specific phases from the phase classes.

If possible, create the project file in Logix Designer before adding a Logix5000 CIP data server. Specify the project file when a Logix5000 CIP data server is added to detect errors more easily when designing the system.

To add a Logix5000 CIP data server:

1. Specify the Data Server Name and Type.
2. Select a project file.
3. Select the controller network path.
4. (optional) Optimize the timing of server communication to the controller.

See also

- Specify the data server name and type on page 23
- Select a project file on page 25
- Select a project file - error messages on page 27
- Select the controller network path on page 28
- Optimize the timing of the server communication connection to the controller on page 30
Specify the data server name and type

To add data servers, give each one a name and specify the type of data server. Add one data server for each Logix5000 controller in the system. When creating phases, assign a data server to each one.

To specify the data server name and type:

1. Open FactoryTalk Batch Equipment Editor.
2. Select Edit > Data Server. The Data Servers dialog box opens.
3. Select the Add... button. The Add Data Server dialog box opens.
4. In **Name**, enter a name for the data server. This name should easily identify the Logix5000 controller that this data server represents. A suggested name is the type of Logix5000 controller and its location in the chassis, or the phase/unit that this controller is connected to in the plant.

 Tip: When ready to synchronize the area model with the Logix Designer project, this name displays in the **Synchronize Logix5000 Data Servers** dialog box. Choose which data server to synchronize by selecting its name.

5. From the **Type** list, select **Logix5000 CIP**.

![Add Data Server](image)

Now that a data server is added, there are several ways to proceed:

- To create phases in the area model, select **OK** to close this dialog box. Finish adding information about the data server later.
- If the Logix Designer project file associated with this data server is known, continue to **Select a project file**.
- If the project file associated with this data server is not known, the controller to be used is known, see **Select the controller network path**.

See also

- **Select a project file** on page 25
- **Select the controller network path** on page 28
- **Optimize the timing of the server communication connection to the controller** on page 30
Select a project file

After a name for Logix5000 CIP data server is specified, select the Logix Designer project file that contains the phase logic for the controller this data server represents.

Select a project file for a data server the Logix Designer project is synchronized. Specify a project file and synchronize the area model with the Logix Designer project to allow full use of the PhaseManager features to easily detect errors while designing the FactoryTalk Batch system.

Important: To select a project file, install Logix Designer on the same computer as FactoryTalk Batch Equipment Editor.

To select a project file:

1. Complete these steps in the Add or Edit Data Server dialog box.

 If the Add or Edit Data Server dialog box is open, go to step 5.

 Select Edit > Data Server. The Data Servers dialog box opens.

2. Select the Logix5000 CIP data server to specify a project file.

4. Select Browse. The Select Project File dialog box opens.

5. Navigate to the Logix Designer project (.acd file) that contains the phase logic for the controller this data server represents. Select it and select Open.

 Tip: The Logix Designer project file must be revision 16.0 or higher.

 The Edit Data Server dialog box displays the Path of the project file selected, the Revision of the project file, and the Controller Type that the project file specifies.

 The Controller Network Path also displays the communications path that is specified in the Path box of the Logix Designer project.

6. If no Path is specified in the Logix Designer project, this message displays:
7. Select **OK**. The **Controller Network Path** box displays **<unknown>**. Select a **Controller Network Path** later. (See **Select the controller network path** for more information.)

Tip: If any other error messages are encountered when a project file is selected, see **Select a project file - error messages** for a list of possible error messages and how to resolve them.

Now the Logix Designer project file is selected:

- Synchronize this data server with the Logix Designer project file selected. (See **Synchronize to create equipment phases in the project file** for more information.)
- Run the FactoryTalk Batch Server, only if the **Controller Network Path** is specified.
- Select a **Controller Network Path** if one was not specified in the Logix Designer project file. (See **Select the controller network path** for more information.)
- Create phases in the area model.
- To adjust the timing of the FactoryTalk Batch Server communications to the controller, see **Optimize the timing of the server communication connection to the controller**.

See also

- **Select the controller network path** on page 28
- **Select a project file - error messages** on page 27
- **Synchronize area model with project file** on page 36
- **Select the controller network path** on page 28
- **Optimize the timing of the server communication connection to the controller** on page 30
If error messages display when a Logix Designer project file is selected, use this table to troubleshoot.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Action to Take</th>
</tr>
</thead>
<tbody>
<tr>
<td>The specified Logix Designer project file was not found.</td>
<td>The file could have been renamed, moved, or deleted after it was selected in the Select Project File dialog box. In Windows Explorer, navigate to the file selected in the Select Project File dialog box, and verify that it still exists with the same name in the selected location.</td>
</tr>
<tr>
<td>No revision of Logix Designer is installed.</td>
<td>Logix Designer is not installed on the same computer as FactoryTalk Batch Equipment Editor. Install Logix Designer revision 16.0 or higher on the same computer as FactoryTalk Batch Equipment Editor.</td>
</tr>
<tr>
<td>The revision of Logix Designer required to open the project is not installed.</td>
<td>The installed revision of Logix Designer does not support PhaseManager functionality. Upgrade the current installation of Logix Designer to revision 16.0 or higher.</td>
</tr>
<tr>
<td>The Logix Designer project file must be converted. The revision is too old.</td>
<td>The revision of the selected Logix Designer project file is lower than revision 16.0. Open the selected project file in Logix Designer revision 16.0 or higher, to convert the file to this revision.</td>
</tr>
<tr>
<td>The specified file is not a valid Logix Designer project file. The file format is not recognized or has been corrupted.</td>
<td>Try to open the selected project file in Logix Designer. If it does not open, the file format has been corrupted.</td>
</tr>
<tr>
<td>RSLinx is not installed. The Controller Network Path could not be verified.</td>
<td>Install RSLinx Classic, version 3.8.</td>
</tr>
<tr>
<td>The Logix Designer project file is read-only and cannot be opened.</td>
<td>Disable the Read-Only Attribute for the selected project file. In Windows Explorer, navigate to the selected file in the Select Project File dialog box. Open the Properties dialog box for the file and verify that the Read-Only Attribute is not selected.</td>
</tr>
<tr>
<td>The Controller Network Path is not set in the Logix Designer project file.</td>
<td>Set the Path for the project file in Logix Designer and save the .ACD file in Logix Designer. Select the project file again in FactoryTalk Batch Equipment Editor. Or Manually select the Path in FactoryTalk Batch Equipment Editor. (See Select the controller network path for more information.)</td>
</tr>
<tr>
<td>The Controller Network Path set in the Logix Designer project file could not be verified.</td>
<td>The driver specified in the Path in the Logix Designer project must also be configured in RSLinx. In the Project file, modify the Path to include a driver that is configured in RSLinx. Or in RSLinx, configure a driver to match the driver specified in the project file Path.</td>
</tr>
<tr>
<td>The Logix Designer project file revision does not support phases. Use revision 16.0 or greater.</td>
<td>The installed revision of Logix Designer and the revision of the selected project file is lower than revision 16.0. Upgrade the revision of Logix Designer to 16.0 or higher. Open the selected project file in Logix Designer, to convert the file to the upgraded revision.</td>
</tr>
</tbody>
</table>

See also

[Select the controller network path](#) on page 28
Select the controller network path

The controller network path is the network communication path to the controller this data server represents. This is the controller the FactoryTalk Batch Server communicates with.

If the Logix Designer project file specifies the communications Path, it is not necessary to select it. It is automatically entered when the Logix Designer project file is selected.

However, if the Logix Designer project file is not selected, or the selected one did not contain a communications Path, select one before running the FactoryTalk Batch Server.

Install RSLinx Classic must on the same computer as FactoryTalk Batch Equipment Editor to select a Controller Network Path.

To select the controller network path:

1. Complete these steps in the Add or Edit Data Server dialog box.

 If the Add or Edit Data Server dialog box is open, go to step 5.

 From the Edit > Data Server. The Data Servers dialog box opens.

2. Select the Logix5000 CIP data server to set the controller network path.

5. Navigate to the controller, and select it. The communications path of the controller selected displays in the Controller Network Path box at the bottom of the dialog box.

6. Select OK to close the Browse for Controller dialog box. In the Edit Data Server dialog box, the communications path selected displays in the Controller Network Path box.

 Tip: An asterisk (*) at the end of the Controller Network Path indicates that the controller network path was set using Select Path instead of browse. If there is an *, the controller network path displayed may be different from the Path specified in the Logix Designer project file.

After selecting the Controller Network Path:

- Run the FactoryTalk Batch Server.

For a selected Logix Designer project file, synchronize the data server with the Logix Designer project file. (See FactoryTalk Batch phases in Logix Designer for more information).

- Create phases in the area model.
- To adjust the timing of the FactoryTalk Batch Server communications to the controller, continue to Optimize the timing of the server communication connection to the controller.

See also

- [FactoryTalk Batch phases in Logix Designer](#) on page 35
- [Optimize the timing of the server communication connection to the controller](#) on page 30
Optimize the timing of the server communication connection to the controller

Use these instructions to optimize the timing of the server communication connection to the controller.

To optimize the timing of the server communication connection to the controller:

1. Select Edit > Data Server. The Data Servers dialog box opens.

2. Select More to display the Timeout and Retries box.

3. The default values are the recommended settings for these boxes. However, adjust these values for the speed of the network.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>How often the FactoryTalk Batch Server attempts to contact the controller. The range of valid values is 500 to 100000 milliseconds. The default is 8000.</td>
</tr>
<tr>
<td>Retries</td>
<td>The number of times the FactoryTalk Batch Server tries to contact the controller before dropping the connection. The valid values appear in the list. The default is 4.</td>
</tr>
</tbody>
</table>

Timeout * Retries = Length of time the FactoryTalk Batch Server attempts to contact the controller before losing the connection.

See also

Add a Logix5000 CIP data server on page 22
Edit a Logix5000 CIP data server

Use these instructions to edit a Logix5000 CIP data server.

To edit a Logix5000 CIP data server:

1. Select **Edit > Data Server**. The **Data Servers** dialog box opens.

2. Select the data server definition to be edited, and select **Edit**. The **Edit Data Server** dialog box opens.

3. Make any required changes and select **OK** to return to the **Data Servers** dialog box.

 Tip: After adding a data server as a Logix5000 CIP type data server, the type cannot change. No other data server types appear in the **Type** selection list when editing. To change the **Type**, delete the data server and add a new one.

4. *(optional)* To delete a data server, select the data server to delete and select **Remove**.

 - If the data server is not assigned to any phases, this message displays:

 ![Batch Equipment Editor](image)

 - If the data server is assigned to phases, the **Remove Server** dialog box opens, displaying these phases and unit tags associated with the data server.

 The displayed unit tags and phases, as well as their parameter, report, and limit tags are deleted when the data server is removed.

 - Select **Yes** to delete the data server and remove all associated phases and tags.

See also

[Area model PhaseManager configuration on page 21](#)
Assign a Logix5000 CIP data server to a phase

After adding a Logix5000 CIP data server, assign it to each phase that represents a piece of equipment connected to the controller specified in the controller network path of the Logix5000 CIP data server.

To assign a Logix5000 CIP data server to a phase:

1. Select the phase icon in the Design View area and select Edit > Properties. The Edit Phase dialog box, General tab displays.

2. From the Data Server list, select the Logix5000 CIP data server that represents the controller connected to the piece of equipment defined by this phase.

3. Select OK.

See also

Assign a data server to all phases in a unit on page 33
When creating a unit, assign a data server to the unit. This data automatically assigns to all phases subsequently created in that unit.

To assign a data server to all phases in a unit:

1. Select the unit icon in the Design View area and select Edit > Properties. The Edit Unit dialog box, General tab displays.

2. From the Data Server list, select the Logix5000 CIP data server that represents the controller connected to all phases created in this unit.

3. Select OK.

See also

Assign a Logix5000 CIP data server to a phase on page 32
Chapter 3

FactoryTalk Batch phases in Logix Designer

After the Logix5000 data servers are added and assigned to phases, create the same phases in the Logix Designer programming software by synchronizing the area model with the Logix Designer project file.

This section describes how to synchronize the FactoryTalk Batch area model with the Logix Designer project file when the phases in FactoryTalk Batch Equipment Editor are created and corresponding equipment phases in Logix Designer are needed. Phases based on these types of phases must be initially created in FactoryTalk Batch Equipment Editor and added to Logix Designer through the synchronization process:

- Material based recipe phases
- Phases that contain control strategies
- Phases that contain parameter deviations

The features to configure these types of complex phases are unique to the FactoryTalk Batch product. Logix Designer does not have the configuration features to enable material phases, control strategies, or parameter deviations. For that reason, configure these phase classes and phases in FactoryTalk Batch first, and then follow the instructions in this chapter to synchronize the area model with the Logix Designer project file. When corresponding equipment phases in Logix Designer are synchronizing, the appropriate configuration of parameters, reports, and tags on these complex phases are automatically created on the equipment phases in Logix Designer.

Tip: Phases are created in Logix Designer as equipment phases.

After equipment phases are created in the Logix Designer project, begin developing phase logic for them in Logix Designer.

See also

- Synchronize the area model with the project file on page 36
- Project file equipment phase changes on page 44
Synchronize the area model with the project file

Use these instructions to synchronize the area model with the project file.

Before you begin:

- Install Logix Designer and RSLinx Classic on the same computer as FactoryTalk Batch Equipment Editor.
- Create phases in FactoryTalk Batch Equipment Editor and assigned a Logix5000 CIP data server.
- Create a project file in Logix Designer.
- Specify this project file in the Add or Edit Data Server dialog box for the appropriate data server.

To synchronize the area model with the project file:

1. Save the area model and select a data server to synchronize.
2. Select the phases to create in the Logix Designer project.
3. Synchronize, review the results, and save the project.

All synchronization steps are completed in FactoryTalk Batch Equipment Editor.

See also

Save the area model and select a data server on page 37

Select phases and synchronize on page 38

Review results and save files on page 39

Results of creating equipment phases in a project by synchronizing on page 41
Save the area model and select a data server

Use these steps to begin synchronizing the area model with the Logix Designer project.

To save the area model and select a data server:

1. From the Edit menu, select Synchronize Logix5000 Data Servers. The Save Before Synchronization dialog box opens.

2. Select Save to save the area model file now, or select Continue Without Saving.
 - If Save is selected, the Save As dialog box opens. Save the area model with its existing name or give it a different name.
 - After saving or continuing, the Synchronize Logix5000 Data Servers dialog box opens.

3. Select the data server that was added for the new Logix5000 controller.

 Tip: Select any column headings to sort the list of data servers.

4. Select Continue. The Synchronize with Logix5000: <data server name> dialog box opens.

5. Select the phases to create in the area model. Continue to Select phases.

See also

Select phases on page 56

Select phases and synchronize on page 38
Select phases and synchronize

Select phases on the Synchronize with Logix5000: <data server name> dialog box.

To select phases and synchronize:

1. The left pane of the Synchronize with Logix5000: <data server name> dialog box displays the units in the area model that contain phases assigned to the selected data server. Only units that contain phases different from the equipment phases in Logix Designer display. Expand a unit by selecting the plus sign next to it, to view the phases it contains.

2. Select a unit. The phases it contains display in the right pane. Only phases different from the equipment phases in the Logix Designer project display.

3. Select a phase to create in the Logix Designer project.

4. Select the Resolution box for the selected phase and select Create in Project.

Tip: If the only Resolution available is Cannot Synchronize, select Details to see a message that explains why the phase cannot be synchronized.

5. (optional) To view the selected phase configurations in FactoryTalk Batch and in Logix Designer, select Details to open the Equipment Phase Synchronization Details dialog box.

This dialog box shows any differences that exist between the phase in FactoryTalk Batch Equipment Editor and the corresponding equipment phase in Logix Designer.

In this example, the parameters and reports configured for the phase in FactoryTalk Batch display in the Batch Configuration area on the left. Since this phase only exists in FactoryTalk Batch Equipment Editor, the Logix Designer side is blank.

Tip: Although the report limit tags are defined as Input tags in Logix Designer, they display with the reports on the Equipment Phase Synchronization Details dialog box. Other reports are defined as Output tags in Logix Designer.

6. Select Close when finished viewing the phase details.

7. Repeat steps 3 - 5 for each phase in the selected unit to be created in the Logix Designer project.

8. Repeat steps 2 - 6 for each unit that contains phases to be created in the Logix Designer project.
9. On the **Synchronize with Logix5000: <data server name>** dialog box, select **Synchronize**. The **Synchronization Results Summary** dialog box opens.

The phases selected are created in the Logix Designer project. Next review the results of the synchronization and save the Logix Designer project file. Continue on to **Review results and save files**.

See also

- [View synchronization issues](#) on page 51
- [Review results and save files](#) on page 39

Review results and save files

Use these instructions to review results and save files.

To review results and save files:

1. On the **Synchronization Results Summary for Server: <data server name>** dialog box, review the displayed results of the synchronization. Phases with a **Result** of **Successful** created in the Logix Designer project. If satisfied with the results, select **Yes** to save the Logix Designer project file.

 ![Synchronization Results Summary](image)

 Tip: If **Failed** displays in the **Result** column, the reason displays in the **Additional Information** column.

 If not satisfied with the results, select **No**. The synchronization changes displayed are not saved in the Logix Designer project file.
The time and status of the synchronization displays in the **Synchronize Logix5000 Data Servers** window.

<table>
<thead>
<tr>
<th>Status of Last Synchronization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>All results were Successful, and Yes was selected to save the project file.</td>
</tr>
<tr>
<td>Incomplete</td>
<td>Some results were Failed or Skipped, or No was selected and did not save the project file.</td>
</tr>
<tr>
<td>Never Synchronized</td>
<td>Never been an attempt to synchronize the data server.</td>
</tr>
</tbody>
</table>

Tip: The **Status of Last Synchronization** column only displays the result of the last synchronization attempt, if one was made. It does not indicate whether the data server is currently synchronized. Changes may have been made since the last synchronization attempt.

2. Select a data server and select **Continue** to begin the synchronization process again, or if finished synchronizing, select **Close**.

 When **Close** is selected, the **Save After Synchronization** dialog box opens if changes were made to the area model.

3. Select **Save** to save the area model, overwrite the area model, or save it with a different name.

After creating the equipment phases in the Logix Designer project, begin developing phase logic for them in Logix Designer.

See also

Results of creating equipment phases in a project by synchronizing on page 41

Chapter 3 FactoryTalk Batch phases in Logix Designer

40

Rockwell Automation Publication BATCHX-UM011D-EN-P - February 2017
When synchronizing the area model with the Logix Designer project file and creating equipment phases in the project, several items are created in the project. This table shows how the elements of a phase are created for a corresponding equipment phase in the Logix Designer project:

Do not edit the phase tags containing a leading underscore (_) in the Logix Designer project. If the Name, Usage, or Data Type of these phase tags in Logix Designer are changed, synchronization cannot be used to apply changes to the area model.

Equipment phase with parameter and report limit tags
Equipment phase with control strategies

![Equipment phase with control strategies](image)

Material-enabled equipment phase

![Material-enabled equipment phase](image)

<table>
<thead>
<tr>
<th>Item Number in Picture</th>
<th>In FactoryTalk Batch Equipment Editor</th>
<th>In Logix Designer Project</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phase Name</td>
<td>Equipment Phase Name</td>
<td>Created in the Unscheduled Programs / Phases folder.</td>
</tr>
<tr>
<td>2</td>
<td>Equipment ID</td>
<td>Equipment ID</td>
<td>Displayed on Equipment Phase Properties dialog box, General tab.</td>
</tr>
<tr>
<td>3</td>
<td>Parameters</td>
<td>Phase Tags with Usage of Input</td>
<td>Data Type matches the Type in FactoryTalk Batch. Enumerations in FactoryTalk Batch are created as integers in the project.</td>
</tr>
<tr>
<td>4</td>
<td>Reports</td>
<td>Phase Tags with Usage of Output</td>
<td>Data Type matches the Type in FactoryTalk Batch. Enumerations in FactoryTalk Batch are created as integers in the project.</td>
</tr>
<tr>
<td>5</td>
<td>Parameter Limit Tags</td>
<td>Phase Tags with a Usage of Input</td>
<td>An underbar (_ _) prepends to the tag name.</td>
</tr>
</tbody>
</table>
FactoryTalk Batch phases in Logix Designer

Chapter 3

<table>
<thead>
<tr>
<th>Item Number in Picture</th>
<th>In FactoryTalk Batch Equipment Editor</th>
<th>In Logix Designer Project</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Report Limit Tags</td>
<td>Phase Tags with a Usage of Input</td>
<td>An underbar (_) prepends to the tag name.</td>
</tr>
<tr>
<td>7</td>
<td>Control Strategies</td>
<td>Phase Tag named _CONTROL_STRATEGY with a Usage of Input.</td>
<td>Data Type is DINT.</td>
</tr>
<tr>
<td>8</td>
<td>Material-based Phases</td>
<td>Adds these Phase Tags with a Usage of Input:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• _MATERIAL. Data Type is DINT.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• _AMOUNT. Data Type is REAL.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adds these Phase Tags with a Usage of Input if these optional parameters exist on the phase in the area model:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• _CONTAINER. Data Type is DINT.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• _LOT. Data Type is STRING.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• _MATERIAL_CLASS. Data Type is DINT.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• _LABEL. Data Type is STRING.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adds these Phase Tags with a Usage of Output:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• _ACTUAL_AMOUNT. Data Type is REAL.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• _FEED_COMPLETE. Data Type is DINT.</td>
<td></td>
</tr>
</tbody>
</table>

See also

Synchronize area model with project file on page 36
Open an equipment phase in Logix Designer from FactoryTalk Batch Equipment Editor

Now that equipment phases in the Logix Designer project are created, open those equipment phases in Logix Designer from their corresponding phases in FactoryTalk Batch Equipment Editor.

To open an equipment phase in Logix Designer from FactoryTalk Batch Equipment Editor:

1. In FactoryTalk Batch Equipment Editor, place the pointer over a phase that was just created in the Logix Designer project. The pointer changes to the Logix Designer equipment phase symbol.

2. Double-click the equipment phase symbol over the phase. Logix Designer opens to the selected equipment phase in the project.

3. Next, develop phase logic for the equipment phases created in the Logix Designer project.

See also

Synchronize to update equipment phases in the project file on page 46

If the phases in FactoryTalk Batch Equipment Editor are changed and the corresponding equipment phases in the Logix Designer project need to be updated, detect and make the appropriate changes by synchronizing the area model with the project file.

For example, if a parameter or report changes on the phase class that a phase was created from in FactoryTalk Batch, apply the change to the corresponding equipment phases in the Logix Designer project.

Do not delete an equipment phase from the project file by synchronizing the area model with the project. If deleted a phase from the area model in FactoryTalk Batch Equipment Editor, manually delete the corresponding equipment phase from the project in Logix Designer.
These types of changes to the phase in FactoryTalk Batch Equipment Editor can be transferred to the corresponding equipment phase in Logix Designer through synchronization:

- Phase name
- Equipment ID
- Addition, deletion, or modification of parameters on the phase class that the phase is associated with
- Addition, deletion, or modification of reports on the phase that the phase is associated with
- Enabling, disabling, or changing the parameter or report limit tags on the phase
- Enabling or disabling Control Strategy or Material Based Recipe functionality for the phase class that the phase is associated with

After changes to the area model in FactoryTalk Batch Equipment Editor are made, transfer these changes to the equipment phases in the Logix Designer project.

See also

- Delete parameters and reports on page 51
- Synchronize to update equipment phases in the project file on page 46
- Updated project file on page 50
- Deleted parameters and reports on page 51
Use these instructions to synchronize to update equipment phases in a project:

To synchronize to update equipment phases in the project file:

1. Save the area model and select a data server to synchronize. See **Save the area model and select a data server** for more information.

2. In the **Synchronize with Logix5000: <data server name>** dialog box, select the phases to update in the Logix Designer project file.

 Tip: Only phases different from the equipment phases in the Logix Designer project display in the **Synchronize with Logix5000: <data server name>** dialog box.

 ![Synchronize with Logix5000: ControlLogix5000 Applies Changes to Batch Program](image)

 In the **Location** column, FactoryTalk Batch Equipment Editor and the Logix Designer symbols display for **WP_AGITATE_M2** to indicate that this phase exists in both places.

 In this example, a parameter was added to the **WP_AGITATE_M2** phase in FactoryTalk Batch Equipment Editor. This is the only phase in the **WP_MIXER2** unit that was changed since the area model was last synchronized with the Logix Designer project. All other phases in the **WP_MIXER2** unit were created in the Logix Designer project the last time the area model was synchronized with the project. Therefore, **WP_AGITATE_M2** is the only phase displayed in the **WP_MIXER2** unit.
3. (optional) To view the configuration details of the selected phase, select the phase and select Details to open the Equipment Phase Synchronization Details dialog box.

In this example, these changes were made to the area model:

- A new parameter, VISCOSITY, was added to the AGITATE phase that the WP_AGITATE_M2 phase was created from. It displays in the Batch Configuration area.

- Limit tags were enabled for the SPEED_RATE parameter on the WP_AGITATE_M2 phase. The _SPEED_RATE_M, _SPEED_RATE_H, and _SPEED_RATE_L limit tags display as parameters in the Batch Configuration area.

- Limit tags were enabled for the MIX_SPEED report on the WP_AGITATE_M2 phase. The _MIX_SPEED_M, _MIX_SPEED_H, and _MIX_SPEED_L limit tags display as reports in the Batch Configuration area.

 Tip: Although the report limit tags are defined as Input tags in Logix Designer, they display with the reports on the Equipment Phase Synchronization Details dialog box. Other reports are defined as Output tags in Logix Designer.

In the Logix Designer Configuration area, the blank highlighted lines indicate that the Viscosity parameter and the limit tags do not exist on the corresponding WP_AGITATE_M2 equipment phase in the Logix Designer project.

When are finished viewing the details, select Close.
4. In the Resolution box, select Update Project for each phase to update in the Logix Designer project.

![Image of Synchronize with RSLogix 5000: ControlLogix5563_slot7](image)

In this example, selecting Update Project for the WP_AGITATE_M2 phase adds these parameters and reports to the corresponding WP_AGITATE_M2 equipment phase in the Logix Designer project when the synchronization is complete:

- VISCOSITY, _SPEED_RATE_H, _SPEED_RATE_L, and _SPEED_RATE_M
- _MIX_SPEED_H, _MIX_SPEED_L, and _MIX_SPEED_M

5. When finished selecting a Resolution for each phase to update, select Synchronize.

6. Review the results, and save the project and area model files. See Review results and save files for more information.

![Image of Syncronization Results Summary for Server: ControlLogix5563_slot7](image)
In this example, the **Synchronization Results Summary for Server:<data server name>** dialog box shows the results for the WP_AGITATE_M2 phase: the **Resolution** is Update Project and the **Result** is Successful.

Tip: If Failed displays in the Result column, the reason displays in the Additional Information column.

See also

- [Save the area model and select a data server](#) on page 37
- [Review results and save files](#) on page 39
- [Updated project file](#) on page 50
- [Deleted parameters and reports](#) on page 51
When the updated project file in Logix Designer opens, a new Phase Tag was creates for each new parameter or report that was added to the equipment phase in the project as a result of the synchronization. Input tags create for parameters. Output tags are create for reports.

In this example, these new Phase Tags were added to the WP_AGITATE_M2 equipment phase:

- **VISCOSITY**

 The Usage of this new Phase Tags is Input because it corresponds to the VISCOSITY parameter in the area model.

- **_SPEED_RATE_H, _SPEED_RATE_L, and _SPEED_RATE_M**

- **_MIX_SPEED_H, _MIX_SPEED_L, and _MIX_SPEED_M**

Parameter and report limit tags are created with a Usage of Input, because they represent data being sent from the FactoryTalk Batch Server to the controller.

See also

[Delete parameters and reports](#) on page 51
Deleted parameters and reports

When a parameter or report deletes from a phase in the area model and synchronizes to update the project, the Phase Tag remains in the Logix Designer project, but the Usage changes to <normal>.

See also

- Project file equipment phase changes on page 44
- Updated project file on page 50

View synchronization issues

Under certain circumstances, a FactoryTalk Batch phase or a Logix Designer equipment phase cannot be synchronized. When this occurs, the Synchronize with Logix5000: <data server name> dialog box displays a Resolution of Cannot Synchronize. No other resolutions are available to select.

To view synchronization issues:

1. Select the phase that cannot be synchronized.
2. Select Details to see a message that explains why the phase cannot be synchronized. For a list of messages, see Cannot Synchronize messages - create or update area model.

See also

- Cannot Synchronize messages - create or update project on page 52
- Cannot synchronize messages - create or update area model on page 64
Cannot Synchronize messages - create or update project

This table lists the Cannot Synchronize messages in the **Equipment Phase Synchronization Details** dialog box for phases that exist in the FactoryTalk Batch area model:

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
<th>How To Resolve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplicate phase name.</td>
<td>A phase with the same name was manually created in the FactoryTalk Batch area model and in the Logix Designer project.</td>
<td>Delete the phase from one location, either the area model or the project file, and then try synchronizing again. This time select Create in Project or Create in Area Model to create a corresponding phase through the synchronization process.</td>
</tr>
<tr>
<td>Batch phase name length exceeds Logix Designer limits.</td>
<td>The FactoryTalk Batch phase name is greater than 40 characters.</td>
<td>Change the phase name in the area model to contain no more than 40 characters. Try synchronizing again.</td>
</tr>
<tr>
<td>Logix Designer equipment phase name cannot contain consecutive underbars.</td>
<td>Even though phase names can contain two or more consecutive underbars, these names cannot be created as equipment phases in Logix Designer through the synchronization process. For example, NP___ADD_FLAVOR, is not a valid name.</td>
<td>Change the phase name in the area model, removing the consecutive underbars, and then try synchronizing again. For example, the name NP_ADD_FLAVOR is a valid name because it contains only single underbars.</td>
</tr>
<tr>
<td>Batch parameter/report name exceeds Logix Designer limits</td>
<td>The name of a parameter or report on the Batch phase that the phase was instantiated from, is greater than 40 characters.</td>
<td>Change the parameter or report name in the area model to contain no more than 40 characters. Try synchronizing again.</td>
</tr>
<tr>
<td>Logix Designer parameter/report name cannot contain consecutive underbars.</td>
<td>Even though parameter and report names can contain two or more consecutive underbars, these names cannot be created as equipment phases in Logix Designer through the synchronization process. For example, ADD___AMOUNT, is not a valid name.</td>
<td>Change the phase name in the area model, removing the consecutive underbars, and then try synchronizing again. For example, the name ADD_AMOUNT is a valid name because it contains only single underbars.</td>
</tr>
<tr>
<td>Logix Designer name must contain only ASCII characters.</td>
<td>Logix Designer does not support the use of non-ASCII characters for the names of equipment phases, parameters, and reports. If a FactoryTalk Batch phase, parameter, report, or recipe phase the phase was created from, contains non-ASCII characters, cannot be synchronized.</td>
<td>Change the phase class, phase, parameter, or report name in the area model to contain only ASCII characters, and then try synchronizing again.</td>
</tr>
</tbody>
</table>

For descriptions of Cannot Synchronize messages for equipment phases that exist in the Logix Designer project, see **Cannot synchronize messages - create or update area model**.

See also

- [View synchronization issues](#) on page 51
- [Cannot synchronize messages - create or update area model](#) on page 64
Logix Designer equipment phases in the area model

To add a machine to an existing FactoryTalk Batch control system, create equipment phases for the machine in Logix Designer, and develop phase logic within those equipment phases. Test and validate the new machine before incorporating it into the FactoryTalk Batch system. Synchronize the Logix Designer project file with the area model to create corresponding phases in the FactoryTalk Batch area model.

After creating phases in the FactoryTalk Batch area model, integrate the new machine into the plant, bring the Logix5000 controller online with the updated Logix Designer project, and perform a warm restart of the FactoryTalk Batch Server to include the phases in the FactoryTalk Batch control system.

If changes are made to an equipment phase in Logix Designer, perform a synchronization to incorporate these changes into the corresponding phase in the FactoryTalk Batch area model.

This section describes how to synchronize the FactoryTalk Batch area model with the Logix Designer project file when equipment phases are created in Logix Designer and corresponding phases need to be created in FactoryTalk Batch Equipment Editor.

See also

Add a Logix5000 CIP data server on page 22
Synchronize to create phases in the area model on page 54
Phases in the area model on page 61
View synchronization issues on page 51
Data from FactoryTalk Batch Server on page 65
Synchronize to create phases in the area model

Use these instructions synchronize the area model to create phases.

Before you begin:

- Install Logix Designer and RSLinx Classic on the same computer as FactoryTalk Batch Equipment Editor.
- If the new phase is not added to an existing unit, create a unit to contain the new phase in FactoryTalk Batch Equipment Editor. Create a project file in Logix Designer and define equipment phases.
- In the area model, define a Logix5000 CIP data server for the Logix5000 controller that is connected to the new machine, and specify this project file. (See Add a Logix5000 CIP data server for more information.)
- In the area model, configure a unit instance to add the new phase to and a Logix5000 CIP data server for the controller specified in the project file.

To synchronize to create phases in the area model:

1. Save the area model and select a data server to synchronize.
2. Select the phases to create in the area model.
3. Select a phase and unit for the new phase and synchronize.

 OR

 Create a new phase for the phase, select a unit, and synchronize.

All synchronization steps are completed in FactoryTalk Batch Equipment Editor.

See also

Add a Logix5000 CIP data server on page 22

Save the area model and select a data server on page 37

Select phases on page 56

Select a phase and unit to synchronize on page 57

Create a new phase and select a unit on page 59
Save the area model and select a data server

Use these steps to begin synchronizing the area model with the Logix Designer project.

To save the area model and select a data server:

1. From the Edit menu, select Synchronize Logix5000 Data Servers. The Save Before Synchronization dialog box opens.

2. Select Save to save the area model file now, or select Continue Without Saving.
 - If Save is selected, the Save As dialog box opens. Save the area model with its existing name or give it a different name.
 - After saving or continuing, the Synchronize Logix5000 Data Servers dialog box opens.

3. Select the data server that was added for the new Logix5000 controller.

 Tip: Select any column headings to sort the list of data servers.

 Important: The data server selected must have the project file specified.

4. Select Continue. The Synchronize with Logix5000: <data server name> dialog box opens.

5. Select the phases to create in the area model. Continue to Select phases.

See also

Select phases on page 56

Select phases and synchronize on page 38
Select phases

Select phases on the Synchronize with Logix5000: <data server name> dialog box.

To select phases:

1. The left pane of the Synchronize with Logix5000: <data server name> dialog box displays the phases in the project assigned to the selected data server. Only phases that exist in the Logix Designer project, but not in the area model display under Logix Designer-only Equipment Phases.

 Tip: If other phases assigned to the selected data server exist in the area model but not in the project file, or are different from those in the project file, they also display in the left pane beneath the area model name, within their units.

2. Select a phase to create in the area model.

3. Select the Resolution box for the selected phase and select Create in Area Model.

 Tip: If the only Resolution available is Cannot Synchronize, select Details to see a message that explains why the phase cannot be synchronized. (See View synchronization issues for more information.)

4. (optional) To view the selected phase configuration in FactoryTalk Batch and in Logix Designer, select Details to open the Equipment Phase Synchronization Details dialog box.

 Select Close when done viewing the phase details.

5. Repeat steps 2 - 4 for each phase in the area model.

6. On the Synchronize with Logix5000: <data server name> dialog box, select Synchronize. The Select Phase and Unit dialog box opens.
Next, associate the new phase with an equipment phase and select a unit to contain it in the area model. Select an existing phase in the area model or create a new one.

- To associate the phase with a phase that exists in the area model, continue on to **Select a phase and unit to synchronize**.
- To create a new phase in the area model to associate with the phase, skip to **Create a new phase and select a unit**.

See also

- View synchronization issues on page 51
- Select a phase and unit to synchronize on page 57
- Create a new phase and select a unit on page 59

Select a phase and unit to synchronize

Use these instructions to select a phase and unit.

To select a phase and unit to synchronize:

1. In the **Phase Classes** box, select a phase class to associate with the new phase. Select a phase to display a list of units in the **Units** box.

 Tip: The new phase is an instance of the phase selected. Therefore, only phases that have the same parameters and reports as the new phase display.

2. In the **Units** box, select a unit to contain the new phase.

 Tip: Only units that do not contain a phase based on the selected phase are displayed, unless the selected phase is a material-based phase. A unit can only contain one phase based on a specific phase class, with the exception of material-based phase classes. Multiple phases based on a specific material-based phase class can be added in one unit.

3. Select **Continue**. If selected a **Resolution** of Create in Area Model for more than one phase, the **Select Phase and Unit** dialog box displays again for the next phase.

 Repeat steps 1 - 3 or skip to **Create a new phase and select a unit** to create a new phase for the next phase.
When synchronization of all selected phases is complete, the Synchronization Results Summary For Server: <data server name> dialog box opens.

Tip: If Failed displays in the Result column, the reason displays in the Additional Information column.

4. Review the displayed results of the synchronization. Phases that have a Result of Successful were created in the area model. Additionally, the phase name selected for the phase and the new Equipment ID are returned to the Logix Designer project file.

5. If satisfied with the results, select Yes to save the Logix Designer project file.

Tip: If not satisfied with the results, select No. The synchronization changes are not saved in the Logix Designer project file.

The time and status of the synchronization displays in the Synchronize Logix5000 Data Servers window.

<table>
<thead>
<tr>
<th>Status of Last Synchronization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>All Results were Successful, Yes was selected to save the project file.</td>
</tr>
<tr>
<td>Incomplete</td>
<td>Some Results Failed, Skipped, or No was selected to not save the project file.</td>
</tr>
<tr>
<td>Never Synchronize</td>
<td>Never been an attempt to synchronize the data server.</td>
</tr>
</tbody>
</table>

6. Select a data server and select Continue to begin the synchronization process again, or if finished synchronizing, select Close.

When Close is selected, the Save After Synchronization dialog box opens if changes were made to the area model.

7. Select Save to open the Save As dialog box and save the area model. Overwrite the area model or save it with a different name.

The phase has been added to the area model. View the new phase by navigating to the unit selected in step 2.

See also

Create a new phase and select a unit on page 59
Create a new phase and select a unit

Use these instructions to create a new phase and select a unit.

To create a new phase and select a unit:

1. In the box beneath the Phases list, enter a name for the new phase. A list of units displays in the Units box.

2. Select an icon to represent the new phase.

3. In the Units box, select a unit to contain the new phase.

 Tip: Only units that do not contain a phase based on the selected phase class are displayed, unless the selected phase class is a material-based phase class. A unit can only contain one phase based on a specific phase class, with the exception of material-based phase classes. Multiple phases based on a specific material-based phase class can be added in one unit.

4. Select Continue. If selected a Resolution of Create in Area Model for more than one phase, the Select Phase and Unit dialog box displays again for the next phase.

 Repeat steps 1 - 4 or see Select a phase and unit to select an existing phase class for the next phase.

 When synchronization of all selected phases is complete, the Synchronization Results Summary For Server: <data server name> dialog box opens.

 Tip: If Failed displays in the Result column, the reason displays in the Additional Information column.

5. Review the displayed results of the synchronization. Phases that have a Result of Successful were created in the area model. Additionally, the phase name selected for the phase and the new Equipment ID are returned to the Logix Designer project file.
6. If satisfied with the results, select **Yes** to save the Logix Designer project file.

 Tip: If not satisfied with the results, select **No**. The synchronization changes are not saved in the Logix Designer project file.

 The time and status of the synchronization displays in the **Synchronize Logix5000 Data Servers** window.

<table>
<thead>
<tr>
<th>Status of Last Synchronization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>All Results were Successful, and Yes was selected to save the project file.</td>
</tr>
<tr>
<td>Incomplete</td>
<td>Some Results were Failed, Skipped, or No was selected to not save the project file.</td>
</tr>
<tr>
<td>Never Synchronized</td>
<td>Never been an attempt to synchronize the data server.</td>
</tr>
</tbody>
</table>

7. Select a data server and select **Continue** to begin the synchronization process again, or if finished synchronizing, select **Close**. The **Save After Synchronization** dialog box opens if changes were made to the area model.

8. Select **Save** to open the **Save As** dialog box and save the area model. Overwrite the area model or save it with a different name.

9. The phase class and new phase are added to the area model. View the new phase by navigating to the unit selected in step 3.

 From this new Logix5000 CIP phase in FactoryTalk Batch Equipment Editor, open the corresponding equipment phase in Logix Designer to view and edit the phase logic. (See **Open an equipment phase in Logix Designer from FactoryTalk Batch Equipment Editor** for more information.)

See also

- **Select a phase and unit to synchronize** on page 57
- **Open an equipment phase in Logix Designer from FactoryTalk Batch Equipment Editor** on page 44
If changes are made to equipment phases in the Logix Designer project and the corresponding phases in the area model need to be updated, detect and make the appropriate changes by synchronizing the area model with the project file.

For example, if a phase tag is added or changed on the equipment phase in the Logix Designer project, apply the change to the corresponding phase classes and phases in the area model.

Delete a phase by synchronizing the area model with the project. If an equipment phase is deleted in Logix Designer, manually delete the corresponding phase in FactoryTalk Batch Equipment Editor. Likewise, if a phase is deleted in FactoryTalk Batch Equipment Editor, manually delete the corresponding equipment phase in Logix Designer.

These types of changes to the equipment phase in the Logix Designer project can be transferred to the corresponding phase classes and phases in the area model through synchronization:

- Equipment phase name
- Addition and removal of phase tags
- Changing the usage of a phase tag to Input or Output

After any of these changes to the project file in Logix Designer are made, complete the steps in these sections to transfer these changes to the area model in FactoryTalk Batch Equipment Editor.

Do not edit these phase tags containing a leading underscore (_) in the Logix Designer project: parameter and report limit tags, _CONTROL_STRATEGY, _MATERIAL, _AMOUNT, _CONTAINER, _LOT, MATERIAL_CLASS, _LABEL, _ACTUAL_AMOUNT, _FEED_COMPLETE.

If the Name, Usage, or Data Type of these phase tags in Logix Designer is changed, changes are not applied to the area model through synchronization.

See also

Synchronize to update phases in the area model on page 62
Synchronize to update phases in the area model

Use these instructions to synchronize to update phases in the area model.

Tip: Only Logix Designer phases different from the phases in the area model display in the Synchronize with Logix5000: `<data server name>` dialog box.

To synchronize to update phases in the area model:

1. Save the area model and select a data server to synchronize. See Save the area model and select a data server for more information.

2. Select the phase to update in the area model. See Select phases and synchronize and FactoryTalk Batch phases in Logix Designer for more information.

 In this example, a phase tag was added to the NP_AGITATE_M2 equipment phase in the Logix Designer project. In the Location column, FactoryTalk Batch Equipment Editor and the Logix Designer symbols display for NP_AGITATE_M2, indicating that this phase exists in both places.

3. (optional) To view the configuration details of the selected phase, select the phase and select Details to open the Equipment Phase Synchronization Details dialog box.

4. When finished, select the Details. After reviewing, select Close.

5. In the Resolution list, select Update Area Model for the phase to update in the Logix Designer project.

6. Repeat steps 2 - 4 for each phase to update.

7. Select Synchronize.

 The Affected Equipment Phases for Phase:`<phase name>` opens if the area model contains other phases based on the same phase class as the phase being updated.

8. Select Continue to apply the synchronization changes to all the phases listed.

 Tip: Select Skip to cancel synchronization.
The Synchronization Results Summary For Server:<data server name> opens.

Tip: If a Result Failed, the reason displays in the Additional Information column.

9. Select Close. The Save After Synchronization dialog box opens if changes were made to the area model.

10. Select Save to open the Save As dialog box and save the area model. Overwrite the area model or save it with a different name.

See also

- Save the area model and select a data server on page 37
- Select phases and synchronize on page 38
- FactoryTalk Batch phases in Logix Designer on page 35

View synchronization issues

Under certain circumstances, a FactoryTalk Batch phase or a Logix Designer equipment phase cannot be synchronized. When this occurs, the Synchronize with Logix5000:<data server name> dialog box displays a Resolution of Cannot Synchronize. No other resolutions are available to select.

To view synchronization issues:

1. Select the phase that cannot be synchronized.

2. Select Details to see a message that explains why the phase cannot be synchronized. For a list of messages, see Cannot Synchronize messages - create or update area model.

See also

- Cannot Synchronize messages - create or update project on page 52
- Cannot synchronize messages - create or update area model on page 64
Cannot synchronize messages - create or update area model

This table lists the Cannot Synchronize in the Equipment Phase Synchronization Details dialog box for equipment phases that exist in Logix Designer:

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
<th>How To Resolve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplicate phase name.</td>
<td>A phase with the same name was manually created in the FactoryTalk Batch area model and in the Logix Designer project.</td>
<td>Delete the phase from one location, either the area model or the project file, and try synchronizing again. This time select Create in Project or Create in Area Model to create a corresponding phase through the synchronization process.</td>
</tr>
</tbody>
</table>

Tip: If the phase is based on a phase class that contains control strategies, parameter deviations, or a material-based phase class, delete the phase from the project file and synchronize again, selecting the Create in Project option.

The configuration of this Logix Designer-only equipment phase contains values that can only be defined by FactoryTalk Batch Equipment Editor.

The equipment phase was originally created in the project file by synchronizing a FactoryTalk Batch phase that was configured with control strategies, material-based functionality, or limit tags. The corresponding FactoryTalk Batch phase no longer exists in the area model.

In Logix Designer, delete the equipment phase from the project file. Create and configure the phase in the FactoryTalk Batch area model, and synchronize again, selecting the Create in Project Resolution.

For descriptions of Cannot Synchronize messages for phases that exist in the area model, see Cannot Synchronize messages - create or update project.

See also

Cannot Synchronize messages - create or update project on page 52
Important: The information in this section only applies to programming phase logic for PhaseManager phases assigned to a Logix5000 CIP data server.

PhaseManager phases created with a Logix5000 CIP data server, use the PXRX instruction provided in Logix Designer as a means for the phase logic to request data or services from the FactoryTalk Batch Server. Much of the work involved with writing phase logic centers around defining a sequence of steps for a phase. Some of these steps require interaction with the FactoryTalk Batch Server. For example, the phase logic for a charge phase may perform these steps to add material to a unit:

<table>
<thead>
<tr>
<th>STEP</th>
<th>Interacts with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download target amount</td>
<td>FactoryTalk Batch Server</td>
</tr>
<tr>
<td>Acquire pump PM102</td>
<td>FactoryTalk Batch Server</td>
</tr>
<tr>
<td>Reset totalizer</td>
<td>Basic Control</td>
</tr>
<tr>
<td>Open valve FV101</td>
<td>Basic Control</td>
</tr>
<tr>
<td>Start pump PM102</td>
<td>Basic Control</td>
</tr>
<tr>
<td>Wait for totalizer to reach target</td>
<td>Basic Control</td>
</tr>
<tr>
<td>Stop pump PM102</td>
<td>Basic Control</td>
</tr>
<tr>
<td>Close valve</td>
<td>Basic Control</td>
</tr>
<tr>
<td>Release pump PM102</td>
<td>FactoryTalk Batch Server</td>
</tr>
<tr>
<td>Unload actual amount</td>
<td>FactoryTalk Batch Server</td>
</tr>
</tbody>
</table>

See also

- Data from the Material Server on page 97
- Phase Logic programming model on page 66
- Download parameters (input parameters) request on page 66
- Report limits download values on page 71
- Upload report overview on page 73
Phase Logic programming model

This sequence describes the programming model that the phase logic typically needs to follow:

1. Prepare for request (set reports, for example).
2. (optional) Set any request parameters.
3. Set the request.
4. Wait for the Process Complete (.PC) bit to be set to one.

Tip: Allowing the phase logic to transition the phase to a terminal state (STOPPED, ABORTED, COMPLETE) without first verifying that the Process Complete (.PC) bit has been set to 1 (one) by the FactoryTalk Batch Server can result in future executions of the phase logic receiving faulty parameter data and can also result in the phase logic failing to release needed equipment.

See also

- Data from FactoryTalk Batch Server on page 65
- Download parameters (input parameters) request on page 66

Download parameters (input parameters) request

During batch execution, phase logic can send a request to the FactoryTalk Batch Server to download all input parameter values, a single input parameter value, or a range of input parameter values, including phase parameter limits that exist.

The parameter values may be specified when adding a phase to a recipe using FactoryTalk Batch Recipe Editor. If the phase parameter value is not specified when the recipe is built, the FactoryTalk Batch Server sends FactoryTalk Batch View a request for the value when a Download Input Parameters or Download Input Parameters Subset request is received from the phase. FactoryTalk Batch View requests the phase parameter value from the operator by way of an Unacknowledged Prompt.

See also

- Phase parameter tags array on page 67
- Types of download parameter requests on page 67
- Download all parameters (input parameters) on page 68
- Download a range of parameters (input parameters) on page 69
- Download a single parameter (input parameter) on page 70
Phase parameter tags array

When an equipment phase creates in the process controller, the input parameter tags defined in the area model are viewed by the FactoryTalk Batch Server as a logical array. When processing a download request, the phase parameter values write into the phase parameter array.

In the phase logic, identify a specific parameter by its parameter ID.

See also

- Download parameters (input parameters) request on page 66

Types of download parameter requests

Using the PXREQ instruction, specify the Download Input Parameters external request for these types of requests:

- Download all parameters (input parameters)
- Download a range of parameters (input parameters)
- Download a single parameter (input parameter)

Specify the Download Input Parameters Subset external request for these types of requests:

- Download the parameters configured for download on start
- Download the parameters configured for download on transfer of control

The Data Values specified for the Download Input Parameters or the Download Input Parameters Subset request determine the type of request.

See also

- Download parameters (input parameters) request on page 66
- All parameters (input parameters) on page 68
- Download a range of parameters (input parameters) on page 69
- Download a single parameter (input parameter) on page 70
- Download the parameters configured for download on start on page 70
Download all parameters (input parameters)

Configure the PXRX instruction in Logix Designer to download values for all configured input parameters to the input parameter array:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Input Parameters</td>
<td>DINT[0]</td>
<td>0</td>
</tr>
</tbody>
</table>

If control strategies are enabled, only those parameters assigned to the recipe's control strategy will be downloaded. The control strategy parameter is Parameter1.

See also

Download parameters (input parameters) request on page 66
Download a range of parameters (input parameters)

Configure the PXRQ instruction in Logix Designer to download values for a range of input parameters:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Input Parameters</td>
<td>DINT[0]</td>
<td>Parameter ID of the first parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example: 4</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>Number of parameters to download</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example: 3</td>
</tr>
</tbody>
</table>

The FactoryTalk Batch Server downloads the range of parameter values, starting with the value associated with the requested parameter ID and the values of the phase parameters with incrementally higher parameter IDs, until the number of parameters downloaded matches the number of parameters requested. The parameter IDs need not increase sequentially.

In this example, three parameter values would be downloaded, beginning with parameter ID 4 and including these two parameters with sequentially higher parameter IDs.

If a phase parameter with the requested parameter ID has not been configured when receive a download request, the parameter ID increments by one and the phase parameter configured with that ID is obtained. This process repeats until the originally requested ID has been incremented up to 999. If the requested number of phase parameters is not found after the parameter ID increments to 999, the phase request fails. In the phase logic, use the PFL instruction to fail the batch if desired when a phase request fails.

If the phase associated with the parameter has enabled Control Strategies, only those parameters belonging to the enabled Control Strategy are included in the download.

See also

- Download a single parameter (input parameter) on page 70
- Download parameters (input parameters) request on page 66
Chapter 5 Data from FactoryTalk Batch Server

Download a single parameter (input parameter)

Configure the PXRQ instruction in Logix Designer to download the value for a single input parameter:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Input Parameters</td>
<td>DINT[0]</td>
<td>Parameter ID</td>
</tr>
</tbody>
</table>

The FactoryTalk Batch Server downloads a single value for the recipe parameter associated with the parameter ID and stores the value to the phase parameter array at the element specified by array index 1. When it receives a download request, a phase parameter with the requested parameter ID has not been configured, the parameter ID increments by one and obtains the phase parameter configured with that ID. This process repeats until the originally requested ID increments up to 999. If the requested number of phase parameters is not found after the parameter ID increments to 999, the phase request failed. In the phase logic, use the PFL instruction to fail the batch if desired when a phase request fails.

See also

Download the parameters configured for download on start on page 70

To download values for input parameters configured for download on start:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Input Parameters Subset</td>
<td>DINT[0]</td>
<td>1</td>
</tr>
</tbody>
</table>

If the phase associated with the parameters has control strategies enabled, only those parameters belonging to both the enabled control strategy and the specified subset are included in the download.

See also

Download parameters (input parameters) request on page 66
Download the parameters configured for download on transfer of control

To download values for input parameters configured for download on transfer of control:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Input Parameters Subset</td>
<td>DINT[0]</td>
<td>2</td>
</tr>
</tbody>
</table>

If the phase associated with the parameters has control strategies enabled, only those parameters belonging to both the enabled control strategy and the specified subset are included in the download.

See also

Download parameters (input parameters) request on page 66

Download report limits

During batch execution, phase logic can send this request to the FactoryTalk Batch Server to download report limits information for all reports or for a single report.

Tip: A report in the FactoryTalk Batch software is an output parameter in the Logix Designer application.

Take corrective action if a report value is outside the configured limits.

The limit configuration consists of the report’s verification method and each configured range of limits. The verification methods are written as values to the phase’s phase tags. The values for the verification methods are:

<table>
<thead>
<tr>
<th>Verification Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No_Limits</td>
<td>0</td>
</tr>
<tr>
<td>High / Low</td>
<td>1</td>
</tr>
<tr>
<td>High-High / Low-Low</td>
<td>2</td>
</tr>
<tr>
<td>High-High-High / Low-Low-Low</td>
<td>3</td>
</tr>
</tbody>
</table>

See also

Types of download report limits requests on page 72

Download all report limits information on page 72

Download limits configuration for a single report on page 72
Types of download report limits requests

Using the PXRQ instruction, specify the Download Output Parameters external request for these types of requests:

- Download all output parameter limits information
- Download the output parameter limits configuration for a single report

The Data Values specified for the Download Output Parameters request determine the type of request.

See also

- All report limits information download values on page 72
- Limits configuration for a single report download values on page 72

Download all report limits information

To download all output parameter limits information to equipment phase tags:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Output Parameter Limits</td>
<td>DINT[0]</td>
<td>0</td>
</tr>
</tbody>
</table>

The FactoryTalk Batch Server downloads the entire phase’s report limit configuration to the phase’s limit tags.

Download limits configuration for a single report

To download the limits configuration for a single report (output parameter):

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Output Parameter Limits</td>
<td>DINT[0]</td>
<td>Report ID</td>
</tr>
</tbody>
</table>

The FactoryTalk Batch Server responds to the request by writing the verification method and report limits to the limit tags.
Upload report overview

During batch execution, phase logic can send this request to the FactoryTalk Batch Server to upload all report values, a single report value, or a range of report values.

Tip: Reports are output parameters in Logix Designer.

See also

- Report array on page 73
- Electronic batch record entries on page 73
- Types of upload report requests on page 74
- Upload all reports (output parameters) on page 74
- Upload a single report (output parameter) on page 76

Report array

When an equipment phase creates in the process controller, the phase report parameter tags defined in the area model are viewed by the FactoryTalk Batch Server as a logical array.

When processing an upload request, the phase report values write into the phase report array.

In the phase logic identified a specific report by its report ID.

See also

- Upload report overview on page 73

Electronic batch record entries

The report values are combined with this information and written as entries into the electronic batch record. They are also stored in memory so they can be referenced by transition expressions.

- Batch ID
- Time/Date
- Phase Name
- Recipe Name
- Unit ID
- Engineering Units
- Process Cell
- Area
- Report Description

See also

- Upload report overview on page 73
Types of upload report requests

An output parameter is the result of the execution of a sequence or procedure. Use the PXRQ instruction to specify the **Upload Output Parameters** external request for these types of requests:

- Upload all output parameters (reports)
- Upload a range of output parameters (reports)
- Upload a single output parameter (report)

Specify the **Upload Output Parameters Subset** external request for these types of requests:

- Upload the output parameters configured for upload load on terminal state
- Upload the output parameters configured for upload on transfer of control

The Data Values specified for the **Upload Output Parameters** request determine the type of request.

See also

- Upload report overview on page 73
- Upload all reports (output parameters) on page 74
- Upload a range of reports (output parameters) on page 75
- Upload the reports configured for upload on transfer of control on page 76
- Upload the reports configured for upload on terminal state on page 77

Upload all reports (output parameters)

Configure the PXRQ instruction in Logix Designer to upload values for all configured reports to the report array:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Output Parameters</td>
<td>DINT[0]</td>
<td>0</td>
</tr>
</tbody>
</table>

If control strategies are enabled, only those reports assigned to the recipe’s control strategy are uploaded.

See also

- Upload report overview on page 73
Configure the PXRQ instruction in Logix Designer to upload values for a range of reports:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Output Parameters</td>
<td>DINT[0]</td>
<td>Report ID of the first report Example: 4</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>Number of reports to download Example: 3</td>
</tr>
</tbody>
</table>

The FactoryTalk Batch Server uploads the range of parameter values, starting with the value associated with the requested report ID and the values of the report with incrementally higher report IDs until the number of reports for which values are uploaded matches the number of reports requested. The report IDs need not increase sequentially.

In the example shown above, three report values would be uploaded, beginning with report ID 4 and including these two reports with sequentially higher report IDs.

If, when receiving an upload request, a phase report with the requested report ID not configured, the report ID increments by one and obtains the phase report configured with that ID. This process repeats until the originally requested ID increments up to 999. If the requested number of phase reports has not been found after the report ID increments up to 999, the phase request fails. In the phase logic, use the PFL instruction to fail the batch if desired when a phase request fails.

If the phase associated with the report has enabled Control Strategies, only those reports belonging to the enabled Control Strategy are included in the upload.

See also

Upload report overview on page 73
Upload a single report (output parameter)

Configure the PXRQ instruction in Logix Designer to upload the value for a single report:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Output Parameters</td>
<td>DINT[0]</td>
<td>Report ID</td>
</tr>
</tbody>
</table>

The FactoryTalk Batch Server downloads a single value for the report associated with the report ID and stores the value to the phase report array at the element specified by array index 1. The report ID assigns at the time a report creates within a phase in FactoryTalk Batch Equipment Editor. The report ID is a positive integer.

Requests to upload a report value refer to the report using a report ID. If, when receiving an upload request, a report with the requested report ID not configured, the report ID increments by one and obtains the report configured with that ID. This process repeats until the originally requested ID increments up to 999. If the requested number of reports is not found after the report ID incremented up to 999, the phase request failed. In the phase logic, use the PFL instruction to fail the batch if desired when a phase request fails.

See also

Upload report overview on page 73

Upload the reports configured for upload on transfer of control

Configure the PXRQ instruction in Logix Designer to upload values for reports configured for upload on transfer of control:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Output Parameters Subset</td>
<td>DINT[0]</td>
<td>2</td>
</tr>
</tbody>
</table>

Reports are assigned to this subset in FactoryTalk Batch Equipment Editor.

If the phase associated with the report parameters enabled control strategies, only those report parameters belonging to both the enabled control strategy and the specified subset will be included in the upload.

See also

Upload report overview on page 73
Upload the reports configured for upload on terminal state

Configure the PXRQ instruction in Logix Designer to upload values for reports configured for upload on terminal state:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Output Parameters Subset</td>
<td>DINT[0]</td>
<td>1</td>
</tr>
</tbody>
</table>

Reports are assigned to this subset in FactoryTalk Batch Equipment Editor.

If the phase associated with the reports enabled control strategies, only those reports belonging to **both** the enabled control strategy and the Upload on Terminal State subset will be included in the upload.

See also

[Upload report overview on page 73](#)

Upload the reports configured for upload on transfer of control

Configure the PXRQ instruction in Logix Designer to upload values for reports configured for upload on transfer of control:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Output Parameters Subset</td>
<td>DINT[0]</td>
<td>2</td>
</tr>
</tbody>
</table>

Reports are assigned to this subset in FactoryTalk Batch Equipment Editor.

If the phase associated with the report parameters enabled control strategies, only those report parameters belonging to **both** the enabled control strategy and the specified subset are included in the upload.

See also

[Upload report overview on page 73](#)
Send message to the operator and clearing message requests

The set of possible messages that may be sent by the phase logic is configured when the associated phase is defined in the area model using FactoryTalk Batch Equipment Editor. Each operator message is configured with a message ID, a positive integer. Requests to send a message refer to the message using the message ID. During batch execution, phase logic can make a request to the FactoryTalk Batch Server to send a message to the FactoryTalk Batch View and place the message into the electronic batch record.

A Send Message to Operator request displays a message to the operator. In FactoryTalk Batch View, it displays on the Phase Summary screen. This type of request does not provide a mechanism to solicit information from the operator.

The phase logic can also be configured to send a Clear Message to Operator request. This request clears the currently displayed message.

See also

Send message to operator values on page 78
Clear currently displayed message to operator values on page 78

Send message to operator values

Configure the PXRQ instruction in Logix Designer to display a message to the operator in the FactoryTalk Batch Client:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send Message to Operator</td>
<td>DINT[0]</td>
<td>Message ID</td>
</tr>
</tbody>
</table>

See also

Clear currently displayed message to operator values on page 78

Clear currently displayed message to operator values

Configure the PXRQ instruction in Logix Designer to clear the currently displayed message:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Message to Operator</td>
<td>DINT[0]</td>
<td>0</td>
</tr>
</tbody>
</table>

See also

Send message to operator values on page 78
Acquire resource request

During batch execution, phase logic can issue a request to the FactoryTalk Batch Server to acquire a pre-configured resource. Each resource configured with FactoryTalk Batch Equipment Editor has an equipment ID, which is a positive integer. Requests to acquire a resource refer to the resource using the equipment ID.

Resources acquire when the Acquire Resources request issues. Acquired resources release either by the Release Resources phase request or when removed the phase step from the set of active steps in the recipe.

See also

- Types of acquire requests on page 79
- Acquire a single resource value on page 79
- Acquire multiple resource values on page 80

Types of acquire requests

Using the PXRQ instruction, to specify the Acquire Resources external request for these types of requests:

- Acquire a Single Resource
- Acquire Multiple Resources

The data values specified for the Acquire Resources request determine which resources are acquired.

See also

- Acquire a single resource value on page 79
- Acquire multiple resource values on page 80

Acquire a single resource value

Configure the PXRQ instruction in Logix Designer to acquire a single resource:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquire Resources</td>
<td>DINT[0]</td>
<td>Equipment ID</td>
</tr>
</tbody>
</table>

See also

- Acquire resource request on page 79
Acquire multiple resource values

Acquire up to 99 resources with this request.

Configure the PXRQ instruction in Logix Designer to acquire multiple resources:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquire Resources</td>
<td>DINT[0]</td>
<td>Equipment ID</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>Equipment ID</td>
</tr>
<tr>
<td></td>
<td>DINT[2]</td>
<td>Equipment ID</td>
</tr>
</tbody>
</table>

See also

Acquire resource request on page 79

Release resources

During batch execution, phase logic can issue a request to the FactoryTalk Batch Server to release a resource. Each resource configured with FactoryTalk Batch Equipment Editor has an equipment ID, a positive integer. Requests to release a resource refer to the resource using the equipment ID. Only resources that were previously acquired with an Acquire Resources phase request can be released using the Release Resources phase request.

See also

Types of release requests on page 81

Release a single resource values on page 81

Release multiple resource values on page 82

Release all currently acquired resources values on page 82
Types of release requests

Using the PXRQ instruction, specify the Release Resources external request for these types of requests:

- Release a Single Resource
- Release Multiple Resources
- Release All Currently Acquired Resources

The data values specified for the Release Resources request determine which resources are released.

See also

Release a single resource values on page 81
Release multiple resource values on page 82
Release all currently acquired resources values on page 82

Release a single resource values

Configure the PXRQ instruction in Logix Designer to release a single resource:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Resources</td>
<td>DINT[0]</td>
<td>Equipment ID</td>
</tr>
</tbody>
</table>

The FactoryTalk Batch Server releases the resource specified by the equipment ID if the phase had previously acquired the resource through an Acquire Resources request.

See also

Release resources on page 80
Release multiple resource values

Configure the PXRQ instruction in Logix Designer to release multiple resources:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Resources</td>
<td>DINT[0]</td>
<td>Equipment ID</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>Equipment ID</td>
</tr>
<tr>
<td></td>
<td>DINT[2]</td>
<td>Equipment ID</td>
</tr>
</tbody>
</table>

Release up to 99 resources with this request. The FactoryTalk Batch Server releases the resources associated with the equipment IDs if this phase previously acquired the resources through an Acquire Resources request.

See also

Release resources on page 80

Release all currently acquired resources values

Configure the PXRQ instruction in Logix Designer to release all currently acquired resources:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Resources</td>
<td>DINT[0]</td>
<td>0</td>
</tr>
</tbody>
</table>

The FactoryTalk Batch Server releases the resources associated with the equipment IDs if the resources had been previously acquired by this phase through an Acquire Resource request.

See also

Release resources on page 80
Phase communication

Phases controlled by phase steps that belong to a synchronization group are able to communicate with each other. In fact, this defines the role of the synchronization group. Messages are sent between the phase steps within the synchronization group. Each message has a unique message ID, a positive integer. Requests to send a message to another phase through the synchronization group refer to the message using the message ID and the number of phases that will receive the message.

Phase communication can be used for these purposes:

- **Synchronization** - Ensures that multiple phases are in agreed upon states before they proceed. Since the phases can execute synchronization through this messaging function, no additional phase synchronization is implemented in the phase, unit, or batch executives.

 Tip: Synchronization cannot be used in conjunction with FactoryTalk Batch’s Transfer of Control feature.

- **Permissive** - Ensures that one phase of the synchronization group has passed a certain point in its phase logic before other phases can proceed.

- **Data transfer** - Moves data from one phase to another.

See also:

- Completion of messages on page 84
- Process send and receive messages on page 84
- Types of messages to other phases on page 85
- Send a message to one or more linked phase values on page 85
- Send message to one or more linked phases and wait values on page 86
Completion of messages

A **Send Message Wait** and a **Receive Message Wait** request pair is complete only if the message IDs for each of the calls are identical. This prevents messages from being routed to the improper request. Additionally, the **Send Message Wait** call must specify the number of receives confirmed as a parameter. This number allows for synchronization groups with more than two members.

See also

- Process send and receive messages on page 84
- Types of messages to other phases on page 85
- Send a message to one or more linked phases on page 85
- Send message to one or more linked phases and wait on page 86

Process send and receive messages

Upon receiving the **Send Message** call, the FactoryTalk Batch Server stores the message into the message list and actively responds to outstanding or incoming **Receive Message Wait** calls from other phases within the synchronization group. When receiving a **Receive Message Wait** call from a phase of the synchronization group, the Server checks the message ID and completes the message if appropriate. Upon completion of the message transfer, the Server removes the message from the message list.

See also

- Types of messages to other phases on page 85
- Send a message to one or more linked phases on page 85
- Send message to one or more linked phases and wait on page 86
Types of messages to other phases

Use the PXRQ instruction to specify the **Send Message to Linked Phase** external request for this type of request:

- Send a message to one or more linked phases

Specify the **Send Message to Linked Phase and Wait** for this type of request:

- Send a message to one or more linked phases and wait for a response

See also

- Phase communication on page 83
- Send a message to one or more linked phase values on page 85
- Send message to one or more linked phases and wait values on page 86

Send a message to one or more linked phase values

Configure the PXRQ instruction in Logix Designer to send a message to one or more linked phases:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send Message to Linked Phase</td>
<td>DINT[0]</td>
<td>message ID</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>number of phases to receive message</td>
</tr>
<tr>
<td></td>
<td>DINT[2]</td>
<td>message value</td>
</tr>
</tbody>
</table>

The data value array can contain up to 97 message values.

See also

- Phase communication on page 83
- Send message to one or more linked phases and wait on page 86
Send message to one or more linked phases and wait values

Configure the PXRQ instruction in Logix Designer to send a message to one or more linked phases and wait for a response:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send Message to Linked Phase and Wait</td>
<td>DINT[0]</td>
<td>message ID</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>number of phases to receive message</td>
</tr>
<tr>
<td></td>
<td>DINT[2]</td>
<td>message value</td>
</tr>
</tbody>
</table>

The data value array can contain up to 97 message values.

The receiving partners must issue a request before the data is sent. The sending partner may send the data at anytime. The sending phase waits for confirmation of the responses from the total number of receivers before continuing. The data is cached in the FactoryTalk Batch Server until the receiving partner(s) makes a request to receive the data.

See also

Phases communication on page 83

Message removal

The *Send Message to Linked Phase* call can be canceled by the phase logic that sent the message. The phase logic can remove the message by using the *Cancel Message to Linked Phase* request. Upon receiving the *Cancel Message to Linked Phase* request, the FactoryTalk Batch Server removes the message from the message queue and clears the request on the phase.

Use the PXRQ instruction to specify the *Cancel Message to Linked Phase* external request for these types of requests:

- Cancel a single message
- Cancel all messages

See also:

Cancel a single message on page 87

Cancel all messages on page 87
Cancel a single message

Configure the PXRQ instruction in Logix Designer to cancel a single message that was sent to another phase:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel Message to Linked Phase</td>
<td>DINT[0]</td>
<td>message ID</td>
</tr>
</tbody>
</table>

The FactoryTalk Batch Server cancels the message associated with the message ID. The message was previously issued using a Send Message to Linked Phase request.

See also

Message removal on page 86

Cancel all messages

Configure the PXRQ instruction in Logix Designer to cancel all messages that were sent to another phase:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel Message to Linked Phase</td>
<td>DINT[0]</td>
<td>0</td>
</tr>
</tbody>
</table>

The FactoryTalk Batch Server cancels all messages that were previously issued with a Send Message to Linked Phase request.

See also

Message removal on page 86
The **Receive Message from Linked Phase** request allows phase logic to notify the FactoryTalk Batch Server that it is prepared to receive a message or a set of messages from a linked phase. The Server scans the synchronization group for pending messages with matching message IDs. Configure the PXRQ instruction in Logix Designer to send a request to wait for a message from a linked phase:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive Message from Linked Phase</td>
<td>DINT[0]</td>
<td>message ID</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>message value</td>
</tr>
<tr>
<td></td>
<td>DINT[2]</td>
<td>message value</td>
</tr>
</tbody>
</table>

The data value array can contain up to 97 message values. The Server copies the messages to the receiving phase from the phase(s) that issued the **Send Message to One or More Linked Phases and Wait** request or the **Send Message to One or More Linked Phases** request.

Tip: In certain scenarios, a PXRQ instruction that terminates (stops scanning) prior to completion may no longer function properly unless logic to handle the abnormal termination conditions is provided. To detect and handle abnormal termination of a PXRQ request, create logic in the equipment phase Resetting state routine. For a description of scenarios that cause the PXRQ instruction to terminate abnormally, along with symptoms of the problem and instructions on how to implement the necessary Resetting logic, see the **Abnormal Termination of PXRQ Instruction TechNote** available on the Rockwell Automation KnowledgeBase.

See also

Phase communication on page 83

Download batch data values

While a batch processes, batch data may be downloaded to a specific parameter. The request must specify the parameter ID to which the batch data is to be downloaded.

Important: The 7600/17600 and 7700/17700 requests are exceptions to the rest of the requests in this category in that they do NOT require specifying the tag to which the data will be stored. Instead, the parameter Min and Max values are downloaded to the actual controller tags associated with the parameters on the phase itself. Note that the Min and Max values are downloaded for ALL the parameters on the phase without exception (including Strings and Enumerations).

The data type of the requested item must match the data type of the specified parameter.
Configure the PXRQ instruction in Logix Designer to download FactoryTalk Batch data to a specific parameter in the process controller:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>1</td>
<td>Download customer-assigned or automatically-generated batch ID to specified tag number. FactoryTalk Batch Server downloads an ASCII – String value.</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>parameter ID in which to store the value</td>
<td></td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>2</td>
<td>Download unique batch ID to specified tag number. FactoryTalk Batch Server downloads an ASCII – Integer value.</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>parameter ID in which to store the value</td>
<td></td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>3</td>
<td>Download phase equipment ID to specified tag number. FactoryTalk Batch Server downloads an ASCII – Integer value.</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>parameter ID in which to store the value</td>
<td></td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>4</td>
<td>Download a value to the specified tag number indicating whether the phase is under recipe control or manual phase control. FactoryTalk Batch Server downloads: 0 = Recipe Control 1 = Manual Phase Control</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>parameter ID in which to store the value</td>
<td></td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>5</td>
<td>Download a value to the specified tag number indicating the current mode of the requesting phase. FactoryTalk Batch Server downloads: 0 = P-Auto 1 = O-Auto</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>parameter ID in which to store the value</td>
<td></td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>6</td>
<td>Download all phase parameter MIN values to the controller tags associated with those parameters.</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>parameter ID in which to store the value</td>
<td></td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>7</td>
<td>Download all phase parameter MAX values to the controller tags associated with those parameters. This request actually downloads values for parameters that do not have Max and Min values, as defined in FactoryTalk Batch Equipment Editor> For example, parameters of type String and type Enumeration. For string parameters, the request downloads empty strings. For enumeration parameters, the request downloads a value of zero (0).</td>
</tr>
</tbody>
</table>

See also

[Generate an electronic signature request](#) on page 90
Generate an electronic signature request

During batch execution, phase logic can issue a request to the FactoryTalk Batch Server to generate a Signature Request. Each Signature Template is assigned a unique ID, which is a positive integer. Requests to generate a Signature specify the desired Signature Template ID. Configure the PXRQ instruction in Logix Designer to generate an electronic signature request:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate E Signature</td>
<td>DINT[0]</td>
<td>Signature template ID</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>Defines if signature is able to be canceled: 0 = No, non-zero = Yes</td>
</tr>
</tbody>
</table>

See also

Phase communication on page 83

PXRQ instruction values

This table displays a list of all the requests the phase logic can issue to the FactoryTalk Batch Server with the PXRQ instruction:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Input Parameters</td>
<td>DINT[0]</td>
<td>0</td>
<td>Download all input parameters</td>
</tr>
<tr>
<td>Download Input Parameters</td>
<td>DINT[0]</td>
<td>Parameter ID</td>
<td>Download a single input parameter</td>
</tr>
<tr>
<td>Download Input Parameters</td>
<td>DINT[0]</td>
<td>Parameter ID of the first parameter</td>
<td>Download a range of input parameters</td>
</tr>
<tr>
<td>Download Input Parameters</td>
<td>DINT[1]</td>
<td>Number of parameters to download</td>
<td></td>
</tr>
<tr>
<td>Download Input Parameters Subset</td>
<td>DINT[0]</td>
<td>1</td>
<td>Download input parameters configured for download on start</td>
</tr>
<tr>
<td>Download Input Parameters Subset</td>
<td>DINT[0]</td>
<td>2</td>
<td>Download input parameters configured for download on transfer of control</td>
</tr>
<tr>
<td>Download Output Parameter Limits</td>
<td>DINT[0]</td>
<td>0</td>
<td>Download all report limits</td>
</tr>
<tr>
<td>Download Output Parameter Limits</td>
<td>DINT[0]</td>
<td>Report ID</td>
<td>Download the report limits configuration for a single report</td>
</tr>
<tr>
<td>Upload Output Parameters</td>
<td>DINT[0]</td>
<td>0</td>
<td>Upload all reports</td>
</tr>
<tr>
<td>Upload Output Parameters</td>
<td>DINT[0]</td>
<td>Report ID</td>
<td>Upload a single report</td>
</tr>
<tr>
<td>Upload Output Parameters</td>
<td>DINT[0]</td>
<td>Report ID of the first report</td>
<td>Upload a range of reports</td>
</tr>
<tr>
<td>Upload Output Parameters</td>
<td>DINT[1]</td>
<td>Number of reports to download</td>
<td></td>
</tr>
<tr>
<td>Upload Output Parameters Subset</td>
<td>DINT[0]</td>
<td>1</td>
<td>Upload reports configured for upload on terminal state</td>
</tr>
<tr>
<td>External Request</td>
<td>Data Value Array Element</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Upload Output Parameters Subset</td>
<td>DINT[0]</td>
<td>2</td>
<td>Upload reports configured for upload on transfer of control</td>
</tr>
<tr>
<td>Send Message to Operator</td>
<td>DINT[0]</td>
<td>Message ID</td>
<td>Send a message to the operator. In the FactoryTalk Batch View, the message displays in the Phase Summary window.</td>
</tr>
<tr>
<td>Clear Message to Operator</td>
<td>not applicable</td>
<td>not applicable</td>
<td>Clears the currently displayed message</td>
</tr>
<tr>
<td>Acquire Resources</td>
<td>DINT[0]</td>
<td>Equipment ID</td>
<td>Acquire a single resource</td>
</tr>
<tr>
<td>Acquire Resources</td>
<td>DINT[1]</td>
<td>Equipment ID</td>
<td>Acquire multiple resources</td>
</tr>
<tr>
<td>Acquire Resources</td>
<td>DINT[2]</td>
<td>Equipment ID</td>
<td>Acquire multiple resources</td>
</tr>
<tr>
<td>Release Resources</td>
<td>DINT[0]</td>
<td>Equipment ID</td>
<td>Release a single resource</td>
</tr>
<tr>
<td>Release Resources</td>
<td>DINT[0]</td>
<td>0</td>
<td>Release all currently acquired resources</td>
</tr>
<tr>
<td>Send Message to Linked Phase</td>
<td>DINT[0]</td>
<td>message ID</td>
<td>Send a message to one other phase or multiple phases</td>
</tr>
<tr>
<td>Send Message to Linked Phase</td>
<td>DINT[1]</td>
<td>number of phases to receive message</td>
<td>Send a message to one or more linked phases and wait for a response</td>
</tr>
<tr>
<td>Send Message to Linked Phase</td>
<td>DINT[2]</td>
<td>message value</td>
<td>Send a message to one other phase or multiple phases</td>
</tr>
<tr>
<td>Receive Message from Linked Phase</td>
<td>DINT[0]</td>
<td>message ID</td>
<td>Send a request to wait for a message from another phase</td>
</tr>
<tr>
<td>Receive Message from Linked Phase</td>
<td>DINT[1]</td>
<td>message value</td>
<td>Send a request to wait for a message from another phase</td>
</tr>
<tr>
<td>Receive Message from Linked Phase</td>
<td>DINT[2]</td>
<td>message value</td>
<td>Send a request to wait for a message from another phase</td>
</tr>
<tr>
<td>Cancel Message to Linked Phase</td>
<td>DINT[0]</td>
<td>message ID</td>
<td>The FactoryTalk Batch Server cancels the message associated with the message ID. The message was previously issued using a Send Message to Linked Phase request.</td>
</tr>
<tr>
<td>Cancel Message to Linked Phase</td>
<td>DINT[0]</td>
<td>0</td>
<td>The FactoryTalk Batch Server cancels all messages that were previously issued with a Send Message to Linked Phase request.</td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>1</td>
<td>Download customer-assigned data</td>
</tr>
<tr>
<td>External Request</td>
<td>Data Value Array Element</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[1]</td>
<td>parameter ID in which to store the value</td>
<td>Download unique batch ID to specified tag number. FactoryTalk Batch Server downloads an ASCII – Integer value.</td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>2</td>
<td>Download unique batch ID to specified tag number.</td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[1]</td>
<td>parameter ID in which to store the value</td>
<td>FactoryTalk Batch Server downloads an ASCII – Integer value.</td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>3</td>
<td>Download phase ID to specified tag number.</td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[1]</td>
<td>parameter ID in which to store the value</td>
<td>FactoryTalk Batch Server downloads an ASCII – Integer value.</td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>4</td>
<td>Download a value to the specified tag number indicating whether the phase is under recipe control or manual phase control. FactoryTalk Batch Server downloads: 0 = Recipe Control 1 = Manual Phase Control</td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[1]</td>
<td>parameter ID in which to store the value</td>
<td>Download a value to the specified tag number indicating the current mode of the requesting phase. FactoryTalk Batch Server downloads: 0 = P-Auto 1 = O-Auto</td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>5</td>
<td>Download all phase parameter MIN values to the controller tags associated with those parameters. This request actually downloads values for parameters that do not have Max and Min values as defined in the Equipment Editor, parameters of type String and type Enumeration for example. For String parameters, the request downloads empty strings. For Enumeration parameters, the request downloads a value of zero (0).</td>
</tr>
<tr>
<td>External Request</td>
<td>Data Value Array Element</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Download Batch Data</td>
<td>DINT[0]</td>
<td>7</td>
<td>Download all phase parameter MAX values to the controller tags associated with those parameters. This request actually downloads values for parameters that do not have Max and Min values as defined in the Equipment Editor, parameters of type String and type Enumeration for example. For String parameters, the request downloads empty strings. For Enumeration parameters, the request downloads a value of zero (0).</td>
</tr>
<tr>
<td>Generate E Signature</td>
<td>DINT[0]</td>
<td></td>
<td>signature template ID</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td></td>
<td>Defines if signature is able to be canceled: 0 = No non-zero = Yes Generate an electronic signature request.</td>
</tr>
</tbody>
</table>
How phase tag requests map to PXRQ requests

This table shows how the phase tag requests (PHASE_RQ, PHASEQ01, PHASEQ02, PhaseQ03) correspond to the requests that can be made with the PXRQ instruction. Phase tag requests are used in the phase logic for OPC phases to request data and services from the FactoryTalk Batch Server. The PXRQ instruction is provided in Logix Designer for requesting data and services from the FactoryTalk Batch Server for PhaseManager equipment phases.

Since Parameter/Tag Locking is on for PhaseManager phases, the PXRQ instruction does not provide a way to make indirect requests.

<table>
<thead>
<tr>
<th>Tag-Based Request (OPC)</th>
<th>PhaseManager PXRQ Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASE_RQ</td>
<td>PhaseQnn</td>
</tr>
<tr>
<td>PHASE Tag</td>
<td>Data Values</td>
</tr>
<tr>
<td>11000</td>
<td></td>
</tr>
<tr>
<td>11100</td>
<td>PHASEQ01 - Parameter ID of 1st phase parameter</td>
</tr>
<tr>
<td></td>
<td>PHASEQ02 - Index into the phase parameter array</td>
</tr>
<tr>
<td></td>
<td>PHASEQ03 - Number of values</td>
</tr>
<tr>
<td>11200</td>
<td>PHASEQ01 - Parameter ID</td>
</tr>
<tr>
<td>11500</td>
<td>PHASEQ01 - 1 (Start) or 2 (TOC)</td>
</tr>
<tr>
<td>11600</td>
<td></td>
</tr>
<tr>
<td>11601</td>
<td>PHASEQ01 - Parameter ID</td>
</tr>
<tr>
<td>12000</td>
<td></td>
</tr>
<tr>
<td>12100</td>
<td>PHASEQ01 - Report ID of 1st report</td>
</tr>
<tr>
<td></td>
<td>PHASEQ02 - Index into the phase parameter array</td>
</tr>
<tr>
<td></td>
<td>PHASEQ03 - Number of values</td>
</tr>
<tr>
<td>12200</td>
<td>PHASEQ01 - Report ID</td>
</tr>
<tr>
<td>12500</td>
<td>PHASEQ01 - 1 (Terminal State) or 2 (TOC)</td>
</tr>
<tr>
<td>13000</td>
<td>PHASEQ01 - Message ID</td>
</tr>
<tr>
<td>13100</td>
<td></td>
</tr>
<tr>
<td>14000</td>
<td>PHASEQ01 - Equipment ID</td>
</tr>
<tr>
<td>141NN</td>
<td>(NN=number of resources to acquire)</td>
</tr>
<tr>
<td></td>
<td>PHASEQ01 - Equipment ID</td>
</tr>
<tr>
<td></td>
<td>PHASEQ02 - Equipment ID</td>
</tr>
<tr>
<td></td>
<td>PHASEQ03 - Equipment ID</td>
</tr>
<tr>
<td>14200</td>
<td>PHASEQ01 - Equipment ID</td>
</tr>
<tr>
<td>143NN</td>
<td>(NN=number of resources to release)</td>
</tr>
<tr>
<td></td>
<td>PHASEQ01 - Equipment ID</td>
</tr>
<tr>
<td></td>
<td>PHASEQ02 - Equipment ID</td>
</tr>
<tr>
<td></td>
<td>PHASEQ03 - Equipment ID</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>14400</td>
<td>Release Resources</td>
</tr>
<tr>
<td>15300</td>
<td>Cancel Message to Linked Phase</td>
</tr>
<tr>
<td>15400</td>
<td>Cancel Message to Linked Phase</td>
</tr>
<tr>
<td>171NN</td>
<td>Download Batch Data</td>
</tr>
<tr>
<td>172NN</td>
<td>Download Batch Data</td>
</tr>
<tr>
<td>173NN</td>
<td>Download Batch Data</td>
</tr>
<tr>
<td>174NN</td>
<td>Download Batch Data</td>
</tr>
<tr>
<td>175NN</td>
<td>Download Batch Data</td>
</tr>
<tr>
<td>176001</td>
<td>Download Batch Data</td>
</tr>
<tr>
<td>177001</td>
<td>Download Batch Data</td>
</tr>
<tr>
<td>17900</td>
<td>Generate E Signature</td>
</tr>
</tbody>
</table>

(1) This request actually downloads values for parameters that do not have Max and Min values as defined in FactoryTalk Batch Equipment Editor, parameters of type String and type Enumeration for example.

For String parameters, the request downloads empty strings. For Enumeration parameters, the request downloads a value of zero (0).

See also

Phase communication on page 83

Data from the Material Server on page 97
Data from the Material Server

Most of the data within FactoryTalk Batch Material Manager’s material database is made available to the phase logic programmer for reading, some for writing, through the PXRQ instruction provided in Logix Designer. Access to the data requires two things: the controller ID for the database entity and the index of the data on that entity.

Important: The information in this guide only applies to programming phase logic for PhaseManager phases assigned a Logix5000 CIP data server.

The three classifications of data in the material database are materials, lots, and containers.

A lot is a description of an instance of a material. This description inherits the properties of the material it belongs to and assigns actual values to any properties having configured ranges.

A lot holds all of the static information about the lot, such as lot identifier, material type, lot state, engineering units, and controller ID value. A lot has a parent relationship to sublots, which contain the actual distributed quantity of the lot in a container.

There are two types of data for each classification:

- **Standard Attributes:** Standard attributes are materials, lots and containers.
- **Custom Attributes:** Custom attributes are the properties of the materials, containers, and lots defined in the material database. The priority used to select containers for use can also be accessed. Container priorities are runtime data dependent on the area model data uploaded into the database by the FactoryTalk Batch Server. They help the FactoryTalk Batch Server select a container to use given the material required, its feed type (addition or distribution), the unit and finally the container. This data is accessed with separate PCD interfaces from those used for standard attributes and custom attributes.
All of the data is accessible by an attribute ID which specifies a field.

When PhaseManager material phases are created with a Logix5000 CIP data server, use the PXRQ instruction provided in Logix Designer as a means for the phase logic to request data from the Material Server.

See also

- Standard attributes on page 98
- Custom attributes on page 102
- Considerations for writing material phase logic on page 105
- Recipe execution requests on page 108
- Material database requests on page 115

Standard attributes

Standard attributes are attributes that exist by default on a data entity. The attribute ID for a standard attribute is the index.

See also

- Material standard attributes on page 99
- Lot standard attributes on page 100
- Container standard attributes on page 101
Material standard attributes include:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Index</th>
<th>PLI Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Unique Primary Key for a material</td>
<td>Integer</td>
<td>1</td>
<td>Read</td>
</tr>
<tr>
<td>Name</td>
<td>Material name</td>
<td>String</td>
<td>2</td>
<td>Read</td>
</tr>
<tr>
<td>Controller ID</td>
<td>Integer ID for phase logic programmer to reference this material</td>
<td>Integer</td>
<td>3</td>
<td>Read</td>
</tr>
<tr>
<td>Description</td>
<td>Material description</td>
<td>String</td>
<td>4</td>
<td>Read/Write</td>
</tr>
<tr>
<td>EU</td>
<td>Engineering Units for measuring the material</td>
<td>String</td>
<td>5</td>
<td>Read</td>
</tr>
<tr>
<td>Inventory Key</td>
<td>Optionally used for storing an identifier for this material; used by third-party inventory control systems</td>
<td>String</td>
<td>6</td>
<td>Read</td>
</tr>
<tr>
<td>Last Edited By</td>
<td>The user ID (Windows logon) of the last user who changed material data</td>
<td>String</td>
<td>7</td>
<td>Read</td>
</tr>
<tr>
<td>Last Modification Date</td>
<td>The time a change was made to this material data</td>
<td>String</td>
<td>8</td>
<td>Read</td>
</tr>
<tr>
<td>Label Usage</td>
<td>Specifies that the selection of a container holding this material may be filtered by an assigned label. Labels used are: 1 - Batch ID 2 - Product Name 3 - Custom Name</td>
<td>String</td>
<td>9</td>
<td>Read</td>
</tr>
<tr>
<td>Classification</td>
<td>Designation of this material belonging to a particular class of materials. Classification is the ordinal of the Classification enumeration as defined by the Material Editor.</td>
<td>Integer</td>
<td>10</td>
<td>Read</td>
</tr>
<tr>
<td>MaterialGroupID</td>
<td>Primary key of the Material Group assigned to the material</td>
<td>Integer</td>
<td>11</td>
<td>Read</td>
</tr>
<tr>
<td>DefaultLotStateID</td>
<td>Primary key to the Lot State assigned to the material</td>
<td>Integer</td>
<td>12</td>
<td>Read</td>
</tr>
</tbody>
</table>

See also

Standard attributes on page 98
Lot standard attributes

Lot standard attributes include:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Index</th>
<th>PLI Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Unique Primary Key for a lot</td>
<td>Integer</td>
<td>1</td>
<td>Read</td>
</tr>
<tr>
<td>Name</td>
<td>Lot name</td>
<td>String</td>
<td>2</td>
<td>Read</td>
</tr>
<tr>
<td>Controller ID</td>
<td>Integer ID for phase logic programmer to reference this lot</td>
<td>Integer</td>
<td>3</td>
<td>Read</td>
</tr>
<tr>
<td>Description</td>
<td>Lot description</td>
<td>String</td>
<td>4</td>
<td>Read/Write</td>
</tr>
<tr>
<td>EU</td>
<td>Engineering Units for measuring the material. Note that this data actually resides on the Material and not the Lot. The Material Server business rules are expected to return the correct value.</td>
<td>String</td>
<td>5</td>
<td>Read</td>
</tr>
<tr>
<td>Inventory Key</td>
<td>Optionally used for storing an identifier for this lot; used by third-party inventory control systems</td>
<td>String</td>
<td>6</td>
<td>Read</td>
</tr>
<tr>
<td>Last Edited By</td>
<td>The user ID (Windows logon) of the last user who changed this material data</td>
<td>String</td>
<td>7</td>
<td>Read</td>
</tr>
<tr>
<td>Creation Date</td>
<td>Time this lot was entered into the database</td>
<td>String</td>
<td>8</td>
<td>Read</td>
</tr>
<tr>
<td>Depletion Date</td>
<td>The time when this lot was completely consumed</td>
<td>String</td>
<td>9</td>
<td>Read</td>
</tr>
<tr>
<td>Material</td>
<td>Material ID value</td>
<td>Integer</td>
<td>10</td>
<td>Read</td>
</tr>
<tr>
<td>State</td>
<td>The state of the lot 1 - Lot Available for Use</td>
<td>Integer</td>
<td>11</td>
<td>Read/Write</td>
</tr>
<tr>
<td>Quantity</td>
<td>Amount of material in the lot</td>
<td>Real</td>
<td>12</td>
<td>Read</td>
</tr>
</tbody>
</table>

See also

Standard attributes on page 98
Container standard attributes

Container standard attributes include:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Index</th>
<th>PLI Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Unique Primary Key for a container</td>
<td>Integer</td>
<td>1</td>
<td>Read</td>
</tr>
<tr>
<td>Name</td>
<td>Container name</td>
<td>String</td>
<td>2</td>
<td>Read</td>
</tr>
<tr>
<td>Controller ID</td>
<td>Integer ID for phase logic programmer to reference this container</td>
<td>Integer</td>
<td>3</td>
<td>Read</td>
</tr>
<tr>
<td>Description</td>
<td>Container description</td>
<td>String</td>
<td>4</td>
<td>Read/Write</td>
</tr>
<tr>
<td>EU</td>
<td>Engineering Units for measuring the material</td>
<td>String</td>
<td>5</td>
<td>Read</td>
</tr>
<tr>
<td>Capacity</td>
<td>The container's maximum capacity</td>
<td>Real</td>
<td>6</td>
<td>Read/Write</td>
</tr>
<tr>
<td>ContainerType</td>
<td>Container Type defines what type of container the user is dealing with. The possible values are: 1=Composite Container 2=Plug-Flow Container 3=Pallet Container</td>
<td>Integer</td>
<td>7</td>
<td>Read</td>
</tr>
<tr>
<td>StateID</td>
<td>The ID value that represents the current State of the Container. ID values correlate to the tbContainerState table.</td>
<td>Integer</td>
<td>8</td>
<td>Read/Write</td>
</tr>
<tr>
<td>Storage Location</td>
<td>The ID value for the Storage Location (zero if the container is not part of a storage location).</td>
<td>Integer</td>
<td>9</td>
<td>Read</td>
</tr>
<tr>
<td>Heel</td>
<td>The value (quantity) of the Container Heel (the amount of inventory that remains in a container after the accessible inventory has been removed).</td>
<td>Real</td>
<td>10</td>
<td>Read/Write</td>
</tr>
</tbody>
</table>

See also

[Standard attributes](#) on page 98
Custom attributes

Custom attributes are user-defined properties of materials, lots or containers. Custom attributes can be accessed in addition to the standard attributes. Each property that is added in the FactoryTalk Batch Material Manager material database has a controller ID, which begins at 1000 and increments by 10. Several types of data are made available for each attribute, which are indexes.

The attribute ID of the custom attribute calculates from the controller ID plus the index.

See also

- Material custom attribute on page 103
- Lot custom attribute on page 103
- Container custom attribute on page 104
Material custom attribute

Material custom attributes include:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Index</th>
<th>PLI Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Unique Primary Key for a material attribute</td>
<td>String</td>
<td>1</td>
<td>Read</td>
</tr>
<tr>
<td>Name</td>
<td>Material property name of the</td>
<td>String</td>
<td>2</td>
<td>Read</td>
</tr>
<tr>
<td>Controller ID</td>
<td>The ID for this attribute</td>
<td>Integer</td>
<td>3</td>
<td>Read</td>
</tr>
<tr>
<td>Description</td>
<td>Material attribute description</td>
<td>String</td>
<td>4</td>
<td>Read/Write</td>
</tr>
<tr>
<td>EU</td>
<td>Engineering Units for measuring the material</td>
<td>String</td>
<td>5</td>
<td>Read</td>
</tr>
<tr>
<td>Data Type</td>
<td>The data type of the maximum and minimum values: Real = 0, Integer = 1, and String = 2</td>
<td>Integer</td>
<td>6</td>
<td>Read</td>
</tr>
<tr>
<td>Maximum</td>
<td>Maximum of the range of values acceptable for this material.</td>
<td>Real, Integer or String</td>
<td>7</td>
<td>Read</td>
</tr>
<tr>
<td>Minimum</td>
<td>Minimum of the range of values acceptable for this material</td>
<td>Real, Integer or String</td>
<td>8</td>
<td>Read</td>
</tr>
</tbody>
</table>

See also

Custom attributes on page 102

Lot custom attribute

Lot custom attributes include:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Index</th>
<th>PLI Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Unique Primary Key for a lot attribute</td>
<td>String</td>
<td>1</td>
<td>Read</td>
</tr>
<tr>
<td>Name</td>
<td>Lot property name</td>
<td>String</td>
<td>2</td>
<td>Read</td>
</tr>
<tr>
<td>Controller ID</td>
<td>The ID for this attribute</td>
<td>Integer</td>
<td>3</td>
<td>Read</td>
</tr>
<tr>
<td>Description</td>
<td>Lot attribute description</td>
<td>String</td>
<td>4</td>
<td>Read/Write</td>
</tr>
<tr>
<td>EU</td>
<td>Engineering Units for measuring the material</td>
<td>String</td>
<td>5</td>
<td>Read</td>
</tr>
<tr>
<td>Data Type</td>
<td>The data type of the maximum and minimum values: Real = 0, Integer = 1, and String = 2</td>
<td>Integer</td>
<td>6</td>
<td>Read</td>
</tr>
<tr>
<td>Maximum</td>
<td>Maximum of the range of values acceptable for this material.</td>
<td>Real, Integer or String</td>
<td>7</td>
<td>Read</td>
</tr>
<tr>
<td>Minimum</td>
<td>Minimum of the range of values acceptable for this material</td>
<td>Real, Integer or String</td>
<td>8</td>
<td>Read</td>
</tr>
<tr>
<td>Value</td>
<td>The attribute value.</td>
<td>Real, Integer or String</td>
<td>9</td>
<td>Read/Write</td>
</tr>
</tbody>
</table>

See also

Custom attributes on page 102
Container custom attributes include:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Index</th>
<th>PLI Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Unique Primary Key for a container attribute</td>
<td>String</td>
<td>1</td>
<td>Read</td>
</tr>
<tr>
<td>Name</td>
<td>Container property name</td>
<td>String</td>
<td>2</td>
<td>Read</td>
</tr>
<tr>
<td>Controller ID</td>
<td>The ID for this attribute</td>
<td>Integer</td>
<td>3</td>
<td>Read</td>
</tr>
<tr>
<td>Description</td>
<td>Container attribute description</td>
<td>String</td>
<td>4</td>
<td>Read/Write</td>
</tr>
<tr>
<td>EU</td>
<td>Engineering Units for measuring the contents of the container</td>
<td>String</td>
<td>5</td>
<td>Read</td>
</tr>
<tr>
<td>Data Type</td>
<td>The data type of the maximum and minimum values: Real = 0, Integer = 1, and String = 2</td>
<td>Integer</td>
<td>6</td>
<td>Read</td>
</tr>
<tr>
<td>Value</td>
<td>The attribute value.</td>
<td>Real, Integer or String</td>
<td>7</td>
<td>Read/Write</td>
</tr>
</tbody>
</table>

See also

Custom attributes on page 102
Considerations for writing material phase logic

Writing phase logic for a material phase requires some additional consideration. The FactoryTalk Batch Server requires that a simple protocol be followed by the phase logic programmer to ensure that inventory levels are properly maintained within the material database and that the FactoryTalk Batch Event Journal contains entries identifying the inventory that was produced or consumed.

Protocol:

- The phase logic must request a download of the AMOUNT parameter.
- Before entering a terminal state (COMPLETE, STOPPED or ABORTED), the phase logic must upload the ACTUAL_AMOUNT and FEED COMPLETE report parameters. The sign of the value in the ACTUAL_AMOUNT report parameter must match the configured feed type: Additions are positive or zero; Distributions are negative or zero. Deviating from this results in an error and the batch being HELD.
- The Automatic Upload/Download functionality can be used to meet this protocol requirement. When used, the AMOUNT parameter downloads by the FactoryTalk Batch Server before the phase starts and the ACTUAL_AMOUNT and FEED COMPLETE report parameters uploads after the phase logic runs to a terminal state. This simplifies the writing of phase logic.

Important: Uploading data into the material database has two constraints:

- Some fields are only editable at configuration time. Only fields that may be changed at runtime will support uploading values.
- Security may limit the set of users allowed to modify the database. The FactoryTalk Batch Server service must have adequate permissions to store to the material database.

Tip: When the Automatic Upload function is enabled, the FactoryTalk Batch Server automatically uploads the appropriate report values when the batch transitions to a terminal state. If the FactoryTalk Batch Server stops while a material enabled phase uploads its report parameters, these report parameters upload again during a Warm or Warm All Batch Server Restart. This also occurs when a material enabled phase transitions to External while the report parameters are being uploaded. When the material enabled phase transitions back to Program mode, the report parameters are uploaded a second time. Sometimes this generates an error that puts the batch in Hold. Issue a clear failures command, restart the batch, and execution will proceed normally. To avoid this, disable the Automatic Upload function and perform report parameter uploads using phase logic requests.

See also

Phase process diagram on page 106
Phase process diagram

This diagram is an example of a phase process:

1. The command to START the phase is issued from the FactoryTalk Batch Server. The RUNNING program eventually begins.

2. The phase logic sends a request to download the AMOUNT parameter from the FactoryTalk Batch Server.

3. The FactoryTalk Batch Server requests a Promise ID from the Material Server. This establishes an accounting data entity for tracking the inventory used.

4. The Material Server returns SUCCESS for the Promise ID to the FactoryTalk Batch Server. This is used by the FactoryTalk Batch Server during warm restarts to restore the state of a batch if the FactoryTalk Batch Server failed as the batch was running.

5. The FactoryTalk Batch Server downloads the parameters to the phase logic. The PCD runs its program to perform a material addition or distribution.

6. The FEED_COMPLETE and ACTUAL_AMOUNT parameters are uploaded to the FactoryTalk Batch Server.

7. The phase logic transitions to a terminal state.
8. The value returned in the FEED_COMPLETE report parameter, and the Hold on Split Feed configuration determine what recipe execution will do next:

Tip: Hold On Split Feed is set in the Material Policy tab in the Server Options dialog box in FactoryTalk Batch Equipment Editor.

- If FEED_COMPLETE is TRUE, the batch continues running.
- If FEED_COMPLETE is FALSE, and Hold on Split Feed is YES, the batch is held.
- If FEED_COMPLETE is FALSE, and Hold on Split Feed is NO, the batch continues running.

9. The amount of the material addition or distribution is sent to the Material Server. The inventory levels in the material database are updated, and for material additions, the sublot or sublots of inventory used are identified.

10. Material, lot, and container data are returned to the FactoryTalk Batch Server and recorded in the FactoryTalk Batch Event Journal.

See also

FEED_COMPLETE report parameter values on page 107

This table describes FEED_COMPLETE report parameter values:

<table>
<thead>
<tr>
<th>FEED_COMPLETE</th>
<th>HoldOnSplitFeed</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>N/A</td>
<td>The addition or distribution of the step completes so the SFC continues running.</td>
</tr>
<tr>
<td>FALSE</td>
<td>YES</td>
<td>The addition or distribution is not complete. The recipe is HELD to prevent the next step in the SFC from beginning to execute. The step must be rebound to proceed. The operator must perform an active step change away from the unfinished step, rebind the step manually, active step change back and restart the batch.</td>
</tr>
<tr>
<td>FALSE</td>
<td>NO</td>
<td>The addition or distribution is not complete. In the recipe, the material phase step should have been built within a loop with the transitions testing the value of the FEED_COMPLETE report as well as the value of the step.state attribute. When FALSE, the branch looping around to rerun the phase should be taken.</td>
</tr>
</tbody>
</table>

See also

Phase process diagram on page 106
Recipe execution requests

Use the PXRQ instruction in the phase logic to request these types of data available or meaningful only during Batch execution:

- Download Material Manager Data Container in Use
- Upload Material Manager Data Container in Use
- Download Container Binding Priority
- Upload Container Binding Priority
- Download Sufficient Material

These commands give the phase logic programmer access to the data of the material entities the phase logic interacts with.

The attribute ID for a standard attribute is the index. The attribute ID for a custom attribute is the sum of the controller ID and the index.
Summary of these recipe execution requests:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Material Manager Data Container in Use</td>
<td>1</td>
<td>Attribute ID</td>
<td>Array Index</td>
<td>Download data about the container currently in use.</td>
</tr>
<tr>
<td>Download Material Manager Data Container in Use</td>
<td>2</td>
<td>Attribute ID</td>
<td>Array Index</td>
<td>Download data about the current material inside the container currently in use.</td>
</tr>
<tr>
<td>Download Material Manager Data Container in Use</td>
<td>3</td>
<td>Attribute ID</td>
<td>Array Index</td>
<td>Download data about the current lot inside the container currently in use.</td>
</tr>
<tr>
<td>Upload Material Manager Data Container in Use</td>
<td>1</td>
<td>Attribute ID</td>
<td>Array Index</td>
<td>Upload data about the container currently in use.</td>
</tr>
<tr>
<td>Upload Material Manager Data Container in Use</td>
<td>2</td>
<td>Attribute ID</td>
<td>Array Index</td>
<td>Upload data about the current material inside the container currently in use.</td>
</tr>
<tr>
<td>Upload Material Manager Data Container in Use</td>
<td>3</td>
<td>Attribute ID</td>
<td>Array Index</td>
<td>Upload data about the current lot inside the container currently in use.</td>
</tr>
<tr>
<td>Download Container Binding Priority</td>
<td>Array Index</td>
<td></td>
<td></td>
<td>Download the current binding’s container priority</td>
</tr>
<tr>
<td>Upload Container Binding Priority</td>
<td>Array Index</td>
<td></td>
<td></td>
<td>Upload a new container priority for the current binding.</td>
</tr>
<tr>
<td>Download Sufficient Material</td>
<td>Array Index</td>
<td></td>
<td></td>
<td>Download data about sufficient material for step.</td>
</tr>
</tbody>
</table>

See also

- Download data from container currently in use on page 109
- Download data from material in container currently in use on page 110
- Download data from lot in container currently in use on page 111
- Upload container data into container currently in use on page 110

Download data from container currently in use

Configure the PXRQ instruction to download material data from the container the phase currently runs against:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Material Manager Data Container in Use</td>
<td>DINT[0]</td>
<td>1</td>
</tr>
<tr>
<td>Download Material Manager Data Container in Use</td>
<td>DINT[1]</td>
<td>Data to download (attribute ID).</td>
</tr>
<tr>
<td>Download Material Manager Data Container in Use</td>
<td>DINT[2]</td>
<td>The phase parameter tag number the value downloads into.</td>
</tr>
</tbody>
</table>

See also

- Recipe execution requests on page 108
Upload container data into container currently in use

This request fails (without notice) if the data is read-only.

Configure the PXRQ instruction to upload container data about the container the phase is currently running against.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Material Manager Data Container in Use</td>
<td>DINT[0]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>Data to upload into (attribute ID).</td>
</tr>
</tbody>
</table>

See also

Recipe execution requests on page 108

Download data from material in container currently in use

Configure the PXRQ instruction to download material data from the container the phase currently runs against:

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Material Manager Data Container in Use</td>
<td>DINT[0]</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>Data to download (attribute ID).</td>
</tr>
<tr>
<td></td>
<td>DINT[2]</td>
<td>The phase parameter tag number the value downloads into.</td>
</tr>
</tbody>
</table>

See also

Recipe execution requests on page 108

Upload material data into material in container currently in use

This request fails (without notice) if the data is read-only.

Configure the PXRQ instruction in Logix Designer to upload material data about the current material inside the container the phase currently runs against.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Material Manager Data Container in Use</td>
<td>DINT[0]</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>Data to upload into.</td>
</tr>
</tbody>
</table>

See also

Recipe execution requests on page 108
Download data from lot in container currently in use

This request will not download a list of data.

Identifying the lot

The LOT formula parameter does not need to be configured on the phase of the running phase. If the LOT formula parameter is used, it must have the lot name stored in it (either before or after binding occurred). This ensures that the correct lot is referenced. If the lot name is invalid or the material does not exist, the batch is held according to the configured hold propagation setting.

Finding the exact lot from which to get the information is simple for composite and plug-flow containers because only one sublot is accessible at a time. Pallets allow random access to sublots, so that when more than one lot of a material is stored on a pallet, the FactoryTalk Batch Server does not know which lot to retrieve data from unless there is only one lot on the pallet or the LOT formula parameter is specified.

Configure the PXREQ instruction to download lot data from the current material and current lot within the container the phase is currently running against.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Material Manager</td>
<td>DINT[0]</td>
<td>3</td>
</tr>
<tr>
<td>Data in Use</td>
<td>DINT[1]</td>
<td>Data to download (attribute ID).</td>
</tr>
<tr>
<td>Container in Use</td>
<td>DINT[2]</td>
<td>The phase parameter tag number the value downloads into.</td>
</tr>
</tbody>
</table>

See also

Recipe execution requests on page 108
Upload lot data into lot in container currently in use

This request fails if the data is read-only.

Identifying the lot

The LOT formula parameter does not need to be configured on the phase of the running phase. If the LOT formula parameter is used, it must have the lot name stored in it (either before or after binding occurred). This ensures that the correct lot is referenced. If the lot name is invalid or the material does not exist, the batch is held according to the configured hold propagation setting.

Finding the exact lot from which to get the information is simple for composite and plug-flow containers because only one sublot is accessible at a time. Pallets allow random access to sublots, so that when more than one lot of a material is stored on a pallet, the FactoryTalk Batch Server does not know which lot to retrieve data from unless there is only one lot on the pallet or the LOT formula parameter is specified.

Configure the PXRQ instruction in Logix Designer to upload lot data into the current lot of the current material inside the container the phase currently runs against.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Material Manager Data Container in Use</td>
<td>DINT[0]</td>
<td>3</td>
</tr>
</tbody>
</table>

See also

Download a container selection priority for the current binding on page 113

Recipe execution requests on page 108
Download a container selection priority for the current binding

Configure the PXRQ instruction in Logix Designer to download the container selection priority for the material, container, feed type, and unit currently in use by this phase.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download</td>
<td>DINT[0]</td>
<td>Phase parameter tag number.</td>
</tr>
<tr>
<td>Container Binding</td>
<td>DINT[1]</td>
<td></td>
</tr>
<tr>
<td>Priority</td>
<td>DINT[2]</td>
<td></td>
</tr>
</tbody>
</table>

The value is stored into a specified tag.

See also

Recipe execution requests on page 108

Upload a container selection priority for the current binding

Configure the PXRQ instruction in Logix Designer to upload a new container selection priority for the material, container, feed type and unit currently in use by this phase.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload</td>
<td>DINT[0]</td>
<td>Report tag address of priority to be assigned.</td>
</tr>
<tr>
<td>Container Binding</td>
<td>DINT[1]</td>
<td></td>
</tr>
<tr>
<td>Priority</td>
<td>DINT[2]</td>
<td></td>
</tr>
</tbody>
</table>

See also

Recipe execution requests on page 108
Download sufficient material data

Configure the PXRQ instruction in Logix Designer to download information regarding the availability of sufficient material, across all the valid binding candidates, to complete the addition before starting the material addition for the step.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download</td>
<td>DINT[0]</td>
<td>Phase parameter tag address of priority to be assigned.</td>
</tr>
<tr>
<td>Sufficient Material</td>
<td>DINT[1]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINT[2]</td>
<td></td>
</tr>
</tbody>
</table>

The FactoryTalk Batch Server downloads one of these values about sufficient material for step:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Insufficient material was available across the valid binding candidates at the time the binding query was performed.</td>
</tr>
<tr>
<td>1</td>
<td>Sufficient material was available across the valid binding candidates at the time the binding query was performed.</td>
</tr>
</tbody>
</table>

Tip: When the FactoryTalk Batch Server runs without the Material Server, it returns a '0' or '1' depending on when communication is lost.

See also

[Recipe execution requests on page 108](#)
Material database requests

Use the PXRD instruction in the phase logic to request material data within the material database. These requests provide a means for accessing or storing a value to or from the material database. This provides the greatest flexibility for customization of phase logic and use of the database.

Tip: The data type in the controller must match the data type of the parameter or report ID specified in the data value array element DINT[1].

This is a summary of the material database requests:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Material Database Data</td>
<td>0</td>
<td>Parameter ID</td>
<td>Controller ID</td>
<td>Attribute ID</td>
<td></td>
<td>Download Material Attributes</td>
</tr>
<tr>
<td>Download Material Database Data</td>
<td>1</td>
<td>Parameter ID</td>
<td>Controller ID</td>
<td>Attribute ID</td>
<td></td>
<td>Download Lot Attributes</td>
</tr>
<tr>
<td>Download Material Database Data</td>
<td>3</td>
<td>Parameter ID</td>
<td>Controller ID</td>
<td>Attribute ID</td>
<td></td>
<td>Download Container Attributes</td>
</tr>
<tr>
<td>Download Material Database Data</td>
<td>4</td>
<td>Parameter ID</td>
<td>Material ID</td>
<td>Container ID</td>
<td>Feed Type: 1-Addition 2-Distribution</td>
<td>Downloading Container Priority Assignments</td>
</tr>
<tr>
<td>Download Material Database Data</td>
<td>5</td>
<td>Report ID</td>
<td>Controller ID</td>
<td>Attribute ID</td>
<td></td>
<td>Uploading Material Attributes</td>
</tr>
<tr>
<td>Download Material Database Data</td>
<td>6</td>
<td>Report ID</td>
<td>Controller ID</td>
<td>Attribute ID</td>
<td></td>
<td>Uploading Lot Attributes</td>
</tr>
<tr>
<td>Download Material Database Data</td>
<td>8</td>
<td>Report ID</td>
<td>Controller ID</td>
<td>Attribute ID</td>
<td></td>
<td>Uploading Container Attributes</td>
</tr>
<tr>
<td>Upload Material Database Data</td>
<td>9</td>
<td>Report ID</td>
<td>Material ID</td>
<td>Container ID</td>
<td></td>
<td>Uploading Container Priority Assignments</td>
</tr>
</tbody>
</table>

See also

- [Download one attribute of a material](#) on page 116
- [Download lot attributes](#) on page 117
- [Download container attributes](#) on page 118
- [Download container priority assignments](#) on page 119
- [Material attributes upload values](#) on page 116
Download one attribute of a material

Configure the PXRQ instruction in Logix Designer to download one attribute of a material to a specified tag. The attribute identified by the attribute ID downloads into the parameter ID specified.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Material Manager Database Data</td>
<td>DINT[0]</td>
<td>0</td>
</tr>
<tr>
<td>DINT[1]</td>
<td>Parameter ID material data will be downloaded to.</td>
<td></td>
</tr>
</tbody>
</table>

Tip: The data type in the controller must match the data type of the parameter ID specified in the data value array element DINT[1].

See also

Material database requests on page 115

Upload one attribute of a material

Configure the PXRQ instruction in Logix Designer to upload one attribute of a material from a specified report ID. The attribute identified by the attribute ID uploads from the specified tag into the database if security and write-protections allow. Only one value may be uploaded at a time.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Material Manager Database Data</td>
<td>DINT[0]</td>
<td>5</td>
</tr>
</tbody>
</table>

Tip: The data type in the controller must match the data type of the report ID specified in the data value array element DINT[1].

See also

Material database requests on page 115
Download lot attributes

Configure the PXRQ instruction in Logix Designer to download one attribute of a lot to a specified tag. The attribute identified by the attribute ID downloads into the parameter ID specified. Only one value may be downloaded at a time.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Material Manager Database Data</td>
<td>DINT[0]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>Parameter ID material lot data downloads to.</td>
</tr>
<tr>
<td></td>
<td>DINT[2]</td>
<td>Lot Controller ID</td>
</tr>
</tbody>
</table>

Tip: The data type in the controller must match the data type of the parameter ID specified in the data value array element DINT[1].

See also

[Material database requests on page 115](#)

Upload lot attributes

Configure the PXRQ instruction in Logix Designer to upload one attribute of a lot from a specified report ID. The attribute identified by the attribute ID uploads from the specified tag into the database if security and write-protections allow. Only one value may be uploaded at a time.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Material Manager Database Data</td>
<td>DINT[0]</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DINT[2]</td>
<td>Lot Controller ID</td>
</tr>
</tbody>
</table>

Tip: The data type in the controller must match the data type of the report ID specified in the data value array element DINT[1].

See also

[Material database requests on page 115](#)
Download container attributes

Configure the PXRQ instruction in Logix Designer to download one attribute of a container to a specified parameter ID. The attribute identified by the attribute ID downloads into the tag specified. Only one value may be downloaded at a time.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Material Manager Database Data</td>
<td>DINT[0]</td>
<td>3</td>
</tr>
<tr>
<td>DINT[1]</td>
<td>Parameter ID container data downloads to.</td>
<td></td>
</tr>
<tr>
<td>DINT[2]</td>
<td>Container Controller ID</td>
<td></td>
</tr>
</tbody>
</table>

Tip: The data type in the controller must match the data type of the parameter or report ID specified in the data value array element DINT[1].

See also

Material database requests on page 115

Upload container attributes

Configure the PXRQ request in Logix Designer to upload one attribute of a container from a specified report ID. The attribute identified by the attribute ID uploads from the specified report ID into the database if security and write-protections allow. Only one value may be uploaded at a time.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Material Manager Database Data</td>
<td>DINT[0]</td>
<td>8</td>
</tr>
<tr>
<td>DINT[2]</td>
<td>Container Controller ID</td>
<td></td>
</tr>
</tbody>
</table>

Tip: The data type in the controller must match the data type of the report ID specified in the data value array element DINT[1].

See also

Material database requests on page 115
Download container priority assignments

Configure the PXRQ instruction in Logix Designer to download the Selection Priority of a container and load that value to a specified parameter ID. A container’s selection priority is assigned given a material, container, feed type, and unit.

Feed type is the part of a material specification that defines how a material is to be used from the perspective of a batch. Material additions add material to a batch. Material distributions remove material from a batch. In the area model, the association between a phase and a container also defines the feed types supported between the two. In the master recipe, the feed type is defined as part of configuring a material addition or distribution step. A material phase step within a recipe may only be configured as an addition or a distribution, never both.

The first three parameters are defined by values in the request registers. The unit is restricted to the unit the phase is currently running in. Only one value may be downloaded at a time.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Material Manager Database Data</td>
<td>DINT[0]</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DINT[1]</td>
<td>Parameter ID that container’s priority downloads to. Tag data type = Integer.</td>
</tr>
<tr>
<td></td>
<td>DINT[3]</td>
<td>Container Controller ID</td>
</tr>
<tr>
<td></td>
<td>DINT[4]</td>
<td>Feed Type: 1 = Addition. 2 = Distribution</td>
</tr>
</tbody>
</table>

Tip: The data type in the controller must match the data type of the parameter ID specified in the data value array element DINT[1].

See also

Material database requests on page 115
Configure the PXRQ instruction in Logix Designer to upload a Selection Priority for a container from a specified report ID. A container’s selection priority is assigned given a material, container, feed type and unit. The first three parameters are defined by values in the request registers. The unit is restricted to the unit the phase is currently running in. Only one value may be uploaded at a time.

<table>
<thead>
<tr>
<th>External Request</th>
<th>Data Value Array Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload Material Manager Database Data</td>
<td>DINT[0]</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>DINT[3]</td>
<td>Container Controller ID</td>
</tr>
<tr>
<td></td>
<td>DINT[4]</td>
<td>Feed Type:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Addition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Distribution.</td>
</tr>
</tbody>
</table>

Tip: The data type in the controller must match the data type of the parameter or report ID specified in the data value array element DINT[1].

See also

[Material database requests](#) on page 115
This table shows how the phase tag requests (PHASE_RQ, PHASEQ01, PHASEQ02, PHASEQ03) correspond to the requests that can be made with the PXRQ instruction. Phase tag requests are used in the phase logic for OPC and FactoryTalk Live Data (FTD) phases to request data and services from the FactoryTalk Batch Server, Material Server, or material database. The PXRQ instruction is provided in Logix Designer for requesting data and services from the FactoryTalk Batch Server, Material Server, or material database for PhaseManager equipment phases.

Since Parameter/Tag Locking is always on for PhaseManager phases, the PXRQ instruction does not provide a way to make indirect requests.

Tip: The data type in the controller must match the data type of the parameter or report ID specified in the data value array element DINT[1].

<table>
<thead>
<tr>
<th>Tag-Based Request (OPC and FTD)</th>
<th>PhaseManager PXRQ Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASE_RQ Phase Tag</td>
<td>PHASEQnn Data Values</td>
</tr>
<tr>
<td>17801</td>
<td>PHASEQ01 - Attribute ID PHASEQ02 - Index into the phase parameter array</td>
</tr>
<tr>
<td>17802</td>
<td>PHASEQ01 - Attribute ID PHASEQ02 - Index into the phase parameter array</td>
</tr>
<tr>
<td>17803</td>
<td>PHASEQ01 - Attribute ID PHASEQ02 - Index into the phase parameter array</td>
</tr>
<tr>
<td>17811</td>
<td>PHASEQ01 - Attribute ID PHASEQ02 - Index into the phase parameter array</td>
</tr>
<tr>
<td>17812</td>
<td>PHASEQ01 - Attribute ID PHASEQ02 - Index into the phase parameter array</td>
</tr>
<tr>
<td>17813</td>
<td>PHASEQ01 - Attribute ID PHASEQ02 - Index into the phase parameter array</td>
</tr>
<tr>
<td>Tag-Based Request (OPC and FTD)</td>
<td>PhaseManager PXRQ Request</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>PHASE_RQ Phase Tag</td>
<td>PHASEQnn</td>
</tr>
<tr>
<td>PHASEQ01</td>
<td>Index into the phase parameter array</td>
</tr>
<tr>
<td>PHASEQ02</td>
<td>Any value greater than 0. Currently not used by FactoryTalk Batch Server. Reserved for future use.</td>
</tr>
<tr>
<td>17821</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PHASEQ01</td>
<td>Index into the phase parameter array</td>
</tr>
<tr>
<td>PHASEQ02</td>
<td>Any value greater than 0. Currently not used by FactoryTalk Batch Server. Reserved for future use.</td>
</tr>
<tr>
<td>17822</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PHASEQ01</td>
<td>Material controller ID</td>
</tr>
<tr>
<td>PHASEQ02</td>
<td>Attribute ID</td>
</tr>
<tr>
<td>PHASEQ03</td>
<td>Any value greater than 0. Currently not used by FactoryTalk Batch Server. Reserved for future use.</td>
</tr>
<tr>
<td>180NN</td>
<td></td>
</tr>
<tr>
<td>NN=Parameter ID</td>
<td></td>
</tr>
<tr>
<td>PHASEQ01</td>
<td>Container Controller ID</td>
</tr>
<tr>
<td>PHASEQ02</td>
<td>Attribute ID</td>
</tr>
<tr>
<td>PHASEQ03</td>
<td>Any value greater than 0. Currently not used by FactoryTalk Batch Server. Reserved for future use.</td>
</tr>
<tr>
<td>183NN</td>
<td></td>
</tr>
<tr>
<td>NN=Parameter ID</td>
<td></td>
</tr>
</tbody>
</table>
Tag-Based Request (OPC and FTD)

<table>
<thead>
<tr>
<th>PHASE_RQ Phase Tag</th>
<th>PHASEQnn Data Values</th>
<th>External Request</th>
<th>Data Values</th>
</tr>
</thead>
</table>
| 184NN NN=Parameter ID | PHASEQ01 - Material ID
PHASEQ02 - Container ID
PHASEQ03 - Feed Type:
 - 1 - Addition
 - 2 - Distribution | Download Material Manager Database Data | DINT[0] - 4
DINT[1] - Parameter ID
DINT[2] - Material ID
DINT[3] - Container ID
DINT[4] - Feed Type:
 - 1 - Addition
 - 2 - Distribution |
| 185NN NN=Report ID | PHASEQ01 - Material Controller ID
PHASEQ02 - Attribute ID
PHASEQ03 - Any value greater than 0. **Currently not used by FactoryTalk Batch Server. Reserved for future use** | Upload Material Manager Database Data | DINT[0] - 5
DINT[1] - Report ID
DINT[2] - Material controller ID
DINT[3] - Attribute ID |
| 186NN NN=Report ID | PHASEQ01 - Lot Controller ID
PHASEQ02 - Attribute ID
PHASEQ03 - Any value greater than 0. **Currently not used by FactoryTalk Batch Server. Reserved for future use** | Upload Material Manager Database Data | DINT[0] - 6
DINT[1] - Report ID
DINT[2] - Lot controller ID
DINT[3] - Attribute ID |
| 188NN NN=Report ID | PHASEQ01 - Container Controller ID
PHASEQ02 - Attribute ID
PHASEQ03 - Any value greater than 0. **Currently not used by FactoryTalk Batch Server. Reserved for future use** | Upload Material Manager Database Data | DINT[0] - 8
DINT[1] - Report ID
DINT[2] - Container controller ID
DINT[3] - Attribute ID |
| 189NN NN=Report ID | PHASEQ01 - Material ID
PHASEQ02 - Container ID
PHASEQ03 - Feed Type:
 - 1 - Addition
 - 2 - Distribution | Upload Material Manager Database Data | DINT[0] - 9
DINT[1] - Report ID
DINT[2] - Material ID
DINT[3] - Container ID
DINT[4] - Feed Type:
 - 1 - Addition
 - 2 - Distribution |

See also

[Data from the Material Server on page 97](#)
Legal Notices

Copyright notice

© 2017 Rockwell Automation Technologies, Inc. All rights reserved. Printed in USA.

This document and any accompanying Rockwell Software products are copyrighted by Rockwell Automation Technologies, Inc. Any reproduction and/or distribution without prior written consent from Rockwell Automation Technologies, Inc. is strictly prohibited. Please refer to the license agreement for details.

End User License Agreement (EULA)

You can view the Rockwell Automation End-User License Agreement (“EULA”) by opening the License.rtf file located in your product's install folder on your hard drive.

Trademark Notices

Allen-Bradley, CompactLogix, ControlLogix, Connected Components Workbench, eProcedure, FactoryTalk, GuardLogix, GuardPLC, Micro800, MicroLogix, MobileView, MobileView Guard, PanelBuilder, PanelView, PhaseManager, PlantLink, PlantPAx, PLC-2, PLC-3, PLC-5, PowerMonitor, RSBizWare, RSBizWare BatchHistorian, RSBizWare Historian, RSBizWare MaterialTrack, RSLinx, Rockwell Automation, Rockwell Software, SLC, SoftLogix, Studio 5000, and X Mare trademarks of Rockwell Automation, Inc.

Any Rockwell Automation software or hardware not mentioned here is also a trademark, registered or otherwise, of Rockwell Automation, Inc.

For a complete list of products and their respective trademarks, go to: http://www.rockwellautomation.com/rockwellautomation/legal-notices/overview.page?#tab4
Warranty

This product is warranted in accordance with the product license. The product’s performance may be affected by system configuration, the application being performed, operator control, maintenance, and other related factors. Rockwell Automation is not responsible for these intervening factors. The instructions in this document do not cover all the details or variations in the equipment, procedure, or process described, nor do they provide directions for meeting every possible contingency during installation, operation, or maintenance. This product’s implementation may vary among users.

This document is current as of the time of release of the product; however, the accompanying software may have changed since the release. Rockwell Automation, Inc. reserves the right to change any information contained in this document or the software at any time without prior notice. It is your responsibility to obtain the most current information available from Rockwell when installing or using this product.

Environmental compliance

Contact Rockwell Automation

Customer Support Telephone — 1.440.646.3434

Online Support — http://www.rockwellautomation.com/support/
Index

A
acquire
 multiple resources 80
 resources 79
acquire requests
 types 79
area model
 configuring to use PhaseManager 21
 saving 37
 synchronize to create equipment module 54
 synchronizing 36
 updating equipment module in 61
attribute ID 108
audience 9

B
Batch Server, communication to controller 30
Batch Server, role in PhaseManager system 11
Batch, system designers 9

C
cancel
 messages to other phases 86
canceling
 a message 87
 all messages 87
CIP 10, 12
CIP data server, assigning to equipment module 32
CIP data server, editing 31
CIP data server, naming 23
CIP, benefits 15
code, open from equipment module 19
communication path, selecting 28
communication protocol, CIP 12
communication watchdog protocol, settings for Logix5000 CIP data servers 30
communications protocol 10
completion of messages 84
container heel 101

D
data server, adding 22
data server, assigning to equipment module 32
data server, editing 31
data server, naming 23
data server, selecting to synchronize 37
data server, type 23
data transfer 83
data type, of parameters and reports 41
data type, PHASE 10
download
 phase parameter types 67
 phase parameter value requests 67

E
Edit Equipment Module dialog box, General tab 32
electronic batch record entries 73
enumeration data type 41
Equipment Editor, role in PhaseManager system 11
equipment ID 41
equipment module 9, 13, 44
 synchronize in area model 54
 synchronizing
 cannot synchronize 51
 updating in area model 61
equipment module synchronization details 64
equipment module, assigning data server to 32
equipment module, open phase logic 19
equipment modules, how created in project 41
equipment modules, selecting to create in project 38, 56
equipment phase changes 61

Control and Information Protocol 10, 12
Control and Information Protocol, benefits 15
custom attributes 97
equipment phase, object in Logix5000 controllers 11
equipment phase, state model 11
equipment phases, in RSLogix 5000 13
equipment phases, update in project 44

F
features 11
features, Batch 10
features, RSLogix 5000 10
file, RSLogix 5000 project 25
firmware, revision 8

G
General tab, Edit Equipment Module dialog box 32

H
handshake protocol 16
heel
 container 101

I
ID, equipment 41
input tags 50
inputs 41
instructions, for equipment phases 10

L
logic, open from equipment module 19
Logix5000
 synchronize data servers 37
Logix5000 CIP data server, adding 22
Logix5000 CIP data server, assigning to equipment module 32
Logix5000 CIP data server, editing 31
Logix5000 CIP data server, naming 23
Logix5000 CIP data server, type 23
Logix5000 controller, state model 11
Logix5000 controllers 11
Logix5000 controllers, equipment phase objects in 11

M
material database
 requesting data 97
material database classifications 97
material phase
 diagram 105
 writing 105
message
 send to other phases 83
messages
 cancel 86
 cancel all 87
 to other phases, types 85
multiple resources
 acquiring 80

N
name, equipment module 41
network path, selecting 28

O
OPC, compared to CIP 15
opening project from 44
Optimize the timing of the server communication connection to the controller 30
output tags 50
outputs 41

P
parameters, in project 41
path, network communication 28
permissive 83
phase communication
 data transfer 83
 permissive 83
 synchronization 83
PHASE data type 10
phase logic interface 16
phase logic, linking to equipment module 25
phase logic, open from Equipment Editor 19
phase logic, state model for 19
phase parameter
 download parameter types 67
 download value requests 67
phase parameter tags array 67
phase tags, in RSLogix 5000 50
PhaseManager, overview 9
phases, in RSLogix 5000 13
PLI 16
priority for selecting containers 97
process engineers 9
processing send and receive messages 84
project file, selecting 25
project file, synchronizing 36
project, opening from Equipment Editor 44
project, update equipment phases 44
project, viewing updates to 50
protocol, CIP 12

R
Recipe Editor, role in PhaseManager system 11
release requests, types 81
release resources 80
releasing a single resource 81
releasing multiple resources 82
report parameter array 73
report parameter requests, types 74
reports, in project 41
request register
 reset to zero 65
requests
 acquire resources 79
 acquiring resources/multiple 80
 release resources 80
 releasing resources/multiple 82
 send message to other phases 83
resources
 acquire 79
results of synchronizing 39
retries, adjusting values 30
reviewing results 39
revision, Logix5000 firmware 8
revision, RSLogix 5000 8
routine, for each S88 state 19
RSLogix Classic, version 8
RSLogix 5000
 synchronize area model with 37
RSLogix 5000 project changes 61
RSLogix 5000 project file, selecting 25
RSLogix 5000 project, opening from Equipment Editor 44
RSLogix 5000 project, update equipment phases 44
RSLogix 5000 project, viewing updates to 50
RSLogix 5000, equipment phase instructions 10
S
S88, active states 19
saving area model and selecting a data server 37
selecting a phase and unit 57
selecting equipment modules 56
selecting phase and unit 59
Selection Priority 119
send message wait and receive message wait request pair 84
send messages to other phases 83
server, assigning to equipment module 32
server, data 22
server, editing 31
server, Logix5000 CIP 22
server, naming 23
server, selecting to synchronize 37
server, type 23
standard attributes 97
state model, in Logix5000 controllers 11
synchronization 83
synchronization details 64
synchronize with Logix5000 56
synchronizing 39
cannot synchronize 51
synchronizing to create equipment modules in the area model 54
synchronizing, to create Batch equipment modules in project 36
synchronizing, update in project 44
T
tags, eliminate duplicate configuration 17
tags, in RSLogix 5000 50
timeout, adjusting values 30
transfer of control 83
transferring changes to area model 61
Index

U
update in project 44
updating equipment modules in the area model 61
Usage, in RSLogix 5000 50
users 9

V
version, FactoryTalk Batch 8
version, Logix5000 8
version, RSLogix5000 8

W
what is PhaseManager? 9
creating new 59
selecting 57
synchronizing
 cannot synchronize 51
Rockwell Automation support

Rockwell Automation provides technical information on the web to assist you in using its products. At http://www.rockwellautomation.com/support you can find technical and application notes, sample code, and links to software service packs. You can also visit our Support Center at https://rockwellautomation.custhelp.com for software updates, support chats and forums, technical information, FAQs, and to sign up for product notification updates.

In addition, we offer multiple support programs for installation, configuration, and troubleshooting. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/services/online-phone.

Installation assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

<table>
<thead>
<tr>
<th>United States or Canada</th>
<th>1.440.646.3434</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside United States or Canada</td>
<td>Use the Worldwide Locator available at http://www.rockwellautomation.com/locations, or contact your local Rockwell Automation representative.</td>
</tr>
</tbody>
</table>

New product satisfaction return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

<table>
<thead>
<tr>
<th>United States</th>
<th>Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside United States</td>
<td>Please contact your local Rockwell Automation representative for the return procedure.</td>
</tr>
</tbody>
</table>

Documentation feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the feedback form, publication RA-DU002.