VTAC 9 AC Drive

Firmware Version 3.xx

User Manual

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://
www.rockwellautomation.com/vtac/) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc. is prohibited.
Throughout this manual, when necessary we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

Important: Identifies information that is critical for successful application and understanding of the product.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you:

- identify a hazard
- avoid the hazard
- recognize the consequences

Shock Hazard labels may be located on or inside the equipment (e.g., drive or motor) to alert people that dangerous voltage may be present.

Burn Hazard labels may be located on or inside the equipment (e.g., drive or motor) to alert people that surfaces may be at dangerous temperatures.

Summary of Changes

The information below summarizes the changes to the VTAC 9 User Manual since the June 2007 release.

Manual Updates

Description of New or Updated Information	Page
Additional documentation needed when installing Bypass Package (Style B) Drives.	$\underline{1-1,1-23,1-30}$
Suggested Analog Signal Wiring section added.	$\underline{1-23,1-30}$
Interlock Connection Considerations added.	$\underline{1-24,1-31}$
Important statement regarding the two types of I/O Terminal Blocks added.	$\underline{1-25,1-32}$
Parameter 178 [Sleep Wake Mode] description updated.	$\underline{3-38}$
Sleep Wake Mode definitions updated.	$\underline{\mathrm{C}-11}$

Preface	Overview	
		Who Should Use this Manual? P-1
		What Is Not in this Manual. P-1
		Getting Assistance from
		Rockwell Automation P-1
		Manual Conventions P-2
		General Precautions P-3
		VTAC 9 Catalog Numbers P-4
		System (VTAC Builder/Order)
		Catalog Number Explanation P-4
		Model Number Explanation P-5
Chapter 1	Installation/Wiring	
		Bypass Package (Style B) Drives 1-1
		Opening the Cover 1-2
		Mounting Considerations 1-4
		AC Supply Source Considerations 1-5
		General Grounding Requirements 1-6
		Fuses and Circuit Breakers 1-7
		Power Wiring . 1-7
		Using Input/Output Contactors 1-16
		Disconnecting MOVs and
		Common Mode Capacitors 1-18
		I/O Wiring . 1-21
		Speed Reference Control 1-35
		Auto/Manual Examples. 1-36
		EMC Instructions 1-37
		FCC Instructions 1-40
Chapter 2	Start Up	
		Prepare For Drive Start-Up 2-2
		Status Indicators 2-3
		Running the Start-Up Routines... 2-4
Chapter 3	Programming and Parameters	
		About Parameters 3-1
		How Parameters are Organized. 3-3
		Accessing the Parameters 3-4
		Ensuring Program Security 3-6
		Monitor File . 3-11
		Motor Control File 3-12
		Speed Command File 3-18
		Dynamic Control File 3-30
		Utility File.......................... . . 3-41
		Communication File 3-51
		Inputs \& Outputs File 3-54
		Parameter Cross Reference - by Name. . 3-66

Chapter 4 Troubleshooting
Drive Faults 4-2
Manually Clearing Faults 4-4
Fault Descriptions 4-4
Drive Alarms 4-8
Clearing Alarms 4-9
Alarm Descriptions 4-10
Diagnostic Parameters 4-12
Common Symptoms and Corrective Actions 4-13
Troubleshooting Using the LCD OIM 4-16
Appendix A Supplemental Drive Information
Specifications A-1
Dimensions A-8
Drive, Fuse \& Circuit Breaker Ratings A-21
Appendix B Using the LCD OIM
External and Internal Connections B-1
Install/Remove the Local LCD OIM B-5
Display Description B-6
LCD OIM Menu Structure B-8
Power Up and Adjust the LCD OIM B-9
Select a Device in the System B-9
Program the Drive B-10
Monitor the Drive Using the Process Display Screen B-12
Control the Drive From the LCD OIM B-18
Appendix C Application Notes
External Brake Resistor C-1
Motor Overload C-2
Motor Overload Memory Retention
Per 2005 NEC C-3
Overspeed C-4
Power Loss Ride Through C-5
Process PI C-6
Skip Frequency C-9
Sleep Wake Mode C-11
Start At PowerUp C-13
Stop Mode C-14
Index

Overview

The purpose of this manual is to provide you with the basic information needed to install, start-up and troubleshoot the VTAC 9 Adjustable Frequency AC Drive Packages.

For information on...	See page...
Who Should Use this Manual?	$\mathrm{P}-1$
What Is Not in this Manual	$\mathrm{P}-1$
Manual Conventions	$\mathrm{P}-2$
General Precautions	$\mathrm{P}-3$
VTAC 9 Catalog Numbers	$\mathrm{P}-4$

Who Should Use this Manual?

This manual is intended for qualified personnel. You must be able to program and operate Adjustable Frequency AC Drive devices. In addition, you must have an understanding of the parameter settings and functions.

What Is Not in this Manual

The VTAC 9 User Manual is designed to provide basic start-up and drive operation information. For detailed installation information, please refer to the VTAC 9 Installation Instructions, publication 9VT-IN001. Manuals are available online at http://www.rockwellautomation.com/vtac/.

Getting Assistance from Rockwell Automation

If you have any questions or problems with the products described in this instruction manual, contact your authorized Rockwell Automation VTAC drive representative.

For technical assistance, call 1-440-646-7271.
Before calling, please review the troubleshooting section of this manual and for additional information visit VTAC Drives online at http://www.rockwellautomation.com/vtac/.
When you call this number, you will be asked for the drive model number and this instruction manual number.

Manual Conventions

- In this manual we refer to the VTAC 9 Adjustable Frequency AC Drive as; drive, VTAC 9 or VTAC 9 Drive.
- To help differentiate parameter names and LCD display text from other text, the following conventions will be used:
- Parameter Names will appear in [brackets]. For example: [DC Bus Voltage].
- Display Text will appear in "quotes." For example: "Enabled."
- The following words are used throughout the manual to describe an action:

Word	Meaning
Can	Possible, able to do something
Cannot	Not possible, not able to do something
May	Permitted, allowed
Must	Unavoidable, you must do this
Shall	Required and necessary
Should	Recommended
Should Not	Not recommended

General Precautions

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors, such as, undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system.

ATTENTION: Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, start-up and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before performing any work on the drive. Measure the DC bus voltage at the +DC terminal of the Power Terminal Block and the -DC test point (refer to Chapter 1 for locations). The voltage must be zero.

VTAC 9 Catalog Numbers

Each VTAC 9 drive can be identified by its catalog number. There are two distinct catalog numbers associated with each rating: the System (VTAC Builder/Order) Catalog Number and the Model Number.

System (VTAC Builder/Order) Catalog Number Explanation

The System (VTAC Builder/Order) Catalog Number is used for ordering and may appear on shipping or order documentation.

Position													
9VT	50	4	H		0 N		D		00				
a	b	c	d	e	f	g	h		i	j			
a			b3				g						
Drive			Horsepower Rating				Control and I/O						
Code	Type		650 V dc Input				Code	Control	I/O	Drive Frame			
9 VT	VTAC 9		Code	Hp		Drive Frame							
b1			75	75		5	N	Standard	24 V	B, C, D, E			
			100	100		5	A	Standard	24 V	2, 3, 4, 5, 6			
Horsepower Rating			125	125		6							
208V, 60 Hz Input			200	150		6	h						
Code	Hp	Drive Frame		200		6	Option Enclosure						
2	2	B	C				Code	Option					
3	3	B					D	Drive Only					
5	5	C	Voltage Rating										
7	7.5	D	Code	Voltage	Phase	Precharge	i						
10	10	D	2	208 V ac	3	-	Input Power						
15	15	D	4	480 V ac	3	-	Code	Option					
20	20	E	R	650 V dc	-	Yes	0	None					
25	25	E	d										
30	30	4					j						
40	40	5	Enclosure				Reactor						
50	50	5											
60	60	6	Code	Enclosure			Code	Type					
75	75	6	1	Panel Mount - NEMA Type 1			0	None					
100	100	6	F*	Flange Mount - Front Chassis NEMA Type 1, Rear Heatsink UL Type 4X/12 for Indoor/Outdoor Use B, C, D, E only.									
b2													
Horsepower Rating			* Drive Frame B, C, D, E only.										
$480 \mathrm{~V}, 60 \mathrm{~Hz}$ Input			e										
Code	Hp	Drive Frame											
3	3	B	OIM										
5	5	B	Code	OIM									
7	7.5	C	H	LCD OIM									
10	10	C	f										
15	15	D											
20	20	D	Communications										
25	25	D, 2	Code	Communications									
30	30	D, 3	0	None									
40	40	E, 3											

Model Number Explanation

The Model Number is located on the actual drive nameplate.

VTAC 9 NEMA 1 Catalog Number Explanation

Drive Ratings		Frame	Model Number	System Number (Order Number)
Voltage	HP			
208V AC	2	B	9VT201-007HTNNN	9VT-221HON-D00
	3	B	9VT201-011HTNNN	9VT-321HON-D00
	5	C	9VT201-017HTANN	9VT-521HON-D00
	7.5	D	9VT201-025HTANN	9VT-721H0N-D00
	10	D	9VT201-032HTANN	9VT-1021HON-D00
	15	D	9VT201-043HTANN	9VT-1521HON-D00
	20	E	9VT201-062HTANN	9VT-2021HON-D00
	25	E	9VT201-078HTANN	9VT-2521HON-D00
	30	4	9VT201-092HNANA	9VT-3021H0A-D00
	40	5	9VT201-120HNANA	9VT-4021H0A-D00
	50	5	9VT201-130HNANA	9VT-5021H0A-D00
	60	6	9VT201-177HNANA	9VT-6021H0A-D00
	75	6	9VT201-221HNANA	9VT-7521H0A-D00
	100	6	9VT201-260HNANA	9VT-10021H0A-D00
480V AC	3	B	9VT401-005HTNNN	9VT-341H0N-D00
	5	B	9VT401-008HTNNN	9VT-541H0N-D00
	7.5	C	9VT401-011HTANN	9VT-741H0N-D00
	10	C	9VT401-014HTANN	9VT-1041HON-D00
	15	D	9VT401-022HTANN	9VT-1541HON-D00
	20	D	9VT401-027HTANN	9VT-2041HON-D00
	25	D	9VT401-034HTANN	9VT-2541HON-D00
	25	2	9VT401-034HTANA	9VT-2541HOA-D00
	30	D	9VT401-040HTANN	9VT-3041HON-D00
	30	3	9VT401-040HTANA	9VT-3041H0A-D00
	40	E	9VT401-052HTANN	9VT-4041HON-D00
	40	3	9VT401-052HTANA	9VT-4041H0A-D00
	50	E	9VT401-065HTANN	9VT-5041HON-D00
	50	3	9VT401-065HTANA	9VT-5041H0A-D00
	60	4	9VT401-077HNANA	9VT-6041H0A-D00
	75	5	9VT401-096HNANA	9VT-7541H0A-D00
	100	5	9VT401-125HNANA	9VT-10041H0A-D00
	125	6	9VT401-156HNANA	9VT-12541H0A-D00
	150	6	9VT401-180HNANA	9VT-15041H0A-D00
	200	6	9VT401-248HNANA	9VT-20041H0A-D00
650V DC	75	5	9VTR01-096HNANA	9VT-75R1H0A-D00
	100	5	9VTR01-125HNANA	9VT-100R1H0A-D00
	125	6	9VTR01-156HNANA	9VT-125R1H0A-D00
	150	6	9VTR01-180HNANA	9VT-150R1H0A-D00
	200	6	9VTR01-248HNANA	9VT-200R1H0A-D00

VTAC 9 Flange Mount Catalog Number Explanation

Drive Ratings		Frame	Model Number	System Number (Order Number)
Voltage	HP			
208V AC	2	B	9VT21F-007HTNNN	9VT-22FH0N-D00
	3	B	9VT21F-011HTNNN	9VT-32FHON-D00
	5	C	9VT21F-017HTANN	9VT-52FHON-D00
	7.5	D	9VT21F-025HTANN	9VT-72FH0N-D00
	10	D	9VT21F-032HTANN	9VT-102FHON-D00
	15	D	9VT21F-043HTANN	9VT-152FHON-D00
	20	E	9VT21F-062HTANN	9VT-202FHON-D00
	25	E	9VT21F-078HTANN	9VT-252FHON-D00
480V AC	3	B	9VT41F-005HTNNN	9VT-34FHON-D00
	5	B	9VT41F-008HTNNN	9VT-54FH0N-D00
	7.5	C	9VT41F-011HTANN	9VT-74FHON-D00
	10	C	9VT41F-014HTANN	9VT-104FHON-D00
	15	D	9VT41F-022HTANN	9VT-154FHON-D00
	20	D	9VT41F-027HTANN	9VT-204FHON-D00
	25	D	9VT41F-034HTANN	9VT-254FHON-D00
	30	D	9VT41F-040HTANN	9VT-304FHON-D00
	40	E	9VT41F-052HTANN	9VT-404FHON-D00
	50	E	9VT41F-065HTANN	9VT-504FHON-D00

Notes:

Installation/Wiring

This chapter provides information on mounting and wiring the VTAC 9 Drive.

For information on...	See page	For information on...	See page
Opening the Cover	1-2	Disconnecting MOVs and	1-18
Mounting Considerations	1-4	Common Mode Capacitors	
AC Supply Source Considerations	1-5	I/O Wiring	1-21
General Grounding Requirements	1-6	Speed Reference Control	1-35
Fuses and Circuit Breakers	1-7	Auto/Manual Examples	1-36
Power Wiring	1-7	EMC Instructions	1-37
Using Input/Output Contactors	$1-16$	FCC Instructions	1-40

Most start-up difficulties are the result of incorrect wiring. Every precaution must be taken to assure that the wiring is done as instructed. All items must be read and understood before the actual installation begins.

ATTENTION: The following information is merely a guide for proper installation. Rockwell Automation, Inc. cannot assume responsibility for the compliance or the noncompliance to any code, national, local or otherwise for the proper installation of this drive or associated equipment. A hazard of personal injury and/or equipment damage exists if codes are ignored during installation.

Bypass Package (Style B) Drives

Important: If you are intalling a Bypass Package (Style B) Drive, also refer to VTAC 9 AC Drive Installation Instructions, publication 9VT-IN001 in addition to this publication.

Opening the Cover

ATTENTION: DC bus capacitors retain hazardous voltages after input power has been removed. After disconnecting input power, wait five minutes for the DC bus capacitors to discharge and then check the voltage with a voltmeter to ensure the DC bus capacitors are discharged before touching any internal components. Failure to observe this precaution could result in severe bodily injury or loss of life.

Drive Frames B, C, D, and E have removable covers.
Drive Frames 2, 3, 4, 5, and 6 have hinged covers.

Drive Frames B Through E

Follow these steps for Drive Frames B...E.
\square Step 1. Loosen the drive cover screw(s) (refer to Figure 1.1).
\square Step 2. Lift the cover straight off the drive to avoid damaging the connector pins.

Figure 1.1 Removing the Drive Cover (Frames B...D)

Front View

Bottom View

Figure 1.2 Removing the Drive Cover (Frame E)

Drive Frames 2 Through 6

Follow these steps for Drive Frames 2...6.
\square Step 1. Locate the slot in the upper left hand corner of the drive (refer to Figure 1.3).
\square Step 2. Slide the locking tab up and swing the door open.
Figure 1.3 Opening the Drive Cover (Frames 2...6)

Mounting Considerations

Maximum Surrounding Air Temperature

| Drive Frames | HP | IP20, NEMA Type 1 |
| :--- | :--- | :--- | :--- | | (1) |
| :--- | | IP20, NEMA Type Open |
| :--- |
| Top Label Removed |

${ }^{(1)}$ IP20, NEMA Type 1 general purpose enclosures are intended for indoor use primarily to provide a degree of protection against contact with equipment. These enclosures offer no protection against airborne contaminants such as dust or water.
(2) Removing the adhesive top label from the drive changes the NEMA enclosure rating from Type 1 to Open Type.

Minimum Mounting Clearances

Specified vertical clearance requirements are intended to be from drive to drive. Other objects can occupy this space; however, reduced airflow may cause protection circuits to fault the drive. In addition, inlet air temperature must not exceed the product specification.

Frames 2... 6

AC Supply Source Considerations

VTAC 9 drives are suitable for use on a circuit capable of delivering up to a maximum of $200,000 \mathrm{rms}$ symmetrical amperes, and a maximum of 480 volts.

ATTENTION: To guard against personal injury and/or equipment damage caused by improper fusing or circuit breaker selection, use only the recommended line fuses/circuit breakers specified in Appendix A.

If a system ground fault monitor (RCD) is to be used, only Type B (adjustable) devices should be used to avoid nuisance tripping.

Unbalanced or Ungrounded Distribution Systems

If phase to ground voltage will exceed 125% of normal line to line voltage or the supply system is ungrounded, refer to the Wiring and Grounding Guidelines for PWM AC Drives, publication DRIVES-IN001.

ATTENTION: VTAC 9 drives contain protective MOVs and common mode capacitors that are referenced to ground. These devices should be disconnected if the drive is installed on an ungrounded distribution system. See page 1-18 for jumper locations.

Input Power Conditioning

Certain events on the power system supplying a drive can cause component damage or shortened product life. These conditions are divided into 2 basic categories:

1. All drives

- The power system has power factor correction capacitors switched in and out of the system, either by the user or by the power company.
- The power source has intermittent voltage spikes in excess of 6000 volts. These spikes could be caused by other equipment on the line or by events such as lightning strikes.
- The power source has frequent interruptions.

2. $5 \mathbf{H P}$ or Less Drives (in addition to " 1 " above)

- The nearest supply transformer is larger than 100 kVA or the available short circuit (fault) current is greater than 100,000A.
- The impedance in front of the drive is less than 0.5%.

If any or all of these conditions exist, it is recommended that the user install a minimum amount of impedance between the drive and the source. This impedance could come from the supply transformer itself,
the cable between the transformer and drive or an additional transformer or reactor. The impedance can be calculated using the information supplied in Wiring and Grounding Guidelines for PWM AC Drives, publication DRIVES-IN001.

General Grounding Requirements

The drive Safety Ground - PE must be connected to system ground. Ground impedance must conform to the requirements of national and local industrial safety regulations and/or electrical codes. The integrity of all ground connections should be periodically checked.

For installations within a cabinet, a single safety ground point or ground bus bar connected directly to building steel should be used. All circuits including the AC input ground conductor should be grounded independently and directly to this point/bar.

Figure 1.4 Typical Grounding

Safety Ground - PE

This is the safety ground for the drive that is required by code. This point must be connected to adjacent building steel (girder, joist), a floor ground rod or bus bar (see above). Grounding points must comply with national and local industrial safety regulations and/or electrical codes.

Shield Termination - SHLD

The Shield terminal (see Figure 1.6 on page 1-11) provides a grounding point for the motor cable shield. The motor cable shield should be connected to this terminal on the drive (drive end) and the motor frame (motor end). A shield terminating cable gland may also be used.

When shielded cable is used for control and signal wiring, the shield should be grounded at the source end only, not at the drive end.

RFI Filter Grounding

Using an optional RFI filter may result in relatively high ground leakage currents. Therefore, the filter must only be used in installations with grounded AC supply systems and be permanently installed and solidly grounded (bonded) to the building power distribution ground. Ensure that the incoming supply neutral is solidly connected (bonded) to the same building power distribution ground. Grounding must not rely on flexible cables and should not include any form of plug or socket that would permit inadvertent disconnection. Some local codes may require redundant ground connections. The integrity of all connections should be periodically checked. Refer to the instructions supplied with the filter.

Fuses and Circuit Breakers

The VTAC 9 can be installed with either input fuses or an input circuit breaker. National and local industrial safety regulations and/or electrical codes may determine additional requirements for these installations. Refer to Appendix A for recommended fuses/circuit breakers.

ATTENTION: The VTAC 9 does not provide branch short circuit protection. Specifications for the recommended fuse or circuit breaker to provide protection against short circuits are provided in Appendix A.

Power Wiring

ATTENTION: National Codes and standards (NEC, VDE, BSI etc.) and local codes outline provisions for safely installing electrical equipment. Installation must comply with specifications regarding wire types, conductor sizes, branch circuit protection and disconnect devices. Failure to do so may result in personal injury and/or equipment damage.

Cable Types Acceptable for 200-600 Volt Installations

A variety of cable types are acceptable for drive installations. For many installations, unshielded cable is adequate, provided it can be separated from sensitive circuits. As an approximate guide, allow a spacing of 0.3 meters (1 foot) for every 10 meters (32.8 feet) of length. In all cases, long parallel runs must be avoided. Do not use cable with an insulation thickness less than 15 mils ($0.4 \mathrm{~mm} / 0.015 \mathrm{in}$.). Use copper wire only. Wire gauge requirements and recommendations are based on 75 degree C. Do not reduce wire gauge when using higher temperature wire.

Unshielded

THHN, THWN or similar wire is acceptable for drive installation in dry environments provided adequate free air space and/or conduit fill rates limits are provided. Do not use THHN or similarly coated wire in wet areas. Any wire chosen must have a minimum insulation thickness of 15 mils and should not have large variations in insulation concentricity.

Shielded/Armored Cable

Shielded cable contains all of the general benefits of multi-conductor cable with the added benefit of a copper braided shield that can contain much of the noise generated by a typical AC Drive. Strong consideration for shielded cable should be given in installations with sensitive equipment such as weigh scales, capacitive proximity switches and other devices that may be affected by electrical noise in the distribution system. Applications with large numbers of drives in a similar location, imposed EMC regulations or a high degree of communications / networking are also good candidates for shielded cable.

Shielded cable may also help reduce shaft voltage and induced bearing currents for some applications. In addition, the increased impedance of shielded cable may help extend the distance that the motor can be located from the drive without the addition of motor protective devices such as terminator networks. Refer to Reflected Wave in "Wiring and Grounding Guidelines for PWM AC Drives," publication DRIVES-IN001A-EN-P.

Consideration should be given to all of the general specifications dictated by the environment of the installation, including temperature, flexibility, moisture characteristics and chemical resistance. In addition, a braided shield should be included and be specified by the cable manufacturer as having coverage of at least 75%. An additional foil shield can greatly improve noise containment.
A good example of recommended cable is Belden® 295xx (xx determines gauge). This cable has four (4) XLPE insulated conductors with a 100% coverage foil and an 85% coverage copper braided shield (with drain wire) surrounded by a PVC jacket.
Other types of shielded cable are available, but the selection of these types may limit the allowable cable length. Particularly, some of the newer cables twist 4 conductors of THHN wire and wrap them tightly with a foil shield. This construction can greatly increase the cable charging current required and reduce the overall drive performance. Unless specified in the individual distance tables as tested with the drive, these cables are not recommended and their performance against the lead length limits supplied is not known.

Table 1.A Recommended Shielded Wire

Location	Rating/Type	Description
Standard	$600 \mathrm{~V}, 90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$	- Four tinned copper conductors with XLPE insulation.
(Option 1)	XHHW2/RHW-2 Anixter B209500-B209507, Belden 29501-29507, or equivalent	- Copper braid/aluminum foil combination shield and tinned copper drain wire.
PVC jacket.		

EMC Compliance
Refer to EMC Instructions on page 1-37 for details.

Cable Trays and Conduit

If cable trays or large conduits are to be used, refer to guidelines presented in Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives.

ATTENTION: To avoid a possible shock hazard caused by induced voltages, unused wires in the conduit must be grounded at both ends. For the same reason, if a drive sharing a conduit is being serviced or installed, all drives using this conduit should be disabled. This will help minimize the possible shock hazard from "cross coupled" motor leads.

Motor Cable Lengths

Typically, for 480 V AC systems, motor lead lengths less than 150 meters (approximately 500 feet) are acceptable if using an inverter rated motor with 1600 volt insulation. However, if your application dictates longer lengths, or if you are using a different motor, refer to Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives (publication VTAC-IN002) for details.

AC Input Phase Selection (Frames 5 \& 6 Only)

ATTENTION: To avoid a shock hazard, ensure that all power to the drive has been removed before performing the following.

Moving the "Line Type" jumper shown in Figure 1.5 will allow single or three-phase operation.
Important: When selecting single-phase operation, input power must be applied to the R (L1) and S (L2) terminals only.

Selecting/Verifying Fan Voltage (Frames 5 \& 6 Only)

Important: Read Attention statement above!
Frames $5 \& 6$ utilize a transformer to match the input line voltage to the internal fan voltage. If your line voltage is different than the voltage class specified on the drive nameplate, it may be necessary to change transformer taps as shown below. Common Bus (DC input) drives require user supplied 120 or 240 V AC to power the cooling fans. The power source is connected between " 0 VAC" and the terminal corresponding to your source voltage (see Figure 1.11).
Table A Fan VA ratings (DC Input Only)

Frame	Rating (120V or 240V)
5	100 VA
6	138 VA

Figure 1.5 Typical Locations - Phase Select Jumper \& Transformer (Frame 5 shown)

Frame 6 Transformer Tap Access
The transformer is located behind the Power Terminal Block in the area shown in Figure 1.5. Access is gained by releasing the terminal block from the rail. To release terminal block and change tap:

1. Locate the small metal tab at the bottom of the end block.
2. Press the tab in and pull the top of the block out. Repeat for next block if desired.
3. Select appropriate transformer tap.
4. Replace block(s) in reverse order.

Power Terminal Block (Frames B...E)

Table 1.B Power Terminal Block Specifications (Frames B...E)

No.	Name	Frame	Description	Wire Size Range ${ }^{(1)}$		Torque	
				Maximum	Minimum	Maximum	Recommended
(1)	Power Terminal	B \& C	Input power and motor connections	$\begin{aligned} & 3.5 \mathrm{~mm}^{2} \\ & (12 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\begin{array}{l\|} \hline 0.66 \mathrm{~N}-\mathrm{m} \\ (5.5 \mathrm{lb} .-\mathrm{in} .) \end{array}$	$\begin{aligned} & 0.6 \mathrm{~N}-\mathrm{m} \\ & (5 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
		D		$\begin{aligned} & 8.4 \mathrm{~mm}^{2} \\ & \text { (8 AWG) } \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~mm}^{2} \\ & (18 \mathrm{AWG}) \end{aligned}$	$1.7 \mathrm{~N}-\mathrm{m}$ $(15 \mathrm{lb} .-\mathrm{in}$.	$\begin{aligned} & \text { 1.4 N-m } \\ & \text { (12 lb.-in.) } \end{aligned}$
		E		$\begin{aligned} & 25.0 \mathrm{~mm}^{2} \\ & (3 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { (14 AWG) } \end{aligned}$	$\begin{aligned} & \text { 2.71 N-m } \\ & (24 \mathrm{lb} . \mathrm{in} .) \end{aligned}$	$\begin{aligned} & \text { 2.71 N-m } \\ & (24 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
(2)	SHLD terminal	B...E	Terminating point for wiring shields	-	-	$\begin{aligned} & 1.6 \mathrm{~N}-\mathrm{m} \\ & (14 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 1.6 \mathrm{~N}-\mathrm{m} \\ & (14 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$

${ }^{(1)}$ Maximum/minimum sizes that the terminal block will accept - these are not recommendations.

Table 1.C Wire Routing Recommendations
No. Description
(3) Suggested entry for incoming line wiring.
(4) Suggested entry for motor wiring.

Figure 1.6 Typical Frame B...E Power Terminal Block Location (B Frame Shown)

Cable Entry Plate Removal

If additional wiring access is needed, the Cable Entry Plate on Frames B...E can be removed. Simply loosen the screws securing the plate to the heat sink and slide the plate out.

Figure 1.7 Frame B Power Terminal Blocks

Figure 1.8 Frames C \& D Power Terminal Block and DC Bus Test Points

Figure 1.9 Frame E Power Terminal Block

Terminal	Description	Notes
R	R (L1)	AC Line Input Power
S	S (L2)	AC Line Input Power
T	T (L3)	AC Line Input Power
BR1	DC Brake	DB Resistor Connection - Important: Do not connect both an internal and external DB resistor at the same time. This may violate the minimum allowed DB resistance and cause drive damage.
BR2	DC Brake	
U	U (T1)	To Motor
V	V (T2)	To Motor
W	W (T3)	To Motor
PE	PE Ground	
PE	PE Ground	(1) Test point on Frames B...D located to the left or right of the Power Terminal Block. Frame E has a dedicated terminal.
-DC	DC Bus (-)	
+DC	DC Bus (+)	

Power Terminal Block (Frames 2...6)

Table 1.D Power Terminal Block Specifications

No.	Name	Frame	Description	Wire Size Range ${ }^{(1)}$		Torque	
				Maximum	Minimum	Maximum	Recommended
(1)	Power Terminal Block	2	Input power and motor connections	$\begin{aligned} & 10.0 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~mm}^{2} \\ & (18 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 1.7 \mathrm{~N}-\mathrm{m} \\ & (15 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.4 \mathrm{~N}-\mathrm{m} \\ (12 \mathrm{lb} .-\mathrm{in} .) \\ \hline \end{array}$
		3	Input power and motor connections	$\begin{aligned} & 25.0 \mathrm{~mm}^{2} \\ & (3 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 3.6 \mathrm{~N}-\mathrm{m} \\ & \text { (32 lb.in.) } \end{aligned}$	$\begin{aligned} & 1.8 \mathrm{~N}-\mathrm{m} \\ & (16 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
			BR1, 2 terminals	$\begin{aligned} & 10.0 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~mm}^{2} \\ & (18 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 1.7 \mathrm{~N}-\mathrm{m} \\ & (15 \mathrm{lb} . \mathrm{in} .) \end{aligned}$	$\begin{aligned} & 1.4 \mathrm{~N}-\mathrm{m} \\ & (12 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
		4	Input power and motor connections	$\begin{array}{r} 35.0 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{array}$	$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{~N}-\mathrm{m} \\ & \text { (35 lb.in.) } \end{aligned}$	$\begin{array}{\|l\|} \hline 4.0 \mathrm{~N}-\mathrm{m} \\ \text { (35 lb.in.) } \end{array}$
		$\begin{array}{\|l\|} \hline 5 \\ 40 \mathrm{HP} \\ @ 208 \mathrm{~V}, \\ 75 \mathrm{HP} \\ @ 480 \mathrm{~V} \end{array}$	Input power, BR1, 2, DC+, DC- and motor connections	$\begin{aligned} & 50.0 \mathrm{~mm}^{2} \\ & \text { (1/0 AWG) } \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \end{aligned}$	See Note ${ }^{(2)}$	
			PE	$\begin{aligned} & 50.0 \mathrm{~mm}^{2} \\ & (1 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 16.0 \mathrm{~mm}^{2} \\ & \text { (6 AWG) } \end{aligned}$		
		5 50 HP @ 208V, 100 HP @ 480V	Input power, DC+, DC- and motor	$\begin{aligned} & 70.0 \mathrm{~mm}^{2} \\ & (2 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 25.0 \mathrm{~mm}^{2} \\ & (4 \mathrm{AWG}) \end{aligned}$		
			BR1, 2, terminals	$\begin{aligned} & 50.0 \mathrm{~mm}^{2} \\ & (1 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \end{aligned}$		
			PE	$\begin{aligned} & 50.0 \mathrm{~mm}^{2} \\ & (1 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 16.0 \mathrm{~mm}^{2} \\ & \text { (6 AWG) } \end{aligned}$		
		6	$\begin{array}{\|l\|} \hline \text { Input power, DC+, } \\ \text { DC-, BR1, 2, PE, } \\ \text { motor connections } \end{array}$	$\begin{aligned} & 120.0 \mathrm{~mm}^{2} \\ & (4 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \end{aligned}$	$6 \mathrm{~N}-\mathrm{m}$ ($52 \mathrm{lb} .-\mathrm{in}$.)	$\begin{aligned} & 6 \mathrm{~N}-\mathrm{m} \\ & (52 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
(2)	SHLD Terminal	2-6	Terminating point for wiring shields	-	-	$\begin{array}{\|l\|} \hline 1.6 \mathrm{~N}-\mathrm{m} \\ (14 \mathrm{lb} .-\mathrm{in} .) \end{array}$	$\begin{aligned} & 1.6 \mathrm{~N}-\mathrm{m} \\ & (14 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
(3)	AUX Terminal Block	2-4	Auxiliary Control Voltage PS+, PS- ${ }^{(3)}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & (16 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~mm}^{2} \\ & (24 \mathrm{AWG}) \end{aligned}$	-	-
		5-6		$\begin{aligned} & 4.0 \mathrm{~mm}^{2} \\ & (12 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~N}-\mathrm{m} \\ & (5.3 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & \text { 0.6 N-m } \\ & (5.3 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
4	Fan Terminal Block (CB Only)	5-6	User Supplied Fan Voltage (page 1-10)	$\begin{aligned} & 4.0 \mathrm{~mm}^{2} \\ & (12 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~N}-\mathrm{m} \\ & (5.3 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~N}-\mathrm{m} \\ & (5.3 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$

(1) Maximum/minimum sizes that the terminal block will accept - these are not recommendations.
(2) Refer to the terminal block label inside the drive.
(3) External control power: UL Installation-300V DC, $\pm 10 \%$, Non UL Installation-270-600V DC, $\pm 10 \%$ 2 \& 3 Frame - 40 W, 165 mA, 5 Frame - 80 W, 90 mA .

Figure 1.10 Typical Power Terminal Block Location, Frames 2... 6

Frame 2

(2) Frames 3 \& 4

Frame 6

Figure 1.11 Frames 2...6 Power Terminal Block

Terminal	Description	Notes
BR1	DC Brake (+)	DB Resistor Connection - Important: Only one DB
resistor can be used with Frames 2 \& 3. Connecting		
an internal \& external resistor could cause damage.		

Using Input/Output Contactors

Input Contactor Precautions

ATTENTION: A contactor or other device that routinely disconnects and reapplies the AC line to the drive to start and stop the motor can cause drive hardware damage. The drive is designed to use control input signals that will start and stop the motor. If an input device is used, operation must not exceed one cycle per minute or drive damage will occur.

ATTENTION: The drive stop/enable control circuitry includes solid state components. If hazards due to accidental contact with moving machinery or unintentional flow of liquid, gas or solids exist, an additional hardwired stop circuit may be required to remove the AC line to the drive. An auxiliary braking method may be required.

Output Contactor/Disconnect Precaution

ATTENTION: To guard against drive damage when using output contactors or disconnects, the following information must be read and understood. One or more output contactors or disconnects may be installed between the drive and motor(s) for the purpose of disconnecting or isolating certain motors/loads. If a contactor or disconnect is opened while the drive is operating, power will be removed from the respective motor, but the drive will continue to produce voltage at the output terminals. In addition, reconnecting a motor to an active drive (by closing the contactor or disconnect) could produce excessive current that may cause the drive to fault. If any of these conditions are determined to be undesirable or unsafe, an auxiliary contact on the output contactor or disconnect should be wired to a drive digital input that is programmed as "Enable." This will cause the drive to execute a coast-to-stop (cease output) whenever an output contactor or disconnect is opened.

Bypass Contactor Precaution

ATTENTION: An incorrectly applied or installed bypass system can result in component damage or reduction in product life. The most common causes are:

- Wiring AC line to drive output or control terminals.
- Improper bypass or output circuits not approved by Rockwell Automation.
- Output circuits which do not connect directly to the motor.

Contact Rockwell Automation for assistance with application or wiring.

Disconnecting MOVs and Common Mode Capacitors

VTAC 9 drives contain protective MOVs and common mode capacitors that are referenced to ground. To guard against drive damage, these devices should be disconnected if the drive is installed on an ungrounded distribution system where the line-to-ground voltages on any phase could exceed 125% of the nominal line-to-line voltage. To disconnect these devices, remove all the jumper(s) shown in the figure and table below. See Wiring and Grounding Guidelines for PWM AC Drives, publication DRIVES-IN001 for more information on ungrounded system installation.

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before removing/installing jumpers. Measure the DC bus voltage at the +DC terminal of the Power Terminal Block and the -DC test point. The voltage must be zero.

Figure 1.12 Typical Frame B - E Jumper Locations (C Frame Shown)

Figure 1.13 Phase to Ground MOV Removal (Frame B...E)

Figure 1.14 Common Mode Capacitors to Ground Removal (Frame B...E)

Frame	Jumper	Removes
B	JP6 - JP5	Common Mode Capacitors to Ground
C and D	JP3B - JP3A	Common Mode Capacitors to Ground
E	JP3 - JP4	Common Mode Capacitors to Ground

Table 1.E Frame 2-6 Jumper Removal ${ }^{(1)}$

Frames	Jumper	Component	Jumper Location	No.
2-4	PEA	Common Mode Capacitors	Jumpers are located above the Power Terminal Block (see Figure 1.15).	(1)
	PEB	MOV's		(2)
5	Wire	Common Mode Capacitors	Remove the I/O Cassette as described on page 1-28. The green/yellow jumper is located on the back of chassis (see Figure 1.15 for location). Disconnect, insulate and secure the wire to guard against unintentional contact with chassis or components.	3
		MOV's	Note location of the two green/yellow jumper wires next to the Power Terminal Block (Figure 1.15). Disconnect, insulate and secure the wires to guard against unintentional contact with chassis or components.	4
		Input Filter Capacitors		
6	Wire	Common Mode Capacitors	Remove the wire guard from the Power Terminal Block. Disconnect the three green/yellow wires from the two "PE" terminals shown in Figure 1.11. Insulate/secure the wires to guard against unintentional contact with chassis or components.	
		MOV's		
		Input Filter Capacitors		

${ }^{(1)}$ Important: Do Not remove jumpers if the distribution system is grounded.

Figure 1.15 Typical Frame 2-5 Jumper Locations (see Table 1.E for description)

Frames 3 \& 4
(3)

Important: Do Not discard or replace grounding hardware.

I/O Wiring

Important points to remember about I/O wiring:

- Use copper wire only. Wire gauge requirements and recommendations are based on 75 degree C . Do not reduce wire gauge when using higher temperature wire.
- Wire with an insulation rating of 600 V or greater is recommended.
- Control and signal wires should be separated from power wires by at least 0.3 meters (1 foot).

Important: I/O terminals labeled "(-)" or "Common" are not referenced to earth ground and are designed to greatly reduce common mode interference. Grounding these terminals can cause signal noise.

ATTENTION: Configuring an analog input for $0-20 \mathrm{~mA}$ operation and driving it from a voltage source could cause component damage. Verify proper configuration prior to applying input signals.

ATTENTION: Hazard of personal injury or equipment damage exists when using bipolar input sources. Noise and drift in sensitive input circuits can cause unpredictable changes in motor speed and direction. Use speed command parameters to help reduce input source sensitivity.

Signal and Control Wire Types
Table 1.F Recommended Signal Wire

Signal Type/ Where Used	Belden Wire Type(s) (or equivalent)	Description	Min. Insulation Rating
Analog I/O \& PTC	$8760 / 9460$	$0.750 \mathrm{~mm}^{2}(18$ AWG), twisted pair, 100\% shield with drain 1$)$	300 V, $75-90^{\circ} \mathrm{C}$
Remote Pot	8770	$0.750 \mathrm{~mm}^{2}(18 \mathrm{AWG}), 3$ cond., shielded	$\left(167-194^{\circ} \mathrm{F}\right)$

(1) If the wires are short and contained within a cabinet which has no sensitive circuits, the use of shielded wire may not be necessary, but is always recommended.

Table 1.G Recommended Control Wire for Digital I/O

	Wire Type(s)	Description	Minimum Insulation Rating
Unshielded	Per US NEC or applicable national or local code	-	
Shielded	Multi-conductor shielded cable such as Belden 8770 (or equiv.)	$0.750 \mathrm{~mm}^{2}(18 \mathrm{AWG}), 3$ conductor, shielded.	(140 degrees F)
60 degrees C			

I/O Terminal Block (Frames B...E)

Figure 1.16 Typical Frame B...E I/O Terminal Block Location (B Frame Shown)

Table 1.H I/O Terminal Block Specifications

No.	Name	Description	Wire Size Range ${ }^{(1)}$		Torque	
			Maximum	Minimum	Maximum	Recommended
(1)	I/O Terminal Block	Signal \& control connections	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & (16 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.05 \mathrm{~mm}^{2} \\ & (30 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.55 \mathrm{~N}-\mathrm{m} \\ & \text { (4.9 lb.-in.) } \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~N}-\mathrm{m} \\ & (4.4 \mathrm{lb} . \mathrm{in} .) \end{aligned}$

${ }^{(1)}$ Maximum / minimum that the terminal block will accept - these are not recommendations.
Table 1.I Wire Routing Recommendations
No. Description

(2)	Suggested entry for communication wiring.
(3	Suggested entry for I/O and control wiring.

Figure 1.17 I/O Terminal Positions (Frames B...E)

Suggested Analog Signal Wiring

(1) If a different Analog Input selection is required:

- Parameter 320 bit values will have to be configured
- Parameters 325 and 326 or 322 and 323 will have to be configured

See Chapter 3 for details on programming parameters.
(2) Frame size can be determined by the number of terminals on the I/O Terminal Block:

- Frames B...E have 26 I/O terminals
- Frames 2... 6 have 32 I/O terminals
(3) If Analog Input 2 is used for speed reference, parameter 90 will have to be programmed to select option 2 "Analog In 2".

Bypass Package (Style B) Drives

Important: If you are intalling a Bypass Package (Style B) Drive, also refer to VTAC 9 AC Drive Installation Instructions, publication 9VT-IN001 in addition to this publication.

Interlock Connection Considerations

A "Freeze/Fire Stat" input is typically connected to I/O Terminal 3 on drives with 26 terminals (Frames B...E) or I/O Terminal 29 on drives with 32 terminals (Frames 2...6). Factory default parameter settings cause the drive to fault on an F2 "Function Loss" if the "Freeze/Fire Stat" input opens or if there is a momentary loss of power to the drive. A manual reset to restart is required once the input closes or power is restored.

To restart the drive automatically when the "Freeze/Fire Stat" input closes or power is restored, the F2 "Function Loss" fault can be automatically cleared by one of the following methods.

1. Jumper I/O Terminals 2 (Clear Faults) and 3 (Function Loss) on drives with 26 terminals (Frames B...E) or jumper I/O Terminals 28 (Clear Faults) and 29 (Function Loss) on drives with 32 terminals (Frames 2...6).
2. Set parameter 363 [Digital In3 Sel] to option 1 "Enable" which will start the drive on an enable command if the "Freeze/Fire Stat" input is closed and a Run or Start digital input is present.

If a purge command is intended to follow a "Freeze/Fire Stat" input trip/ reset without requiring a manual reset to restart, the above alternate customer connections should be used.

Table 1.J I/O Terminal Designations (Frames B...E)
Important: Frame B...E drives can be identified by a horizontally oriented I/O Terminal Block which has 26 terminals. See Figure 1.16.

${ }^{(1)}$ Contacts shown in unpowered state. Any relay programmed as Fault or Alarm will energize (pick up) when power is applied to drive and deenergize (drop out) when fault or alarm exists. Relays selected for other functions will energize only when that condition exists and will deenergize when condition is removed.
(2) These inputs/outputs are dependent on a number of parameters. See "Related Parameters."
(3) Differential Isolation - External source must be less than 10V with respect to PE.
(4) Differential Isolation - External source must be maintained at less than 160 V with respect to PE . Input provides high common mode immunity.

I/O Wiring Examples (Frames B...E)

Input/Output	Connection Example	Required Parameter Settings
Potentiometer Unipolar Speed Reference 10k Ohm Pot. Recommended (2 k Ohm minimum)		Select Speed Reference source: Param. $090=2$ "Analog $\ln 2$ " Configure Input for Voltage Param. 320, Bit \#1 = 0 "Voltage" Adjust Scaling: Param. 091, 092, 325, 326 Check Results: Param. 017
Analog Input Unipolar Speed Reference 0 to +10 V Input		Select Speed Reference source: Param. $090=2$ "Analog In 2" Configure Input for Voltage Param. 320, Bit \#1 = 0 "Voltage" Adjust Scaling: Param. 091, 092, 325, 326 Check Results: Param. 017
Analog Input Unipolar Speed Reference 4-20 mA Input		Select Speed Reference source: Param. $090=1$ "Analog In 1" Configure Input for Current: Param. 320, Bit \#0 = 1 "Current" Adjust Scaling: Param. 091, 092, 322, 323 Check Results: Param. 016
Analog Output Unipolar 0 to +10 V Output. Can Drive a $2 k$ Ohm load (25 mA short circuit limit)		Select Source Value: Param. 342 Adjust Scaling: Param. 343, 344
2 Wire Control Non-Reversing	Internal Supply	Set Digital Input 1: Param. 361 = 1 "Run"
3 Wire Control	Internal Supply	Set Digital Input 1: Param. 361 = 4 "Stop - CF" Set Digital Input 2: Param. 362 = 5 "Start"

Input/Output	Connection Example	Required Parameter Settings
3 Wire Control	External Supply	Set Digital Input 1: Param. $361=4$ "Stop -CF" Set Digital Input 2: Param. $362=5$ "Start"
Digital Output Form C Relays Energized in Normal State.		Select Source: Param. 380, 384
Enable Input Shown in enabled state.		Configure with parameter 364

The I/O Control Cassette (Frames 2...6)

Figure 1.18 shows the I/O Control Cassette and terminal block locations. The cassette provides a mounting point for the various VTAC 9 I/O options. To remove the cassette, follow the steps below. Cassette removal will be similar for all frames (0 Frame drive shown).

Step	Description
(\mathbb{A})	Disconnect the two cable connectors shown in Figure 1.18.
$(\mathbb{B}$	Loosen the two screw latches shown in Figure 1.18.
$\left(\begin{array}{c}\text { C }\end{array}\right.$	Side the cassette out.
$\left(\begin{array}{l}\text { D }\end{array}\right.$	Remove screws securing cassette cover to gain access to the boards.

Figure 1.18 Typical Cassette \& I/O Terminal Blocks (Frames 2...6)

I/O Terminal Blocks

Table 1.K I/O Terminal Block Specifications

No.	Name	Description	Wire Size Range ${ }^{(1)}$		Torque	
			Maximum	Minimum	Maximum	Recommended
(1)	I/O Cassette	Removable I/O Cassette				
(2)	I/O Terminal Block	Signal \& control connections	$\begin{aligned} & 2.1 \mathrm{~mm}^{2} \\ & \text { (14 AWG) } \end{aligned}$	$\begin{aligned} & 0.30 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~N}-\mathrm{m} \\ & (5.2 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~N}-\mathrm{m} \\ & (5.2 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$

${ }^{(1)}$ Maximum/minimum that the terminal block will accept - these are not recommendations.
Figure 1.19 I/O Terminal Positions (Frames 2...6)

Suggested Analog Signal Wiring

(1) If a different Analog Input selection is required:

- Parameter 320 bit values will have to be configured
- Parameters 325 and 326 or 322 and 323 will have to be configured See Chapter 3 for details on programming parameters.
(2) Frame size can be determined by the number of terminals on the I/O Terminal Block:
- Frames B...E have 26 I/O terminals
- Frames 2... 6 have 32 I/O terminals
(3) If Analog Input 2 is used for speed reference, parameter 90 will have to be programmed to select option 2 "Analog In 2".

Bypass Package (Style B) Drives

Important: If you are intalling a Bypass Package (Style B) Drive, also refer to VTAC 9 AC Drive Installation Instructions, publication 9VT-IN001 in addition to this publication.

Interlock Connection Considerations

A "Freeze/Fire Stat" input is typically connected to I/O Terminal 3 on drives with 26 terminals (Frames B...E) or I/O Terminal 29 on drives with 32 terminals (Frames 2...6). Factory default parameter settings cause the drive to fault on an F2 "Function Loss" if the "Freeze/Fire Stat" input opens or if there is a momentary loss of power to the drive. A manual reset to restart is required once the input closes or power is restored.

To restart the drive automatically when the "Freeze/Fire Stat" input closes or power is restored, the F2 "Function Loss" fault can be automatically cleared by one of the following methods.

1. Jumper I/O Terminals 2 (Clear Faults) and 3 (Function Loss) on drives with 26 terminals (Frames B...E) or jumper I/O Terminals 28 (Clear Faults) and 29 (Function Loss) on drives with 32 terminals (Frames 2...6).
2. Set parameter 363 [Digital In3 Sel] to option 1 "Enable" which will start the drive on an enable command if the "Freeze/Fire Stat" input is closed and a Run or Start digital input is present.

If a purge command is intended to follow a "Freeze/Fire Stat" input trip/ reset without requiring a manual reset to restart, the above alternate customer connections should be used.

Table 1.L I/O Terminal Designations (Frames 2...6)
Important: Frame 2... 6 drives can be identified by a vertically oriented I/O Terminal Block which has 32 terminals. See Figure 1.19.

	No.	Signal		Description	
	1	Anlg Volts In 1 (-)	(2)	Isolated ${ }^{(3)}$, bipolar, differential, $\pm 10 \mathrm{~V}, 11$ bit \& sign, 88 k ohm input impedance.	$\begin{aligned} & 320 \\ & 327 \end{aligned}$
	2	Anlg Volts In 1 (+)			
	3	Anlg Volts In 2 (-)	(2)	Isolated ${ }^{(4)}$, bipolar, differential, $\pm 10 \mathrm{~V}, 11$ bit \& sign, 88 k ohm input impedance.	
	4	Anlg Volts In 2 (+)			
	5	Pot Common	-	For (+) and (-) 10V pot references.	
	6	Anlg Volts Out 1 (-)	(2)	Bipolar, $\pm 10 \mathrm{~V}, 11$ bit \& sign, 2 k ohm minimum load.	$\begin{aligned} & 340- \\ & 344 \end{aligned}$
	7	Anlg Volts Out 1 (+)			
	8	Anlg Current Out 1 (-)	(2)	4-20mA, 11 bit \& sign, 400 ohm maximum load.	
	9	Anlg Current Out 1 (+)			
	10	Reserved for Future Use			
	11	Digital Out 1 - N.C. ${ }^{(1)}$	Fault	Max. Resistive Load: 240V AC/30V DC - 1200VA, 150W Max. Current: 5A, Min. Load: 10mA Max. Inductive Load: $240 \mathrm{~V} \mathrm{AC/30V} \mathrm{DC} \mathrm{-} \mathrm{840VA}, \mathrm{105W}$ Max. Current: 3.5A, Min. Load: 10 mA	$\begin{aligned} & 380- \\ & 387 \end{aligned}$
	12	Digital Out 1 Common			
	13	Digital Out 1 - N.O. ${ }^{(1)}$	NOT Fault		
	14	Digital Out 2 - N.C. ${ }^{(1)}$	NOT Run		
	15	Digital Out 2 Common			
	16	Digital Out 2 - N.O. ${ }^{(1)}$	Run		
	17	Anlg Current In $1(-)$	(2)	Isolated ${ }^{(3)}, 4-20 \mathrm{~mA}, 11$ bit \& sign, 124 ohm input impedance.	$\begin{aligned} & 320 \\ & 327 \end{aligned}$
	18	Anlg Current In 1 (+)			
	19	Anlg Current In $2(-)$	(2)	Isolated ${ }^{(4)}, 4-20 \mathrm{~mA}, 11$ bit \& sign, 124 ohm input impedance.	
	20	Anlg Current In 2 (+)			
	21	-10V Pot Reference	-	2 k ohm minimum.	
	22	+10V Pot Reference	-		
	23	Reserved for Future Use			
	24	+24VDC ${ }^{(5)}$	-	Drive supplied logic input power. ${ }^{(5)}$	
	25	Digital In Common	-		
	26	24 V Common ${ }^{(5)}$	-	Common for internal power supply.	
	27	Digital In 1	Run	Opto isolated Low State: less than 5V AC/DC High State: greater than 20V AC/DC 11.2 mADC	$\begin{aligned} & 361- \\ & 366 \\ & \hline \end{aligned}$
	28	Digital In 2	Clear Faults		
	29	Digital In 3	Function Loss		
	30	Digital In 4	Enable		
	31	Digital In 5	OIM Control		
	32	Digital In 6	Purge		

${ }^{(1)}$ Contacts in unpowered state. Any relay programmed as Fault or Alarm will energize (pick up) when power is applied to drive and deenergize (drop out) when a fault or alarm exists. Relays selected for other functions will energize only when that condition exists and will deenergize when condition is removed.
(2) These inputs/outputs are dependant on a number of parameters. See "Related Parameters."
(3) Differential Isolation - External source must be maintained at less than 160 V with respect to PE. Input provides high common mode immunity.
(4) Differential Isolation - External source must be less than 10 V with respect to PE .
(5) 150 mA maximum Load.

I/O Wiring Examples (Frames 2...6)

Input/Output	Connection Example	Required Parameter Changes
Potentiometer Unipolar Speed Reference ${ }^{(1)}$ 10k Ohm Pot. Recommended (2k Ohm Minimum)		- Select Speed Reference Source: Parameter $090=2$ "Analog In 2" - Configure Input for Voltage: Parameter 320, Bit $1=0$ "Voltage" - Adjust Scaling: Parameters 91/92 and 325/326 - View Results: Parameter 002
Analog Voltage Input Unipolar Speed Reference 0 to +10V Input		- Select Speed Reference Source: Parameter $090=2$ "Analog In 2" - Configure Input for Voltage: Parameter 320, Bit $1=0$ "Voltage" - Adjust Scaling: Parameters 91/92 and 325/326 - Check results: Parameter 017
Analog Current Input Unipolar Speed Reference 4-20 mA Input		- Select Speed Reference Source: Parameter $090=1$ "Analog In 1" - Configure Input for Current: Parameter 320, Bit $0=1$ "Current" - Adjust Scaling: Parameters 91/92 and 325/326 - Check Results: Parameter 017
Analog Output +10V Unipolar (shown) 4-20 mA Unipolar (use term. $8 \& 9$)		- Configure with Parameter 340 - Select Source Value: Parameter 342, [Analog Out1 Sel] - Adjust Scaling: Parameters 343/344
2-Wire Control Non-Reversing ${ }^{(2)}$ 24 V DC internal supply		Set Digital Input 1: Parameter 361 = 1 "Run"

(1) Refer to the Attention statement on page 1-21 for important bipolar wiring information.
(2) Important: Programming inputs for 2 wire control deactivates all OIM Start buttons.

I/O Wiring Examples (continued)

Input/Output	Connection Example	Required Parameter Changes
3-Wire Control		
Internal supply		

Speed Reference Control

"Auto" Speed Sources

The drive speed command can be obtained from a number of different sources. The source is determined by drive programming and the condition of the Speed Select digital inputs, Auto/Manual digital inputs or reference select bits of a command word.

The default source for a command reference (all speed select inputs open or not programmed) is the selection programmed in [Speed Ref A Sel]. If any of the speed select inputs are closed, the drive will use other parameters as the speed command source.

"Manual" Speed Sources

The manual source for speed command to the drive is either the OIM requesting manual control or the control terminal block (analog input) if a digital input is programmed to "Auto/Manual".

Changing Speed Sources

The selection of the active Speed Reference can be made through digital inputs, DPI command or Hand/Auto OIM operation.

Figure 1.20 Speed Reference Selection Chart

Auto/Manual Examples

Building Automation Controller $=$ Auto, $\mathrm{OIM}=$ Manual

A process is run by a Building Automation Controller when in Auto mode and requires manual control from the OIM during set-up. The Auto speed reference is issued by the Building Automation Controller through a communications module installed in the drive. Since the internal communications is designated as Network, [Speed Ref A Sel] is set to "Network" with the drive running from the Auto source.

Attain Manual Control

- Press the Hand button on the OIM.

When the OIM attains manual control, the drive speed command comes from the OIM speed control keys.

Release to Auto Control

- Press the Auto button on the OIM.

When the OIM releases manual control, the drive speed command returns to the Building Automation Controller.

Building Automation Controller = Auto, Terminal Block = Manual

A process is run by a Building Automation Controller when in Auto mode and requires manual control from an analog potentiometer wired to the drive terminal block. The auto speed reference is issued by the Building Automation Controller through a communications module installed in the drive. Since the internal communications is designated as Network, [Speed Ref A Sel] is set to "Network" with the drive running from the Auto source. Since the Manual speed reference is issued by an analog input ("Analog In 1 or 2"), [TB Man Ref Sel] is set to the same input. To switch between Auto and Manual, [Digital In5 Sel] is set to "Auto/ Manual".

Attain Manual Control

- Close the digital input. With the input closed, the speed command comes from the potentiometer.

Release to Auto Control

- Open the digital input. With the input open, the speed command returns to the Building Automation Controller.

Auto/Manual Notes

1. Manual control is exclusive. If a OIM or Terminal Block takes manual control, no other device can take manual control until the controlling device releases manual control.
2. If a OIM has manual control and power is removed from the drive, the drive will return to Auto mode when power is reapplied.

EMC Instructions

CE Conformity

Conformity with the Low Voltage (LV) Directive and Electromagnetic Compatibility (EMC) Directive has been demonstrated using harmonized European Norm (EN) standards published in the Official Journal of the European Communities. VTAC 9 Drives comply with the EN standards listed below when installed according to the User and Reference Manuals.

CE Declarations of Conformity are available online at: http://www.ab.com/certification/ce/docs.

Low Voltage Directive (73/23/EEC)

- EN50178 Electronic equipment for use in power installations

EMC Directive (89/336/EEC)

- EN61800-3 Adjustable speed electrical power drive systems Part 3: EMC product standard including specific test methods.

General Notes

- If the adhesive label is removed from the top of the drive, the drive must be installed in an enclosure with side openings less than $12.5 \mathrm{~mm}(0.5 \mathrm{in}$.) and top openings less than 1.0 mm (0.04 in .) to maintain compliance with the LV Directive.
- The motor cable should be kept as short as possible in order to avoid electromagnetic emission as well as capacitive currents.
- Use of line filters in ungrounded systems is not recommended.
- VTAC 9 drives may cause radio interference if used in a residential or domestic environment. The installer is required to take measures to prevent interference, in addition to the essential requirements for CE compliance provided in this section, if necessary.
- Conformity of the drive with CE EMC requirements does not guarantee an entire machine or installation complies with CE EMC requirements. Many factors can influence total machine/installation compliance.
- VTAC 9 drives generate conducted low frequency disturbances (harmonic emissions) on the AC supply system.

General Notes (continued)

- When operated on a public supply system, it is the responsibility of the installer or user to ensure, by consultation with the distribution network operator and Rockwell Automation if necessary, that applicable requirements have been met.

Essential Requirements for CE Compliance

Conditions 1-6 listed below must be satisfied for VTAC 9 drives to meet the requirements of EN61800-3.

1. Standard VTAC 9 CE compatible Drive.
2. Review important precautions/attention statements throughout this manual before installing the drive.
3. Grounding as described on page 1-7.
4. Output power, control (I/O) and signal wiring must be braided, shielded cable with a coverage of 75% or better, metal conduit, or equivalent attenuation.
5. All shielded cables should terminate with the proper shielded connector.
6. Conditions in Table 1.M.

Table 1.M VTAC 9-EN61800-3 EMC Compatibility - Second Environment

Frame	HP @ 480V	Restrict Motor Cable to:	External Filter Required	Common Mode Core Required
B	3	$40 \mathrm{~m}(131 \mathrm{ft})$	-	-
B	5	$40 \mathrm{~m}(131 \mathrm{ft})$	-	-
C	7.5	$40 \mathrm{~m}(131 \mathrm{ft})$	-	-
C	10	$40 \mathrm{~m}(131 \mathrm{ft})$	-	-
D	15	$40 \mathrm{~m}(131 \mathrm{ft})$	-	-
D	20	$40 \mathrm{~m}(131 \mathrm{ft})$	-	-
D	25	$40 \mathrm{~m}(131 \mathrm{ft})$	-	-
D	30	$40 \mathrm{~m}(131 \mathrm{ft})$	-	-
E	40	$40 \mathrm{~m}(131 \mathrm{ft})$	-	-
E	50	$40 \mathrm{~m}(131 \mathrm{ft})$	-	-
2	25	$30 \mathrm{~m}(98 \mathrm{ft})$	-	-
3	30	$30 \mathrm{~m}(98 \mathrm{ft})$	-	-
3	40	$30 \mathrm{~m}(98 \mathrm{ft})$	-	-
3	50	$30 \mathrm{~m}(98 \mathrm{ft})$	-	-
4	60	$30 \mathrm{~m}(98 \mathrm{ft})$	-	-
5	75	$30 \mathrm{~m}(98 \mathrm{ft})$	-	-
5	100	$30 \mathrm{~m}(98 \mathrm{ft})$	-	-
6	125	$30 \mathrm{~m}(98 \mathrm{ft})$	-	-
6	150	$30 \mathrm{~m}(98 \mathrm{ft})$	-	-

Table 1.N VTAC 9 - EN61800-3 EMC Compatibility - First Environment Restricted

Frame	$\begin{aligned} & \mathrm{HP} @ \\ & \text { 480V } \end{aligned}$	Restrict Motor Cable to:	$\begin{aligned} & \hline \text { External } \\ & \text { Filter } \\ & \text { Required } \end{aligned}$	Common Mode Core Required	Restrict Motor Cable to:	External Filter Required	Common Mode Core Required
B	3	12 m (40 ft)	-	-	100m (328 ft)	RF3-0006-4	-
B	5	12 m (40 ft)	-	-	100 m (328 ft)	RF3-0010-4	-
C	7.5	12 m (40 ft)	-	1321-M048	150 m (492 ft)	RF3-0018-4	-
C	10	12 m (40 ft)	-	1321-M048	150 m (492 ft)	RF3-0018-4	-
D	15	12 m (40 ft)	-	-	150m (492 ft)	RF3-0025-4	-
D	20	12 m (40 ft)	-	-	150 m (492 ft)	22-RFD036	-
D	25	12 m (40 ft)	-	-	150m (492 ft)	22-RFD050	-
D	30	12 m (40 ft)	-	-	150m (492 ft)	22-RFD050	-
E	40	30 m (98 ft)	22-RFD070	-	-	-	-
E	50	30 m (98 ft)	22-RFD070	-	-	-	-
2	25	$150 \mathrm{~m}(492 \mathrm{ft})$	22-RFD036	-	-	-	-
3	30	$150 \mathrm{~m}(492 \mathrm{ft})$	22-RFD050	-	-	-	-
3	40	150 m (492 ft)	22-RFD070	-	-	-	-
3	50	$150 \mathrm{~m}(492 \mathrm{ft})$	22-RFD070	-	-	-	-
4	60	150 m (492 ft)	22-RFD100	-	-	-	-
5	75	$150 \mathrm{~m}(492 \mathrm{ft})$	22-RFD100	-	-	-	-
5	100	$150 \mathrm{~m}(492 \mathrm{ft})$	22-RFD150	-	-	-	-
6	125	$150 \mathrm{~m}(492 \mathrm{ft})$	22-RFD180	-	-	-	-
6	150	$150 \mathrm{~m}(492 \mathrm{ft})$	22-RFD180	-	-	-	-

FCC Instructions

FCC Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules when installed according to the User Manual. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the User Manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense.

Essential Requirements for FCC Compliance

Conditions 1-4 listed below must be satisfied for VTAC 9 drives to meet the requirements of FCC Part 15 Subpart B.

1. Grounding as described in Figure 1.4. Refer to page 1-6 for additional grounding recommendations.
2. Output power, control (I/O) and signal wiring must be braided, shielded cable with a coverage of 75% or better, metal conduit or equivalent attenuation.
3. All shielded cables should terminate with the proper shield connector.
4. Conditions in Table 1.O.

Table 1.0 Maximum Motor Cable Length for FCC Compliance Note: Use of these filters assumes that the drive is mounted in an EMC enclosure.t

Frame	$\begin{aligned} & \mathrm{HP} @ \\ & \text { 480V } \end{aligned}$	Restrict Motor Cable to:	External Filter Required	Common Mode Core Required	Restrict Motor Cable to:	External Filter Required	Common Mode Core Required
B	3	12 m (40 ft)	-	-	$100 \mathrm{~m}(328 \mathrm{ft})$	RF3-0006-4	-
B	5	12 m (40 ft)	-	-	$100 \mathrm{~m}(328 \mathrm{ft})$	RF3-0010-4	-
C	7.5	12 m (40 ft)	-	1321-M048	$150 \mathrm{~m}(492 \mathrm{ft})$	RF3-0018-4	-
C	10	12 m (40 ft)	-	1321-M048	$150 \mathrm{~m}(492 \mathrm{ft})$	RF3-0018-4	-
D	15	12 m (40 ft)	-	-	$150 \mathrm{~m}(492 \mathrm{ft})$	RF3-0025-4	-
D	20	12 m (40 ft)	-	-	150 m (492 ft)	22-RFD036	-
D	25	12 m (40 ft)	-	-	150 m (492 ft)	22-RFD050	-
D	30	12 m (40 ft)	-	-	$150 \mathrm{~m}(492 \mathrm{ft})$	22-RFD050	-
E	40	30 m (98 ft)	22-RFD070	-	-	-	-
E	50	30 m (98 ft)	22-RFD070	-	-	-	-
2	25	150 m (492 ft)	22-RFD036	-	-	-	-
3	30	150 m (492 ft)	22-RFD050	-	-	-	-
3	40	150 m (492 ft)	22-RFD070	-	-	-	-
3	50	150 m (492 ft)	22-RFD070	-	-	-	-
4	60	150 m (492 ft)	22-RFD100	-	-	-	-
5	75	$150 \mathrm{~m}(492 \mathrm{ft})$	22-RFD100	-	-	-	-
5	100	150 m (492 ft)	22-RFD150	-	-	-	-
6	125	$150 \mathrm{~m}(492 \mathrm{ft})$	22-RFD180	-	-	-	-
6	150	$150 \mathrm{~m}(492 \mathrm{ft})$	22-RFD180	-	-	-	-

Notes:

Start Up

This chapter describes how you start up the VTAC 9 Drive. Refer to Appendix B for a brief description of the LCD OIM (Operator Interface Module).

For information on...	See page
Prepare For Drive Start-Up	$\underline{2-2}$
Status Indicators	$\underline{2-3}$
Running the Start-Up Routines	$\underline{2-4}$

ATTENTION: Power must be applied to the drive to perform the following start-up procedure. Some of the voltages present are at incoming line potential. To avoid electric shock hazard or damage to equipment, only qualified service personnel should perform the following procedure. Thoroughly read and understand the procedure before beginning. If an event does not occur while performing this procedure, Do Not Proceed. Remove Power including user supplied control voltages. User supplied voltages may exist even when main AC power is not applied to the drive. Correct the malfunction before continuing.

ATTENTION: Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this chapter in its entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.

ATTENTION: Incorrect values for some of the parameters in the Start-Up routines can cause the drive to operate improperly. Verify that the values of these parameters are appropriate for your application. Failure to observe this precaution could result in bodily injury.

Prepare For Drive Start-Up

Before Applying Power to the Drive

\square 1. Confirm that all inputs are connected to the correct terminals and are secure.

- 2. Verify that AC line power at the disconnect device is within the rated value of the drive.
\square 3. Verify that control power voltage is correct.
The remainder of this procedure requires that a OIM be installed. If an operator interface is not available, remote devices should be used to start up the drive.

Important: When power is first applied, the OIM may require approximately 5 seconds until commands are recognized (including the Stop key).

Applying Power to the Drive

- 4. Apply AC power and control voltages to the drive.

If any of the six digital inputs are configured to "Stop - CF" (CF = Clear Fault) or "Enable," verify that signals are present or the drive will not start. Refer to Alarm Descriptions on page 4-10 for a list of potential digital input conflicts.

If a fault code appears, refer to Chapter 4.
If the Ready LED is not flashing green at this point, refer to Status Indicators and their indications below.
\square 5. Proceed to Running the Start-Up Routines.

Status Indicators

Figure 2.1 Drive Status Indicators (Typical)

Frames B...E

Frames 2... 6

\#	Name	Color	State	Description
(1)	Ready	Green	Flashing	Drive ready, but not running and no faults are present.
			Steady	Drive running, no faults are present.
		Yellow See page 4-10	Flashing, Drive Stopped	An inhibit condition exists, the drive cannot be started. Check parameter 214 [Start Inhibits].
			Flashing, Drive Running	An intermittent type 1 alarm condition is occurring. Check parameter 211 [Drive Alarm 1].
			Steady, Drive Running	A continuous type 1 alarm condition exists. Check parameter 211 [Drive Alarm 1].
		Red See page 4-4	Flashing	A fault has occurred.
			Steady	A non-resetable fault has occurred.
2	Drive	Refer to the Communication Adapter User Manual.		Status of DPI port internal communications (if present).
	MS			Status of communications module (when installed).
	NET A			Status of network (if connected).
	NET B			Status of secondary network (if connected).

Running the Start-Up Routines

To access the Start-Up routines, select the Start-Up icon from the main menu as shown in figure Figure 2.2.

Figure 2.2 Accessing the Start-Up Routines

The Start-Up menu screen contains 8 selections. The first 7 menu items contain the most commonly used parameters associated with each function. See figure Figure 2.3.

Figure 2.3 Start-Up Menu

The Start-Up routine automates the process of entering values of selected parameters by taking you to the next parameter after you accept a parameter value. As each item in the list is completed, you are automatically advanced to the next step.

Important: Parameter values are saved as they are changed.
Pressing $\xlongequal[\substack{\text { EsCO } \\ \text { RROG }}]{\substack{\text { RO }}}$ or aborting the Start-Up routine will not undo the changes.

You do not have to configure all of the parameters in all 7 menus. The first menu selection, Quickstart, contains the minimum basic parameters that must be configured before running the drive. These are listed in table Table 2.A.

Table 2.A Quickstart Parameters

Parameter No.	Parameter Name
155	Stop Mode A
42	Motor NP FLA
81	Minimum Speed
82	Maximum Speed
140	Accel Time 1
142	Decel Time 1
90	Speed Ref A Sel
362	Digital In2 Sel

If your application requires adjustment to parameters beyond those listed in table Table 2.A, you can adjust the parameters in any or all of the next 6 selections in the Start-Up menu, or you can adjust parameters individually through the Parameters menu.

When you have completed adjusting all of the parameters in the Start-Up routines that your application requires, select the last item in the menu, Done.

Important: The drive is shiped with a default configuration of control from the keypad. For drive control from the terminal block inputs, parameter 89 , Logic Source Sel, must be set to 0 .

Exiting Before Completing the Start-Up Routines

To exit the Start-Up routines, press the F4 key (Exit). When you select the Start-Up icon from the main menu again, you will be prompted to either continue or restart the Start-Up routines. If you select "continue," you will be returned to the point at which you exited.

Notes:

Programming and Parameters

Chapter 3 provides a complete parameter listing and descriptions. The parameters can be programmed (viewed/edited) using the LCD OIM (Operator Interface Module).
As an alternative, programming can also be performed using VS Utilities software and a personal computer. Refer to Appendix B for brief descriptions of the LCD Operator Interface Module.

For information on...	See page...
About Parameters	$\underline{3-1}$
How Parameters are Organized	$\underline{3-3}$
Monitor File	$\underline{3-11}$
Motor Control File	$\underline{3-12}$
Speed Command File	$\underline{3-18}$
Dynamic Control File	$\underline{3-30}$
Utility File	$\underline{3-41}$
Communication File	$\underline{3-51}$
Inputs \& Outputs File	$3-54$
Parameter Cross Reference - by Name	$\underline{3-66}$

About Parameters

To configure a drive to operate in a specific way, drive parameters may have to be set. Three types of parameters exist:

- ENUM Parameters

ENUM parameters allow a selection from 2 or more items. The LCD OIM will display a text message for each item.

- Bit Parameters

Bit parameters have individual bits associated with features or conditions. If the bit is 0 , the feature is off or the condition is false. If the bit is 1 , the feature is on or the condition is true.

- Numeric Parameters

These parameters have a single numerical value (i.e. 0.1 Volts).
The example on the following page shows how each parameter type is presented in this manual.

No.	Description		
1	File - Lists the major parameter file category.		
(2)	Group - Lists the parameter group within a file.		
(3)	$\text { No. - Parameter number. } \begin{aligned} O & =\text { Parameter value can not be changed until drive is stopped. } \\ \sqrt[32]{ } & =32 \text { bit parameter. } \\ \sqrt[2 \ldots .6]{ } & =\text { Drive Frames } 2,3,4,5 \& 6 . \end{aligned}$		
4	Parameter Name \& Description - Parameter name as it appears on an LCD OIM, with a brief description of the parameters function.		
(5)	Values - Defines the various operating characteristics of the parameter. Three types exist.		
	ENUM	Default: Options:	Lists the value assigned at the factory. "Read Only" = no default. Displays the programming selections available.
	Bit	Bit \#:	Lists the bit place holder and definition for each bit.
	Numeric	Default: Min/Max: Units:	Lists the value assigned at the factory. "Read Only" = no default. The range (lowest and highest setting) possible for the parameter. Unit of measure and resolution as shown on the LCD OIM.
		Importan can be s	ne parameters will have two unit values. For example, analog inputs urrent or voltage with 320 [Anlg In Config].
		Importan point to a	en sending values through DPI ports, simply remove the decimal the correct value (i.e. to send " 5.00 Hz ," use " 500 ").
6	Related - Lists parameters (if any) that interact with the selected parameter. The symbol " i indicates that additional parameter information is available in Appendix C.		

How Parameters are Organized

Parameters are organized into seven files:

- Monitor
- Motor Control
- Speed Command
- Dynamic Control
- Utility
- Communication
- Inputs \& Outputs

Each file contains parameters that are grouped by their function. A file can contain several groups of parameters. See Figure 3.1.

Figure 3.1 Example of Parameter Organization

Accessing the Parameters

Parameters are programmed and viewed using the LCD OIM or VS Utilities software.

The LCD OIM displays parameters by group, by individual parameter number, and parameters that have changed from their default value.

To access parameters using the LCD OIM, select the Parameters icon from the main screen. See Figure 3.2.

See Appendix B for information on modifying parameters using the LCD OIM.

Figure 3.2 Accessing the Parameters Using the LCD OIM

Selecting the Parameter Access Level

The VTAC 9 drive provides two levels of access to the parameters: Standard (1) and Advanced (2).

The Advanced level allows access to all of the parameters and is used for more sophisticated applications.

The Standard level allows access to a subset of the Advanced level and contains only the most commonly used parameters. See Appendix C for a list of the parameters available at the Standard level.

The active access level is displayed in Parameter Access Level (196).
To select the parameter access level using the LCD OIM, select the Password icon from the main menu. See Figure 3.3.

Figure 3.3 Selecting the Parameter Access Level

Restricting Access to the Advanced Parameter Level

ATTENTION: It is the user's responsibility to determine how to distribute the access level password. Rockwell Automation is not responsible for unauthorized access violations within the user's organization. Failure to observe this precaution could result in bodily injury.

The LCD OIM provides the option to restrict access to the Advanced parameter level. This feature requires the use of a user-defined password when an attempt to change the access level is made.

To set the access level password, select the Password icon from the main menu. See Figure 3.4. The password value can range from 1 to 9999 . A value of 0 disables the password (factory default). You must either select Logout or return to the process display screen to activate the password.

Figure 3.4 Setting the Access Level Password

When you enter the password, you can change access levels until you select Logout or return to the process display screen, which re-activates the password. Refer to section B. 8 in Appendix B for information about the process display screen.

Note that once the password is enabled, you will also be prompted to enter the password to access the Set Acc Lvl PW option.

If There is More Than One OIM Connected to the Drive

Note that setting or changing the access level password on one OIM will set or change the access level password for all OIMs connected to the drive.

Ensuring Program Security

ATTENTION: It is the user's responsibility to determine how to distribute the write-protect password. Rockwell Automation is not responsible for unauthorized access violations within the user's organization. Failure to observe this precaution could result in bodily injury.

Parameter values can be password-protected using the LCD OIM. When the password is enabled, parameter values can be displayed. However, if there is an attempt to change a parameter value, a password pop-up box will appear on the OIM screen to prompt for the user-defined password.

To set the write-protect password, select the Password icon from the main menu. See Figure 3.5. The password value can range from 1 to 9999. A value of 0 disables the password (factory default).

When the password is enabled, the lock symbol on the screen changes from to \square.

Figure 3.5 Setting the Write-Protect Password

When you enter the password, you can adjust parameters until you select Logout or return to the process display screen, which re-activates the password. Refer to Appendix B for information about the process display screen.

If There is More Than One OIM Connected to the Drive
Important: Setting the write-protect password value to zero on one OIM will disable the write-protect password on all connected OIMs.

Setting the write-protect password in one OIM will not affect any other OIM connected to the drive unless a write-protect password has also been set in the other OIMs. In this case, the last password value entered becomes the password value for all password-protected OIMs. (Each OIM cannot have a different password value.)

For example, if the write-protect password has been set to 5555 for the local OIM, someone using a remote OIM with no write-protect password set can still program all of the parameters. If the write-protect password is then set to 6666 on the remote OIM, you will be required to enter 6666 on the local OIM to program the parameters.

Standard Parameter View

Parameter 196 [Param Access Lvl] set to option 1 "Standard."

File	Group	Parameters					
Monitor Monitor	Metering	Output Freq Commanded Freq Output Current Torque Current	$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & 004 \end{aligned}$	Output Voltage Output Power Elapsed MWh Elapsed Run Time	$\begin{aligned} & 006 \\ & 007 \\ & 009 \\ & 010 \end{aligned}$	MOP Frequency DC Bus Voltage Analog In1 Value	$\begin{aligned} & 011 \\ & 012 \\ & 016 \end{aligned}$
	Drive Data	Rated kW Rated Volts	$\begin{aligned} & 026 \\ & 027 \end{aligned}$	Rated Amps Control SW Ver	$\begin{aligned} & 028 \\ & 029 \end{aligned}$		
Motor Control Movercontron	Motor Data	Motor NP Volts Motor NP FLA	$\begin{aligned} & 041 \\ & 042 \end{aligned}$	Motor NP Hertz Motor NP RPM	$\begin{aligned} & 043 \\ & 044 \end{aligned}$	Motor NP Power Mtr NP Pwr Units	$\begin{aligned} & 045 \\ & 046 \end{aligned}$
	Torq Attributes	Maximum Voltage	054	Maximum Freq	055		
	Volts per Hertz	Run Boost	070				
Speed Command\qquad	Spd Mode \& Limits	Speed Mode	080	Minimum Speed Maximum Speed	$\begin{aligned} & 081 \\ & 082 \end{aligned}$	Skip Frequency 1 Logic Source Sel	$\begin{aligned} & 084 \\ & 089 \end{aligned}$
	Speed References	Speed Ref A Sel	090	Speed Ref A Hi Speed Ref A Lo	$\begin{aligned} & \hline 091 \\ & 092 \end{aligned}$		
	Discrete Speeds	Purge Speed	107				
Dynamic Control\qquad	Ramp Rates	Accel Time 1 Decel Time 1	$\begin{aligned} & 140 \\ & 142 \end{aligned}$	S Curve \%	146		
	Load Limits	Current Lmt Val Drive OL Mode	$\begin{aligned} & 148 \\ & 150 \end{aligned}$	CarrierFrequency	151		
	Stop/Brake Modes	Stop Mode A Stop Mode B	$\begin{aligned} & 155 \\ & 156 \end{aligned}$				
	Restart Modes	LevelSense Start	168	Auto Rstrt Tries Auto Rstrt Delay	$\begin{aligned} & 174 \\ & 175 \end{aligned}$		
Utility	Drive Memory	Param Access Lvl Reset To Defalts Reset Meters	$\begin{aligned} & 196 \\ & 197 \\ & 200 \end{aligned}$				
Inputs \& Outputs\square	Analog Inputs	Anlg In Config Anlg In Sqr Root	$\begin{aligned} & 320 \\ & 321 \end{aligned}$	Analog $\ln 1 \mathrm{Hi}$ Analog In Lo Analog In 1 Loss	$\begin{aligned} & 322 \\ & 323 \\ & 324 \end{aligned}$		
	Analog Outputs	Anlg Out Config	340	Analog Out1 Sel	342	Analog Out1 Hi Analog Out1 Lo	$\begin{aligned} & 343 \\ & 344 \end{aligned}$
	Digital Outputs	Digital Out1 Sel Dig Out1 Level	$\begin{aligned} & 380 \\ & 381 \end{aligned}$	Digital Out2 Sel Dig Out2 Level	$\begin{aligned} & 384 \\ & 385 \end{aligned}$		

Advanced Parameter View

Parameter 196 [Param Access Lvl] set to option 2 "Advanced."

File	Group	Parameters					
Monitor	Metering	Output Freq Commanded Freq Output Current Torque Current Flux Current	$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & 004 \\ & 005 \end{aligned}$	Output Voltage Output Power Output Powr Fctr Elapsed MWh Elapsed Run Time	$\begin{aligned} & \hline 006 \\ & 007 \\ & 008 \\ & 009 \\ & 010 \end{aligned}$	MOP Frequency DC Bus Voltage DC Bus Memory Analog In1 Value Analog In2 Value	$\begin{aligned} & 011 \\ & 012 \\ & 013 \\ & 016 \\ & 017 \end{aligned}$
	Drive Data	Rated kW Rated Volts	$\begin{aligned} & \hline 026 \\ & 027 \end{aligned}$	Rated Amps Control SW Ver	$\begin{aligned} & 028 \\ & 029 \end{aligned}$		
Motor Control Merercontron,	Motor Data	Motor Type Motor NP Volts Motor NP FLA Motor NP Hertz	$\begin{aligned} & 040 \\ & 041 \\ & 042 \\ & 043 \end{aligned}$	Motor NP RPM Motor NP Power Mtr NP Pwr Units	$\begin{aligned} & 044 \\ & 045 \\ & 046 \end{aligned}$	Motor OL Hertz Motor OL Factor	$\begin{aligned} & 047 \\ & 048 \end{aligned}$
	Torq Attributes	Torque Perf Mode Maximum Voltage Maximum Freq	$\begin{aligned} & 053 \\ & 054 \\ & 055 \end{aligned}$	Compensation Flux Up Mode Flux Up Time SV Boost Filter	$\begin{aligned} & 056 \\ & 057 \\ & 058 \\ & 059 \end{aligned}$	Autotune IR Voltage Drop Flux Current Ref Ixo Voltage Drop	$\begin{aligned} & \hline 061 \\ & 062 \\ & 063 \\ & 064 \end{aligned}$
	Volts per Hertz	Start/Acc Boost Run Boost	$\begin{aligned} & 069 \\ & 070 \end{aligned}$	Break Voltage Break Frequency	$\begin{aligned} & 071 \\ & 072 \end{aligned}$		
Speed Command	Spd Mode \& Limits	Speed Mode Minimum Speed Maximum Speed Overspeed Limit	$\begin{aligned} & 080 \\ & 081 \\ & 082 \\ & 083 \end{aligned}$	Skip Frequency 1 Skip Frequency 2 Skip Frequency 3	$\begin{aligned} & 084 \\ & 085 \\ & 086 \end{aligned}$	Skip Freq Band Logic Source Sel	087 089
	Speed References	Speed Ref A Sel Speed Ref A Hi Speed Ref A Lo	$\begin{aligned} & 090 \\ & 091 \\ & 092 \end{aligned}$	TB Man Ref Sel TB Man Ref Hi TB Man Ref Lo	$\begin{aligned} & 096 \\ & 097 \\ & 098 \end{aligned}$		
	Discrete Speeds	Preset Speed 1-6	101-106	Purge Speed	107		
	Speed Trim	Trim In Select Trim Out Select	$\begin{aligned} & 117 \\ & 118 \end{aligned}$	Trim Hi Trim Lo	$\begin{aligned} & 119 \\ & 120 \end{aligned}$		
	Slip Comp	Slip RPM @ FLA Slip Comp Gain	$\begin{aligned} & 121 \\ & 122 \end{aligned}$	Slip RPM Meter	123		
	Process PI	PI Configuration PI Control PI Reference Sel PI Setpoint PI Feedback Sel	$\begin{aligned} & \hline 124 \\ & 125 \\ & 126 \\ & 127 \\ & 128 \end{aligned}$	PI Integral Time PI Prop Gain PI Lower Limit PI Upper Limit PI Preload	$\begin{aligned} & 129 \\ & 130 \\ & 131 \\ & 132 \\ & 133 \end{aligned}$	PI Status PI Ref Meter PI Fdback Meter PI Error Meter PI Output Meter	$\begin{aligned} & 134 \\ & 135 \\ & 136 \\ & 137 \\ & 138 \end{aligned}$
Dynamic Control	Ramp Rates	Accel Time 1 Accel Time 2	$\begin{aligned} & 140 \\ & 141 \end{aligned}$	Decel Time 1 Decel Time 2	$\begin{aligned} & 142 \\ & 143 \end{aligned}$	S Curve \%	146
	Load Limits	Current Lmt Sel Current Lmt Val Current Lmt Gain	$\begin{aligned} & 147 \\ & 148 \\ & 149 \end{aligned}$	Drive OL Mode CarrierFrequency	$\begin{aligned} & 150 \\ & 151 \end{aligned}$		
	Stop/Brake Modes	Stop Mode A Stop Mode B	$\begin{aligned} & 155 \\ & 156 \end{aligned}$	DC Brake Lvi Sel DC Brake Level DC Brake Time	$\begin{aligned} & \hline 157 \\ & 158 \\ & 159 \end{aligned}$	Bus Reg Ki Bus Reg Mode A Bus Reg Mode B DB Resistor Type Bus Reg Kp Bus Reg Kd	$\begin{aligned} & 160 \\ & 161 \\ & 162 \\ & 163 \\ & 164 \\ & 165 \end{aligned}$
	Restart Modes	LevelSense Start Flying Start En Flying StartGain	$\begin{aligned} & 168 \\ & 169 \\ & 170 \end{aligned}$	Auto Rstrt Tries Auto Rstrt Delay	$\begin{aligned} & 174 \\ & 175 \end{aligned}$	Sleep-Wake Mode Sleep-Wake Ref Wake Level Wake Time Sleep Level Sleep Time	$\begin{aligned} & 178 \\ & 179 \\ & 180 \\ & 181 \\ & 182 \\ & 183 \end{aligned}$
	Power Loss	Power Loss Mode Power Loss Time	$\begin{aligned} & 184 \\ & 185 \end{aligned}$	Power Loss Level	186		

File	Group	Parameters					
Utility	Direction Config	Direction Mode	190				
	OIM Ref Config	Save OIM Ref	192	Man Ref Preload	193		
	MOP Config	Save MOP Ref	194	MOP Rate	195		
	Drive Memory	Param Access Lvl	196	Save To User Set	199	Voltage Class	202
		Reset To Defalts	197	Reset Meters	200	Drive Checksum	203
		Load Frm Usr Set	198	Language	201		
	Diagnostics	Drive Status 1	209	Dig In Status	216	Status 1 @ Fault	227
		Drive Status 2	210	Dig Out Status	217	Status 2 @ Fault	228
		Drive Alarm 1	211	Drive Temp	218	Alarm 1 @ Fault	229
		Drive Alarm 2	212	Drive OL Count	219	Alarm 2 @ Fault	230
		Speed Ref Source	213	Motor OL Count	220	Testpoint 1 Sel	234
		Start Inhibits	214	Fault Frequency	224	Testpoint 1 Data	235
		Last Stop Source	215	Fault Amps	225	Testpoint 2 Sel	236
				Fault Bus Volts	226	Testpoint 2 Data	237
	Faults	Fault Config 1	238	Fault Clear Mode	241		
		Fault Clear	240	Power Up Marker	242		
	Alarms	Alarm Contig 1	259				
Communication	Comm Control	Drive Logic Rsit	271	Drive Ref Rslt	272	Drive Ramp Rsit	273
	Owners						
	Datalinks	Data In A1-D2	300-307	Data Out A1-D2	310-317		
Inputs \& Outputs\square	Analog Inputs	Anlg In Config Anlg In Sqr Root	320	Analog In 1 Hi	322	Analog In 2 Hi	325
			321	Analog In 1 Lo	323	Analog In 2 Lo	326
				Anlg In 1 Loss	324	Anlg In 2 Loss	327
	Analog Outputs	Anlg Out Contig	340	Analog Out1 Hi	343		
		Anlg Out Absolut	341	Analog Out1 Lo	344		
		Analog Out1 Sel	342				
	Digital Inputs	Digital In1-6 Sel	361-366				
	Digital Outputs	Digital Out1 Sel	380	Digital Out2 Sel	384		
		Dig Out1 Level	381	Dig Out2 Level	385		
		Dig Out1 OnTime	382	Dig Out2 OnTime	386		
		Dig Out1 OffTime	383	Dig Out2 OffTime	387		

Monitor File

Motor Control File

으ㅍㅡㅡㄹ	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions	Values	
운 0 8 0 0 0		$\begin{gathered} 047 \\ 0 \end{gathered}$	[Motor OL Hertz] Selects the output frequency below which the motor operating current is derated. The motor thermal overload will generate a fault at lower levels of current. For all settings of overload Hz other than zero, the overload capacity is reduced to 70% when output frequency is zero.		$\begin{array}{r}\underline{042} \\ -220 \\ \hline\end{array}$
		$\begin{gathered} 048 \\ 0 \end{gathered}$	[Motor OL Factor] Sets the operating level for the motor overload. This parameter can be used to raise the level of current that will cause the motor thermal overload to trip. The effective overload factor is a combination of parameters 047 and 048. $\underset{\text { FLA }}{\text { Motor }} \underset{\text { Factor }}{\mathrm{OL}}=\underset{\substack{\text { Operating } \\ \text { Level }}}{\text { and }}$	Default: 1.00 Min/Max: $0.20 / 2.00$ Units: 0.01	$\frac{042}{220}$ i

읖	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions	Values		
	sełnquıp biol	$\begin{gathered} 061 \\ 0 \end{gathered}$	[Autotune] Provides a manual or automatic method for setting [IR Voltage Drop] and [Flux Current Ref], which affect sensorless vector performance. Valid only when parameter 53 is set to "Sensrls Vect," "SV Economize" or "FVC Vector"	Default: Options:	3 "Calculate" 0 "Ready" 1 "Static Tune" 2 "Rotate Tune" 3 "Calculate"	$\begin{aligned} & 053 \\ & 062 \end{aligned}$
			"Ready" $(0)=$ Parameter returns to this se Tune." It also permits manually setting [IR "Static Tune" (1) = A temporary command stator resistance test for the best possible A start command is required following initia returns to "Ready" (0) following the test, a required to operate the drive in normal mo rotated. "Rotate Tune" (2) = A temporary command a rotational test for the best possible auton start command is required following initiation returns to "Ready" (0) following the test, a required to operate the drive in normal mo uncoupled from the load. Results may not during this procedure.	ing following Voltage Dro automatic s ation of this which time de. Used wh that initiates matic setting of this se which time de. Importa e valid if a	g a "Static Tune" or "Rotate p] and [Flux Current Ref]. a non-rotational motor etting of [IR Voltage Drop]. setting. The parameter another start transition is hen motor cannot be a "Static Tune" followed by of [Flux Current Ref]. A etting. The parameter another start transition is ant: Used when motor is load is coupled to the motor	
			ATTENTION: Rotation of th occur during this procedure. equipment damage, it is reco disconnected from the load b "Calculate" (3) = This setting uses motor Voltage Drop] and [Flux Current Ref].	motor in an guard again mmended tha fore proceed ameplate dat	undesired direction can inst possible injury and/or hat the motor be eding. ata to automatically set [IR	
		062	[IR Voltage Drop] Value of voltage drop across the resistance of the motor stator at rated motor current. Used only parameter 53 is set to "Sensrls Vect", "SV Economize" or "FVC Vector."	Default: Min/Max: Units:	$\begin{aligned} & {[\text { [Motor NP Volts] } \times 0.25} \\ & 0.0 /[\text { Motor NP Volts] }] \times 0.25 \\ & 0.1 \text { VAC } \end{aligned}$	$\underline{053}$
		$\begin{gathered} 063 \\ 32 \end{gathered}$	[Flux Current Ref] Value of amps for full motor flux. Used only when parameter 53 is set to "Sensrls Vect", "SV Economize" or "FVC Vector."	Default: Min/Max: Units:	Drive Rating Based 0.00/[Motor NP FLA] 0.01 Amps	$\underline{053}$
		064 0 $2 \ldots .6$	[Ixo Voltage Drop] Value of voltage drop across the leakage inductance of the motor at rated motor current. Used only when parameter 53 is set to "FVC Vector."	Default: Min/Max: Units:	Drive Rating Based 0.0/Motor NP Volts 0.1 VAC	

$\stackrel{\text { 나̇ }}{ }$	$\begin{aligned} & \text { 을 } \\ & \text { 운 } \end{aligned}$	<	Parameter Name and Description See page 3-2 for symbol descriptions	Values		[
은 8 8 1 0		069	[Start/Acc Boost] Sets the voltage boost level for starting and acceleration when "Custom V/Hz" mode is selected. Refer to parameter 083 [Overspeed Limit].	Default: Min/Max: Units:	$\begin{aligned} & {[\text { [Motor NP Volts] } \times 0.25} \\ & 0.0 /[\text { Motor NP Volts] } \times 0.25 \\ & 0.1 \text { VAC } \end{aligned}$	$\begin{aligned} & \underline{053} \\ & 070 \end{aligned}$
		070	[Run Boost] Sets the boost level for steady state or deceleration when "Fan/Pmp V/Hz" or "Custom V/Hz" modes are selected. Refer to the diagram at parameter 083.	Default: Min/Max: Units:	$\begin{aligned} & {[\text { Motor NP Volts] } \times 0.25} \\ & 0.0 /[\text { Motor NP Volts] } \times 0.25 \\ & 0.1 \text { VAC } \end{aligned}$	$\begin{aligned} & \frac{053}{069} \\ & \hline \end{aligned}$
		071	[Break Voltage] Sets the voltage the drive will output at [Break Frequency]. Refer to parameter 083 [Overspeed Limit].	Default: Min/Max: Units:	$\begin{aligned} & \text { [Motor NP Volts] } \times 0.25 \\ & 0.0 /[\text { Motor NP Volts] } \\ & 0.1 \text { VAC } \end{aligned}$	$\begin{aligned} & \frac{053}{072} \\ & \hline \end{aligned}$
		072	[Break Frequency] Sets the frequency the drive will output at [Break Voltage]. Refer to parameter 083 [Overspeed Limit].	Default: Min/Max: Units:	$\begin{aligned} & {[\text { [Motor NP Hertz] } \times 0.25} \\ & 0.0 / 400.0 \\ & 0.1 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \frac{053}{071} \\ & \hline \end{aligned}$

Speed Command File

읖	$\begin{array}{r} \text { 을 } \\ \text { 응 } \end{array}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions	Values		
		$\begin{gathered} 080 \\ 0 \end{gathered}$	[Speed Mode] Sets the method of speed regulation. - Open Loop provides no speed compensation due to load variations. This is strict volts per hertz output as a function of the speed reference. - Slip Comp provides for frequency output adjustment as a function of load. The amount of compensation is defined by the value of 121 [Slip RPM @ FLA]. - Process PI allows for the output motor speed (frequency) to be adjusted based on the outer control loop regulator. Refer to Appendix C.	Default: Options:	0 "Open Loop" 0 "Open Loop" 1 "Slip Comp" 2 "Process Pl"	$\underline{121}$ thru $\underline{138}$

읖	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	찬	Parameter Name and Description See page 3-2 for symbol descriptions	Values		(\%
		$\begin{gathered} 096 \\ 0 \end{gathered}$	[TB Man Ref Sel] Sets the manual speed reference source when a digital input is configured for "Auto/Manual." ${ }^{(1)}$ "Analog In 2" is not a valid selection if it was selected for any of the following: - [Trim In Select] - [PI Feedback Sel] - [PI Reference Sel] - [Current Lmt Sel]	Default: Options:	1 "Analog $\ln 1 "$ 1 "Analog $\ln 1 "$ 2 "Analog $\ln "$ "(1) $3-8$ "Reserved" 9 "MOP Level"	$\underline{097}$
		097	[TB Man Ref Hi] Scales the upper value of the [TB Man Ref Sel] selection when the source is an analog input.	Default: Min/Max: Units:	$\begin{aligned} & \text { [Maximum Speed] } \\ & -/+[\text { Maximum Speed }] \\ & 0.1 \mathrm{~Hz} \end{aligned}$	096
		098	[TB Man Ref Lo] Scales the lower value of the [TB Man Ref Sell selection when the source is an analog input.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \mathrm{~Hz} \\ & -/+[\text { Maximum Speed }] \\ & 0.1 \mathrm{~Hz} \end{aligned}$	096
		$\begin{aligned} & 101 \\ & 102 \\ & 103 \\ & 104 \\ & 105 \\ & 106 \end{aligned}$	[Preset Speed 1] [Preset Speed 2] [Preset Speed 3] [Preset Speed 4] [Preset Speed 5] [Preset Speed 6] Provides an internal fixed speed command value. In bipolar mode direction is commanded by the sign of the reference.	Default: Min/Max: Units:	5.0 Hz 10.0 Hz 20.0 Hz 30.0 Hz 40.0 Hz 50.0 Hz $-/+[\mathrm{Maximum}$ Speed] 0.1 Hz	090
		107	[Purge Speed] Provides a fixed internal speed similar to [Preset Speed x]. It is also the frequency the drive uses when the Purge digital input is closed.	Default: Min/Max: Units:	$\begin{aligned} & 5.0 \mathrm{~Hz} \\ & -/+[\mathrm{Maximum} \text { Speed }] \\ & 0.1 \mathrm{~Hz} \end{aligned}$	

$\underline{\sim}$	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions	Values	
		117 0	[Trim In Select] Specifies which analog input signal is being used as a trim input. The trim input signal is added to the Reference A signal. If an analog input is used as the trim signal, two scaling parameters are provided.	Default: 2 "Analog In 2" Options: 1 "Analog In 1" 2 "Analog I 2 2" $3-8$ "Reserved" 9 "MOP Level" 10 "Reserved" 11 "Preset Spd1" 12 "Preset Spd2" 13 "Preset Spd3" 14 ""reset Spd4" 15 "Preset Spd5" 16 "Preset Spd6" 17 "Purge" 18 "Local OIM 19 "DPI Port 2" 20 "DPI Port 3" 21 "Reserved" 22 "Network" 23 "Reserved"	090
		$\begin{gathered} 118 \\ 0 \end{gathered}$	[Trim Out Select] Specifies which speed references are to be	ced Control Option Only.	$\frac{117}{119}$ 120
		119	[Trim Hi] Scales the upper value of the [Trim In Select] selection when the source is an analog input.	Default: 60.0 Hz Min/Max: $-+[$ Maximum Speed $]$ Units: 0.1 Hz	
		120	[Trim Lo] Scales the lower value of the [Trim In Select] selection when the source is an analog input.	Default: 0.0 Hz Min/Max: $-1+[$ Maximum Speed $]$ Units: 0.1 Hz	117

	은	<	Parameter Name and Description See page 3-2 for symbol descriptions	Values		
SPEED COMMAND		Important: Parameters in the Slip Comp Group are used to enable and tune the Slip Compensation Regulator. In order to allow the Slip Compensation Regulator to control drive operation, parameter 080 must be set to 1 "Slip Comp".				
		121	[Slip RPM @ FLA] Sets the amount of compensation to drive output at motor FLA. If the value of parameter 061 [Autotune] = 3 "Calculate" changes made to this parameter will not be accepted.	Default: Min/Max Units:	Based on [Motor NP RPM] 0.0/1200.0 RPM 0.1 RPM	$\frac{061}{080}$ $\frac{122}{123}$ 1
		122	[Slip Comp Gain] Sets the response time of slip compensation.	Default: Min/Max Units:	$\begin{aligned} & 40.0 \\ & 1.0 / 100.0 \\ & 0.1 \\ & \hline \end{aligned}$	$\frac{\frac{080}{121}}{\frac{122}{12}}$
		123	[Slip RPM Meter] Displays the present amount of adjustment being applied as slip compensation.	Default: Min/Max Units:	$\begin{aligned} & \text { Read Only } \\ & \text {-/+300.0 RPM } \\ & \text { 0.1 RPM } \end{aligned}$	$\frac{\frac{080}{121}}{\frac{122}{}}$

으플	$\begin{aligned} & \text { 을 } \\ & \text { 웅 } \end{aligned}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions	Values		
2 20 0		126 0	[PI Reference Sel] Selects the source of the PI reference.	Default: Options:	0 "PI Setpoint" 0 "PI Setpoint" 1 "Analog In 1" 2 "Analog In 2" $3-8$ "Reserved" 9 "MOP Level" 10 "Master Ref" 11 "Preset Spd1" 12 "Preset Spd2" 13 "Preset Spd3" 14 "Preset Spd4" 15 "Preset Spd5" 16 "Preset Spd6" 17 "Purge" 18 "Local OIM" 19 "DPI Port 2" 20 "DPI Port 3" 21 "Reserved" 22 "Network" 23 "Reserved"	$\begin{array}{r}\frac{124}{\text { thru }} \\ 138 \\ \hline 8\end{array}$
	믄あU은	127	[PI Setpoint] Provides an internal fixed value for process setpoint when [PI Reference Sel] is set to "PI Setpoint."	Default: Min/Max: Units:	$\begin{aligned} & 50.00 \% \\ & -/+100.00 \% \text { of Maximum } \\ & \text { Process Value } \\ & 0.01 \% \end{aligned}$	124 thru 138
		$\begin{gathered} 128 \\ 0 \end{gathered}$	[PI Feedback Sel] Selects the source of the PI feedback.	Default: Options:	2 "Analog In 2" See [PI Reference Sel].	124 thru 138
		129	[PI Integral Time] Time required for the integral component to reach 100% of [PI Error Meter]. Not functional when the PI Hold bit of [PI Control] = "1" (enabled). A value of zero disables this parameter	Default: Min/Max: Units:	$\begin{aligned} & \text { 2.00 Secs } \\ & 0.00 / 100.00 \text { Secs } \\ & 0.01 \text { Secs } \end{aligned}$	124 thru 138
		130	[PI Prop Gain] Sets the value for the PI proportional component. PI Error \times PI Prop Gain $=$ PI Output	Default: Min/Max: Units:	$\begin{aligned} & 1.00 \\ & 0.00 / 100.00 \\ & 0.01 \end{aligned}$	124 thru 1388
		131	[PI Lower Limit] Sets the lower limit of the PI output.	Default: Min/Max: Units:	$\begin{aligned} & \text {-[Maximum Freq] } \\ & -/+400.0 \mathrm{~Hz} \\ & 0.1 \mathrm{~Hz} \end{aligned}$	124 thru 138
		132	[PI Upper Limit] Sets the upper limit of the PI output.	Default: Min/Max: Units:	$\begin{aligned} & +[\text { Maximum Freq] } \\ & -/+400.0 \mathrm{~Hz} \\ & 0.1 \mathrm{~Hz} \end{aligned}$	124 thru 138

Dynamic Control File

읖	$\begin{array}{r} \text { 을 } \\ \hline \end{array}$	2	Parameter Name and Description See page 3-2 for symbol descriptions	Values		
		$\begin{aligned} & \hline 140 \\ & 141 \end{aligned}$	[Accel Time 1] [Accel Time 2] Sets the rate the drive ramps to its output frequency after a start command or during a speed change. $\frac{\text { Max Speed }}{\text { Accel Time }}=\text { Accel Rate }$ Two accel times are provided to allow acceleration rate changes "on the fly" using a building automation system command, digital input, or F-Key if configured (see Appendix B).	Default: Min/Max Units:	$\begin{aligned} & \hline \text { 20.0 Secs } \\ & 20.0 \text { Secs } \\ & 0.1 / 3600.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	$\begin{aligned} & \hline \frac{142}{143} \\ & \hline \frac{146}{146} \\ & \hline \frac{361}{\text { thru }} \\ & \hline 366 \\ & \hline \end{aligned}$
		$\begin{aligned} & 142 \\ & 143 \end{aligned}$	[Decel Time 1] [Decel Time 2] Sets the rate of decel for all speed decreases. $\frac{\text { Max Speed }}{\text { Decel Time }}=\text { Decel Rate }$ Two decel times are provided to allow acceleration rate changes "on the fly" using a building automation system command, digital input, or F-Key if configured (see Appendix B).	Default: Min/Max: Units:	$\begin{aligned} & \text { 20.0 Secs } \\ & 20.0 \text { Secs } \\ & 0.1 / 3600.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	$\begin{array}{r}140 \\ 141 \\ \hline 146 \\ \hline 361 \\ \text { thru } \\ \hline 366\end{array}$
		146	[S Curve \%] Sets the percentage of accel or decel time that is applied to the ramp as S Curve. Time is added, $1 / 2$ at the beginning and $1 / 2$ at the end of the ramp.	Default: Min/Max: Units:	$\begin{aligned} & 20 \% \\ & 0 / 100 \% \\ & 1 \% \end{aligned}$	140 thru 143
		$\begin{gathered} 147 \\ 0 \end{gathered}$	[Current Lmt Sel] Selects the source for the adjustment of current limit (i.e. parameter, analog input, etc.).	Default: Options:	0 "Cur Lim Val" 0 "Cur Lim Val" 1 "Analog In 1" 2 "Analog In 2"	$\frac{146}{149}$
	$\stackrel{n}{\square}$	148	[Current Lmt Val] Defines the current limit value when [Current Lmt Sel] = "Cur Lim Val."	Default: Min/Max: Units:	[Rated Amps] $\times 1.5$ (Equation approximates default value.) Drive Rating Based 0.1 Amps	$\frac{147}{149}$
	뭄	149	[Current Lmt Gain] Sets the responsiveness of the current limit.	Default: Min/Max: Units:	$\begin{aligned} & 200 \\ & 0 / 5000 \\ & 1 \end{aligned}$	$\frac{147}{148}$
		150	[Drive OL Mode] Selects the drive's response to increasing drive temperature.	Default: Options:	3 "Both-PWM 1st" 0 "Disabled" 1 "Reduce CLim" 2 "Reduce PWM" 3 "Both-PWM 1st"	219

읖	은	\%	Parameter Name and Description See page 3-2 for symbol descriptions	Values	
		151	[CarrierFrequency] Sets the carrier frequency for the PWM output. Drive derating may occur at higher carrier frequencies. For derating information, refer to Appendix A.	Default: 4 kHz Min/Max: $2 / 10 \mathrm{kHz}$ Units: 1 kHz	
		$\begin{aligned} & 155 \\ & 156 \end{aligned}$	[Stop Mode A] [Stop Mode B] Active stop mode. [Stop Mode A] is active unless [Stop Mode B] is selected by inputs. Allows switching between two stop modes using external logic. ${ }^{(1)}$ When using options 1 or 2 , refer to the Attention statements at [DC Brake Level].	Default: 0 "Coast" Default: 1 "Ramp" Options: 0 "Coast" 1 "Ramp"(1) 2 "Ramp to Hold"(1) 3 "DC Brake"	$\frac{157}{158}$ $\frac{159}{6}$
			ATTENTION: If a hazard of in material exists, an auxiliary m used. ATTENTION: The user mus emergency stop circuit outsid must disable the system in cas Uncontrolled machine operation followed. Failure to observe this injury.	jury do to movement of equipment or echanical braking device must be provide an external, hard wired of the drive circuitry. This circuit se of improper operation. on may result if this procedure is not is precaution could result in bodily	

$\stackrel{\text { © }}{\underline{\text { İ }}}$	$\begin{aligned} & \text { 응 } \\ & \hline \text { 웅 } \end{aligned}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions	Values		
		157	[DC Brake Lvl Sel] Selects the source for [DC Brake Level].	Default: Options:	0 "DC Brake Lvl" 0 "DC Brake Lvl" 1 "Analog In 1" 2 "Analog In 2"	$\frac{155}{\frac{156}{158}} \frac{159}{159}$
		158	[DC Brake Level] Defines the $D C$ brake current level injected into the motor when "DC Brake" is selected as a stop mode. The DC braking voltage used in this function is created by a PWM algorithm and may not generate the smooth holding force needed for some applications.	Default: [Rated Amps] Min/Max: /[Rated Amps] $\times 1.5$ (Equation yields approximate maximum value.) Units: 0.1 Amps		
			ATTENTION: If a hazard of in or material exists, an auxiliary used. Failure to observe this bodily injury or loss of life. ATTENTION: This feature sh permanent magnet motors. M braking. Failure to observe th to, or destruction of, equipme	injury due to m mechanical b precaution colda ould not be u otors may be s precaution t.	movement of equipment braking device must be ould result in severe used with synchronous or demagnetized during could result in damage	
		159	[DC Brake Time] Sets the amount of time DC brake current is "injected" into the motor.	Default: Min/Max: Units:	$\begin{aligned} & \text { 0.0 Secs } \\ & 0.0 / 90.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	$\frac{155}{\text { thru }}$ $\frac{158}{\text { i }}$
		160	[Bus Reg Ki] (Bus Reg Gain) Sets the responsiveness of the bus regulator.	Default: Min/Max: Units:	$\begin{aligned} & 450 \\ & 0 / 5000 \end{aligned}$	$\frac{161}{162}$

쁲	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions	Values		
		163	[DB Resistor Type] Selects whether the internal or an external DB resistor will be used. If a dynamic brake resistor is connected to the drive, [Bus Reg Mode x], A, B or Both (if used), must be set to either option 2, 3 or 4.	Default: Options:	"Internal Res" "Internal Res" "External Res" "None"	$\frac{161}{162}$
			ATTENTION: The drive does mounted brake resistors. A risk resistors are not protected. Ex self-protected from over temp in Figure C .1 on page $\mathrm{C}-1$, or ATTENTION: Equipment dan (internal) resistor is installed Res." Thermal protection for th resulting in possible device da	not offer prot k of fire exists xternal resisto erature or the equivalent, m mage may res and this param he internal res amage.	on for externally xternal braking ckages must be ective circuit shown be supplied. a drive mounted is set to "External will be disabled,	
		$\begin{array}{\|l\|} \hline 164 \\ 2 \ldots .6 \end{array}$	[Bus Reg Kp] Proportional gain for the bus regulator. Used to adjust regulator response.	Default: Min/Max: Units:		
		$\begin{array}{\|l\|} \hline 165 \\ 2 . . .6 \\ \hline \end{array}$	[Bus Reg Kd] Derivative gain for the bus regulator. Used to control regulator overshoot.	Default: Min/Max: Units:		

읖	O	\%	$\begin{array}{l}\text { Parameter Name and Description } \\ \text { See page 3-2 for symbol descriptions }\end{array}$ Values	
		168	[LevelSense Start] Default: 1 "Enabled" Enables/disables a feature to issue a Start Options: 0 "Disabled" or Run command and automatically 1 "Enabled" resume running at commanded speed after drive input power is restored. Requires a digital input configured for Run or Start and a valid start contact. Enables/disables a feature to issue a start or run command and automatically run at the commanded speed when drive input power is applied. Disabled: The drive starts on the open-to-closed transition of the control source start input when no start inhibit conditions are present (edge-sensitive detection). Enabled: The drive starts when the control source start input is closed, no start inhibit conditions are present, and power is applied (level-sensitive detection). Note that this feature (LevelSense Start) requires a digital input configured for run or start and a valid start contact.	(i)
			ATTENTION: Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national and international codes, standards, regulations or industry guidelines. ATTENTION: Be aware of the following: - Setting parameter 168 to 1 (Enabled) immediately applies output power to the motor when all start conditions are met. - If the drive is running from the terminal block, LevelSense Start is enabled, and a fault occurs, the drive coasts to rest and generates a fault. In this case, resetting and clearing the fault immediately restarts the drive without any change to the start or stop input states. When this function is enabled, the user must ensure that automatic start up of the driven equipment will not cause injury to operating personnel or damage to the driven equipment. In addition, the user is responsible for providing suitable audible or visual alarms or other devices to indicate that this function is enabled and the drive may start at any moment. Failure to observe this precaution could result in severe bodily injury or loss of life. ATTENTION: Disabling this function will alter the operation of the drive or, for drives with the bypass option, inhibit the drive from starting. Do not disable this function. Failure to observe this precaution could result in severe bodily injury or loss of life.	

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | Parameter Name and Description
 See page 3-2 for symbol descriptions | Values | |

읖	$\begin{aligned} & \text { 으́ } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions			Values		
		175	[Auto Rstrt Delay] Sets the time between restart attempts when [Auto Rstrt Tries] is set to a value other than zero.			Default: 30.0 Secs Min/Max: $0.5 / 30.0$ Secs Units: 0.1 Secs		174
		$\begin{gathered} 178 \\ 0 \end{gathered}$	[Sleep Wake Mode] Enables/disables the Sleep/Wake function. Important: When enabled, the following conditions must be met: - A proper value must be programmed for [Sleep Level] \& [Wake Level]. - A speed reference must be selected in [Speed Ref A Sel]. - At least one of the following must be programmed (and input closed) in [Digital Inx Sell; "Enable," "Stop=CF," "Run," "Run Forward," "Run Reverse."			Default: 0 Options: 0 1	"Disabled" "Disabled" "Direct"	1
				ATTENTIO unexpecte damage an inappro considerin could resu	ON: Enabling the S d machine operatio nd/or personal injury opriate application. g the information b lt in personal injury	leep-Wake func on during the W ry can result if Do Not use this below. Failure to or damage to	ction can cause Wake mode. Equipment this parameter is used in s function without observe this precaution equipment.	
			Conditio Importan	ons Required to nt: P089 [Logic	Start Drive $\text { Source Sel] = } 0 \text { " } \mathrm{T}$	Terminal Blk"		
				After Power-Up	After a Drive Fault		After a Stop Command	
			Input		Reset by Stop-CF, OIM or TB	Reset by Clear Faults (TB)	OIM or TB	
			Stop	Stop Closed Wake Signal	Stop Closed Wake Signal New Start or Run Cmd	Stop Closed Wake Signal	Stop Closed Direct Mode Analog Sig. > Wake Level	
			Enable	Enable Closed Wake Signal	Enable Closed Wake Signal New Start or Run Cmd	Enable Closed Wake Signal	Enable Closed Direct Mode Analog Sig. > Wake Leve	
			Run Run For. Run Rev.	Run Closed Wake Signal	New Run Cmd. Wake Signal	Run Closed Wake Signal	New Run Cmd. Wake Signal	

읖	응	${ }^{\circ}$	Parameter Name and Description See pace 3-2 for symbol descriptions	Values	

Sleep-Wake Operation
178
The normal operation of this function is to start (wake) the drive when the selected analog signal is greater than or equal to a user-specified wake level and stop the drive when an analog signal selected by [Logic Source Sel] is less than or equal to a user-specified sleep level.
Assuming all drive permissive conditions are met, the drive will start when [Sleep-Wake Mode] is enabled (= Direct) and the absolute value of the [Sleep-Wake Ref] is greater than the programmed [Wake Level] for longer than the programmed [Wake Time].
The drive will stop when the absolute value of the [Sleep-Wake Ref] is less than the programmed [Sleep Level] for longer than the programmed [Sleep Time].
While the drive is measuring the time above [Wake Level], it will indicate a "Waking" alarm at [Drive Alarm] bit 10 "Waking." If [Sleep-Wake Ref] goes above [Sleep Level] or below [Wake Level] the corresponding timer is reset (Wake timer and Sleep timer, respectively).
Any active Stop commands will be honored immediately (i.e. no Sleep Timer). However, after a Stop or Fault, a new Start/Run command is required to reset Sleep-Wake control.
There are two ways to override the normal Sleep-Wake operations:
(1) Sleep Override - starting with Analog Input < Sleep Level. This mode prevents the Analog Input from being able to stop the drive.
(2) Wake Override - starting with Analog Input > Sleep Level \& < Wake Level. This mode still allows the drive to be stopped when Analog Input goes below [Sleep Level].
The capability of Sleep-Wake to be overridden depends on the value selected by [Logic Source Sel]. When the Logic Source is "All Ports" only a "Wake Override" is possible. When the Logic Source is DPI Ports (i.e. Local OIM, DPI Ports, or Network) both Sleep and Wake Overrides are possible. When the Logic Source is "Terminal Blk" no override of Sleep-Wake is possible. If starting via Sleep-Wake override, it remains in effect until the next stop command.
[Sleep Level] and [Wake Level] are adjustable while the drive is "awake". If these levels are set incorrectly, the "Sleep Config" alarm is set. If the current configuration is not corrected, the drive will stop after the programmed [Sleep Time].
Even though the Sleep-Wake feature is enabled, the operation of other start modes is unchanged (e.g. if Level Sense Start is set to Enabled, Logic Source Select is set to All Ports, and a start command is asserted, the drive will start immediately after [Sleep-Wake Ref] reaches the sleep level) due to Sleep Override.
The Sleep-Wake feature can also be overridden in the following ways:

- The Purge digital input overrides all Sleep-Wake operations. Asserting Purge will start the drive even if [Sleep-Wake Ref] is below [Sleep Level]. Negating Purge will cause the drive to stop if no valid StartWake signal is present. While Purge is active, the Sleep-Wake analog input will not be able to start or stop the drive.
- The OIM Control digital input allows an attached OIM (DPI port) to start the drive by overriding the Sleep-Wake Sleep signal (i.e. the analog input is below the Sleep level). Once overridden by the OIM, the Sleep-Wake analog input will no longer be able to start or stop the drive until it is restarted while the analog input is above the Sleep level. Purge will override OIM control.

읖	$\begin{aligned} & \text { 을 } \\ & \hline \end{aligned}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions	Values		[
		$\begin{gathered} 179 \\ 0 \end{gathered}$	[Sleep Wake Ref] Selects the source of the input controlling the Sleep-Wake function.	Default: Options:	2 "Analog $\ln 2 "$ 1 "Analog $\ln 1 "$ 2 "Analog $\ln 2 "$	
		180	[Wake Level] Defines the analog input level that will start the drive.	Default: Min/Max: Units:	$6.000 \mathrm{~mA}, 6.000$ Volts [Sleep Level]/20.000 mA [Sleep Level]/10.000 Volts 0.001 mA 0.001 Volts	181
		181	[Wake Time] Defines the amount of time at or above [Wake Level] before a Start is issued.	Default: Min/Max: Units:	$\begin{aligned} & 1.0 \text { Secs } \\ & 0.0 / 30.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	180
		182	[Sleep Level] Defines the analog input level that will stop the drive.	Default: Min/Max: Units:	$5.000 \mathrm{~mA}, 5.000$ Volts $4.000 \mathrm{~mA} /[$ Wake Level] 0.000 Volts/[Wake Level] 0.001 mA 0.001 Volts	183
		183	[Sleep Time] Defines the amount of time at or below [Sleep Level] before a Stop is issued.	Default: Min/Max: Units:	$\begin{aligned} & 1.0 \text { Secs } \\ & 0.0 / 30.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	182
		184	[Power Loss Mode] Sets the reaction to a loss of input power. Power loss is recognized when: - DC bus voltage is $\leq 73 \%$ of [DC Bus Memory] and [Power Loss Mode] is set to "Coast". - DC bus voltage is $\leq 82 \%$ of [DC Bus Memory] and [Power Loss Mode] is set to "Decel".	Default: Options:	0 "Coast" 0 "Coast" 1 "Decel" 2 "Continue"(1) 3 "Coast input"(1), 4 "Decel input" 1 ", (1) Frames $2,3,4,5, \& 6$	$\underline{013}$
		185	[Power Loss Time] Sets the time that the drive will remain in power loss mode before a fault is issued.	Default: Min/Max: Units:	$\begin{aligned} & 0.5 \text { Secs } \\ & 0.0 / 60.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	184
			[Power Loss Level] Sets the level at which the Power Loss Mode selection will occur.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \mathrm{VDC} \\ & 0.0 / 999.9 \mathrm{VDC} \\ & 0.1 \mathrm{VDC} \end{aligned}$	

Utility File

읖		$\stackrel{1}{2}$	Parameter Name and Description See page 3-2 for symbol descriptions	Values		
		$\begin{gathered} 190 \\ 0 \end{gathered}$	[Direction Mode] Selects the method for changing drive direction.	Default: Options:	"Reverse Dis" "Unipolar" "Bipolar" "Reverse Dis"	$\begin{aligned} & \begin{array}{l} \frac{320}{\text { thru }} \\ \frac{327}{361} \\ \frac{361}{\text { thru }} \\ 366 \\ \hline 3 \end{array} \\ & \hline \end{aligned}$
E			ATTENTION: Setting param "Bipolar" may cause unwanted machinery cannot be damage the setting of this parameter precaution could result in dan Unipolar: Drive receives unsigned referen command from a logic source such as dig Bipoloar: Drive receives signed reference Reverse Disable: Drive receives signed r reference, the drive is not permitted to rev	ter 190 to op d motor direction d by reverse r 0 or 1. Failu mage to, or de ce signal and al inputs or a ference; how rse.	0 "Unipolar" or 1 Verify driven on before changing observe this action of, equipment. parate direction port. regardless of the	
		192	[Save OIM Ref] Enables a feature to save the present frequency reference value issued by the OIM to Drive memory on power loss. Value is restored to the OIM on power up. Factory Default Bit Values			
		193	[Man Ref Preload] Enables/disables a feature to automatically load the present "Auto" frequency reference value into the OIM when "Manual" is selected. Allows smooth speed transition from "Auto" to "Manual."	Default: Options:		

은	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions	Values		
$\begin{aligned} & \frac{E}{3} \\ & \frac{1}{5} \end{aligned}$		201	[Language] Selects the display language when using an LCD OIM.	Default: Options:	0 "Not Selected" 0 "Not Selected" 1 "English"" 2 "Français" 3 "Español" 4 "ttaliano" 5 "Deutsch" 6 "Reserved" 7 "Português"	
		$\begin{gathered} 202 \\ 0 \end{gathered}$	[Voltage Class] Configures the drive current rating and associates it with the selected voltage (i.e. 400 or 480 V). This parameter is normally used when downloading parameter sets.	Default: Options:	Based on Drive Cat. No. 2 3 \quad "Low Voltage"	
		203	[Drive Checksum] Provides a checksum value that indicates whether or not a change in drive programming has occurred.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & 0 / 65535 \\ & 1 \end{aligned}$	

읖	$\begin{array}{r} \text { 을 } \\ \text { 웅 } \\ \hline \end{array}$	$\stackrel{\text { \% }}{ }$	Parameter Name and Description See page 3-2 for symbol descriptions Values	
		212	[Drive Alarm 2] Type 2 alarm conditions that currently exist in the drive. Refer to Chapter 4 for more information about alarms. ${ }^{(1)}$ Frame 2, 3, 4, 5, \& 6	211
		213	[Speed Ref Source] Default: Read Only Displays the source of the speed reference to the drive. Options: 0 "PI Output" 1 "Analog In 1" 2 "Analog In 2" $3-8$ "Reserved" 9 "MOP Level" 10 "Jog Speed" 11 "Preset Spd1" 12 "Preset Spd2" 13 "Preset Spd3" 14 "Preset Spd4" 15 "Preset Spd5" 16 "Preset Spd6" 17 "Purge" 18 "Local OIM" 19 "DPI Port 2" 20 "PI Port 3" 21 "Reserved" 22 "Network" 23 "Reserved"	$\underline{090}$
		214		

은	$\begin{aligned} & \text { 응 } \\ & \text { 훈 } \end{aligned}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions	Values	
		229	[Alarm 1 @ Fault] Captures and displays [Drive Alarm 1] at th the last fault.	Read Only e time of	$\underline{211}$ 224 thru $\underline{230}$
$\frac{\grave{y y}}{\underline{E}}$		230	[Alarm 2 @ Fault] Captures and displays [Drive Alarm 2] at th the last fault.	Read Only e time of , 3, 4, 5, \& 6	$\underline{212}$ $\underline{224}$ thru 230
		$\begin{aligned} & 234 \\ & 236 \end{aligned}$	[Testpoint 1 Sel] [Testpoint 2 Sel] Selects the function whose value is displayed value in [Testpoint x Data]. These are internal values that are not accessible through parameters. See Diagnostic Parameters on page 4-12 for a listing of available codes and functions.	Default: 499 Min/Max: $0 / 65535$ Units: 1	
		$\begin{aligned} & 235 \\ & 237 \end{aligned}$	[Testpoint 1 Data] [Testpoint 2 Data] The present value of the function selected in [Testpoint x Sel].	Default: Read Only Min/Max: $0 / 4294697295$ Units: 1	

Communication File

은	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name and Description See page 3-2 for symbol descriptions Values	
		286	[Manual Mask] Disables manual requests at the port corresponding to bit number. Factory Default Bit Values	
		288	[Stop Owner] Inputs that are presently issuing a valid stop command. Bit \#	
			[Manual Owner] Indicates the port in manual control.	

읓	$\begin{aligned} & \text { 응 } \\ & \text { 웅 } \end{aligned}$	<	Parameter Name and Description See page 3-2 for symbol descriptions	Values	
		$\begin{gathered} 300 \\ 301 \\ 0 \end{gathered}$	[Data In A1] - Link A Word 1 [Data In A2] - Link A Word 2 Parameter number whose value will be written from a communications device data table. Parameters that can only be changed while drive is stopped cannot be used as Datalink inputs. Entering a parameter of this type will "Disable" the link. Refer to your communications option manual for datalink information.	Default: $0(0=$ "Disabled" $)$ Min/Max: $0 / 387$ Units: 1	
		$\begin{array}{r} 302 \\ 303 \\ 0 \\ \hline \end{array}$	[Data In B1] - Link B Word 1 [Data In B2] - Link B Word 2	See [Data In A1] - Link A Word 1.	
		$\begin{gathered} 304 \\ 305 \\ 0 \\ \hline \end{gathered}$	[Data In C1] - Link C Word 1 [Data In C2] - Link C Word 2	See [Data In A1] - Link A Word 1.	
		$\begin{gathered} 306 \\ 307 \\ 0 \\ \hline \end{gathered}$	[Data In D1] - Link D Word 1 [Data In D2] - Link D Word 2	See [Data In A1] - Link A Word 1.	
		$\begin{aligned} & 310 \\ & 311 \end{aligned}$	[Data Out A1] - Link A Word 1 [Data Out A2] - Link A Word 2 Parameter number whose value will be written to a communications device data table.	Default: $0(0=$ "Disabled") Min/Max: $0 / 387$ Units: 1	
		$\begin{aligned} & 312 \\ & 313 \end{aligned}$	$\begin{aligned} & \text { [Data Out B1] - Link B Word } 1 \\ & \text { [Data Out B2] - Link B Word } 2 \end{aligned}$	See [Data Out A1] - Link A Word 1.	
		$\begin{aligned} & 314 \\ & 315 \end{aligned}$	[Data Out C1] - Link C Word 1 [Data Out C2] - Link C Word 2	See [Data Out A1] - Link A Word 1.	
		$\begin{array}{r} 316 \\ 317 \\ \hline \end{array}$	[Data Out D1] - Link D Word 1 [Data Out D2] - Link D Word 2	See [Data Out A1] - Link A Word 1.	

Inputs \& Outputs File

읖	은	2	$\begin{array}{l}\text { Parameter Name and Description } \\ \text { See page 3-2 for symbol descriptions }\end{array}$ Values	
¢	$\stackrel{\infty}{5}$	320	[Anlg In Config] Selects the type of input signal being used for [Analog In 1] and [Analog In 2]. Note: If bit 1 is set to 0 "Voltage" you must set parameters 322 and 323 to rescale voltage. Bit \# Factory Default Bit Values	$\begin{array}{\|l} \underline{322} \\ \underline{323} \\ \hline \end{array}$
5 0 0 0 0 2 2	은 $\frac{\text { 으N }}{10}$ $\frac{5}{4}$	321	[Anlg In Sqr Root] Enables/disables the square root function for each input. This function should be enabled if the input signal varies with the square of the quantity (i.e., drive speed) being monitored. The square root function is scaled such that the input range is the same as the output range. For example, if the input is setup as a unipolar voltage input, then the input and output ranges of the square root function will be $0-10$ volts. Factory Default Bit Values	

은		$\stackrel{\text { \% }}{ }$	Parameter Name and Description See page 3-2 for symbol descriptions	Values		
		322	[Analog In 1 Hi] Sets the highest input value to the analog input 1 scaling block. The drive scales the value read from the analog input and converts it to units usable for the application. The user controls the scaling by setting parameters that associate the low and high point in the input range with a low and high point in the target range Note: If bit 0 of 320 [Anlg In Config] is parameter to rescale voltage. Analog Input Scaling Example 090 [Speed Ref A Sel] = Analog In 1 091 [Speed Ref A Hi] $=60.0 \mathrm{~Hz}$ 092 [Speed Ref A Lo] $=10.0 \mathrm{~Hz}$ 322 [Analog $\ln 1 \mathrm{Hi}]=10.0 \mathrm{~V}$ 323 [Analog $\ln 1 \mathrm{Lo}]=0.0 \mathrm{~V}$ This is the default setting where minimum input (0.0 V) represents low reference and maximum input 10.0 V represents high reference	 to 0 "Voltage", you must use this		$\underline{091}$
		323	[Analog In 1 Lo] Sets the lowest input value to the analog input 1 scaling block. Note: If bit 0 of 320 [Anlg In Config] is set to 0 "Voltage", you must use this parameter to rescale voltage.	Default Min/Ma Units:	$\begin{aligned} & 4.000 \mathrm{~mA} \\ & 4.000 / 20.000 \mathrm{~mA} \text {, } \\ & 0.000 / 10.000 \mathrm{~V}^{(1)} \text {, } \\ & -1+10.000 \mathrm{~V}^{(2)} \\ & 0.001 \mathrm{~mA}, \\ & 0.001 \mathrm{Volt} \\ & \text { (1) Frame B, C, D, \& E } \\ & \text { (2) Frame 2, 3, } 4,5, \& 6 \end{aligned}$	$\underline{091}$
		324	[Analog In 1 Loss] Selects drive action when an analog signal loss is detected. $1.6 \mathrm{~V} / 3.2 \mathrm{~mA}=$ Signal Loss $1.9 \mathrm{~V} / 3.8 \mathrm{~mA}=$ End Signal Loss Option 1 "Fault" stops the drive on signal loss. All other options permit the input signal to return to a usable level while the drive continues to run.	Default Option	0 "Disabled" 0 "Disabled" 1 "Fault" 2 "Hold Input" 3 "Set Input Lo" 4 "Set Input Hi " 5 "Goto Preset1" 6 "Hold OutFreq"	$\underline{091}$

ATTENTION: Setting parameter 324 to a value greater than 1 allows the input signal to return to a usable level while the drive is running. If a lost analog signal is restored while the drive is running, the drive will ramp to the restored reference level at the rate specified in 140 [Accel Time 1], 141 [Accel Time 2], 142 [Decel Time 1], and 143 [Decel Time 2]. Be aware that an abrupt speed change may occur depending upon the new reference level and the rate specified in these parameters. Failure to observe this precaution could result in bodily injury.

$\stackrel{\text { 읖 }}{ }$	$\begin{array}{r} \text { 을 } \\ \stackrel{\underline{0}}{5} \end{array}$	$\%^{\circ}$	Parameter Name and Description See page 3－2 for symbol descriptions	Values		
$\begin{aligned} & ⿻ 日 禸 \\ & \stackrel{2}{5} \\ & \stackrel{2}{6} \end{aligned}$		343	［Analog Out1 Hi］ Sets the analog output value when the source value is at maximum．	Default： Min／Max： Units：	```10.000 Volts \({ }^{(1)}\) \(20.000 \mathrm{~mA} / 10.000\) Volts \(^{(2)}\) \(0.00 / 10.00\) Volts \(^{(1)}\) \(4.000 / 20.000 \mathrm{~mA}^{(2)}\) -/+10.000 Volts \({ }^{(2)}\) \(0.01 \operatorname{Volt}^{(1)}\) \(0.001 \mathrm{~mA}^{(2)}\) 0.001 Volt \({ }^{(2)}\) \({ }^{(1)}\) Frame B, C, D, \& E \({ }^{(2)}\) Frame 2, 3, 4, 5, \& 6```	340
$\begin{aligned} & \infty \\ & 0 \\ & \vdots \\ & \frac{0}{2} \\ & \hline 1 \end{aligned}$	$\frac{0}{\frac{0}{\pi}}$	344	［Analog Out1 Lo］ Sets the analog output value when the source value is at minimum．	Default： Min／Max： Units：	$0.00 \mathrm{Volts}^{(1)}$ $0.000 \mathrm{Volts}^{2} 4.000 \mathrm{~mA}^{(2)}$ $0.00 / 10.00 \mathrm{Volts}^{(1)}$ $4.000 / 20.000 \mathrm{~mA}^{(2)}$ $-1+10.000 \mathrm{Volts}^{(2)}$ $0.01 \mathrm{Volt}^{(1)}$ $0.001 \mathrm{~mA}^{(2)}$ $0.001 \mathrm{Volt}^{(2)}$ （1）Frame B，C，D，\＆E （2）Frame 2，3，4，5，\＆ 6	$\underline{340}$

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | Parameter Name and Description
 See page 3-2 for symbol descriptions | Values | |

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

읓		${ }^{\circ}$	Parameter Name and Description See page 3-2 for symbol descriptions	Values		
		$\begin{aligned} & \hline \text { Cont. } \\ & 380 \\ & 384 \end{aligned}$		stopped the condition d, and no s equency to equency to requency to rt" or "Run als or exceed or exceeds eds progra mponent ex xceeds pro grammed I ceeds prog or "Ramp to motor. rrent. s output v s output v power tha ing on [Dig al reference	xists. art inhibits exist. motor (indicates 3-wire motor (indicates 2-wire motor (indicates 2-wire at Power Up". ds programmed limit. programmed limit. med limit. ceeds programmed limit. grammed limit. mit. rammed limit. Hold" and DC braking Itage. Itage. caused DC bus voltage to Outx Level]. control.	
		$\begin{aligned} & 381 \\ & 385 \end{aligned}$	Sets the relay activation level for options $10-15$ in [Digital Outx Sel]. Units are assumed to match the above selection (i.e. "At Freq" = Hz, "At Torque" = Amps).	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 / 819.2 \\ & 0.1 \end{aligned}$	380
		$\begin{array}{l\|} \hline 382 \\ 386 \end{array}$	Sets the "ON Delay" time for the digital outputs. This is the time between the occurrence of a condition and activation of the relay.	Default: Min/Max: Units:	$\begin{aligned} & 0.00 \text { Secs } \\ & 0.00 \text { Secs } \\ & 0.00 / 600.00 \text { Secs } \\ & 0.01 \text { Secs } \end{aligned}$	380
		$\begin{aligned} & 383 \\ & 387 \end{aligned}$	Sets the "OFF Delay" time for the digital outputs. This is the time between the disappearance of a condition and de-activation of the relay.	Default: Min/Max: Units:	$\begin{aligned} & 0.00 \text { Secs } \\ & 0.00 \text { Secs } \\ & 0.00 / 600.00 \text { Secs } \\ & 0.01 \text { Secs } \end{aligned}$	380

Parameter Cross Reference - by Name

Parameter Name	Number	Group	Page
Accel Time X	140, 141	Ramp Rates	3-30
Alarm Config 1	259	Alarms	3-50
Alarm X @ Fault	229, 230	Diagnostics	3-49
Analog In X Hi	322, 325	Analog Inputs	3-55
Analog In X Lo	323, 326	Analog Inputs	3-55
Analog In X Loss	324, 327	Analog Inputs	3-55
Analog In1 Value	16	Metering	3-12
Analog In2 Value	17	Metering	3-12
Analog Out1 Hi	343	Analog Outputs	3-58
Analog Out1 Lo	344	Analog Outputs	3-58
Analog Out1 Sel	342	Analog Outputs	3-57
Anlg In Config	320	Analog Inputs	3-54
Anlg In Sqr Root	321	Analog Inputs	3-54
Anlg Out Absolut	341	Analog Outputs	3-57
Anlg Out Config	340	Analog Outputs	3-57
Auto Rstrt Delay	175	Restart Modes	3-38
Auto Rstrt Tries	174	Restart Modes	3-37
Autotune	61	Torq Attributes	3-17
Break Frequency	72	Volts per Hertz	3-18
Break Voltage	71	Volts per Hertz	3-18
Bus Reg Kd	165	Stop/Brake Modes	3-34
Bus Reg Ki	160	Stop/Brake Modes	3-32
Bus Reg Kp	164	Stop/Brake Modes	3-34
Bus Reg Mode X	161, 162	Stop/Brake Modes	3-33
CarrierFrequency	151	Load Limits	3-31
Commanded Freq	2	Metering	3-11
Compensation	56	Torq Attributes	3-16
Control SW Ver	29	Drive Data	3-12
Current Lmt Gain	149	Load Limits	3-30
Current Lmt Sel	147	Load Limits	3-30
Current Lmt Val	148	Load Limits	3-30
Data In XX	300-307	Datalinks	3-53
Data Out XX	310-317	Datalinks	3-53
DB Resistor Type	163	Stop/Brake Modes	3-34
DC Brake Level	158	Stop/Brake Modes	3-32
DC Brake Lvl Sel	157	Stop/Brake Modes	3-32
DC Brake Time	159	Stop/Brake Modes	3-32
DC Bus Memory	13	Metering	3-12
DC Bus Voltage	12	Metering	3-12
Decel Time X	142, 143	Ramp Rates	3-30
Dig In Status	216	Diagnostics	3-47
Dig Out Status	217	Diagnostics	3-47
Dig OutX Level	381, 385	Digital Outputs	3-65
Dig OutX OffTime	383, 387	Digital Outputs	3-65
Dig OutX OnTime	382, 386	Digital Outputs	3-65
Digital InX Sel	361-366	Digital Inputs	3-59
Digital OutX Sel	380, 384	Digital Outputs	3-64
Direction Mode	190	Direction Config	3-41
Drive Alarm X	211, 212	Diagnostics	3-45
Drive Checksum	203	Drive Memory	3-43
Drive Logic Rslt	271	Comm Control	3-51
Drive OL Count	219	Diagnostics	3-47
Drive OL Mode	150	Load Limits	3-30
Drive Ramp Rslt	273	Comm Control	3-51
Drive Ref Rslt	272	Comm Control	3-51
Drive Status X	209, 210	Diagnostics	3-44

Parameter Name	Number	Group	Page
Drive Temp	218	Diagnostics	3-47
Elapsed MWh	9	Metering	3-11
Elapsed Run Time	10	Metering	3-11
Fault Amps	225	Diagnostics	3-48
Fault Bus Volts	226	Diagnostics	3-48
Fault Clear	240	Faults	$3-50$
Fault Clear Mode	241	Faults	3-50
Fault Config 1	238	Faults	3-50
Fault Frequency	224	Diagnostics	3-48
Flux Current	5	Metering	3-11
Flux Current Ref	63	Torq Attributes	3-17
Flux Up Mode	57	Torq Attributes	3-16
Flux Up Time	58	Torq Attributes	3-16
Flying Start En	169	Restart Modes	3-36
Flying StartGain	170	Restart Modes	3-36
IR Voltage Drop	62	Torq Attributes	3-17
Ixo Voltage Drop	64	Torq Attributes	3-17
Language	201	Drive Memory	3-43
Last Stop Source	215	Diagnostics	3-47
LevelSense Start	168	Restart Modes	3-35
Load Frm Usr Set	198	Drive Memory	3-42
Logic Source Sel	89	Spd Mode \& Limits	3-21
Man Ref Preload	193	OIM Ref Config	3-41
Manual Mask	286	Masks \& Owners	3-52
Manual Owner	298	Comm Control	3-52
Maximum Freq	55	Torq Attributes	3-16
Maximum Speed	82	Spd Mode \& Limits	3-19
Maximum Voltage	54	Torq Attributes	3-15
Minimum Speed	81	Spd Mode \& Limits	3-19
MOP Frequency	11	Metering	3-11
MOP Rate	195	MOP Config	3-42
Motor NP FLA	42	Motor Data	3-13
Motor NP Hertz	43	Motor Data	3-13
Motor NP Power	45	Motor Data	3-13
Motor NP RPM	44	Motor Data	3-13
Motor NP Volts	41	Motor Data	3-12
Motor OL Count	220	Diagnostics	3-48
Motor OL Factor	48	Motor Data	3-14
Motor OL Hertz	47	Motor Data	3-14
Motor Type	40	Motor Data	3-12
Mtr NP Pwr Units	46	Motor Data	3-13
Output Current	3	Metering	3-11
Output Freq	1	Metering	3-11
Output Power	7	Metering	3-11
Output Powr Fctr	8	Metering	3-11
Output Voltage	6	Metering	3-11
Overspeed Limit	83	Spd Mode \& Limits	3-20
Param Access Lvl	196	Drive Memory	3-42
PI Configuration	124	Process PI	3-26
PI Control	125	Process PI	3-27
PI Error Meter	137	Process PI	3-29
PI Fdback Meter	136	Process PI	3-29
PI Feedback Sel	128	Process PI	3-28
PI Integral Time	129	Process PI	3-28
PI Lower Limit	131	Process PI	3-28
PI Output Meter	138	Process PI	3-29

Parameter Name	Number	Group	Page
PI Preload	133	Process PI	3-29
PI Prop Gain	130	Process PI	3-28
PI Ref Meter	135	Process PI	3-29
PI Reference Sel	126	Process PI	3-28
PI Setpoint	127	Process PI	3-28
PI Status	134	Process PI	3-29
PI Upper Limit	132	Process PI	3-28
Power Loss Level	186	Power Loss	3-40
Power Loss Mode	184	Power Loss	3-40
Power Loss Time	185	Power Loss	3-40
Power Up Marker	242	Faults	3-50
Preset Speed X	101-106	Discrete Speeds	3-23
Purge Speed	107	Discrete Speeds	3-23
Rated Amps	28	Drive Data	3-12
Rated kW	26	Drive Data	3-12
Rated Volts	27	Drive Data	3-12
Reset Meters	200	Drive Memory	3-42
Reset To Defalts	197	Drive Memory	3-42
Run Boost	70	Volts per Hertz	3-18
S Curve \%	146	Ramp Rates	3-30
Save MOP Ref	194	MOP Config	3-42
Save OIM Ref	192	OIM Ref Config	3-41
Save To User Set	199	Drive Memory	3-42
Skip Freq Band	87	Spd Mode \& Limits	3-20
Skip Frequency X	84-86	Spd Mode \& Limits	3-20
Sleep Level	182	Restart Modes	3-40
Sleep Time	183	Restart Modes	3-40
Sleep Wake Mode	178	Restart Modes	3-38
Sleep Wake Ref	179	Restart Modes	3-40
Slip Comp Gain	122	Slip Comp	3-25
Slip RPM @ FLA	121	Slip Comp	3-25
Slip RPM Meter	123	Slip Comp	3-25
Speed Mode	80	Spd Mode \& Limits	3-18
Speed Ref A Hi	91	Speed Reference	3-22
Speed Ref A Lo	92	Speed Reference	3-22
Speed Ref A Sel	90	Speed Reference	3-22
Speed Ref Source	213	Diagnostics	3-46
Start Inhibits	214	Diagnostics	3-46
Start/Acc Boost	69	Volts per Hertz	3-18
Status X @ Fault	227, 228	Diagnostics	3-48
Stop Mode X	155, 156	Stop/Brake Modes	3-31
Stop Owner	288	Masks \& Owners	3-52
SV Boost Filter	59	Torq Attributes	3-16
TB Man Ref Hi	97	Speed Reference	3-23
TB Man Ref Lo	98	Speed Reference	3-23
TB Man Ref Sel	96	Speed Reference	3-23
Testpoint X Data	235, 237	Diagnostics	3-49
Testpoint X Sel	234, 236	Diagnostics	3-49
Torque Current	4	Metering	3-11
Torque Perf Mode	53	Torq Attributes	3-15
Trim Hi	119	Speed Trim	3-24
Trim In Select	117	Speed Trim	3-24
Trim Lo	120	Speed Trim	3-24
Trim Out Select	118	Speed Trim	3-24
Voltage Class	202	Drive Memory	3-43
Wake Level	180	Restart Modes	3-40
Wake Time	181	Restart Modes	3-40

Notes:

Troubleshooting

Chapter 4 provides information to guide you in troubleshooting the VTAC 9. Included is a listing and description of drive faults (with possible solutions, when applicable) and alarms.

For information on...	See page...
Drive Faults	$4-2$
Manually Clearing Faults	$4-4$
Fault Descriptions	$4-4$
Drive Alarms	$4-8$
Clearing Alarms	$4-9$
Alarm Descriptions	$4-10$
Diagnostic Parameters	$4-12$
Common Symptoms and Corrective Actions	$4-13$
Troubleshooting Using the LCD OIM	$4-16$

Drive Faults

A fault is a condition that stops the drive. There are three fault types.

Type	Fault Description	
(1)	Auto-Reset Run	When this type of fault occurs, and [Auto Rstrt Tries] (see page 3-37) is set to a value greater than "0," a user-configurable timer, [Auto Rstrt Delay] (see page 3-38) begins. When the timer reaches zero, the drive attempts to automatically reset the fault. If the condition that caused the fault is no longer present, the fault will be reset and the drive will be restarted.
(2)	Non-ResettableThis type of fault normally requires drive or motor repair. The cause of the fault must be corrected before the fault can be cleared. The fault will be reset on power up after repair.	
(3)	User ConfigurableThese faults can be enabled/disabled to annunciate or ignore a fault condition.	

The drive indicates faults in the following ways:

- Ready LED on the drive cover.
- Parameters 209 [Drive Status 1] and 210 [Drive Status 2].
- Fault queue entries.
- Pop-up screen on the LCD OIM. The screen displays:
- Fault number
- Fault name
- Time that has elapsed since fault occurred.

Figure 4.1 Sample Fault Screen on the LCD OIM

Press any F Key to
Acknowledge the Fault
The fault screen is displayed until it is acknowledged by pressing any F-key or cleared in the drive by other means.

Fault Queue

The drive automatically retains a history of faults that have occurred in the fault queue. The fault queue is accessed using the OIM or PC software.

The fault queue holds the most recent faults. Frames B, C, D, \& E hold four faults and Frames 2, 3, 4, 5, \& 6 hold eight faults. The last fault to occur is indicated in queue entry $\# 1$. As new faults are logged into the queue, existing fault entries are shifted (for example, entry \#1 will move to entry \#2). Once the queue is full, older faults are discarded from the queue as new faults occur.

All entries in the fault queue are retained if power is lost.

The Time Stamp

For each entry in the fault queue, the system also displays a fault code and time stamp value. The time stamp value is the value of an internal drive-under-power timer at the time of the fault. The value of this timer is copied to 242 [PowerUp Marker] when the drive powers up. The fault queue time stamp can then be compared to the value in [PowerUp Marker] to determine when the fault occurred relative to the last drive power up.

The time stamp is cleared when the fault queue is cleared.
Refer to page 4-16 for information on accessing the fault queue using the LCD OIM.

Manually Clearing Faults

A fault condition can be cleared by the following:
 remove the fault pop-up from the LCD OIM screen.
Step 2. Address the condition that caused the fault. The cause must be corrected before the fault can be cleared.
Step 3. After corrective action has been taken, clear the fault using one of the following:

- Set parameter 240 [Fault Clear] to 1 "Clear Faults".
- Press F1 (Cflt) from the fault queue screen.
- Issue a Stop - CF command from the control source.

Resetting faults will clear the faulted status indication. If any fault condition still exists, the fault will be latched, and another entry made in the fault queue.

Note that performing a fault reset does not clear the fault queue. Clearing the fault queue is a separate action. See parameter 240 [Fault Clear].

Fault Descriptions

Table 4.A Fault Types, Descriptions and ActionsActions

Fault	No.	$\begin{aligned} & \stackrel{\stackrel{\rightharpoonup}{0}}{0} \\ & \stackrel{0}{\Omega} \\ & \hline \end{aligned}$	Description	Action
Analog In Loss	29	(1) (3)	An analog input is configured to fault on signal loss. A signal loss has occurred. Configure with [Anlg In 1, 2 Loss] on page 3-55.	1. Check parameters. 2. Check for broken/loose connections at inputs.
Anlg Cal Chksum	108	(2)	The checksum read from the analog calibration data does not match the checksum calculated.	Replace drive.
Auto Rstrt Tries	33	(3)	Drive unsuccessfully attempted to reset a fault and resume running for the programmed number of [Flt RstRun Tries]. Enable/Disable with [Fault Config 1] on page 3-50.	Correct the cause of the fault and manually clear.
AutoTune Aborted	80		Autotune function was canceled by the user or a fault occurred.	Restart procedure.
DB Resistance	69		Resistance of the internal DB resistor is out of range.	Replace resistor.

Fault	No.		Description	Action
Decel Inhibit	24	(3)	The drive is not following a commanded deceleration because it is attempting to limit bus voltage.	1. Verify input voltage is within drive specified limits. 2. Verify system ground impedance follows proper grounding techniques. 3. Disable bus regulation and/or add dynamic brake resistor and/ or extend deceleration time.
Drive OverLoad	64		Drive rating of 110% for 1 minute or 150% for 3 seconds has been exceeded.	Reduce load or extend Accel Time.
Excessive Load	79		Motor did not come up to speed in the allotted time during autotune.	1. Uncouple load from motor. 2. Repeat Autotune.
FluxAmpsRef Rang	78		The value for flux amps determined by the Autotune procedure exceeds the programmed [Motor NP FLA].	1. Reprogram [Motor NP FLA] with the correct motor nameplate value. 2. Repeat Autotune.
Function Loss	2		Function loss input is open.	Check remote wiring.
Ground Fault	13	(1)	A current path to earth ground greater than 25% of drive rating.	Check the motor and external wiring to the drive output terminals for a grounded condition.
Heatsink OvrTemp	8	(1)	Heatsink temperature exceeds 100% of [Drive Temp].	1. Verify that maximum ambient temperature has not been exceeded. 2. Check fan. 3. Check for excess load.
HW OverCurrent	12	(1)	The drive output current has exceeded the hardware current limit.	Check programming. Check for excess load, improper DC boost setting, DC brake volts set too high or other causes of excess current.
Incompat MCB-PB	106	(2)	Drive rating information stored on the power board is incompatible with the main control board.	Load compatible version files into drive.
I/O Comm Loss	121		I/O Board lost communications with the Main Control Board.	Check connector. Check for induced noise. Replace I/O board or Main Control Board.
I/O Board Fail	122		Board failure.	Cycle power. If fault repeats, replace I/O board.
I/O Mismatch	120		Incorrect //O board identified.	Restore I/O board to original configuration, or if new configuration is desired, reset fault.
IR Volts Range	77		"Calculate" is the autotune default and the value determined by the autotune procedure for IR Drop Volts is not in the range of acceptable values.	Re-enter motor nameplate data.
Motor OverLoad	7	$\begin{array}{\|l\|} \hline 1 \\ (3) \end{array}$	Internal electronic overload trip. Enable/Disable with [Fault Config 1] on page 3-50.	An excessive motor load exists. Reduce load so drive output current does not exceed the current set by [Motor NP FLA].

Fault	No.	产	Description	Action
Overspeed Limit	25	(1)	Functions such as Slip Compensation or Bus Regulation have attempted to add an output frequency adjustment greater than that programmed in [Overspeed Limit].	Remove excessive load or overhauling conditions or increase [Overspeed Limit].
OverVoltage	5	(1)	DC bus voltage exceeded maximum value.	Monitor the AC line for high line voltage or transient conditions. Bus overvoltage can also be caused by motor regeneration. Extend the decel time or install dynamic brake option.
Parameter Chksum	100	(2)	The checksum read from the board does not match the checksum calculated.	1. Restore defaults. 2. Reload User Set if used.
Params Defaulted	48		The drive was commanded to write default values to EEPROM.	1. Clear the fault or cycle power to the drive. 2. Program the drive parameters as needed.
Phase Imbalance	37		Phase current displayed in Imbalance Display (221) > percentage set in Imbalance Limit (49) for time set in Imbalance Time (50).	Clear fault.
Phase U to Grnd	38		A phase to ground fault has been detected between the drive and motor in this phase.	1. Check the wiring between the drive and motor. 2. Check motor for grounded phase. 3. Replace drive.
Phase V to Grnd	39			
Phase W to Grnd	40			
Phase UV Short	41		Excessive current has been detected between these two output terminals.	1. Check the motor and drive output terminal wiring for a shorted condition. 2. Replace drive.
Phase VW Short	42			
Phase UW Short	43			
Port 1-6 DPI Loss	$\begin{aligned} & 81- \\ & 86 \end{aligned}$		DPI port stopped communicating. A SCANport device was connected to a drive operating DPI devices at 500 k baud.	1. If adapter was not intentionally disconnected, check wiring to the port. Replace wiring, port expander, adapters, Main Control Board or complete drive as required. 2. Check HIM connection. 3. If an adapter was intentionally disconnected and the [Logic Mask] bit for that adapter is set to "1", this fault will occur. To disable this fault, set the [Logic Mask] bit for the adapter to " 0 ."
Port 1-6 Net Loss	$\begin{aligned} & 71- \\ & 76 \end{aligned}$		The communications card has a fault.	Check DPI device event queue and corresponding fault information for the device.

Fault	No.	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{0}} \\ & \stackrel{\rightharpoonup}{I} \\ & \stackrel{y}{n} \end{aligned}$	Description	Action
Power Loss	3	$\begin{aligned} & \text { (1) } \\ & (3) \end{aligned}$	DC bus voltage remained below 85% of nominal for longer than [Power Loss Time]. Enable/ Disable with [Fault Config 1] on page 3-50.	Monitor the incoming AC line for low voltage or line power interruption.
Power Unit	70		One or more of the output transistors were operating in the active region instead of desaturation. This can be caused by excessive transistor current or insufficient base drive voltage.	1. Check for damaged output transistors. 2. Replace drive.
Pwr Brd Chksum1	104		The checksum read from the EEPROM does not match the checksum calculated from the EEPROM data.	Clear the fault or cycle power to the drive.
Pwr Brd Chksum2	105	(2)	The checksum read from the board does not match the checksum calculated.	1. Cycle power to the drive. 2. If problem persists, replace drive.
Replaced MCB-PB	107	(2)	Main Control Board was replaced and parameters were not programmed.	1. Restore defaults. 2. Reprogram parameters.
Shear Pin	63	(3)	Programmed [Current Lmt Val] has been exceeded. Enable/ Disable with [Fault Config 1] on page 3-50.	Check load requirements and [Current Lmt Val] setting.
SW OverCurrent	36	(1)	Drive output current has exceeded the 1 ms current rating. This rating is greater than the 3 second current rating and less than the hardware overcurrent fault level. It is typically 200-250\% of the drive continuous rating.	Check for excess load, improper DC boost setting. DC brake volts set too high.
Trnsistr OvrTemp	9	(1)	Output transistors have exceeded their maximum operating temperature.	1. Verify that maximum ambient temperature has not been exceeded. 2. Check fan. 3. Check for excessive load.
UnderVoltage	4	$\begin{aligned} & 1 \\ & (3) \end{aligned}$	DC bus voltage fell below the minimum value of 509 V DC at 600 V input, 407 V DC at $400 /$ 480V input or 204V DC at 200/ 240 V input. Enable/Disable with [Fault Config 1] on page 3-50.	Monitor the incoming AC line for low voltage or power interruption.
UserSet1 Chksum	101	(2)	The checksum read from the user set does not match the checksum calculated.	Re-save user set.
UserSet2 Chksum	102	(2)		
UserSet3 Chksum	103	(2)		

[^0]Table 4.B Fault Cross Reference

No. $^{(1)}$	Fault
2	Function Loss
3	Power Loss
4	UnderVoltage
5	OverVoltage
7	Motor Overload
8	Heatsink OvrTemp
9	Trnsistr OvrTemp
12	HW OverCurrent
13	Ground Fault
24	Decel Inhibit
25	OverSpeed Limit
29	Analog In Loss
33	Auto Rstrt Tries
36	SW OverCurrent
37	Phase Imbalance

No. ${ }^{(1)}$	Fault
38	Phase U to Grnd
39	Phase V to Grnd
40	Phase W to Grnd
41	Phase UV Short
42	Phase UW Short
43	Phase VW Short
48	Params Defaulted
63	Shear Pin
64	Drive Overload
69	DB Resistance
70	Power Unit
$71-76$	Port 1-6 Net Loss
77	IR Volts Range
78	FluxAmpsRef Rang
79	Excessive Load

No. $^{(1)}$	Fault
80	AutOTune Aborted
$81-86$	Port 1-6 DPI Loss
100	Parameter Chksum
101	UserSet1 Chksum
102	UserSet2 Chksum
103	UserSet3 Chksum
104	Pwr Brd Chksum1
105	Pwr Brd Chksum2
106	Incompat MCB-PB
107	Replaced MCB-PB
108	Anlg Cal Chksum
120	I/O Board Mismatch
121	I/O Comm Loss
122	I/O Board Fail

${ }^{(1)}$ Fault numbers not listed are reserved for future use.

Drive Alarms

An alarm is a condition that, if left untreated, may stop the drive. There are two alarm types.

| Type | Alarm Description |
| :---: | :---: | :---: |
| (1) | User ConfigurableThese alarms can be enabled or disabled by 259 [Alarm
 Config 1].
 The status of these alarms is shown in 211 [Drive Alarm 1]. |
| (2) | Non-Configurable
 These alarms are always enabled.
 The status of these alarms is shown in 212 [Drive Alarm 2]. |

The drive indicates alarm conditions in the following ways:

- Ready LED on the drive cover (see Status Indicators on page 2-3).
- Alarm name and bell graphic on the LCD OIM (see Appendix B). The alarm is displayed as long as the condition exists. The drive automatically clears the alarm when the condition causing it is removed.
- Status parameters 211 [Drive Alarm 1] and 212 [Drive Alarm 2] indicate the status of type 1 and type 2 alarms, respectively. Refer to Chapter 3 for the parameter descriptions.

Alarm Queue

Important: This information applies only to drive Frames 2, 3, 4, 5, \& 6.

The drive automatically retains a history of alarms that have occurred in the alarm queue. The alarm queue is accessed using the OIM or PC software.

The alarm queue holds the eight most recent alarms. The last alarm to occur is indicated in queue entry \#1. As new alarms are logged into the queue, existing alarm entries are shifted (for example, entry \#1 will move to entry \#2). Once the queue is full, older alarms are discarded from the queue as new alarms occur.

All entries in the alarm queue are retained if power is lost. Alarms are automatically cleared when the alarm condition goes away.

Clearing Alarms

The alarm queue can be cleared using the OIM by selecting " Clr Alarm Queue", or by using a PC software tool.

Alarms are automatically cleared when the condition that caused the alarm is no longer present.

Alarm Descriptions

Table 4.C Alarm Descriptions and Actions

Alarm	\%	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{E}} \\ & \stackrel{\rightharpoonup}{\mathrm{D}} \end{aligned}$	Description
IR Volts Range	25	(2)	The drive auto tuning default is "Calculate" and the value calculated for IR Drop Volts is not in the range of acceptable values. This alarm should clear when all motor nameplate data is properly entered.
Ixo Vlt Rang	28	(2)	Motor leakage inductance is out of range.
MaxFreq Conflict	23	(2)	The sum of [Maximum Speed] and [Overspeed Limit] exceeds [Maximum Freq]. Raise [Maximum Freq] or lower [Maximum Speed] and/or [Overspeed Limit] so that the sum is less than or equal to [Maximum Freq].
Motor Type Cflct	21	(2)	Parameter 040 [Motor Type] has been set to 1 "Synchr Reluc" or 2 "Synchr PM" and one or more DC functions (for example DC Boost, DC Brake, etc.) have been activated. DC injection functions are incompatible with synchronous motors and may demagnetize them.
NP Hz Conflict	22	(2)	Fan/pump mode is selected in [Torq Perf Mode] and the ratio of [Motor NP Hertz] to [Maximum Freq] is greater than 26.
Power Loss	3	(1)	Drive has sensed a power line loss.
Prechrg Actv	1	(1)	Drive is in the initial DC bus precharge state.
Sleep Config	29	(2)	Sleep/Wake configuration error. With [Sleep-Wake Mode] = "Direct," possible causes include: drive is stopped and [Wake Level] < [Sleep Level]. "Stop=CF," "Run," "Run Forward," or "Run Reverse." is not configured in [Digital Inx Sel].
Speed Ref Cflct	27	(2)	[Speed Ref x Sel] or [PI Reference Sel] is set to "Reserved".
UnderVoltage	2	(1)	The bus voltage has dropped below a predetermined value.
VHz Neg Slope	24	(2)	[Torq Perf Mode] = "Custom V/Hz" and the V/Hz slope is negative.
Waking	11	(1)	The Wake timer is counting toward a value that will start the drive.

(1) See page 4-2 for a description of alarm types.

Table 4.D Alarm Cross Reference

No. $^{(1)}$	Alarm
1	Prechrg Actv
2	UnderVoltage
3	Power Loss
5	Analog in Loss
6	IntDBRes OvrHeat
8	Drive OL Level 1
9	Drive OL Level 2

No. ${ }^{(1)}$	Alarm
10	Decel Inhibit
11	Waking
17	Dig In ConflictA
18	Dig In ConflictB
19	Dig In ConflictC
20	Bipolar Conflict
21	Motor Type Cflct

No. ${ }^{(1)}$	Alarm
22	NP Hz Conflict
23	MaxFreq Conflict
24	VHz Neg Slope
25	IR Volts Range
26	FluxAmpsRef Rang
27	Speed Ref Cflct
28	Ixo VIt Rang
29	Sleep Config

(1) Alarm numbers not listed are reserved for future use.

Diagnostic Parameters

The diagnostic parameters listed in Table 4.E are not accessible using the OIM. These parameters can only be accessed by using a PC software tool. Access Device Properties then the Diagnostic tab.

Table 4.E Diagnostic Parameter Names

Diagnostic Parameter	Name
1	DPI Error Status
2	Heatsink Temperature
3	Active Current Limit
4	Active PWM Frequency
5	Lifetime MegaWatt Hours
6	Lifetime Run Time
7	Lifetime Powered Up Time
8	Lifetime Power Cycles
9	Life MegaWatt Hours Fraction ${ }^{(1)}$
10	Life MegaWatt Hours Fraction Units ${ }^{(1)}$
$11-99$	Reserved for Factory Use

${ }^{(1)}$ Use the equation below to calculate total Lifetime MegaWatt Hours.
$\left(\frac{\text { Value of Code } 9}{\text { Value of Code } 10} \times 0.1\right)+$ Value of Code $5=$ Total Lifetime MegaWatt Hours

Common Symptoms and Corrective Actions

Drive does not Start from Start or Run Inputs wired to the terminal block.

Cause(s)	Indication	Corrective Action
Drive is faulted.	Flashing red Ready LED	Clear fault. - - Press Stop - Cycle power - Set [Fault Clear] to 1 (See page 3-50)
-		"Clear Faults" on the OIM Diagnostic menu

Drive does not Start from OIM.

Cause(s)	Indication	Corrective Action
Drive is programmed for 2 wire control. OIM Start button is disabled for 2 wire control.	None	If 2 wire control is required, no action is necessary. If 3 wire control is required, program [Digital Inx Sel] for correct inputs. (See page 3-59)
Active fault.	Flashing or steady red Ready LED	Reset fault.
Enable input is open.	Flashing yellow Ready	Close terminal block enable input.
Terminal block stop input is open and control source is set to All Ports.	Close terminal block stop input.	

Drive does not respond to changes in speed command.

Cause(s)	Indication	Corrective Action
No value is coming from the source of the command.	LCD OIM Status Line indicates "At Speed" and output is 0 Hz .	1. If the source is an analog input, check wiring and use a meter to check for presence of signal. 2. Check [Commanded Freq] for correct source. (Param \#002, page 3-11)
Incorrect reference source has been programmed.	None	3. Check [Speed Ref Source] for the source of the speed reference. (Param \#213, page 3-46) 4. Reprogram [Speed Ref A Sel] for correct source. (Param \#090, page 3-22)
Incorrect Reference source is being selected via remote device or digital inputs.	None	5. Check [Drive Status 1], bits 12 and 13 for unexpected source selections. (Param \#209, page 3-44) 6. Check [Dig In Status] to see if inputs are selecting an alternate source. (Param \#216. page 3-47) 7. Reprogram digital inputs to correct "Speed Sel x" option. (See page 3-59)

Motor and/or drive will not accelerate to commanded speed.

Cause(s)	Indication	Corrective Action
Acceleration time is excessive.	None	Reprogram [Accel Time x]. (See page 3-30)
Excess load or short acceleration times force the drive into current limit, slowing or stopping acceleration.	None	Check [Drive Status 2], bit 10 to see if the drive is in Current Limit.
(See page 3-45)		
Remove excess load or reprogram [Accel Time x]. (See page 3-30)		
Sped command source or value is		
Programming is preventing the drive output from exceeding limiting values.	None	Check for the proper Speed Command using Steps 1 through 7 above.

Motor operation is unstable.

Cause(s)	Indication	Corrective Action
Motor data was incorrectly entered or Autotune was not performed.	None	1. Correctly enter motor nameplate data.
		2.Perform "Static" or "Rotate" Autotune procedure. (Param \#061, page 3-17)

Drive will not reverse motor direction.

Cause(s)	Indication	Corrective Action
Digital input is not selected for reversing control.	None	Check [Digital Inx Sel] (See page 3-59). Choose correct input and program for reversing mode.
Digital input is incorrectly wired.	None	Check input wiring. (See page 1-24)
Direction mode parameter is incorrectly programmed.	None	Reprogram [Direction Mode] for analog "Bipolar" or digital "Unipolar" control. (Param \#190, page 3-41)
Motor wiring is improperly phased for reverse.	None	Switch two motor leads.
A bipolar analog speed command input is incorrectly wired or signal is absent.	None	1. Use meter to check that an analog input voltage is present.
2. Check wiring. (See page 1-25)		
Positive voltage commands forward direction.		
Negative voltage commands reverse direction.		

Stopping the drive results in a Decel Inhibit fault.

Cause(s)	Indication	Corrective Action
The bus regulation feature is	Decel Inhibit	1. See Attention statement on Preface-3.
enabled and is halting deceleration	fault screen.	2. Reprogram bus regulation (parameters 161
due to excessive bus voltage.	LCD Status	and 162) to eliminate any "Adjust Freq"
Excess bus voltage is normally due	Line indicates	selection.
to excessive regenerated energy or	"Faulted".	3.Disable bus regulation (parameters 161 and unstable AC line input voltages.
		162) and add a dynamic brake.
Internal timer has halted drive Correct AC input line instability or add an isolation transformer.		
operation.		5. Reset drive.

Troubleshooting Using the LCD OIM

The LCD OIM provides immediate visual notification of alarm or fault conditions as well as the following diagnostic information:

- Entries in the fault queue
- Fault parameters
- Drive status parameters
- Selected device version and status information
- OIM version information

Accessing the Fault Queue

As described on page 4-3, the drive automatically retains a history of the last four faults (eight in Frame 2, 3, 4, 5, \& 6 Drives) that have occurred in the fault queue.

To access the fault queue, press the F4 key at the process display screen, or see Figure 4.2 to access the fault queue from the Main Menu.

Figure 4.2 Accessing the Fault Queue

Figure 4.3 Sample Fault Queue Entry

F1 F2 F3
F1 = Clear fault
F2 = Clear fault queue
F3 = Drive Reset

Accessing the Fault Parameters

The LCD OIM provides quick access to the drive's fault parameters by grouping them in the Fault Info submenu. To access these parameters, see Figure 4.4.

Figure 4.4 Accessing the Fault Parameters

Accessing the Drive Status Parameters

The LCD OIM provides quick access to the drive status parameters by grouping them in the Status Info submenu. To access these parameters, see Figure 4.5.

Figure 4.5 Accessing the Drive Status Parameters

Determining the Product Version

The LCD OIM provides hardware and firmware version information for connected devices, including the OIM, down to the component level.

Device Version

To access the device version information, refer to Figure 4.6 and Figure 4.7.

Figure 4.6 Accessing the Device Version Information

Figure 4.7 Device Version Screens at Product and Component Levels

OIM Version

The OIM Version selection provides information on the OIM you are using to access this data. See Figure 4.8 and Figure 4.9.

Figure 4.8 Accessing the OIM Version Information

Δ Highlight item
4 Highlight Diagnostics icon

Figure 4.9 OIM Version Screens at the Product and Component Levels

Device Items
The Device Items selection provides access to a list of diagnostic parameters. These parameters should be adjusted by qualified personnel only. See Figure 4.10.

ATTENTION: The parameters in the Device Items menu must be set by a qualified person who understands the significance of setting them accurately. Failure to observe this precaution could result in bodily injury.

Figure 4.10 Accessing the Device Item Information

Notes:

Supplemental Drive Information

For information on...	See page...
Specifications	A-1
Dimensions	$A-8$
Drive, Fuse \& Circuit Breaker Ratings	A-21

Specifications

Category	Specification			208V
Protection	480V			

Category	Specification	
Agency Certification	Listed to UL508C and CAN/CSA-C2.2 No. 14-M91	
	The drive is also designed to meet the appropriate portions of the following specifications: NFPA 70 - US National Electrical Code NEMA ICS 3.1 - Safety standards for Construction and Guide for Selection, Installation and Operation of Adjustable Speed Drive Systems. IEC 146 - International Electrical Code.	
Electrical	Voltage Tolerance:	-10% of minimum, $+10 \%$ of maximum.
	Frequency Tolerance:	$47-63 \mathrm{~Hz}$.
	Input Phases:	Three-phase input provides full rating for all drives. Single-phase operation provides 50% of rated current.
	Displacement Power Factor:	0.98 across speed range.
	Efficiency:	97.5\% at rated amps, nominal line volts.
	Maximum Short Circuit Rating:	200,000 Amps symmetrical.
	Actual Short Circuit Rating:	Determined by AIC rating of installed fuse/circuit breaker.
Control	Method:	Sine coded PWM with programmable carrier frequency. Ratings apply to all drives.
	Carrier Frequency:	$2 . . .10 \mathrm{kHz}$. Drive rating based on 4 kHz .
	Output Voltage Range:	0 to rated motor voltage
	Output Frequency Range:	0 to 400 Hz .
	Frequency Accuracy Digital Input: Analog Input:	Within $\pm 0.01 \%$ of set output frequency. Within $\pm 0.4 \%$ of maximum output frequency.
	Speed Regulation - Open Loop with Slip Compensation:	$\pm 0.5 \%$ of base speed across a 40:1 speed range.
	Selectable Motor Control:	Sensorless Vector with full tuning. Standard V/Hz with full custom capability.
	Stop Modes:	Multiple programmable stop modes including - Ramp, Coast, DC-Brake, Ramp-to-Hold and S-curve.
	Accel/Decel:	Two independently programmable accel \& decel times. Each time may be programmed from 0-3600 seconds in 0.1 sec . increments
	Intermittent Overload:	110% Overload capability for up to 1 minute 150% Overload capability for up to 3 seconds
	Current Limit Capability:	Proactive Current Limit programmable from 20 to 160% of rated output current. Independently programmable proportional and integral gain.
	Electronic Motor Overload Protection:	Class 10 protection with speed sensitive response. Investigated by U.L. to comply with N.E.C. Article 430. U.L. File E59272, volume 12.

Altitude and Efficiency

Ambient Temperature/Load

Watts Loss (Rated Load, Speed \& PWM) ${ }^{(1)}$

Voltage	Frame	ND HP	External Watts	Internal Watts	Total Watts Loss
208V	B	2.0	44.6	22.6	67.2
		3.0	67.3	25.4	92.7
	C	5.0	141.3	33.2	174.5
	D	7.5	205.7	34.2	239.9
		10	270.4	48.1	318.5
		15	385.6	40.3	425.9
	E	20	494.6	44.9	539.5
		25	650.7	51.6	702.3
	4	30	780	96	876
	5	40	860	107	967
		50	1132	138	1270
	6	60	1296	200	1496
		75	1716	277	1993
		100	1837	418	2255
480V	B	3.0	64.6	24.0	88.6
		5.0	99.5	28.2	127.7
	C	7.5	140.0	27.8	167.8
		10	193.3	32.0	225.3
	D	15	305.4	34.2	339.6
		20	432.9	42.9	475.8
		25	363.8	40.5	404.3
		30	396.8	41.5	438.3
	2	25	339	102	441
	3	30	357	103	459
	E	40	500.8	50.0	550.8
		50	632.0	57.7	689.7
	3	40	492	117	610
		50	568	148	717
	4	60	722	207	930
	5	75	821	286	1107
		100	1130	397	1527
	6	125	1402	443	1845
		150	1711	493	2204
		200	1930	583	2513

(1) Worst case condition including OIM and Communication Module

Dimensions

Table A.A VTAC 9 Frames

Output Power	Frame Size	
HP	208V AC Input	480V AC Input
2	B	-
3	B	B
5	C	B
7.5	D	C
10	D	C
15	D	D
20	E	D
25	E	D, 2
30	4	D, 3
40	5	E, 3
50	5	E, 3
60	6	4
75	6	5
100	6	5
125	-	6
150	-	6
200	-	6

Figure A. 1 VTAC 9 Frames B...E
NEMA Type 1
Flange Mount

Dimensions are in millimeters and (inches).

Frame	A	B	C	D	E	F	$\text { Weight }{ }^{(1)}$ kg (lbs.)
NEMA Type 1							
B	171.7 (6.76)	234.6 (9.24)	179.8 (7.08)	122.7 (4.83)	220.2 (8.67)	5.8 (0.23)	3.60 (7.9)
C	185.0 (7.28)	300.0 (11.81)	179.8 (7.08)	137.6 (5.42)	285.6 (11.25)	5.8 (0.23)	6.89 (15.2)
D	219.9 (8.66)	350.0 (13.78)	179.8 (7.08)	169.0 (6.65)	335.6 (13.21)	5.8 (0.23)	9.25 (20.4)
E	280.3 (11.04)	555.8 (21.88)	207.1 (8.15)	200.0 (7.87)	491.0 (19.33)	6.9 (0.27)	18.60 (41.0)
Flange Mount							
B	205.2 (8.08)	234.6 (9.24)	178.6 (7.03)	123.0 (4.84)	55.6 (2.19)	-	3.60 (7.9)
C	219.0 (8.62)	300.0 (11.81)	178.6 (7.03)	123.0 (4.84)	55.6 (2.19)	-	6.89 (15.2)
D	248.4 (9.78)	350.0 (13.78)	178.6 (7.03)	123.0 (4.84)	55.6 (2.19)	-	9.25 (20.4)
E	280.3 (11.04)	555.8 (21.88)	207.1 (8.15)	117.2 (4.61)	89.9 (3.54)	-	18.60 (41.0)

(1) Weights include OIM and Standard I / O.

Figure A. 2 VTAC 9 Frame B...E NEMA Type 1 Bottom View Dimensions
Frame B

Frame C

Frame D

Frame E

Dimensions are in millimeters and (inches).

Figure A. 3 VTAC 9 Frame B...E Flange Mount Bottom View Dimensions

Frame B

Frame C

Frame D

Frame E

Figure A. 4 VTAC 9 Frame B...E Flange Mount Cutout Dimensions

Frame B

Frame C

Frame D

Frame E

Figure A. 5 VTAC 9 Frames 2... 3

Dimensions are in millimeters and (inches).

	A	B	C	D	E	Weight ${ }^{(2)} \mathrm{kg}$ (lbs.)	
						Drive	Drive \& Packaging
2	222.0 (8.74)	342.5 (13.48)	200.0 (7.87)	192.0 (7.56)	320.0 (12.60)	12.52 (27.6)	15.20 (33.5)
3	222.0 (8.74)	517.5 (20.37)	200.0 (7.87)	192.0 (7.56)	500.0 (19.69)	18.55 (40.9)	22.68 (50)

(1) Refer to Table A.A for frame information.
(2) Weights include OIM and Standard I / O.

Figure A. 6 VTAC 9 Frame 4

Dimensions are in millimeters and (inches)

틍	A (Max.)	B	C (Max.)	D	E	Approx. Weight ${ }^{(2)} \mathrm{kg}$ (lbs.)	
						Drive	Drive \& Packaging
4	220.0 (8.66)	758.8 (29.87)	201.7 (7.94)	192.0 (7.56)	738.2 (29.06)	24.49 (54.0)	29.03 (64.0)

(1) Refer to Table A.A for frame information.
(2) Weights include OIM and Standard I/O.

Figure A. 7 VTAC 9 Frame 5

Dimensions are in millimeters and (inches).

(1) Refer to Table A.A for frame information.
(2) Weights include OIM and Standard I / O.
(3) When using the supplied junction box (100 HP drives Only), add an additional 45.1 mm (1.78 in .) to this dimension.

Figure A. 8 VTAC 9 Frame 6

Dimensions are in millimeters and (inches)

	A (Max.)	$B^{(2)}$	C (Max.)	D	E	Approx. Weight ${ }^{(3)} \mathrm{kg}$ (lbs.)	
						Drive	Drive \& Packaging
6	403.9 (15.90)	850.0 (33.46)	275.5 (10.85)	300.0 (11.81)	825.0 (32.48)	71.44 (157.5)	100.9 (222.0)

(1) Refer to Table A.A for frame information.
(2) Junction Box can be removed if drive is mounted in a cabinet.
(3) Weights include HIM and Standard I/O. Add 13.60 kg (30.0 lbs .) for the $100 \mathrm{HP} @ 208 \mathrm{~V}$ AC and 200HP @ 480V AC Drive.

Figure A. 9 VTAC 9 Bottom View Dimensions

Frame	Rating	Dimensions
2	All	
3	30... 40 HP @ 480V	
	$\begin{aligned} & \text { 50 HP @ } \\ & 480 \mathrm{~V} \end{aligned}$	

Drive, Fuse \& Circuit Breaker Ratings

The tables on the following pages provide drive ratings (including continuous, 1 minute and 3 second) and recommended AC line input fuse and circuit breaker information. Both types of short circuit protection are acceptable for UL and IEC requirements. Sizes listed are the recommended sizes based on 40 degree C and the U.S. N.E.C. Other country, state or local codes may require different ratings.

Fusing

If fuses are chosen as the desired protection method, refer to the recommended types listed below. If available amp ratings do not match the tables provided, the closest fuse rating that exceeds the drive rating should be chosen.

- IEC - BS88 (British Standard) Parts $1 \& 2^{(1)}$, EN60269-1, Parts $1 \&$ 2 , type gG or equivalent should be used.
- UL - UL Class CC, T, RK1 or J must be used.

Circuit Breakers

The "non-fuse" listings in the following tables include both circuit breakers (inverse time or instantaneous trip) and 140M Self-Protecting Motor Starters. If one of these is chosen as the desired protection method, the following requirements apply.

- IEC and UL - Both types of devices are acceptable for IEC and UL installations.

[^1] AD, BC, BD, CD, DD, ED, EFS, EF, FF, FG, GF, GG, GH.

Nameplate catalog			Temp.	Input Ratings		Output Amps			Dual Element Time Delay Fuse		Non-Time Delay Fuse		Circuit Breaker ${ }^{(4)}$	Motor Circuit Protector ${ }^{(6)}$	140M Motor Starter with Adjustable Current Range ${ }^{(7)}$ (8)			
Z9VT201-			${ }^{\circ} \mathrm{C}$	Amps	kVA	Cont.	1 Min.	3 Sec.	Min. ${ }^{(2)}$	Max. ${ }^{(3)}$	Min. ${ }^{(2)}$	Max. ${ }^{(3)}$	Max. ${ }^{(5)}$	Max. ${ }^{(5)}$	Available Catal	g Numbers ${ }^{(9)}$		
208 Volt AC Input																		
007	B	2	50	10	3.6	7.8	10.3	13.8	15	15	15	30	30	15	140M-C2E-C10	140M-D8E-C10	140M-F8E-C10	-
811	B	3	50	14	5.1	11	12.1	16.5	20	25	20	40	40	30	140M-C2E-C16	140M-D8E-C16	140M-F8E-C16	-
017	C	5	50	16	5.8	17.5	19.2	26.6	20	35	20	70	70	30	140M-C2E-C20	140M-D8E-C20	140M-F8E-C20	-
025	D	7.5	50	23.3	8.3	25.3	27.8	37.9	30	50	30	100	100	30	140M-C2E-C25	140M-D8E-C25	140M-F8E-C25	140-CMN-2500
032	D	10	50	29.8	10.7	32.2	37.9	50.6	40	70	40	125	125	50	-	-	140M-F8E-C32	140-CMN-4000
043	D	15	50	39.8	14.3	43	55.5	74	60	100	60	175	175	70	-	-	140M-F8E-C45	140-CMN-6300
062	E	20	50	57.5	20.7	62.1	72.4	96.6	80	125	80	200	200	100	-	-	-	140-CMN-6300
078	E	25	50	72.3	26.0	78.2	93.1	124	90	175	90	300	300	100	-	-	-	140-CMN-9000
092	4	30	40050 ${ }^{(1)}$	84.7	30.5	92	117	156	110	200	110	350	350	150	-	-	-	140-CMN-9000
120	5	40	50	113	40.7	120	132	175	150	250	150	475	350	150	-	-	-	-
130	5	50	50	141	44.1	130	143	175	175	275	175	500	375	250	-	-	-	-
177	6	60	50	167	60.1	177	195	266	225	350	225	500	500	250	-	-	-	-
221	6	75	50	208	75.0	221	243	308	300	450	300	600	600	400	-	-	-	-
260	6	100	45	255	91.9	260	286	390	300	575	300	600	750	400	-	-	-	

Table A.C 480 Volt AC Input Protection Devices (See page A-24 for Notes).

$40^{\circ} \mathrm{C}$ rating for NEMA Type $1.50^{\circ} \mathrm{C}$ rating is achived by removing the adhesive top label from the drive. NEMA enclosure rating changes from Type 1 to Open Type when top label is removed.
Minimum protection device size is the lowest rated device that supplies maximum protection without nuisance tripping.
Maximum protection device size is the highest rated device that supplies drive protection. For US NEC, minimum size is 125% of motor FLA. Ratings shown are maximum. Circuit Breaker - inverse time breaker. For US NEC, minimum size is 125% of motor FLA. Ratings shown are maximum.
Maximum allowable rating by US NEC. Exact size must be chosen for each installation.
Motor Circuit Protector - instantaneous trip circuit breaker. For US NEC, minimum size is 125% of motor FLA. Ratings shown are maximum.
Bulletin 140M with adjustable current range should have the current trip set to the minimum range that the device will not trip.
Manual Self-Protected (Type E) Combination Motor Controller, UL listed for 208 Wye or Delta, 240 Wye or Delta, $480 \mathrm{Y} / 277$ or $600 \mathrm{Y} / 347$. Not UL listed for use on 480 V Delta/ Delta systems.
The AIC ratings of the Bulletin 140M Motor Protector may vary. See publication 140M-SG001B-EN-P.

Table A.D 650 Volt DC Input Protection Devices

Drive Catalog Number		HP Rating	Temp. ${ }^{\circ} \mathrm{C}$	DC Input Ratings		Output Amps			Fuse	Bussmann Style Fuse
				Amps	kVA	Cont.	1 Min .	3 Sec.		
650 Volt DC Input										
9VT401-034	2	25	50	36.4	23.6	34	40.5	54	70	BUSSMANN_JKS-70
9VT401-040	3	30	50	42.9	27.8	40	51	68	80	BUSSMANN_JKS-80
9VT401-052	3	40	50	55.7	36.1	52	60	80	100	BUSSMANN_JKS-100
9VT401-065	3	50	50	69.7	45.4	65	78	104	150	BUSSMANN_JKS-150
9VT401-077	4	60	50	84.5	54.7	77	85	116	150	BUSSMANN_JKS-150
9VTR01-096	5	75	50	105.3	68.3	96	106	144	200	BUSSMANN_JKS-200
9VTR01-125	5	100	50	137.1	88.9	125	138	163	250	BUSSMANN_JKS-250
9VTR01-156	6	125	50	171.2	110.9	156	172	234	300	BUSSMANN_JKS-300
9VTR01-180	6	150	50	204.1	132.2	180	198	270	400	BUSSMANN_JKS-400

Notes:

Using the LCD OIM

For information on...	See page
External and Internal Connections	$\underline{\mathrm{B}-1}$
Install/Remove the Local LCD OIM	$\underline{\mathrm{B}-5}$
Display Description	$\mathrm{B}-6$
LCD OIM Menu Structure	$-\mathrm{B}-8$

For information on...	See page
Power Up and Adjust the LCD OIM	B-9
Select a Device in the System	B-9
Program the Drive	B-10
Monitor the Drive Using the Process	B-12
Display Screen	
Control the Drive From the LCD	B-18
OIM	

External and Internal Connections

The LCD OIM can be used in the following ways:
Drive mounted - OIM connects directly to the drive using DPI port 1.
Hand-held - A cable (RECBL-LCD) must be used to convert the OIM for hand-held use. The maximum cable length is 32 feet using extender cables. Connect the cable to either DPI port 2 or 3.

Remote mounted - A cable (RECBL-LCD) must be used to convert the OIM for remote-mounted use. The maximum cable length is 32 feet using extender cables. Connect the cable to either DPI port 2 or 3.

The LCD Operator Interface Module (OIM) is a keypad/display that enables you to program, monitor, and control the drive.

Figure B. 1 VTAC 9 LCD OIM

Figure B.2, Figure B. 3 and Figure B. 4 show the locations of the drive terminal blocks and connectors used to set up and operate the drive.

Figure B. 2 Drive Only Connections - 1 to 20 HP

Front View

Front View (Cover Removed)

Bottom View

No.	Connector	Description
$\boldsymbol{\oplus}$	DPI Port 1	OIM connection when installed in cover.
$\boldsymbol{(2}$	DPI Port 2	Cable connection for remote OIM or PC Software.
$\boldsymbol{3}$	DPI Port 3	Cable connection for remote OIM or PC Software.
$\boldsymbol{4}$	DPI Port 5	Connection for optional communications module.
$\boldsymbol{\Theta}$	Power Terminal Block	Connections for input and output power wiring.
$\boldsymbol{\Theta}$	Signal and I/O Terminal Block	Connections for signal and I/O wiring.

Figure B. 3 Drive Only Connections - 25 to 50 HP

No.	Connector	Description
$\boldsymbol{\theta}$	Power Terminal Block	Connections for input and output power wiring.
$\boldsymbol{2}$	Signal and I/O Terminal Block	Connections for signal and I/O wiring.
$\boldsymbol{3}$	DPI Port 5	Connection for optional communications module.

Figure B. 4 Drive Only Connections - 60 to 150 HP

No.	Connector	Description
$\boldsymbol{\text { o }}$	Power Terminal Block	Connections for input and output power wiring.
(Signal and I/O Terminal Block	Connections for signal and I/O wiring.
$\boldsymbol{\text { © }}$	DPI Port 1	OIM connection.
$\boldsymbol{\text { © }}$	DPI Port 2	Connection for remote OIM or RECOMM-232 serial interface.
$\boldsymbol{\Theta}$	DPI Port 5	Connection for optional communications module.

Install/Remove the Local LCD OIM

To install the local LCD OIM, slide the OIM into the slot on the front of the drive until it clicks into place.

To remove the local LCD OIM, press the tab at the top of the drive to release the OIM while pushing the OIM from the bottom to slide it out of the drive.

Figure B. 5 Installing and Removing the Local LCD OIM

Removing the Local LCD OIM While the Drive is Powered

If the local LCD OIM is the selected control source, removing the OIM while the drive is powered will cause a drive fault.

If the local LCD OIM is not the selected control source, but is the reference source, removing the OIM while the drive is powered will result in a zero reference value. When the OIM is replaced, the drive will ramp to the reference level supplied by the OIM.

ATTENTION: Removing and replacing the LCD OIM while the drive is running may cause an abrupt speed change if the LCD OIM is the selected reference source, but is not the selected control source. The drive will ramp to the reference level provided by the OIM at the rate specified in 140 [Accel Time 1], 141 [Accel Time 2], 142 [Decel Time 1] and 143 [Decel Time 2]. Be aware that an abrupt speed change may occur depending upon the new reference level and the rate specified in these parameters. Failure to observe this precaution could result in bodily injury.

If the local LCD OIM is not the selected control source or reference source, removing the OIM while the drive is powered will have no effect on drive operation.

Display Description

Figure B. 6 The Display (Main Menu Shown)

(1)	Function Key (F1, F2, F3, F4) definitions
(2)	Port/peripheral identification. Identifies port or peripheral on DPI about which the OIM is displaying information.
(3)	Pl loop status: PI = PI control is active.
(4)	Operating status (for example, Running, Stopped, etc.)
(5)	Alarm annunciation. . . . = Alarm has occurred.
(6)	Auto/Hand mode status.
(7)	Write-protect password status: (unlocked) = password disabled; (locked) = password enabled. See Chapter 3.

Key Descriptions

ATTENTION: When switching from Auto to Hand, or Hand to Auto, the drive will ramp to the reference level provided by the new source at the rate specified in 140 [Accel Time 1], 142 [Decel Time 1], 141
[Accel Time 2], or 143 [Decel Time 2]. Be aware that an abrupt speed change may occur depending upon the new reference level and rate specified in these parameters. Failure to observe this precaution could result in bodily injury.

LCD OIM Menu Structure

Figure B. 7 LCD OIM Menu Structure

Power Up and Adjust the LCD OIM

The first time the LCD OIM is powered up, you will be prompted to select a language for the display text. If the Start-Up routine has not been completed, the Start-Up menu is displayed immediately following the language selection screen.

On subsequent power ups, if both of these requirements have been met, the Main Menu is displayed after the initialization screen.

Selecting the Fast Power Up Feature

The fast power up feature bypasses the initialization screen at power up, and the Main Menu is displayed immediately. To select this feature, select Fast PwrUp Mode from the Display menu.

Adjusting the Screen Contrast

To adjust the screen contrast, select Contrast from the Display menu.

Resetting the Display

To return all the options for the display to factory-default values, select Reset Display from the Display menu.

Select a Device in the System

The LCD OIM can access and display data from any active drive or peripheral device on the network. The drive (port 0) is the default device selected.

To select a device, select the Device Select icon from the Main Menu. The options listed depend on what is connected to the network.

The name and DPI port number of the device being accessed is shown on the OIM's display.

Program the Drive

The LCD OIM enables you to view and adjust parameters in the drive or in peripheral devices connected to the drive. The parameters available for viewing or adjustment depend on the device selected.

The method of viewing and adjusting parameters is the same regardless of the device selected.

Viewing and Adjusting Parameters

Refer to Chapter 3 for information on how to access the parameters in the drive.

Each parameter screen contains the following information:

- Parameter number
- Parameter name
- Current parameter value and units
- Parameter range
- F1 key defined as a toggle to enable you to view the parameter's current value and the factory-default value

See Figure B. 8 and Figure B. 9 on page B-11 for instructions on how to adjust the parameter values.

Figure B. 8 Adjusting Parameters
Step 1. At the parameter entry screen, press \square to highlight the parameter value.
(The screen shown here was accessed using the Parameters>P Numbers path)

Step 2. Adjust the parameter
value (see table B.2),
and then press
-
value (see table B.2)
and then press.to save the value.

If you do not want to save the value, press $\begin{gathered}\text { ESCO } \\ \text { EROS } \\ \text { ERO } \\ \text { to }\end{gathered}$ to return to the initial parameter screen. You can then repeat steps 1 and 2 to change the value, or press $\underset{\substack{\text { ESCl } \\ \text { EROG }}}{\substack{\text { ROM }}}$ to back out of this menu.

Loading and Saving User Sets

Drive configurations, called user sets, can be saved and recalled for use at any time. Up to three user sets can be saved in the VTAC 9 drive.

To save the current drive configuration, select Save to User Set from the Memory Storage menu.

To recall, or load, a user set, select Load Frm Usr Set from the Memory Storage menu.

To identify which user set is active, select Active User Set from the Memory Storage menu. The name of the last user set to be loaded into the drive will be displayed. "Active Set" means factory defaults have been restored.

Monitor the Drive Using the Process Display Screen

The process display screen enables you to monitor up to three process variables (six on frames 2...6). Use a function key programmed as Next to toggle bwtween the process display variables). You can select the display, parameter, scale, and text for each process variable being displayed.
 display screen. From the Main Menu screen, press F1 or F2 to select the process display screen. In addition, the process display screen becomes active if no keys have been pressed before the display timeout period expires. See "Setting the Display Timeout Period" on page B-16 for information about setting the display timeout period.

Figure B. 10 Process (User) Display Screen

Displaying and Changing the OIM Reference

You can display the reference value that the OIM is sending to the drive by pressing the up or down arrow key once when the process display screen is active. See Figure B.11. The OIM reference can be used for the speed reference, PI reference, or trim reference.

To change the displayed reference, press and hold down either the up or down arrow key until the desired value is displayed. Release the key to return to the process display screen.

Figure B. 11 OIM Reference Displayed

Note that changing the value of the OIM reference does not affect the value of any other port reference.

The value of the OIM reference is saved through a power cycle if parameter 192 (Save OIM Ref) is set to save at power down.

Customizing the Process Display Screen

To customize the process display screen, select Monitor from the Display menu. See Figure B. 12 .

Figure B. 12 Customizing the Process Display Screen

Customizing the Function Keys

The function keys (F1, F2, F3, and F4, also called F-Keys) on the OIM can be customized to perform several pre-configured functions when the process display screen is active.

Up to eight function keys can be configured. Pressing $\triangle \square$ while the display screen is active toggles between each set of four functions.

As shipped from the factory, the F4 key is configured for the Clear Fault Queue function.

To assign a function to an F-Key, select the Display icon from the Main Menu as shown in Figure B. 13 and Figure B. 14.

The F-Key definitions are the same for all OIMs connected to the drive, regardless of the port used.

Figure B. 13 Accessing the Function Key Configuration Screens

Select from the list of preconfigured functions:
Undefined (default)
Load User Set 1-3: Loads the specified user set into active drive memory. The drive responds as if a value had been entered in 198 [Load Frm Usr Set], or [Load Frm Usr Set] was selected from the OIM's Memory Storage menu.

ATTENTION: Loading a user set with LevelSense Start (168) set to Enable can result in the drive starting immediately when all start conditions are met.
When this function is enabled, the user must ensure that automatic start up of the driven equipment will not cause injury to operating personnel or damage to the driven equipment. In addition, the user is responsible for providing suitable audible or visual alarms or other devices to indicate that this function is enabled and the drive may start at any moment. Failure to observe this precaution could result in severe bodily injury or loss of life.

Save User Set 1-3: Saves the active configuration to drive memory. The drive responds as if a value had been entered in Save to User Set (199) or Save to User Set was selected from the OIM's Memory Storage menu.

Acc/Dec Change: Toggles between the display of Acc/Dec rate 1 and $\mathrm{Acc} / \mathrm{Dec}$ rate 2 (The value the drive is configured to go to, not the current value being used by the drive). This selection is based on the active value of the rate parameters (140-143). Therefore, when any of these parameters change, the actual acc/dec rates will dynamically change.

Preset Speed 1-6: Toggles the selected preset speed on and off and grants Hand (manual) reference control. Returns to Auto reference when the function is toggled.

View Fault Queue: Displays the Fault Queue screen (see Chapter 4).

Next: (Frames 2 and 3 only) Togle to net set of three process display variables.

Customizing the Function Key Label Text

You can customize the text for each function key label (up to five characters). See Figure B. 14.

Figure B. 14 Customizing the Function Key Label Text

Setting the Display Timeout Period

When the OIM is inactive (that is, no keys have been pressed) for a user-specified period of time, the process display screen becomes active. To return to the previously active screen, press any key. To return to the

To set the display timeout period, select Display Timeout from the Display menu. The timeout period can range from 10 to 1200 seconds (20 minutes).

This feature can also be disabled by pressing the F1 key while in the display time screen.

Note that each OIM connected to the drive can have a different timeout period.

Using Reverse Video for the Process Display Screen

To select normal or reverse video for the process display screen, select Display Video from the Display menu. See figure Figure B. 15 for sample screens.

Note that each OIM connected to the drive can have a different display mode.

Figure B. 15 Selecting Reverse Video for the Process Display Screen

| | Stopped | Auto |
| :--- | :--- | :--- | :--- |
| P0: VTAC 9 | | |
| 0.00 | Volts | |
| 0.00 | AmpS | |
| 0.00 | HZ | |
| Luse1 | | Fltq |

Normal Video

Reverse Video

Control the Drive From the LCD OIM

When the OIM is the selected control source, it can be used to control the drive:

- Start (Run)
- Stop
- Clear Faults

Selecting the Logic and Reference Source

Parameters 89 [Logic Source Sel] and 90 [Ref Source Sel] are used to select the drive control and speed reference sources. These parameters are grouped in the Control Src Select menu. See Figure B. 16.

Figure B. 16 Selecting the Control and Reference Source

ATTENTION: Removing and replacing the LCD OIM while the drive is running may cause an abrupt speed change if the LCD OIM is the selected reference source, but is not the selected control source. The drive will ramp to the reference level provided by the OIM at the rate specified in 140 [Accel Time 1], 141 [Accel Time 2], 142 [Decel Time 1] and 143 [Decel Time 2]. Be aware that an abrupt speed change may occur depending upon the new reference level and the rate specified in these parameters. Failure to observe this precaution could result in bodily injury.

Both of these parameters can also be accessed individually through the Parameters menu.

Refer to Chapter 3 for descriptions of the parameters.

Starting the Drive

When the OIM is the selected control source, pressing \square issues a start command to the drive.

Stopping the Drive

Pressing O will issue a stop command to the drive.
Important: Stop commands from any attached OIM will always be enabled.

Notes:

Application Notes

For information on...	See page...
External Brake Resistor	C-1
Motor Overload	$\underline{C-2}$
Overspeed	$\mathrm{C}-4$
Power Loss Ride Through	$\mathrm{C}-5$
Process PI	$\mathrm{C}-6$

For information on...	See page...
Motor Overload Memory	C-3
Retention Per 2005 NEC	C-9
Skip Frequency	$\underline{\text { C-11 }}$
Sleep Wake Mode	$\mathrm{C}-13$
Start At PowerUp	$\mathrm{C}-14$
Stop Mode	

External Brake Resistor

Figure C. 1 External Brake Resistor Circuitry

Motor Overload

For single motor applications the drive can be programmed to protect the motor from overload conditions. An electronic thermal overload $\mathrm{I}^{2} \mathrm{~T}$ function emulates a thermal overload relay. This operation is based on three parameters; [Motor NP FLA], [Motor OL Factor] and [Motor OL Hertz] (parameters 042, 048 and 047, respectively).
[Motor NP FLA] is multiplied by [Motor OL Factor] to allow the user to define the continuous level of current allowed by the motor thermal overload. [Motor OL Hertz] is used to allow the user to adjust the frequency below which the motor overload is derated.

The motor can operate up to 102% of FLA continuously. If the drive had just been activated, it will run at 150% of FLA for 180 seconds. If the motor had been operating at 100% for over 30 minutes, the drive will run at 150% of FLA for 60 seconds. These values assume the drive is operating above [Motor OL Hertz], and that [Motor OL Factor] is set to 1.00 .

Operation below 100\% current causes the temperature calculation to account for motor cooling.

[Motor OL Hertz] defines the frequency where motor overload capacity derate should begin. The motor overload capacity is reduced when operating below [Motor OL Hertz]. For all settings of [Motor OL Hertz] other than zero, the overload capacity is reduced to 70% at an output frequency of zero.

[Motor NP FLA] is multiplied by [Motor OL Factor] to select the rated current for the motor thermal overload. This can be used to raise or lower the level of current that will cause the motor thermal overload to trip. The effective overload factor is a combination of [Motor OL Hertz] and [Motor OL Factor].

Motor Overload Memory Retention Per 2005 NEC

The VTAC 9 (firmware version 3.001 or greater) has the ability to retain the motor overload count at power down per the 2005 NEC motor overtemp requirement. To Enable/Disable this feature, refer to the table below. Once Enabled, the value for [Testpoint 1 Sel] may be changed.

Overload Retention	[Testpoint 1 Sel], param 234	[Testpoint 1 Data], param 235
Enable	$" 629 "$	Any non-zero value ${ }^{(1)}$
Disable	$" 629 "$	"0"

(1) Default setting.

Overspeed

Overspeed Limit is a user programmable value that allows operation at maximum speed, but also provides an "overspeed band" that will allow a speed regulator such as slip compensation to increase the output frequency above maximum speed in order to maintain maximum motor speed.

The figure below illustrates a typical Custom V/Hz profile. Minimum Speed is entered in Hertz and determines the lower speed reference limit during normal operation. Maximum Speed is entered in Hertz and determines the upper speed reference limit. The two "Speed" parameters only limit the speed reference and not the output frequency.

The actual output frequency at maximum speed reference is the sum of the speed reference plus "speed adder" components from functions such as slip compensation.

The Overspeed Limit is entered in Hertz and added to Maximum Speed and the sum of the two (Speed Limit) limit the output frequency. This sum (Speed Limit) must is compared to Maximum Frequency and an alarm is initiated which prevents operation if the Speed Limit exceeds Maximum Frequency.

Note 1: The lower limit on this range can be 0 depending on the value of Speed Adder

Power Loss Ride Through

When AC input power is lost, energy is being supplied to the motor from the DC bus capacitors. The energy from the capacitors is not being replaced (via the AC line), thus, the DC bus voltage will fall rapidly. The drive must detect this fall and react according to the way it is programmed. Two parameters display DC bus voltage:

- [DC Bus Voltage] - displays the instantaneous value
- [DC Bus Memory] - displays a 6 minute running average of the voltage.

All drive reactions to power loss are based on [DC Bus Memory]. This averages low and high line conditions and sets the drive to react to the average rather than assumed values. For example, a 480 V installation would have a 480 V AC line and produce a nominal 648 V DC bus. If the drive were to react to a fixed voltage for line loss detect, (i.e. 533 V DC), then normal operation would occur for nominal line installations. However, if a lower nominal line voltage of 440 V AC was used, then nominal DC bus voltage would be only 594 V DC. If the drive were to react to the fixed 533 V level (only -10%) for line loss detect, any anomaly might trigger a false line loss detection. Line loss, therefore always uses the 6 minute average for DC bus voltage and detects line loss based on a fixed percentage of that memory. In the same example, the average would be 594 V DC instead of 650 V DC and the fixed percentage, 27% for "Coast to Stop" and 18% for all others, would allow identical operation regardless of line voltage.

VTAC 9 Frames B, C, D, and E use only these fixed percentages.
VTAC 9 Frames 2, 3, 4, 5, and 6 can selectively use the same percentages or the user can set a trigger point for line loss detect. The adjustable trigger level is set using [Power Loss Level] (see [Power Loss Level] on page 3-40).

Figure C. 2 Power Loss Mode = Coast

Figure C. 3 Power Loss Mode = Decel

Process PI

The internal PI function of theVTAC 9 provides closed loop process control with proportional and integral control action. The function is designed for use in applications that require simple control of a process without external control devices. The PI function allows the microprocessor of the drive to follow a single process control loop.

The PI function reads a process variable input to the drive and compares it to a desired setpoint stored in the drive. The algorithm will then adjust the output of the PI regulator, changing drive output frequency to try and make the process variable equal the setpoint.

It can operate as trim mode by summing the PI loop output with a master speed reference.

Or, it can operate as control mode by supplying the entire speed reference. This method is identified as "exclusive mode"

PI Enable

The output of the PI loop can be turned on (enabled) or turned off (disabled). This control allows the user to determine when the PI loop is providing part or all of the commanded speed. The logic for enabling the PI loop is shown in below.

The drive must be running for the PI loop to be enabled. The loop will be disabled when the drive is ramping to a stop, jogging or the signal loss protection for the analog input(s) is sensing a loss of signal.

If a digital input has been configured to "PI Enable," two events are required to enable the loop: the digital input must be closed AND bit 0 of the PI Control parameter must be $=1$.

If no digital input is configured to "PI Enable," then only the Bit $0=1$ condition must be met. If the bit is permanently set to a " 1 ", then the loop will become enabled as soon as the drive goes into "run".

Skip Frequency

Figure C. 4 Skip Frequency

Some machinery may have a resonant operating frequency that must be avoided to minimize the risk of equipment damage. To assure that the motor cannot continuously operate at one or more of the points, skip frequencies are used. Parameters 084-086, ([Skip Frequency 1-3]) are available to set the frequencies to be avoided.

The value programmed into the skip frequency parameters sets the center point for an entire "skip band" of frequencies. The width of the band (range of frequency around the center point) is determined by parameter 87, [Skip Freq Band]. The range is split, half above and half below the skip frequency parameter.

If the commanded frequency of the drive is greater than or equal to the skip (center) frequency and less than or equal to the high value of the band (skip plus $1 / 2$ band), the drive will set the output frequency to the high value of the band. See (A) in Figure C.4.

If the commanded frequency is less than the skip (center) frequency and greater than or equal to the low value of the band (skip minus $1 / 2$ band), the drive will set the output frequency to the low value of the band. See (B) in Figure C.4.

Acceleration and deceleration are not affected by the skip frequencies. Normal accel/decel will proceed through the band once the commanded frequency is greater than the skip frequency. See (A) \& (B) in Figure C.4. This function affects only continuous operation within the band.
Skip Frequency Examples

The skip frequency will have
hysteresis so the output does not
toggle between high and low values.
Three distinct bands can be
programmed. If none of the skip
bands touch or overlap, each band
has its own high/low limit.

Sleep Wake Mode

This function stops (sleep) and starts (wake) the drive based on separately configurable analog input levels rather than discrete start and stop signals. When enabled in "Direct" mode, the drive will start (wake) when an analog signal is greater than or equal to the user specified [Wake Level], and stop the drive when an analog signal is less than or equal to the user specified [Sleep Level].

Definitions

- Wake - A start command generated when the analog input value remains above [Wake Level] for a time greater than [Wake Time].
- Sleep - A Stop command generated when the analog input value remains below [Sleep Level] for a time greater than [Sleep Time].
- Speed Reference - The active speed command to the drive as selected by drive logic and [Speed Ref x Sel].
- Start Command - A command generated by pressing the Start button on the OIM, closing a digital input programmed for Start, Run, Run Forward or Run Reverse. The source is set by [Logic Source Sel].

Refer to Figure C. 5 .

Figure C. 5 Sleep Wake Mode

Start At PowerUp

When Start At Powerup in 2 wire control is configured, the drive will start if all start permissive conditions are met (within 10 seconds of drive power being applied), and the terminal block start input (Run, Run Forward or Run Reverse for 2-wire) is closed. An alarm will be annunciated from application of power until the drive actually starts, indicating the powerup start attempt is in progress.

The powerup start attempt will be aborted if any of the following occurs anytime during the 10 -second start interval:

- A fault condition occurs
- A Type 2 alarm condition occurs
- The terminal block programmed enable input is opened
- All terminal block run, run forward, or run reverse, inputs are canceled
- A Stop request (from any source) is received

If the drive has not started within the 10 second interval, the powerup start attempt will be terminated.

Stop Mode

| Mode | Description |
| :--- | :--- | :--- |
| Coast to | |
| Stop | |

This method combines two of the methods above. It uses drive output reduction to stop the load and DC injection to hold the load at zero speed once it has stopped.

1. On Stop, drive output will decrease according to the programmed pattern from its present value to zero. The pattern may be linear or squared. The output will decrease to zero at the rate determined by the programmed [Maximum Freq] and the programmed active [Decel Time x]
2. The reduction in output can be limited by other drive factors such as bus or current regulation.
3. When the output reaches zero 3 phase drive output goes to zero (off) and the drive outputs DC voltage on the last used phase at the level programmed in [DC Brake Level] Par 158. This voltage causes a "holding" brake torque.
4. DC voltage to the motor continues until a Start command is reissued or the drive is disabled.
5. If a Start command is reissued, DC Braking ceases and the drive returns to normal AC operation. If an Enable command is removed, the drive enters a "not ready" state until the enable is restored.

Notes:

A

AC Input Line Circuit Breakers, A-1
AC Input Line Fuses, A-1, A-21
AC Supply
Ground, 1-6
Source, 1-5
Unbalanced, 1-5
Ungrounded, 1-5
Accel Time X, 3-30
Access levels, parameter, 3-5
Advanced Parameter View, 3-9
Agency Certification, A-2
Alarm 1 @ Fault, 3-49
Alarm 2 @ Fault, 3-49
Alarm Config 1, 3-50
Alarm Descriptions, 4-10
Alarms
Analog in Loss, 4-10
Bipolar Conflict, 4-10
Clearing, 4-10
Decel Inhibit, 4-10
Defined, 4-10
Dig In Conflict, 4-10
Drive OL Level, 4-10
FluxAmpsRef Rang, 4-10
IntDBRes OvrHeat, 4-10
IR Volts Range, 4-11
IXo Voltage Range, 4-11
MaxFreq Conflict, 4-11
Motor Type Cflct, 4-11
NP Hz Conflict, 4-11
Power Loss, 4-11
Precharge Active, 4-11
Sleep Config, 4-11
Speed Ref Cflct, 4-11
UnderVoltage, 4-11
VHz Neg Slope, 4-11
Waking, 4-11
Alarms Group, 3-50
Ambient Temperature, 1-4
Analog in Loss Alarm, 4-10

Analog In Loss Fault, 4-4
Analog $\operatorname{In} \mathrm{X} \mathrm{Hi}, 3-56$
Analog In x Hi, 3-55
Analog \ln X Lo, 3-55, 3-56
Analog In X Loss, 3-55, 3-56
Analog Inputs Group, 3-54
Analog $\ln X$ Value, 3-12
Analog Out1 Hi, 3-58
Analog Out1 Lo, 3-58
Analog Out1 Sel, 3-57
Analog Outputs Group, 3-57
Anlg Cal Chksum Fault, 4-4
Anlg In Config, 3-54
Anlg In Sqr Root, 3-54
Anlg Out Absolut, 3-57
Anlg Out Config, 3-57
Armored Cable, 1-9
Auto Mode, 1-35
Auto Rstrt Delay, 3-38
Auto Rstrt Tries, 3-37
Auto Rstrt Tries Fault, 4-4
Auto/Manual
Control, 1-36
Modes, 1-35
Autotune, 3-17
AutoTune Aborted Fault, 4-4

B

Before Applying Power, 2-2
Bipolar Conflict Alarm, 4-10
Bottom Plate Removal, 1-11
Bottom View Dimensions, A-18
Break Frequency, 3-18
Break Voltage, 3-18
Bus Capacitors, Discharging, P-3
Bus Reg Kd, 3-34
Bus Reg Ki, 3-32
Bus Reg Kp, 3-34
Bus Reg Mode X, 3-33
Bus Voltage, Measuring, 1-12
Bypass Contactors, 1-17

C

Cable Entry Plate Removal, 1-11
Cable Length
Motor, 1-9
Signal, 1-21
Cable Trays, 1-9
Cables, Power
Armored, 1-9
Insulation, 1-7
Separation, 1-7
Shielded, 1-7, 1-9
Type, 1-7
Unshielded, 1-7, 1-8
Capacitors, Discharging, P-3
CarrierFrequency, 3-31
Cassette, I/O, 1-28
Catalog Number Explanation, P-4
CE Conformity, 1-37
Checklist, Start-Up, 2-2
Circuit Breakers
Input, 1-7
Ratings, A-1
Clearing
Alarms, 4-10
Faults, 4-4
Comm Control Group, 3-51
Commanded Freq, 3-11
Common Mode Capacitors, 1-18
Common Symptoms and Corrective Action, 4-13
Communication File, 3-51
Compensation, 3-16
Conduit, 1-9
Contactors
Bypass, 1-17
Contactors, Input, 1-16, 1-17
Control SW Ver, 3-12
Control, 2 and 3 Wire, 1-26
Control, Auto/Manual, 1-36
Conventions, Manual, P-1, P-2
Cross Reference, Parameter, 3-66
Current Lmt Gain, 3-30
Current Lmt Sel, 3-30

Current Lmt Val, 3-30
Customize
Function Key
Process Display Screen, B-15

D

Data In, 3-53
Data Out, 3-53
Datalinks Group, 3-53
DB Resistor Type, 3-34
DC Brake Level, 3-32
DC Brake Lvl Sel, 3-32
DC Brake Time, 3-32
DC Bus Memory, 3-12
DC Bus Voltage, 3-12
DC Bus, Measuring Voltage, 1-12
Decel Inhibit Alarm, 4-10
Decel Inhibit Fault, 4-5
Decel Time X, 3-30
Device items, how to select, 4-19
Device version, how to determine, 4-18
Diagnostics Group, 3-44
Dig In Conflict Alarm, 4-10
Dig In Status, 3-47
Dig Out Status, 3-47
Dig OutX Level, 3-65
Dig OutX OffTime, 3-65
Dig OutX OnTime, 3-65
Digital Inputs Group, 3-59
Digital InX Sel, 3-59
Digital OutX Sel, 3-64
Dimensions
Bottom View, A-18
Minimum Clearances, 1-4
Mounting, 1-4, A-8
Direction Config Group, 3-41
Direction Mode, 3-41
Discharging Bus Capacitors, P-3
Discrete Speeds Group, 3-23
Display timeout period, setting, B-16
Distribution Systems, 1-5
DPI ports, B-3, B-4

Drive Alarm 1, 3-45
Drive Checksum, 3-43
Drive connections
DPI ports, B-2
terminal blocks, B-2, B-3, B-4
Drive Data Group, 3-12
Drive Grounding, 1-6
Drive Logic Rslt, 3-51
Drive Memory Group, 3-42
Drive OL Count, 3-47
Drive OL Level Alarm, 4-10
Drive OL Mode, 3-30
Drive OverLoad Fault, 4-5
Drive Ramp Rslt, 3-51
Drive Ratings, A-1, A-21
Drive Ref Rslt, 3-51
Drive Status 1, 3-44
Drive status parameters, accessing using LCD OIM, 4-17
Drive Temp, 3-47
Dynamic Brake Resistor Selection, 3-34
Dynamic Control File, 3-30

E

Earthing, see Grounding
Elapsed MWh, 3-11
Elapsed Run Time, 3-11
EMI/RFI
Grounding, Filter, 1-7
Interference, 1-37
Enclosure Rating, 1-4
Encoder Terminal Block, 1-28
ESD, Static Discharge, P-3
Excessive Load Fault, 4-5

F

Fault Amps, 3-48
Fault Bus Volts, 3-48
Fault Clear, 3-50
Fault Clear Mode, 3-50
Fault Config 1, 3-50
Fault Descriptions, 4-4
Fault Frequency, 3-48
Fault queue
accessing using LCD OIM, 4-16
time stamp, 4-3
Faults
Analog In Loss, 4-4
Anlg Cal Chksum, 4-4
Auto Rstrt Tries, 4-4
AutoTune Aborted, 4-4
Clearing, 4-4
Decel Inhibit, 4-5
Defined, 4-4
Drive OverLoad, 4-5
Excessive Load, 4-5
fault parameters, accessing using LCD OIM, 4-17
fault queue, 4-3
FluxAmpsRef Rang, 4-5
Heatsink OvrTemp, 4-5
HW OverCurrent, 4-5
Incompat MCB-PB, 4-5
IR Volts Range, 4-5
Load Loss, 4-4
Motor Overload, 4-5
OverSpeed Limit, 4-6
OverVoltage, 4-6
Parameter Chksum, 4-6
Params Defaulted, 4-6
Phase Short, 4-6
Phase to Grnd, 4-6
Port X Adapter Fault, 4-6
Port X DPI Loss, 4-6
Power Loss, 4-7
Pwr Brd Chksum, 4-7
Replaced MCB-PB, 4-7
Shear Pin, 4-7
SW OverCurrent, 4-7
Trnsistr OvrTemp, 4-7
UnderVoltage, 4-7
UserSet Chksum, 4-7
Viewing, 4-4
Faults Group, 3-50

File
Communication, 3-51
Dynamic Control, 3-30
Inputs \& Outputs, 3-54
Monitor, 3-11
Motor Control, 3-12
Speed Command, 3-18
Utility, 3-41
Filter Option Power Input Terminals, 1-12
Filter, RFI, 1-7
F-Keys, customizing, B-14
Flux Current, 3-11
Flux Current Ref, 3-17
Flux Up Mode, 3-16
Flux Up Time, 3-16
FluxAmpsRef Rang Alarm, 4-10
FluxAmpsRef Rang Fault, 4-5
Flying Start En, 3-36
Flying StartGain, 3-36
Frame Designations, A-1, A-21
Function keys, see F-Keys
Fuses
Input, 1-7
Ratings, A-1, A-21

G

Grounding
Bus, 1-6
Conductor, 1-6
Filter, 1-7
General, 1-6
Impedance, 1-6
Motor, 1-9
Safety, PE, 1-6
Shields, TE, 1-6
Group
Alarms, 3-50
Analog Inputs, 3-54
Analog Outputs, 3-57
Comm Control, 3-51
Datalinks, 3-53
Diagnostics, 3-44
Digital Inputs, 3-59

Direction Config, 3-41
Discrete Speeds, 3-23
Drive Data, 3-12
Drive Memory, 3-42
Faults, 3-50
Load Limits, 3-30
Metering, 3-11
MOP Config, 3-42
Motor Data, 3-12
OIM Ref Config, 3-41
Power Loss, 3-40
Process PI, 3-26
Ramp Rates, 3-30
Restart Modes, 3-35
Slip Comp, 3-25
Spd Mode \& Limits, 3-18
Speed References, 3-22
Speed Trim, 3-24
Stop/Brake Modes, 3-32
Torq Attributes, 3-15
Volts per Hertz, 3-18

H

Heatsink OvrTemp Fault, 4-5
HW OverCurrent Fault, 4-5

I

I/O
Cassette, 1-28
Terminal Block, 1-22, 1-28
Wiring, 1-21
Wiring Examples, 1-26
Incompat MCB-PB Fault, 4-5
Indicators, LED, 2-3
Input Contactor
Start/Stop, 1-16, 1-17
Input Devices
Circuit Breakers, 1-7
Contactors, 1-16, 1-17
Fuses, 1-7
Input Fusing, 1-7
Input Potentiometer, 1-33
Input Power Conditioning, 1-5
Input Terminals, Power, 1-12

Inputs \& Outputs File, 3-54
Installation, 1-1
IntDBRes OvrHeat Alarm, 4-10
Interference, EMI/RFI, 1-37
IR Voltage Drop, 3-17
IR Volts Range Alarm, 4-11
IR Volts Range Fault, 4-5
Ixo Voltage Drop, 3-17
IXo VoltageRange Alarm, 4-11

K

Key descriptions, LCD OIM, B-7

L

Language, 3-43
Last Stop Source, 3-47
LED Indicators, 2-3
LevelSense Start, 3-35
Load Frm Usr Set, 3-42
Load Limits Group, 3-30
Load Loss Fault, 4-4

M

Man Ref Preload, 3-41
Manual Mask, 3-52
Manual Mode, 1-35
Manual Owner, 3-52
Manual/Auto Control, 1-36
MaxFreq Conflict Alarm, 4-11
Maximum Freq, 3-16
Maximum Speed, 3-19
Maximum Voltage, 3-15
Measuring DC Bus Voltage, 1-12
Metering Group, 3-11
Minimum Clearances, 1-4
Minimum Speed, 3-19
MOD LED, 2-3
Modes, Auto/Manual, 1-35
Monitor File, 3-11
MOP Config Group, 3-42
MOP Frequency, 3-11
MOP Rate, 3-42
Motor Cable Lengths, 1-9
Motor Control File, 3-12

Motor Data Group, 3-12
Motor NP FLA, 3-13
Motor NP Hertz, 3-13
Motor NP Power, 3-13
Motor NP RPM, 3-13
Motor NP Volts, 3-12
Motor OL Count, 3-48
Motor OL Factor, 3-14
Motor OL Hertz, 3-14
Motor Overload Fault, 4-5
Motor Starters, A-1
Motor Type, 3-12
Motor Type Cflct Alarm, 4-11
Mounting Clearances and
Orientation, 1-4
MOVs, 1-18
Mtr NP Pwr Units, 3-13

N

NET LEDs, 2-3
NP Hz Conflict Alarm, 4-11

0

OIM Ref Config Group, 3-41
OIM reference, displaying and changing, B-13
OIM, LCD
cables, B-1
display timeout period, setting, B-16
drive status parameters, accessing, 4-17
fast power up, B-9
fault parameters, accessing, 4-17
fault queue, accessing, 4-16
F-Keys, customizing, B-14
key descriptions, B-7
loading and saving user sets, B-12
logic and reference source, selecting, B-18
parameter access level, selecting, 3-5
parameters, viewing and adjusting, B-10
product version, determining, 4-17
resetting the display, B-9
reverse video, selecting, B-17
screen contrast, adjusting, B-9
starting the drive, $\mathbf{B - 1 9}$
stopping the drive, $\mathbf{B}-19$
version, how to determine, 4-18
viewing and adjusting parameters, B-10
Operating Modes, 1-35
Operating Temperature, 1-4
Output Current, 3-11
Output Freq, 3-11
Output Power, 3-11
Output Powr Fctr, 3-11
Output Voltage, 3-11
Overspeed Limit, 3-20
OverSpeed Limit Fault, 4-6
OverVoltage Fault, 4-6

P

Param Access Lvl, 3-42
Parameter
Descriptions, 3-1
Organization, 3-3
Types, 3-1
Parameter Chksum Fault, 4-6
Parameter Cross Reference, 3-66
Parameter View
Advanced, 3-9
Standard, 3-8
Parameters
Accel Time X, 3-30
access levels, 3-5
Alarm 1 @ Fault, 3-49
Alarm 2 @ Fault, 3-49
Alarm Config 1, 3-50
Analog In X Hi, 3-56
Analog $\ln x \mathrm{Hi}, 3-55$
Analog In X Lo, 3-55, 3-56
Analog In X Loss, 3-55, 3-56
Analog $\operatorname{In} X$ Value, 3-12
Analog Out1 Hi, 3-58

Analog Out1 Lo, 3-58
Analog Out1 Sel, 3-57
Anlg In Config, 3-54
Anlg In Sqr Root, 3-54
Anlg Out Absolut, 3-57
Anlg Out Config, 3-57
Auto Rstrt Delay, 3-38
Auto Rstrt Tries, 3-37
Autotune, 3-17
Break Frequency, 3-18
Break Voltage, 3-18
Bus Reg Kd, 3-34
Bus Reg Ki, 3-32
Bus Reg Kp, 3-34
Bus Reg Mode X, 3-33
CarrierFrequency, 3-31
Commanded Freq, 3-11
Compensation, 3-16
Control SW Ver, 3-12
Current Lmt Gain, 3-30
Current Lmt Sel, 3-30
Current Lmt Val, 3-30
Data In, 3-53
Data Out, 3-53
DB Resistor Type, 3-34
DC Brake Level, 3-32
DC Brake Lvl Sel, 3-32
DC Brake Time, 3-32
DC Bus Memory, 3-12
DC Bus Voltage, 3-12
Decel Time X, 3-30
Dig In Status, 3-47
Dig Out Status, 3-47
Dig OutX Level, 3-65
Dig OutX OffTime, 3-65
Dig OutX OnTime, 3-65
Digital InX Sel, 3-59
Digital OutX Sel, 3-64
Direction Mode, 3-41
Drive Alarm 1, 3-45
Drive Checksum, 3-43
Drive Logic Rslt, 3-51
Drive OL Count, 3-47

Drive OL Mode, 3-30
Drive Ramp Rslt, 3-51
Drive Ref Rslt, 3-51
Drive Status 1, 3-44
Drive Temp, 3-47
Elapsed MWh, 3-11
Elapsed Run Time, 3-11
Fault Amps, 3-48
Fault Bus Volts, 3-48
Fault Clear, 3-50
Fault Clear Mode, 3-50
Fault Config 1, 3-50
Fault Frequency, 3-48
Flux Current, 3-11
Flux Current Ref, 3-17
Flux Up Mode, 3-16
Flux Up Time, 3-16
Flying Start En, 3-36
Flying StartGain, 3-36
IR Voltage Drop, 3-17
Ixo Voltage Drop, 3-17
Language, 3-43
Last Stop Source, 3-47
LevelSense Start, 3-35
Load Frm Usr Set, 3-42
Man Ref Preload, 3-41
Manual Mask, 3-52
Manual Owner, 3-52
Maximum Freq, 3-16
Maximum Speed, 3-19
Maximum Voltage, 3-15
Minimum Speed, 3-19
MOP Frequency, 3-11
MOP Rate, 3-42
Motor NP FLA, 3-13
Motor NP Hertz, 3-13
Motor NP Power, 3-13
Motor NP RPM, 3-13
Motor NP Volts, 3-12
Motor OL Count, 3-48
Motor OL Factor, 3-14
Motor OL Hertz, 3-14

Motor Type, 3-12
Mtr NP Pwr Units, 3-13
Output Current, 3-11
Output Freq, 3-11
Output Power, 3-11
Output Powr Fctr, 3-11
Output Voltage, 3-11
Overspeed Limit, 3-20
Param Access Lvl, 3-42
PI Configuration, 3-26
PI Control, 3-27
PI Error Meter, 3-29
PI Fdback Meter, 3-29
PI Feedback Sel, 3-28
PI Integral Time, 3-28
PI Lower Limit, 3-28
PI Output Meter, 3-29
PI Preload, 3-29
PI Prop Gain, 3-28
PI Ref Meter, 3-29
PI Reference Sel, 3-28
PI Setpoint, 3-28
PI Status, 3-29
PI Upper Limit, 3-28
Power Loss Level, 3-40
Power Loss Mode, 3-40
Power Loss Time, 3-40
Power Up Marker, 3-50
Preset Speed X, 3-23
Purge Speed, 3-23
Rated Amps, 3-12
Rated kW, 3-12
Rated Volts, 3-12
Reset Meters, 3-42
Reset To Defalts, 3-42
Run Boost, 3-18
S Curve \%, 3-30
Save MOP Ref, 3-42
Save OIM Ref, 3-41
Save To User Set, 3-42
Skip Freq Band, 3-20
Skip Frequency x, 3-20

Sleep Level, 3-40
Sleep Time, 3-40
Sleep Wake Mode, 3-38
Sleep Wake Ref, 3-40
Slip Comp Gain, 3-25
Slip RPM @ FLA, 3-25
Slip RPM Meter, 3-25
Speed Mode, 3-18
Speed Ref A Hi, 3-22
Speed Ref A Lo, 3-22
Speed Ref A Sel, 3-22
Speed Ref Source, 3-46
Start Inhibits, 3-46
Start/Acc Boost, 3-18
Status 1 @ Fault, 3-48
Status 2 @ Fault, 3-48
Stop Mode X, 3-31
Stop Owner, 3-52
SV Boost Filter, 3-16
TB Man Ref Hi, 3-23
TB Man Ref Lo, 3-23
TB Man Ref Sel, 3-23
Testpoint X Data, 3-49
Testpoint X Sel, 3-49
Torque Current, 3-11
Torque Perf Mode, 3-15
Trim Hi, 3-24
Trim In Select, 3-24
Trim Lo, 3-24
Trim Out Select, 3-24
viewing and adjusting using LCD OIM, B-10
Voltage Class, 3-43
Wake Level, 3-40
Wake Time, 3-40
Params Defaulted Fault, 4-6
Password
access level, 3-5
PE Ground, 1-6, 1-9
Phase Short Fault, 4-6
Phase to Grnd Fault, 4-6
PI Configuration, 3-26
PI Control, 3-27

PI Error Meter, 3-29
PI Fdback Meter, 3-29
PI Feedback Sel, 3-28
PI Integral Time, 3-28
PI Lower Limit, 3-28
PI Output Meter, 3-29
PI Preload, 3-29
PI Prop Gain, 3-28
PI Ref Meter, 3-29
PI Reference Sel, 3-28
PI Setpoint, 3-28
PI Status, 3-29
PI Upper Limit, 3-28
PORT LED, 2-3
Port X Adapter Fault, 4-6
Port X DPI Loss Fault, 4-6
Potentiometer, Wiring, 1-33
Power Cables/Wiring, 1-7
Power Conditioning, Input, 1-5
Power Input Terminals, 1-12
Power LED, 2-3
Power Loss Alarm, 4-11
Power Loss Fault, 4-7
Power Loss Group, 3-40
Power Loss Level, 3-40
Power Loss Mode, 3-40
Power Loss Ride Through, C-5
Power Loss Time, 3-40
Power Terminal Block, 1-11, 1-14
Power terminal block, B-2, B-3, B-4
Power Up Marker, 3-50
Powering Up the Drive, 2-2
Precharge Active Alarm, 4-11
Preset Speed X, 3-23
Process PI Group, 3-26
Product version, how to determine, 4-17
Programming, 3-1
Purge Speed, 3-23
Pwr Brd Chksum Fault, 4-7

R

Ramp Rates Group, 3-30

Rated Amps, 3-12
Rated kW, 3-12
Rated Volts, 3-12
Ratings, A-1, A-21
Reference Manual, P-1
Repeated Start/Stop, 1-16, 1-17
Replaced MCB-PB Fault, 4-7
Reset Meters, 3-42
Reset To Defalts, 3-42
Restart Modes Group, 3-35
RFI Filter Option, 1-12
RFI Filter, Input Terminals, 1-12
RFI, see EMI/RFI
Run Boost, 3-18

S

S Curve \%, 3-30
Safety Ground, 1-6
Save MOP Ref, 3-42
Save OIM Ref, 3-41
Save To User Set, 3-42
Shear Pin Fault, 4-7
Shielded Power Cables, 1-9
Short Circuit Protection, 1-7
Signal and I/O terminal block, B-2, B-3, B-4
Skip Freq Band, 3-20
Skip Frequency x, 3-20
Sleep Config Alarm, 4-11
Sleep Level, 3-40
Sleep Time, 3-40
Sleep Wake Mode, 3-38
Sleep Wake Ref, 3-40
Slip Comp Gain, 3-25
Slip Comp Group, 3-25
Slip RPM @ FLA, 3-25
Slip RPM Meter, 3-25
Spare Parts, P-1
Spd Mode \& Limits Group, 3-18
Specifications
Agency Certification, A-2
Control, A-2
Drive, P-1
Drive Ratings, A-1, A-21

Electrical, A-2
Environment, A-1
Protection, A-1
Speed Command File, 3-18
Speed Command Sources, 1-35
Speed Mode, 3-18
Speed Pot, 1-33
Speed Ref A Hi, 3-22
Speed Ref A Lo, 3-22
Speed Ref A Sel, 3-22
Speed Ref Cflct Alarm, 4-11
Speed Ref Source, 3-46
Speed Reference Control, 1-35
Speed Reference Selection, 1-35
Speed References Group, 3-22
Speed Trim Group, 3-24
Standard Control I/O Terminal Block, 1-32
Standard I/O
TB, 1-28
Standard Parameter View, 3-8
Start Inhibits, 3-46
Start/Acc Boost, 3-18
Start/Stop, Repeated, 1-16, 1-17
Starting the drive using the LCD OIM, B-19
Start-Up
Checklist, 2-2
Static Discharge, ESD, P-3
Status (STS) LED, 2-3
Status 1 @ Fault, 3-48
Status 2 @ Fault, 3-48
Stop Mode X, 3-31
Stop Owner, 3-52
Stop/Brake Modes Group, 3-32
Stopping the drive using the LCD OIM, B-19
Supply Source, 1-5
SV Boost Filter, 3-16
SW OverCurrent Fault, 4-7
System Grounding, 1-6

T

TB Man Ref Hi, 3-23
TB Man Ref Lo, 3-23
TB Man Ref Sel, 3-23
TE Ground, 1-6
Technical assistance, P-1
Terminal Block
Encoder, 1-28
I/O, 1-22
Power, 1-11, 1-14
Standard Control I/O, 1-32
Standard I/O, 1-28
Wire Size
Encoder, 1-29
I/O, 1-29
Power, 1-13
Testpoint Codes and Functions, 4-12
Testpoint X Data, 3-49
Testpoint X Sel, 3-49
Three Wire Control, 1-26
Time stamp, fault queue, 4-3
Torq Attributes Group, 3-15
Torque Current, 3-11
Torque Perf Mode, 3-15
Trim Hi, 3-24
Trim In Select, 3-24
Trim Lo, 3-24
Trim Out Select, 3-24
Trnsistr OvrTemp Fault, 4-7
Troubleshooting, 4-4
Two Wire Control, 1-26

U

Unbalanced/Ungrounded Supply, 1-5
UnderVoltage
Fault, 4-7
UnderVoltage Alarm, 4-11
Ungrounded Distribution Systems, 1-18
Unshielded Power Cables, 1-8
User sets, loading and saving using LCD OIM, B-12
UserSet Chksum Fault, 4-7

Utility File, 3-41

V

VHz Neg Slope Alarm, 4-11
Voltage Class, 3-43
Volts per Hertz Group, 3-18

W

Wake Level, 3-40
Wake Time, 3-40
Waking Alarm, 4-11
Wiring, 1-1
Cable Entry Plate Removal, 1-11
I/O, 1-21
I/O Examples, 1-26
Potentiometer, 1-33
Power, 1-7
Signal, P-6, 1-21

www.vtacdrives.com

VTAC Headquarters

Rockwell Automation, 6400 West Enterprise Drive, Mequon, Wisconsin 53092 USA, Tel: 910262.512 .8200

[^0]: (1) See page 4-2 for a description of fault types.

[^1]: ${ }^{(1)}$ Typical designations include, but may not be limited to the following; Parts $1 \& 2$: AC,

