PowerFlex 7000 Medium Voltage AC Drive Air-Cooled ("A" Frame)—ForGe Control

Bulletin Number 7000A
Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).
Table of Contents

Preface
Summary of Changes .. 9
Who Should Use This Manual 9
What Is Not in This Manual 9
General Precautions .. 9
Additional Resources .. 10

Chapter 1
Overview of Drive
Introduction ... 11
Topology ... 11
Rectifier Designs .. 12
 Configurations ... 12
Motor Compatibility .. 14
Simplified Electrical Drawings 15
 2400V ... 15
 3300/4160V .. 16
 6600V ... 17
 Safe Torque Off ... 18
Operator Interface ... 19
 Basic Configurations .. 19

Chapter 2
Drive Installation
Safety and Codes ... 21
Drive Storage .. 21
Siting of the Drive .. 21
 Site Considerations ... 21
 Generator Note ... 22
Installation .. 23
 Shock Indication Labels ... 23
 Installation of Exhaust Air Hood 24
 Installation of Redundant Fan Assembly 27
 Installation of Integral Transformer Cooling Fan 29
 Neutral Resistor Assembly 30
 Installation of Neutral Resistor Assembly (Direct-to-Drive)... 31
Cabinet Layout and Dimensional Drawings of Drive 32
Drive Layout .. 34
IEC Component and Device Designations 37
Selection of Power Wiring ... 37
 General Notes .. 37
 Cable Insulation .. 37
Power Cabling Access ... 40
 Access the Customer Power Cable-terminations 40
Power Connections .. 41
 Line/Motor Terminations 41
Installation Requirements for Power Cabling 41
Table of Contents

- Power and Control Wiring .. 46
- Control Cables .. 46
- Grounding Practices ... 46
- Drive Signal and Safety Grounds 48
- For Customers and Power Integrators 48
- Identification of Types of Electrical Supplies - Grounded and Ungrounded Systems 49
- Ground Bus ... 49

Power Component Definition and Maintenance

Chapter 3

- Cabling Cabinet Components .. 51
- Hall Effect Sensor Replacements 55
- Current Transformer Replacement 56
- Converter Cabinet Components 58
- Converter Cabinet ... 61
- Voltage-sensing Assembly .. 61
- Replacing the Voltage-sensing Circuit Board Assembly 62
- Surge Arresters ... 63
 - Description ... 63
 - Operation ... 64
 - Surge Arrester Replacement 64
 - Field Test and Care .. 65
- PowerCage Module Overview ... 66
- Resistance Checks .. 67
 - SGCT and Snubber Circuit .. 68
 - SGCT Anode-to-Cathode Sharing Resistance 73
 - Snubber Resistance ... 74
 - Snubber Capacitance .. 75
 - Replacing the SGCT ... 77
 - Replacing Snubber and Sharing Resistor 80
 - Snubber Capacitor Replacement 82
 - Sharing Resistor Replacement 82
- Maintain Uniform Clamping Pressure 83
 - Adjusting the Clamping Pressure 84
- Temperature Sensing ... 85
 - Replacing the Thermal Sensor 85
- Heatsink Replacement .. 87
- PowerCage Gasket .. 88
 - Replacement of PowerCage Gaskets 89
 - Removal of Old Gasket Material 89
- PowerCage Module Removal ... 90
- Self-powered SGCT Power Supply - SPS 92
 - Board Calibration ... 92
 - Test Points ... 92
 - Equipment for Testing ... 94
 - Fiber-optic Cabling .. 95
Table of Contents

Air Pressure Sensor .. 96
 Air Pressure Sensor Replacement 96
D.C. Link / Fan / Control Components 97
 Output Grounding Network Replacement 99
 Ground Filter Component Replacement 100
 Filter Capacitors ... 101
 Replacing the Filter Capacitors 102
 Testing the Filter Capacitors 104
DC Link Reactor and CMC Replacement 106
 Fan Replacement .. 108
 DC Link Section ... 108
 Fan Installation ... 109
 Top of Integral Isolation Transformer Section 110
 Top of Integral Line Reactor and Input Starter Section 111
Impeller Maintenance .. 111
 Isolation Transformer Cooling Fan 111
Inlet Ring Removal and Replacement 111
 DC Link / Fan Section ... 112
 Top of Integral Isolation Transformer Section 112
Replacement of Air Filters .. 113
 Fan Power Transformer .. 116

Chapter 4

Control Component Definition and Maintenance

Control Power Components ... 117
 Ride-through ... 117
AC/DC Power Supply .. 121
 Description ... 121
 Location ... 122
 Terminal / Connections Descriptions 124
 Output Calibration .. 125
 Single Power Supply Replacement 126
 Dual Power Supply Replacement 127
 Diode Replacement .. 129
UPS Option ... 130
 Replacing the UPS ... 131
Low Voltage Control Section ... 133
 DC/DC Power Supply ... 133
 Description ... 133
 Terminal/Connections Descriptions 134
 Replacement Procedure for DC/DC Power Supply 135
Printed Circuit Board Replacement 136
 Drive Processor Module .. 137
 Drive Processor Module Replacement 139
Analog Control Board .. 141
 Interface Module (IFM) ... 145
 Analog Inputs and Outputs ... 145
 Current Loop Transmitter ... 146
Table of Contents

- Isolated Process Receiver ... 147
- Non-Isolated Process Outputs .. 148
- Auxiliary +24V Power Supply .. 148
- Replacing the Analog Control Board 149
- Encoder Feedback Board .. 149
- Encoder Options ... 149
- Quadrature Encoder Operation 154
- Positional Encoder Operations 154
- Positional Encoder Guidelines 155
- External Input/output Boards .. 156
- External Input/output Board Replacement 157
- Optical Interface Boards .. 158
- Optical Interface Board Replacement 160

Appendix A
- PowerFlex 7000 Drive Selection Explanation 165
- Service Duty Rating, Continuous Current Rating and Altitude Rating Code .. 165

Appendix B
- Preventative Maintenance Schedule 165
 - Preventative Maintenance Checklist 167
 - Operational Maintenance ... 167
 - Annual Maintenance .. 167
 - Initial Information Gathering 168
 - Physical Checks .. 168
 - Control Power Checks (No Medium Voltage) 169
 - Final Power Checks before Restarting 170
 - Additional Tasks during Preventive Maintenance 170
 - Final Reporting .. 171
 - Time Estimations .. 171
 - Tool / Parts / Information Requirements 172
 - Maintenance Schedule .. 173
 - General Notes ... 176
 - Maintenance of Medium Voltage Equipment 176
 - Periodic Inspection ... 176
 - Contamination ... 177
 - High-voltage Testing ... 177
 - Maintenance after a Fault Condition 177
 - Part-specific Notes .. 178
 - Cooling-fans .. 178
 - Operating Mechanisms ... 178
 - Contacts .. 178
 - Vacuum Contactors ... 178
 - Power Cable and Control Wire Terminals 179
 - Coils .. 179
 - Batteries .. 179
Table of Contents

Pilot Lights ... 179
Solid-state Devices ... 179
Locking and Interlocking Devices 180

Appendix C
Torque Requirements for Threaded Fasteners 181

Appendix D
Drive Insulation Resistance Testing 183
Insulation Resistance Testing Procedures 184

Appendix E
Maximum Line Cable Sizes 189
Maximum Load Cable Sizes 190

Appendix F
Air Quality Requirements 191
Hazardous Materials .. 192
 Capacitor Dielectric Fluid 192
 Printed Circuit Boards 192
 Lithium Batteries .. 192
 Chromate Plating ... 193
 In Case Of Fire .. 193
 Disposal .. 193

Appendix G
Start-up Commissioning Services 195
Pre-Commissioning the Drive 195

Appendix H
Drive Specifications .. 197

Index .. 201
Preface

This document provides procedural information for managing the PowerFlex® 7000 medium voltage “A” frame drives.

Summary of Changes

This manual contains new and updated information as indicated in the following table.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added new redundant fan graphics showing three configurations</td>
<td>27</td>
</tr>
<tr>
<td>Revised redundant fan assembly orientation graphic</td>
<td>28</td>
</tr>
<tr>
<td>Revised Voltage Sensing Board graphic to updated model</td>
<td>62</td>
</tr>
<tr>
<td>Revised cabinet graphic to show Ziehl-Abegg fan</td>
<td>98</td>
</tr>
<tr>
<td>Replaced DC Link removal graphic to show updated fan</td>
<td>107</td>
</tr>
<tr>
<td>Revised fan removal procedure</td>
<td>108</td>
</tr>
<tr>
<td>Replaced air flow graphic to show updated fan</td>
<td>115</td>
</tr>
</tbody>
</table>

Who Should Use This Manual

This manual is intended for use by personnel familiar with medium voltage and solid-state variable speed drive equipment. The manual contains material that enables regular operation and maintenance of the drive system.

What Is Not in This Manual

This manual provides information specific to the maintenance of the PowerFlex® 7000 “A” frame drive. The manual excludes topics such as:

- Dimensional and electrical drawings that are generated for each customer order.
- Spare part lists compiled for each customer order.
- Human Machine Interface (HMI) operation and configuration.

Rockwell Automation® provides the site- and installation-specific electrical and design information for each drive during the order process cycle. If they are not available on site with the drive, contact Rockwell Automation®.

General Precautions

ATTENTION: This drive contains ESD (electrostatic discharge) sensitive parts and assemblies. Static control precautions are required when this assembly is installed, tested, serviced, or repaired. Component damage can result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference Allen-Bradley® publication 8000-4.5.2, “Guarding Against Electrostatic Damage” or any other applicable ESD protection handbook.
Additional Resources

These publications contain additional information concerning “A” Frame drives and related products from Rockwell Automation.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7000-PP002</td>
<td>PowerFlex 7000 Air-Cooled Drives Product Profile</td>
</tr>
<tr>
<td>7000-TD002</td>
<td>PowerFlex 7000 Medium Voltage AC Drive (firmware revision 11 or later) - ForGe Control</td>
</tr>
<tr>
<td>7000-UM201</td>
<td>PowerFlex 7000 HMI Offering with Enhanced Functionality</td>
</tr>
<tr>
<td>7000-OS002</td>
<td>HMI Interface Board Software Updater and Firmware Download Procedure</td>
</tr>
<tr>
<td>7000-IN010</td>
<td>Handling, Inspection, and Storage of Medium Voltage Line Filter Capacitors</td>
</tr>
<tr>
<td>1770-4.1</td>
<td>Provides general guidelines for installing a Rockwell Automation industrial system.</td>
</tr>
</tbody>
</table>

You can view or download publications at http://www.rockwellautomation.com/global/literature-library/overview.page. To request paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.
Overview of Drive

Introduction

The PowerFlex® 7000 drive is a general-purpose, standalone, medium voltage drive. The drive controls speed, torque, direction, and the start and stops of standard asynchronous or synchronous AC motors. The PowerFlex 7000 works on numerous standard and specialty applications such as fans, pumps, compressors, mixers, conveyors, kilns, fan-pumps, and test stands. The PowerFlex 7000 is used in industries such as petrochemical, cement, mining and metals, forest products, power generation, and water/waste water.

The PowerFlex 7000 drive meets most common standards from the National Electrical Code (NEC), International Electrotechnical Commission (IEC), National Electrical Manufacturers Association (NEMA), Underwriters Laboratories (UL), and Canadian Standards Association (CSA). The PowerFlex 7000 is available with most common supply voltages at medium voltage, from 2400...6600V.

Topology

The PowerFlex 7000 drive uses a pulse width modulated (PWM) – current source inverter (CSI) topology. This topology offers a simple, cost-effective power structure that is easy to apply to a wide voltage and power range. The power semiconductor switches used are easy-to-series for any medium voltage level. Semiconductor fuses are not required for the power structure due to the current limiting DC link inductor.

With 6500V PIV rated power semiconductor devices, the number of inverter components is kept to a minimum. For example, only six inverter switching-devices are required at 2400V, 12 at 3300...4160V, and 18 at 6600V.

The PowerFlex 7000 drive provides inherent regenerative-braking for applications where the load is overhauling the motor. Or where high inertia loads are slowed down quickly. Symmetrical gate-commutated thyristors (SGCTs) are used for machine converter switches and line converter switches.

The PowerFlex 7000 drive provides a selectable option for enhanced torque control capabilities and increased dynamic control performance. This high-performance torque control (HPTC) feature delivers 100% torque at zero speed and provides torque control through zero speed with smooth direction transition.
Rectifier Designs

The PowerFlex 7000 drive offers three rectifier configurations for "A" Frame drives:

- Direct-to-Drive™ (Active Front End [AFE] rectifier with integral line reactor and Common Mode Choke)
- AFE rectifier with separate isolation transformer
- AFE rectifier with integral isolation transformer

Direct-to-Drive

Direct-to-Drive technology does not require an isolation transformer or multiple rectifier bridges. Instead of multiple uncontrolled rectifiers, an AFE rectifier bridge is supplied. The rectifier semiconductors that are used are symmetrical gate commutated thyristors (SGCTs). Unlike the diodes that are used in VSI (voltage source inverter) rectifier bridges, SGCTs are turned on and off by a gating signal. A pulse-width modulation (PWM) gating-algorithm controls the firing of the rectifier devices, similar to the control philosophy of the inverter. The gating algorithm uses a specific 42 pulse switching-pattern (Figure 1) called selective harmonic elimination (SHE) to mitigate the 5th, 7th, and 11th harmonic orders.

Figure 1 - Typical PWM Switching-pattern, Line Voltage Waveform

An integral line reactor and capacitor addresses the high harmonic orders (13th and above). The integral line reactor and capacitor also provide sinusoidal voltage and current waveforms back to the distribution system. The capacitor delivers excellent line-side harmonic and power factor performance to meet IEEE 519-1992 requirements and other global harmonic standards. All while providing a simple, robust power structure that maximizes uptime by minimizing the number of discrete components and the number of interconnections required.

A common mode choke (CMC) mitigates the common mode voltage that is seen at the motor terminals. Standard (non-inverter duty rated) motors and motor cables can be used. This technology is ideal for motor retrofit applications.

An integral starter is offered as an option.
AFE Rectifier with Separate Isolation Transformer

For applications when the line voltage is higher than the motor voltage, a transformer is required for voltage matching. In this case, providing an AFE rectifier with a separate isolation transformer is ideal (indoor and outdoor transformer versions are offered). The isolation transformer provides the input impedance (which replaces the integral line reactor) and addresses the common mode voltage (which replaces the CMC that is in the Direct-to-Drive rectifier configuration). However, the AFE rectifier, its operation, and advantages are the same as the Direct-to-Drive™ configuration.

AFE Rectifier with Integral Isolation Transformer

For applications that require a higher power rating than available with Direct-to-Drive, providing an AFE rectifier with an integral isolation transformer is ideal (indoor and outdoor transformer versions are offered). The isolation transformer provides the input impedance (which replaces the integral line reactor) and addresses the common mode voltage (which replaces the CMC in the Direct-to-Drive rectifier configuration). However, the AFE rectifier, its operation, and advantages are the same as the Direct-to-Drive configuration.
Motor Compatibility

The PowerFlex 7000 achieves near sinusoidal current and voltage waveforms to the motor, with no significant additional heating or insulation stress. The motor that is connected to the VFD is typically 3 °C (5.4 °F) higher compared to across-the-line operation. Voltage waveform has dv/dt of less than 50V/μs. Reflected wave and dv/dt issues that are often associated with VSI drives do not exist with the PowerFlex 7000. Typical motor waveforms are shown in Figure 5. These waveforms use a selective harmonic elimination (SHE) pattern in the inverter to eliminate major order harmonics. And with a small output capacitor (integral to the drive) to eliminate harmonics at higher speeds.

Standard motors are compatible without derating, even on retrofit applications.

Motor cable distance is unlimited. This technology can control motors up to 15 km (9.3 miles) away from the drive.

Figure 5 - Motor Wave Forms at Full Load, Full Speed
Simplified Electrical Drawings

2400V

Figure 6 - 2400V - Direct-to-Drive (Transformerless AFE Rectifier)

Figure 7 - 2400 Volt – AFE Rectifier with Separate Isolation Transformer

Figure 8 - 2400 Volt – AFE Rectifier with Integral Isolation Transformer
Chapter 1 Overview of Drive

3300/4160V

Figure 9 - Direct-to-Drive (Transformerless AFE Rectifier)

Figure 10 - AFE Rectifier with Separate Isolation Transformer

Figure 11 - AFE Rectifier with Integral Isolation Transformer
6600V

Figure 12 - Direct-to-Drive (Transformerless AFE Rectifier)

Figure 13 - AFE Rectifier with Separate Isolation Transformer

Figure 14 - AFE Rectifier with Integral Isolation Transformer
Safe Torque Off

Safe Torque Off is a functional safety feature that is integrated into the PowerFlex 7000, available for Active Front End (AFE) and Direct-to-Drive configurations. The drive can receive a safety input signal (for example, from an optical sensor or a safety gate). Then remove rotational power from the motor to allow the motor to coast to a stop. After the Safe Torque Off command is initiated, the drive will declare it’s in the safe state. The drive itself remains powered and the safe state is reliably monitored to make sure that no rotational torque can be delivered to the motor. The drive can return rotational power to the motor after Safe Torque Off condition has been reset.

Figure 15 - Safe Torque Off

An internal safety relay provides for the safety input and reset circuits.

Safe Torque Off can be used in Active Front End (AFE) and Direct-to-Drive rectifier drive configurations for A, B, and C frames. Safe Torque Off cannot be used for parallel drives, N+1, N-1, synchronous transfer and 18 pulse drive configurations.

This feature TÜV certified for use in safety applications up to and including safety integrity level 3 (SIL3) and Category 3, Performance Level e (Cat 3, PLe). More information on functional safety and SIL and PL ratings can be found in the following standards:

- EN 61508
- EN 62061
- EN 61800-5-2
- EN 13849-1

See publication 7000-UM203 for more information that is related to the functional safety option.
Operator Interface

The HMI Interface Board is an HMI-enabling device for the PowerFlex 7000 drive. The HMI Interface Board accesses all necessary executable tools, documentation, and reports required to commission, troubleshoot, and maintain the drive.

By way of the HMI Interface Board, you can choose the style and size of the desired Windows-based operator terminal to interact with the drive. For example, PanelView™ CE terminal, laptop, or desktop computer). The HMI Interface Board removes past issues with compatibility between the drive and configuration tools, as all necessary tools are acquired from the drive.

The HMI Interface Board is well suited for applications that require remote placement of the operator terminal and remote maintenance.

Figure 16 - Operator Interface

Basic Configurations

There are three basic configurations for the HMI:
- Remote mounted
- Locally mounted
- No HMI supplied
Remote-mounted HMI

The HMI is not mounted in the traditional location on the low voltage door of the Variable Frequency Drive (VFD). A remote mounting plate, complete with E-stop push button, and HMI is supplied loose for the customer to mount wherever desired. The HMI connects to the VFD by way of a hardwired Ethernet cable. There is no significant functional distance-limit, which is ideal for non-PLC users wanting to control and monitor remotely. For example, at the driven machine or control room. This usage is ideal for customers who have control policies in place. These policies must control the access to medium voltage equipment and the associated requirements of PPE when using the operator interface at the VFD.

Locally Mounted HMI

Similar to the previously offered PanelView™ 550, the HMI is mounted on the LV door of the VFD. There is also a service access port (RJ45 connector) on the LV door.

No HMI Supplied

A service access port (RJ45 connector) is on the LV door of the VFD. Customers use their own laptop as the HMI. All programs that are required to use the laptop as the HMI are stored in the VFD. The laptop is connected to the VFD by way of a hardwired Ethernet cable, when required. This connection is ideal for unmanned sites, where a dedicated HMI is not required.

See Publication 7000-UM201 for detailed instruction for the HMI.

See Publication 7000A-UM151 for detailed instruction for “A” Frame drives that use the PanelView 550 HMI.
Chapter 2

Drive Installation

Safety and Codes

ATTENTION: The Canadian Electrical Code (CEC), National Electrical Code (NEC), or local codes outline provisions for safely installing electrical equipment. Installation MUST comply with the specifications for wire type, conductor sizes, branch circuit protection, and disconnect devices. Failure to do so can result in personal injury and/or equipment damage.

Drive Storage

If the drive must be stored, be certain to store the drive in a clean, dry, dust free area.

Storage temperature must be maintained between -40...70 °C (-40...185 °F). If storage temperature fluctuates or if humidity exceeds 95%, use space heaters to minimize condensation. Store the drive in a heated building with adequate air circulation. Do not store the drive outdoors.

Siting of the Drive

Siting of the Drive Site Considerations

The standard environment in which the equipment is designed to operate is:

- Elevation above sea level less than 1000 m (3250 ft).
- Ambient air temperature between 0...40 °C (32...104 °F).
- Relative humidity of the air not to exceed 95% noncondensing.

For the equipment to operate in conditions other than conditions specified consult the local sales office of Rockwell Automation.

The equipment requires the following site conditions:

- Indoor installation only, no dripping water, or other fluids.
- Clean air to cool equipment according to requirements.
- Level floor for anchoring the equipment. See dimension drawings for the location of the anchoring points.
- The room in which the equipment is located must allow for all equipment doors to be fully opened, typically 1200 mm (48 in.). Allow adequate clearance for over the drive for fan removal, greater than 700 mm (27.5 in.).
• Allow the air for cooling, to exit the drive freely at the top. The flow of air for cooling into and out the drive must be kept clear and uninhibited.

• The room in which the equipment is located must be large enough to accommodate the thermal losses of the equipment. The rated maximum air temperature must not be exceeded; air conditioning may be required. The heat created by the drive is directly proportional to the power of the motor being driven and the efficiency of equipment within the room. When thermal load data is required, contact the Rockwell Automation sales office.

• The area in which the drive is located must be free of radio frequency interference such as encountered with some welding units. Radio frequency interference can cause erroneous fault conditions and shut down the drive.

• The equipment must be kept clean. Dust in the equipment decreases system reliability and inhibits equipment cooling.

• Power cable lengths to the motor are unlimited due to the near sinusoidal voltage and current waveforms. Unlike voltage source drives, there are no capacitive coupling, dv/dt, or peak voltage issues that can damage the motor insulation system. The topology that is used in the PowerFlex™ 7000 medium voltage AC drive does not produce dv/dt or peak voltage problems. PowerFlex 7000 has been tested with motors located up to 15 km (9.37 miles) from the drive.

• Only personnel familiar with the function of the drive must have access to the equipment.

• The drive is designed for front access and must be installed with adequate clearance to allow for total door opening. The back of the unit can be placed against a wall although some customers prefer back access also.

ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Ambient conditions not within the specified ranges can result in malfunction of the drive.

Generator Note

ATTENTION: Verify that the load is not turning due to the process. A freewheeling motor can generate voltage that is back-fed to the equipment that is being worked on.
Installation

When the drive has been placed at its installation area:

1. Remove the lag bolts that fasten the shipping skid to the drive.
2. Move the drive off the shipping skid and discard the skid.
3. Position the drive in its desired location.
4. Verify that the drive is on a level surface and that the position of the drive is vertical when the anchor bolts are installed.

 The location of the anchor points is provided with the dimension drawing of the drive.
5. Install and tighten the anchor bolts. (M12 or 1/2 in. hardware required). The engineering bolt systems are required for seismic requirements. Consult the factory.
6. Remove the top lifting angles, retain the hardware.
7. Install the hardware from the lifting angles in the tapped holes at the top of drive. The hardware blocks leakage of cool air and keeps dust out of the equipment.

Shock Indication Labels

Shock indication labels are devices that permanently record the physical shock to which equipment is subjected.

At the time of final preparation for shipment from the factory, a shock indication label is installed on the outside door of the converter cabinet.

During the shipping and installation process, drives can inadvertently be subjected to excess shock and vibration, which can impair its functionality.

When the drive has been placed in its installation area, inspect the shock indication labels on the outside of the door.

The drive is shipped with a label that records shock levels in excess of 10G. If these shock levels have been attained, the chevron shaped window appears blue in one of the two windows.

If the shock indicator is blue, contact Rockwell Automation® Product Support Group in Cambridge, Ontario, Canada. The drive can have internal damage if physical shock was experienced during shipment or installation.

If the indicators show that no shock was attained, full inspection and verification in accordance with the Commissioning process that is outlined in page 195 is still essential.
Chapter 2 Drive Installation

Figure 17 - Shock Indicator

Red Plastic Housing

Window area appears black if subjected to shock.

51 mm (2.0)

21 mm (0.8)

Installation of Exhaust Air Hood

On the top of the cabinet, along with the cooling fan, a sheet-metal exhaust hood is installed. The components to compose the exhaust hood have been packaged and shipped with the drive. For drives with an acoustic hood, the components are shipped assembled. See Figure 19.

1. Remove the protective plate that covers the fan opening on the drive.

 The protective plate is a flat cover plate that is bolted to the top plate.

2. Remove the bolts and plate and set aside for reuse.

3. Loosely assemble the two L-shaped panel components that are shipped with the drive as per Figure 18.
4. Locate the exhaust hood on top of the cabinet per Figure 20 and reinstall the original cover plate that was set aside.

Care must be taken that the notches on the bottom flange are oriented toward the sides of the drive.
5. Affix assembly to the drive top plate.
6. Tighten all hardware.

For drives with an acoustic hood (shown in Figure 19), locate the exhaust hood (refer to Figure 21).

ATTENTION: Any screws that are accidentally dropped in the equipment must be retrieved as damage or injury can occur.
Installation of Redundant Fan Assembly

There are three redundant fan assemblies available. The redundant fan components are shipped assembled (Figure 22).

1. Remove and discard the protective plate and associated hardware that covers the fan opening on the cabinet.
2. Remove the top cover of the fan housing and set the top cover aside.
3. Remove the shipping cover plate on the bottom of the redundant fan assembly and discard.

4. Position the assembly over the opening, verify that the locating hole on the housing base aligns with the front right side of the cabinet.

5. Align the mounting holes and wire harness connections.

Figure 23 - Redundant Fan Assembly Orientation

6. Affix the redundant fan assembly to the drive top plate with the M6 thread screws provided.

7. Connect the fan wire harness to fan.

8. Reinstall the top cover onto the fan housing and tighten all hardware.
Installation of Integral Transformer Cooling Fan

1. Remove and discard the protective plate that is covering the opening for the fan on the top of Isolation Transformer cabinet.
2. Locate the cooling fan on top of the cabinet. Position the cooling fan over the opening and align the mounting holes and wire harness connections.
3. Affix the fan to the drive top plate with the M6 screws provided.
4. Connect the wire harness to fan.

Figure 24 - Fan Installation for Integral Isolation Transformer
Neutral Resistor Assembly

Figure 25 - Hood Assembly for Neutral Resistor

- Attach ground to top plate.
- See electrical drawings to verify cable rating and to connect neutral resistor assembly.
- Line filter capacitors
- Motor filter capacitors

Neutral Resistor Housing
Top plate for converter and common mode choke cabinet
900 mm converter - 800 mm common mode choke cabinet

Ground resistor hood here
Installation of Neutral Resistor Assembly (Direct-to-Drive)

On top of the converter cabinet, install the sheet metal enclosure that contains power resistors.

1. Locate the resistor assembly on top of the cabinet as shown in Figure 25 (For acoustic hood assembly, refer to Figure 26).
2. Affix the assembly to the top plate using M6 screws provided.
3. Remove the top plate of the resistor assembly for access to the wiring connection points.
4. Connect the resistor wiring according to the electrical drawing that is provided with the drive. A typical connection diagram is shown in Figure 25.
5. Route the resistor wiring through the hole with a plastic bushing. Avoid damaging the wire insulation.
6. Connect the ground connection of the housing for the neutral resistor assembly to the top plate of the drive.
7. Reinstall the top plate of the neutral resistor housing.
Cabinet Layout and Dimensional Drawings of Drive

The dimension drawing (Figure 27) is a sample and does not accurately detail your drive. The dimension drawing is provided here to give you a general overview of a typical drive.

The Dimensional Drawings are order-specific and shows the information that is outlined.

The dimension drawing provides important information for the installation of the equipment.

The **FLOOR PLAN** shows:
- The locations for anchoring the equipment to the floor (balloon D).
- Size and location of bottom openings for the power cable entry (balloons A and B).
- Size and location of the bottom openings for the control wiring entry (balloon C).

The **ROOF PLAN** shows:
- Size and location of the top openings for the power cable entry (balloons A and B).
- Size and location of the top openings for the control wiring entry (balloon C).
- Minimum aisle clearance in front of equipment (balloon M).

The **FRONT VIEW** shows:
- Minimum clearance that is required at top of drive for fan maintenance (balloon K).
Figure 27 - PowerFlex 7000 “A” Frame Dimensional Drawing

IMPORTANT Contact Factory for Seismic Mounting Information.

DIMENSIONS - in (mm)

CUSTOMER

CERTIFIED

DATE

REVISED

SHEET

DRAWN

DD71-13B
Drive Layout

Figure 28 ... Figure 30 show the typical layout of the three main configurations of the PowerFlex 7000 "A" frame drive.

Figure 28 - Direct-to-Drive™ (AFE with DTD DC Link)
Figure 29 - AFE Rectifier (Separate Isolation Transformer)
Figure 30 - AFE Rectifier (Integral Isolation Transformer)

Isolation Transformer and Cabling Cabinet

Converter Cabinet

Control Link/Fan Cabinet
IEC Component and Device Designations

PowerFlex 7000 MVD electrical drawings use conventions that are based on IEC (International Electrotechnical Commission) standards, while remaining compatible with North American ANSI (American National Standards Institute) standards. The symbols that are used to identify components on the drawings are international. A full listing of the symbols is given as part of each PowerFlex 7000 electrical drawing (ED) set. The device designations that are used on the drawings and labels are also listed with explanations on each drawing set.

The identification of wiring uses a source/destination wire number convention on point-to-point multi-conductor wiring and in situations where the system is warranted. The wire-numbering system of unique, single numbers for multi-drop and point-to-point wiring continues to be used for general control and power wiring. The wiring that connects between the sheets or that ends at one point and starts at another point on a drawing has an arrow and a reference to a drawing. The arrow and reference indicate the ongoing connection. The drawing reference indicates the sheet and the X/Y coordinates of the continuation point. The reference system is explained on a sheet in each drawing set. The system for unique wire numbers serves as confirmation that the correct wire is being traced from sheet to sheet or across a drawing. Typically wires are identified with color rather than by number, in multi-conductor cables. The abbreviations that are used to identify the colors on the drawings are fully identified on a sheet in the drawing set.

Selection of Power Wiring

The following tables identify general wire selections that are encountered when installing the PowerFlex 7000 “A” frame drive line-up.

General Notes

For proper start-up and operation, follow the recommendation for the medium voltage drive insulation-levels for field power cables. The cable insulation level must be increased over that which would be supplied for an Across-the-line application with the same rated line-to-line voltage.

Based on the distribution system design-criteria, either shielded or unshielded cable can be used. However, NEC requires shielded cables for installations above 2 kV.

Cable Insulation

The cable insulation requirements for the PowerFlex 7000 “A” frame drive are given in the following tables.
Table 1 - Cable Insulation Requirements for AFE Drives with Separate Isolation Transformer

<table>
<thead>
<tr>
<th>System Voltage (V, RMS)</th>
<th>Cable Insulation Rating (kV) (Maximum Peak Line-to-Ground)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Machine Side</td>
</tr>
<tr>
<td>2400</td>
<td>≥ 4.1</td>
</tr>
<tr>
<td>3000</td>
<td>≥ 5.12</td>
</tr>
<tr>
<td>3300</td>
<td>≥ 5.63</td>
</tr>
<tr>
<td>4160</td>
<td>≥ 7.1</td>
</tr>
<tr>
<td>6000</td>
<td>≥ 10.8</td>
</tr>
<tr>
<td>6300</td>
<td>≥ 11.4</td>
</tr>
<tr>
<td>6600</td>
<td>≥ 11.8</td>
</tr>
</tbody>
</table>

(1) Cabling from the secondary side of isolation transformer to input of VFD

Table 2 - Cable Insulation Requirements for “Direct-to-Drive” Technology or Integral Isolation Transformer

<table>
<thead>
<tr>
<th>System Voltage (V, RMS)</th>
<th>Cable Insulation Rating (kV) (Maximum Peak Line-to-Ground)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Line Side Machine Side</td>
</tr>
<tr>
<td>2400</td>
<td>≥ 2.2</td>
</tr>
<tr>
<td>3000</td>
<td>≥ 2.75</td>
</tr>
<tr>
<td>3300</td>
<td>≥ 3.0</td>
</tr>
<tr>
<td>4160</td>
<td>≥ 3.8</td>
</tr>
<tr>
<td>6000</td>
<td>≥ 5.5</td>
</tr>
<tr>
<td>6300</td>
<td>≥ 5.8</td>
</tr>
<tr>
<td>6600</td>
<td>≥ 6.0</td>
</tr>
</tbody>
</table>

Table 3 identifies general wire categories that are encountered when installing the PowerFlex 7000 “A” frame drive. Each category has an associated wire group number that is used in the following sections to identify the wire to be used. Application and signal examples along with the recommended type of cable for each group are provided. A matrix providing the recommended minimum spacing between different wire groups that are run in the same tray or separate conduit is also provided.
Table 3 - Wire Group Numbers

<table>
<thead>
<tr>
<th>Wire Category</th>
<th>Wire Group</th>
<th>Application</th>
<th>Signal Example</th>
<th>Recommended Cable</th>
<th>Wire Group</th>
<th>Power 1</th>
<th>Power 2</th>
<th>Control 3</th>
<th>Control 4</th>
<th>Signal 5</th>
<th>Signal 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>1</td>
<td>AC Power (> 600V AC)</td>
<td>2.3 kV, 3Ø AC Lines</td>
<td>Per IEC / NEC Local Codes and Application Requirements</td>
<td>In Tray</td>
<td>228.6 (9.00)</td>
<td>228.6 (9.00)</td>
<td>228.6 (9.00)</td>
<td>228.6 (9.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Between Conduit</td>
<td></td>
<td></td>
<td>76.2 (3.00)</td>
<td>Between Conduit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AC Power (TO 600V AC)</td>
<td>480V, 3Ø</td>
<td>Per IEC / NEC Local Codes and Application Requirements</td>
<td>In Tray</td>
<td>228.6 (9.00)</td>
<td>228.6 (9.00)</td>
<td>152.4 (6.00)</td>
<td>152.4 (6.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Between Conduit</td>
<td></td>
<td></td>
<td>76.2 (3.00)</td>
<td>Between Conduit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>3</td>
<td>115V AC or 115V DC Logic</td>
<td>Relay Logic PLC I/O</td>
<td>Per IEC / NEC Local Codes and Application Requirements</td>
<td>In Tray</td>
<td>228.6 (9.00)</td>
<td>152.4 (6.00)</td>
<td>228.6 (9.00)</td>
<td>152.4 (6.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Between Conduit</td>
<td></td>
<td></td>
<td>76.2 (3.00)</td>
<td>Between Conduit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24V AC or 24V DC Logic</td>
<td>PLC I/O</td>
<td>Per IEC / NEC Local Codes and Application Requirements</td>
<td>In Tray</td>
<td>228.6 (9.00)</td>
<td>152.4 (6.00)</td>
<td>152.4 (6.00)</td>
<td>228.6 (9.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Between Conduit</td>
<td></td>
<td></td>
<td>76.2 (3.00)</td>
<td>Between Conduit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal</td>
<td>5</td>
<td>Analog Signals DC Supplies</td>
<td>5-24V DC Supplies</td>
<td>Belden 8760 Belden 8770 Belden 9460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All signal wiring must be run in separate steel conduit. A wire tray is not suitable. The minimum spacing between conduits containing different wire groups is 76.2 mm (3 inches).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Digital (Low Speed)</td>
<td>Power Supplies TTL Logic Level</td>
<td>Belden 8760 Belden 9460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All signal wiring must be run in separate steel conduit. A wire tray is not suitable. The minimum spacing between conduits containing different wire groups is 76.2 mm (3 inches).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note 1: Steel conduit or cable tray can be used for all PowerFlex 7000 Drive power or control wiring, and steel conduit is required for all PowerFlex 7000 Drive signal wiring. All input and output power wiring, control wiring, or conduit must be brought through the entry holes for the drive conduit of the enclosure. Use appropriate connectors to maintain the environmental rating of the enclosure. The steel conduit is required for all control and signal circuits, when the drive is installed in European Union countries. The connection of the conduit to the enclosure must be on full 360° and the ground bond at the junction must be less than 0.1 ohms. In EU countries, the usual practice is to install the control and signal wiring.

Note 2: The space between wire groups is the recommended minimum for parallel runs of 61 m (200 ft) or less.

Note 3: The customer is responsible for the grounding of shields. On drives that are shipped after November 28/02, the shields are removed from the drive boards. On drives that are shipped before November 28/02, the shields are connected at the drive end. These connections must be removed before grounding the shield at the customer end of the cable. Shields for cables from one enclosure to another must be grounded only at the source end cabinet. If shielded cables must be spliced, the shield must remain continuous and insulated from ground.

Note 4: AC and DC circuits must be run in separate conduits or trays.

Note 5: Voltage drop in motor leads can adversely affect motor start and run performance. Installation and application requirements can dictate that larger wire sizes than indicated in IEC / NEC guidelines are used.
The wire sizes must be selected individually. Observe all applicable Safety and CEC, IEC, or NEC regulations. The minimum wire-size allowed does not necessarily result in most economical operation. The minimum recommended size for the wires between the drive and the motor is the same as the one used with an across-the-line starter. The distance between the drive and motor can affect the size of the conductors used.

Consult the wiring diagrams and appropriate CEC, IEC, or NEC regulations to determine correct power wiring. If assistance is needed, contact your Rockwell Automation Sales Office.

Power Cabling Access

The drive is designed for the power cable to enter from either the top or bottom.

Cable access plates are on the top and bottom plates of the connection cabinet and identified by the customer-specific dimension drawing (DD).

Access the Customer Power Cable-terminations

Cable connections are located behind the medium voltage door of the Connection/Cabling cabinet. Locations of power terminals for various drive configurations are indicated in Figure 31 through Figure 34.

To facilitate the routing of line cables when cabling a cabinet with starter, remove internal barriers and duct covers on the left side of the cabinet.

1. Remove and retain the hardware from the barrier/cover.
2. Side barrier/cover toward the front of the cabinet for removal.
3. To allow routing and termination of line cables, remove the fan housing and cover plate (if installed) on the top of the cabinet,
4. Replace all barriers/covers by reversing the sequence, before applying medium voltage.

The installer is responsible for modifying the plate for power cable access, to suit their requirements.

Appropriate connectors must be used to maintain the environmental rating of the enclosure.
Power Connections

The installer must verify that interlocking with the upstream power source has been installed and is functioning.

The installer is responsible for verifying that power connections are made to the equipment in accordance with local electrical codes.

The drive is supplied with provision for cable lugs. The power terminals are identified as follows:

- Drives with Connection to remote transformers: 2U, 2V, 2W
- Drives with integral transformers: 1U, 1V, 1W
- Drives with integral line reactor and input starter: L1, L2, L3
- Motor Connections: U, V, W
- Drives with integral line reactor, no input starter: 1U, 1V, 1W

Installation Requirements for Power Cabling

To determine cable distance from top or bottom of input cabinet to termination points, refer to Figure 31, Figure 33 and Figure 34.

The installer is responsible for verifying that power connections are made with appropriate torque (see page 181).

The drive is supplied with provision for grounding of cable shields and stress cones near the power terminals.
Figure 31 - Dimension Views of Direct-to-Drive™ (AFE with DC Link) with Input Starter

Note: To access line cable, the fan housing and assembly must first be removed.

Right-hand side sheet is removed for clarity.
Figure 32 - Dimension Views of Direct-to-Drive™ (AFE with DC Link) without Input Starter
Figure 33 - Dimension Views of AFE Rectifier with Separate Isolation Transformer

Section A-A
Figure 34 - Dimension Views of AFE Rectifier with Integral Isolation Transformer

Section A-A
Power and Control Wiring

Drive line-ups (for example, a drive and input starter) that are delivered in two or more sections must be reconnected. After the sections are reassembled, the power and control wiring must be reconnected as per the schematic drawings provided.

Control Cables

Control cable entry/exit must be located near the terminal block ‘TBC’ – route the customer connections along the empty side of the TBC terminals. These terminals are sized to accept a maximum #14 AWG. Connect the low voltage signals (includes 4…20 mA). Use twisted shielded cable, with a minimum #18 AWG.

Of special concern is the tachometer signal. Two tachometer inputs are provided to accommodate a quadrature tachometer (senses motor direction). The tachometer power supply is isolated and provides 15V and a ground reference. Many tachometer outputs have an open collector output, in which case a pull-up resistor must be added to make sure that proper signals are fed to the system logic (see page 163).

Grounding Practices

The purpose of grounding is to:

- Provide for the safety of personnel.
- Limit dangerous voltages on exposed parts concerning ground.
- Facilitate proper over current device operation under ground fault conditions.
- Provide for electrical interference suppression.

IMPORTANT To Connect Low voltage signals, use twisted shielded cable with the shield that is connected at the signal source end only. Wrap the shield at the other end with electrical tape and isolated. Make connections as shown on the electrical drawings (ED) provided.

IMPORTANT Generally, external grounding of equipment must be in accordance with the Canadian Electrical Code (CEC), C22.1 or the National Electrical Code (NEC), NFPA 70 and applicable local codes.

See the grounding diagrams that follow for ground connections. The main ground bus of the drive must be connected to the system ground. This ground bus is the common ground point for all grounds internal to the drive.
Each power feeder from the substation transformer to the drive must be provided with properly sized ground cables. Do Not use the conduit or cable armor as a ground.

If a drive isolation transformer is used, the WYE secondary neutral point must not be grounded.

Each AC motor frame must be bonded to grounded steel of a building, within 6 m (20 ft) of its location. Tied the motor frame to the drive ground bus by way of ground wires within the power cables and/or conduit. The conduit or cable armor must be bonded to ground at both ends.
Drive Signal and Safety Grounds

When interface cables that carry signals (where the frequency does not exceed 1 MHz) are attached for communications with the drive, these general guidelines must be followed:

- Do not form a pigtail that is grounded at one point. Ground the mesh of a screen around its whole circumference.
- Coaxial cables with one conductor and a mesh screen that surrounds it, must have the screen that is grounded at both ends.
- Where a multi-layer screened cable is used (that is, a cable with both a mesh screen and a metal sheath or some form of foil), there are two alternative methods:
 - The mesh screen can be grounded at both ends to the metal sheath. The metal sheath or foil (known as the drain) must, unless otherwise specified, be grounded at one end only. Ground at the receiver end or the end that is physically closest to the main-equipment ground bus.
 - The metal sheath or foil can be left insulated from ground and the other conductors and the mesh cable screen that is grounded at one end only.

For Customers and Power Integrators

An external ground must be attached to the main ground bus. The grounding means must comply with applicable local codes and standards. As general guidelines, for information only, the ground path must be of sufficiently low impedance and capacity that:

- The rise in potential of the drive ground point when subjected to a current of twice the rating of the supply must be no higher than 4V over ground potential.
- The current flowing into a ground fault is of sufficient magnitude to cause the protection to operate.

The main grounding conductor must be run separately from power and signal wiring so that faults:

- Do not damage the grounding circuit.
- Do not interfere with or damage, protection, or the metering systems. Or cause undue disturbance on power lines.
Identification of Types of Electrical Supplies - Grounded and Ungrounded Systems

With an ungrounded, three-phase electrical supply system, the cable insulation must handle the phase to phase voltage and the voltage to ground. This guideline is in case one of the other phases develops a ground fault. The cable insulation, at minimum, must be good for a continuous voltage of root three (1.732) times (1.1) times the rated voltage of the supply.

\[(1.732 \times 1.1 = 1.9 \text{ times the rated line-to-line voltage}).\]

Ground Bus

The drive ground bus runs along the top of the drive at the front. The ground bus is at the top of each of the drive enclosures. The ground bus is accessible when the enclosure door is opened (and the low voltage compartment is hinged out in the case of the DC link/fan cabinet). The installer must verify that the drive is grounded properly, typically at the point on the ground bus in the cabling cabinet, close to the line cable terminations.

Interlocking

Key interlocking, is used for safety and to restrict access to the medium voltage areas of the drive. The upstream power must be locked in the off position for access to the medium voltage compartments of the equipment.

The key interlocking prohibits the upstream power being applied, until the access doors of the medium voltage drive are closed and locked shut.

It is the responsibility of the installer to verify that the key interlocking is installed properly to the upstream equipment.
Chapter 2 Drive Installation

Notes:
Chapter 3

Power Component Definition and Maintenance

Cabling Cabinet Components

Figure 37 - Direct-to-Drive with UPS Option

- Line Cable Terminations
- Low Voltage Compartment
- Current Transformers
- Hall Effect Sensors
- Control Power Transformer Fuses
- Motor Cable Terminations
- AC Line Reactor
- UPS
Figure 38 - Direct-to-Drive with Optional Input Starter

- Line Cable Terminations (Behind Disconnect Switch)
- Fused Disconnect Switch
- Disconnect Switch Operating Handle
- Vacuum Contactor Assembly
- Control Power Transformer
- Motor Cable Terminations (Hall Effect Sensors Behind)
- Control Power Transformer Fuses
- AC Line Reactor
Figure 39 - AFE Rectifier with Isolation Transformer

- Low Voltage Wireway
- Hall Effect Sensor
- Motor Cable Terminations
- Hall Effect Sensor
- Current Transformer
- Line Cable Terminations
- Control Power Transformer Fuses
- Fan-control Power Transformer
Figure 40 - AFE Rectifier with Integral Isolation Transformer

- Fan Housing
- Top Cable Entry and Exit Locations
- Ground Bus
- Hall Effect Sensors
- Line Cable Terminations
- Motor Cable Terminations
- Current Transformers (CT)
- Integral Isolation Transformer
- Bottom Cable Entry and Exit Locations

SECTION A-A

Side View Front View
Hall Effect Sensor Replacements

1. Verify that there is no power to the equipment.

ATTENTION: To avoid electrical shock, verify that the main power has been disconnected before working on the Hall Effect sensor. Verify that all circuits are voltage free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

2. Note the location of all wires and the orientation of the Hall Effect sensor. For quick reference when checking the orientation of the Hall Effect sensor, look for the white arrow.

IMPORTANT The Hall Effect sensor and wires must be in the proper orientation. Note the position before disassembly.

3. The load cable must be disassembled to allow removal of the Hall Effect sensor. Remove the hardware and slide out the cable out.

4. Remove the plug that connects the sensing wire to the Hall Effect sensor.

5. Remove the four screws on the base of the Hall Effect sensor, and remove the Hall Effect sensor.

6. Replace the Hall Effect sensor. The arrow must be oriented as shown in **Figure 41**.

7. Slide the load cable back into place and secure the hardware.

8. Plug the connector back into the sensor. The plug is keyed to avoid incorrect connection.
Current Transformer Replacement

1. Verify that there is no power to the equipment.

ATTENTION: To avoid electrical shock, verify that the main power has been disconnected before working on the current transformer. Verify that all circuits are voltage free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

2. Note the location of all wires and the orientation of the CT. For quick reference when checking the orientation of the CT, look for the white dot.

IMPORTANT The CT and wires must be in the proper orientation. Note the position before disassembly.

3. Disconnect the wires.
4. The line cable must be disassembled to allow removal of the CT.
5. Remove the hardware and slide the cable out.
6. Remove the two screws that are located in the base of the CT and remove the CT.
7. Replace the CT.
8. Verify the proper orientation.
9. Fasten the CT securely with the two screws in the base.
10. Reconnect the ring lugs.
11. Slide the line cable back into place
12. Secure the hardware.

Figure 42 - Replacement of Current Transformer
Converter Cabinet Components

Figure 43 - Converter Cabinet Components (2400V Version)

- **Voltage Sensing Boards**
- **Rectifier Modules**
- **Inverter Modules**
- **Isolated Gate Driver Power Supplies (IGDPS)**
- **Rectifier IGDPS** (not required in drives with SPS boards installed)

Chapter 3 Power Component Definition and Maintenance
Figure 44 - Converter Cabinet Components (3300/4160V Version)

- Isolated Gate Driver Power Supplies (IGDPS)
- Rectifier IGDPS (Not required in drives with SPS boards installed)
- Rectifier Modules
- Voltage Sensing Boards
- Inverter Modules
Figure 45 - Converter Cabinet Components (6600V Version)

- **Inverter Modules**
- **Rectifier Modules**
- **Voltage Sensing Boards**
- **Isolated Gate Driver Power Supplies (IGDPS)**

Rectifier IGDPS Not required in drives with SPS boards installed
Converter Cabinet

The converter cabinet contains three rectifier modules and three inverter modules. Figure 43 shows a 3300/4160V converter with a PWM Rectifier.

Isolated Gate Driver Power Supplies (IGDPS) are mounted on the right side of the cabinet for 6600V, 2400V Drives. On the left side of the cabinet for 3300V, 4160V Drives.

Thermal sensors are installed on the top module of the inverter and rectifier. The exact location depends on the drive configuration.

Voltage-sensing Assembly

The voltage-sensing assembly consists of two voltage sensing boards, a mounting plate, and a protective cover. Every voltage sensing assembly has six independent channels. These channels convert voltages from up to 10,800V (7.2 kV @ 1.5 pu) to lower voltage levels, which are used by the PowerFlex® 7000 control logic. For drives that require the synchronous transfer option, one extra assembly is used. This extra assembly uses a separate connector to output the transfer voltages directly to the ACB board.

Table 4 is a table of the input voltage ranges for each of the input terminals on the voltage-sensing board. There are four separate inputs taps for each of the six independent channels. This assembly has been designed to operate at a nominal input voltage of up to 7200V with a continuous 40% overvoltage. The output voltages are scaled to provide close to 10V peak for a 140% input voltage at the high end of each of the voltage ranges.

Each of the channels has only four taps. They are used to provide a range of input voltages and software. This range is used to provide a given amount of gain so that 140% corresponds to the maximum numerical value of the analog to digital converter.

Table 4 - Input Voltage Range

<table>
<thead>
<tr>
<th>Tap</th>
<th>Voltage Range (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>800…1449</td>
</tr>
<tr>
<td>C</td>
<td>1450…2499</td>
</tr>
<tr>
<td>B</td>
<td>2500…4799</td>
</tr>
<tr>
<td>A</td>
<td>4800…7200</td>
</tr>
</tbody>
</table>

ATTENTION: Grounds must be reconnected on the voltage sensing boards. Failure to do so can result in injury, death, or damage to equipment.
Replacing the Voltage-sensing Circuit Board Assembly

1. Verify that there is no power to the equipment.

ATTENTION: To avoid electrical shock, verify that the main power has been disconnected before working on the sensing board. Verify that all circuits are voltage free. Use a hot stick or appropriate high voltage-measuring device. Failure to do so can result in injury or death.

2. Remove clear plastic cover.
3. Mark the position of the ribbon cables and wires.
4. Remove the screws and lift the ring lugs from the terminals. To avoid electrical shock, verify that the main power is disconnected before working on the sensing board to remove the wires.
5. Release the locking mechanism that is on each side of the ribbon cable connector and pull the ribbon cable straight out to avoid bending the pins.
6. Remove the four nuts and washers that secure the assembly to the studs welded to the frame.
7. Remove the old VSB and replace the new VSB on the studs. To secure the assembly, use the existing hardware.

IMPORTANT Do not overtorque the connections or you can break the studs.

8. Replace all ring lugs on terminals. Plug in ribbon cables. Verify that cables are positioned properly and the fitting is secure (the locking mechanism is engaged).
9. For personnel and equipment safety, verify that both grounding connections are reconnected to the sensing board.
10. Replace clear plastic cover and refasten in place.
Surge Arresters

Description

Heavy-duty distribution-class surge arresters are used for transient overvoltage protection in the drives with AFE rectifiers. The arresters are certified as per ANSI/IEEE Std C62.11-1993.

The surge arresters are basically MOVs, with or without an air gap in series, packed in sealed housing. They provide overvoltage protection similar to what the TSN module does. They differ from the TSN as fusing is not required for the operation of surge arresters.

There are three types of surge arresters depending on the voltage class of the drive as shown in the following table:

<table>
<thead>
<tr>
<th>Drive Voltage</th>
<th>2.4 kV</th>
<th>3.3 kV</th>
<th>4.16, 4.8 kV</th>
<th>6.0...6.9 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrester Rating (RMS)</td>
<td>3 kV</td>
<td>6 kV</td>
<td>9 kV</td>
<td></td>
</tr>
<tr>
<td>Arrester MCOV (RMS)</td>
<td>2.55</td>
<td>5.10</td>
<td>7.65</td>
<td></td>
</tr>
</tbody>
</table>

The most severe temporary overvoltage occurs when one phase is grounded in an ungrounded system. The full line-to-line voltage is applied to the arrester in this case. The arresters are designed to operate under this condition continuously without any problems as shown by their Maximum Continuous-Operating Voltage (MCOV) rating.

There are three Y-connected surge arresters that are attached to the incoming MV lines. The neutral point of the arresters is connected to the ground bus.

Figure 47 - Surge Arresters
Operation

The operation of arresters without a gap is the same as the MOVs. Depending on design, the arrester can also be gapped. Both gapped and ungapped arresters provide adequate overvoltage protection.

The arresters are able to withstand or ride through most commonly seen bus transients within their capability. Caution must be taken if there is a harmonic filter on the MV bus to which PowerFlex 7000 is connected. The filter must satisfy relevant international or local standards, such as IEEE Std 1531—Clause 6.4, to avoid high inrush currents.

The surge arrester is certified as per ANSI/IEEE Std C62.11-1993. Certification tests include high-current short duration tests, low-current long duration tests, and fault current withstand tests. The fault current withstand tests consist of different combinations of kA and number of cycles. The test includes a 20-kA 10-cycle test, under which the arresters are non-fragmenting and without expelling any internal components.

The housing splits open to vent incoming energy when the handling capability of the arrester is exceeded and causes arrester failure. This design helps avoid damage to the adjacent components.

Surge Arrester Replacement

1. Verify that there is no power to the equipment. Isolate the drive by Lockout/tagout.

 ATTENTION: To avoid electrical shock, verify that the main power is disconnected before working on the surge arrester. Verify that all circuits are voltage free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

2. Wait for a minimum of 10 minutes to allow the stored energy in the drive to be discharged.
3. Observe the location of the connecting leads.
4. Verify that the leads are at ground potential. Use temporary ground when necessary.
5. Detach the connecting leads.
6. Loosen the bolt that attaches the surge arrester to the ground bus. Remove the arrester. Remove temporary ground when applicable.
7. Replace the surge arrester with an equivalent one (make sure that the voltage rating is the same).
8. Connect the leads to the surge arrester.
9. Surge arrester hardware to be torqued to 28 N•m (21 lb•ft).
When the surge arrester is disconnected from MV, the arrest can retain a small amount of static charge. As a precautionary measure, install a temporary ground on the line-end of the arrester and discharge the stored energy. Remove temporary ground before the arrester is reinstalled.

ATTENTION: To avoid electrical shock when removing the arrester from service, consider the arrester to be fully energized until both the line and ground leads are disconnected.

Field Test and Care

A field test is not necessary. The arresters do not require special care. However at dusty sites, clean the arrester when the whole drive is cleaned.
A PowerCage™ module is a converter module with these elements:
- Epoxy resin housing
- Power semiconductors with gate-driver circuit boards
- Heatsinks
- Clamp
- Snubber resistors
- Snubber capacitors
- Sharing resistors (2400V drives do not have a sharing resistor).

Each drive consists of three PowerCage rectifier modules and three PowerCage inverter modules.

AFE type rectifiers use SGCTs as semi-conductors.

All inverter modules use SGCTs as semi-conductors.

The size of the PowerCage module varies depending on the system voltage.

The power semi-conductor usage in the converter section is as follows:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Rectifier SGCTs</th>
<th>Inverter SGCTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400V, AFE</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3300/4160V, AFE</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>6600V, AFE</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Some PowerFlex 7000 configurations contain Self-Powered SGCT Power Supply (SPS) boards. These boards are applicable on all "A" frame drives and all AFE “B” frame drives with heat sinks. See Self-powered SGCT Power Supply - SPS on page 92 for more information.

ATTENTION: To help prevent electrical shock, disconnect the main power before working on the converter cabinet. Verify that all circuits are voltage free using a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

ATTENTION: The PowerCage module houses the SGCT circuit board, which is sensitive to static charges. Do not handle these boards without being properly grounded.

ATTENTION: Static charges can destroy some circuit boards. Use of damaged circuit boards can also damage related components. A grounding wriststrap is recommended for handling sensitive circuit boards.
The inverter module is the module that contains the SGCT power device necessary for producing the motor voltages and currents. There are three inverter modules in each drive; the number of SGCTs per module depends on the voltage rating of the motor. To understand a module, a description of one SGCT and its peripheral equipment is all that is required.

Resistence Checks

Before control power is applied to the drive, measurements must be taken of the power semiconductor and of snubber circuit resistance. These measures verify that the converter section was not damaged during shipment. The instructions that are provided below detail how to test these components:

- Inverter or AFE rectifier bridge:
 - Snubber resistance test (snubber resistor).
 - Snubber capacitance test (snubber capacitor).
 - Anode-to-cathode resistance test (the sharing resistor and SGCT).

ATTENTION: Before attempting any work, verify that the system has been locked out and tested to have no potential.

Snubber Resistors

Snubber resistors connect in series with the snubber capacitors. Together they form a simple RC snubber that connects across each thyristor (SGCT). The snubber circuit reduces the dv/dt stress on the thyristors and reduces the switching losses. The snubber resistors connect as sets of various wire-wound resistors that are connected in parallel. The number of resistors in parallel depends on the type of the thyristor and the configuration and frame size of the drive.

Snubber Capacitors

Snubber capacitors are connected in series with the snubber resistors. Together they form a simple RC snubber that is connected across each thyristor (SGCT). The purpose of the snubber circuit is to reduce the voltage stress (dv/dt and peak) of the thyristor and to reduce the switching loss.

Sharing Resistors

The sharing resistors provide equal voltage sharing when using matched devices in series. SGCT PowerCage modules for 2400V systems do not need matched devices and have no sharing resistor.
SGCT and Snubber Circuit

As with all power semi-conductors or thyristors, the SGCT must have a snubber circuit. The snubber circuit for the SGCT is composed of a snubber resistor in series with a snubber capacitor.

The snubber circuit is shown in Figure 49. The physical locators of the same circuit are shown in Figure 57. Measure the resistance across two adjacent heatsinks. A value of 60...75 kΩ indicates a good sharing resistor.

Figure 49 - Snubber Circuit for SGCT Module

![Snubber Circuit for SGCT Module](image)

Figure 50 - Snubber Circuit for SGCT Module (with SPS Board)

![Snubber Circuit for SGCT Module (with SPS Board)](image)
Figure 51 - 2400V Two Device PowerCage (Heat Sink Model)

- Pivot Plate
- SGCTs
- Heat Sink
- Module Housing
- Temperature Feedback Board
- Clamp Head

Figure 52 - 2400V Two Device PowerCage Module (with SPS Boards Installed)

- SGCT
- SPS Mounting Assembly with Temperature Feedback Board
- Pivot Plate
- Heat sink
- Module Housing
- Clamp Head

SPS Board Mounting Assembly without Temperature Feedback Board
Figure 53 - 3300/4160V Four Device PowerCage (Heat Sink Model)

Figure 54 - 3300/4160V Four Device Rectifier PowerCage Module (with SPS Boards Installed)
A sharing resistor is connected in parallel with the SGCT. The sharing resistor verifies that the voltage is shared equally among the SGCTs when connected in series. SGCTs are connected in series to increase the total reverse voltage blocking (PIV) capacity as seen by the electrical circuit. One SGCT has a PIV rating of 6500V. This single device provides sufficient design margin for electrical systems with 2400V medium voltage supply. At 4160V, two SGCTs must be connected in series to provide a net PIV of 13,000V to achieve the necessary design margin. Similarly, three SGCTs must be connected in series at 6600V, providing a net PIV of 19,500V to achieve the necessary design margin.

The SGCT is cooled by placing the SGCT between two forced air-cooled heatsinks, one heatsink on the anode and the other heatsink on the cathode. The clamp assembly on the right-hand side of the inverter module generates these forces.

<table>
<thead>
<tr>
<th>SGCT</th>
<th>Device Diameter</th>
<th>Clamp Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 A SGCT</td>
<td>38 mm (1.49 in.)</td>
<td>8.6 kN</td>
</tr>
<tr>
<td>800 A SGCT</td>
<td>47 mm (1.85 in.)</td>
<td>13.5 kN</td>
</tr>
<tr>
<td>1500 A SGCT</td>
<td>63 mm (2.48 in.)</td>
<td>20 kN</td>
</tr>
</tbody>
</table>

Pressure on the SGCTs must be uniform to avoid damage and to help maintain low thermal resistance. To achieve uniform pressure:

1. Loosen the heatsink mounting-bolts.
2. Tighten the clamp.
3. Tighten the heatsink mounting-bolts.
External filtered air is directed through the slots of the heatsinks to carry away the generated heat from the SGCTs. The door filter is necessary to keep the slots on the heatsinks from getting plugged with dust particles.

SGCT Anode-to-Cathode Sharing Resistance

The anode-cathode resistance check measures the parallel combination of the sharing resistor and SGCT anode-cathode resistance. The sharing resistor has a resistance much lower than a good SGCT, thus the measurement is slightly less than the resistance of the sharing resistor. A measurement between 60...75 kΩ indicates that the SGCT is in good condition and that wiring to the SGCT is correct. If the SGCT fails, the SGCT is in the shorted mode, 0 Ω. The anode to cathode resistance check is 0 Ω.

A test point is provided inside the PowerCage module to measure the resistance of the snubber resistor and capacitance of the snubber capacitor. The test point is the electrical connection between the snubber resistor and snubber capacitor. The procedure is to place one probe of the multi-meter on the test point, and the other probe on the anode heatsink to measure the snubber resistor value and the snubber capacitor (Figure 58). Remove the snubber terminal connection to TB1 of the SPGD board. Measure between the test point and the wire that is connected to pin 1 of the TB1 female connector. Replace the snubber terminal connection once the measurement is complete.
Snubber Resistance

Access to the snubber resistor is not required to test its resistance. Located within the PowerCage module under the heatsink is a snubber circuit test-point. For each device, there is one test point. To verify the resistance, measure the resistance between the test point and the heat sink.
Snubber Capacitance

Turn the multimeter from the resistance to capacitance measurement mode. Verify the snubber capacitor by measuring from the test point to the heat sink next to the right for standard rectifiers, or from heat sink to heat sink. For SPS rectifiers:
1. Disconnect the J1 connector from the SPS board.
2. Measure from the test point to pin 1 of the Phoenix connector (that plugs into J1 of the SPS board).

Figure 61 - Snubber Capacitor Test

Figure 62 - Snubber Capacitor Test (Shown with SPS Board Installed)
Replacing the SGCT

The Symmetrical Gate Commutated Thyristor (SGCT or device) with attached circuit board is located within the PowerCage module assembly.

SGCTs must be replaced in matched sets:
- 3300V and 4160V systems use sets of two.
- 6600V systems use sets of three.

The SGCT and associated control board are one component. The device or the circuit board is never changed individually. There are four status indicators on the SGCT; this table describes their functions:

<table>
<thead>
<tr>
<th>Status Indicator 4</th>
<th>Status Indicator 3</th>
<th>Status Indicator 2</th>
<th>Status Indicator 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green</td>
<td>Yellow</td>
<td>Red</td>
</tr>
<tr>
<td>Solid Green</td>
<td>Solid Green</td>
<td>Status indicator ON indicates that the gate is ON, and flashes alternately with status indicator 1 while gating.</td>
<td>Status indicator ON indicates that the Power Supply to the Card is OK.</td>
</tr>
<tr>
<td>indicates that the Gate-Cathode resistance is OK.</td>
<td>indicates that the gate is OFF, and flashes alternately with status indicator 2 while gating.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Verify that there is no power to the equipment.

ATTENTION: To avoid electrical shock, verify that the main power has been disconnected before working on the drive. Verify that all circuits are voltage free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

Note the position of the fiber-optic cables for assembly.

2. To remove the SGCT, remove the power cable for the gate driver and the fiber-optic cables. If the minimum bend radius (50 mm [2 in.]) of the fiber-optic cables is exceeded, it can result in damage.

If installed, remove the SPS snubber connector (J1 on the SPS board) and remove the SPS mounting-bracket with the SPS board.

ATTENTION: The fiber-optic cables can be damaged when struck or bent sharply. The minimum bend radius is 50 mm (2 in.). The connector has a locking feature that requires pinching the tab and gently pulling the connector out straight. The component on the printed circuit board must be held to avoid damage.

3. Remove the load on the clamp head assembly as described on page 84.
4. Two brackets secure the board to the heatsink. Loosen the captive screws until the circuit board is free. Adjust the position of the heatsinks, as required, to allow free movement of the SGCT.
5. Slide the circuit board straight out.
6. Clean the heatsink with a soft cloth and rubbing-alcohol.

7. While grounded, remove the SGCT from the anti-static bag in which the SGCT is supplied in.

8. Apply a thin layer of Electrical Joint Compound (EJC No. 2 or approved equivalent) to the contact faces of the new SGCTs to be installed. The recommended procedure is to apply the compound to the pole faces with a small brush. Then gently wipe the pole face with an industrial wipe so that a thin film remains. Examine the pole face before proceeding to verify that no brush bristles remain.

9. Slide the SGCT into place until the mounting brackets contact the surface of the heatsink.

10. Tighten the captive screws that are in the brackets.

11. Follow procedure Maintain Uniform Clamping Pressure on page 83 to verify that the heatsinks are clamped to a uniform pressure.

 If equipped, reinstall the SPS board and mounting-bracket, and reconnect the snubber connection to J1 of the SPS board.

12. Connect the power cable and fiber-optic cables (verify that the bend radius is not exceeded).
Figure 63 - Replacing the SGCT

Figure 64 - Replacing the SGCT (If SPS Board Is Installed)
Replacing Snubber and Sharing Resistor

The snubber and the sharing resistors are part of the resistor assembly that is located behind the PowerCage module.

1. Remove the PowerCage module as outlined in PowerCage Module Removal on page 90.

2. Note the connection of the leads for correct replacement.

3. Detach the leads that are on the bottom of the resistor assembly. See Figure 66.

4. Remove the push nuts on the end of the retaining rod. Pinch the clip together and pull off. Pull out the retaining rod. See Figure 66.

5. Remove two bolts and swing out the PowerCage plug-in stab assembly.
6. Remove the resistor bank from the PowerCage module. See Figure 67.
7. Place the new resistor bank assembly back into the PowerCage module.
8. Slide the retaining rod into place and push the clips back into place.
9. Connect the leads to the resistor bank.
10. Install the PowerCage module as outlined in PowerCage Module Removal on page 90.
Snubber Capacitor Replacement

The snubber capacitors are part of the capacitor assembly that is located behind the PowerCage module.

1. Remove the PowerCage module as outlined in PowerCage Module Removal on page 90.
 Note the connection of the leads for correct replacement.
2. Detach the lead that is on the top of the capacitor, see Figure 66.
3. Remove the push nuts on the end of the retaining rod. Pinch the clip together and pull off. Pull out the retaining rod, see Figure 66.
4. Remove two bolts and swing out the PowerCage plug-in stab assembly.

Figure 68 - Removing the Capacitor Bank from the PowerCage Module

5. Remove the capacitor from the PowerCage module. See Figure 68.
6. Place the new capacitor back into the PowerCage module.
 Verify that the bottom lead of the capacitor is on the stud.
7. Slide the retaining rod into place and push the clips back into place.
8. Connect the top lead to the capacitor.
9. Install the PowerCage module as outlined in PowerCage Module Removal on page 90.

Sharing Resistor Replacement

Normally the sharing resistor is part of the snubber resistor assembly. When the sharing resistor is replaced, also replace the snubber resistor.
The sharing and snubber resistors are normally on the backside of the PowerCage module. See Replacing Snubber and Sharing Resistor.

Maintain Uniform Clamping Pressure

Always maintain proper pressure on the thyristors. Follow this procedure whenever a device is changed or the clamp is loosened completely.

1. Apply a thin layer of electrical joint compound (EJC No. 2 or approved equivalent) to the pressure pad face (Figure 70). To apply the compound, use a small brush and gently wipe the pad face with an industrial wipe until a thin film remains. Verify that no brush bristles remain.

2. Torque the heat sink bolts to 13.5 N•m (10 lb•ft.), then loosen each bolt two complete turns.

3. Tighten the clamp to the proper force until you can turn the indicating washers by the fingers with some resistance.

4. Torque the heat sink bolts to 13.5 N•m (10 lb•ft.). Start with the center heat sink and move outward, alternate left to right.

5. Check the indicating washer of the clamp.

Checking the Clamping Pressure

Periodically, the clamping force in the PowerCage module must be inspected. Verify that there is no power to the equipment.

ATTENTION: Main power must be disconnected before working on the drive. Verify that all circuits are voltage free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.
If proper force (as designated on the clamp head block) is applied to the clamping assembly, the indicating washer is able to rotate with fingertip touch. The indicating washer must not rotate freely. Turn the indicating washer using fingers until there is some resistance.

Adjusting the Clamping Pressure

1. Verify that all power to the drive is off.
2. Do not loosen the adjustment nut. If the clamping pressure is let off, the assembly procedure must be conducted to verify uniform pressure on the thyristors.
3. Tighten with a 21 mm (13/16 inch) wrench on the adjustment nut (upward motion) until fingers can turn the indicating washer with some resistance. The indicating washer MUST NOT ROTATE FREELY.

IMPORTANT Never rotate the calibration nut that is located outside the indicating washer at the end of the threaded rod. The rotation of the outer nut affects the torque calibration, which is factory set. Only adjust the inside nut (see Figure 70).
Temperature Sensing

Thermal sensors are on heatsinks in the converter. The thermal sensor is mounted on the heatsink with the temperature feedback board.

Replacing the Thermal Sensor

1. Verify that there is no power to the equipment.

2. Remove the SPS bracket first, if installed. The heatsink with the thermal sensor must be removed from the PowerCage module. Remove clamp load, refer to Figure 70.

3. Remove the device (SGCT) that is secured to the heatsink with the thermal sensor.

4. Disconnect the fiber-optic cable to the temperature feedback board.

5. Remove two M8 screws that hold the heatsink in place.

6. Remove the heatsink with the temperature feedback board from the PowerCage module. If SPS is equipped, the heatsink is on the SPS mounting bracket.

7. Disconnect the plug that connects the thermal sensor to the circuit board.

8. Remove the screw that attaches the thermal sensor to the heatsink.

9. Replace with the new thermal sensor and cable assembly.

10. There is a small voltage difference between the thermal sensor and its heatsink. For proper function, mount the small insulating pad between the thermal sensor and the heatsink, and the insulating bushing between the mounting screw and the thermal sensor (see Figure 71).

11. Replacement of the heatsink with the new thermal sensor is in the reverse order of removal.

12. Follow procedure Maintain Uniform Clamping Pressure on page 83 to verify that the heatsinks are clamped to a uniform pressure.
Figure 71 - Replacing the Thermal Sensor

Figure 72 - Replacing the Thermal Sensor (if SPS Board is Installed)
Heatsink Replacement

There are three different styles of heat sinks in PowerFlex air-cooled drives, depending on thermal requirements:

- Aluminum Type W heat sinks have a plurality of short internal fins along the internal surfaces.
- Aluminum Type M heat sinks have internal fins with flat surfaces.
- Copper heat sinks have internal fins that are made from folded copper foil.

![Figure 73 - Heatsinks](image)

1. Verify that there is no power to the equipment.

ATTENTION: To avoid electrical shock, verify that the main power has been disconnected before working on the drive. Verify that all circuits are voltage free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

2. Remove the load from the clamp head per the procedure on page 84.
3. Remove the SGCT from the heatsink that is being replaced per the instructions on page 77.
4. There are two 13 mm bolts that secure the heatsink to the PowerCage module. Remove the bolts using extenders so the socket wrench is past the sensitive gate driver boards.

ATTENTION: Do NOT remove the pivot plate from the PowerCage. The pivot plate is located on the opposite end of the PowerCage from the clamp head. If the pivot plate is removed from the PowerCage, it must be replaced in the original orientation. See Figure 51 through Figure 56 for pivot plate location.
5. Loosen the two bolts and carefully remove the heatsink from the PowerCage module.
6. Install the new heatsink and hand-tighten the bolts.
7. Replace the SGCT per the instructions on page 77.

See page 83 to verify that the heatsinks are clamped to a uniform pressure.

PowerCage Gasket

To make sure that all air movement is through the slots of the heatsinks, all air leaks are sealed with a rubber gasket. This gasket is placed between the surface of the Power Cage module and heatsink module. The gasket must be in place to keep the SGCTs cool.

Figure 74 - PowerCage Gasket Location
Replacement of PowerCage Gaskets

The gaskets do not normally require replacement, but when they become damaged, they can require replacement.

Removal of Old Gasket Material

Pull off all material possible by hand. Scrape off as much material as possible with a sharp knife. Do not score the PowerCage module with the knife. All material cannot come off! Remove as much as possible to leave an even surface to bond to. Clean away any loose pieces of gasket. Then proceed with installation of the gasket.

The PowerCage module must be cleaned with an all purpose household cleaner.

IMPORTANT Do not spray cleaner onto the PowerCage module. The spraying promotes electrical tracking.

Apply the cleaner to a paper towel and wipe the surface of the PowerCage module where the gasket is applied. Liberally spray the surface with distilled water. Wipe the surface with a clean paper towel.

Apply a thin bead of Loctite 454 adhesive (use the original nozzle size) to the PowerCage module surface in a zigzag pattern. To spread the adhesive over 50% of the area, use the nozzle tip. Apply sufficient quantity of adhesive so that the adhesive remains wet long enough for the gasket to be applied. The adhesive uses the moisture in the air to cure. The higher the humidity the faster the adhesive cures.

IMPORTANT This adhesive will bond anything quickly, including fingers!

Position and orient the gaskets correctly, centered over the opening for the heatsinks with the narrow end positioned closest to the test points. Apply the porous surface of the gasket to the PowerCage module. The gasket bonds almost immediately. Apply some pressure to the gasket for 15...30 seconds.
PowerCage Module Removal

After all gaskets have been placed, check to see that the gasket has bonded properly. Repair any loose areas.

1. Verify that there is no power to the equipment.

ATTENTION: To avoid electrical shock, verify that the main power has been disconnected before working on the sensing board. Verify that all circuits are voltage free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

2. Before removing the PowerCage module, all components that are located within the PowerCage module must be removed to avoid any damage to the components. To remove the clamping pressure, and remove the SGCT, circuit boards, and thermal sensor, consult the required sections.

ATTENTION: Static charges can damage or destroy the SGCT. Personnel must be properly grounded before circuit boards are removed from the PowerCage module. Use of damaged circuit boards can also damage related components. A grounding wriststrap is recommended for handling.

ATTENTION: Do NOT remove the pivot plate from the PowerCage. The pivot plate is on the opposite end of the PowerCage from the clamp head. If the pivot plate is removed from the PowerCage, it must be replaced in the original orientation. See Figure 51 through Figure 56 for pivot plate location.

3. Remove the M8 bolts in the two flanges that connect the heatsink to the PowerCage module. To make the PowerCage module, easier to handle and reduce weight, remove the heatsink from the PowerCage module.

4. To detach the PowerCage module itself, remove the bolts on the outer flange. Carefully lift down the PowerCage module and place the forward face down. Do not over-torque these bolts when replacing the PowerCage module.

IMPORTANT The PowerCage can be heavy. To avoid injury or damage to the module, two people are recommended to extract the PowerCage from the drive.

5. See appropriate section for component replacement.

6. When replacing the PowerCage module, place the bolts on the outer flange in loosely. Torque bolts alternately on one flange and then the opposite flange for tightening of the module. A suggested sequence for torquing PowerCage module bolts is shown in Figure 75.

Note: The PowerCage module is shown with switching components, heatsinks, and clamps removed for ease of lifting.
7. Replace interior assembly in the reverse order of removal.
Self-powered SGCT Power Supply - SPS

This board is a component in drives that does not use the IGDPS module to power the rectifier SGCTs. The SPS board extracts energy from the associated SGCT snubber circuitry to provide the 20V DC required to power the SGCT device.

The SPS Board has two snubber connection inputs and two 20V DC outputs. Snubber connection inputs are derived from opening the snubber capacitor to SGCT cathode connection and bringing these connections to the SPS board (Figure 76).

Figure 76 - Snubber Circuit for SGCT Module (with SPS Board)

Board Calibration

This board requires no field calibration.

Test Points

<table>
<thead>
<tr>
<th>TP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP4</td>
<td>300V DC bus</td>
</tr>
<tr>
<td>TP6</td>
<td>300V DC bus common</td>
</tr>
<tr>
<td>TP15</td>
<td>20V DC output</td>
</tr>
<tr>
<td>TP14</td>
<td>20V DC output common</td>
</tr>
</tbody>
</table>

The green Status Indicator (DS1) on the SPS board indicates that the 20V DC output is within operating specification range.
Figure 77 - SPS Board Test Points

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 – 1</td>
<td>Connection to the SGCT snubber capacitor at CS-2 location</td>
</tr>
<tr>
<td>J1 – 2</td>
<td>Connection to SGCT cathode terminal</td>
</tr>
<tr>
<td>J1 – 3</td>
<td>Connection to input attenuated feedback (Short J1-3 to J1-4 to disable input SCR clamp stage for test power usage)</td>
</tr>
<tr>
<td>J1 – 4</td>
<td>Connection to 300V DC common connection (Short J1-3 to J1-4 to disable input SCR clamp stage for test power usage)</td>
</tr>
<tr>
<td>J1 – 5</td>
<td>Connection to 300V DC internal bus (Short J1-5 to J1-6 to allow input to operate from 90V AC)</td>
</tr>
<tr>
<td>J1 – 6</td>
<td>Connection to TOPSwitch programming resistor (Short J1-5 to J1-6 to allow input to operate from 90V AC)</td>
</tr>
</tbody>
</table>
Equipment for Testing

Verify that you have this equipment available to perform the testing tasks.

- SPS test power harness (80018-695-51).
- Digital multimeter.

1. Disconnect the snubber connection to J1 of the SPS board.
2. Connect one of the SPS test power harness connectors to the SPS J1 connector.
3. Plug the AC input end of the SPS test power harness into the appropriate drive receptacle.
 The green status indicator (DS1) at the front of the board must be on.
4. Measure between the TP4 and TP6 on the SPS board. The measurement must be at a level of $\sqrt{2} \times \text{VIN}_{\text{RMS}}$.
 This value can range 120V (85V input) ... 375V (265V input).
5. Measure between TP15 and TP14 on the SPS board. The measurement must be at a level of 20V DC, +/- 400 mV.
 If these readings are not correct, replace the tested SPS board with a new board and return the faulty board to the factory.

ATTENTION: When the SPS test harness is installed and powered, there are lethal voltages on the SPS board. Always connect multimeter test leads to the SPS test points before input power is applied to the SPS test harness.

Always connect the SPS test harness connectors to the SPS board before input power is applied to the SPS test harness.

Some shorted components on the SPS board, cause the input breaker to the SPS test power harness to trip. For example any of the input diode bridge diodes D10, D11, D13, or D14. In this situation, replace with a new unit and return the faulty board to the factory.

ATTENTION: When testing with the SPS harness is complete, remove the test harness from all SPS boards and remove the SPS test harness from the power converter cabinet. Do NOT leave the SPS test harness in the power converter cabinet. Reconnect all SGCT snubber connections to the J1 connectors on the SPS boards.
Fiber-optic Cabling

The equipment is provided with fiber-optic cabling as a means of interfacing the low voltage control to the medium voltage circuits. The rerouting of the fiber-optic cables is not be required.

Each end of a fiber-optic cable is provided with a connector that plugs and latches into its respective location on a circuit board. To disconnect a fiber-optic cable, depress the ridged plastic tab at the end connector and pull. To install a fiber-optic cable, insert the fiber-optic port of the circuit board so that the plastic tab latches into place.

To replace fiber-optic cables, take care to avoid the cables from becoming strained or crimped as a resulting loss in light transmission results in loss in performance.

The minimum bend radius that is permitted for the fiber-optic cables is 50 mm (2.0 in.).

When installing the fiber-optic cable, the color of the connector at the end of the cable must match the color of the connector socket on the circuit board.

Lengths of fiber-optic cables that are used in the product include:

<table>
<thead>
<tr>
<th>Duplex</th>
<th>Simplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 m (197 in.)</td>
<td>5.0 m (197 in.)</td>
</tr>
<tr>
<td>5.5 m (216.5 in.)</td>
<td>6.0 m (236.2 in.)</td>
</tr>
<tr>
<td>6.0 m (236.2 in.)</td>
<td>10.0 m (292.7 in.)</td>
</tr>
<tr>
<td>6.5 m (255.9 in.)</td>
<td></td>
</tr>
<tr>
<td>7.0 m (275.5 in.)</td>
<td></td>
</tr>
</tbody>
</table>

There is one duplex fiber-optic for each thyristor, which manages gating and diagnostic functions. The circuitry on the respective driver boards determines the health status of the thyristor. This information is then sent to the main processor by way of a fail-safe light signal in the fiber-optic. The main processor initiates the firing command for the thyristor and transmits it to the appropriate gate driver board by way of the gating fiber-optic.

The color codes of the connectors are:

- BLACK or GREY – is the transmitting end of the fiber-optic.
- BLUE – is the receiving end of the fiber-optic.
Air Pressure Sensor

An air pressure sensor is in the converter cabinet and the integral rectifier transformer cabinet (if applicable). In both cases, the sensor is in the upper left-hand quadrant of the cabinet.

Figure 78 - Air Pressure Sensor

The air pressure sensor measures the difference in air pressure between the front and rear of the converter modules/integral rectifier transformer. A small direct current voltage signal is transmitted to the control circuits.

If reduced fan performance or air blockage occurs, for either the converter or the transformer, a message is sent. The measured differential pressure is reduced and a warning message appears on the console. A likely cause of the warning message would be blocked filters at the inlet.

If, as a result of blockage or fan failure, there is a risk of thermal damage for either the converter or transformer, a fault signal causes drive shutdown.

Air Pressure Sensor Replacement

1. Remove the wires at the sensor and note their designation.
2. Disconnect the clear tube on the low-pressure port. Remove the two mounting screws of the sensor.
3. Check the integrity of the sealant that has been applied where the clear tubing passed through the sheet metal barrier.
4. Installation of the replacement airflow sensor is in the reverse order of its removal.
D.C. Link / Fan / Control Components

Figure 79 - DC Link and Fan Cabinet, Low Voltage Control Tub Shown

- Low Voltage Control Tub Retaining Hardware
- AC/DC Power Supply (Dual Power Supply with Diode Shown)
- Analog Drive Control Board
- Medium Voltage Barrier (for access to Line/Motor Capacitors)
Figure 80 - DC Link and Fan Cabinet, Low Voltage Control Tub Removed

- Fan
- Inlet Ring
- DC Link Inductor
- Grounding Network/Filter
- Motor Filter Capacitor
- Line Filter Capacitor
When the door is opened, control components are accessible. Behind the low voltage swing-out panel is the medium voltage compartment where the DC link and fan are located. The DC link is mounted on the floor plate of the cabinet above the capacitors.

Power connections are made to the inductor by way of its flexible leads. There are four power connection points that are labeled L+, L-, M+, and M-.

The DC link is equipped with thermal protection for the windings.

There is a current sensor on the M+ conductor.

The fan is located above the DC link; the primary elements of the fan are the inlet ring, impeller, and motor.

| IMPORTANT | The inlet ring is stationary and must not contact the rotating impeller. |

Mounted on top of the cabinet is an air exhaust hood. The exhaust hood must be installed to avoid foreign objects from entering the drive.

Output Grounding Network Replacement

PowerFlex 7000 drives can have either a grounding network or a ground filter in place of the grounding network. The number of capacitors vary depending on the system voltage.

1. Verify that there is no power to the equipment.

| ATTENTION: | To avoid electrical shock, verify that the main power has been disconnected before working on the capacitor. Verify that all circuits are voltage free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death. |

2. Note the position of the leads.

3. Remove the 6.4 mm (¼ in.) hardware and disconnect the leads connected to the terminals.

4. Four brackets are used to secure the capacitor. Loosen the four screws at the base of the brackets and lift out the capacitor.

5. Place the new capacitor and tighten the screws securely.

6. Replace the ring lugs and 6.4 mm (¼ in.) hardware (Figure 81).

| IMPORTANT | The maximum torque for the capacitor terminal is 3.4 N-m (30 lb-in.). |
Ground Filter Component Replacement

The number of capacitors vary depending on the system voltage.

1. Verify that there is no power to the equipment.

ATTENTION: To avoid electrical shock, verify that the main power has been disconnected before working on the capacitor. Verify that all circuits are voltage free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

Note the position of the leads.

2. Disconnect the leads connected to the failed capacitor/resistor bank.

3. Loosen and remove the mounting screws as indicated in Figure 82. Remove the failed component.

4. Assemble the new component in the reverse order of disassembly.

5. Reattach the leads strictly adhering to these torque requirements.

IMPORTANT The maximum torque for the capacitor terminal is 3.4 N\(\cdot\)m (30 lb\(\cdot\)in.).
Filter Capacitors

Filter capacitors are used on the motor side for all drives. The AFE rectifier also includes filter capacitors on the line side (see Figure 80).

The filter capacitors units are three-phase four-bushing and “oil-filled”. The three-phase capacitors are composed of internal single-phase units that are connected in a Y configuration. The neutral point of the Y is connected to the fourth bushing, which is accessible and can be used measure neutral point voltage or other protection/diagnostics purposes. Depending on the drive configuration, the fourth bushing can or cannot be connected to circuitry. The metal cases of the capacitors are grounded through a stud on the capacitor housing.

The capacitors are equipped with internal “bleeding resistors” to discharge the capacitor and reduce its voltage below 50V in 5 minutes when left disconnected. A typical three-phase capacitor is shown in Figure 83.
Replacing the Filter Capacitors

See Publication 7000-IN010, “Handling, Inspection, and Storage of Medium Voltage Line Filter Capacitors”.

1. Isolate and lockout all power to the drive.

- **ATTENTION:** To avoid electrical shock, verify that the main power has been disconnected before working on the capacitor. Verify that all circuits are voltage free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

- **ATTENTION:** Verify that the load is not turning due to the process. A freewheeling motor can generate voltage that is back-fed to the equipment being worked on.
2. Remove medium voltage barrier below the low voltage panel to access capacitor (Figure 79).

3. Short all four bushings together and to ground on both capacitors before handling the connections. Note the location of all cables and mark them accordingly.

4. Remove the four power connections to the terminals, and the single ground connector from the drive to the capacitor frame.

5. Remove the grounding network and top bracket that holds the capacitor in place. At the bottom of the capacitor, there is no hardware securing the capacitor. The capacitor fits into a slot in the assembly.

6. Remove the capacitor from the drive. The capacitors can weigh up to 100 kg (220 lb); two people can be required to remove them.

IMPORTANT Do not lift capacitor by bushing as it can damage bushings and result in oil leakage.

ATTENTION: The porcelain bushings are fragile. Any force that is applied to the bushings can damage the seal, between the bushing and the body, and can cause potential leaks or chips.

7. Install the new capacitor. Slide the capacitor back into the slot. Fasten the top bracket and grounding network.

8. Reconnect all power cables and the ground connection. The connections use the M14 hardware, but must only be tightened to 30 N•m (22 lb•ft) due to capacitor mechanical constraints.

9. Remove any shorting/grounding conductors.

10. Reinstall the sheet metal that was removed, and verify that connections are secure and correct.
Testing the Filter Capacitors

There are two ways to test line filter capacitors. The first method is recommended, to reduce the chance of retorque issues, because the capacitors are not disconnected. If the readings are unsatisfactory, the second method is more accurate, but involves disconnecting and testing them individually.

First Method

1. Verify that there is no power to the equipment.

ATTENTION: To avoid electrical shock, disconnect the main power before working on the drive. Verify that all circuits are voltage-free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

ATTENTION: Verify that the load is not running due to process. A freewheeling motor can generate voltage that feeds back to the equipment.

2. Isolate the equipment from medium voltage. Follow all safety steps.
3. Verify that there is no voltage present on the capacitor by using a hot stick or any other appropriate voltage-measuring device.
4. Verify that there is no oil leak or bulge in any of the capacitors.

ATTENTION: Capacitors that appear bulged or are leaking oil indicate potential problems with the internal elements. DO NOT USE. These units must be replaced. Failure to do so can lead to personal injury or death, property damage, or economic loss.

5. Using a DMM, measure the capacitance across each phase-to-neutral of capacitors without removing any connections.

 If the difference between the highest and the lowest readings is below 15%, then all capacitors are in good condition. If the difference between the highest and the lowest readings is off by 15% or more, then a bad capacitor can be the cause. If multiple capacitors are used in the circuit, isolate each of them and check them separately to identify which one is defective.

6. Before disconnecting the capacitors, note the location of all cables and mark them accordingly.
7. Disconnect power cables from the capacitor terminals on all four bushings and isolate them from the capacitor (see Replacing the Filter Capacitors on page 102).
8. Repeat step 5 to check each capacitor separately to confirm which is defective.
Second Method

1. Verify that there is no power to the equipment.

 ATTENTION: To avoid electrical shock, disconnect the main power before working on the drive. Verify that all circuits are voltage-free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

2. Verify that there is no oil leak or bulge in any of the capacitors.

 ATTENTION: Verify that the load is not running due to process. A freewheeling motor can generate voltage that feeds back to the equipment.

3. Note the location of all cables and mark them accordingly.

4. Disconnect power cables from the capacitor terminals on all four bushings and isolate them from the capacitor (see Replacing the Filter Capacitors on page 102).

5. Connect a low voltage single-phase test power, for instance 110V or 220V, across a phase and the neutral of the capacitor. Switch on the test power and measure the test voltage and current drawn by the capacitor. Repeat the test for all three phases and note down the test voltage and current.

 ATTENTION: The capacitor charges during this test. Use caution to avoid shock or injury. When moving the test connections from one phase to the next, wait a minimum of 5 minutes for the capacitor to discharge.

6. Calculate the capacitance from the measured values of test voltage and current. For a good capacitor, the calculated capacitance value for each of the three readings must be within ±15% of the capacitor nameplate micro-Farad. If the readings are outside this range, the capacitor must be replaced.

 This example demonstrates the calculation for capacitance value.

 Suppose that a capacitor under test is rated at 400 kVAR, 6600V, 50 Hz, 29.2 μF. Assume that you are using 200V, 50 Hz test power with the recorded voltage, and current values for each test as shown in this table.
Chapter 3 Power Component Definition and Maintenance

DC Link Reactor and CMC Replacement

The DC Link maintains a low ripple current between the rectifier and the inverter.

ATTENTION: To avoid electrical shock, verify that the main power has been disconnected before working on the current transformer. Verify that all circuits are voltage free. The DC Link can be hot. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

The DC link reactor does not normally require service. If it is replaced, Rockwell Automation must approve the replacement link. The link is cooled by air that is drawn through its coils.

To service the DC link, see Figure 84. For more information, see publication 7000-IN003.

1. Verify that the power source to the drive is locked out and that the filter caps are fully discharged.
2. Open the door to the DC link cabinet and remove the screws that retain the sheet metal barrier and low voltage panel.
3. Swing the low voltage panel to the left and disassemble the closing barriers that are on the left and right-hand side of the panel. Remove the nuts and washers that secure them to the sides of the structure.

Depending on the size of the DC link, it might be necessary to remove the low voltage panel. Lift the panel off its hinges and shift or rotate the panel so it does not obstruct the opening to the DC link cabinet. Confirm that the equipment that is used to lift the panel is adequate to do this.

4. Disconnect the four power connections. The DC link is equipped with flexible power leads.

<table>
<thead>
<tr>
<th>Phase - Neutral</th>
<th>L1-N</th>
<th>L2-N</th>
<th>L3-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Voltage</td>
<td>200V</td>
<td>200V</td>
<td>200V</td>
</tr>
<tr>
<td>Measured Current</td>
<td>1.87 A</td>
<td>1.866 A</td>
<td>1.861 A</td>
</tr>
</tbody>
</table>

Calculate the capacitance by using the first reading. In this case:

\[
V = 200V, \quad I = 1.87 \text{ for L1-N} \\
X_c = V/I = 200/1.87 = 106.95 \\
C = \frac{1}{(2 \pi F X_c)} \\
C = \frac{1}{(2 \times 3.14 \times 50 \times 106.95)} \\
C = 29.7 \mu F
\]

Where: \(F \) = frequency of the applied voltage.
5. Disconnect wires at terminal block on DC link for thermal switch.
6. Remove the hardware that secures the DC link.
7. Disconnect the ground connection.

The DC link is heavy and has provision for lifting with forks of a lift truck.

Figure 84 - DC Link Removal
Installation of the replacement DC link is performed in the reverse order of its removal.

The installer must verify that the flexible DC link leads are connected to the appropriate terminal and routed so that electrical clearances are maintained. Verify that the nameplate ratings are the same or appropriate for the drive system. Another DC link requires different parameter settings.

Thermal protection of the DC link reactor is provided by two contacts (normally closed) wired to the I/O module. These contacts open at 190 °C (374 °F) and cause a fault/alarm message to be displayed.

Fan Replacement

There are several models of cooling fans that are used in PowerFlex drives. Different fan types can be used in the various locations throughout the drive.

DC Link Section

The fan consists of a motor impeller assembly. To replace the fan, you must remove the fan exhaust hood (see Fan Hood Installation on page 26). Fan replacement requires work at a significant height from the floor. Make a suitable platform from which to work. The fan motor weighs approximately 45 kg (100 lb).

ATTENTION: To avoid electrical shock, verify that the main power has been disconnected before working on the current transformer. Verify that all circuits are voltage free. Use a hot stick or appropriate voltage-measuring device. Failure to do so can result in injury or death.

To replace the fan, follow these steps:

1. Open the DC Link cabinet, and swing out the LV panel (Figure 80).
2. Disconnect the power leads to the fan motor.

IMPORTANT Note the terminal locations so that proper fan rotation is maintained.

3. Remove and retain the four M8 nuts that secure the fan assembly to the mounting bracket (Figure 85).
4. Using a crane, hoist, or similar lifting provision, affix tie straps around opposite vertical brackets of the fan assembly and carefully lift the fan assembly out of the cabinet.

ATTENTION: Do not support the assembly on the impeller or damage can result.
Fan Installation

Handle the fan assembly with extreme caution. If handled improperly, the fan becomes unbalanced.

Fan installation is performed in the reverse order of its removal. Rotate the impeller by hand to make sure that there is no contact with the inlet ring.
Top of Integral Isolation Transformer Section

Figure 86 - Isolation Transformer Fan Removal

1. Remove the top plate of the ventilation housing and label fan supply leads before disconnecting.

2. Remove the bolts that retain the cross channel and withdraw the fan and channel from housing.

3. Disassemble and replace the fan.

4. Reassemble in the reverse order of removal.
Top of Integral Line Reactor and Input Starter Section

Figure 87 - Starter/Line Reactor Cabinet Fan Removal

1. Remove the top ventilation cover from the exterior of the cabinet.
2. Expose the mounting hardware of the fan by removing the mounting screws. Invert the fan mounting bracket.
3. Unplug or disconnect fan leads from terminal blocks and replace fan.
4. Reassemble in the reverse order of removal.

Impeller Maintenance

The isolation transformer fan motor and impeller is an integral unit and cannot be serviced separately.

Inlet Ring Removal and Replacement

The inlet ring is the large circular part that is located beneath the fan impeller. It is positioned such that the impeller sits outside but does not touch the ring. The ring sits inside the impeller 10 mm (0.40 in.).

This procedure requires coming in contact with the internal electrical connectors and devices.
Precautions must be taken to keep the inlet ring from falling after all bolts have been removed.

ATTENTION: All power MUST be removed from the drive. Failing to do so can result in serious injury or death.

ATTENTION: To avoid electrical shock, verify that the main power has been disconnected before working within the DC Link and Fan Area. Verify that all circuits are voltage free. Use a hot stick or appropriate high voltage-measuring device. Failure to do so can result in injury or death.

DC Link / Fan Section

If rear panel access is possible, remove rear middle panel of the DC link / fan portion of the cabinet and remove the inlet ring from the back.

Procedure

If rear panel access is not possible, follow this procedure:

1. Remove bolts and swing-out low voltage panel (see Figure 79).
2. Remove bolts from the inlet ring being careful not to allow the ring to fall.
3. Remove inlet ring by way of the bottom access panel. Move the inlet ring around the DC link and diagonally out the door. Shifting of the DC link can be required.
4. To install the new ring, reverse steps 1...3. To verify that there is no contact with the inlet ring, rotate the fan impeller by hand. Move the ring and retighten bolts to help eliminate interference.
5. Replace all panels and barriers that are opened or removed during inlet ring replacement.

Top of Integral Isolation Transformer Section

1. Remove fan as described in “Fan Replacement”.
2. Disassemble bolts and remove inlet ring.
3. To install new ring, reverse the steps 1 and 2. To verify that there is no contact with the inlet ring rotate the fan impeller by hand. Move the ring and retighten bolts to help eliminate interference.
4. Replace all panels and barriers that are opened or removed during inlet ring replacement.
Replacement of Air Filters

ATTENTION: For arc resistant drives, equipment is not rated as arc resistant while the filter covers are open. Filter covers must be bolted closed to maintain arc resistant structural integrity

Air filters are at the cooling air intake grille that is mounted on the door in front of the converter, line reactor, and transformer cabinets.

Periodically, remove and clean, or remove and replace the filter material. If the air for cooling is dirty, renew filters frequently.

Filters can be renewed while the drive is running, but the procedure is easier to perform while the drive is shut down.

1. Use an 8 mm (5/16 in.) Hex key to loosen the ¼ turn fasteners and swing open the hinged grill assembly.
2. Remove filter material.

If the drive is running, replace the filter as soon as possible so foreign material is not drawn into the drive.

IMPORTANT Keep dirt that is accumulated on the inlet side of the filter from being sucked into the drive. To remove the filter material without tearing the filter is difficult, due to the suction at the air inlet

Recommended methods to clean the filter:

- **Vacuum Clean** – vacuum the inlet side of the filter to remove accumulated dust and dirt in seconds.
- **Blow with Compressed Air** – point compressed air nozzle in opposite direction of operating airflow. Blow from exhaust side toward intake side.
- **Cold Water Rinse** – normally the foam that is used in the filters require no oily adhesives. Use a standard hose with plain water to was collected dirt away. (Verify that filter is dry before reinstalling).
- **Immersion in Warm Soapy Water** – Where stubborn air-borne dirt is present, the filter can be dipped in a solution of warm water and mild detergent. Rinse in clear clean water. (Verify that filter is dry before reinstalling).

Use only replacement filters that are provided, or approved for use by Rockwell Automation. Replacement of the filters is performed in the reverse order of its removal. Check that there are no openings that would allow foreign matter into the drive.
Figure 88 - Filter Replacement

Figure 89 - Airflow Through PowerCage Module
Figure 90 - Airflow Pattern for Drive Cooling
Fan Power Transformer

PowerFlex A frame medium voltage drives have an optional fan power transformer (FPT).

- For PowerFlex A frame RPDTD drives with an integral starter:
 - If an FPT is required (customer-supplied 380…480V is not available): the FPT steps primary line voltage down to supply 380…480V power to the main and redundant fans. A control panel transformer (CPT) steps the same primary line voltage down the low voltage (LV) panel.
 - If an FPT isn’t required: Customer-supplied 380…480V power directly feeds the main and redundant fans. A CPT steps this down to feed the LV panel.

- For PowerFlex A frame RPDTD drives without an integral starter, and PowerFlex A frame RPDTX drives:
 - If an FPT is required (customer-supplied 380…480V is not available): the FPT steps primary line voltage down to supply 380…480V power to the main and redundant fans. Customer-supplied 110…240V is supplied directly to the LV panel.
 - If an FPT isn’t required: Customer-supplied 380…480V power feeds directly to the main and redundant fans. Customer-supplied 110…240V is supplied directly to the LV panel through the CPT.

Figure 91 - FPT Wiring Configurations

FPT is Required:

FPT is Not Required:
Control Component Definition and Maintenance

Control Power Components

There are two configurations in which control power is distributed for the drive. The different methods are dependent on what drive option the customer has chosen:

1. Direct-to-Drive™ (transformerless AFE rectifier) (Figure 92)
2. AFE rectifier with separate isolation transformer (Figure 93).
3. AFE rectifier with integral isolation transformer (Figure 94).

Ride-through

Standard controls with 5 cycle ride-through – The drive main control boards will remain energized for a total of 5 cycles after control power is interrupted. If control power is not restored during the 5 cycles, a controlled shutdown occurs.

Figure 92 illustrates the control power distribution for AFE drives with integral starter/line reactor.
Figure 92 - Direct-to-Drive (Transformerless AFE Rectifier)

- Operator Interface
 - Relays

- AC/DC Converter
 - 600 W / 1000 W / 1500 W

- DC/DC Converter
 - C Hold-up
 - Sense Cable

- 20V Isolated Gate Driver Power Supply

- 20V

- Inverter only for SPS Drives

- Operator Interface
 - Relays

- AC/DC Converter
 - 600 W / 1000 W / 1500 W

- DC/DC Converter
 - C Hold-up
 - Sense Cable

- 20V Isolated Gate Driver Power Supply

- 20V

- Inverter only for SPS Drives

- Line Reactor
 - 380V 50 Hz or 460V 60 Hz 3 PH

- VFD

- Fan

- Line Filter

- Customer Supplied 120V 1 PH

- Line Reactor
 - 380V 50 Hz or 460V 60 Hz 3 PH

- VFD

- Fan

- Line Filter

- Customer Supplied 120V 1 PH
Figure 93 illustrates the control power distribution for AFE drives with remote transformer/starter (A) or integrated line reactor with remote starter (B).

Figure 93 - AFE Rectifier with Separate Isolation Transformer
Figure 94 illustrates the control power distribution for AFE drives with integral transformer and remote starter.

Figure 94 - AFE Rectifier with Integral Isolation Transformer
AC/DC Power Supply

The load demands on the AC/DC converters are the DC/DC converter and up to six IGDPS modules (up to three IGDPS modules for SPS drives). The DC/DC is a fixed load; however, the quantity of IGDPS modules vary depending upon the drive configuration and whether SPS modules are used.

Description

The AC/DC power supply accepts single phase voltage and produces a regulated output\(^{(1)}\) for the DC/DC power supply and the HV IGDPS modules that power the SGCTs. The input and output voltages are monitored and fail signals are announced when either voltage goes below a preset level.

Figure 95 - AC/DC Converter Power Supply

\(\text{DC FAIL: Upon loss of DC output (V outputs} \leq 49\text{V DC) this output goes from low to high.}\)

\(^{(1)}\) Cosel power supply output 57V DC, Pioneer power supply output is 56V DC.
Location

The AC/DC power supply is located in the low voltage panel at the top right-hand section of the drive, see Figure 96.

Figure 96 - Location of AC/DC Cosel (single) Power Supply on Low Voltage Panel
Figure 97 - Location of AC/DC Cosel (Dual) Power Supply on Low Voltage Panel
Terminal / Connections Descriptions

The terminal connections are shown in Figure 98.

Figure 98 - Terminal locations on 1000W AC/DC Power Supply (Cosel)

Figure 99 - Terminal Locations on 600 W AC/DC Power Supply (Cosel)
Output Calibration

Verify that the output of the supply is 56V DC\(^{(1)}\).

There is a potentiometer on the top of the power supply that adjusts the 56V DC\(^{(1)}\) output for the power supply. Isolate the output of the power supplies; multiple supplies in parallel affect your measurements. With the control power on and the output of the AC/DC Converter that is isolated from the drive control, adjust the potentiometer until the output equals 56V DC\(^{(1)}\). Perform this test on each power supply. When all adjustments are complete, reconnect the power supply to the circuit and remeasure the output. Readjust if necessary.

If 56V DC\(^{(1)}\) cannot be maintained, the power supply can be faulty. In multiple power supply configurations, the final output voltage after the diodes can be in the range of 56...57V DC.

\(^{(1)}\) 56V DC for Cosel model numbers -XRWAC and earlier. 57V DC for Cosel model numbers -XRWAD and newer.
Single Power Supply Replacement

The single power supply (see Figure 96 on page 122) is replaced using the following procedure. Retain all hardware for re-installation.

1. Verify that control power has been isolated and locked out.
2. Disconnect the terminals at the unit.
3. Remove the four M6 bolts from the bracket holding the power supply.
4. Extract the power supply complete with bracket from the drive.
5. Remove the brackets from the failed power supply (four M4 screws and nylon shoulder washers).
6. Attach the bracket to the replacement power supply. The black polypropylene sheet must be between the AC/DC power supply and the mounting plate of the bracket.
7. Repeat steps 6...1 in this order to replace the unit.
8. Reapply control power and verify voltage levels.
Dual Power Supply Replacement

If there are two power supplies (see Figure 97 on page 123) follow these steps to replace one or both of the power supply units. Retain all hardware for re-installation.

1. Verify that control power has been isolated and locked out.
2. Disconnect the terminals at the unit.
3. Remove the M6 screws from the diode safety cover.
4. Remove the diode cover from the diode.
5. Remove the M6 Hex screws from diode.
6. Remove the diode from the panel.
7. Remove the four M6 bolts from the bracket holding the power supply.
8. Extract the power supply complete with bracket from the drive.
9. Remove the brackets from the failed power supply (four M4 screws and nylon shoulder washers).

10. Attach the bracket to the replacement power supply. The black polypropylene sheet must be between the AC/DC power supply and the mounting plate of the bracket.
11. Clean the diode contact area and apply thermal grease to the area.
12. Repeat Steps 10...1 in this order to replace the unit.
13. Reapply control power and verify voltage levels.
Diode Replacement

To replace a diode, follow these instructions:

1. Verify that control power has been isolated and locked out.
2. Disconnect the terminals at the unit.
3. Remove the M6 screws from the diode safety cover.
4. Remove the diode cover from the diode.
5. Remove the M6 Hex screws from the diode.
6. Remove the diode from the panel.
7. Clean the diode contact area and apply thermal grease to the area.
8. Reinstall the unit following the steps 6…1 in reverse.
UPS Option

The PowerFlex™ 7000 “A” Frame drive has the option for internal and external UPS power. This keeps the control power active within the drive in the event of a control power loss. The following diagram shows the current configuration of the internal UPS option.

Figure 100 - 300 W AC/DC Power Supply
The UPS is installed in the incoming cabling section in the UPS LV control section.

The UPS maintains control power to all critical 120V AC loads and an extra AC/DC power supply that feeds the DC/DC power supply for powering all drive control components. The main drive cooling fan is not powered from this UPS.

The UPS uses the AS400 communication protocol, and feeds several status signals back to the ACB to control responses to various conditions. These conditions include low batteries, loss of input power, UPS Okay, and UPS on bypass.

If the customer has an external UPS, the firmware does not expect any of the signals that are mentioned in the previous section. No information that is related to the UPS status is displayed. The firmware operates in the same manner regarding the operation of the drive with an internal or external UPS.

The output of the UPS feeds a 300 W AC/DC power supply. This supply is 20% of the standard AC/DC power supply that is used in the drive. The load that is represented by the DC/DC power supply is much smaller than the load of the IGDPS boards, and the size is reduced accordingly. The standard AC/DC power supply is used to feed the IGDPS boards. The 300 W AC/DC power supply has an AC input that is monitored by the UPS, and the DC output that is monitored by the ACB board for fault conditions.

A hold-up capacitor on the output of the 300 W AC/DC power supply maintains the 56V DC(1) if there is a failure of the power supply.

Replacing the UPS

IMPORTANT To replace the UPS battery, refer to the UPS user manual that was shipped with the drive.

1. Isolate and lockout the control power.
2. Remove the hardware that fastens the holding bracket to the cabinet assembly and remove the holding bracket.
3. Disconnect the input and output wiring that is connected to and from the UPS.
4. Disconnect the 15-pin status plug and remove the UPS.

ATTENTION: Before installing the new UPS, check the battery recharge date on the shipping carton label. If the date has passed and the batteries were never recharged, do not use the UPS. Contact Rockwell Automation.

(1) 56V DC for Cosel model numbers -XRWAC and earlier. 57V DC for Cosel model numbers -XRWAD and newer.
5. Before installing the new UPS, the internal battery must be connected.\(^1\)
 a. Remove the UPS front cover. Push down on the top of the cover and pull the cover towards you to unclip the cover from the cabinet.
 b. Connect the white connectors together, connecting red to red, and black to black. Verify that there is a proper connection.
 c. Remove and retain the two screws from the screw mounts.
 d. Place the battery connector between the screw mounts. Reinstall the two screws that hold the connector in place.
 e. Replace the UPS front cover.

Figure 101 - Connect the Internal UPS Battery

6. Reconnect all connections that are removed in the previous steps.

7. Before reconnecting the mounting bracket, apply control power to the unit and verify that the UPS is configured for the AS400 communication protocol. See the manual that comes with the UPS for instructions.

8. When the configuration has been confirmed, install the mounting bracket.

\(^1\) Reprinted from 700-3000 VA User's Guide by permission of Eaton Corporation.
Low Voltage Control Section

The low voltage control section houses all control circuit boards, relays, Operator Interface Terminal, DC/DC power supply, and most other low voltage control components.

DC/DC Power Supply

The DC/DC power supply is used as a source of regulated DC voltages for various logic control boards and circuits. The input to this power supply is from a regulated 56V DC\(^{(1)}\) source.

\((1)\) 56V DC for Cosel model numbers -XRWAC and earlier. 57V DC for Cosel model numbers -XRWAD and newer.
The capacitor at the input terminals enables the equipment to ride through power dips. If the capacitor (C hold-up) loses the 56V(1) input, it maintains the voltage level for a period of time to enable a controlled shut-down. This component is not required in all configurations.

Due to the critical nature of the ACB/DPM Logic power source, the DC/DC power supply provides redundancy for the 5V rail. There are two separate 5V outputs, each capable of powering the logic boards. In the event of one failing, the drive switches to the other power supply automatically to provide the output power.

Terminal/Connections Descriptions

<table>
<thead>
<tr>
<th>P1 – DC Input</th>
<th>PIN NO.</th>
<th>LABEL</th>
<th>DESCRIPTION ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+56V</td>
<td>+56V input</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+56V COMM</td>
<td>+56V common</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EARTH</td>
<td>Earth ground</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P2 – SENSE (To ACB)</th>
<th>PIN NO.</th>
<th>LABEL</th>
<th>DESCRIPTION ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+56V</td>
<td>+56V input supply</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+56V RTN</td>
<td>+56V input supply return</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>Not Connected</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>Not Connected</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+24V</td>
<td>Isolated +24V Supply</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+24V RTN</td>
<td>Isolated +24V Supply return</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>Not Connected</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>Not Connected</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>+5VA</td>
<td>Primary +5V supply, before OR’ing diode</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DGN (com1)</td>
<td>+5V, +/-15V Common</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>+5VB</td>
<td>Secondary +5V supply, before OR’ing diode</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DGN (com1)</td>
<td>+5V, +/-15V Common</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ID0</td>
<td>Power Supply ID Pin 0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ID1</td>
<td>Power Supply ID Pin 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P3 – ISOLATOR (To Isolator Modules)</th>
<th>PIN NO.</th>
<th>LABEL</th>
<th>DESCRIPTION ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISOLATOR (+24V, 1A)</td>
<td>+24V, 1A/com4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ISOL_COMM (com4)</td>
<td>0V/com4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EARTH</td>
<td>EARTH</td>
<td></td>
</tr>
</tbody>
</table>

(1) 56V DC for Cosel model numbers -XRWAC and earlier. 57V DC for Cosel model numbers -XRWAD and newer.
Replacement Procedure for DC/DC Power Supply

1. With the drive energized, check that all output voltages are present (View 1, Figure 104).

2. De-energize the drive, isolate, and lockout the control power, and remove all wire connections from the unit (View 1, Figure 104).

3. Remove quantity of four M6 (H.H.T.R.S.) that allows the DC/DC Power Supply Assembly to be removed from the low voltage panel (View 1, Figure 104).

4. Remove quantity of four M4 (P.H.M.S.) and nylon shoulder washers from the back of the mounting plate (View 2, Figure 104).

5. Replace old DC/DC Power Supply with the new one.

 Verify that the black insulation is between the DC/DC power supply and the mounting plate. Repeat steps 4...1 in this order to replace unit (View 2, Figure 104).

P4 – PWR (To ACB)

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>LABEL</th>
<th>DESCRIPTION ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24V_XID (+24V, 2 A)</td>
<td>+24V, 2 A/com3</td>
</tr>
<tr>
<td>2</td>
<td>XID_COMM (com3)</td>
<td>0V/com3</td>
</tr>
<tr>
<td>3</td>
<td>+HECSSPWR (+24V, 1 A)</td>
<td>+24V, 1 A/com2</td>
</tr>
<tr>
<td>4</td>
<td>LCOMM (com2)</td>
<td>0V/com2</td>
</tr>
<tr>
<td>5</td>
<td>-HECSSPWR (-24V/1 A)</td>
<td>-24V, 1 A/com2</td>
</tr>
<tr>
<td>6</td>
<td>+15V_PWR (+15V, 1 A)</td>
<td>+15V, 1 A/com1</td>
</tr>
<tr>
<td>7</td>
<td>ACOMM (com1)</td>
<td>0V/com1</td>
</tr>
<tr>
<td>8</td>
<td>-15V_PWR (-15V/1 A)</td>
<td>-15V, 1 A/com1</td>
</tr>
<tr>
<td>9</td>
<td>+5V_PWR (+5V,5 A)</td>
<td>+5V, 10 A/com1</td>
</tr>
<tr>
<td>10</td>
<td>DGND (com1)</td>
<td>0V/com1</td>
</tr>
<tr>
<td>11</td>
<td>EARTH</td>
<td>Earth ground</td>
</tr>
</tbody>
</table>
6. Verify that the ground wire of P4 plug is connected to the ground by M10 bolt.

Printed Circuit Board Replacement

The replacement of printed circuit boards must be handled in a careful manner.

IMPORTANT
- Remove all power to the drive.
- Do not remove the replacement board from the anti-static bag until necessary.
- Use anti-static wriststrap, which is grounded in the Low Voltage Control Section.

There are no direct screw/terminal connections on any of the low voltage circuit boards. All wire/terminal connections are made with plugs that plug into the circuit boards. Changing boards only requires the removal of the plugs, which minimizes the chance of mistakes when reconnecting the wiring.
Drive Processor Module

This board contains the control processors responsible for all drive control processing and stores all parameters that are used for the drive control.

Figure 105 - Drive Processor Module (DPM)
Diagnostic test points on the DPM have a voltage output range of -5...+5V. The following is the list of test points on the DPM:

<table>
<thead>
<tr>
<th>Test Points</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPM-TP1</td>
<td>+1.2V</td>
<td>+1.2V DC power supply</td>
</tr>
<tr>
<td>DPM-TP2</td>
<td>+1.8V</td>
<td>+1.8V DC power supply</td>
</tr>
<tr>
<td>DPM-TP3</td>
<td>+2.5V</td>
<td>+2.5V DC power supply</td>
</tr>
<tr>
<td>DPM-TP4</td>
<td>+3.3V</td>
<td>+3.3V DC power supply</td>
</tr>
<tr>
<td>DPM-TP5</td>
<td>+5V</td>
<td>+5V DC power supply</td>
</tr>
<tr>
<td>DPM-TP6</td>
<td>DGND</td>
<td>Digital ground</td>
</tr>
<tr>
<td>DPM-TP7</td>
<td>ITP1</td>
<td>Digital to Analog output – Assignable diagnostic test point</td>
</tr>
<tr>
<td>DPM-TP8</td>
<td>ITP2</td>
<td>Digital to Analog output – Assignable diagnostic test point</td>
</tr>
<tr>
<td>DPM-TP9</td>
<td>ITP3</td>
<td>Digital to Analog output – Assignable diagnostic test point</td>
</tr>
<tr>
<td>DPM-TP10</td>
<td>ITP4</td>
<td>Digital to Analog output – Assignable diagnostic test point</td>
</tr>
<tr>
<td>DPM-TP11</td>
<td>RTP1</td>
<td>Digital to Analog output – Assignable diagnostic test point</td>
</tr>
<tr>
<td>DPM-TP12</td>
<td>RTP2</td>
<td>Digital to Analog output – Assignable diagnostic test point</td>
</tr>
<tr>
<td>DPM-TP13</td>
<td>RTP3</td>
<td>Digital to Analog output – Assignable diagnostic test point</td>
</tr>
</tbody>
</table>

This table defines the states of status indicators D9 and D11 on the DPM board. D9 is used for the inverter side processor and D11 is for the rectifier side processor. The other two status indicators (D6 and D7) are the watchdogs for the inverter and rectifier code respectively.

<table>
<thead>
<tr>
<th>Color</th>
<th>Rate of Count (Pulse)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>10 count</td>
<td>Pre-execution OK</td>
</tr>
<tr>
<td>Red</td>
<td>0.25 Hz</td>
<td>No bootcode</td>
</tr>
<tr>
<td>Green</td>
<td>0.5 Hz</td>
<td>No application</td>
</tr>
<tr>
<td>Green</td>
<td>2 Hz</td>
<td>Downloading by way of serial port</td>
</tr>
<tr>
<td>Green</td>
<td>1 Hz</td>
<td>Waiting/loading application</td>
</tr>
<tr>
<td>Green</td>
<td>Solid</td>
<td>Operation running or successful</td>
</tr>
<tr>
<td>Red</td>
<td>Solid</td>
<td>Operation failed</td>
</tr>
<tr>
<td>Red</td>
<td>2 count</td>
<td>POST – RAM failed</td>
</tr>
<tr>
<td>Red</td>
<td>3 count</td>
<td>POST – NVRAM failed</td>
</tr>
<tr>
<td>Red</td>
<td>4 count</td>
<td>POST – DPRAM failed</td>
</tr>
<tr>
<td>Red</td>
<td>8 count</td>
<td>FPGA Loading failed</td>
</tr>
<tr>
<td>Red</td>
<td>9 count</td>
<td>POST – USART failed: 1 Green Count = Port 1 2 Green Count = Port 2</td>
</tr>
<tr>
<td>Red</td>
<td>10 count</td>
<td>End of code reached</td>
</tr>
<tr>
<td>Red</td>
<td>11 count</td>
<td>Download – CRC error</td>
</tr>
<tr>
<td>Red</td>
<td>14 count</td>
<td>Download – Overflow error</td>
</tr>
</tbody>
</table>
Drive Processor Module Replacement

Before replacing the drive processor module, record all programmed drive parameters and settings. Specifically, the parameters, fault masks, fault descriptions, and PLC links are critical. This information is stored in NVRAM on each, and as a result you can lose your settings with a new board.

To record parameters, use the memory on the terminal. Other options include a Flashcard, HyperTerminal, the door-mounted printer, or DriveTools™ to record the parameters to a file.

To print all drive setup information, use the printer and HyperTerminal. In the situation where a board has failed, you probably will not be able to save parameters after the failure. In this case, contact the customer to see if they have a copy of the last parameters, or contact Product Support to check if they have a copy.

IMPORTANT

Save all parameters when you are finished commissioning or servicing the drive.

1. Record all drive setup information using any of the previously mentioned options.
2. Verify that all medium voltage and control voltage power to the drive is isolated and locked out.
3. It is required to first remove the transparent sheet on top of the drive processor module by removing the four screws.
4. Use static strap before removing any connectors.
5. Remove the connectors J4, J11, and J12 after proper identification and marking if necessary. Use the electrical drawing as the reference.
6. Remove the four screws on the corners of the board fastening the board to the standoffs on the analog control board ACB.
7. Gently remove the drive processor module from the four, 34-pin female connectors and one, 16-pin female connector on the ACB.

IMPORTANT

Remove the DIM module from the DPM. Plug DIM module on the new DPM before the replacement of DPM.

8. Follow steps 7...3 in this order to reinstall the boards back into the low voltage control cabinet.
9. Apply control power to the drive. The DPMs are shipped with no firmware installed, so the drive automatically goes into download mode. Install firmware in the drive following the guidelines in publication 7000-UM201A.
10. Program the drive. See publication 7000-TD002.
Figure 106 - ACB and DPM Replacement

Analog Control Board
Analog Control Board

The Analog Control Board (ACB) is the hub for all control-level signals external to the drive. Analog I/O, External Fault signals (through the XIO board), SCANport/DPI communication modules, Remote I/O, terminal interface, printers, modem, and other external communication devices are routed through this board.

Figure 107 - Analog Control Board
The ACB receives all Analog Signals from the internal components of the drive including the current and voltage feedback signals. The boards also have isolated Digital I/O for fan status, E-stops, and contactor control and status feedback. All test points for the currents, system voltages, control voltages, and flux are on these boards.

Table 7 - Connectors on Analog Control Board

<table>
<thead>
<tr>
<th>ACB Connectors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACB-J1</td>
<td>Control I/O and control power monitor</td>
</tr>
<tr>
<td>ACB-J2</td>
<td>Line current inputs, CT2U, CT2W</td>
</tr>
<tr>
<td>ACB-J3</td>
<td>Line current inputs, CT3U, CT3W</td>
</tr>
<tr>
<td>ACB-J4</td>
<td>Line current inputs, CT4U, CT4W</td>
</tr>
<tr>
<td>ACB-J5</td>
<td>Motor current inputs, HECSU, HECSW</td>
</tr>
<tr>
<td>ACB-J6</td>
<td>DC Link current inputs, HECSDC1, HECSDC2</td>
</tr>
<tr>
<td>ACB-J7</td>
<td>Ground fault and CMC Neutral current inputs, GFCT, INN</td>
</tr>
<tr>
<td>ACB-J8</td>
<td>Isolated and non-isolated analog inputs, AIN1, AIN2, AIN3 and Non-isolated outputs, AOUT1, AOUT2, AOUT3, AOUT4</td>
</tr>
<tr>
<td>ACB-J9</td>
<td>Air pressure inputs, AP0, AP1</td>
</tr>
<tr>
<td>ACB-J10</td>
<td>Meter outputs, AOUT5, AOUT6, AOUT7, AOUT8, and Speed Pot input, AIN0</td>
</tr>
<tr>
<td>ACB-J11</td>
<td>Communication connections, printer outputs</td>
</tr>
<tr>
<td>ACB-J12</td>
<td>Communication connections, Terminal</td>
</tr>
<tr>
<td>ACB-J13</td>
<td>DC power supplies, XIO(+24V), +/-15V, +/-24V, +5V</td>
</tr>
<tr>
<td>ACB-J14</td>
<td>DC power supply monitoring, 5V1, 5V2, DC-BUS</td>
</tr>
<tr>
<td>ACB-J15</td>
<td>DC-ABUS +56V output monitoring (UPS option)</td>
</tr>
<tr>
<td>ACB-J16</td>
<td>DPI interface</td>
</tr>
<tr>
<td>ACB-J17</td>
<td>Communication connections, scan port</td>
</tr>
<tr>
<td>ACB-J18</td>
<td>DC fail signal monitoring</td>
</tr>
<tr>
<td>ACB-J19</td>
<td>DC fail signal monitoring</td>
</tr>
<tr>
<td>ACB-J20</td>
<td>DC fail signal monitoring</td>
</tr>
<tr>
<td>ACB-J21</td>
<td>DC fail signal monitoring</td>
</tr>
<tr>
<td>ACB-J22</td>
<td>Communication connection, XIO link CAN interface</td>
</tr>
<tr>
<td>ACB-J23</td>
<td>Communication connection, parallel drive</td>
</tr>
<tr>
<td>ACB-J24</td>
<td>UPS fail signal monitoring</td>
</tr>
<tr>
<td>ACB-J25</td>
<td>Line-voltage synchronous transfer feedback voltage inputs VSA, VSB, VSC</td>
</tr>
<tr>
<td>ACB-J26</td>
<td>Motor and line DC link and Neutral Point Voltage inputs</td>
</tr>
<tr>
<td>ACB-J27</td>
<td>AC Motor and Line-voltage feedback inputs</td>
</tr>
<tr>
<td>ACB-J28</td>
<td>Encoder interface</td>
</tr>
<tr>
<td>ACB-J30</td>
<td>DPM connection, A/D SUB system</td>
</tr>
<tr>
<td>ACB-J31</td>
<td>DPM connection, DACs serial data</td>
</tr>
<tr>
<td>ACB-J32</td>
<td>DPM power supply, +5V</td>
</tr>
<tr>
<td>ACB-J33</td>
<td>DPM connection, Faults & other I/O</td>
</tr>
<tr>
<td>ACB-J34</td>
<td>DPM connection, Encoder</td>
</tr>
<tr>
<td>Test points</td>
<td>Name</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>ACB-TP1</td>
<td>VuVin</td>
</tr>
<tr>
<td>ACB-TP2</td>
<td>Vvw</td>
</tr>
<tr>
<td>ACB-TP3</td>
<td>VwWu</td>
</tr>
<tr>
<td>ACB-TP4</td>
<td>Iu</td>
</tr>
<tr>
<td>ACB-TP5</td>
<td>Iw</td>
</tr>
<tr>
<td>ACB-TP6</td>
<td>Vzs</td>
</tr>
<tr>
<td>ACB-TP7</td>
<td>Vn</td>
</tr>
<tr>
<td>ACB-TP8</td>
<td>V_pk</td>
</tr>
<tr>
<td>ACB-TP9</td>
<td>Vdci1</td>
</tr>
<tr>
<td>ACB-TP10</td>
<td>Vdci2</td>
</tr>
<tr>
<td>ACB-TP11</td>
<td>Vuvs</td>
</tr>
<tr>
<td>ACB-TP12</td>
<td>V2uv</td>
</tr>
<tr>
<td>ACB-TP13</td>
<td>V2vw</td>
</tr>
<tr>
<td>ACB-TP14</td>
<td>V2wu</td>
</tr>
<tr>
<td>ACB-TP15</td>
<td>I2u</td>
</tr>
<tr>
<td>ACB-TP16</td>
<td>I2w</td>
</tr>
<tr>
<td>ACB-TP17</td>
<td>Vzs2</td>
</tr>
<tr>
<td>ACB-TP18</td>
<td>Vn1</td>
</tr>
<tr>
<td>ACB-TP19</td>
<td>V2_pk</td>
</tr>
<tr>
<td>ACB-TP20</td>
<td>Vdcr1</td>
</tr>
<tr>
<td>ACB-TP21</td>
<td>Idc1</td>
</tr>
<tr>
<td>ACB-TP22</td>
<td>VwWs</td>
</tr>
<tr>
<td>ACB-TP23</td>
<td>V3uv</td>
</tr>
<tr>
<td>ACB-TP24</td>
<td>V3vw</td>
</tr>
<tr>
<td>ACB-TP25</td>
<td>V3wu</td>
</tr>
<tr>
<td>ACB-TP26</td>
<td>I3u</td>
</tr>
<tr>
<td>ACB-TP27</td>
<td>I3w</td>
</tr>
<tr>
<td>ACB-TP28</td>
<td>VzS3</td>
</tr>
<tr>
<td>ACB-TP29</td>
<td>Vn2</td>
</tr>
<tr>
<td>ACB-TP30</td>
<td>V3_pk</td>
</tr>
<tr>
<td>ACB-TP31</td>
<td>Vdcr2</td>
</tr>
<tr>
<td>ACB-TP32</td>
<td>Idc2</td>
</tr>
<tr>
<td>ACB-TP33</td>
<td>Vuws</td>
</tr>
<tr>
<td>ACB-TP34</td>
<td>V4uv</td>
</tr>
<tr>
<td>ACB-TP35</td>
<td>V4vw</td>
</tr>
<tr>
<td>ACB-TP36</td>
<td>V4wu</td>
</tr>
<tr>
<td>ACB-TP37</td>
<td>I4u</td>
</tr>
<tr>
<td>ACB-TP38</td>
<td>I4w</td>
</tr>
<tr>
<td>ACB-TP39</td>
<td>VzS4</td>
</tr>
<tr>
<td>ACB-TP40</td>
<td>Vnn</td>
</tr>
<tr>
<td>ACB-TP41</td>
<td>Inn</td>
</tr>
<tr>
<td>ACB-TP42</td>
<td>Ignd</td>
</tr>
</tbody>
</table>
Table 8 - Test Points on Analog Control Board (Continued)

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACB-TP43</td>
<td>Vsp or Spare channel for inputs</td>
</tr>
<tr>
<td>ACB-TP44</td>
<td>Vmtrp Motor over voltage detection set point</td>
</tr>
<tr>
<td>ACB-TP45</td>
<td>A+ Encoder A+ input</td>
</tr>
<tr>
<td>ACB-TP46</td>
<td>B+ Encoder B+ input</td>
</tr>
<tr>
<td>ACB-TP47</td>
<td>Z+ Encoder Z+ input</td>
</tr>
<tr>
<td>ACB-TP48</td>
<td>A- Encoder A- input</td>
</tr>
<tr>
<td>ACB-TP49</td>
<td>B- Encoder B- input</td>
</tr>
<tr>
<td>ACB-TP50</td>
<td>Z- Encoder Z- input</td>
</tr>
<tr>
<td>ACB-TP51</td>
<td>CP1 Control power monitoring for channel 1</td>
</tr>
<tr>
<td>ACB-TP52</td>
<td>CP2 Control power monitoring for channel 2</td>
</tr>
<tr>
<td>ACB-TP53</td>
<td>CP3 Control power monitoring for channel 3</td>
</tr>
<tr>
<td>ACB-TP54</td>
<td>CP4 Control power monitoring for channel 4</td>
</tr>
<tr>
<td>ACB-TP55</td>
<td>Vltrp AC over voltage detection set point for 2UVW and 3UVW</td>
</tr>
<tr>
<td>ACB-TP56</td>
<td>AGND Analog ground</td>
</tr>
<tr>
<td>ACB-TP57</td>
<td>AGND Analog ground</td>
</tr>
<tr>
<td>ACB-TP58</td>
<td>AGND Analog ground</td>
</tr>
<tr>
<td>ACB-TP59</td>
<td>AGND Analog ground</td>
</tr>
<tr>
<td>ACB-TP60</td>
<td>+5V +5V DC power supply</td>
</tr>
<tr>
<td>ACB-TP61</td>
<td>+15V +15V DC power supply</td>
</tr>
<tr>
<td>ACB-TP62</td>
<td>-15V -15V DC power supply</td>
</tr>
<tr>
<td>ACB-TP63</td>
<td>+24V +24V DC power supply</td>
</tr>
<tr>
<td>ACB-TP64</td>
<td>-24V -24V DC power supply</td>
</tr>
<tr>
<td>ACB-TP65</td>
<td>24VCOM +/- 24V common</td>
</tr>
<tr>
<td>ACB-TP66</td>
<td>DGND Digital ground</td>
</tr>
<tr>
<td>ACB-TP67</td>
<td>AGND Analog ground</td>
</tr>
<tr>
<td>ACB-TP68</td>
<td>AP1 Analog control Inputs, air pressure input, AP1</td>
</tr>
<tr>
<td>ACB-TP69</td>
<td>AP0 Analog control Inputs, air pressure input, AP0</td>
</tr>
<tr>
<td>ACB-TP70</td>
<td>AIN1 Analog control Input, AIN1</td>
</tr>
<tr>
<td>ACB-TP71</td>
<td>AIN2 Analog control Input, AIN2</td>
</tr>
<tr>
<td>ACB-TP72</td>
<td>AIN0 Analog control Input, AIN0</td>
</tr>
<tr>
<td>ACB-TP73</td>
<td>AIN3 Analog control Input, AIN3</td>
</tr>
<tr>
<td>ACB-TP74</td>
<td>IPIS Input isolating switch</td>
</tr>
<tr>
<td>ACB-TP75</td>
<td>IPCS Input contactor status</td>
</tr>
<tr>
<td>ACB-TP76</td>
<td>IP Input contactor command</td>
</tr>
<tr>
<td>ACB-TP77</td>
<td>OPIS Output isolating switch</td>
</tr>
<tr>
<td>ACB-TP78</td>
<td>OPCS Output contactor status</td>
</tr>
<tr>
<td>ACB-TP79</td>
<td>OP Output contactor command</td>
</tr>
<tr>
<td>ACB-TP80</td>
<td>BPIIS Bypass isolating switch</td>
</tr>
<tr>
<td>ACB-TP81</td>
<td>BPCS Bypass contactor status</td>
</tr>
<tr>
<td>ACB-TP82</td>
<td>BP Bypass contactor command</td>
</tr>
<tr>
<td>ACB-TP83</td>
<td>DGND Digital ground return</td>
</tr>
</tbody>
</table>
Interface Module (IFM)

The interface module is used to make all customer useable connections to the ACB. The pin numbers that are listed on the following pages refer to IFM pin numbers.

![Figure 108 - Interface Module](image)

Analog Inputs and Outputs

The PowerFlex 7000 drive offers one isolated process current-loop transmitter and three isolated process current-loop receivers, which are embedded into the control. They are accessible on the ACB.

The isolated process output is configured as 4...20 mA. The three isolated process inputs are individually configurable for either a range of -10/0/+10V or 4...20 mA (Refer to Programming Manual).

The following information shows the connections for each input and output.
Current Loop Transmitter

The current loop transmitter transmits 4...20 mA output to an external receiver. The loop compliance on the transmitter is 12.5V. Loop compliance is the maximum voltage at which a transmitter can generate to achieve the maximum current and is usually a function of the power supply voltage. Therefore, the PowerFlex 7000 transmitter can drive a receiver with an input resistance up to 625 Ω. Figure 109 shows a block diagram of the transmitter.

Figure 109 - Process Loop Transmitter Block Diagram

This type of transmitter is known as a 4-wire transmitter, and will “sink” current from a receiver. The receiver is connected by two wires only from pins 20 (+ connection) and either pins 18, 19, 21 (- connection).

The recommended connection is shown in Figure 109. The type of shielded cable that is used is application-specific. The type is determined by the length of the run, the characteristic impedance, and the frequency content of the signal.
Isolated Process Receiver

These inputs are individually configurable to accept either a -10/0/+10V input signal or a 4...20 mA signal. When configured for voltage input, each channel has an input impedance of 75 kΩ. When used as a current loop input, the transmitter must have a minimum loop compliance of 2V to satisfy the 100 Ω input impedance. Regardless of input configuration, each input is individually isolated to ± 100V DC or 70V RMS AC.

Figure 110 shows a block diagram of the receiver.

Figure 110 - Process Loop Receiver Block Diagram

The receiver can accept 4-wire transmitters. Figure 111 shows the recommended connections. Again, the type of shielded cable that is used is application-specific as per the transmitter. Pin numbers that are shown are for connection to the first of three isolated process receivers.

Figure 111 - Process Loop Receiver Connections
Non-Isolated Process Outputs

The drive supplies four non-isolated -10/0/+10V outputs for customer use. These outputs can drive loads with impedances as low as 600 Ω. These outputs are all referenced to the drive AGND and therefore must be isolated if they are required to drive outside the PowerFlex ‘A’ frame enclosure.

Figure 112 - Non-isolated Configurable Analog Outputs on ACB

Auxiliary +24V Power Supply

An Isolated 24V Power Supply is built into the DC/DC converter (Connector P3). This supply can be used for any customer supplied equipment that requires up to 24 W at 24V. This supply can also be used to power any custom drive options, such as isolation modules for additional Process Control Outputs. The health of this power supply is monitored in the drive.

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISOLATOR (+24V, 1 A)</td>
</tr>
<tr>
<td>2</td>
<td>ISOL_COMM (com4)</td>
</tr>
<tr>
<td>3</td>
<td>EARTH</td>
</tr>
</tbody>
</table>

The ACB is common for both the line and motor-side current feedbacks. Different scaling resistors are mounted on the terminal block for line side and machine side.

There are two status indicators on the ACB labeled D7 and D9. D9 is the ±15V DC voltage-OK signal, and D7 is the +5V DC voltage-OK signal.
Replacing the Analog Control Board

To replace the analog control boards,

1. Verify that all medium voltage and control voltage power to the drive is isolated and locked out.

2. It is required to remove the transparent sheet on top of the drive processor module and the drive processor module also before removing the ACB. Remove the transparent sheet on top of the DPM by removing the four screws.

3. Use static strap before removing any connectors.

4. Mark, identify, and remove the connectors J4, J11, and J12 on DPM. Use the electrical drawing as the reference. Remove the four screws holding the DPM on the standoffs above the ACB.

5. Gently remove the DPM mounted on the four, 34-pin connectors.

6. Remove the screws that hold the encoder interface board and gently remove the board that is mounted on the 8-pin connector.

7. Mark, identify, and remove the connectors J1, J2, J3, J4, J5, J6, J7, J8, J9, J10, J12, J13, J14, J16, J22, J24, J25, J26, J27 on ACB. Use the electrical drawing as the reference.

8. Remove the ACB board by removing the four screws, and six standoffs screwed to support the DPM and encoder interface board.

9. Reinstall the boards into the low voltage control cabinet by following steps 8...2, in that order.

10. Apply low-voltage power and complete a system test and medium voltage tests. These tests verify that the new board functions properly.

Encoder Feedback Board

Encoder Options

There are two positional encoder interface boards that can be used with the PowerFlex 7000 ForGe control. The encoder interface boards do not have any test points that are accessible. However, buffered and isolated versions of each of the signals A+, A-, B+, B-, Z+ and Z- are available on the ACB at test points TP45-TP50.

Regardless of which type of encoder board, follow these conditions:

1. Do not attach encoders with open collector outputs to the drive. Acceptable outputs are analog line driver or push pull.

2. The drive does not operate properly with single ended quadrature encoders. Rockwell Automation recommends using differential inputs only for these types of encoders. Single ended outputs are only acceptable for Positional Encoders.
This encoder interface allows the drive to be connected to a standard quadrature encoder. The 20B-ENC encoder interface provides three optically isolated differential encoder inputs for A and B phases and a Z track. These inputs cannot be configured for use with single ended encoder. Differential encoders only are supported. The board also provides a galvanized, isolated 12V/3 W supply to power the attached encoder. The 20B-ENC-1 Encoder interface can be configured for 5V operation, however Rockwell Automation recommends operation at 12V.

Operation at 5V does not allow for long cable lengths as the power must be regulated within 5% at the encoder. Due to the resistance and capacitance of the cable, there would be difficulty keeping the power regulated at the encoder to 4.75V. With longer runs of cable, power could drop below the 4.75V and the encoder would not operate properly. Generally, 18 Avg cabling is used with a Rdc of 19.3 Ω/km. The longest cable distance from the board to the encoder is limited to 12 m (42 ft).

The 20B-ENC-1-MX3 encoder option is functionally identical to the 20B-ENC-1 encoder with the addition of conformal coating. Figure 113 shows the recommended jumper positions for use with the PowerFlex 7000 drive.
Input Connections

All encoder interface connections are made to J1. The connections are as follows:

- J1 Pin 1 A+
- J1 Pin 2 A-
- J1 Pin 3 B+
- J1 Pin 4 B-
- J1 Pin 5 Z+
- J1 Pin 6 Z-
- J1 Pin 7 encoder power return
- J1 Pin 8 encoder power (+12V @ 3 watts)

80190-759-01, 80190-759-02 Universal Encoder Interface

The Universal Encoder Interface allows the drive to be connected to an absolute position encoder or a standard quadrature encoder. The interface also provides the option for dual or redundant quadrature encoders. The universal encoder interface provides 12 single ended or 6 differential, optically isolated inputs, and a 12V/3 W galvanized, isolated encoder power source. When using absolute encoders, the 12 single ended inputs are used. For quadrature encoders, the six differential inputs are used.

Either type of encoder with frequencies up to 200 kHz, can be interfaced to the universal encoder interface.

The 80190-759-02 universal encoder interface is functionally identical to the 80190-759-01 with the addition of conformal coating. Jumpers that are installed on the 12-position header J4 configure the universal encoder interface. The header has three positions that are labeled ‘Park’ and used to store the jumpers when indicated as “Removed” in Table 9. If labeled “Installed” each function is selected by moving its corresponding jumper from the ‘park’ location to the selected function location. The following table describes the functions available.

ATTENTION: Removing the Universal Encoder Interface while control power is applied can result in damage to the board. Only remove the board when the control power is off.
Table 9 - Encoder Configurations

<table>
<thead>
<tr>
<th>ENC_TYPE</th>
<th>POL_QRDNTS</th>
<th>CD_DQUAD</th>
<th>CONFIGURATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed</td>
<td>Installed</td>
<td>Installed</td>
<td>Single-quadrature encoder option (factory default)</td>
</tr>
<tr>
<td>Installed</td>
<td>Installed</td>
<td>Removed</td>
<td>Dual-quadrature encoder option without redundancy</td>
</tr>
<tr>
<td>Installed</td>
<td>Removed</td>
<td>Removed</td>
<td>Dual-quadrature encoder option with redundancy</td>
</tr>
<tr>
<td>Installed</td>
<td>Removed</td>
<td>Installed</td>
<td>Single-quadrature option (CDSEL/DQUAD) must be removed for redundancy</td>
</tr>
<tr>
<td>Removed</td>
<td>Installed</td>
<td>Installed</td>
<td>Gray-code absolute encoder low-true</td>
</tr>
<tr>
<td>Removed</td>
<td>Installed</td>
<td>Removed</td>
<td>Natural-binary absolute encoder low-true</td>
</tr>
<tr>
<td>Removed</td>
<td>Removed</td>
<td>Installed</td>
<td>Gray-code absolute encoder high-true</td>
</tr>
<tr>
<td>Removed</td>
<td>Removed</td>
<td>Removed</td>
<td>Natural-binary absolute encoder high-true</td>
</tr>
<tr>
<td>Installed</td>
<td>Installed</td>
<td>Installed</td>
<td>Single-quadrature encoder option (factory default)</td>
</tr>
</tbody>
</table>

Figure 114 - Universal Encoder Board

[Figure 114 - Universal Encoder Board](image)
Connections to the universal encoder interface are made by way of a 1492-IFM20F interface module. The connections to the IFM are as follows:

Table 10 - Encoder Functions

<table>
<thead>
<tr>
<th>IFM Pin #</th>
<th>Quadrature Encoder Function</th>
<th>Absolute Encoder Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1+</td>
<td>E0</td>
</tr>
<tr>
<td>2</td>
<td>A1-</td>
<td>E1</td>
</tr>
<tr>
<td>3</td>
<td>B1+</td>
<td>E2</td>
</tr>
<tr>
<td>4</td>
<td>B1-</td>
<td>E3</td>
</tr>
<tr>
<td>5</td>
<td>ENC_COM</td>
<td>ENC_COM</td>
</tr>
<tr>
<td>6</td>
<td>Z1+</td>
<td>E4</td>
</tr>
<tr>
<td>7</td>
<td>Z1-</td>
<td>E5</td>
</tr>
<tr>
<td>8</td>
<td>A2+ (redundant or dual ENC)</td>
<td>E6</td>
</tr>
<tr>
<td>9</td>
<td>A2- (redundant or dual ENC)</td>
<td>E7</td>
</tr>
<tr>
<td>10</td>
<td>ENC_COM</td>
<td>ENC_COM</td>
</tr>
<tr>
<td>11</td>
<td>B2+ (redundant or dual ENC)</td>
<td>E8</td>
</tr>
<tr>
<td>12</td>
<td>B2- (redundant or dual ENC)</td>
<td>E9</td>
</tr>
<tr>
<td>13</td>
<td>Z2+ (redundant or dual ENC)</td>
<td>E10</td>
</tr>
<tr>
<td>14</td>
<td>Z2- (redundant or dual ENC)</td>
<td>E11</td>
</tr>
<tr>
<td>15</td>
<td>ENC_COM</td>
<td>ENC_COM</td>
</tr>
<tr>
<td>16</td>
<td>ENC_COM</td>
<td>ENC_COM</td>
</tr>
<tr>
<td>17</td>
<td>ENC_COM</td>
<td>ENC_COM</td>
</tr>
<tr>
<td>18</td>
<td>ENC_PWR (+12V)</td>
<td>ENC_PWR (+12V)</td>
</tr>
<tr>
<td>19</td>
<td>ENC_PWR (+12V)</td>
<td>ENC_PWR (+12V)</td>
</tr>
<tr>
<td>20</td>
<td>ENC_PWR (+12V)</td>
<td>ENC_PWR (+12V)</td>
</tr>
</tbody>
</table>

Figure 115 - 20-pin Interface Module (IFM)
Quadrature Encoder Operation

The universal encoder interface accepts either single or dual quadrature encoders. Configuration of the board to accept the encoders is done through jumpers on J4.

Boards that are shipped from the factory come defaulted to a quadrature encoder configuration (consult factory for availability of dual quadrature encoder options).

For dual encoder configurations, the primary encoder is wired to pins 1…7 on the 1492-IFM20 module.

To select the dual encoder option, remove the CD_QUAD jumper and place the jumper in PARK. This action configures the board to accept two individual quadrature encoders. In this mode, the drive can switch between encoders for applications such as Synchronous Transfer between two motors with each having their own encoder.

For redundant encoder option, remove both the CD_QUAD and POL_QRDNT jumpers and place them in PARK. With this configuration, the drive switches over to the redundant encoder when a problem is detected with the primary encoder.

ATTENTION: When the drive switches over to the redundant encoder, the drive cannot switch back without recycling the control power.

Positional Encoder Operations\(^{(1)}\)

Besides quadrature encoders, the universal encoder interface also accepts positional (absolute) encoders. Parallel positional data is converted to a serial stream and transmitted to the DPM when requested by the drive. The board also generates “pseudo” quadrature differential signals, including a zero position mark, which is derived from the binary data to the DPM.

There are three different positional encoder configurations available. For all of these configurations remove the ENC_TYPE jumper. The other jumpers configure the board for the type of positional data (Gray Code or Natural Binary) set by CD_DQUAD and high or low true data set by POL_QRDNT.

1. **Gray code, Low True**. In this configuration, the board inverts the incoming gray code data and then converts the data to binary for transmission to the DPM.

2. **Natural Binary, Low True**. No conversion is done on the incoming data but the data is inverted.

\(^{(1)}\) Consult factory for availability of Positional Encoders.
3. **Gray code, High True.** In this configuration, the incoming gray code data is converted to binary. No inversion is done on the input data.

4. **Natural Binary, High True.** The positional data is converted to the serial stream. No inversion or conversion is done on the data.

Positional Encoder Guidelines

When selecting a positional encoder, certain guidelines must be followed for optimal performance.

1. **Code Selection:** Absolute encoders can be purchased with either gray code or Binary output format. Gray code is a form of binary code where only one-bit changes at a time for each sequential number or position. The fact that only one-bit changes at a time make reading valid positional data and not ambiguous data, easier for the universal encoder interface. If we compare the Natural Binary code to Gray code for the transition from 255 to 256, here is what we get:

<table>
<thead>
<tr>
<th>Binary Code</th>
<th>Gray Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>011111111</td>
<td>010000000</td>
</tr>
<tr>
<td>100000000</td>
<td>110000000</td>
</tr>
</tbody>
</table>

 All 9 bits changed in the Binary Code while only the MSB of the gray code changed. In the universal encoder interface, the frequency filter components and input hysteresis create delays. Differences in these delays could cause errors due to reading a bit as ON when the bit is actually transitioning to OFF or vice versa. In the case of gray code, since only 1 bit ever changes, the ambiguity error is never multiple counts. For this reason and to reduce inrush currents, Rockwell Automation recommends using gray code positional encoders.

2. **Data Polarity:** Absolute encoders typically have a High True output. If the encoder model does not have a High/True (or Non-Inverted/Inverted) option, you must assume the output to be High True. In a 10-bit High True encoder, the zero position is 0000000000. In a Low/True encoder, the zero position is 1111111111. On the universal encoder interface, the position data is inverted in hardware. A ‘1’ turns on an optocoupler and produces a ‘0’. Therefore a High True encoder would produce 1111111111 for the zero position. With the POL_QRDNT jumper, you can control the polarity of the input. With the jumper installed (factory default), the jumper is designed to accept High True encoders and an extra inversion is done in the Universal Encoder Interface. If you are using a Low True encoder, remove the jumper. The optocouplers alone invert the zero position.
The other role of the POL_QRDNT jumper is to correct the data, in the event the encoder was mounted so that a CCW rotation produced decremented counts. If so the POL_QRDNT jumper must be configured to the opposite of what, the jumper must normally be for the data polarity. For example if the universal encoder interface is configured to operate with High True encoders (POL_QRDNT installed), remove the jumper to correct for encoder mounting.

External Input/output Boards

The external input/output (XIO) boards are connected through a network cable (CAN Link) to the Analog Control Board (ACB). This cable can be connected to either XIO Link A (J4) or XIO Link B (J5). The XIO board handles all external digital input and output signals and sends them to the ACB through the cable. There are 16 isolated inputs and 16 isolated outputs on the card, and they are used for Runtime I/O including Start, Stop, Run, Fault, Warning, Jog, and External Reset signals. The boards also handle the standard drive fault-signals (for example transformer/line reactor overtemperature, DC link overtemperature) and several spare fault inputs that are configurable. There is an option in software to assign each XIO a specific function (General I/O, External I/O, or liquid cooling).

Figure 116 - XIO Board
The standard drive comes with one XIO board. Additional boards (up to five) can be daisy chained together. From XIO Link B (J5) on the first board to XIO Link A (J4) on the second board, for a total of six XIO cards. However, currently the drive only supports the use of addresses 1 to 3, depending on the features and application of the drive. U6 on the XIO board displays the address of the board, which is automatically calculated from position of the XIO board in the network.

XIO Link A and B ports are interchangeable. To make wiring easier to follow use:

- Link A for “upstream”, that is, closest to the ACB.
- Link B for “downstream” or farthest from the ACB.

Status indicator D1 and display U6 indicate the status of the board. See Table 11 for the possible status for D1.

Table 11 - D1 Display Status

<table>
<thead>
<tr>
<th>Status Indicator Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Green</td>
<td>Normal operation</td>
</tr>
<tr>
<td>Solid Red</td>
<td>Board failure</td>
</tr>
<tr>
<td>Alternate Flashes of Red and Green</td>
<td>No communication available to ACB board</td>
</tr>
<tr>
<td></td>
<td>(Normal during start up or not programmed)</td>
</tr>
</tbody>
</table>

Table 12 - U6 Display Status

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>No valid address found</td>
<td>• More than six XIO cards on network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• XIO cable failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• XIO card failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ACB failure</td>
</tr>
<tr>
<td>0</td>
<td>Card in “Master” mode</td>
<td>• Rockwell Automation use only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Remove connection to J3 and recycle power</td>
</tr>
<tr>
<td>1…6</td>
<td>Valid address</td>
<td>• Normal</td>
</tr>
<tr>
<td>Decimal point ON</td>
<td>Indicates network activity</td>
<td>• Normal</td>
</tr>
<tr>
<td>Decimal point OFF</td>
<td>No activity on the network</td>
<td>• Normal at Power-on, during firmware download</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and with unprogrammed drive</td>
</tr>
</tbody>
</table>

External Input/output Board Replacement

1. Verify that all medium voltage and control voltage power to the drive is isolated and locked out.

2. Note and Mark the location and orientation of all plugs, cables, and connectors into the XIO board. Use the electrical drawing as a reference.

3. Use your static strap, disconnect all connections.

4. Remove the XIO board assembly from the low-voltage control cabinet. The XIO board mounts on a DIN rail. A 3-piece assembly is used to secure the board. Remove the old board and install the new board in its place.

5. Install the new XIO board assembly in the low-voltage control cabinet.
6. Reconnect all connections and verify the locations.
7. To verify that the new board functions properly, apply Low Voltage power and complete a System Test and Medium Voltage test.

Optical Interface Boards

The Optical Interface (OIB) Boards are the interface between the DPM and the Gate Driver circuitry. The drive control decides which device to fire, and sends an electrical signal to the OIB boards. The OIB board converts that electrical signal to an optical signal. The signal is sent fiber-optically to the gate driver cards. Typically, the Transmit ports are gray and the Receive ports are blue. The gate driver accepts that signal and turns the device on and off accordingly. The diagnostic fiber-optic signals work the same way, but the source is the gate driver boards and the destination is the drive control boards. Each OIB contains one extra fiber-optic receiver (RX7), which is used for temperature measurement.

![Figure 117 - Optical Interface Board](image)

The OIB boards are mounted directly on the Optical Interface Base Board (OIBB) by two parallel 14-pin connectors for the electrical connection, and plastic clips to provide the mechanical strength. There is one OIBB for the inverter, and one OIBB for the rectifier device. The OIBBs are interfaced to the DPM with two ribbon cables to connect to J11 and J12.

Each OIB board can handle the Firing and Diagnostic duplex fiber-optic connector for six devices. Physically, on the OIBBs, there is provision for 18 devices for the inverter and the rectifier. This capacity is enough to handle the
highest rated drive that we currently produce. The top OIB board on the OIBB is for the 'A' devices. The middle OIB board is for the 'B' devices. The bottom OIB board is for the 'C' devices.

Figure 118 - Optical Interface Base Board (OIBB)
Each OIB also has input RX7 for a signal from a temperature feedback board. The quantity and location of thermistor connections is dependent on the drive configuration. Typically there is one temperature sensor from the line converter and one temperature sensor from the machine converter, each going into the respective OIB in the ‘A’ position. However some drive configurations only require one thermistor feedback connection. The temperature feedback connection on OIBC is not implemented on the OIBB and is never used. For more information, see the drawings that are supplied with your drive. The alarm and trip set points for each of these signals is programmable in software.

There are three status indicators on the OIB. This table describes the status and description for the status indicator states:

<table>
<thead>
<tr>
<th>Status Indicator</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Red – On</td>
<td>Run – The OIB has received an Enable signal. The drive control software is in control of all gating.</td>
</tr>
<tr>
<td>D2</td>
<td>Yellow – On</td>
<td>Ready – The OIB power supply is sufficient for proper operation.</td>
</tr>
<tr>
<td>D3</td>
<td>Green – On</td>
<td>Power – The OIB has received a voltage signal greater than 2V.</td>
</tr>
</tbody>
</table>

Optical Interface Board Replacement

IMPORTANT If the drive is equipped with the Safe Torque Off option, the drive uses OIBBS boards. See publication 7000-UM203 to replace the OIBBS.

1. Isolate and locked out all power to the drive.
2. Note and mark the location and orientation of all fiber-optic cables. Use the electrical drawing for reference.

IMPORTANT Use a static strap when performing this procedure.

3. Disconnect all fiber-optic cables.
4. Remove the OIB board from the OIBB.
 Carefully handle the four standoffs, which snap into place on the OIB, when disconnecting the boards.
 Carefully handle the 28-pin connection between the boards. Avoid bending the pins.
5. Remove the 60-pin cable connector on the OIBB and the ground connection.
6. Remove the ground nut that holds the OIBB in place.
7. Carefully handle the five standoffs that snap into place on the OIBB, when removing the boards.
8. Install the new OIBB. Verify that the standoffs snap into place.
9. Reinstall the ground nut that holds the OIBB in place.
10. Reconnect all connections and verify the locations.

ATTENTION: Reconnect the fiber-optic cables in their proper location. Failure to do so can result in injury or damage to equipment.

Figure 119 - OIB Replacement (Mounting Plate Accessible)
Appendix A

Catalog Number Explanation

a

Bulletin Number

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7000A</td>
<td>“A” Frame (Air-cooled)</td>
</tr>
<tr>
<td>7000</td>
<td>“B” Frame (Air-cooled)</td>
</tr>
<tr>
<td>7000L</td>
<td>“C” Frame (Liquid-cooled)</td>
</tr>
</tbody>
</table>

b

Service Duty/Altitude Code

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Normal Duty, 0...1000 m Altitude. Maximum 40 °C (104 °F) Ambient</td>
</tr>
</tbody>
</table>
| B | Normal Duty, 1001...5000 m Altitude Reduced Ambient (from 40 °C (104 °F) offering)
| | 1001...2000 m = 37.5 °C (99.5 °F)
| | 2001...3000 m = 35 °C (95 °F)
| | 3001...4000 m = 32.5 °C (90.7 °F)
| | 4001...5000 m = 30 °C (86 °F) |
| C | Heavy Duty, 0...1000 m Altitude. Maximum 40 °C (104 °F) Ambient |
| D | Heavy Duty, 1001...5000 m Altitude Reduced Ambient (from 40 °C (104 °F) offering) – same as “B” code |
| E | Normal Duty, 0...1000 m Altitude. Maximum 35 °C (95 °F) Ambient |
| F | Normal Duty, 1001...5000 m Altitude Reduced Ambient (from 35 °C (95 °F) offering)
| | 1001...2000 m = 32.5 °C (90.5 °F)
| | 2001...3000 m = 30 °C (86 °F)
| | 3001...4000 m = 27.5 °C (81.5 °F)
| | 4001...5000 m = 25 °C (77 °F) |
| G | Heavy Duty, 0...1000 m Altitude. Maximum 35 °C (95 °F) Ambient |
| J | Normal Duty, 0...1000 m Altitude. Maximum 50 °C (140 °F) Ambient |
| L | Heavy Duty, 0...1000 m Altitude. Maximum 50 °C (122 °F) Ambient |
| N | Normal Duty, 0...1000 m Altitude. Maximum 20 °C (68 °F) Ambient |
| Z | Custom Configuration (Contact Factory) |

c

Drive Current Rating

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>40 A</td>
<td>215</td>
<td>215 A</td>
</tr>
<tr>
<td>46</td>
<td>46 A</td>
<td>250</td>
<td>250 A</td>
</tr>
<tr>
<td>53</td>
<td>53 A</td>
<td>285</td>
<td>285 A</td>
</tr>
<tr>
<td>61</td>
<td>61 A</td>
<td>325</td>
<td>325 A</td>
</tr>
<tr>
<td>70</td>
<td>70 A</td>
<td>375</td>
<td>375 A</td>
</tr>
<tr>
<td>81</td>
<td>81 A</td>
<td>430</td>
<td>430 A</td>
</tr>
<tr>
<td>93</td>
<td>93 A</td>
<td>495</td>
<td>495 A</td>
</tr>
<tr>
<td>105</td>
<td>105 A</td>
<td>575</td>
<td>575 A</td>
</tr>
<tr>
<td>120</td>
<td>120 A</td>
<td>625</td>
<td>625 A</td>
</tr>
<tr>
<td>140</td>
<td>140 A</td>
<td>657</td>
<td>657 A</td>
</tr>
<tr>
<td>160</td>
<td>160 A</td>
<td>720</td>
<td>720 A</td>
</tr>
<tr>
<td>185</td>
<td>185 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Not all amperages are available at all ambient/altitude configurations.

d

Enclosure Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Type 1 w/gasket (IP21)</td>
</tr>
<tr>
<td>T</td>
<td>Type 1 w/gasket (IP21) – Seismic rated</td>
</tr>
<tr>
<td>K</td>
<td>IP42</td>
</tr>
<tr>
<td>U</td>
<td>IP42 – Seismic rated</td>
</tr>
</tbody>
</table>
Supply Voltage/Control Voltage/Frequency/CPT Selection

<table>
<thead>
<tr>
<th>Frame Size</th>
<th>Nominal Voltage (V)</th>
<th>Frequency (Hz)</th>
<th>Code With a C.P.T(1)</th>
<th>Code Without a C.P.T(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A" Frame</td>
<td>2400</td>
<td>60</td>
<td>A</td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>120...240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3300</td>
<td>50</td>
<td>CY</td>
<td>CDY</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4160</td>
<td>50</td>
<td>EY</td>
<td>EDP</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"B" and "C" Frames(3)</td>
<td>6600</td>
<td>60</td>
<td>E</td>
<td>ED</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>120...240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
<td>JY</td>
<td>JDY</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>110...220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td></td>
<td>J</td>
<td>JD</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td></td>
<td></td>
<td>JA</td>
</tr>
</tbody>
</table>

Rectifier Configuration/Line Impedance Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPDTD</td>
<td>AFE Rectifier with Integral Line Reactor and Direct-to-Drive DC Link</td>
</tr>
<tr>
<td>RPTX</td>
<td>AFE Rectifier with provision for connection to separate Isolation Transformer (standard DC Link)</td>
</tr>
<tr>
<td>RPTXI</td>
<td>AFE Rectifier with integral Isolation Transformer (standard DC Link)(1)</td>
</tr>
<tr>
<td>R18TX</td>
<td>18 Pulse Rectifier with provision for connection to separate Isolation Transformer (standard DC Link)(2)</td>
</tr>
</tbody>
</table>

(1) A Control Power Transformer-modification must be selected (6, 6B, and so on) to size the transformer.
(2) Control Circuit Power is supplied from separate/external source.
(3) Three-phase Control Circuit Power is supplied from separate/external source.
The PowerFlex 7000 medium voltage AC drive selection tables are based on two rating types for drive service:

1. **Normal Duty** *(110% overload for 1 minute, once every 10 minutes)* – used for Variable Torque (VT) applications only.
 Drives with this rating are designed for 100% continuous operation, with 110% overload for 1 minute, once every 10 minutes.

2. **Heavy Duty** *(150% overload for 1 minute, once every 10 minutes)* – used for Constant Torque (CT) applications only.
 Drives with this rating are designed for 100% continuous operation with 150% overload for 1 minute, once every 10 minutes.

Service Duty Rating, Continuous Current Rating and Altitude Rating Code

There are different codes that define service duty and altitude in the drive catalog number (see [Catalog Number Explanation on page 163](#)).

EXAMPLE

Catalog number 7000A – A105DED-RPDTD, has a continuous current rating of 105 A, with a “normal duty” service rating up to 1000 m altitude.

Catalog number 7000A – B105DED-RPDTD has a continuous rating of 105 A with a “normal duty” service rating up to 5000 m altitude.

The ambient temperature rating is reduced at higher altitudes. If 40 °C (104 °F) ambient is required at 1001…5000 m altitude, a rating code of Z is required.
Notes:
Preventative Maintenance Schedule

Preventive Maintenance Checklist

The preventive maintenance activities on the PowerFlex® 7000 “A” Frame can be broken down into two categories:

- Operational Maintenance – can be completed while the drive is running.
- Annual Maintenance – must be completed during scheduled downtime.

See the Tools/Parts/Information Requirements at the end of this section for a list of documentation and materials that are required to complete the preventive maintenance documents.

Operational Maintenance

This process requires the changing or the cleaning the air filters. The PowerFlex 7000 drives require consistent, unrestricted airflow to keep the power devices cool. The air filter is the main source of blockage in the air path.

The drive provides an air filter alarm whenever the pressure differential across the devices drops to a drive-specific level. By referring to the Air-Filter Block parameter, this differential can be anywhere from 7...17% blocked, depending on the heat sink and device configuration. This percentage can seem small, but it takes significant blockage to begin to lower the voltage from the pressure sensor. The percentage is a measure of voltage drop, and must not be viewed as a percentage of the opening that is covered. They are not related linearly.

If you receive an Air Filter Warning, change or clean the filter. If the drive reaches an Air Filter Fault is dependent on site-specific particle conditions.

Annual Maintenance

These maintenance tasks must be performed on an annual basis. These tasks are recommended, and depending on the installation conditions and operating conditions, you can find that the interval can be lengthened. For example, we do not expect that the tightening of torqued power connections is required every year. Due to the critical nature of the applications that are run on MV drives, the key word is preventive. By spending approximately 8.0 hr/yr on these tasks, unexpected downtime can be reduced.
Initial Information Gathering

Some of the important information to be recorded includes:

- Print Drive Setup.
- Print Fault/Warning Queues.
- Save Parameters to NVRAM.
- Save Parameters to Operator Interface.
- Circuit Board Part Numbers / Serial Numbers / Revision Letters (record only if parts have been modified or changed since Preventive Maintenance was last performed).

ATTENTION: To avoid electrical shock, verify that the main power has been disconnected before working on the drive. Use a hot stick or appropriate voltage-measuring device to verify that all circuits are voltage free. Failure to do so can result in injury or death.

Physical Checks

Ensure there is no medium voltage and control power when performing these physical checks.

1. Power Connection Inspection
 a. Inspect PowerFlex 7000A drive, input/output/bypass contactor sections, and all associated drive components for power cable and ground cable connections that are loose. Torque them to specifications.
 b. Inspect the bus bars and check for any signs of discoloration from overheating. Torque the bus connections to specifications.
 c. Clean all cables and bus bars that exhibit dust build-up.
 d. Use torque sealer on all connections.

2. Conduct the integrity checks on the signal ground and safety grounds.

3. Check for any visual or physical evidence of damage or degradation of components in the low voltage compartments.
 a. Inspect relays, contactors, timers, terminal connectors, circuit breakers, ribbon cables, control wires for corrosion, excessive temperature, or contamination.
 b. Clean all contaminated components by using a vacuum cleaner (DO NOT use a blower). Wipe clean components where appropriate.

4. Check for any visual or physical evidence of damage or degradation of components in the medium voltage compartments. For example inverter/rectifier, cabling, DC Link, contactor, load break, and harmonic filter.
a. Inspect main cooling-fan, power devices, heatsinks, circuit boards, insulators, cables, capacitors, resistors, current transformers, potential transformers, fuses, wiring. Causes could be corrosion, excessive temperature, or contamination.

b. Verify torque on heatsink bolts (electrical connections to bullet assemblies) is within specifications (13.5 N•m [10.0 lb•ft]).

c. Clean all contaminated components by using a vacuum cleaner and wipe clean components where appropriate.

IMPORTANT Do not use a blower.

IMPORTANT An important component to check for contamination is the heatsink. The fine grooves in the aluminum heatsinks can capture dust and debris.

5. Physically inspect and verify for the proper operation of the contactor/isolator interlocks, and door interlocks.

 a. Inspect and verify the proper operation of the key interlocks.

 b. Verification the additional cooling fans are mounted in the AC Line Reactor cabinet, Harmonic Filter cabinet for mounting and connections.

 c. Clean the fans and verify that the ventilation passages are not blocked and the impellers are freely rotating without any obstruction.

 d. Do the insulation resistance test of the drive, motor, isolation transformer/line reactor, and the associated cabling. See page 183 for the insulation resistance test procedure.

 e. Check indicator washers of the clamp head for proper clamp pressure, and adjust as necessary. See page 83 and page 84 for details on proper clamp pressure.

Control Power Checks (No Medium Voltage)

1. Apply Control power to the PowerFlex drive. Test power to all vacuum contactors (input, output, and bypass) in the system. Verify that all contactors can close and seal in.

2. See Publication 1502-UM050 for a detailed description of all contactor maintenance.

3. Verify all single-phase cooling-fans for operation, including the cooling fans in the AC/DC Power supplies and the DC/DC converter.

4. Verify the proper voltage levels at the CPT (if installed), AC/DC Power Supplies, DC/DC converter, isolated gate power-supply boards.

 See page 195 for appropriate procedures/voltage levels for the previously referenced checks.

5. Verify the gate pulse patterns by using the Gate Test Operating Mode.
For drives with SPS boards installed, use the Test Power Harness (80018-695-51) to power the rectifier SGCT boards.

6. If there have been any changes to the system during the outage, place the drive in System-Test Operating Mode and verify all functional changes.

Final Power Checks before Restarting

1. Verify that all cabinets are cleared of tools, and all component connections are back in place and in the running state.
2. Put all equipment in normal operating mode, and apply medium voltage.
3. If there were any input or output cables that are removed, verify the input-phasing, and bump the motor for rotation.
4. If there were any changes to the motor, input transformer, or their associated cabling, retune the drive to the new configuration using Autotuning.
5. Save all parameter changes (if any) to NVRAM.
6. Run the application up to full speed/full load, or to customer satisfaction.
7. Capture the drive variables while running, in the highest access level if possible.

Additional Tasks during Preventive Maintenance

1. Investigation of customer concerns that relate to drive performance. Relate any problems that are found during maintenance procedures to customer issues.
2. Informal instruction on drive operation and maintenance for plant maintenance personnel
 a. Reminder of safety practices and interlocks on MV equipment, and on specific operating concerns.
 b. Reminder of the need to identify operating conditions properly.
3. Recommendation for critical spare parts, which can be stocked in-plant to reduce production downtime.
 a. Gather information on all spare parts on site, and compare that with factory-recommended critical spares. Evaluate that levels are sufficient.
 b. Contact MV Spare Parts group for more information.
4. Vacuum Bottle Integrity Testing by using a Vacuum Checker or AC high potential. See Publication 1502-UM050 for a detailed description of all contactor maintenance.
Final Reporting

1. A complete, detailed report on all steps in the Preventive Maintenance procedures must be recorded to identify changes.
 - A completed copy of this checklist must be included.
 - Make an addendum with detailed descriptions of all adjustments and measurements that were made include Interlock Adjustments, Loose Connections, Voltage Readings, Insulation Resistance Results, Parameters, and so forth.

2. This information must be communicated to MV Product Support so future support activities have the latest site information available.
 Faxed to (519) 740-4756 or
 E-mailed to MVSupport_Technical@ra.rockwell.com.

Time Estimations

<table>
<thead>
<tr>
<th>Operational Maintenance</th>
<th>0.5 hours per filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Maintenance</td>
<td></td>
</tr>
<tr>
<td>• Initial Information Gathering</td>
<td>0.5 hours</td>
</tr>
<tr>
<td>• Physical Checks</td>
<td></td>
</tr>
<tr>
<td>– Torque Checks</td>
<td>2.0 hours</td>
</tr>
<tr>
<td>– Inspection</td>
<td>2.0 hours</td>
</tr>
<tr>
<td>– Cleaning(1)</td>
<td>2.5 hours(1)</td>
</tr>
<tr>
<td>– Insulation Resistance</td>
<td>1.5 hours</td>
</tr>
<tr>
<td>• Control Power Checks</td>
<td></td>
</tr>
<tr>
<td>– Contactor Adjustments(1)</td>
<td>2.0 hours(1)</td>
</tr>
<tr>
<td>– Voltage Level Checks</td>
<td>1.0 hour</td>
</tr>
<tr>
<td>– Firing Check</td>
<td>0.5 hours</td>
</tr>
<tr>
<td>– System Test(1)</td>
<td>2.0 hours(1)</td>
</tr>
<tr>
<td>• Medium Voltage Checks</td>
<td></td>
</tr>
<tr>
<td>– Final Inspection</td>
<td>0.5 hours</td>
</tr>
<tr>
<td>– Phasing Check(1)</td>
<td>1.5 hours(1)</td>
</tr>
<tr>
<td>– Autotuning(1)</td>
<td>2.0 hours(1)</td>
</tr>
<tr>
<td>– Operation to Maximum Load</td>
<td>Site Dependent</td>
</tr>
<tr>
<td>• Additional Tasks(1)</td>
<td></td>
</tr>
<tr>
<td>– Investigation</td>
<td>Varies with nature of Problem</td>
</tr>
<tr>
<td>– Informal Training/Refresher</td>
<td>2.0 hours</td>
</tr>
<tr>
<td>– Spare Parts Analysis</td>
<td>1.0 hour</td>
</tr>
<tr>
<td>– Vacuum Bottle Integrity Check</td>
<td>3.0 hours</td>
</tr>
<tr>
<td>• Final Report</td>
<td>3.0 hours</td>
</tr>
</tbody>
</table>

(1) Time cannot be required depending on the nature of the maintenance and the condition of the drive system. These times are only estimations.
Tool / Parts / Information Requirements

The following is a list of the tools that are recommended for proper maintenance of the PowerFlex 7000 drives. Not all tools are required to perform a specific procedure for drive preventive. To complete all tasks that are listed above, these tools would be required.

Tools

- 100 MHz Oscilloscope with a minimum 2 Channels and memory.
- 5 kV DC insulation resistance tester.
- Digital Multimeter.
- Torque Wrench.
- Assorted Hand Tools (Screwdrivers, Open Ended Metric Wrenches, Metric Sockets, and so forth).
- 8 mm Allen Keys.
- Speed Wrench.
- Feeler Gauge.
- Vacuum Bottle Checker or AC-high potential.
- Minimum of 15 kV Hotstick / Potential Indicator.
- Minimum of 10 kV Safety Gloves.
- Vacuum Cleaner with anti-static hose.
- Anti-static Cleaning Cloth.
- No. 30 Torx Driver.

Documentation

- PowerFlex 7000 Parameters Manual – Publication 7000-TD002.
- Drive-Specific Electrical and Mechanical Prints.
- Drive-Specific Spare Parts List.

Materials

- Torque Sealer (Yellow) Part number --- RU6048.
- Electrical Joint Compound ALCOA EJC No. 2 or approved equivalent (For Power Devices).
- Aeroshell no. 7 Part number 40025-198-01 (for Vacuum Contactors).
By rigorously following this maintenance schedule, the Customer can expect to have peak product availability and the highest possible uptime. This Annual, Preventative Maintenance Program includes a visual inspection of:

- All drive components visible from the front of the unit.
- Resistance checks on the power components.
- Power supply voltage-level checks.
- General cleaning and maintenance.
- Checking of all accessible power connections for tightness, and other tasks.

For more details, see Chapter 3 Power Component Definition and Maintenance of this User Manual.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I – Inspection</td>
<td>The component must be inspected for signs of excessive accumulation of dust, dirt, and so forth, or external damage. For example, examine the Filter Capacitors for bulges in the case, inspect the heatsinks for debris that can clog the Airflow path.</td>
</tr>
<tr>
<td>M – Maintenance</td>
<td>A maintenance task that is not normally a preventative maintenance task and can include the inductance testing of Line Reactors/DC Links, or the full testing of an isolation transformer.</td>
</tr>
<tr>
<td>R – Replacement</td>
<td>The component has reached its mean operational life. To decrease the chance of failure, replace the component. It is likely that components exceed the design life in the drive, and that is dependent on many factors such as usage, heat.</td>
</tr>
<tr>
<td>C – Cleaning</td>
<td>The cleaning of a part that can be reused, and refers specifically to the door-mounted air filters in the liquid-cooled drives and some air-cooled drives.</td>
</tr>
<tr>
<td>Rv – Review</td>
<td>A discussion with Rockwell Automation to determine whether any of the enhancements/changes made to the Drive Hardware and Control would be valuable to the application.</td>
</tr>
<tr>
<td>RFB/R – Refurbishment/Replacement</td>
<td>The parts can be refurbished at lower cost or the parts can be replaced with new ones.</td>
</tr>
</tbody>
</table>
Rockwell Automation PowerFlex 7000 Drive Preventative Maintenance Schedule

<table>
<thead>
<tr>
<th>Period Interval (Years)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-Cooling System</td>
<td></td>
</tr>
<tr>
<td>Door Mounted Air Filters(^{(1)})((^{(2)}))</td>
<td>C/R</td>
</tr>
<tr>
<td>Main Cooling Fan Motor</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Redundant Cooling Fan Motor (if supplied)</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Small Aux. Cooling Fans “Caravel”</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
</tr>
<tr>
<td>Power Switching Components</td>
<td></td>
</tr>
<tr>
<td>Power Devices (SGCTs/SCRs)</td>
<td>I</td>
</tr>
<tr>
<td>Snubber Resistors/Sharing Resistors/HECS</td>
<td>I</td>
</tr>
<tr>
<td>Rectifier Snubber Capacitors(^{(3)})((^{(4)}))</td>
<td>I</td>
</tr>
<tr>
<td>Inverter Snubber Capacitors(^{(5)})((^{(6)}))</td>
<td>I</td>
</tr>
<tr>
<td>Integrated Gate Driver Power Supply</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>RFB/R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>RFB/R</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Self-Powered SGCT Power Supply (SPS)</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>RFB/R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>RFB/R</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Integral Magnetics/Power Filters</td>
<td></td>
</tr>
<tr>
<td>Isolation Transformer/Line Reactor</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
</tr>
<tr>
<td>DC Link/CMC</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
</tr>
<tr>
<td>Line/Motor Filter Capacitors</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>Control Cabinet Components</td>
<td></td>
</tr>
<tr>
<td>AC/DC and DC/DC Power Supplies</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>RFB/R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>RFB/R</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Control Boards</td>
<td>I</td>
</tr>
<tr>
<td>Batteries (DCBs and CIB)</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Battery Module (UPS)(^{(7)})</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Connections</td>
<td></td>
</tr>
<tr>
<td>Low Voltage Terminal Connections/Plug-in Connections</td>
<td>I</td>
</tr>
<tr>
<td>Medium Voltage Connections</td>
<td>I</td>
</tr>
<tr>
<td>Heat Sink Bolted Connections</td>
<td>I</td>
</tr>
<tr>
<td>Medium Voltage Connections (Rectifier)(^{(4)})</td>
<td>I</td>
</tr>
<tr>
<td>Medium Voltage Connections (Inverter)(^{(5)})</td>
<td>I</td>
</tr>
<tr>
<td>Enhancements</td>
<td></td>
</tr>
<tr>
<td>Firmware</td>
<td>--</td>
<td>--</td>
<td>Rv</td>
<td>--</td>
<td>--</td>
<td>Rv</td>
<td>--</td>
<td>--</td>
<td>Rv</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td>--</td>
<td>--</td>
<td>Rv</td>
<td>--</td>
<td>--</td>
<td>Rv</td>
<td>--</td>
<td>--</td>
<td>Rv</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Operational Conditions</td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Variables</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Application Concerns</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Spares Parts</td>
<td></td>
</tr>
<tr>
<td>Inventory/Needs</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

(1) If filter supplied is not a washable type, replace filter. If filter supplied is a washable type, wash or replace (depending on state of filter).
(2) These components may be serviced while the VFD is running.
(3) When rectifier snubber capacitors are replaced, the MV connections for the rectifier need to be inspected.
(4) A 4-year rectifier snubber capacitor replacement interval applied only to drives with 6-pulse or 18-pulse rectifiers shipped before 2012 (rectifier snubber capacitors are blue). However, current enhanced replacement rectifier snubber capacitors extend this to a 10-year replacement interval (replacement rectifier snubber capacitors are black). A 10-year rectifier snubber capacitor replacement interval has always applied to drives with AFE rectifiers.
(5) When inverter snubber capacitors are replaced, the MV connections for the inverter need to be inspected.
(6) A 10-year inverter snubber capacitor replacement interval applies to all drive configurations.
(7) Replace UPS batteries annually for 50°C rated VFDs.
Rockwell Automation PowerFlex 7000 Drive Preventative Maintenance Schedule

<table>
<thead>
<tr>
<th>Period Interval (Years)</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-Cooling System</td>
<td></td>
</tr>
<tr>
<td>Door Mounted Air Filters(1)(2)</td>
<td>C/R</td>
</tr>
<tr>
<td>Main Cooling Fan Motor</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>RFB/R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Redundant Cooling Fan Motor (if supplied)</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>RFB/R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Small Aux. Cooling Fans “Caravel”</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Power Switching Components</td>
<td></td>
</tr>
<tr>
<td>Power Devices (SGCs/SCRs)</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Snubber Resistors/Sharing Resistors/ HECS</td>
<td>I</td>
</tr>
<tr>
<td>Rectifier Snubber Capacitors(3)(4)</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Inverter Snubber Capacitors(3)(4)</td>
<td>I</td>
</tr>
<tr>
<td>Integrated Gate Driver Power Supply</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>RFB/R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Self-Powered SGCT Power Supply (SPS)</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>RFB/R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Integral Magnetics/Power Filters</td>
<td></td>
</tr>
<tr>
<td>Isolation Transformer/Line Reactor</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>DC Link/CMC</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Line/Motor Filter Capacitors</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Control Cabinet Components</td>
<td></td>
</tr>
<tr>
<td>AC/DC and DC/DC Power Supplies</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>RFB/R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Control Boards</td>
<td>I</td>
</tr>
<tr>
<td>Batteries (DCBs and CIB)</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Battery Module (UPS)(7)</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Connections</td>
<td></td>
</tr>
<tr>
<td>Low Voltage Terminal Connections/ Plug-in Connections</td>
<td>I</td>
</tr>
<tr>
<td>Medium Voltage Connections</td>
<td>I</td>
</tr>
<tr>
<td>Heatsink Bolted Connections</td>
<td>I</td>
</tr>
<tr>
<td>Medium Voltage Connections (Rectifier)(4)</td>
<td>—</td>
</tr>
<tr>
<td>Medium Voltage Connections (Inverter)(5)</td>
<td>—</td>
</tr>
<tr>
<td>Enhancements</td>
<td></td>
</tr>
<tr>
<td>Firmware</td>
<td>—</td>
<td>Rv</td>
<td>—</td>
<td>—</td>
<td>Rv</td>
<td>—</td>
<td>—</td>
<td>Rv</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hardware</td>
<td>—</td>
<td>Rv</td>
<td>—</td>
<td>—</td>
<td>Rv</td>
<td>—</td>
<td>—</td>
<td>Rv</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Operational Conditions</td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>—</td>
</tr>
<tr>
<td>Variables</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>—</td>
</tr>
<tr>
<td>Application Concerns</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>—</td>
</tr>
<tr>
<td>Spare Parts</td>
<td></td>
</tr>
<tr>
<td>Inventory/Needs</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>I</td>
<td>Rv</td>
<td>I</td>
<td>—</td>
</tr>
</tbody>
</table>

(1) If filter supplied is not a washable type, replace filter. If filter supplied is a washable type, wash or replace (depending on state of filter).
(2) These components may be serviced while the VFD is running.
(3) When rectifier snubber capacitors are replaced, the MV connections for the rectifier need to be inspected.
(4) A 4-year rectifier snubber capacitor replacement interval applied only to drives with 6-pulse or 18-pulse rectifiers shipped before 2012 (rectifier snubber capacitors are blue). However, current enhanced replacement rectifier snubber capacitors extend this to a 10-year replacement interval (replacement rectifier snubber capacitors are black). A 10-year rectifier snubber capacitor replacement interval has always applied to drives with AFE rectifiers.
(5) When inverter snubber capacitors are replaced, the MV connections for the inverter need to be inspected.
(6) A 10-year inverter snubber capacitor replacement interval applies to all drive configurations.
(7) Replace UPS batteries annually for 50°C rated VFDs.
General Notes

Maintenance of Medium Voltage Equipment

ATTENTION: The servicing of energized Medium-Voltage Motor Control Equipment can be hazardous. Severe injury or death can result from electrical shock, bump, or unintended actuation of controlled equipment. Recommended practice is to disconnect and lockout control equipment from power sources, and release stored energy, if present.

For countries following NEMA standards, refer to:

- National Fire Protection Association Standard No. NFPA70E, Part II and (as applicable).
- OSHA rules for Control of Hazardous Energy Sources (Lockout/Tagout).
- OSHA Electrical Safety Related Work Practices including:
 - Procedural requirements for lockout-tagout.
 - Appropriate work practices, personnel qualifications, and required training.
 - Where it is not feasible to de-energize and lockout or tagout electric circuits and equipment before working on or near exposed circuit parts.
- For countries following IEC standards, refer to local codes and regulations.

Periodic Inspection

Medium-Voltage Motor control equipment must be inspected periodically. Inspection intervals must be based on environmental and operating conditions and adjusted as indicated by experience. An initial inspection within 3 to 4 months after installation is suggested. See the following standards for general guidelines for setting-up a periodic maintenance program.

For countries following NEMA standards, refer to:

- National Electrical Manufacturers Association (NEMA) Standard
 - No. ICS 1.1 (Safety Guidelines for the Application, Installation, and Maintenance of Solid-Sate Control) for MV Drives.
 - ICS 1.3 (Preventive Maintenance of Industrial Control and Systems Equipment) for MV Controllers.
For countries following IEC standards, refer to:
- IEC 61800-5-1 Sec. 6.5 for MV Drives.
- IEC 60470 Sec. 10.
- IEC 62271-1 Sec. 10.4 for MV Controllers.

Contamination

If inspection reveals that dust, dirt, moisture, or other contamination has reached the control equipment, the cause must be mitigated. Contamination could indicate unsealed enclosure openings (conduit or other) or incorrect operating procedures. Replace any damaged or embrittled seals and repair or replace any other damaged or malfunctioning parts (for example, hinges, fasteners). Dirty, wet, or contaminated control devices must be replaced unless they can be cleaned effectively by vacuuming or wiping. Do not clean with compressed air. The compressed air can displace dirt, dust, or debris into other parts or equipment, or damage delicate parts.

High-voltage Testing

High-voltage insulation resistance (IR) or dielectric withstanding voltage (insulation resistance) tests must not be used to check solid-state control equipment. When insulation resistance testing electrical equipment such as transformers or motors, solid-state devices must be bypassed before performing the test. Even though no damage can be readily apparent after a insulation resistance test, the solid-state devices are degraded and repeated application of high voltage can lead to failure.

Maintenance after a Fault Condition

Opening of the short circuit protective device (such as fuses or circuit breakers) in a properly coordinated motor branch circuit indicates a fault condition in excess of operating overload. Such conditions can damage medium-voltage motor control equipment. Before power is restored the fault condition must be corrected and any repairs or replacements must be made to the medium-voltage motor control equipment. See NEMA Standards Publication No. ICS-2, Part ICS2-302 for procedures. To maintain the integrity of the equipment, use only Allen-Bradley recommended replacement parts and devices. Verify that the parts are properly matched to the model, series, and revision level of the equipment. After maintenance or repair of the equipment, always test the control system for proper functioning under controlled conditions (that avoid hazards if a control malfunction). For additional information, see NEMA ICS 1.3, PREVENTIVE MAINTENANCE OF INDUSTRIAL CONTROL AND SYSTEMS EQUIPMENT. Published by the National Electrical Manufacturers Association, Also NFPA70B, ELECTRICAL EQUIPMENT MAINTENANCE, published by the National Fire Protection Association.
Part-specific Notes

Cooling-fans

Inspect fans that are used for forced air cooling. Replace any that have bent, chipped, or missing blades, or if the shaft does not turn freely. Apply power momentarily to check operation. If unit does not operate, check and replace wiring, fuse, or fan motor as appropriate. Clean or change air filters as recommended in the Users Manual.

Operating Mechanisms

Check for proper functioning and freedom from sticking or binding. Replace any broken, deformed or badly worn parts or assemblies according to the product User Manuals. Check for and securely tighten any loose fasteners. Lubricate, if specified in individual product instructions. Many devices are factory-lubricated. If lubrication during use or maintenance of these devices is needed, is specified in their individual product instructions or User Manual.

IMPORTANT

Allen-Bradley magnetic starters, contactors, and relays are designed to operate without lubrication. Do not lubricate these devices, because oil or grease on the pole faces (the mating surfaces) of the operating magnet can cause the device to stick in the "ON" mode.

Contacts

Check contacts for excessive wear and dirt accumulations. Vacuum or wipe contacts with a soft cloth if necessary to remove dirt. Discoloration and slight pitting do not harm Contacts. Do not file contacts, as dressing only shortens contact life. Do not use spray cleaners on contacts, as their residues on magnet pole faces or in operating mechanisms can cause sticking and can interfere with electrical continuity. Contacts must only be replaced after contact face material has become badly worn. To avoid misalignment and uneven contact pressure always replace contacts in complete sets.

Vacuum Contactors

Contacts of vacuum contactors are not visible, so contact wear must be checked indirectly. Vacuum bottles must be replaced when:

- The contactor wear indicator line shows need for replacement.
- The vacuum bottle integrity-tests show need for replacement.

Replace all vacuum bottles in the contactor simultaneously to avoid misalignment and uneven contact wear. If the vacuum bottles do not require replacement, check and adjust over-travel to the value listed in the product user manual.
Power Cable and Control Wire Terminals

A loose connection in a power circuit can cause overheating that can lead to equipment malfunction or failure. A loose connection in a control circuit can cause control malfunctions. Loose bonding or grounding connections can increase hazards of electrical shock and contribute to electromagnetic interference (EMI). Check the tightness of all terminals and bus bar connections and tighten any loose connections. Replace any parts or wiring that is damaged by overheating, and any broken wires or the bonding straps. See the User Manual for torque values that are required for power cable and bus hardware connections.

Coils

If a coil exhibits evidence of overheating (cracked, melted or burned insulation), it must be replaced. In that event, check for and correct overvoltage or undervoltage conditions, which can cause coil failure. Be sure to clean any residue of melted coil insulation from other parts of the device or replace such parts.

Batteries

Replace batteries periodically as specified in product manual or if a battery shows signs of electrolyte leakage. Use tools to handle batteries that have leaked electrolyte; most electrolytes are corrosive and can cause burns. Dispose of the old battery in accordance with instructions that are supplied with the new battery or as specified in the product manual.

Pilot Lights

Replace any burned out lamps or damaged lenses. Do not use solvents or cleaning-agents on the lenses.

Solid-state Devices

ATTENTION: Use of unrecommended test equipment for solid-state controls can result in damage to the control or test equipment or unintended actuation of the controlled equipment. See paragraph titled HIGH VOLTAGE TESTING.
Solid-state devices require a periodic visual inspection. Discolored, charred, or burned components can indicate the need to replace the component or circuit board. Replacements must be made only at the Personal Computer board or plug-in component level. Inspect printed circuit boards to determine that they are properly seated in the edge board connectors. Board locking tabs must also be in place. Solid-state devices must also be protected from contamination, and provisions for cooling must be maintained – see Contamination on page 177 and Cooling-fans on page 178. Do not use solvents on printed circuit boards.

Locking and Interlocking Devices

Check these devices for proper working-condition and capability of performing their intended functions. Make any necessary replacements only with Allen-Bradley renewal parts or kits. Adjust or repair only in accordance with Allen-Bradley instructions found in the product user manuals.
Torque Requirements for Threaded Fasteners

Unless otherwise specified, use these values of torque to maintain the equipment.

Table 13 - Torque Requirements

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Pitch</th>
<th>Material</th>
<th>Torque (N-m)</th>
<th>Torque (lb-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2.5</td>
<td>0.45</td>
<td>Steel</td>
<td>0.43</td>
<td>0.32</td>
</tr>
<tr>
<td>M4</td>
<td>0.70</td>
<td>Steel</td>
<td>1.8</td>
<td>1.3</td>
</tr>
<tr>
<td>M5</td>
<td>0.80</td>
<td>Steel</td>
<td>3.4</td>
<td>2.5</td>
</tr>
<tr>
<td>M6</td>
<td>1.00</td>
<td>Steel</td>
<td>6.0</td>
<td>4.4</td>
</tr>
<tr>
<td>M8</td>
<td>1.25</td>
<td>Steel</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>M10</td>
<td>1.50</td>
<td>Steel</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>M12</td>
<td>1.75</td>
<td>Steel</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td>M14</td>
<td>2.00</td>
<td>Steel</td>
<td>81</td>
<td>60</td>
</tr>
<tr>
<td>¼ in.</td>
<td>20</td>
<td>Steel S.A.E. 5</td>
<td>12</td>
<td>9.0</td>
</tr>
<tr>
<td>3/8 in.</td>
<td>16</td>
<td>Steel S.A.E. 2</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>
Notes:
Appendix D

Insulation Resistance Testing

When a ground fault occurs, there are three zones in which the problem can appear: input to the drive, the drive, and output to the motor. The ground fault condition indicates that a phase conductor has found a path to ground. A current with a magnitude that ranges from leakage to fault level exists that is dependent on the resistance of the path to ground. The drive itself rarely is a source of a ground fault when it is properly installed. Ground fault problems that are associated with the drive rarely occur. Normally the source of the fault exists in either the input or output zone.

Since the procedure for insulation resistance testing the drive is more complex, it is recommended to first insulation resistance test the input and output zones when encountering a ground fault. If the location of the ground fault cannot be located outside the drive, insulation resistance test the drive.

ATTENTION: Insulation resistance testing the drive must be performed with due care as the hazards to drive exist if safety precautions are not followed. The Insulation Resistance Testing Procedures apply high voltage to ground. All control boards in the drive are grounded and if not isolated, the high potential that is applied to them can cause immediate damage.

ATTENTION: Use caution when performing an insulation resistance test. High-voltage testing is potentially hazardous and can cause severe burns, injury, or death. Where appropriate, connect the test equipment to Ground.

Check that the insulation levels before power equipment is energized. Insulation resistance tests provide a resistance measurement from the phase-to-phase and phase-to-ground by applying a high voltage to the power circuitry. Perform this test to detect Ground faults without damaging any drive equipment.

Remove (temporarily) any existing paths to ground that are necessary for normal operation of the drive, and all connected equipment to a high potential while measuring the leakage current to ground.

ATTENTION: There are risks of serious or fatal injury to personnel if you do not follow safety guidelines.
Insulation Resistance Testing Procedures

To perform insulation resistance testing tests on the PowerFlex® 7000A, follow this procedure.

Required equipment
- Torque wrench and 10 mm socket
- Phillips screwdriver
- 2500/5000V insulation resistance tester.

1. Isolate and lockout the drive system from any high-voltage source.
 a. Disconnect any incoming power sources.
 b. Isolate and lockout medium-voltage sources.
 c. Turn off all control power sources at their respective circuit breakers.
 d. Verify with a potential indicator that power sources are disconnected, and that the control power in the drive is de-energized.

2. Isolate the power circuit from system ground (“float the drive”).
 Remove the grounds on these components within the drive (refer to the electrical schematics provided with the equipment to determine the points to disconnect):
 - Voltage Sensing Boards (VSB)
 - Output Grounding Network (OGN)

Voltage Sensing Boards

3. Remove all ground connections, at the screw terminals on the VSB, from all VSBs in the drive. There are two grounds on each board marked “GND 1”, and “GND 2”.

ATTENTION: Disconnect the terminals on the boards rather than from the ground bus as the grounding cable is only rated for 600V. The injection of a high voltage on the ground cable degrades the cable insulation. Do not disconnect the white medium-voltage wires from the VSBs. They must be included in the test.

The number of VSBs installed in each drive varies depending on the drive configuration.

Disconnect Output Grounding Network

4. Remove the ground connection on the OGN (if installed). Lift this connection at the OGN capacitor rather than the grounding bus, as the grounding cable is only rated for 600V.
5. Disconnect connections between power circuit and low voltage control.

Disconnect Voltage Sensing Boards

The connections between the low voltage control and the power circuit are made through ribbon cable connectors. The cables are plugged into connectors on the voltage sensing board that is marked “J1”, “J2”, and “J3”, and terminate on the signal conditioning boards. Every ribbon cable connection that is made on the VSBs is marked for identification.

6. Confirm the marking matches the connections, and disconnect the ribbon cables and move them clear of the VSB. If the ribbon cables are not removed from the VSB, then high potential applies directly to the low voltage control through the SCBs and damages those boards.

ATTENTION: The VSB ribbon cable insulation is not rated for the potential that is applied during an insulation resistance test. You must disconnect the ribbon cables at the VSB rather than the SCB to avoid exposing the ribbon cables to high potential.

Removing Potential Transformer Fuses

A insulation resistance test can exceed the rating of potential transformer fusing. To avoid damage:

7. Remove the primary fuses from all potential and control power transformers in the system. This step removes a path from the power circuit back to the drive control.

Isolate Transient Suppression Network

A path to ground exists through the TSN network as it has a ground connection that dissipates high energy surges in normal operation. This ground path must be isolated. If this ground connection is not isolated, the insulation resistance test indicates a high leakage current through this path and falsely indicates a problem in the drive.

8. Remove all fuses on the TSN before proceeding with the insulation resistance test.
Surge Arrestors

Drives that are supplied after 2009 have surge arrestors instead of a TSN. Surge arrestors can remain in the circuit during the insulation resistance test procedure.

9. Insulation resistance test the drive.

10. All three phases on the line and machine sides of the drive connect through the DC Link and snubber network. A test from any one of the input or output terminals to ground sufficiently tests the drive.

IMPORTANT Verify the drive and any connected equipment is clear of personnel and tools before starting the insulation resistance test. Barricade any open or exposed conductors. Conduct a walk-around inspection before commencing the test.

ATTENTION: Discharge the insulation resistance tester before it is disconnected from the equipment.

a. Connect the insulation resistance tester to the drive. Follow the specific instructions for that drive model.

b. If the insulation resistance tester has a lower voltage setting (normally 500V or 1000V), apply that voltage for 5 seconds. Do the test as a precursor for a higher voltage rating. If you forgot to remove any grounds, can limit the damage. If the reading is high, apply 5 kV from any drive input or output terminal to ground.

c. Perform an insulation resistance test at 5 kV for 1 minute and record the result. The test readings must be greater than the minimum values listed in Table 14 on page 187.

Low Test Results

11. If the test results are lower than the listed values, segment the drive system into smaller components. Repeat the test on each segment until the source of the ground fault is identified.

a. Isolate the line side of the drive from the machine side by removing the appropriate cables on the DC Link reactor.

b. Isolate the DC Link reactor from the drive by disconnecting the four power cables.

c. Verify that all electrical components being insulation resistance tested are electrically isolated from ground.
Items that produce lower than expected readings are surge capacitors at the motor terminals and motor filter capacitors at the output of the drive. The insulation resistance testing procedure must follow a systematic segmentation of electrical components to isolate and locate a ground fault.

Table 14 - Test Readings

<table>
<thead>
<tr>
<th>Type of Drive</th>
<th>Minimum Insulation Resistance Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid-cooled Drive</td>
<td>200 MΩ</td>
</tr>
<tr>
<td>Air-cooled Drive</td>
<td>1k MΩ</td>
</tr>
<tr>
<td>Drive with input/output Caps Disconnected</td>
<td>5k MΩ</td>
</tr>
<tr>
<td>Isolation Transformer</td>
<td>5k MΩ</td>
</tr>
<tr>
<td>Motor</td>
<td>5k MΩ</td>
</tr>
</tbody>
</table>

The motor filter capacitors and line filter capacitors (if applicable) can skew the insulation resistance test result as being lower than expected. The capacitors have internal discharge resistors that discharge the capacitors to ground. If the insulation resistance test results are skewed, disconnect the output capacitors.

IMPORTANT Humidity and dirty standoff insulators can cause leakage to ground because of tracking. Clean a ‘dirty’ drive before starting the insulation resistance test.

12. Reconnect connections between power circuit and low voltage control.

 Reconnect the ribbon cables "J1", “J2” and “J3” in all VSBs. Do not cross the cable connections.

ATTENTION: Incorrect placement of the feedback cables can result in serious damage to the drive. Make sure that they are connected to the proper location

13. Reconnect the power circuit to the system ground.

Reconnect Voltage Sensing Boards

14. Reconnect the two ground conductors on the VSBs.

 The conductors provide a reference point for the VSB and enable the low voltage signal to be fed to the SCBs. If the ground conductors are not connected, the monitored low voltage signal rises to medium voltage potential, which is a serious hazard.

 Make sure that the ground conductors on the VSB are securely connected before applying medium voltage to the drive.
Reconnect Output Grounding Network

15. Reconnect the ground connection on the OGN capacitor. Torque the bolt connection to 3.4 N·m (30 lb·in.). Do Not Exceed the torque rating of this connection as it can result in damage to the capacitor.

ATTENTION: Failure to reconnect the OGN ground can result in the neutral voltage offset being impressed on the motor cables and stator, which can result in equipment damage.

For drives that did not originally have the OGN connected (or installed), there is no need for concern.

Enable Transient Suppression Network

16. Reinstall the fuses on the TSN.
Maximum Line Cable Sizes

Table 15 - Maximum Line Cable Sizes

<table>
<thead>
<tr>
<th>Product</th>
<th>Input (Line Side)</th>
<th>Drive Rating (A)</th>
<th>Drive Structure Code</th>
<th>Drive Enclosure Opening Inches (mm)</th>
<th>Maximum Size and Number of Incoming Cables: NEMA (mm²)</th>
<th>Maximum Size and Number of Incoming Cables: IEC (mm²)</th>
<th>Space for Stress Cones [in. (mm)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectifier</td>
<td>Voltage/Frequency/Rectifier</td>
<td>2400V / 60 Hz / RPDTD</td>
<td>46...140</td>
<td>71.9[2][2]</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One #4/0 / phase (5 kV or 8 kV)</td>
<td>One 107 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2400V / 60 Hz / RPDTD</td>
<td>46...140</td>
<td>71.13, 71.18[3]</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One #4/0 / phase (5 kV or 8 kV)</td>
<td>One 107 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3300V / 50 Hz / RPDTD</td>
<td>46...140</td>
<td>71.7[2][2]</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One #4/0 / phase (5 kV or 8 kV)</td>
<td>One 107 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3300V / 50 Hz / RPDTD</td>
<td>46...140</td>
<td>71.13, 71.18[3]</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One #4/0 / phase (5 kV or 8 kV)</td>
<td>One 107 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4160V / 50 Hz / RPDTD</td>
<td>46...140</td>
<td>71.9[2][2]</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One #4/0 / phase (5 kV or 8 kV)</td>
<td>One 107 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4160V / 50 Hz / RPDTD</td>
<td>46...140</td>
<td>71.13, 71.18[3]</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One #4/0 / phase (5 kV or 8 kV)</td>
<td>One 107 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4160V / 50 Hz / RPDTD</td>
<td>46...140</td>
<td>71.9[2][2]</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One #4/0 / phase (5 kV or 8 kV)</td>
<td>One 107 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4160V / 50 Hz / RPDTD</td>
<td>46...140</td>
<td>71.13, 71.18[3]</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One #4/0 / phase (5 kV or 8 kV)</td>
<td>One 107 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6600V / 50 Hz / RPDTD</td>
<td>46...140</td>
<td>71.9[2][2]</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One #4/0 / phase (5 kV or 8 kV)</td>
<td>One 107 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6600V / 50 Hz / RPDTD</td>
<td>40...93</td>
<td>71.10[2][2]</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One #4/0 / phase (5 kV or 8 kV)</td>
<td>One 107 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6600V / 50 Hz / RPDTD</td>
<td>40...93</td>
<td>71.14, 71.18[3]</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One 350 MCM / phase (8 kV or 15 kV)</td>
<td>One 177 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4160V / 60 Hz / RPDTD</td>
<td>46...160</td>
<td>71.7</td>
<td>4.00 x 8.00 (102 x 204)[4]</td>
<td>One 350 MCM / phase (8 kV or 15 kV)</td>
<td>One 177 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3300V / 50 Hz / RPDTD</td>
<td>46...160</td>
<td>71.7</td>
<td>4.00 x 8.00 (102 x 204)[4]</td>
<td>One 350 MCM / phase (8 kV or 15 kV)</td>
<td>One 177 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4160 / 50 Hz / RPDTD</td>
<td>46...160</td>
<td>71.7</td>
<td>4.00 x 8.00 (102 x 204)[4]</td>
<td>One 350 MCM / phase (8 kV or 15 kV)</td>
<td>One 177 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4160 / 60 Hz / RPDTD</td>
<td>46...160</td>
<td>71.7</td>
<td>4.00 x 8.00 (102 x 204)[4]</td>
<td>One 350 MCM / phase (8 kV or 15 kV)</td>
<td>One 177 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6600V / 50 Hz / RPDTD</td>
<td>40...105</td>
<td>71.8</td>
<td>4.00 x 8.00 (102 x 204)[4]</td>
<td>One 350 MCM / phase (15 kV)</td>
<td>One 177 mm² / phase (15 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2400V / 60 Hz / RPTXI</td>
<td>46...160</td>
<td>71.8</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One 350 MCM / phase (8 kV or 15 kV)</td>
<td>One 177 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3300V / 50 Hz / RPTX</td>
<td>46...160</td>
<td>71.3</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One 350 MCM / phase (8 kV or 15 kV)</td>
<td>One 177 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4160V / 50 Hz / RPTX</td>
<td>46...140</td>
<td>71.3</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One 350 MCM / phase (8 kV or 15 kV)</td>
<td>One 177 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4160V / 60 Hz / RPTX</td>
<td>46...160</td>
<td>71.3</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One 350 MCM / phase (8 kV or 15 kV)</td>
<td>One 177 mm² / phase (5 kV or 8 kV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6600V / 50 Hz / RPTX</td>
<td>40...105</td>
<td>71.6, 71.15</td>
<td>4.00 x 4.00 (102 x 102)</td>
<td>One #4/0 / phase (8 kV or 15 kV)</td>
<td>One 177 mm² / phase (8 kV or 15 kV)</td>
</tr>
</tbody>
</table>

(1) This data is informative only; do not base final design criteria solely on this data. Follow national and local installation codes, industry best practices, and cable manufacturer recommendations.
(2) Without starter.
(3) With starter.
(4) Some 'A' frame drives have one enclosure opening for both line and load cables. Most 'A' frame drives have separate provisions for line and load cable openings. All cabling capacities that are shown in this table are “worst case” conditions when both line and load cables enter and exit in the same direction.
(5) Cable sizes are based on overall dimensions of compact-stranded three-conductor shielded cable (common for industrial-cable tray installations). Maximum sizes stated accounts for minimum rated cable insulation requirements. The next higher-rated cable (8 kV is not commercially available in many areas of the world. Rockwell Automation provides an 8 kV (minimum rating) and a 15 kV rating, when applicable. Enclosure openings accommodate the thicker insulation on the higher-rated cable. IEC ratings show the equivalent to the NEMA sizes. The exact cable mm² size that is shown is not commercially available in many cases; use the next smaller standard size.
(6) Minimum cable bend radius recommendations vary by national codes, cable type, and cable size. Consult local codes for guidelines and requirements. General relationship of cable diameter to bend radius is typically between 7...12x. For example, if the cable diameter is 1 in. [2.54 cm] the minimum bend radius could range between 7...12 in. [18.8...30.48 cm]).
(7) For minimum requirements for cable insulation, see the user manual for your frame. Stated voltages are peak line-to-ground. Some cable manufacturers rate cabling based on RMS line-to-line.
(8) Ground lug capabilities: two mechanical range lugs for ground cable connections. Mechanical range lugs can accommodate cable size #6-250MCM (13.3...127 mm²).
(9) As methods for cabling can vary, the maximum cable sizes that are shown do not account for the size of the conduit hub. Verify size of conduit hubs against the “Drive enclosure openings” shown.
(10) Cable enters termination point horizontally in this case, therefore orient space for the stress cones horizontally also.
Maximum Load Cable Sizes

Table 16 - Maximum Load Cable Sizes

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>OUTPUT (MOTOR SIDE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage/Frequency/Rectifier</td>
<td>Drive Rating (A)</td>
</tr>
<tr>
<td>2400V / 60 Hz / RPTX</td>
<td>46…140</td>
</tr>
<tr>
<td>2400V / 60 Hz / RPTX</td>
<td>46…140</td>
</tr>
<tr>
<td>3300V / 50 Hz / RPTX</td>
<td>46…140</td>
</tr>
<tr>
<td>3300V / 50 Hz / RPTX</td>
<td>46…140</td>
</tr>
<tr>
<td>4160V / 50 Hz / RPTX</td>
<td>46…140</td>
</tr>
<tr>
<td>4160V / 50 Hz / RPTX</td>
<td>46…140</td>
</tr>
<tr>
<td>4160V / 60 Hz / RPTX</td>
<td>46…140</td>
</tr>
<tr>
<td>4160V / 60 Hz / RPTX</td>
<td>46…140</td>
</tr>
<tr>
<td>6600V / 50 Hz / RPTX</td>
<td>40…93</td>
</tr>
<tr>
<td>6600V / 50 Hz / RPTX</td>
<td>40…93</td>
</tr>
<tr>
<td>2400V / 60 Hz / RPTX</td>
<td>46…160</td>
</tr>
<tr>
<td>3300V / 50 Hz / RPTX</td>
<td>46…160</td>
</tr>
<tr>
<td>4160V / 50 Hz / RPTX</td>
<td>46…160</td>
</tr>
<tr>
<td>4160V / 60 Hz / RPTX</td>
<td>46…160</td>
</tr>
<tr>
<td>6600V / 50 Hz / RPTX</td>
<td>40…105</td>
</tr>
<tr>
<td>2400V / 60 Hz / RPTX</td>
<td>46…160</td>
</tr>
<tr>
<td>3300V / 50 Hz / RPTX</td>
<td>46…160</td>
</tr>
<tr>
<td>4160V / 50 Hz / RPTX</td>
<td>46…140</td>
</tr>
<tr>
<td>4160V / 60 Hz / RPTX</td>
<td>46…160</td>
</tr>
<tr>
<td>6600V / 50 Hz / RPTX</td>
<td>40…105</td>
</tr>
</tbody>
</table>

(1) This data is informative only; do not base final design criteria solely on this data. Follow national and local installation codes, industry best practices, and cable manufacturer recommendations.
(2) Without starter.
(3) With starter.
(4) Some 'A' frame drives have one enclosure opening for both line and load cables. Most 'A' frame drives have separate provisions for line and load cable openings. All cabling capacities that are shown in this table are “worst case” conditions when both line and load cables enter and exit in the same direction.
(5) Cable sizes are based on overall dimensions of compact-stranded three-conductor shielded cable (common for industrial cable tray installations). Maximum sizing stated accounts for minimum rated cable insulation requirements and the next higher-rated cable. 8 kV is not commercially available in many areas of the world. Rockwell Automation provides an 8 kV (minimum rating) and a 15 kV rating, when applicable. Enclosure openings accommodate the thicker insulation on the higher-rated cable. IEC ratings show the equivalent to the NEMA sizes. The exact cable mm² size that is shown is not commercially available in many cases; use the next smaller standard size.
(6) Minimum cable bend radius recommendations vary by national codes, cable type, and cable size. Consult local codes for guidelines and requirements. General relationship of cable diameter to bend radius is typically between 7x...12x. For example, if the cable diameter is 1 in. [2.54 cm] the minimum bend radius could range between 7...12 in. [18.8...30.48 cm].
(7) For minimum requirements for cable insulation, see the user manual for your frame. Stated voltages are peak line-to-ground. Some cable manufacturers rate cabling based on RMS line-to-line.
(8) Ground lug capabilities: two mechanical range lugs for ground cable connections. Mechanical range lugs can accommodate cable size #6-250 MCM (13.3...127 mm²).
(9) As methods for cabling can vary, maximum cable sizes that are shown do not account for the size of the conduit hub. Verify size of conduit hubs against the “Drive enclosure openings” shown.
(10) Cable enters termination point horizontally in this case, therefore orient space for the stress cones horizontally also.
Appendix F

Environmental Considerations

Air Quality Requirements

Air cleanliness for PowerFlex® 7000 drives is important for two reasons:

1. Airborne particulate that settles on heat sinks and heat-producing components increases the thermal resistance of the components. This resistance results in an increase in the temperature of the part. The internal fins of the hockey-puck thyristor heat sinks must be kept clean. The dust on the surface of the heat sinks interferes with the boundary layer airflow, which inhibits the cooling of the part.

2. Particulate can decrease the tracking insulation of electrical insulation materials within the drive. Electrically conductive dusts (such as coal dust and metallic dusts) can be severe. However other particulates such as cement dust, moist from high levels of ambient relative humidity, can prove destructive as well. Dusts that coat the low voltage circuit boards can cause failures too.

Air presented to the PowerFlex 7000 drive must be of a cleanliness expected in a typical industrial control room environment. The drive is intended to operate in conditions with no special precautions to minimize the presence of sand or dust, but not in close proximity to sand or dust sources. This is defined by IEC 60721 (1) as being less than 0.2 mg/m³ of dust.

If outside air does not meet the conditions described above (0.2 mg / m³), the site air handling system must filter the air to ASHRAE (American Association of Heating, Refrigeration and Air-Conditioning Engineers) Standard 52.2 MERV 11 (Minimum Efficiency Reporting Value). This filtration eliminates from 65...80% of the particulate in Range 2 (1.0...3.0 μm) and 85% of the particulate in Range 3 (3.0...10.0 μm). This filter system must be cleaned or changed regularly.

This environment is accomplished by placing the drive in a pressurized room with adequate air conditioning to maintain the ambient temperature. The drive exhaust air is circulated within the control room. Five to ten percent cooled/heated and filtered make-up air is provided to keep the room pressurized.

(1) IEC 60721-3-3 “Classification of Environmental Conditions - Part 3: Classification of Groups of Environmental Parameters and their Severities - Section 3: Stationary Use at Weather Protected Locations”.
Environmental protection is a top priority for Rockwell Automation. The facility that manufactured this medium voltage drive operates an environmental management system that is certified to the requirements of ISO 14001. As part of this system, this product was reviewed in detail throughout the development process to make sure that environmentally inert materials were used wherever feasible. A final review has found this product to be substantially free of hazardous material.

Rockwell Automation is actively seeking alternatives to potentially hazardous materials for which no feasible alternatives exist today in the industry. In the interim, the following precautionary information is provided for your protection and for the protection of the environment. Contact the factory for any environmental information on any material in the drive or with any questions about environmental impact.

Capacitor Dielectric Fluid

The fluids that are used in the filter capacitors and the snubber capacitors are considered safe and are fully sealed within the capacitor housings. Environmental regulations typically do not restrict the shipping and the handling of this fluid. In the unlikely event that capacitor fluid leaks out, avoid ingestion or contact with skin or eyes as slight irritation could result. Rubber gloves are recommended for handling.

To clean up, soak into an absorbent material and discard into an emergency container, or, if significant leakage occurs, pump fluid directly into the container. Do not dispose into any drain or into the environment in general or into general landfill refuse. Dispose of according to local regulations. If an entire capacitor is disposed of, the same disposal precautions must be taken.

Printed Circuit Boards

Printed circuit boards can contain lead in components and materials. Circuit boards must be disposed of according to local regulations and must not be disposed of with general landfill refuse.

Lithium Batteries

This drive contains four small lithium batteries. Three are mounted on the printed circuit boards and one is located in the PanelView™ user interface. Each battery contains less than 0.05 g of lithium, which is fully sealed within the batteries. Environmental regulations typically do not restrict the shipping and the handling of these batteries, however, lithium is considered a hazardous substance. Lithium batteries must be disposed of according to local regulations and must not be disposed of with general landfill refuse.
Chromate Plating

Some sheet steel and fasteners are plated with zinc and sealed with a chromate-based dip. Environmental regulations typically do not restrict the shipping and the handling of the chromate plated parts, however, chromate is considered a hazardous substance. Dispose of chromate plated parts according to local regulations, not with general landfill refuse.

In Case Of Fire

This drive is highly protected against arc faults and therefore unlikely the drive would be the cause of a fire. In addition, the materials in the drive are self-extinguishing (that is they cannot burn without a sustained external flame). If, however, the drive is subjected to a sustained fire from some other source, some of the polymer materials in the drive produce toxic gases. Individuals that are involved in the extinguishing of the fire or anyone near must wear a self-contained breathing apparatus to help protect against any inhalation of toxic gases.

Disposal

When disposing of the drive, it must be disassembled and separated into groups of recyclable material as much as possible (that is steel, copper, plastic, wire). Send these materials to local facilities for recycling. Follow all previously mentioned disposal precautions.
Notes:
Pre-Commissioning

Start-up Commissioning Services

Start-up is performed at the customer site. Rockwell Automation requests a minimum of four weeks notice to schedule each start-up.

The Rockwell Automation standard work hours are between 9:00 a.m. to 5:00 PM EST (8 hr/day) Monday through Friday, not including observed holidays. Additional work hours are available on a time and material basis.

Pre-Commissioning the Drive

Rockwell Automation manages the start-up service for each installed drive at the customer site. There are a number of tasks that must be completed before Rockwell Automation personnel are scheduled for drive commissioning. Rockwell Automation recommends the following:

1. A pre-installation meeting/conference call with the customer to review:
 - The Rockwell Automation Start-up Plan.
 - The Start-up Schedule.
 - The Drive installation requirements.
2. Inspect the mechanical and electrical devices of the drive.
3. Perform a tug test on all internal connections within the drive and verify wiring.
4. Verify critical mechanical connections for proper torque requirements.
5. Verify and adjust mechanical interlocks for permanent location.
6. Confirm that all inter-sectional wiring is connected properly.
7. Verify control wiring from any external control devices such as PLCs.
8. Confirm that the cooling system is operational.
9. Verify the proper phasing from the isolation transformer to the drive.
10. Confirm cabling of drive to motor, isolation transformer, and line feed.
11. Collect test reports that indicate the insulation resistance/hipot test has been performed on line and motor cables.
12. Control power checks to verify all system inputs such as starts/stops, faults, and other remote inputs.
13. Apply medium voltage to the drive and perform operational checks.
14. Bump motor and tune drive to the system attributes. If the load is unable to handle any movement in the reverse direction, uncouple the load before bumping the motor for a directional test.

15. Verify proper performance, run the drive motor system throughout the operational ranges.

Customer personnel are required on-site to participate in the start-up of the system.
Specifications

ATTENTION: In the event of discrepancies between information in generic manual specifications and your specific design or electrical drawings, take the DD or EE ratings as correct values.

Drive Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Type</td>
<td>Induction or Synchronous</td>
</tr>
<tr>
<td>Input Voltage Rating</td>
<td>2400V, 3300V, 4160V, 6600V</td>
</tr>
<tr>
<td>Input Voltage Tolerance</td>
<td>± 10% of Nominal</td>
</tr>
<tr>
<td>Voltage Sag(1)</td>
<td>-30%</td>
</tr>
<tr>
<td>Control Power Loss Ride-through</td>
<td>5 Cycles (Std)</td>
</tr>
<tr>
<td></td>
<td>> 5 Cycles (Optional UPS)</td>
</tr>
<tr>
<td>Input Protection(2)</td>
<td>Surge Arrestors (AFE/Direct-to-Drive)</td>
</tr>
<tr>
<td>Input Frequency</td>
<td>50/60 Hz, +/- 0.5%</td>
</tr>
<tr>
<td>Power Bus Input Short-circuit Current Withstand (2400…6600V(3))</td>
<td>25 kA RMS SYM, 5 Cycle</td>
</tr>
<tr>
<td>Basic Impulse Level(4)</td>
<td>45 kV (0…1000 m)</td>
</tr>
<tr>
<td>Power Bus Design</td>
<td>Copper - Tin plated</td>
</tr>
<tr>
<td>Ground Bus</td>
<td>Copper - Tin plated 6 x 51 mm (¼ x 2 in.)</td>
</tr>
<tr>
<td>Customer Control Wireway</td>
<td>Separate and Isolated</td>
</tr>
<tr>
<td>Input Power Circuit Protection(5)</td>
<td>Vacuum Contactor with Fused Isolating Switch or Circuit Breaker</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>0…2400V</td>
</tr>
<tr>
<td></td>
<td>0…3300V</td>
</tr>
<tr>
<td></td>
<td>0…4160V</td>
</tr>
<tr>
<td></td>
<td>0…6000V, 0…6300V, 0…6600V</td>
</tr>
<tr>
<td>Inverter Design</td>
<td>PWM</td>
</tr>
<tr>
<td>Inverter Switch</td>
<td>SGCT</td>
</tr>
<tr>
<td>Inverter Switch Failure-Mode</td>
<td>Non-rupture, Non-arc</td>
</tr>
<tr>
<td>Inverter Switch Failure-Rate (FIT)</td>
<td>100 per 1 Billion Hours Operation</td>
</tr>
<tr>
<td>Inverter Switch Cooling</td>
<td>Double Sided, Low Thermal Stress</td>
</tr>
<tr>
<td>Inverter Switching Frequency</td>
<td>420…440 Hz</td>
</tr>
</tbody>
</table>
Table 17 - General Design Specifications (Continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Voltage</th>
<th>SGCTs (per phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Inverter SGCTs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2400V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3300V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4160V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6600V</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Inverter PIV Rating (Peak Inverse Voltage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>PIV (each device)</td>
<td>Total PIV</td>
</tr>
<tr>
<td>2400V</td>
<td>6500V</td>
<td>6500V</td>
</tr>
<tr>
<td>3300V</td>
<td>6500V</td>
<td>13,000V</td>
</tr>
<tr>
<td>4160V</td>
<td>6500V</td>
<td>19,500V</td>
</tr>
<tr>
<td>6600V</td>
<td>6500V</td>
<td></td>
</tr>
<tr>
<td>Rectifier Designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct-to-Drive™ (transformerless AFE rectifier)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFE with separate isolated transformer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFE with integrated transformer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectifier Switch</td>
<td>SGCT (AFE Rectifier)</td>
<td></td>
</tr>
<tr>
<td>Rectifier Switch Failure-Mode</td>
<td>Non-rupture, Non-arc</td>
<td></td>
</tr>
<tr>
<td>Rectifier Switch Failure-Rate (FIT)</td>
<td>50 (SGCT) per 1 Billion Hours Operation</td>
<td></td>
</tr>
<tr>
<td>Rectifier Switch Cooling</td>
<td>Double Sided, Low Thermal Stress</td>
<td></td>
</tr>
<tr>
<td>Number of Rectifier Devices per phase</td>
<td>Voltage</td>
<td>AFE</td>
</tr>
<tr>
<td>2400V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3300V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4160V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6600V</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Output Current THD (1st...49th)</td>
<td>< 5%</td>
<td></td>
</tr>
<tr>
<td>Output Waveform to Motor</td>
<td>Sinusoidal Current / Voltage</td>
<td></td>
</tr>
<tr>
<td>Medium Voltage Isolation</td>
<td>Fiber-optic</td>
<td></td>
</tr>
<tr>
<td>Modulation techniques</td>
<td>Selective Harmonic Elimination (SHE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synchronous Trapezoidal PWM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asynchronous or Synchronous SVM (Space Vector Modulation)</td>
<td></td>
</tr>
<tr>
<td>Control Method</td>
<td>Digital Sensorless Direct Vector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full Vector Control with Encoder Feedback (Optional)</td>
<td></td>
</tr>
<tr>
<td>Tuning Method</td>
<td>Autotuning with Setup Wizard</td>
<td></td>
</tr>
<tr>
<td>Speed Regulator Bandwidth</td>
<td>1...10 Rad/s with standard control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1...20 Rad/s with HPTC (optional)</td>
<td></td>
</tr>
<tr>
<td>Torque Regulator Bandwidth</td>
<td>15...50 Rad/s with standard control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80...100 Rad/s with HPTC (optional)</td>
<td></td>
</tr>
<tr>
<td>Torque Accuracy with HPTC (optional)</td>
<td>+/- 5%</td>
<td></td>
</tr>
<tr>
<td>Speed Regulation</td>
<td>0.1% without Tachometer Feedback</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.01...0.02% with Tachometer Feedback</td>
<td></td>
</tr>
<tr>
<td>Acceleration/Deceleration Range</td>
<td>Independent Accel/Decel – 4 x 30 s</td>
<td></td>
</tr>
<tr>
<td>Acceleration/Deceleration Ramp Rates</td>
<td>4 x Independent Accel/Decel</td>
<td></td>
</tr>
<tr>
<td>S Ramp Rate</td>
<td>Independent Accel/Decel – 2 x 999 s</td>
<td></td>
</tr>
<tr>
<td>Critical Speed Avoidance</td>
<td>3 x Independent with Adjustable bandwidth</td>
<td></td>
</tr>
<tr>
<td>Stall Protection</td>
<td>Adjustable time delay</td>
<td></td>
</tr>
</tbody>
</table>
Table 17 - General Design Specifications (Continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Normal Duty</th>
<th>Heavy Duty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Loss Detection</td>
<td>Adjustable level, delay, speed set points</td>
<td>110% Overload for 1 min. every 10 min. (Variable Torque Load)</td>
</tr>
<tr>
<td>Control Mode</td>
<td>Speed or Torque</td>
<td>150% Overload for 1 min. every 10 min. (Constant Torque Load)</td>
</tr>
<tr>
<td>Current Limit</td>
<td>Adjustable in Motoring and Regenerative</td>
<td></td>
</tr>
<tr>
<td>Output Frequency Range</td>
<td>0.2 Hz...75 Hz (Standard)</td>
<td>75 Hz...90 Hz (Optional - need specific Motor Filter Capacitor (MFC))</td>
</tr>
<tr>
<td>Service Duty Rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Duty</td>
<td>> 97.5% (AFE)</td>
<td></td>
</tr>
<tr>
<td>Heavy Duty</td>
<td>Contact Factory for Guaranteed Efficiency of Specific Drive Rating</td>
<td></td>
</tr>
<tr>
<td>Input Power Factor</td>
<td>AFE Rectifier</td>
<td></td>
</tr>
<tr>
<td>IEEE 519 Harmonic Guidelines</td>
<td>IEEE 519 - 1992 Compliant</td>
<td></td>
</tr>
<tr>
<td>VFD Noise Level</td>
<td>< 85 dB (A)) per OSHA Standard 3074</td>
<td></td>
</tr>
<tr>
<td>Regenerative Braking Capability</td>
<td>Inherent – No Additional Hardware or Software Required</td>
<td></td>
</tr>
<tr>
<td>Flying Start Capability</td>
<td>Yes – Able to Start into and Control a Spinning Load in Forward or Reverse Direction</td>
<td></td>
</tr>
<tr>
<td>Operator Interface</td>
<td>10 in. Color Touch Screen – Cat# 2711P-T10C4A9 (VAC)</td>
<td></td>
</tr>
<tr>
<td>Languages</td>
<td>English, French, Spanish, Portuguese, German, Chinese, Italian, Russian, and Polish</td>
<td></td>
</tr>
<tr>
<td>Control Power</td>
<td>220/240V or 110/120V, Single phase - 50/60 Hz (20 A)</td>
<td></td>
</tr>
<tr>
<td>External I/O</td>
<td>16 Digital Inputs, 16 Digital Outputs</td>
<td></td>
</tr>
<tr>
<td>External Input Ratings</td>
<td>50…60 Hz AC or DC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120…240 V – 1 mA</td>
<td></td>
</tr>
<tr>
<td>External Output Ratings</td>
<td>50…60 Hz AC or DC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30…260V – 1 A</td>
<td></td>
</tr>
<tr>
<td>Analog Inputs</td>
<td>Three Isolated, 4…20 mA or 0…10V (250 Ω)</td>
<td></td>
</tr>
<tr>
<td>Analog Resolution</td>
<td>Analog input 12 Bits (4…20 mA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal parameter 32-Bit resolution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serial Communication 16-Bit resolution (.1 Hz) (Digital Speed Reference)</td>
<td></td>
</tr>
<tr>
<td>Analog Outputs</td>
<td>One Isolated, Eight Non-Isolated, 4…20 mA or 0…10V (600 Ω)</td>
<td></td>
</tr>
<tr>
<td>Communication Interface</td>
<td>Ethernet IP/DPI</td>
<td></td>
</tr>
<tr>
<td>Scan Time</td>
<td>Internal DPI – 2 ms…4 ms.</td>
<td></td>
</tr>
</tbody>
</table>
Table 17 - General Design Specifications (Continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Communications Protocols (Optional)</th>
<th>Enclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DeviceNet</td>
<td>ControlNet</td>
</tr>
<tr>
<td></td>
<td>EtherNet/IP</td>
<td>Lon Works</td>
</tr>
<tr>
<td></td>
<td>Dual-port EtherNet/IP</td>
<td>Lon Works</td>
</tr>
<tr>
<td></td>
<td>PROFIBUS</td>
<td>RS-485 HVAC</td>
</tr>
<tr>
<td></td>
<td>Modbus</td>
<td>RS-485 DF1</td>
</tr>
<tr>
<td></td>
<td>Interbus</td>
<td>RS-232 DF1</td>
</tr>
<tr>
<td></td>
<td>USB</td>
<td></td>
</tr>
<tr>
<td>Lifting Device</td>
<td>Standard / Removable</td>
<td></td>
</tr>
<tr>
<td>Mounting Arrangement</td>
<td>Mounting Sill Channels</td>
<td></td>
</tr>
<tr>
<td>Structure Finish</td>
<td>Epoxy Powder – Paint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exterior Sandtex Light Grey (RAL 7038) – Black (RAL 8022)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal – Control Sub Plates – High Gloss White (RAL 9003)</td>
<td></td>
</tr>
<tr>
<td>Interlocking</td>
<td>Key provision for customer input Disconnecting Device</td>
<td></td>
</tr>
<tr>
<td>Corrosion Protection</td>
<td>Unpainted Parts (Zinc Plated / Clear Chromate)</td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>0…-40 °C (32…104 °F) / 0…50 °C (32…122 °F) - optional</td>
<td></td>
</tr>
<tr>
<td>Fiber-Optic Interface</td>
<td>Rectifier – Inverter – Cabinet (Warning / Trip)</td>
<td></td>
</tr>
<tr>
<td>Door Filter</td>
<td>Painted Diffuser with Mattted Filter or Washable Foam Media</td>
<td></td>
</tr>
<tr>
<td>Door Filter Blockage</td>
<td>Airflow Restriction Trip / Warning</td>
<td></td>
</tr>
<tr>
<td>Storage and Transportation</td>
<td>-40…+70 °C (-40…+158 °F)</td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td>Max. 95%, Noncondensing</td>
<td></td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>0…1000 m (0…3300 ft)</td>
<td></td>
</tr>
<tr>
<td>Altitude (Standard)</td>
<td>Up to 4160V: 1001…5000 m (3301…16,400 ft)</td>
<td></td>
</tr>
<tr>
<td>Altitude (Optional)</td>
<td>>6000V: 1001…2000 m (3301…6600 ft)</td>
<td></td>
</tr>
<tr>
<td>Seismic (UBC Rating)</td>
<td>1, 2, 3, 4</td>
<td></td>
</tr>
<tr>
<td>Standards</td>
<td>NEMA, IEC, CSA, UL, ANSI, IEEE</td>
<td></td>
</tr>
</tbody>
</table>

(1) Voltage Sag tolerance is reduced to -25% when control power is supplied from medium voltage by way of CPT.
(2) Surge arrestors are used for AFE/Direct-to-Drive configurations.
(3) Short-circuit fault rating that is based on input protection device (contactor or circuit breaker).
(4) BIL rating that is based on altitudes < 1000 m (3300 ft). See factory for derating on altitudes > 1000 m (3281 feet).
(5) Optional.
(6) Under certain conditions, power system analysis is required.
Index

A
- AC/DC power supply 121
 - cosel power supply 124
 - location 122
 - output calibration 125
 - replacement 126, 127
- additional resources 10
- air filters 113
 - location 114
- air pressure sensor 96
 - replacement 96
- air quality requirements 191
- altitude rating code 165
- analog control board 141
 - components 141
 - connectors 142
 - current loop transmitter 146
 - disposal 192
 - interface module 145
 - isolated process receiver 147
 - non-isolated process outputs 148
 - replacement 149
 - test points 143
- auxiliary +24V power supply 148

C
- cabinet layout 32
- cable insulation 37
 - AFE requirements 38
 - direct-to-drive 38
 - wire group numbers 39
- cabling cabinet components 51
- catalog number explanation 163
- clamping pressure 83
 - adjustment 84
 - check pressure 83
 - clamp head 84
- commissioning 195
- continuous current rating 165
- control power components
 - ride-through 117
- converter cabinet
 - 2400V 58
 - 3300/4160V 59
 - 6600V 60
 - components 58
- cosel power supply 124
- current loop transmitter 146
- current transformer
 - replacement 56

D
- D.C. link 97
 - reactor replacement 106
 - removal 107
- DC/DC power supply 133
 - replacement 135
 - terminal/connections 134
- device designations 37
- dimensional drawings 32
- DPM. See drive processor module
- drive processor module 137
 - components 137
 - disposal 192
 - test points 138
- drive storage 21
 - siting 21
 - temperature 21

E
- encoder feedback board 149
 - 20B-ENC-1 & 20B-ENC-1-MX3 encoder interface 150
 - 80190-759-01, 80190-759-02 universal encoder interface 151
 - components 150
 - configurations 152
 - input connections 151
 - options 149
 - positional encoder 154
 - quadrature encoder 154
- environmental considerations 191
 - air quality requirements 191
 - hazardous materials 192
- exhaust air hood
 - assembly 25
 - installation 24
- external input/output boards 156
 - D1 display status 157
 - disposal 192
 - replacement 157

F
- fan 97
 - components 109
 - impeller maintenance 111
 - inlet ring replacement 111
 - location 97
 - redundant fan assembly 27
 - removal 109
 - replacement 108
- fiber optic cable 95
 - bend radius 95
 - color code 95
 - length 95
- filter capacitors 101
 - replacement 102
 - testing 104

G
- gasket 88
 - replacement 89
- general precautions 9
Index

ground filter component 100
 replacement 100
grounding 46
 electrical supplies 49
 ground bus 49
 isolation transformer diagram 47
 line reactor diagram 47
 safety 48

H
hall effect sensor
 replacement 55
hazardous materials 192
heatsink
 replacement 87

I
IEC component 37
IFM. See interface module
impeller assembly 111
 maintenance 111
inlet ring 111
 replacement in isolation transformer 112
inlet ring replacement 111
integral isolation transformer
 fan replacement 110
interface module 145
 components 145
 interlocking 49
 isolated process receiver 147

L
line terminations 41
low voltage control 133

M
maintenance 167
 annual 167
 checklist 167
 control power checks 169
 final power checks 170
 operational maintenance 167
 physical checks 168
 reporting 171
motor compatibility 14
motor terminations 41

N
neutral resistor
 direct-to-drive 31
 hood assembly 30
 non-isolated process outputs 148

O
OIB. See optical interface boards
operational maintenance 167
operator interface 19
 basic configurations 19
optical interface 192
optical interface boards 158
 components 159
 LEDs 160
 location 161
 replacement 160
output grounding network 99
 replacement 99

P
positional encoder 154
 guidelines 155
power
 cable terminations 40
 cabling access 40
power cable terminations 40
power connections 41
 Line terminations 41
 motor terminations 41
 power cabling installation 41
power wiring selection 37
 cable insulation 37
powercage 66
 2400V 69
 3300/4160V 70
 6600V 71
 air flow 114
 clamp head 84
 gasket 88
 removal 90
 torque sequence 91

Q
quadrature encoder 154

R
rectifier designs 12
redundant fan assembly 27
resistance checks 67
 SGCT 68
 SGCT anode-to-cathode 73
 snubber capacitance 75
 snubber circuit 68
 snubber resistance 74

S
self-powered SGCT power supply. See SPS board
service duty rating 165
SGCT
- LEDs 77
 - replacement 77
 - resistance test 73
 - snubber circuit assembly 72
 - test points 73
- sharing resistors 67
 - replacement 80, 82
 - resistance test 73
 - test points 73
- shock indicator 23
- simplified electrical drawings 15
 - 2400V 15
 - 3300/4160V 16
 - 6600V 17
- site consideration 21
- snubber capacitors 67
 - replacement 82
 - resistance test 75
 - test points 75
- snubber resistors 67
 - replacement 80
 - resistance test 74
 - test points 74
- SPS board 92
 - calibration 92
 - components 93
 - disposal 192
 - test equipment 94
 - test points 92
- surge arresters 63
 - certification 64
 - operation 64
 - replacement 64
 - testing and care 65

symmetrical gate commutated thyristor. See SGCT

T
- test points
 - analog control board 143
 - thermal sensors 85
 - replacement 85
- topology 11
- torque requirements 181
- torque sequence 91
- transformer cooling fan 29

U
- uninterruptible power supply. See UPS
- UPS 130
 - connect battery 132
 - location 130
 - replace 131
Rockwell Automation Support
Use the following resources to access support information.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Dial Codes</td>
<td>Find the Direct Dial Code for your product. Use the code to route your call directly to a technical support engineer.</td>
<td>http://www.rockwellautomation.com/global/support/direct-dial.page</td>
</tr>
</tbody>
</table>

Documentation Feedback
Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the How Are We Doing? form at http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_-en-e.pdf.

Allan-Bradley, ArcShield, CENTERLINE, Direct-to-Drive, PanelView, PowerCage, PowerFlex, Rockwell Automation, and Rockwell Software are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400
www.rockwellautomation.com

Power, Control and Information Solutions Headquarters
Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kiezelbaan 12a, 1381 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Publication 7000A-UM200E-EN-P - October 2018
Supercedes Publication 7000A-UM200D-EN-P - June 2018
Copyright © 2018 Rockwell Automation, Inc. All rights reserved. Printed in Canada.