Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).
Table of Contents

Preface
- Who Should Use This Manual ... 5
- Summary of Changes ... 5
- Definitions ... 5
- Additional Resources .. 6

Chapter 1
Overview
- Safety Relay Features .. 7

Chapter 2
Installation
- Mounting Dimensions ... 9
- DIN Rail Mounting and Removal .. 9
- Removal .. 10
- Spacing .. 10
- Removable Terminals .. 10
- Spring Clamp Terminals ... 10
- Enclosure Considerations ... 10
- Prevent Excessive Heat .. 11

Chapter 3
Power, Ground, and Wire
- Wiring Requirements and Recommendation 13
- Wire Size and Terminal Torque .. 13
- Terminal Assignment .. 13
- Connect Power Supply .. 14
- Motor Winding Inputs ... 15
- Safety Outputs ... 16
- Derating Curve .. 16
- Surge Suppressors ... 17
- Auxiliary Outputs .. 18
- Monitoring Input .. 19
- Fault Reset Input .. 20

Chapter 4
Configuration
- Vm - Monitoring Voltage ... 21
- ts - Time Delay .. 22

Chapter 5
Timing Diagram
- Timing Diagram Procedure ... 23
Table of Contents

Chapter 6
Status Indicators and Diagnostics
- ERR Flashing Codes .. 26
- Line Breakage .. 26
- With Motor at Standstill 26
- With Motor Spinning ... 26
- Simultaneity of Measuring Signals 27
- Potentiometer Error ... 27
- Internal Device Failure 28

Chapter 7
Application and Wiring Examples
- Guard Locking and E-stop with Electronic Drive 29
- E-stop with Contactors .. 31
- Wye-Delta Connections 32

Chapter 8
Troubleshooting
- Tools Needed .. 33
- Required Tools .. 33
- Follow These Steps .. 34
- View PWR Indicator (Step 1) 35
- ERR Indicator Flashes One Time (Step 2) 36
- Wire Break at L1, L2, or L3 (Step 3) 36
- Feedback Circuit Open (Step 4) 37
- ERR Indicator Flashes 5 Times (Step 5) 38
- ERR Flashes 6 or 7 Times (Step 6) 38
- Output Is Energized but Contactors Are Off (Step 7) 39
- Output Is On While Motor Still Turns (Step 8) 39

Appendix A
Specifications
- General .. 41
- Environmental ... 41
- Power Supply (A1/A2) 42
- Inputs (L1/L2/L3) .. 42
- Safety Outputs ... 44
- Status Outputs .. 46

Appendix B
Regulatory Approval
- Agency Certification 43
- Compliance to European Union Directives 43
- EMC Directive ... 43
- Machine Safety Directive 44
- SIL Rating ... 46
- Performance Level/Category 46

Index .. 47
This manual is a reference guide for MSR safety relays. It describes the procedures that you use to install, wire, and troubleshoot your relay. This manual explains how to install and wire your relay and gives an overview of the operation of the MSR safety relays.

Who Should Use This Manual

Use this manual if you are responsible for designing, installing, programming, or troubleshooting control systems that use the MSR safety relays.

You must have a basic understanding of electrical circuitry and familiarity with safety-related control systems. If you do not, obtain the proper training before using this product.

Summary of Changes

This publication contains new and updated information as indicated in the following table.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated Table 4</td>
<td>21</td>
</tr>
</tbody>
</table>

Definitions

The following terms and abbreviations are used throughout this manual. For definitions of terms that are not listed here, refer to the Allen-Bradley Industrial Automation Glossary, publication AG-7.1.

- **N.C. (Normally Closed)** - An electrical contact whose normal state (that is, no pressure or electrical potential applied) is in the closed position.
- **N.O. (Normally Open)** - An electrical contact whose normal state (that is, no pressure or electrical potential applied) is in the open position.
- **PLC** - A programmable logic controller or a programmable automation controller.
- **Response Time** - Describes the time between the trigger of one input to the OFF state of the output. Throughout this manual, the safety outputs can be described as turning off immediately, which means that the safety outputs turn off within the response time.
- **OSSD (Output Signal Switching Device)** - Typically a pair of solid-state signals that are pulled up to the DC source supply. The signals are tested for short circuits to the DC source supply, short circuits to the DC common and shorts circuits between the two signals.
• **Outputs Energized/De-energized** - Table 1 describes the state of the outputs in this manual when the output is described as energized or de-energized. The exception is the semiconductor output ERR, which is not described in Table 1. The ERR semiconductor output is ON when an error is detected and OFF when no error is detected.

Table 1 - State of the Outputs

<table>
<thead>
<tr>
<th>Terminal</th>
<th>De-energized</th>
<th>Energized</th>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/12</td>
<td>Closed</td>
<td>Open</td>
<td>Voltage free</td>
<td>Monitoring (non-safety)</td>
</tr>
<tr>
<td>23/24</td>
<td>Open</td>
<td>Closed</td>
<td></td>
<td>Safety related</td>
</tr>
<tr>
<td>33/34</td>
<td>Open</td>
<td>Closed</td>
<td></td>
<td>Status only</td>
</tr>
<tr>
<td>43/44</td>
<td>Open</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53/54</td>
<td>Open</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0N</td>
<td>Off</td>
<td>On</td>
<td>Semi-conductor</td>
<td></td>
</tr>
</tbody>
</table>

Additional Resources

These documents contain additional information concerning related products from Rockwell Automation.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1</td>
<td>Provides general guidelines for installing a Rockwell Automation industrial system.</td>
</tr>
<tr>
<td>Product Certifications website: rok.auto/certifications</td>
<td>Provides declarations of conformity, certificates, and other certification details.</td>
</tr>
</tbody>
</table>

You can view or download publications at http://www.rockwellautomation.com/global/literature-library/overview.page.
Chapter 1

Overview

Safety Relay Features

MSR55P back electro-motive-force (EMF) safety relays monitor the voltage that motors generate after their drive voltage is removed and the motor coasts or brakes to a stop. MSR55P safety relays monitor either single- or three-phase motors. MSR55P safety relays operate with pulse width modulated (PWM) drives, smart motor controllers, and electromechanical contactors.

MSR55P safety relays are connected to the motor terminals and measure the induced back EMF as the motor spins to a stop. MSR55P safety relays create a two-channel system by measuring the voltage from L2 to L1 and the voltage from L3 to L1. If the back EMF voltage drops to a certain threshold simultaneously in both channels for a certain duration, standstill is considered achieved, and the outputs are energized.

If the voltage measured on terminals L1/L2/L3 of the MSR55P safety relay rises over the adjusted value plus hysteresis in at least one channel (the motor is switched on or the shaft turns mechanically), the forcibly guided output contacts are switched off immediately (contacts 23/24, 33/34 and 43/44 open while contact 11/12 closes). The monitoring relay de-energizes (53/54 opened), the semiconductor output ON goes off and the OUT indicator turns yellow (= V_m over adjusted value).

To accommodate many types of motors, you can make two adjustments in accordance with the machine risk assessment:

- The threshold of the back EMF voltage.
- A time delay to add additional assurance that the motor has stopped.
MSR55P safety relays can monitor external safety relays and contactors. By monitoring the normally closed contacts, MSR55P safety relays help prevent re-energization of its outputs if the safety relays or contactors have not de-energized. If feedback monitoring is not required, the monitoring circuit must be jumpered.

MSR55P safety relays perform internal tests on startup and during operation. Some faults are reset automatically when the fault is cleared. Other faults are reset manually, by a manually operated switch, or automatically by a jumper. See Status Indicators and Diagnostics on page 25 and Troubleshooting on page 33 for further details.

Table 2 lists the six catalog numbers that are available. The key differences are the power supply to terminals A1/A2 and the setpoint voltage to determine safe standstill speed as the motor spins to a stop.

In general, select models that have the lower standstill monitoring voltage when induction motors are monitored. Servo motors, which have permanent magnets, generally create high voltages at slower revolutions, therefore, the higher standstill monitoring voltage is usually the preferred solution. You must evaluate your application and apply the risk assessment process to determine the proper relay for their specific application.

Table 2 - Model Selection

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24V DC</td>
<td>20…400 mV</td>
<td>Induction motors</td>
<td>440R-S35011</td>
</tr>
<tr>
<td>115V AC</td>
<td>20…400 mV</td>
<td></td>
<td>440R-S35012</td>
</tr>
<tr>
<td>230V AC</td>
<td>20…400 mV</td>
<td></td>
<td>440R-S35013</td>
</tr>
<tr>
<td>24V DC</td>
<td>200 mV…4V</td>
<td>Servo (permanent magnet) motors</td>
<td>440R-S35014</td>
</tr>
<tr>
<td>115V AC</td>
<td>200 mV…4V</td>
<td></td>
<td>440R-S35015</td>
</tr>
<tr>
<td>230V AC</td>
<td>200 mV…4V</td>
<td></td>
<td>440R-S35016</td>
</tr>
</tbody>
</table>
Chapter 2

Installation

Mounting Dimensions

MSR55P safety relays come standard with removable screw-type terminals. Spring-clamp terminals are offered as an option. Figure 2 shows the mounting dimensions.

Figure 2 - Dimensions [mm (in.)]

DIN Rail Mounting and Removal

MSR55P safety relays mount onto 35 mm (1.4 in.) DIN rails: 35x7.5x1 mm (1.4x0.3x0.03 in.) — EN 50022 - 5x7.5.

1. Hold the top at an angle (Figure 3).
2. Slide down until the housing catches the rail.
3. Swing the bottom down and push until the latch clips onto the rail.

Figure 3 - DIN Rail Mounting
Removal

To remove the MSR55P safety relay, use a screwdriver to pry the DIN rail latch downwards until it is in the unlatched position. Then, swing the module up.

Spacing

MSR55P safety relays can be mounted directly next to other MSR and GSR safety relays.

Maintain a space of 50.8 mm (2 in.) above, below, and in front of the relay for adequate ventilation.

Removable Terminals

MSR55P safety relays have removable terminals to ease wiring and replacement.

Figure 4 - Removable Terminals

1. Insert the tip of a small screwdriver into the slot near the terminal screws.
2. To unlock the terminal block, rotate the screwdriver.

The terminal block can then be removed from the housing.

Spring Clamp Terminals

As an accessory, you can purchase removable terminals with spring clamps. The spring clamp terminals can directly replace the screw clamp terminals. See Table 10 on page 41 for the differences in wire size.

Enclosure Considerations

Most applications require installation in an industrial enclosure to reduce the effects of electrical interference and environmental exposure. Pollution Degree 2 is an environment where normally only non-conductive pollution occurs except that occasionally temporary conductivity from condensation can be expected. Overvoltage Category II is the load level section of the electrical distribution system. At this level, transient voltages are controlled and do not exceed the impulse voltage capability of the product insulation.
This equipment is intended for use in a Pollution Degree 2 industrial environment, in overvoltage Category II applications (as defined in IEC 60664-1), at altitudes up to 2000 m (6562 ft) without derating. This equipment is considered Group 1, Class A industrial equipment according to IEC/CISPR 11. Without appropriate precautions, there can be difficulties with electromagnetic compatibility in residential and other environments due to conducted and radiated disturbances.

This equipment is supplied as open-type equipment. The relays must be mounted within an enclosure that is suitably designed for those specific environmental conditions that are present and appropriately designed to help prevent personal injury as a result of accessibility to live parts. The enclosure must have suitable flame-retardant properties to help prevent or minimize the spread of flame, in compliance with a flame spread rating of 5VA, V2, V1, V0 (or equivalent) if non-metallic. The interior of the enclosure must be accessible only by the use of a tool. Subsequent sections of this publication contain additional information regarding specific enclosure-type ratings that are required to comply with certain product safety certifications.

For more information, see:
- Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1, for additional installation requirements.
- NEMA Standard 250 and IEC 60529, as applicable, for explanations of the degrees of protection provided by different types of enclosure.

Prevent Excessive Heat

For most applications, normal convective cooling keeps the relay within the specified operating range. Verify that the specified temperature range is maintained. Usually, proper spacing of components within an enclosure is sufficient for heat dissipation.

In some applications, other equipment inside or outside the enclosure can produce a substantial amount of heat. In this case, place blower fans inside the enclosure to help with air circulation and to reduce hot spots near the controller.

Additional cooling provisions are necessary when high ambient temperatures are encountered. Do not bring in unfiltered outside air. Place the controller in an enclosure to help protect it from a corrosive atmosphere. Harmful contaminants or dirt could damage components or cause improper operation. In extreme cases, you may need air conditioning to help protect against heat buildup within the enclosure.
Notes:
Power, Ground, and Wire

Wiring Requirements and Recommendation

ATTENTION: Before you install and wire any device, disconnect power to the system.

ATTENTION: Calculate the maximum possible current in each power and common wire. Observe all electrical codes that dictate the maximum current allowable for each wire size. Current above the maximum rating causes wiring to overheat, which can cause damage.

- Allow for at least 50 mm (2 in.) between I/O wire ducts or terminal strips and the relay.
- Route incoming power to the relay by a path separate from the device wiring. Where paths must cross, their intersection must be perpendicular.
- Do not run signal or communications wiring and power wiring in the same conduit. Route wires with different signal characteristics by separate paths.
- Separate wiring by signal type. Bundle wiring with similar electrical characteristics together.
- Separate input wiring from output wiring.
- Label wiring to all devices in the system. Use tape, shrink-tubing, or other more dependable means to label wire. Use colored insulation as well to identify wiring by signal characteristics. For example, use blue for DC wiring and red for AC wiring.

Wire Size and Terminal Torque

See Table 10 on page 41.

Terminal Assignment

The safety relays have eight terminal blocks: four on the top and four on the bottom. Figure 5 on page 14 shows the front face marking of each of the relays, including the terminal and status indicator identifications. The difference between the two models is the standstill monitoring voltage, Vm. In
Figure 5. The monitoring voltage of the relay on the left is 200 mV...4V; the relay on the right has a monitoring voltage from 20...400 mV.

Table 3 lists the terminal functions.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1(+) - A2(-)</td>
<td>Power supply</td>
</tr>
<tr>
<td>L1/L2/L3</td>
<td>Motor connections</td>
</tr>
<tr>
<td>11/12</td>
<td>Voltage-free redundant monitoring (non-safety) (N.C.)</td>
</tr>
<tr>
<td>23/24, 33/34, 43/44</td>
<td>Voltage-free redundant safety contacts (N.O.)</td>
</tr>
<tr>
<td>53/54</td>
<td>Voltage-free monitoring (auxiliary) contact (N.O.)</td>
</tr>
<tr>
<td>X1/X2</td>
<td>Connection for feedback circuit</td>
</tr>
<tr>
<td>X3/X2</td>
<td>Reset for fault conditions.</td>
</tr>
<tr>
<td>A3(+) - A4(-)</td>
<td>Power supply for semiconductor outputs</td>
</tr>
<tr>
<td>ON</td>
<td>Semiconductor output indicates that safety outputs are ON.</td>
</tr>
<tr>
<td>ERR</td>
<td>Semiconductor output indicates fault condition.</td>
</tr>
</tbody>
</table>

Connect Power Supply

Power for the MSR55P safety relay depends on the model. The primary power supply is connected to terminals A1 and A2. An auxiliary (12...30V DC only) supply voltage can be connected to terminals A3/A4 to provide semiconductor diagnostics.
Depending on the model, the primary supply can be 24V DC, 115V AC or 230V AC. When an AC supply is used, both 50 Hz and 60 Hz are acceptable.

When a 24V DC supply is used, it must comply with the CE (European) Low Voltage Directive (LVD) or the U.S. National Electric Code. In the European Union, the 24V DC supply must be a safety extra low voltage (SELV) or protected extra low voltage (PELV) rated supply. In the U.S, a PELV or Class 2 supply must be used. Many of the Bulletin 1606 power supplies are SELV-, PELV-, and Class 2 compliant.

Figure 6 shows the power supply connections. Power to A1 is required to operate the MSR55P safety relay. Power to A3 is only necessary if the solid-state auxiliary status signals (ON and ERR) are used.

![Figure 6 - Power Supply Connections](image)

Motor Winding Inputs

The motor windings are connected to terminals L1, L2, and L3. The connections must be made directly at the motor with no electrical devices (like transformers and contactors) between the motor and the MSR55P safety relay. Figure 7 shows wiring for a single-phase, DC, and 3-phase motor.

![Figure 7 - Motor Connections](image)
Safety Outputs

The safety outputs consist of two redundant positive-guided relays that are connected in series. Terminals 11/12 are normally closed monitoring (non-safety). Terminals 23/24, 33/34, and 43/44 are normally open. The outputs can drive loads that are either AC or DC powered. Figure 8 shows typical connections of the safety outputs to safety contactors.

Figure 8 - Safety Outputs

Derating Curve

The currents through the safety outputs are subject to derating. The derating depends on the current through each of the outputs and the ambient temperature. Figure 9 shows a graphical representation of the current limit over the ambient temperature range.

Calculate the total quadratic current, which is the sum of the squares of the currents through each of the safety outputs.

\[I_1^2 + I_2^2 + I_3^2 = \Sigma I^2 \text{ (A}^2) \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_1, I_2, I_3</td>
<td>The currents in contact paths 23/24, 33/34 and 43/44</td>
</tr>
</tbody>
</table>

Then, use the graph in Figure 9 to find the highest ambient temperature that is allowed.

Figure 9 - Safety Output Derating Curve
• Example 1: A 5-amp load through each of the three output circuits.
\[5^2 + 5^2 + 5^2 = 75 \text{ A} \]
From the derating curve, the maximum permitted ambient temperature is 40 °C (104 °F).
• Example 2: A 2-amp load through each of the three output circuits.
\[2^2 + 2^2 + 2^2 = 12 \text{ A} \]
From the derating curve, the maximum permitted ambient temperature is 60 °C (140 °F).

Surge Suppressors

Because of the potentially high current surges that occur when switching inductive load devices, such as motor starters and solenoids, the use of surge suppression to help protect and extend the operating life of the relays is required. By adding a suppression device directly across the coil of an inductive device, you can prolong the life of the outputs. You also reduce the effects of voltage transients and electrical noise from radiating into adjacent systems.

Figure 10 shows examples of output contactors with a suppression device. We recommend that you locate the suppression device as close as possible to the load device.

For outputs that use 24V DC, we recommend 1N4001 (50V reverse voltage) to 1N4007 (1000V reverse voltage) diodes for surge suppression for the OSSD safety outputs, as shown in Figure 10. The diode must be connected as close as possible to the load coil.

For outputs that use 120V AC or 240V AC, we recommend metal oxide varistors.

Some devices, like the Bulletin 100S-CxxEJ and 100S-CxxQJ safety contactors have built-in suppression, therefore additional suppression devices are not needed.

Figure 10 - Surge Suppression Components

Metal Oxide Varistors for VAC supply

Metal Oxide Varistors for VDC supply

Diodes for VDC supply

V common
Auxiliary Outputs

Auxiliary contacts are intended to convey status information to the machine control system (programmable logic controller [PLC]) or to an indicator light. They must not be used in the safety-related circuits. Figure 11 shows an example of the auxiliary circuits.

MSR55P safety relays have one auxiliary voltage-free contact and two solid-state contacts.

The voltage-free contact is terminals 53/54. This contact can accommodate a DC or AC voltage up to 230V. Terminal 53/54 closes when the safety outputs are energized.

MSR55P safety relays have two semiconductor auxiliary outputs. The ON output turns on when the outputs are energized. The ERR output turns on when an error is detected by the MSR55P safety relay. The semiconductor outputs require a separate 24V DC connection and must have a common reference to the PLC.

Figure 11 - Example Auxiliary Circuits
Monitoring Input

Monitoring of external devices, like safety control relays and safety contactors, can be accomplished by adding their normally closed contacts between X1 and X2. The safety outputs of the MSR55P safety relay are enabled only if the feedback loop X1/X2 is closed while standstill is detected, that is the external contactors/components are in initial state (N.C. contacts are closed).

The feedback circuit X1/X2 must be closed as long as the safety outputs are disabled. If not, the ERR indicator shows fault code 4.

In some applications, where monitoring cannot be done, install a jumper between X1 and X2. The jumper is shown in the No Monitoring diagram in Figure 12.

If additional devices must be controlled, safety control relays or contactors can be connected to the safety outputs of the MSR55P safety relay. The MSR55P safety relay can monitor the status of these devices by connecting their voltage-free contacts in series, as shown in the Contactor Monitoring diagram in Figure 12.

The MSR55P safety relay is shipped from the factory with a jumper from X1 to X2.

ATTENTION: Terminals X1-X2-X3 have electrical connections to measuring inputs L1-L2-L3. Voltage-free contacts that are rated for L1-L2-L3 voltage must be used for these connections.

Figure 12 - Examples of Feedback Monitoring Circuits
Fault Reset Input

The X2/X3 connection can reset some external faults. The reset can occur automatically or manually. The MSR55P safety relay is shipped from the factory with a jumper from X2 and X3 for automatic reset. A voltage-free contact can be used to reset a fault condition manually.

![Fault Reset Circuit Examples](image)

ATTENTION: Terminals X1-X2-X3 have electrical connections to measuring inputs L1-L2-L3. Voltage-free contacts that are rated for L1-L2-L3 voltage must be used for these connections.

If control of terminal X3 must be by a push button or by a PLC via an interposing relay, the push button or relay must have the necessary insulation between the motor voltage and PLC potential. Figure 13 shows two typical connections to the fault reset input.

Figure 13 - Fault Reset Circuit Examples
Chapter 4

Configuration

The configuration of MSR55P safety relays is accomplished by adjusting the two switches on the front face. Each switch control knob rotates two potentiometers. The recommended practice is to set the switches to the minimum setting initially, and then adjust them as necessary to reduce nuisance tripping while maintaining a safe application.

V_m - Monitoring Voltage

The trip voltage of the back EMF is adjusted by the ten position V_m potentiometer. When the back EMF drops below the voltage level, the MSR55P safety relay begins the delay timer. When the voltage exceeds that voltage setting, the outputs are de-energized. Table 4 shows the settings of each of the catalog numbers.

<table>
<thead>
<tr>
<th>Position</th>
<th>440R-S35014, 440R-S35015, 440R-S35016 [Volts]</th>
<th>440R-S35011, 440R-S35012, 440R-S35013 [x10mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0.7</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>3.0</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>4.0</td>
<td>40</td>
</tr>
</tbody>
</table>
Chapter 4 Configuration

t_s - Time Delay

When the back EMF of the motor drops below the V_m voltage setting, the standstill delay timer starts. The delay time is set by the 10 position t_s potentiometer. During the timing cycle, the OUT indicator flashes. Table 5 shows the delay time for each setting. After the delay expires, the outputs are energized.

Table 5 - Delay Time Settings

<table>
<thead>
<tr>
<th>Position</th>
<th>Delay Time [seconds]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td>3.0</td>
</tr>
<tr>
<td>9</td>
<td>4.0</td>
</tr>
<tr>
<td>10</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Timing Diagram

Timing Diagram Procedure

A typical timing diagram of MSR55P safety relays is shown in Figure 14 on page 24.

1. Upon power-up, the MSR55P safety relay performs internal safety checks.
2. With the motor at standstill, the outputs are energized.
3. When the motor is turned ON, the outputs are de-energized.
4. A motor stop command is issued, and the motor spins down.
5. The back EMF reaches the level of the V_m setting, the standstill delay timer starts. The position of the t_s potentiometer determines the duration of the delay.
6. When the timing cycle completes, standstill is considered achieved and the outputs are energized.
7. If one of the monitoring voltage signal lines break, the outputs are de-energized and the semiconductor ERR output turns ON after 2.5 seconds.
8. If the line is reconnected, no changes are noticed if the manual fault reset is used.
9. When the fault reset is closed, the outputs are energized.
10. The motor is turned back on, and the safety outputs are de-energized.
11. When voltage-free contacts control the motor, the MSR55P safety relay can detect line breakage on L2 and L3. After a 2.5 second delay, the semiconductor ERR signal turns ON. The ERR signal must be used to initiate a stop command to the motor. The outputs remain de-energized.

IMPORTANT The MSR55P safety relay does not detect line breakage with motor running and connected to an electronic drive.

12. The line break is reinstated.
13. Upon closure of the reset signal, the outputs are energized.
Figure 14 - Typical Timing Diagram

- Supply voltage on
- Safety Outputs Energized
- Motor on
- Stop
- Back EMF reaches trip point
- Standstill detected
- Line breakage
- Reset X3 - X2
- Motor on
- Motor runs down
- Reset X3 - X2

- Voltage level (V_m)
- Motor speed / voltage
- Line breakage
- t_E
- t_s
- t_{E}
- t_s
- $t_{E} = 2...2.5s$
- Start up delay time
- Standstill delay time t_s

- ERR
- ON
- 11-12
- 23-24
- 33-34
- 43-44
- 53-54
- L1/L2/L3
- A1/A2
- V_5
Chapter 6

Status Indicators and Diagnostics

Three indicators on the front provide the operating status of the MSR55P safety relay. Table 6 describes the state of each indicator.

Table 6 - Status Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_S</td>
<td>Off</td>
<td>No power to A1</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Normal operation</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Internal Fault</td>
</tr>
<tr>
<td>OUT</td>
<td>Green</td>
<td>Safety outputs are energized</td>
</tr>
<tr>
<td></td>
<td>Flashing green</td>
<td>In timing cycle</td>
</tr>
<tr>
<td></td>
<td>Flashing orange</td>
<td>Intermittent crossing of the V_m trip point</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>Safety outputs are de-energized</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Code 1 or code 5 error is present</td>
</tr>
<tr>
<td>ERR</td>
<td>Off</td>
<td>No faults exist; normal operation</td>
</tr>
<tr>
<td></td>
<td>Flashing red</td>
<td>Fault is present. See ERR Flashing Codes on page 26.</td>
</tr>
</tbody>
</table>

MSR55P safety relays include a number of facilities to detect faults that could influence the safety function of the module. Checks are conducted on power-up of the unit and in cycles during normal operation. If a fault occurs, the output relays switch off. The fault state is indicated with the ERR indicator, the V_S indicator, and the semiconductor output ERR.

With safety relevant failures, your MSR55P safety relay differentiates between external failures (broken wire/offset, simultaneity failure, or feedback circuit failure) and internal failures.

Broken wire/offset failures and feedback circuit failures can be restored by using manual reset. They can also be reset automatically after removing the fault by placing a jumper from terminal X2 to X3.

The number of times the ERR status indicator blinks communicates diagnostics. When multiple faults exist simultaneously, the ERR indicator shows the highest priority. After the highest priority fault is corrected, the ERR shows the next highest priority fault. Figure 15 on page 26 shows the codes in order of priority.
ERR Flashing Codes

Figure 15 - ERR Flashing Codes

1. Undervoltage at VS
2. Wire-break/offset on L1 or L2
3. Wire-break/offset on L3
4. Failure in feedback circuit X1-X2
5. Simultaneity failure signal L2/L3
6. Potentiometer error V_m
7. Potentiometer error t_s

Flashing codes of the ERR indicator in sequence of priority

Line Breakage

Line breakage can be detected at standstill or with the motor spinning.

With Motor at Standstill

With the motor at standstill, the outputs of the MSR55P safety relay are energized. A break in the wires at L1, L2, and L3 is detected. The ERR indicator flashes and the ERR semiconductor output turns ON.

- **L3** - The ERR indicator flashes three times.
- **L2** - The ERR indicator flashes two times.
- **L1** - The ERR indicator flashes two times.

With Motor Spinning

Electronic Drive

In the case where the motor is spinning under the command of an electronic drive, the outputs are de-energized. Line breakage is not detected by the MSR55P safety relay. This state is still considered a safe situation because the outputs of the MSR55P safety relay are de-energized. When the drive turns off, and the motor spins to a standstill; the line breakage is detected and the following occurs:

- The outputs of the MSR55P safety relay remain de-energized.
- The ERR output turns ON.
- The ERR status indicator flashes the code that is associated with the breakage.
• Voltage-Free Contactor
 The MSR55P safety relay detects line breakage on L1, L2, and L3. The ERR semiconductor output turns ON and the ERR indicator flashes the appropriate number of times. The machine-controlled system continues to control the motor. This state is considered a safe situation because the outputs of the MSR55P safety relay are de-energized. The machine control system can respond to the ERR output and turn off the motor. When the contactor turns off, and the motor spins to a standstill; the line breakage is detected and the following occurs:
 – The outputs of the MSR55P safety relay remain de-energized.
 – The ERR output turns ON.
 – The ERR status indicator flashes the code that is associated with the breakage.

Simultaneity of Measuring Signals

As an additional safety feature, the two input signals (L2 and L3) are compared continuously. This feature allows the MSR55P safety relay to detect internal failures in one measuring signal.

If the signals are different for at least 2.5 s (one channel >V_m, the other <V_m), a simultaneity failure is detected. The semiconductor output ERR is switched on, the ERR status indicator flashes with failure code 5, and the OUT indicator is off.

If the measured signals return to the same level <V_m, the error remains stored and the outputs are disabled.

The simultaneity failure is only reset when both channels return to >V_m. If after that both channels drop below the setting value, <V_m, the output relays switch on.

Potentiometer Error

To achieve the required safety when adjusting the voltage threshold for standstill detection, each setting function is accomplished with two potentiometers having one common setting knob. If another setting is detected on the two corresponding potentiometers, the potentiometer error V_m or t_s is displayed.

To correct the fault, try to readjust the potentiometer. Make sure that you feel the detent.
Internal Device Failure

Internal failures are always stored independent of the reset input X3. Internal failures cause the output relays to switch off immediately, the semiconductor output ERR to switch on, and the V_S indicator to change from green to red.

Examples for internal failures include:

- Failure on safety relays (for example, welded output contacts).
- Internal failures on measuring channels and measuring circuits.
- Internal failures on control circuits for the safety relays.

Cycle power to terminal A1 to clear the fault.
Chapter 7

Application and Wiring Examples

This chapter provides typical examples of applications and wiring diagrams to help you understand how the MSR55P safety relay can be applied. You must perform a risk assessment and make appropriate adjustments to these examples to provide the safety performance that is required for your application.

These applications show a focus on functional safety. You must also consider safety features including fuses, circuit breakers, and overload protection.

Guard Locking and E-stop with Electronic Drive

Figure 16 on page 30 shows a typical application where the MSR55P safety relay monitors the speed of a motor. In this application, a PowerFlex® 525 drive (with an additional contactor between the AC drive and the motor) controls the speed and direction of the motor. The MSR55P safety relay allows access to the hazard after the motor has achieved its standstill settings. The GSR DI safety relay monitors the guard locking switch and the E-stop push button. The DI safety relay enables the drive to restart after the gate is closed and locked and the E-stop is released.

The 440G switch can be replaced with the TLS-ZR switch if a higher gate-holding force is needed.

Shielded cable must be used for the motor-monitoring wires L1, L2, and L3. The shield must be grounded at the motor.

Table 7 - Guard Locking and E-stop with Electronic Drive

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Enable</td>
<td>Close the safety gate, release the E-stop, and press the Reset button.</td>
</tr>
<tr>
<td>Production Start</td>
<td>With the safety system enabled, press the Start button to energize the PowerFlex 525 drive-controlled motor.</td>
</tr>
<tr>
<td>Production Stop</td>
<td>A normal production stop is accomplished by pressing the Stop push button. This stop does not require access to the hazardous area.</td>
</tr>
<tr>
<td>Safety Stop</td>
<td>A safety stop is initiated by pressing the E-stop push button. The PowerFlex 525 drive executes an immediate stop (Stop Category 0, coast to a stop). When the motor spins down to a level below the point where it is generating less than 70 mV, the MSR55P safety relay starts its standstill time-delay timer. After 3 seconds, the MSR55P safety relay energizes its outputs, which allows the gate to be unlocked.</td>
</tr>
<tr>
<td>Unlock the Safety Gate</td>
<td>Use the Lock/Unlock selector switch to unlock the gate and gain access to the hazardous area. The selector switch holds the 440G guard locking switch in the unlocked state. The 440G switch releases the lock and turns its safety outputs off. The DIS safety relay is set to AND logic, therefore, the DIS safety relay cannot be reset until both the gate is closed and lock, AND the E-stop is released.</td>
</tr>
<tr>
<td>Lock the Safety Gate</td>
<td>Close the gate. Use the Lock/Unlock selector switch to lock the gate. With the E-stop released, press the Reset button to enable the safety system and allow production to restart.</td>
</tr>
<tr>
<td>Safety Rating</td>
<td>The safety system has three essential safety functions; all three meet the requirements for Category 4 PLe per ISO13849-1 and SIL CL 3 per IEC 60261.</td>
</tr>
</tbody>
</table>
 • Guard locking function
 • E-stop function
 • Speed monitoring function
IMPORTANT If Category 3, PLd, SIL CL 2 is the required safety performance for the guard locking and E-stop functions, then the K1 contactor can be removed. With K1 removed, the standstill monitoring by the MSR55P safety relay retains the rating of Cat 4, PLe; SIL CL 3.

Figure 16 - Example Schematic
E-stop with Contactors

Figure 17 shows a typical application where the MSR55P safety relay monitors the speed of a motor that contactors turn on and off. When the MSR55P safety relay detects that the motor has achieved its standstill settings, the MSR55P safety relay energizes its outputs. You must perform a risk assessment to determine the proper settings of V_m and t_s.

An E-stop push button initiates a safety stop. A PLC turns the motor on and off, provided the safety system is enabled.

Table 8 - E-stop with Contactors

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Enable</td>
<td>Release the E-stop and press the Reset button.</td>
</tr>
<tr>
<td>Production Start/Stop</td>
<td>With the safety system enabled, the PLC can start and stop the motor.</td>
</tr>
<tr>
<td>Safety Stop</td>
<td>Press the E-stop to stop the motor; the motor coasts to a stop. When the</td>
</tr>
<tr>
<td></td>
<td>motor spins down to a speed below the V_m setting of 70 mV, the MSR55P</td>
</tr>
<tr>
<td></td>
<td>safety relay begins its timing sequence. After 3 seconds, the MSR55P safety</td>
</tr>
<tr>
<td></td>
<td>relay energizes its outputs.</td>
</tr>
<tr>
<td>Safety Rating</td>
<td>The safety system has two functions (E-stop and speed monitoring). Both</td>
</tr>
<tr>
<td></td>
<td>functions can be used in applications up to Category 4, PLe per ISO13849-1</td>
</tr>
<tr>
<td></td>
<td>and SIL CL 3 per IEC 60261. The speed monitoring rating of the system</td>
</tr>
<tr>
<td></td>
<td>depends on how the outputs of the MSR55P safety relay are used.</td>
</tr>
</tbody>
</table>

Figure 17 - E-stop with Motor Controlled by Contactors

![Diagram showing the connection between E-stop button, PLC, and contactors for a safety system](image-url)
Wye-Delta Connections

Figure 18 shows a typical wye-delta application where the MSR55P safety relay monitors the speed of a motor that contactors turn on and off. When the MSR55P safety relay detects that the motor has achieved its standstill settings, the MSR55P safety relay energizes its outputs. You must perform a risk assessment to determine the proper settings of V_m and t_s.

Table 9 - Wye Delta Connections

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Start</td>
<td>When the main switch is closed, the wye contactor (K2) energizes and allows a start.</td>
</tr>
<tr>
<td>Production Start</td>
<td>Press Start to pull in K1. The K1 contacts hold in the start circuit, starts the rotation of the motor and 700-FEY2QU23 timer relay begins timing. After the time expires, the 700-FEY2QU23 relay drops out the K2 wye contactor and pulls in the K3 delta contactor. The motor is now running at full speed and torque.</td>
</tr>
<tr>
<td>Production Stop</td>
<td>Press the Stop button. The K1 contactor drops out, the 700-FEY2QU23 opens its outputs, and the motor coasts to a stop. When the motor spins down to a speed below the V_m setting of 70 mV, the MSR55P safety relay begins its timing sequence. After 3 seconds, the MSR55P safety relay energizes its outputs.</td>
</tr>
<tr>
<td>Safety Stop</td>
<td>When the MSR55P safety relay energizes its outputs, K4 and K5 are used to execute the necessary safety stops.</td>
</tr>
<tr>
<td>Safety Rating</td>
<td>The speed monitoring function that is performed by the MSR55P safety relay meets the requirement of Category 4, PLe per ISO13849-1 and SIL CL 3 per IEC 60261. The rating of the safety functions initiated by K4 and K5 depends on additional circuitry that is not shown.</td>
</tr>
</tbody>
</table>

Figure 18 - Wye-delta Connections

IMPORTANT

- K2 and K3 must be mechanically interlocked.
- With 3-phase connection of MSR55P safety relay, the wye contactor (K2) must be closed after the motor is switched off to detect standstill. If not the failure signal "broken wire" blocks the output contacts in the off position.
Chapter 8

Troubleshooting

This chapter explains a systematic approach to determine the likely cause of the MSR55P safety relay being in a faulted state or not operating properly. It describes the procedures that you use to troubleshoot your relay.

Tools Needed

To troubleshoot your MSR55P safety relay, you need the following tools.

Required Tools

- **Medium-sized Screwdriver**: For terminal screws, to remove terminal blocks, and to configure the switches on the front face of the relays.

- **Digital Multimeter**: To measure signal levels and contact resistance.
To diagnose the condition of the MSR55P safety relay, follow the steps in Figure 19.

Figure 19 - Troubleshooting Flowchart

```
Start

V, indicator green? Yes → Go to Step 1 (page 35)

ERR indicator flashes 1x? Yes → Go to Step 2 (page 36)

No → Go to Step 4 (page 37)

ERR indicator flashes 2x or 3x? Yes → Go to Step 3 (page 36)

No → Go to Step 5 (page 38)

ERR indicator flashes 4x? Yes → Go to Step 6 (page 38)

No → Go to Step 7 (page 39)

Output on while motor still on? Yes → Go to Step 8 (page 39)

No → Relay is functioning properly
```
View PWR Indicator (Step 1)

The first troubleshooting step is to examine the PWR indicator on the front of your MSR55P safety relay.

The PWR status indicator has two possible states:

<table>
<thead>
<tr>
<th>Status</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR indicator is OFF</td>
<td>Measure the voltage at terminal A1 to A2, as shown in Figure 20. If the voltage at the terminals is within specification, partially pop out the terminal blocks for A1 and A2 and then reinsert them. If the PWR indicator does not turn on, then you must replace the MSR55P safety relay.</td>
</tr>
<tr>
<td>PWR indicator is red</td>
<td>Cycle power to the MSR55P safety relay. If the PWR status indicator is still red after cycling the power, then you must replace the MSR55P safety relay.</td>
</tr>
</tbody>
</table>

Figure 20 - Measure Supply Voltage at the Terminals

Acceptable Ranges
- 21.6...28.8V DC
- 92...126.5V AC
- 184...253V AC
Chapter 8 Troubleshooting

ERR Indicator Flashes One Time (Step 2)

Reset of an undervoltage event occurs automatically; regardless of the status of the fault reset input at terminal X3.

Two cases must be considered:

- **Momentary**
 The MSR55P safety relay resets itself automatically if a momentary undervoltage event occurs, regardless of the fault reset circuit. The momentary power dip can occur in the two cases:
 - Output energized (standstill state): The output de-energizes momentarily and the ERR semiconductor output turns ON. When the voltage returns to the normal level, the output is re-energized and the ERR semiconductor output turns OFF.
 - Output de-energized (non-standstill state): With the motor rotating faster than standstill, the outputs are already de-energized. When the voltage drops, the ERR indicator flashes 1x and the ERR semiconductor output turns ON. When the voltage returns to normal, the ERR indicator stops flashing and the ERR semiconductor output turns OFF.

If the ERR semiconductor output is an input to the PLC that stops the process if there is an error with the MSR55P safety relay, a momentary voltage dip is difficult to trace to its cause.

- **Sustained**
 The ERR semiconductor output is ON and the ERR indicator is flashing 1X. An undervoltage exists at A1/A2. Measure the voltage at the terminal A1 to A2 as shown in Figure 20 on page 35. With your schematics, trace the voltage back to its source to determine what could be the cause of the undervoltage.

Wire Break at L1, L2, or L3 (Step 3)

Wire breakage is hierarchical. If both L2 and L3 are broken, then the MSR55P safety relay reports that L2 is broken. If L1 is broken, the MSR55P safety relay reports that L2 is broken as L2 has a higher priority than L3. When L2 is corrected, then the MSR55P safety relay reports the L3 broken.

Turn off the motor and allow it to achieve standstill.

ATTENTION: Use an appropriate resistor network to discharge residual capacitance, if any.

Use an ohmmeter to measure the resistance of the motor windings at L2 or L3 to L1, as shown in Figure 21.

- OK - a low resistance
- Not good - the meter shows an open circuit,
If an open circuit is detected, trace the wiring from the MSR55P safety relay to the motor connection, to determine where the open circuit exists.

Figure 21 - Measure the Motor Resistance

![Motor Resistance Measurement Diagram](image)

Acceptable Range: Motor winding resistance [ohms]

Unacceptable Range: O.L. - open circuit

Feedback Circuit Open (Step 4)

The circuit between terminal X1 and X2 is open.

With motor turned OFF, measure the resistance between X1 and X2. The resistance must be close to 0 Ω. If the resistance shows an open circuit, trace the circuit through the components to find the open circuit.

If the circuit is closed (measures 0 Ω), try cycling the power to the MSR55P safety relay. If the ERR continues to show four flashes, then replace the MSR55P safety relay.

Figure 22 - Measure the Resistance in the Feedback Circuit

![Feedback Circuit Resistance Measurement Diagram](image)

Acceptable Range: <2 ohm
ERR Indicator Flashes 5 Times
(Step 5)

The MSR55P safety relay checks for simultaneity of the signals at L2 and L3. If the signals are different for at least 2.5 s (one channel > V_m and the other < V_m), a simultaneity failure is detected. The ERR semiconductor output turns on, the ERR status indicator flashes failure code 5, and the OUT status indicator turns off.

With power removed from the motor, measure the motor-winding resistance as shown in Figure 23. If the resistance is different between L2 and L3, check the wiring and measure the motor resistance at the motor.

If the motor resistance is the same on L2 and L3, then an internal fault exists and the MSR55P safety relay must be replaced.

When the fault is corrected, the motor must be rotated above V_m and then stopped to reset the MSR55P safety relay. The fault reset does not depend on the status of the X3/X2 connection; the reset occurs automatically.

Figure 23 - Simultaneous Error

ERR Flashes 6 or 7 Times
(Step 6)

Internally, the V_m and t_s adjustments rotate two potentiometers. When the two potentiometers are not set to the same level, the ERR flashes and the ERR semiconductor output turns ON.

To correct this situation, try to rotate the switch to a new position and then back to the desired position. If the fault is not corrected, then replace the MSR55P safety relay.
Output Is Energized but Contactors Are Off (Step 7)

Measure the voltage at the contactors. An example of the measurement points is shown in Figure 24. If voltage is not present at point 1, measure the voltage at points 2 and 3 in the circuit.

If voltage is not present at point 3, then following the wiring back to the source to detect the cause (blown fuse, tripped circuit breaker, open wire connection).

If the voltage is present at point 3 but is not available at point 2, check the wiring at the relay terminals. If the wiring is okay, then you must replace the MSR55P safety relay.

Output Is On While Motor Still Turns (Step 8)

Reduce setting of \(V_m \) if necessary to minimum. If the outputs are still enabled, a wiring problem on the measuring wires could be the reason (short circuit on terminals L2/L3 to L1) or the motor generates only a low voltage. Check connection of measuring inputs to motor winding according to the connection examples.

Increase the delay time \(t_s \) setting to allow the motor more time to spin to a stop.
Appendix A

Specifications

General

Table 10 - General Specifications

<table>
<thead>
<tr>
<th>Attribute</th>
<th>MSRSSP Screw Terminals</th>
<th>MSRSSP Spring Clamp Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions, WxHxD [mm (in.)]</td>
<td>45 x 104 x 121 (1.77 x 4.09 x 4.76)</td>
<td>45 x 111 x 121 (1.77 x 4.37 x 4.76)</td>
</tr>
<tr>
<td>Shipping weight, approx. [g (lb)]</td>
<td>400 (0.88)</td>
<td>—</td>
</tr>
<tr>
<td>Wire size [mm² (AWG)]</td>
<td>1 x 0.2 … 2.5 (24…14)</td>
<td>2 x 0.2 … 1.5 (24…16)</td>
</tr>
<tr>
<td>Wire temperature [°C (°F)]</td>
<td>Solid copper that withstands 60 (140)</td>
<td>Stranded copper that withstands 75 (167)</td>
</tr>
<tr>
<td>Wire strip length [mm (in.)]</td>
<td>8 (0.31)</td>
<td>12 (0.47)</td>
</tr>
<tr>
<td>Terminal screw torque [N•m (lb•in)]</td>
<td>0.6 (7)</td>
<td>—</td>
</tr>
<tr>
<td>Terminal protection</td>
<td>IP20</td>
<td></td>
</tr>
<tr>
<td>Enclosure protection</td>
<td>IP40 (NEMA 1)</td>
<td></td>
</tr>
<tr>
<td>Case material</td>
<td>Thermoplastic with V0 behavior according to UL94</td>
<td></td>
</tr>
</tbody>
</table>

Environmental

Table 11 - Environmental Specifications

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Standard</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, operating [°C (°F)]</td>
<td>IEC/EN 61068-1</td>
<td>-25…+60 (-13…+140) See Figure 9 on page 16.</td>
</tr>
<tr>
<td>Temperature, storage [°C (°F)]</td>
<td>IEC/EN 61068-1</td>
<td>-40…+75 (-40…+167)</td>
</tr>
<tr>
<td>Vibration [Hz, mm]</td>
<td>IEC/EN 61068-2-6</td>
<td>10…55, 0.35</td>
</tr>
<tr>
<td>Climate [°C / °C / days]</td>
<td>IEC/EN 61068-1</td>
<td>25 / 060 / 04</td>
</tr>
<tr>
<td>Electrostatic discharge, Air [kV]</td>
<td>IEC/EN 61000-4-2</td>
<td>8</td>
</tr>
<tr>
<td>RF immunity [V/m]</td>
<td>IEC/EN 61000-4-3</td>
<td>20</td>
</tr>
<tr>
<td>Fast transients [kV]</td>
<td>IEC/EN 61000-4-4</td>
<td>2</td>
</tr>
<tr>
<td>Voltage surge between L1/L2/L3 [kV]</td>
<td>IEC/EN 61000-4-5</td>
<td>2</td>
</tr>
<tr>
<td>A1/A2 with AC supply [kV]</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>A1/A2 with DC supply [kV]</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Conducted immunity [kV]</td>
<td>IEC/EN 61000-4-6</td>
<td>10</td>
</tr>
<tr>
<td>Pollution degree</td>
<td>IEC/EN 60664-1</td>
<td>2</td>
</tr>
<tr>
<td>Rated impulse voltage [kV]</td>
<td>IEC/EN 60664-1</td>
<td>6</td>
</tr>
<tr>
<td>11/12.23/24,33/34,43/44 against all others</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>11/12.23/24,33/34,43/44 against each other</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>33/44 against all others</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>A3/ON/ERR/A4 against all others</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>A1/A2 AC against all others</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>A1/A2 DC against all others</td>
<td></td>
<td>No galvanic separation</td>
</tr>
<tr>
<td>X1/X2/X3 to L1/L2/L3</td>
<td></td>
<td>No galvanic separation</td>
</tr>
</tbody>
</table>
Appendix A Specifications

Table 12 - Power Supply (A1/A2) Specifications

<table>
<thead>
<tr>
<th>Attribute</th>
<th>DC</th>
<th>AC</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage, nominal</td>
<td>24V DC</td>
<td>115V AC</td>
<td>230V AC</td>
</tr>
<tr>
<td>Voltage range</td>
<td>0.9...1.2</td>
<td>0.8...1.1</td>
<td></td>
</tr>
<tr>
<td>Frequency range [Hz]</td>
<td>—</td>
<td>45...60</td>
<td></td>
</tr>
<tr>
<td>Ripple, max [%]</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuse, slow blow [A]</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start-up delay [s]</td>
<td>0.8 + t_s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13 - Input (L1/L2/L3) Specifications

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor voltage, max [V AC]</td>
<td>690 (UL 600)</td>
</tr>
<tr>
<td>Input resistance [kΩ]</td>
<td>500</td>
</tr>
<tr>
<td>Monitoring trip value [mV]</td>
<td>20...400, adjustable</td>
</tr>
<tr>
<td>Monitoring trip value [V]</td>
<td>0.2...4, adjustable</td>
</tr>
<tr>
<td>Response value dependent on frequency</td>
<td></td>
</tr>
<tr>
<td>Input frequency [Hz]</td>
<td>50 100 200 400 600 1000 1500 2000</td>
</tr>
<tr>
<td>Multiplication factor for (V_m)</td>
<td>1.0 1.1 1.2 1.5 2.0 2.8 5.0 8.0</td>
</tr>
<tr>
<td>Hysteresis for detection of running motor [%]</td>
<td>100</td>
</tr>
<tr>
<td>Release delay for detection of running motor [ms]</td>
<td><100</td>
</tr>
<tr>
<td>Standstill time delay, (t_s) [s]</td>
<td>0.2...6, adjustable</td>
</tr>
</tbody>
</table>

Table 14 - Safety Output Specifications

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring terminals</td>
<td>23/24, 33/34, 43/44 redundant, positive guided, normally open 11/12 redundant, positive guided, normally closed</td>
</tr>
<tr>
<td>Switching capacity</td>
<td></td>
</tr>
<tr>
<td>UL rating at 40 °C (104 °F)</td>
<td>Pilot Duty B300, 5 A @ 250V AC, 5 A @ 24V DC</td>
</tr>
<tr>
<td>UL rating at 60 °C (140 °F)</td>
<td>Pilot Duty B300, 2 A @ 250V AC, 2 A @ 24V DC</td>
</tr>
<tr>
<td>DC15</td>
<td>N.O.: 3 A @ 230V AC, N.C.: 1 A @ 230V AC</td>
</tr>
<tr>
<td>DC13</td>
<td>N.O.: 1 A @ 24V DC, N.C.: 1 A @ 24V DC</td>
</tr>
<tr>
<td>DC13 at 0.1 Hz</td>
<td>N.O.: 4 A @ 24V DC, N.C.: 4 A @ 24V DC</td>
</tr>
<tr>
<td>Thermal current, up to 40 °C (104 °F) [A]</td>
<td>5</td>
</tr>
<tr>
<td>Fusing external, max</td>
<td>4Agl. fuse or C6A circuit breaker</td>
</tr>
<tr>
<td>Operating frequency, max [ops/hr]</td>
<td>1.200</td>
</tr>
<tr>
<td>Contact life at load [switching cycles] at 5 A 230V AC, cos (\varphi) = 1</td>
<td>(\geq 200,000)</td>
</tr>
<tr>
<td>Mechanical life at no load [switching cycles]</td>
<td>(\geq 50,000,000)</td>
</tr>
</tbody>
</table>

Table 15 - Status Output Specifications

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3/A4 power supply voltage range [V DC]</td>
<td>12...30 PELV/SELV or Class 2</td>
</tr>
<tr>
<td>Power consumption [W]</td>
<td>3</td>
</tr>
<tr>
<td>ON, ERR max current at 24V DC [mA]</td>
<td>100</td>
</tr>
<tr>
<td>S3/S4 contact rating [A/VAC]</td>
<td>3/250</td>
</tr>
</tbody>
</table>
Appendix B

Regulatory Approval

Agency Certification

- Functional Safety Type Approved by TÜV Rheinland
- UL Listed Industrial Control Equipment, certified for US and Canada
- CE marked for all applicable directives
- C-Tick marked for all applicable acts
- CCC Mark

For a complete listing of product certifications, see rok.auto/certifications.

Compliance to European Union Directives

This product has the CE marking and is approved for installation within the European Union and EEA regions. It has been designed and tested to meet the following directives.

EMC Directive

This product is designed and tested to meet the European Council Directive 2004/108/EC on Electromagnetic Compatibility (EMC) and the following standards:

- EN 61000-6-4
 Generic Standards - Emission Standard for Industrial Environments
- EN 61000-6-2
 Generic Standards - Immunity for Industrial Environments

This product is intended for use in an industrial environment.
Machine Safety Directive

This product is designed and tested to meet the European Council Directive 2006/42/EC on machinery and the following standards:

- IEC/EN 61508
 Functional safety of electrical/electronic/programmable electronic safety-related systems
- IEC/EN 62061
 Safety of machinery - Functional safety of safety-related electrical, electronic, and programmable electronic control systems
- EN ISO 13849-1
 Safety of machinery — Safety-related parts of control systems — Part 1: General principles for design
- IEC/EN 61800-5-1: 2016
 Adjustable speed electrical power drive systems – Part 5-1: Safety requirements – Electrical, thermal, and energy
 Adjustable speed electrical power drive systems – Part 5-2: Safety requirements – Functional

This product is intended for use in an industrial environment.

The performance of the safety function is dependent on the structure of all devices that comprise the safety function. Table 16 and Table 17 provide the data that must be used to represent the relay when calculating the safety integrity level (SIL) or the Performance Level (PL).

The safety relay can be used in safety circuits according to DIN EN 60204-1/VDE 0113 part 1. The following safety requirements are achievable in maximum based on the operation mode and wiring.

Specifications are applicable only if the safety function is demanded at least once within six months. All diagnostic tests are conducted at least before next demand. At mission time (TM), the proof test interval (PTI) is assumed. Components failure rates are according to SN29500.
SIL Rating

Safety relays meet the requirements in Table 16 in accordance with IEC/EN 61508 and IEC 62061.

Table 16 - SIL Rating

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIL CL [IEC/EN 62061]</td>
<td>3</td>
</tr>
<tr>
<td>SIL [IEC/EN 61508, IEC/EN 61511]</td>
<td>3</td>
</tr>
<tr>
<td>Hardware Fault Tolerance, HFT</td>
<td>1</td>
</tr>
<tr>
<td>Diagnostic Coverage, DCavg [%]</td>
<td>99.0</td>
</tr>
<tr>
<td>Safe Failure Fraction, SFF [%]</td>
<td>99.7</td>
</tr>
<tr>
<td>PFHD [/h]</td>
<td>4.10E-10</td>
</tr>
<tr>
<td>PFDavg</td>
<td>1.42E-04</td>
</tr>
<tr>
<td>T [years]</td>
<td>20</td>
</tr>
</tbody>
</table>

Performance Level/Category

Safety relays can be used in safety systems that meet up to Category 4 and Performance Level PLe in accordance with ISO 13849-1. Table 17 lists the pertinent ratings for ISO 13849-1.

Table 17 - Performance Level/Category

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>4</td>
</tr>
<tr>
<td>Performance Level</td>
<td>PLe</td>
</tr>
<tr>
<td>MTTFp [years]</td>
<td>93</td>
</tr>
<tr>
<td>Diagnostic Coverage, DCavg [%]</td>
<td>99.0</td>
</tr>
<tr>
<td>Days, davg [days/year]</td>
<td>365</td>
</tr>
<tr>
<td>Hours, havg [hours/day]</td>
<td>24</td>
</tr>
<tr>
<td>(t_{cycle}, [s/cycle])</td>
<td>28.8E+03</td>
</tr>
<tr>
<td>T [years]</td>
<td>20</td>
</tr>
</tbody>
</table>
Notes:
Index

A
agency certification 43
application 29
approval
regulatory 43
assignment
terminal 13
auxiliary
output 18

C
certification 43
compliance
European Union directives 43
configuration 21
connect
power supply 14
connection
wye-delta 32
considerations
enclosure 10
curve
derating 16

dedations 5
derating curve 16
diagnostic 25
diagram
timing 23
dimensions
mounting 9
DIN rail
mounting 9
removal 10
directive
EMC 43
machine safety 44

E
EMC directive 43
enclosure
considerations 10
environmental
specification 41
ERR
flashing code 26
ERR indicator
flashes 1 time 36
flashes 5 times 38
flashes 6 or 7 times 38
error
potentiometer 27

E-stop
with contactors 31
with electronic drive 29
European Union directives
compliance 43
excessive heat
prevent 11

F
failure
internal device 28
fault reset input 20
features 7
feedback circuit open 37
flashing code
ERR 26

G
general specification 41
ground 13
guard locking 29

H
heat
prevent excessive 11

I
indicator
status 25
input
fault reset 20
monitoring 19
motor winding 15
input (L1/L2/L3)
specification 42
installation 9
internal device
failure 28

L
line breakage 26
motor at standstill 26
motor spinning 26

M
machine safety directive 44
measuring signal
simultaneity 27
monitoring input 19
monitoring voltage 21
motor
 spinning line breakage 26
 standstill line breakage 26
motor winding
 input 15
mounting
 dimensions 9
 DIN rail 9

O
open feedback circuit 37
output
 auxiliary 18
 safety 16
output energized
 contacts off 39
output on
 motor turns 39
overview 7

P
performance
 level/category 45
potentiometer
 error 27
power 13
power supply
 connect 14
power supply (A1/A2)
 specification 42
prevent
 excessive heat 11
PWR indicator
 view 35

R
recommendation
 wiring 13
 regulatory approval 43
removable
 terminals 10
removal
 DIN rail 10
requirements
 wiring 13

S
safety
 output 16
 safety output
 specification 42
 SIL rating 45
 simultaneity
 measuring signal 27

size
 wire 41
spacing 10
specification 41
 environmental 41
 general 41
 input (L1/L2/L3) 42
 power supply (A1/A2) 42
 safety output 42
 status output 42
spring clamp
 terminals 10
status indicator 25
status output
 specification 42
steps
 troubleshooting 34
surge suppressor 17

T
terminal
 assignment 13
 torque 41
terminals
 removable 10
 spring clamp 10
time delay 22
timing diagram 23
tools 33
torque
 terminal 41
troubleshooting 33
 steps 34
ts 22

V
view
 PWR indicator 35
 Vm 21
voltage
 monitoring 21

W
wire 13
 size 41
wire break
 L1, L2, or L3 36
wiring
 recommendation 13
 requirements 13
wiring example 29
wye-delta
 connection 32
Rockwell Automation Support

Use the following resources to access support information.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Dial Codes</td>
<td>Find the Direct Dial Code for your product. Use the code to route your call directly to a technical support engineer.</td>
<td>http://www.rockwellautomation.com/global/support/direct-dial.page</td>
</tr>
</tbody>
</table>

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the How Are We Doing? form at http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_en-e.pdf.

Allen-Bradley, Minotaur, PowerFlex, Rockwell Automation, and Rockwell Software are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com