

This manual links to Knowledgebase Answer ID <u>1092901</u> for fault codes and parameters; download the spreadsheets now to ensure offline access.

iTRAK 5730 System

Bulletin Number 2198T

by **ROCKWELL AUTOMATION**

User Manual

Original Instructions

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).

The following icon may appear in the text of this document.

Identifies information that is useful and can help to make a process easier to do or easier to understand.

Preface

Summary of Changes	9
Conventions	
Appropriate Use	9

Before You Begin Installation

Chapter 1
About the iTRAK 5730 System 11
Catalog Number Explanations 16
Assembled iTRAK 5730 System 16
Modular iTRAK 5730 System Components 17
Motor Modules 20
Motor Module Status Indicators 21
Connector Modules 22
Connector Module Status Indicators
Mounting Rings 24
Rectangular and Flat Rails 25
Mover
Power Supplies
Programmable Controllers
Typical Communication Configurations 29
Linear Topology 29
Device Level Ring Topology 30
Star Topology 31
Safety Information 32
Risk Assessment 32
General Assembly Instructions 33
Machine Guarding 34
Avoid Accidents, Injury, and Property Damage
Remove Power from the iTRAK 5730 System
Avoid Electrical Shock 35
Protection Against Contact with Hot Parts
Protection Against Magnetic and Electromagnetic Fields During
Installation and Use
Safe Magnet Handling 38
Motor Magnet Protective Cover 38
Chapter 2

iTRAK 5730 System Installation

n	Safety Information 39
	Before You Begin 40
	Tools and Accessories 40
	Hardware Specification Table 40
	Installation Workspace 40
	General Handling Instructions 41
	Storage
	iTRAK System Components 41
	Inspection
	•

	ons	
Assemble an iTRAK 573	30 System	43
Before You Begin .		44
Install Top Structu	ral Mounting Rings	45
Install Bottom Stru	ctural Mounting Rings 4	48
	Rails and Flat Wedges 4	
	angular Rails	
	Wedges and Align Rectangular Rails	
	Vedges, and Connector Modules	
Mount the iTRAK 5730	Assembly	58
	ements	
Before You Lift and	Mount the iTRAK 5730 Assembly	61
Lift the iTRAK 5730	Assembly	52
Install the Lubrication	System	63
	AK Lubrication System	
	nstall Lubricant Pumps e	
Mount the Lubrica	nt Pumps and Connect Lubricant Tubes 6	54
Make Lubricant Tu	be Connections to the iTRAK	56
Fill the Lubricant P	ump Reservoirs with Lubricant	67
Wire the Lubricant	Pumps	67
Configure the Lubr	ication System	67
Optional Infield Cover	s (67

Chapter 3

Connect the iTRAK 5730 System	Typical iTRAK 5730 System Provide Power to the iTRAK System	. 71
	Connect Power to the iTRAK 5730 System	. 72
	One iTRAK Power Supply	. 72
	Multiple iTRAK Power Supplies	. 73
	Connect the Power Cable	• 74
	Connect an EtherNet/IP Network to the iTRAK 5730 System	. 75
	EtherNet/IP Address Rotary Switches	. 75
	Communication Control DIP Switch	• 77
	Connect the Ethernet Cable	. 78

Chapter 4

•
Studio 5000 Logix Designer 81
Configure the iTRAK 5730 System 82
Set the IP Address
Protected Mode 83
Configure and Customize the Project File
Configure the Controller 84
Configure the Kinetix 5700 Power Supply 86
Configure the iTRAK 5730 Power Supply 90
Configure the iTRAK 5730 Motor Modules
Continue iTRAK 5730 Motor Module Configuration
Configure the Motion Group 105
Configure the Section Axis Properties 107
Configure the Mover Axis Properties 109

Configure and Start Up the iTRAK 5730 System

Chapter 5

Chapter 6

Before You Begin 137
Preventive Maintenance 137
Install or Replace Components 138
Replacement Hardware 138
Install or Remove a Position Magnet Assembly 139
Install or Replace a Mover 140
Replace a Straight Motor Module 146
Replace a Curved Motor Module 151
Replace Top and Bottom Rectangular Straight Rails 154
Replace Top and Bottom Rectangular Curved Rails 155
Replace Top and Bottom Flat Straight Rails 157
Replace Top and Bottom Flat Curved Rails 159
Replace Top and Bottom Rectangular Wedges 161
Replace Top and Bottom Flat Wedges 162
Replace a Connector Module 164
Replace an Infield Cover 165
Replace a Lubricant Cartridge 166
Lubrication 166
Lubrication Using an iTRAK Lubrication System 166
Lubrication Using a Customer Provided Oil Bleed System 172

Troubleshoot the iTRAK 5730 System

Maintenance

iTRAK 5730 System Integrated Safety

Chapter 7

Certification 173
Important Safety Considerations
Safety Application Requirements
Category 3 Requirements According to ISO 13849-1 174
Stop Category Definition
Performance Level (PL) and Safety Integrity Level (SIL) 175
Probability of Dangerous Failure Per Hour 175
Out-of-Box State
Out-of-Box State Support
Safe Torque Off Function
Safe Torque Off (STO) Function Operation
Safe Torque Off (STO) State Reset
Safe Torque Off (STO) Specifications
Safe Torque Off (STO) Assembly Tags
Safe Torque Off (STO) Mode
Understand Safe Torque Off (STO) Behavior in an iTRAK 5730
System. 182
iTRAK 5730 System Safety Considerations
Functional Safety Considerations 182
Timed SS1 Stopping Function
Safety Function Operation 183
Timed SS1 Request Removed 186
Motion Direct Commands in Motion Control Systems 187
Understand STO Bypass When Using Motion Direct
Commands 187
Studio 5000 Application Warning Messages 188
Torque Permitted in a Multi-workstation Environment 190
Warning Icon and Text in Axis Properties 191
Explicit Messages 192
Safe Monitor Network Communication 193
Troubleshoot the Safe Stop Function 198
Understand Integrated Safety Motor Module Replacement 198
Replace an Integrated Safety Motor Module in a GuardLogix
System 199
Configure Only When No Safety Signature Exists 199
Configure Always 200

Update the iTRAK 5730 System Firmware

Appendix A

••
Before You Begin 201
Inhibit the Module
Update Your Firmware 203
Use ControlFLASH Plus to Update Your iTRAK 5730 System
Firmware
Use ControlFLASH to Update Your iTRAK 5730 System
Firmware
Configure Your Communication Path with RSLinx 208
Start the ControlFLASH Software
Verify the Firmware Update 213

High-speed	Data	Logging
Service		

History of Changes

Appendix B

Configure and Use the Message Instruction	215
iTRAK System Data Logging Parameters	223

Appendix C

2198T-UM003C-EN-P	
Index Additional Resources iTRAK 5730 and Kinetix System Resources Programmable Controllers Resources EtherNet/IP Resources	233 233 233

Notes:

	This manual provides information and instructions for how to assemble, lift, mount, connect, configure, troubleshoot, and maintain an iTRAK [®] 5730 system. This manual is intended for engineers or technicians that implement the design, installation, and wiring of the iTRAK 5730 system. This manual is also intended for programmers that configure, operate, and maintain the iTRAK 5730 system with a programmable logic controller and EtherNet/IP [™] network. To learn more about the iTRAK 5730 system, contact your Rockwell Automation sales representative for information on available training courses.				
Summary of Changes	This publication contains the following new or updated information includes substantive updates only and is not intended to reflect all	on. This list changes.			
	Торіс	Page			
	Added UKCA certification information to the Safety Information section.	32			
Conventions Appropriate Use	These conventions are used throughout this manual: Bulleted lists provide information, not procedural steps. Numbered lists provide steps or hierarchical information. Read and understand the safety instructions before using the iTRAK 5730 system.				
	ATTENTION: Incorrect installation, operation, and maintenance of this cause personal injury or property damage. You are responsible for the safety of your completed machinery. An incorrectly applied or installed system can result in component damage or a reduction in product life.	product can product J iTRAK 5730			
	Critical guidelines for appropriate use include:				
	 Hardware must remain in its original state; never make str changes. 	ructural			
	 Do not de-compile software or alter source codes. 				
	 Do not use damaged or faulty components. 				
	 Install the system in the manner that is described in this m 	anual			
	 Operate the system in the ambient conditions that are desc iTRAK 5730 System Technical Data, publication <u>2198T-TDO</u> 	cribed in			

Notes:

Before You Begin Installation

Use this chapter to become familiar with the design, installation, and safety requirements for an iTRAK[®] 5730 system.

Торіс	Page
About the iTRAK 5730 System	11
Catalog Number Explanations	16
Motor Modules	20
Connector Modules	22
Mounting Rings	24
Rectangular and Flat Rails	25
Mover	27
Power Supplies	28
Programmable Controllers	28
Typical Communication Configurations	29
Safety Information	32

About the iTRAK 5730 System

The iTRAK 5730 system is a modular, scalable, linear motor system. This system provides independent control of multiple movers on straight or curvilinear paths.

Table 1 - iTRAK 5730 System Features

Features	Specifications
Mover pitch	True 50 mm (1.97 in.)
Footprint	Track width: 420 mm (16.54 in.) Track length: 10349434 mm (40.71371.42 in.) Additional dimensions are provided in <u>Approximate Dimensions on page 43</u> .
Orientation	Horizontal, vertical, or stand-up. Orientations are shown in Figure 1 on page 13.
Peak force	100 N (22.48 lbf)
Continuous force	36 N (8.09 lbf)
Maximum speed	5 m/s (16.4 ft/s)
Maximum payload weight for a single mover	4 kg (8.8 lb). When a mover is carrying a payload that is high within the 04 kg (08.8 lb) range, the mover must move at a low speed. The greater the weight of the payload, the lower the speed the mover can travel at.
Position loop update	250 μs
Repeatability	± 0.01 mm (0.0004 in.)
Maximum system size	64 logical sections, 128 movers, 8700 mm (342.52 in.) of straight rail length, 9434 mm (371.42 in.) of total length
Rail material	Stainless steel
IP rating	IP65 without infield cover, IP66 with infield cover
Safety	Integrated Safe Torque Off, SS1

The iTRAK 5730 system is built from a combination of the following modules and components:

- Straight motor modules
- Curved motor modules
- Connector modules
- Mounting rings
- Rectangular and flat rails
- Movers with mover and position magnets

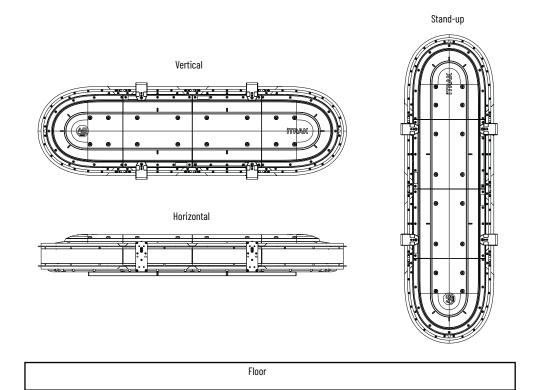
A complete iTRAK 5730 system uses these components:

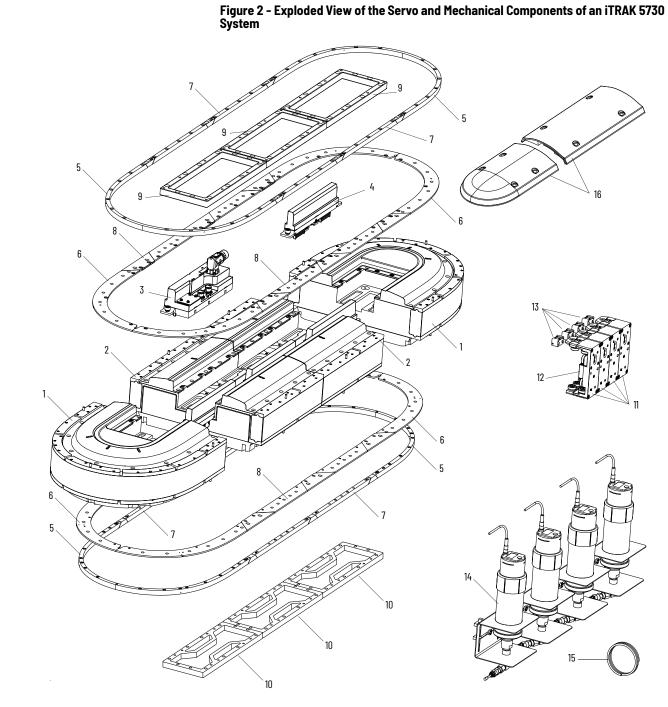
- Programmable logic controller (PLC)
- Input power components (branch circuit protection, disconnect, line filter, and functional safety)
- 24V SELV or PELV rated control power supply
- Kinetix[®] 5700 DC-bus power supply
- Kinetix 5700 iTRAK power supply
- Power cable (DC-bus and 24V control)
- Ethernet cable
- Lubrication system
- Infield covers (optional)

You can combine straight and curved motor modules to build multiple machine shapes and manage a wide variety of dynamic processes. Motor modules, movers, and connectors are modular and designed to accommodate system growth and varied power demands. The system can be expanded to more than 19 meters (62.3 feet).

The motor modules are integrated drive and motor coil units with feedback capability. Each motor module can operate and control multiple movers. Motor over-temperature protection is provided by temperature sensors that are embedded in the motor coils of the motor modules. The iTRAK 5730 system does not provide electronic motor over-temperature protection.

Power and network communication connections to the motor modules are provided by the connector modules. The power and control input connector module provides the power connection between the iTRAK power supply and a motor module and a communication connection from an EtherNet/IP[™] network and a motor module. Additional connector modules provide additional power input and communication pass-through connections.


Movers provide the platform for your application effectors. Movers can be synchronized or independently controlled and positioned accurately on any point of the track.


The lubrication system intermittently applies lubricant to the rail system. The lubricant is distributed around the track by the mover track rollers. The lubrication system helps to prevent wear on the track and mover components and provides a smoother, quieter system.

The infield covers fit over the connector modules and connection wires and provide IP66 protection against water, dirt, and debris.

A customer-sourced mounting system is required to mount the iTRAK 5730. The are three recommended mounting orientations for the iTRAK 5730 system: horizontal, vertical, and stand-up.

Figure 1 - Mounting Orientations

ltem	Component
1	Curved motor module
2	Straight motor module
3	Power and control input connector module
-	Power with pass-through control connector module (not shown)
4	Power and control pass-through connector module
5	Top and bottom curved rectangular rail w/wedges
6	Top and bottom curved flat rail w/wedges
7	Top and bottom straight rectangular rail w/wedges
8	Top and bottom straight flat rail w/wedges

ltem	Component
9	Mounting ring (top)
10	Mounting ring (bottom)
11	Mover
12	Mover magnet
13	Position magnets
14	Lubrication system pump (x4)
15	Lubrication system tube
16	Infield cover (straight and curved)

iTRAK 5730 Component	Cat. No.	Description		
Motor module	2198T-L20-T0303-A00-S2 (straight) 2198T-L20-T0309-D18-S2 (curved)	The motor module is an integrated drive and motor coil unit (referred to as a section in the firmware) with feedback capability.		
Mounting ring	2198T-AS-01 (top) 2198T-AS-02 (bottom)	The mounting rings connect the motor modules and are used to mount and provide rigidity to the iTRAK 5730 system.		
2198T-BE-ST03, straight, 300 mm (11.8 in.) 2198T-BE-ST06, straight, 600 mm (23.6 in.) 2198T-BE-ST09, straight, 900 mm (35.4 in.) 2198T-BE-ED18, 180° curve, 900 mm (35.4 in.) nom		The flat and rectangular rails attach to the motor frame. This system of rails provides high-precision guidance for the mover track rollers.		
Mover	2198T-VT0304-E	The movers are passive magnetic components. They move along the track in response to the magnetic fields generated by the motor modules. You attach your application end effector to the mover.		
Mover magnet	2198T-M0304-A000-SS	Mover magnet plates can be used to build your own movers to optimize weight or bearing solutions. The mover magnet is included with the mover.		
Position magnet	2198T-N1-0304, 2198T-NN-0304	Position magnets are used to actuate sensors in the track. These magnets are sold separately from the mover.		

Table 2 - Electromechanical Components of an iTRAK 5730 System

Table 3 - Power and Control Components of an iTRAK 5730 System

iTRAK 5730 Component	Cat. No.	Description				
Power circuitry and components	2198-Pxxx (DC-bus) 2198T-W25K-ER (iTRAK)	A Kinetix 5700 DC-bus power supply (2198) and Kinetix 5700 iTRAK power supply (2198T) provide the DC bus voltages that are required for the iTRAK 5730 motor modules. The Kinetix 5700 power supply is used with other Kinetix 5700 components and branch circuit protection.				
Power and control input connector module	2198T-CT-CP	The power and control input connector module provides the power connection between the iTRAK power supply and a motor module and a communication connection from an EtherNet/IP network and a motor module. This module is used for the primary power and ground and Ethernet connections for your iTRAK 5730 system.				
Power input with control pass-through connector module	2198T-CT-P	The power input with control pass-through connector module provides the power connection between the iTRAK power supply and a motor module. This module is used to provide an additional power source connection when a system requires an additional Kinetix 5700 iTRAK power supply. This module provides a pass-through Ethernet connection only. For more information on when multiple iTRAK power supplies are required, see <u>Provide Power to the iTRAK System</u> on page <u>71</u> .				
Power and control pass- through connector module	2198T-CT	The power and control pass-through connector module provides continuous power between the motor modules and communication with the EtherNet/IP network.				
Power cable	2198T-CHBFLS8-12AA06, 6 m (19.7 ft) 2198T-CHBFLS8-12AA09, 9 m (29.5 ft) 2198T-CHBFLS8-12AA12, 12 m (39.4 ft) 2198T-CHBFLS8-12AA15, 15 m (49.2 ft) 2198T-CHBFLS8-12AA30, 30 m (98.4 ft)	This cable provides DC-bus and control power from the iTRAK power supply to the power and control input and power input with control pass-through connector modules. Use only the cables that are referenced in this user manual.				
EtherNet/IP communication cable	1585D-E8TGJM-1, 1 m (3.3 ft) 1585D-E8TGJM-2, 2 m (6.6 ft) 1585D-E8TGJM-3, 3 m (9.8 ft) 1585D-E8TGJM-5, 5 m (16.4 ft) 1585D-E8TGJM-10, 10 m (32.8 ft)	This M12 X-code Ethernet cable provides EtherNet/IP communication to the power and control input connector module and connected motor modules. Use only the cables that are referenced in this user manual.				
Logix 5000® controller platform	Bulletin 1756, Bulletin 1769, Bulletin 5069	Integrated Motion on the EtherNet/IP network in ControlLogix® 5580, CompactLogix™ 5480, GuardLogix® 5580, and Compact GuardLogix 5380 controllers and Integrated Safety in Compact GuardLogix 5380 controllers. Linear, Device Level Ring (DLR), and star topologies are supported.				
Studio 5000® environment	_	Studio 5000 Logix Designer® application, version 33 or later, provides support to program, commission, and maintain the ControlLogix, CompactLogix, GuardLogix, and Compact GuardLogix controller families that you use with the iTRAK 5730 system.				

iTRAK 5730 Component	Cat. No.	Description			
Lubrication system	2198T-AL-SYS-4	The lubrication system supplies lubricant to the rail system.			
Infield cover	2198T-AS-CD18-U (two curve covers) 2198T-AS-CA03-U (one straight cover) 2198T-AS-CD18 (two curve covers with Allen-Bradley® logo)	These covers provide additional protection for the connector modules and power and Ethernet cable connections on the modules.			
Rail alignment tool	2198T-A08	This tool is used to align the rectangular rail segments during installation to help provide an accurate transition of movers on the track.			
Mover loader tool	2198T-A09	This tool is used to install and remove a mover from the rail system.			

Table 4 - Accessory Components of an iTRAK 5730 System

The typical configuration for iTRAK 5730 system is shown in Typical iTRAK System with an iTRAK Power Supply on page 70.

Catalog Number Explanations

The modular, scalable design of the iTRAK 5730 allows you to purchase an assembled system or individual components so you can build a system that is suited to your specific application.

Use the information in this section to understand and identify the iTRAK 5730 assembled system and individual component catalog numbers.

Assembled iTRAK 5730 System

These tables provide a catalog number explanation for an assembled iTRAK 5730 system.

For example: 2198T-S03H27000AD04008C-Q1234

2198T -	S	03	H	270	000	D	04	008	C ·	Qxxxx
а	b	С	d	е	f	g	h	i	j	k

a Bulletin Number			b Module Type	c Module Coil Width			d Orientation		
Code	Description	Co	,	Code		C	Code	Description	
2198T	iTRAK Intelligent Track System		Configured iTRAK 5730 system	03	30 mm (1.18 in.)		H	Horizontal (both dimensions horizontal)	
						-	v	Vertical	

	e						
Long Dimension (length)							
Code Description							
###	Curve center point width in decimeters						

i

	•							
Short Dimension (width)								
Code Description								
###	Curve center point width in decimeters							
000	Oval							
00A	Linear							

g							
Mechanical Solution Style							
Code	Description						
D	5730 stainless-steel rail						

	h							
Mover Magnet Stack Length								
Code	Description							
04	38 mm (1.50 in.) (approx)							

(short dimension vertical only) Stand up

(long dimension vertical only)

	k						
Customized							
C	ode	Description					
Q	хххх	(Quote reference number)					

		Code	Description
el rail		04	38 mm (1.50 in.) (a
	-		

V

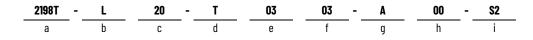
S

		-					
	Mover Quantity	Power and Control Configuration					
de	Description	Code	Description				
##	Number of movers	С	Kinetix 5700 iTRAK power supply and cables				

Cod

##

Modular iTRAK 5730 System Components


All iTRAK 5730 system component catalog numbers begin with the Bulletin number 2198T followed by a character that represents one of these module types:

- C Cable or connector
- L Integrated linear drive/motor module (section)
- M Mover magnet
- N Position magnet
- V Assembled mover

Motor Module (Section) Catalog Numbers

These tables provide an example catalog number explanation for a motor module.

For example: 2198T-L20-T0303-A00-S2

	a Bulletin Number		b Module Type	c Nominal Voltage			d Motor Orientation		
Code	Description	Code	Description	Code	Code Description			Description	
coue	Description	coue	Description	Cour	Description		Code	Description	
2198T	iTRAK Intelligent Track System	L	Motor module (section)	20	200/400V bus		Т	Transverse	

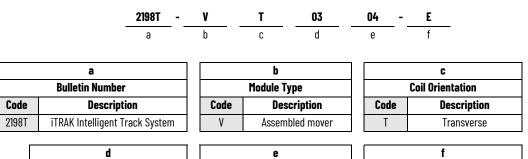
е		f			g				h	i			
Motor Coil Width		Motor Length		Radius Type		Arc Angle			Functional Safety				
Code	Description	Code	Description		Code	Description		Code	Description		Code	Description	
03	30 mm (1.18 in.)	03	300 mm (11.81 in.) ⁽¹⁾		А	Linear		00	Linear ⁽¹⁾		S2	Integrated Network Safe Stop 1	
		09	900 mm (35.43 in.) ⁽²⁾		D	Narrow spline		18	180° (diameter varies) ⁽²⁾				

(1) Only available for position g, code A.

(2) Only available for position g, Code D.

Connector Module Catalog Numbers

These tables provide an example catalog number explanation for a connector module.

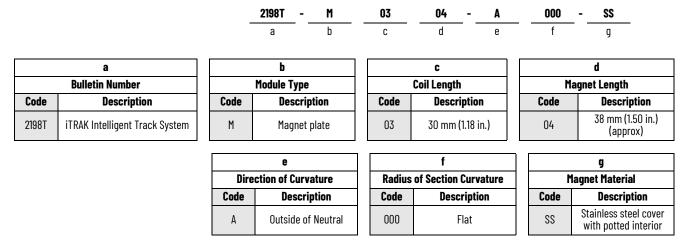

For example: 2198T-CT-CP

	а		b	C Input Option			
	Bulletin Number		Module Type				
Code	Description	Code	Description	Code	Description		
2198T	iTRAK Intelligent Track System	CT	Connector terminal (between motor modules)	СР	Communication and power inputs		
				Р	Power input with communication pass- through		
				<blanks></blanks>	Communication and power pass-through		

Assembled Mover Catalog Numbers

These tables provide an example catalog number explanation for an assembled mover.

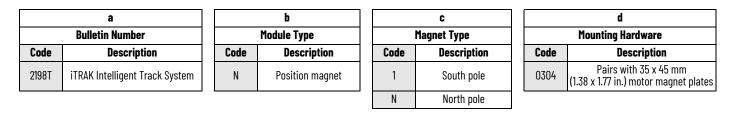
For example: 2198T-VT0304-E



	u			e	I		
Coil Length				Magnet Length	Mover Identification		
Code	Description	Γ	Code	Description	Code	Description	
03	30 mm (1.18 in.)		04	38 mm (1.50 in.) (approx)	E	57xx Design	

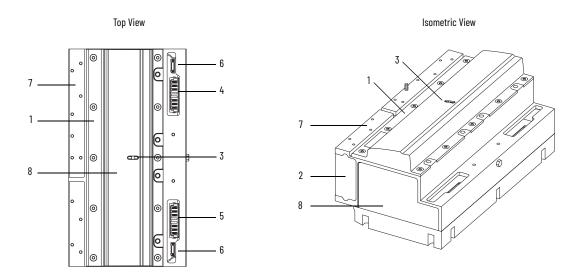
Mover Magnet Plate Catalog Numbers

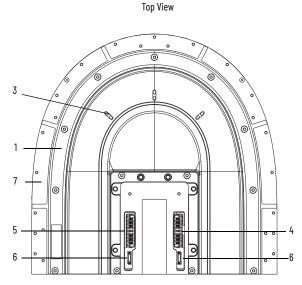
These tables provide an example catalog number explanation for a mover magnet plate.


For example: 2198T-M0304-A000-SS

Position Magnet Catalog Numbers

These tables provide an example catalog number explanation for a position magnet.


For example: 2198T-N1-0304


Motor Modules

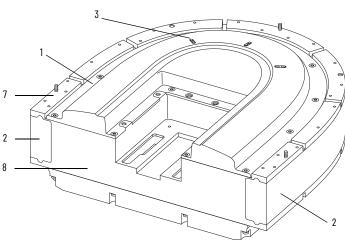

Your iTRAK 5730 system can use two types of motor modules. <u>Figure 3</u> shows the features of the straight motor module and <u>Figure 4</u> shows the features of the curved motor module.

Figure 3 - 2198T-L20-T0303-A00-S2, Straight Motor Module

Figure 4 - 2198T-L20-T0309-D18-S2, Curved Motor Module

Isometric View

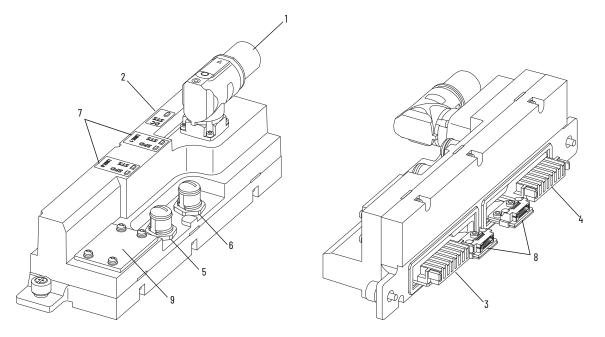
Motor Module Components

ltem	Description
1	Mover position-magnet sensing area
2	Motor coil assembly
3	Status indicators
4	Incoming power bus connection (from connector module)

ltem	Description
5	Outgoing power bus connection (from connector module)
6	Ethernet connector (from connector module)
7	Rectangular and flat rail mounting surface
8	Drive housing

Motor Module Status Indicators

The motor modules (2198T-L20-T0303-A00-S2 and 2198T-L20-T0309-D18-S2) contain the following status indicators. For a description of these status indicators, see <u>Motor Module Status Indicators</u> on page <u>126</u>.

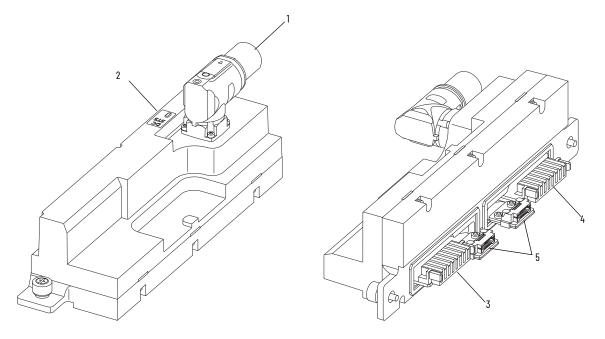

Straight Motor Module (Catalog Number 2198T-L20-T0303-A00-S2) shown.

Connector Modules

The iTRAK 5730 system can use three types of connector modules:

- <u>Figure 5</u> shows the features of the power and control input connector module. This connector module provides a power source and Ethernet connection for the iTRAK 5730 system.
- <u>Figure 6</u> shows the features of the power input with control passthrough connector module. This connector module provides a secondary power source connection and continuous Ethernet connection for the iTRAK 5730 system.
- <u>Figure 7</u> shows the features of the power and control pass-through connector module. This connector module provides a continuous power bus and Ethernet connection for the iTRAK 5730 system.

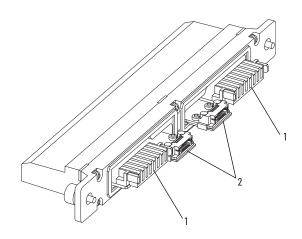
Figure 5 - 2198T-CT-CP Power and Control Input Connector Module



Power and Control Input Connector-module Components

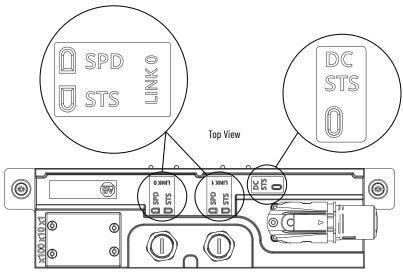
ltem	Description	ltem	Description
1	Incoming power bus connector	6	Outgoing Ethernet network connector
2	Power status indicator	7	Network status indicators
3	Motor power and ground bus connector	8	Pass-through Ethernet network connectors
4	Motor power ground connector	9	EtherNet/IP address selectors and control DIP switch (below access cover) ⁽¹⁾
5	Incoming Ethernet network connector	_	

(1) See <u>Connect an EtherNet/IP Network to the iTRAK 5730 System</u> on page <u>75</u> for details on these switches.


Figure 6 - 2198T-CT-P Power Input With Control Pass-through Connector Module

Power Input with Control Pass-through Connector-module Components

ltem	Description	ltem	Description
1	Incoming power bus connector	4	Ground connector
2	Power status indicator		Pass-through Ethernet network connectors
3	Motor power and ground bus connector	- 5	

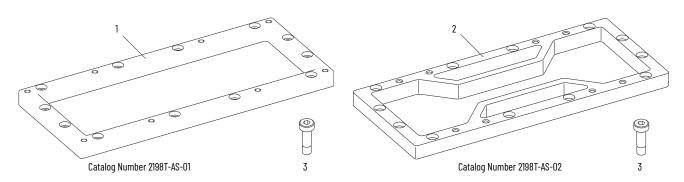


Power and Control Pass-through Connector-module Components

ltem	Description	ltem	Description
1	Motor power and ground bus connector	2	Pass-through Ethernet network connectors

Connector Module Status Indicators

The power and control input (2198T-CT-CP) and power input with control pass-through (2198T-CT-P) connector modules contain the following status indicators. These indicators provide a visual status of the power and communication connections. For a description of these status indicators, see <u>Connector Module Status Indicators</u> on page <u>128</u>.


Power and Control Input Connector Module (Catalog Number 2198T-CT-CP) shown.

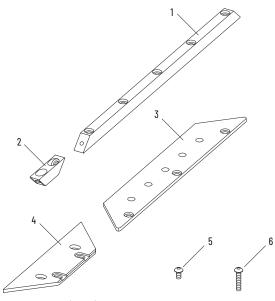
Mounting Rings

The mounting rings are used to connect motor modules and provide rigidity to the iTRAK 5730 system. Each mounting ring includes the hardware that is required to connect to the motor modules. An equal number of top and bottom mounting rings are required for installation.

IMPORTANT To be sure that the mounting rings are secured to the connected motor modules and support the iTRAK system properly, you must use the fasteners that are provided with the kit. Customer-supplied fasteners can affect system operation and structural integrity.

Figure 8 - 2198T-AS-01 and 2198T-AS-02 Mounting Rings

Mounting Ring Components


ltem	Description	Item	Description
1	Top mounting ring	3	M6 Reamer bolt, 20 mm (0.79)
2	Bottom mounting ring		

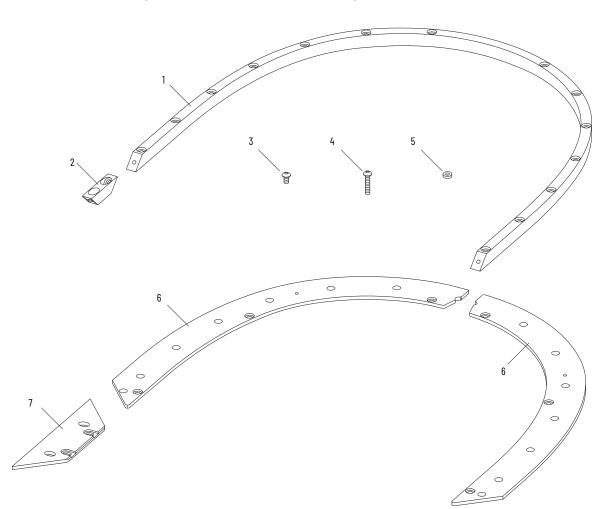
Rectangular and Flat Rails

The straight rectangular and flat rail kits are installed on the straight motor modules. Straight rectangular and flat rail kits are available in 300 mm (11.8 in.), 600 mm (23.6 in.), and 900 mm (35.4 in.) lengths. Each kit contains two straight rectangular rails and rectangular rail wedges and two straight flat rails and flat rail wedges. All mounting hardware is included with the kits.

IMPORTANT To be sure that the rails are secured and aligned to the motor modules properly, you must use the fasteners that are provided with the kits. Customer-supplied fasteners can affect system operation.

Figure 9 - 2198T-BE-ST03, 2198T-BE-ST06, and 2198T-BE-ST09 Straight Rectangular and Flat Rails

300 mm (11.8 in.) Straight Rectangular and Flat Rail Kit (Catalog Number 2198T-BE-ST03)


Straight Rectangular and Flat Rail Components

ltem	Description	ltem	D
1	Straight rectangular rail	4	S
2	Straight rectangular rail wedge	5	٢
3	Straight flat rail	6	Μ

ltem	Description
4	Straight flat rail wedge
5	M4 Torx screw, 8 mm (0.31 in.)
6	M4 Torx screw, 20 mm (0.79 in.)

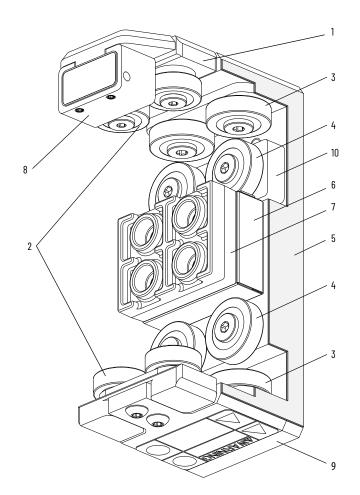
The curved rectangular and flat rails are installed on the curved motor modules. Curved rectangular and flat rails (2198T-BE-ED18) are approximately 900 mm (35.4 in.) long. Each kit contains two curved rectangular rails and straight rectangular rail wedges and four curved flat rails and two flat wedges. All mounting hardware is included with the kits. The kit also contains four Orings, which are installed in cavities on the curved motor modules and curved rectangular rails. The O-rings provide a seal for lubrication ports.

Figure 10 - 2198T-BE-ED18 Curved Rectangular and Flat Rails

Curved Rectangular and Flat Rail Components

ltem	Description
1	Curved rectangular rail
2	Straight rectangular rail wedge
3	M4 Torx screw, 20 mm (0.79 in.)
4	M4 Torx screw, 8 mm (0.31 in.)

ltem	Description
5	0-ring
6	Curved flat rail
7	Straight flat rail wedge


Mover

Movers are 50 mm (2.0 in.) long, in the direction of travel. See the iTRAK 5730 System Technical Data, publication <u>2198T-TD002</u> for the force-speed curves. Do not exceed the force-speed parameters when programming your system.

ATTENTION: A hazard of personal injury or equipment damage exists. An uninstalled mover must always have the motor-magnet protective cover (item 7 in Figure 11) installed. This cover should be removed only at the time of installation. Before handling a mover with a mover magnet installed, read the <u>Safety Information</u> that begins on page <u>32</u>.

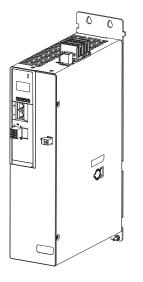
Figure 11 - 2198T-VT0304-E, Mover

Assembled Mover Components

ltem	Description
1	Horizontal bearing block
2	Track roller, 19 mm (0.75 in.) horizontal set (x4)
3	Track roller, 22 mm (0.87 in.) horizontal set (x4)
4	Track roller, 22 mm (0.87 in.) vertical set (x4)
5	Bumper

ltem	Description
6	Motor magnet
7	Motor-magnet protective cover (removed at time of installation only)
8	Position feedback magnet assembly (north and south, sold separately from the mover)
9	Mover chassis assembly
10	Vertical bearing block

Power Supplies


Power is supplied to the iTRAK 5730 system by using a scalable Kinetix 5700 iTRAK power supply. See <u>Provide Power to the iTRAK System</u> on page 71 for more information on the required iTRAK power supply and system power requirements.

The iTRAK power supply is used in combination with a Kinetix 5700 DC-bus power supply as part of a Kinetix 5700 system.

- For Kinetix 5700 iTRAK power supply installation instructions, see the Kinetix 5700 iTRAK Power Supply and iTRAK Bus Conditioner Module Installation Instructions, publication <u>2198T-IN001.</u>
- For Kinetix 5700 DC-bus power supply details and use, see the Kinetix 5700 Servo Drives User Manual, publication <u>2198-UM002.</u>

When using the Kinetix 5700 iTRAK power supply, you must use firmware revision 12.001 or later. If you are using a Kinetix 5700 iTRAK power supply at lower firmware revisions, contact ICTSupport@ra.rockwell.com for assistance and selection.

Figure 12 - 2198T-W25K-ER iTRAK Power Supply

Programmable Controllers

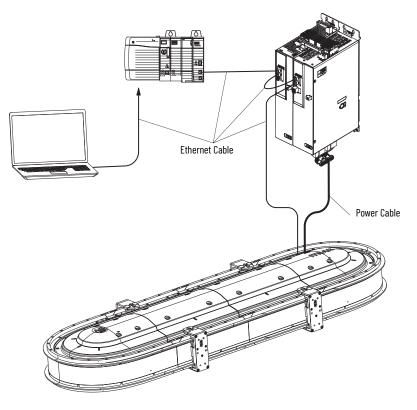
The iTRAK 5730 is designed to work with the programmable controllers that are shown in <u>Table 5</u>.

Table 5 - Compatible Controllers

Platform	Controller	Compatible Firmware Revision
ControlLogix	5580	33.001 or later
CompactLogix	5380 ⁽¹⁾	33.001 or later
	5480	33.001 or later
GuardLogix	5580	33.001 or later
Compact GuardLogix	5380	33.001 or later

 The memory requirements and CPU utilization of typical iTRAK applications can reduce the possible catalog numbers available in these families. Work with Rockwell Automation application engineering to determine suitability.

Typical Communication Configurations


The iTRAK 5730 system supports linear, ring (Device Level Ring), and star Ethernet topologies, by using ControlLogix, GuardLogix, CompactLogix, or Compact GuardLogix controllers and Stratix[®] Ethernet switch (where applicable).

The power and control input connector module (cat. no. 2198T-CT-CP) provides ports for Ethernet network connections and contains rotary switches for defining a manual or dynamic IP address scheme that is used for your iTRAK 5730 system.

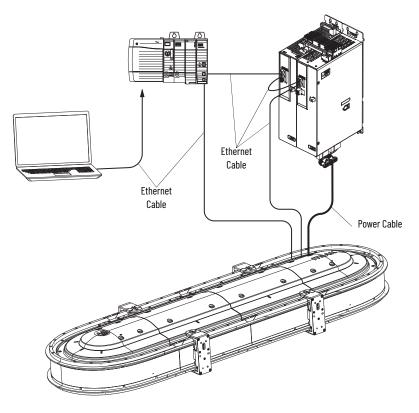
Linear Topology

The iTRAK 5730 connector modules include dual-port connectivity, however, if any device becomes disconnected, all devices downstream of that device lose communication. The devices in this example are connected by using linear topology.

Figure 13 - iTRAK 5730 System Linear Communication Installation

Device Level Ring Topology

Device Level Ring (DLR) is an EtherNet/IP protocol that is defined by ODVA. DLR provides a means to detect, manage, and recover from single faults in a ring-based network.


A DLR network includes the following types of ring nodes.

Node	Description		
Ring supervisor	A ring supervisor provides these functions: • Manages traffic on the DLR network • Collects diagnostic information for the network A DLR network requires at least one node to be configured as ring supervisor. By default, the supervisor function is disabled on supervisor-capable devices.		
Ring participants	Ring participants provide these functions: • Process data that is transmitted over the network. • Pass on the data to the next node on the network. • Report fault locations to the active ring supervisor. When a fault occurs on the DLR network, ring participants reconfigure themselves and relearn the network topology.		
Redundant gateways (optional)	Redundant gateways are multiple switches that are connected to a DLR network and also connected together through the rest of the network. Redundant gateways provide DLR network resiliency to the rest of the network.		

Depending on their firmware capabilities, both devices and switches can operate as supervisors or ring nodes on a DLR network. Only switches can operate as redundant gateways.

For more information about DLR, see the EtherNet/IP Device Level Ring Application Technique, publication <u>ENET-AT007</u>.

Figure 14 - iTRAK 5730 System Ring Communication Installation



Star Topology

In a star topology, each device is connected directly to an Ethernet switch. In this example, the devices are connected by using star topology.

The iTRAK 5730 connector modules have dual ports, so linear topology is maintained from one module to another, but the iTRAK 5730 system and other devices operate independently. The loss of one device does not impact the operation of other devices.

Figure 15 - iTRAK 5730 System Star Communication Installation

Safety Information

Follow all safety information that is presented in this section while working with or near an iTRAK 5730 system.

SHOCK HAZARD: To avoid a shock hazard or personal injury, make sure that all power has been removed before proceeding. Complete lockout and tagout procedures to remove input power before servicing.

Before installation, read the <u>General Assembly Instructions</u>. For applicable installations, before working with an iTRAK 5730 system or components, review the declaration of conformity and declaration of incorporation that are appropriate for your installation. All certification information, including the following declarations of conformity and declarations of incorporation can be viewed at: <u>rok.auto/certifications</u>.

- EU:
 - EU Declaration of Conformity, Directive 2006/42/EC
 - 2198T Series iTRAK 5730 System without PCM CE Declaration of Incorporation, publication <u>2198T-CToo8</u>
 - 2198T Kinetix iTRAK 5730 System with PCM CE Declaration of Incorporation, publication <u>2198T-CT009</u>
- UK:
 - UK Declaration of Conformity, Regulation 2008 No. 1597
 - 2198T Series iTRAK 5730 System without PCM UK Declaration of Incorporation, publication <u>2198T-CT021</u>
 - 2198T Kinetix iTRAK 5730 System with PCM UK Declaration of Incorporation, publication <u>2198T-CT023</u>

The iTRAK 5730 system is partially completed machinery. This machinery must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the relevant provisions of the Machinery Directive or UK Supply of Machinery (Safety) Regulations.

Risk Assessment

A risk assessment must be prepared for the installation of the machine, within its application conditions, and with the system components installed. As a result of the risk assessment, you must implement functions that monitor and provide for a higher-level measurement of personal safety. The safety regulations applicable to the installation of the machine must be considered. Unintended machine movements or other malfunctions are possible if safety devices are disabled, bypassed, or not activated.

General Assembly Instructions

Follow these overall assembly instructions during installation of your iTRAK 5730 system.

- When integrating the iTRAK 5730 system with tools and external machinery, see <u>https://motionanalyzer.rockwellautomation.com/</u><u>Products/iTrak</u> for models and outline drawings.
- See the iTRAK 5730 System Technical Data, publication <u>2198T-TD002</u> for operational ratings. Do not exceed these ratings.
- The iTRAK 5730 system must only be used in the environment specified.
- See <u>Chapter 2</u> Track Installation and Kinetix 5700 iTRAK Power Supply and iTRAK Bus Conditioner Module Installation Instructions, publication <u>2198T-IN001</u> for system installation instructions.
- Although system components have IP65 protection (IP66 with infield cover in place), the mover track rollers exposure to water must be minimized, as they can corrode over time.
- Track rails must be lubricated. See <u>Install the Lubrication System</u> on page <u>63</u> for details.
- If necessary, additional precautions must be taken to help prevent excess lubrication from product contamination or external machinery.
- Power and data cables must be managed or located to help prevent trip hazards for machine operators.
- When you install tools on movers, consider that there can be high accelerations and forces, in particular when movers transition between straight and curved modules.
 - Consider the mass and center of gravity of the tools that are mounted to movers.
 - When you fasten tools and machinery to movers, use the two dowel pins, and four 5 mm (0.20 in.) screws. Be sure that the screws engage at least 10 mm (0.39 in.) of thread and the screw is locked in place.
 - When you load movers with product, be sure that they are fastened securely for all anticipated forces and accelerations.
- Do not install ferromagnetic material near the movers. Maintain a minimum distance of 50 mm (2.0 in.) for any installed ferromagnetic material.
- Help prevent the risk of operator contact with parts that move by the use of guards and protective devices. See <u>Machine Guarding</u> for more information.
- Complete all installation instructions as directed in this manual. The National Electrical Code (NEC) and local codes outline provisions for safe installation of electrical equipment.

ATTENTION: A hazard of personal injury or equipment damage exists. An E-stop is not provided with the iTRAK 5730 System. Consult your national and local electrical codes and provide an E-stop if necessary.

• Control systems must be designed and constructed in such a way as to help prevent hazardous situations from occurring. See <u>Chapter 7</u> -<u>iTRAK 5730 System Integrated Safety</u>. Movers can fall when motor power is removed or servo control is disabled on vertical or stand-up iTRAK 5730 system installations.

ATTENTION: A hazard of equipment damage or personal injury exists. Movers can fall when motor power is removed or servo control is disabled on vertical or standup iTRAK 5730 system installations. Control systems must be designed and constructed in such a way as to help prevent hazardous situations from occurring. See <u>Chapter 7</u> - <u>iTRAK 5730 System Integrated Safety</u> on page <u>173</u>.

Machine Guarding

The movers, which contain application loads, can have high acceleration. The movers experience more acceleration in the curved sections of the track due to vector directional changes. Machine guards and safety enclosures must be implemented to offer protection to personnel. The shielding and enclosure must be designed to help protect against tangential projectiles along the system perimeter.

Avoid Accidents, Injury, and Property Damage

Follow these guidelines to help avoid accidents, injury, and property damage:

- Mount emergency stop switches in the immediate reach of the operator.
- Keep free and clear of the range of motion of the machine and the parts that move. Help prevent personnel from accidentally entering the range of motion by using:
 - Safety fences
 - Protective coverings
 - Safety guards
- Safety fences and protective coverings must be strong enough to resist the maximum kinetic energy of the system. See <u>Machine Guarding on page 34</u>.
- Light barriers are not recommended without a detailed risk assessment, due to the high kinetic energy of the movers.
- Avoid the operation of high-frequency, remote control, and radio equipment near system electronics and the power supply cables. If the use of a high-frequency, remote control, or radio device is necessary, check that the device does not interfere or cause malfunctions in the machine operation. We recommend performing an electromagnetic compatibility test before putting the system into service.

Remove Power from the iTRAK 5730 System

- 1. Stop the motion of all movers.
- 2. If your system uses a vertical or stand-up mounting orientation (see <u>Figure 1 on page 13</u>), then when power is removed, any movers that are on the non-horizontal parts of the track fall. Take this consideration into account in your application design. To help prevent movers from falling, there are multiple actions that you can take before removing power:
 - For vertical orientations: You may be able to move all movers to horizontal parts of the track where they will not fall when power is removed.
 - For stand-up orientations: Move all movers so that they are grouped at the lowest point in the track. Make sure the highest mover on each side of the group is at the same height as the other, so that they are in equilibrium and will not move when power is removed.
 - For vertical or stand-up orientations: Mechanically secure the movers that are on non-horizontal parts of the track using an external brake, arrester, or clamp mechanism; use protective equipment such as heat protective gloves to avoid burn hazards while installing the mover securing mechanisms. See <u>Protection Against Contact with Hot Parts on page 35</u>.
- 3. Remove mains input power from the system.
- 4. Remove 24V DC control power from the system.
- 5. Before proceeding with installation or maintenance tasks, wait at least 5 minutes to avoid electric shock hazard, and whatever time is necessary for the system to cool to avoid burn hazard. Cooling can take up to 140 minutes.

Avoid Electrical Shock

SHOCK HAZARD: To avoid a shock hazard or personal injury, verify that all power has been removed before proceeding with installation or maintenance tasks. The motor modules and Kinetix 5700 iTRAK power supply require 5 minutes to discharge before you handle wire and cable connections.

Protection Against Contact with Hot Parts

BURN HAZARD: A burn hazard exists. Some components of the system have hot surfaces. To avoid personal injury, do not touch hot surfaces as indicated by a burn hazard label.

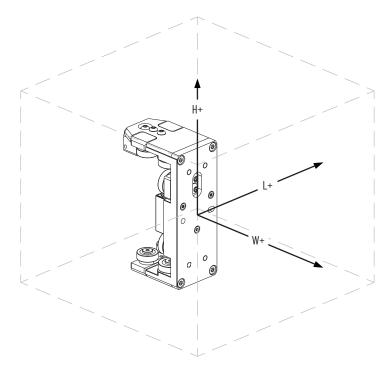
Temperatures of the motor-module stator covers can be higher than 60° C (140° F) during or after operation. After you remove power from the iTRAK 5730 system, motor modules can require up to 140 minutes to cool. Let the motor modules cool before you touch or service the system.

One exception to the rule to wait for cooling before touching the system is when removing power to a vertical or stand-up system. In this situation, you may want to install mechanical securing mechanisms onto the movers on the non-horizontal parts of the track before removing power, to help prevent them from falling when power is removed. Therefore, the system is still powered and hot while installing the mechanical securing mechanisms. To help prevent burns, use heat protective gloves and any other necessary protective equipment while installing the mechanical securing mechanisms. Also follow these precautions when removing the mechanical securing mechanisms, because power is on and the motors are producing heat during the removal of the mover securing mechanisms.

Protection Against Magnetic and Electromagnetic Fields During Installation and Use

The motor modules, when in use, and mover magnets pose a danger to persons with heart pacemakers, metal implants, and hearing aids.

ATTENTION: The mover uses strong magnets. There is a risk of health hazard for persons with heart pacemakers, metal implants, and hearing aids while in proximity of magnetic components and the magnetic field produced by components. The magnetic field that is generated can disrupt the functionality of an automatic implantable cardioverter defibrillator (AICD). People with cardiac pacemakers must not work near the iTRAK 5730 system.


ATTENTION: A pinch point hazard exists while installing a mover. A mover can have sudden and fast motion due to magnetic attraction. To avoid personal injury, do not put your fingers between the mover and the motor module.

Magnetic Field Strength

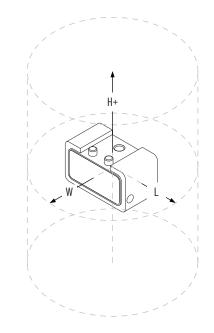
The iTRAK 5730 system movers contain components with strong magnetic fields. The motor modules also produce magnetic fields while movers are being commanded. This section provides the strength of the magnetic field for an uninstalled mover, an installed and enabled mover, and an uninstalled position magnet.

When motion is present on the system, the magnetic field does not exceed 0.05 mT at 500 mm (19.7 in.) in any direction from the track. Ferrous metals can influence the magnetic field direction and strength. For the most accurate data, measure the magnetic field strength on a track that is installed in its final configuration.

Figure 16 - Mover Magnetic Field Orientation

<u>Table 6</u> lists the magnetic field strength at distances from the center point of an uninstalled mover. Maintain these minimum distances to avoid interaction with the magnetic field.

Table 6 - Magnetic Field Strength of an Uninstalled Mover


						Magnetic S	trength					
Cat. No.		0.05 mT			0.1 mT			0.5 mT				
	L (+/-) mm (in.)	W+ mm (in.)	W- mm (in.)	H (+/-) mm (in.)	L (+/-) mm (in.)	W+ mm (in.)	W- mm (in.)	H (+/-) mm (in.)	L (+/-) mm (in.)	W+ mm (in.)	W- mm (in.)	H (+/-) mm (in.)
2198T-VT0304-E	200 (7.9)	120 (4.7)	190 (7.5)	150 (6.0)	170 (6.7)	90 (3.5)	150 (6.0)	120 (4.7)	105 (4.1)	40 (1.6)	95 (3.7)	70 (2.8)

<u>Table 7</u> lists the magnetic field strength at distances from the center point of a mover that is installed on a track. Maintain these minimum distances to avoid interaction with the magnetic field.

Table 7 - Magnetic Field Strength of an Installed Mover, Enabled at Zero Speed

	Magnetic Strength									
Cat. No.	0.05 mT			0.1 mT			0.5 mT			
	L (+/-) mm (in.)	W+ mm (in.)	H (+/-) mm (in.)	L (+/-) mm (in.)	W+ mm (in.)	H (+/-) mm (in.)	L (+/-) mm (in.)	W+ mm (in.)	H (+/-) mm (in.)	
2198T-VT0304-E	230 (9.0)	90 (3.5)	85 (3.3)	180 (7.0)	60 (2.4)	70 (2.8)	110 (4.3)	25 (1.0)	66 (2.6)	

Figure 17 - Position Magnet Field Orientation

<u>Table 8</u> lists the magnetic field strength at distances from the center point of an uninstalled position magnet. Maintain these minimum distances to avoid interaction with the magnetic field.

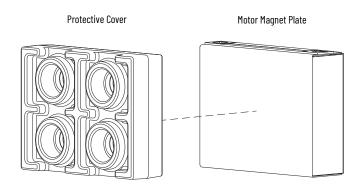
	Magnetic Strength									
Cat. No.	0.05 mT			0.1 mT			0.5 mT			
	L mm (in.)	W mm (in.)	H (+/-) mm (in.)	L mm (in.)	₩ mm (in.)	H (+/-) mm (in.)	L mm (in.)	₩ mm (in.)	H (+/-) mm (in.)	
2198T-N1-0304 2198T-NN-0304	130 (5.1)	100 (4.0)	100 (4.0)	105 (4.1)	85 (3.3)	85 (3.3)	65 (2.6)	50 (2.0)	50 (2.0)	

Safe Magnet Handling

ATTENTION: The strong magnets on the mover can attract metal objects that are in its proximity. When you handle and install movers with motor magnetic plates, maintain a distance between the mover and ferrous metal mounting surfaces or structures.

Maintenance personnel must avoid the use of metallic tools and secure items such as badge clips and other personal effects that could be attracted to the strong magnetic field.

Strong magnets can erase magnetic media. Never let credit cards or electronic media contact or get near the mover and motor magnet or iTRAK 5730 system.


- The track creates strong magnetic fields while energized during operation.
- Persons with heart pacemakers, metal implants, or hearing aids must not enter these places:
 - Areas where the iTRAK 5730 system components are mounted, commissioned, and operated.
 - Areas where strong magnets are stored, repaired, or mounted.

Motor Magnet Protective Cover

Exposed or uninstalled motor magnet plates, whether they are mounted to a mover or freestanding, must always have the protective cover installed. The cover is only removed at the time of mover installation on the track system. The cover provides some protection for safe handling. Always handle an exposed motor magnet plate with caution.

- The motor magnet plate with a protective cover installed must be kept at least 305 mm (12 in.) away from other motor magnet plates and other ferrous metal parts such as hardware and tools.
- Magnet plates without a protective cover must be kept a minimum of 1 m (3.3 ft) away from other magnet plates and ferrous metal parts.

Figure 18 - Motor Magnet Plate and Protective Cover

iTRAK 5730 System Installation

Use this chapter to assemble and mount an iTRAK® 5730 and install a lubrication system.

Торіс	Page
Safety Information	39
Before You Begin	40
iTRAK System Components	41
Inspection	42
Approximate Dimensions	43
Assemble an iTRAK 5730 System	43
Mount the iTRAK 5730 Assembly	58
Install the Lubrication System	63
Optional Infield Covers	67

Consider the following when planning the location for your iTRAK 5730 installation:

- Overall finished assembly dimensions
- Future product expansion
- Alignment with other equipment
- Installation of safety guards
- System cable lengths
- Vibration free surfaces
- Operator access to iTRAK components and lubrication system

Safety Information

Before you begin assembly, read the <u>Safety Information</u> on page <u>32</u>.

ATTENTION: To reduce the risk of injury and property damage, read the <u>Safety</u><u>Information</u> on page <u>32</u> before you start the installation of the system.

WARNING: Improper use or modification of system components, failure to follow the safety instructions, or disabling safety devices can result in property damage, injury, electric shock, or death.

Before You Begin

Review the information in this section before you begin assembly or maintenance on your iTRAK 5730 system.

Tools and Accessories

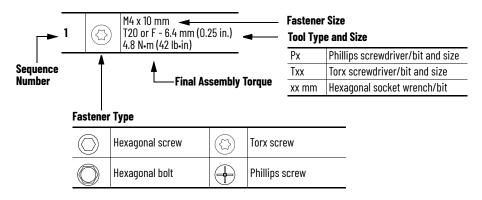

<u>Table 9</u> provides a list of the tools that are required to assemble and install an iTRAK 5730 system.

 Table 9 - Required Tools/Accessories

Tool	Details
Hex bit	4 mm
Hexagonal socket	10 mm (for optional infield covers)
Phillips bit	#2
Torx bit	T20
Torque wrench	Electronic or manual, 2.256.8 N•m (2060 lb•in)
2x4 lumber (or similar)	Used to support the partially assembled system on the work surface. A 200 mm (7.9 in.) long section for each mounting ring in your system.
Lint free cloth	Used to clean system rail components
Isopropyl alcohol	Used to clean system rail components
Rail alignment tool (2198T-A08)	Used to align the rectangular rails for proper installation (recommended)
Mover loader tool (2198T-A09)	Used to install or remove movers (recommended)

Hardware Specification Table

The assembly illustrations throughout this section contain hardware specification tables (as shown here) that identify the following: sequence number (if necessary), type of fastener, fastener size, tool type and size, and final assembly torque.

Installation Workspace

Consider the following when preparing the installation workspace:

- The work surface must be flat, level, and clean
- The work surface must support the full assembled weight of the product
- An elevated work surface is recommended

General Handling Instructions

Rockwell Automation recommends that you follow these handling instructions for an assembled iTRAK 5730:

- Use properly rated equipment and hardware to lift and move the product.
- Qualified professionals must inspect all lifting equipment before it is used to move the product.
- All lifting cables or straps must meet or exceed the maximum weight capacity requirements.
- Wear appropriate personal protection equipment (PPE), including gloves, safety glasses, and safety shoes, when working with kit components and assembling the product.

Storage

If you must store motor and connector modules after you receive them, take the following precautions:

- Do not store the equipment outdoors
- Do not store the equipment in a corrosive or humid environment
- If opened, reseal and store the equipment in the shipping container
- Store the equipment in a clean and dry location

iTRAK System Components

This section identifies the modules and components that are required to assemble an iTRAK 5730. Use this section to verify that you have received the parts that are required for each kit in your installation.

Kit Description	Catalog Number	Kit Contents	Weight [kg (lb)]	Quantity Required
Straight motor module	2198T-L20-T0303-A00-S2	300 mm (11.8 in.) long straight motor section	8.6 (18.8)	As required for the application
Curved motor module	2198T-L20-T0309-D18-S2	350 mm (13.8 in.) long, 900 mm (35.4 in.) total length, curvilinear motor section	21.0 (46.3)	As required for the application
300 mm (11.8 in.) Straight rail kit	2198T-BE-ST03	 300 mm (11.8 in.) long: 2 straight rectangular rails 2 straight rectangular wedges 2 straight flat rails 2 straight flat wedges 14 M4 x 8 mm Torx screws 10 M4 x 20 mm Torx screws 	1.0 (2.2)	One per system (recommended)
600 mm (23.6 in.) Straight rail kit	2198T-BE-ST06	 600 mm (23.6 in.) long: 2 straight rectangular rails 2 straight rectangular wedges 2 straight flat rails 2 straight flat wedges 20 M4 x 8 mm Torx screws 20 M4 x 20 mm Torx screws 	2.0 (4.4)	As required for the application
900 mm (35.4 in.) Straight rail kit	2198T-BE-ST09	 900 mm (35.4 in.) long: 2 straight rectangular rails 2 straight rectangular wedges 2 straight flat rails 2 straight flat wedges 26 M4 x 8 mm Torx screws 30 M4 x 20 mm Torx screws 	3.0 (6.6)	As required for the application

Table 10 - iTRAK 5730 System Components

Table 10 - iTRAK 5730 System Components (Continued)

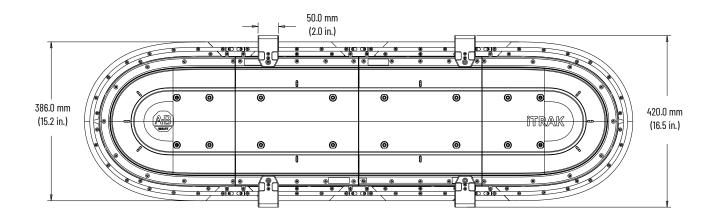
Kit Description	Catalog Number	Kit Contents	Weight [kg (lb)]	Quantity Required
Curved rail kit	2198T-BE-ED18	 900 mm (35.4 in.) long x 35 mm (1.4 in.) diameter: 2 curved rectangular rails 2 curved rectangular wedges 2 curved left, flat rails 2 curved right, flat rails 2 curved flat wedges 4 lubrication system 0-rings 20 M4 x 8 mm Torx screws 28 M4 x 20 mm Torx screws 	2.9 (6.4)	One per curved motor section
Mover	2198T-VT0304-E	Fully assembled mover with motor magnet	0.7 (1.5)	As required for the application
Position magnet (south polarity)	2198T-N1-0304	Mover position sensor magnet	0.02 (0.04)	One per system, when a reference mover is specified. See step 4 of <u>Continue iTRAK 5730 Motor Module</u> <u>Configuration</u> on page <u>99</u> for more information.
Position magnet (north polarity)	2198T-NN-0304	Mover position sensor magnet	0.02 (0.04)	As required for the application, or one less than the total number of movers, when the position magnet cat. no. 2198T-N1-0304 is used.
Structural mounting ring kit (top)	2198T-AS-01	1 stainless-steel ring 10 M6 x 20 mm, hex head reamer screws 1 tube of Loctite 243	1.4 (3.0)	One top and one bottom mounting ring for every two straight motor modules in the system (includes
Structural mounting ring kit (bottom)	2198T-AS-02	1 stainless-steel ring 10 M6 x 20 mm, hex head reamer screws 1 tube of Loctite 243	1.8 (4.0)	the connection to a first curved motor module). And, one top and one bottom mounting ring for a second curved motor module.
Power and control input connector module	2198T-CT-CP	Connector module with power and Ethernet connection ports	0.8 (1.6)	One per system
Power input with control pass-through connector module	2198T-CT-P	Connector module with power connection port	0.7 (1.5)	As required for the application
Power and control pass-through connector module	2198T-CT	Connector module (pass-through only, no ports)	0.3 (0.7)	Enough to connect all motor sections
Lubrication system	2198T-AL-SYS-4	 4 digitally activated pumps 4 pump mounting brackets 4 250 cc lubricant cartridges 4 nickel-plated tube fittings 4 fitting reducers, 1/4 x 1/8 in. FNPT 4 90° elbow fittings, 1/4 in. MNPT 4 straight nipple fittings, 1/4 in. NPT 4 4 mm fittings, PTC, 1/8 in. MNPT 4 4 mm fitting plugs 4 check valves, 1/8 in. MNPT x 1/8 in. FNPT 6 0-rings 25 m (82 ft) 4 x 2.5 mm polymer tubing 	6.7 (14.8)	One per system

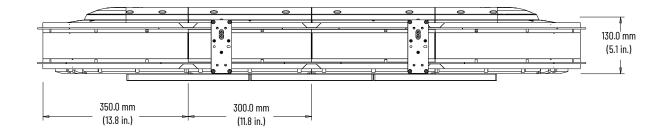
Inspection

When you receive your iTRAK 5730 kits and components, inspect each kit for damage or missing items. If there is evidence of damage or loss, follow this procedure:

- Note on the delivery receipt that the equipment being received is damaged or parts are missing.
- Contact the carrier that made the delivery and schedule an inspection.
- Inform your local Rockwell Automation representative that the equipment is damaged or parts are missing.
- Retain all product packaging for review by the carrier.

Complete this additional inspection for all complete rail kits:


• Inspect and verify that there is no damage to the surfaces of the rectangular and flat rail components. Do not use a damaged rail component.


For further assistance, contact your Rockwell Automation representative.

Approximate Dimensions

<u>Figure 19</u> provides the approximate dimensions of an assembled iTRAK 5730 system that includes two curved and two straight motor modules. Four movers shown for illustrative purposes.

Figure 19 - Assembled iTRAK 5730 Approximate Dimensions

Assemble an iTRAK 5730 System

This section provides instructions to assemble an iTRAK 5730 system. This installation provides instructions for assembling a closed track iTRAK 5730 system, with a minimum of two curved and two straight motor modules. Your track can be made with more straight motor modules than are shown in these procedures, but the same instructions apply. If fewer curved or straight motor sections are desired, contact Rockwell Automation for details.

For this installation configuration, there are six main tasks to assembling your iTRAK 5730 system. For important information on lifting and mounting iTRAK 5730 assemblies, see <u>Before You Begin</u> on page <u>44</u> before you begin the assembly tasks.

Task	Page
Install Top Structural Mounting Rings	45
Install Bottom Structural Mounting Rings	48
Install Bottom Flat Rails and Flat Wedges	49
Install Bottom Rectangular Rails	52
Install Rectangular Wedges and Align Rectangular Rails	54
Install Top Rails, Wedges, and Connector Modules	56

Before You Begin

The iTRAK 5730 system requires installation of structural mounting rings and track rail assemblies on both surfaces of the motor modules. During assembly you are required to lift the partially assembled system and place the opposite side up to complete the installation of components. This procedure requires lifting equipment and hardware capable of supporting the full assembled weight of the product. To prepare the appropriately rated lifting equipment, you must calculate the full assembled weight of your iTRAK 5730 system. See <u>Table 10</u> on page <u>41</u> for iTRAK 5730 components and kits weights.

ATTENTION: To avoid possible injury or equipment damage, follow local, national, and international codes, standards, regulations, or industry guidelines and your company safety procedures when you handle or lift a partially or fully assembled iTRAK 5730 system.

Each structural mounting ring contains eight holes that accept M6 x 16 mm hardware. The mounting ring holes can be used to secure the appropriate hardware to lift the assembly. The hole locations are identified in Figure 20 and Figure 21. The holes that are used for lifting are also used for mounting hardware installation.

Use a minimum of four mounting-ring lifting holes for every 2...6 straight motor module sections. Use a minimum of six mounting-ring lifting holes for every 8...12 straight motor module sections. Similarly, install the lifting hardware to one side of the rings only to lift and flip the partially or fully assembled system.

Figure 20 - Top Structural; Mounting Ring Lifting and Mounting Holes

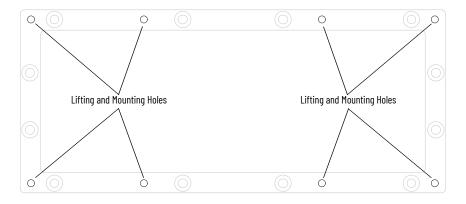
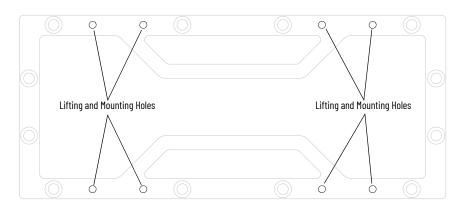
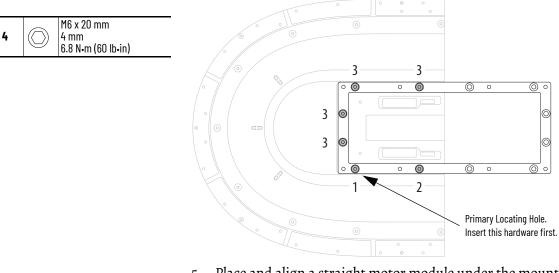
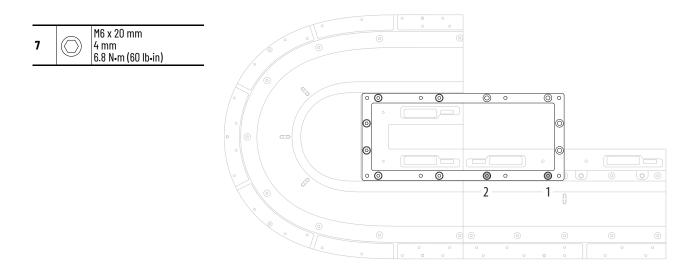



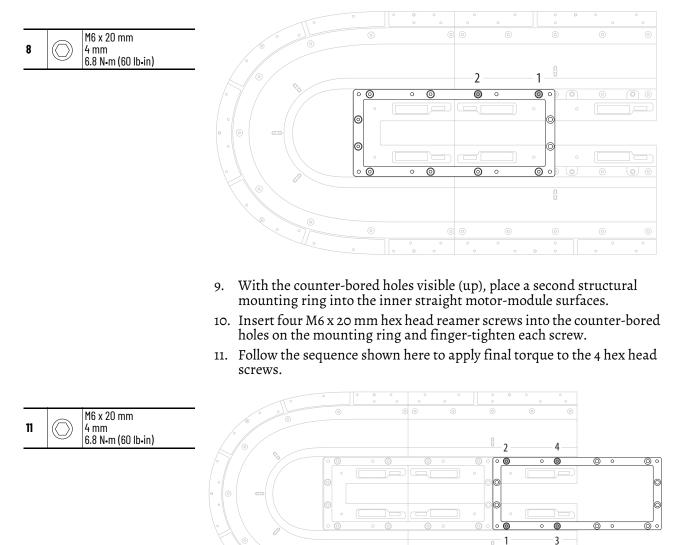
Figure 21 - Bottom Structural Mounting Ring Lifting and Mounting Holes



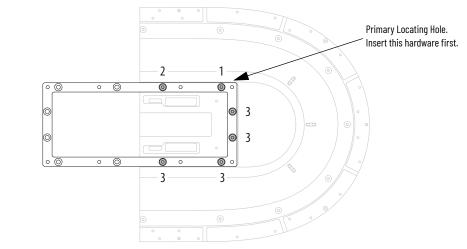
Install Top Structural Mounting Rings

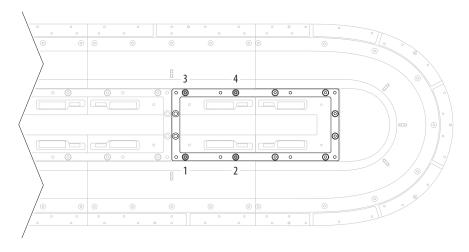

- 1. With the upper surface facing up (side with status indicators), place a curved motor module on a flat and level work surface.
- 2. With the counter-bored holes visible (up), place a structural mounting ring into the inner motor module surface.

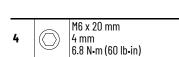
IMPORTANT Apply Loctite 243 on the mounting-ring hardware thread area and food-grade lubricant on the shoulder area to reduce the risk of binding in rings.


- 3. Insert six M6 x 20 mm hex head reamer screws into the counter-bored holes on the mounting ring and finger-tighten each screw using the torque pattern that is shown in <u>step 4</u>.
- 4. Follow the sequence shown here to apply final torque to the 6 hex head screws.

- 5. Place and align a straight motor module under the mounting ring next to the curved motor module.
- 6. Insert two M6 x 20 mm hex head reamer screws into the counter-bored holes on the mounting ring and finger-tighten each screw.
- 7. Follow the sequence shown here to apply final torque to the 2 hex head screws.


8. Repeat steps <u>5...7</u> to install a second straight motor module across from the first straight motor module.


- 12. If additional straight motor modules are used, repeat steps <u>5...8</u> to install each module.


Install Closing Curved Motor Module

- 1. With the upper surface facing up (side with status indicators), place a second curved motor module on a flat and level work surface.
- 2. With the counter-bored holes visible (up), place a structural mounting ring into the inner curved motor module surface.
- 3. Insert six M6 x 20 mm hex head reamer screws into the counter-bored holes on the mounting ring and finger-tighten each screw.
- 4. Follow the sequence shown here to apply final torque to the 6 hex head screws.

- 5. Place and align the second curved motor module with mounting ring next to the last pair of straight motor modules.
- 6. Insert four M6 x 20 mm hex head reamer screws into the open counterbored holes on the mounting ring and finger-tighten each screw.
- 7. Follow the sequence shown here to apply final torque to the 4 hex head screws.

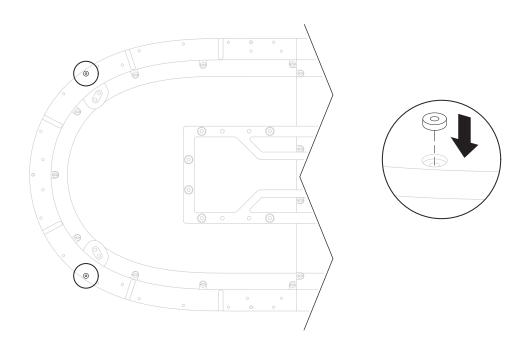
M6 x 20 mm

4 mm 6.8 N•m (60 lb•in)

7

Install Bottom Structural Mounting Rings

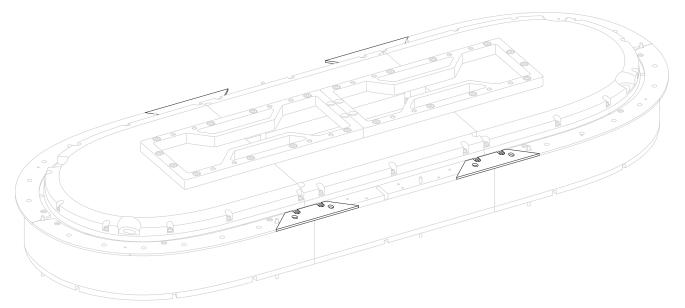
	IMPORTANT	The top and bottom structural mounting rings are separate and have different part numbers. Confirm you are installing the correct mounting ring.
		and secure M6 x 16 mm rotary eyebolts into the appropriate n the structural mounting rings.
	2. Secure	the assembly in multiple locations along its length with the priately rated lifting equipment.
		TTENTION: To guard against possible personal injury and equipment damage, take uese precautions when lifting the iTRAK 5730 assembly: Inspect all lifting hardware for proper attachment before lifting the equipment. Do not allow any part of the equipment or lifting mechanism to contact electrically charged conductors or components. There is a risk of injury by improper handling. You can be injured by being crushed, cut, struck, or sheared while handling system components. Do not allow personnel or their limbs directly underneath the equipment when it is being lifted and mounted.
		lift the assembly off the work surface to a level high enough to the assembly only.
		x4 supports flat on the work surface to allow for the assembly to the installed structural mounting brackets.
	5. Slowly	rotate the assembly and lower it onto the 2x4 supports.
	IMPOI	RTANT Apply Loctite 243 on the mounting-ring hardware thread area and food-grade lubricant on the shoulder area to reduce the risk of binding in rings.
	6. With th ring at	he counter-bored holes visible (up), place a structural mounting each mounting location on the bottom of the motor modules.
		an M6 x 20 mm hex head reamer screw into each of the open r-bored holes on the mounting rings and finger-tighten each
		t one end of the assembly and work to the opposite end to apply oque to all screws.
M6 x 20 mm 4 mm 6.8 N-m (60 lb-in)		
	3 4 © © °	
11 • • • • • • • • • • • • • • • • • •	© © ° 13 14	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


8

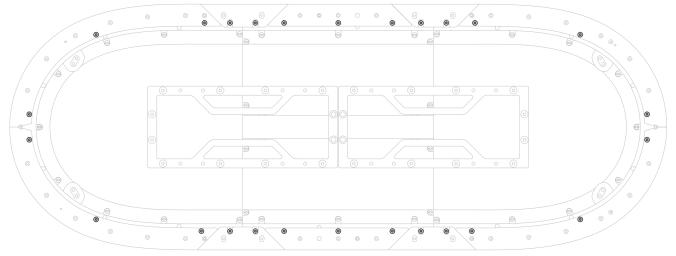
0

9. Place a rubber O-ring in each of the two lubrication system openings on each of the curved motor modules.

A drop of oil can help to keep the rubber O-ring in place.


Install Bottom Flat Rails and Flat Wedges

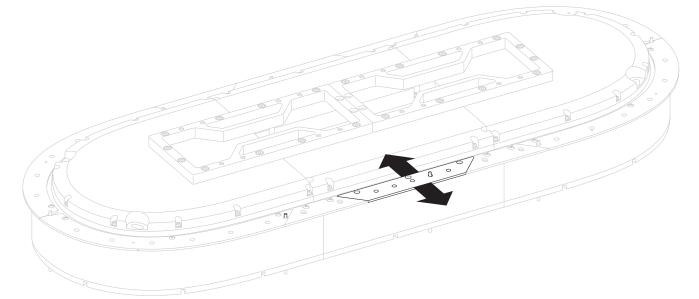
- 1. Remove the protective end-caps from the rail components.
- 2. By using a lint free cloth and isopropyl alcohol, clean the surfaces of the rectangular and flat rails in the straight and curved rail kits.
- 3. With the counter-bored holes visible (up), place the curved flat rails on the surface of the curved motor modules and align the mounting holes.



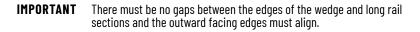
The motor modules contain pins along the surface that help to align the rails properly.

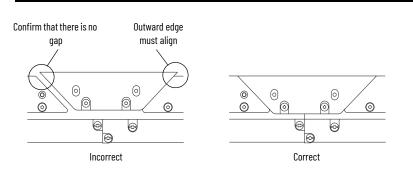
4. With the counter-bored holes visible (up), place a straight flat-rail wedge at the ends of each curved flat rail section.

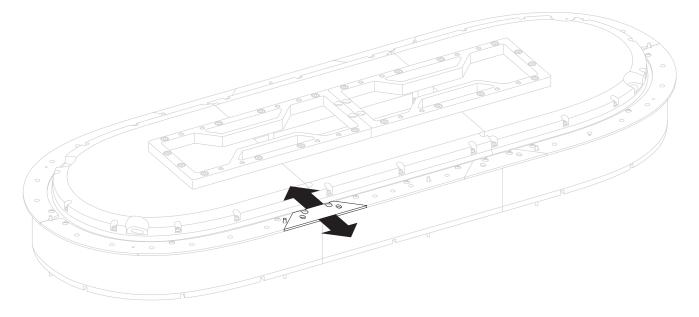
- 5. With the counter-bored holes visible (up), place the straight flat rail components on the motor modules.
- 6. Insert and finger-tighten an M4 x 8 mm Torx screw in each of the counter-board holes on the flat rail sections.



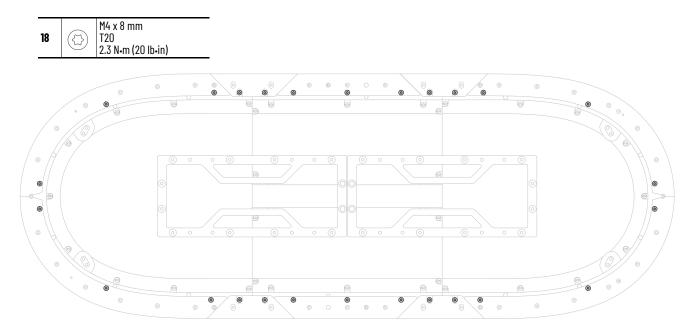
- 7. By using a T20 driver, tighten each of the M4 x 8 mm Torx screws until fully seated against the rail (do <u>not</u> apply final torque).
- 8. Loosen each of the M4 x 8 mm Torx screws one-half turn.


The screw heads must remain in the counter-bore just below the surface of the flat rails. The screws must be loose enough to allow for rail alignment adjustments.


9. Begin with a long, straight flat-rail section next to a curve and move the rail inward or outward until it stops against the screw head.


- 10. While holding the rail in place, hand-tighten the M4 x 8 mm Torx screws (do <u>not</u> apply final torque).
- 11. Position the long, straight flat-rail section across from the rail you positioned in step <u>9</u>. Move the rail section in the same direction (inward or outward) as you did with the previous rail section.
- 12. While holding the rail in place, hand-tighten the M4 x 8 mm Torx screws (do <u>not</u> apply final torque).

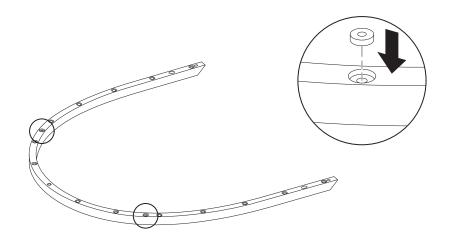
13. On the same end of the rail system, align a flat rail wedge with the straight and curved rail sections on either side of the wedge.



14. While holding the wedge rail in place, aligning the wedge with the curved flat rail and straight flat rail, hand-tighten the M4 x 8 mm Torx screws (do <u>not</u> apply final torque).

- 15. While holding the curved flat rail section in place, hand-tighten the M4 x 8 mm Torx screws (do <u>not</u> apply final torque).
- 16. Continue around the rail system, and repeat steps <u>11...15</u> for the remaining straight flat-rail, flat wedges, and curved flat-rail sections.
- 17. Check the entire rail system for gaps and/or misalignment and loosen any screws as necessary to align the rail system properly.

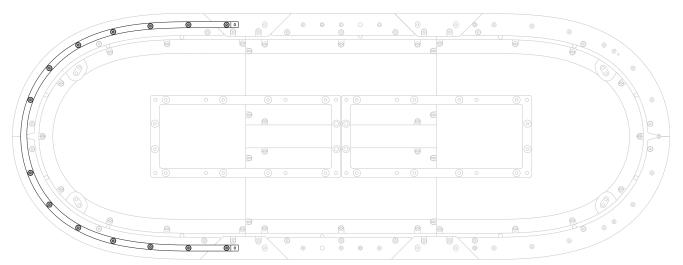
18. When all flat rails are in alignment, apply final torque to all screws.



Install Bottom Rectangular Rails

1. Place and seat a rubber O-ring in each of the two lubrication system openings on a curved rectangular-rail section.

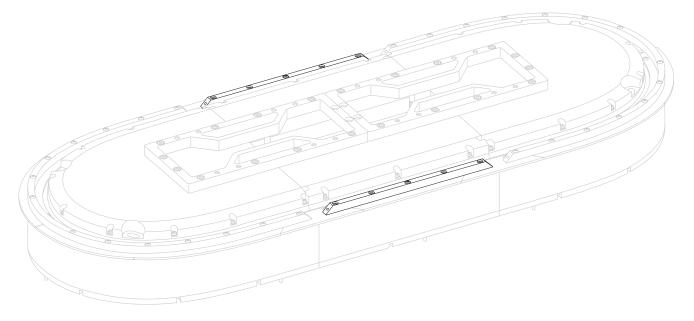
A drop of oil can help to keep the rubber O-ring in place.



2. With the counter-bored holes visible (up), place a curved rectangular rail on the curved flat rail until it is fully seated against the flat rail below.

The motor modules contain pins along the surface that are used to locate the rails properly.

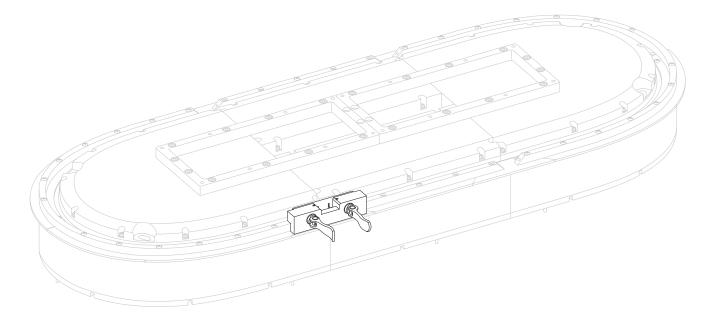
3. Insert 14 M4 x 20 mm Torx head screws into the counter-bored holes on the rail and finger-tighten the screws.



- 4. Repeat steps <u>1...3</u> for the second curved rectangular-rail section.
- 5. With the counter-bored holes visible (up), place a straight rectangular rail on a straight flat rail until it is fully seated against the flat rail.

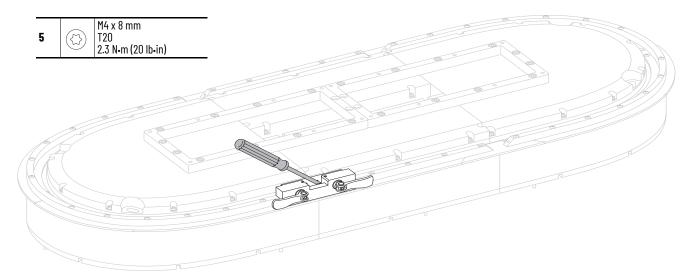
The motor modules contain pins along the surface that are used to locate the rails properly.

- 6. Insert an M4 x 20 mm Torx head screw into the center counter-bored hole on the rail and tighten the screw until it is fully seated against the rail (do <u>not</u> apply final torque).
- 7. Loosen the screw one turn.
- 8. Repeat steps <u>5</u>...<u>7</u> for each straight rectangular rail.

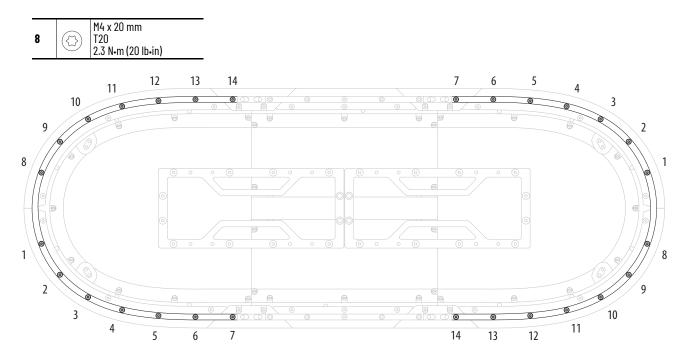


IMPORTANT Start with the two wedges on each end of the curved sections first. Begin with the gap between a curved and straight rail section, and, with the counter-bored holes visible (up), place a rectangular wedge in the gap between the rectangular rails. Insert an M4 x 8 mm Torx head screw into the counter-bored holes on the wedge and finger-tighten the screws.

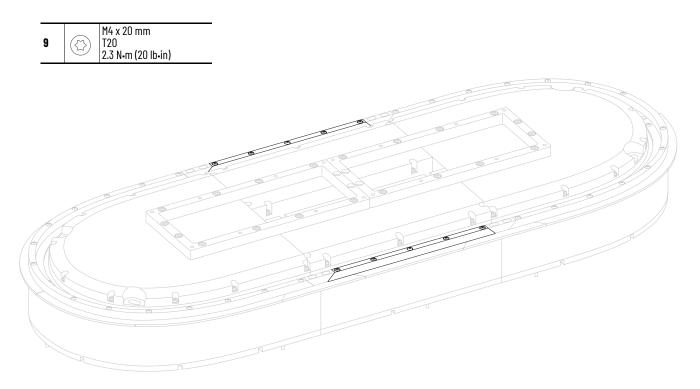
3. With the tool clamps unlocked, place the rail alignment tool (cat. no. 2198T-A08) over the center of the wedge.



Verify that you can access each of the screws in the wedge with the driver bit, without interference from the alignment tool.



Install Rectangular Wedges and Align Rectangular Rails

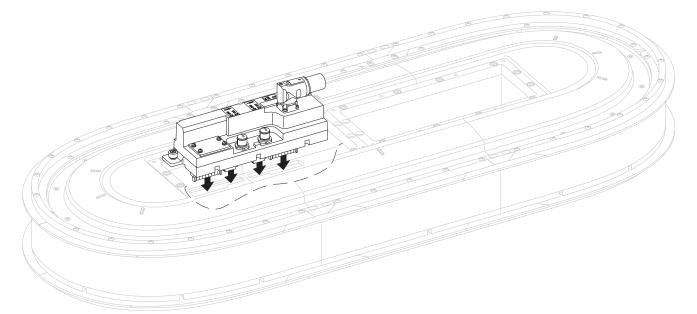

- 4. While you press downward on the rail alignment tool to verify that the tool is in full contact with the rails, lock the tool clamps.
- 5. Apply final torque to screws in the wedge.

- 6. For the remaining wedges that are placed between a curved and straight rail section, repeat steps <u>1...5</u>.
- 7. For the remaining wedges that are placed between straight rectangular-rail sections, repeat steps <u>1</u>...<u>5</u>.
- 8. Follow the sequence shown here to apply final torque to the 14 Torx head screws for both curved sections.

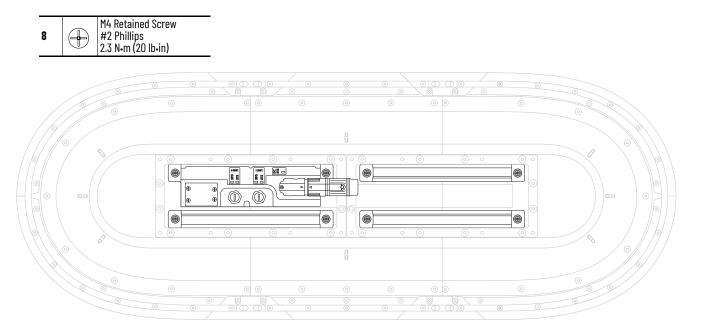
9. Insert M4 x 20 mm Torx head screws into the remaining counter-bored holes on the straight rectangular rails and apply final torque to all screws.

Install Top Rails, Wedges, and Connector Modules

- 1. Install and secure M6 x 16 mm rotary eyebolts into the available holes on the structural mounting rings.
- 2. Secure the assembly in multiple locations along its length with the appropriately rated lifting equipment.


ATTENTION: To guard against possible personal injury and equipment damage, take these precautions when lifting the iTRAK 5730 assembly:

- Inspect all lifting hardware for proper attachment before lifting the equipment.
- Do not allow any part of the equipment or lifting mechanism to contact electrically charged conductors or components.
- Do not allow personnel or their limbs directly underneath the equipment when it is being lifted and mounted.
- 3. Slowly lift the assembly off the work surface to a level high enough to rotate the assembly only.
- 4. Remove the 2x4 supports from the work surface.
- 5. Slowly rotate the assembly and lower it onto the work surface.
- 6. To install the rail system on the top side of the system, repeat the steps as outlined in <u>Install Bottom Flat Rails and Flat Wedges on page 49</u>, <u>Install Bottom Rectangular Rails on page 52</u>, and <u>Install Rectangular Wedges and Align Rectangular Rails on page 54</u>.



You can choose to install the connector modules before or after you have completed mounting the iTRAK 5730 assembly.

7. Align the connectors on the connector module with the connectors in the motor module and press it into place until firmly seated.

- 8. Apply final torque to the two captive Phillips head screws on the module.
- 9. Repeat steps $\underline{7...8}$ for the remaining connector modules.

You have completed the iTRAK 5730 assembly. Next steps:

- Mount the iTRAK 5730 assembly see page <u>58</u>
- Install the lubrication system see page <u>63</u>
- Install the position magnets on the movers see page 139
- Install the movers see page <u>140</u>
- Connect power and control cables see page <u>74</u> and <u>78</u>

Mount the iTRAK 5730 Assembly

Use the information in this section to prepare the iTRAK 5730 system for lifting and mounting. A customer-sourced mounting structure is required to mount the iTRAK 5730 in the desired position and location.

Choose the location for system components following these considerations:

- operator and maintenance access to movers and motor modules
- cable lengths
- vibration free surfaces

The iTRAK 5730 includes two structural mounting rings, the top mounting ring and the bottom mounting ring. Each mounting ring contains eight threaded mounting holes that accept M6 x 16 mm hardware. To connect the iTRAK 5730 to the customer-sourced mounting structure, attach one of the mounting rings to the structure using all eight mounting holes in the ring.

In high shock and vibration applications, it is especially important to use all eight mounting holes of a mounting ring. For these applications, you may consider attaching the other mounting ring to a mounting structure as well, if the application permits.

To allow the motor modules and rings to undergo maintenance without disassembly of the mounting structure, we recommend that the customersourced mounting system meet the following conditions:

- Allows access to the eight mounting holes in both the top and bottom mounting rings.
- Allows access to the 12 counter-bored holes in both the top and bottom mounting rings.

The mounting hole and counter-bored hole locations are shown in <u>Figure 22</u> on page 59.

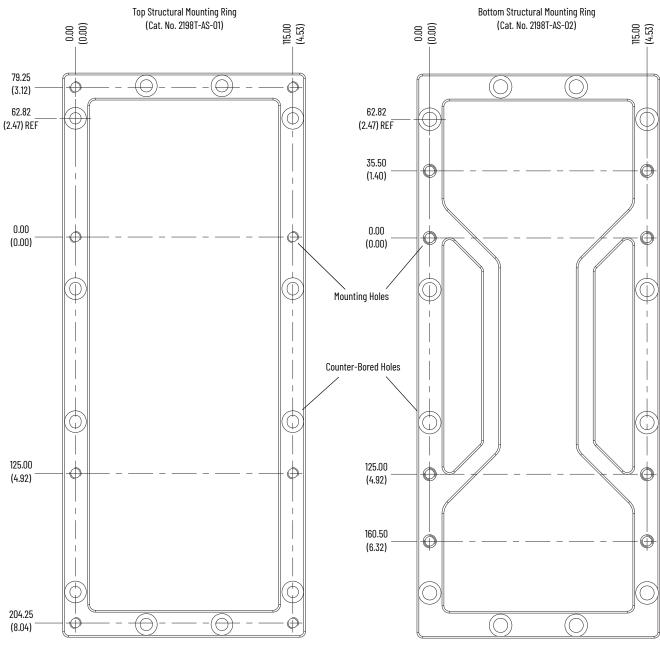
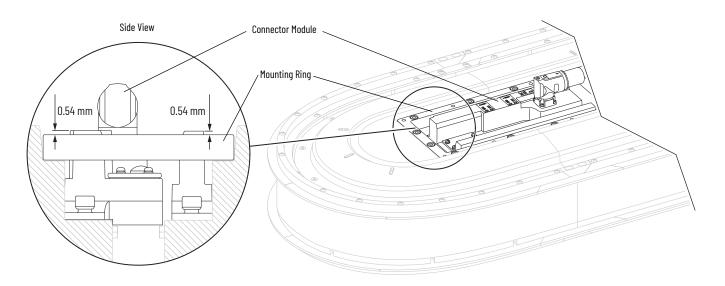



Figure 22 - Structural Ring Mounting Hole Pattern

Dimensions are in millimeters and (inches).

ATTENTION: Installed connector modules extend approximately 0.54 mm (0.02 in.) above the surface of the top structural mounting rings. You must use a 1 mm (0.04 in.) or larger spacer between the top structural mounting rings and a mounting plate or similar mounting assembly when secured at a 90° angle to the connector modules. Failure to follow these instructions can result in equipment damage.

Grounding Requirements

To reduce the effects of electromagnetic interference (EMI), the iTRAK 5730 system must be mounted such that the mounting rings are bonded to earth ground.

If the mounting interface does not provide a low impedance path to earth ground, it is recommended that you connect the mounting rings to ground with a braided ground strap. Keep the braided ground strap as short as possible for optimum bonding. For large systems with multiple power input connector modules, it is recommended that these braided ground straps be connected to the mounting rings nearest to each power input connector module.

Before You Lift and Mount the iTRAK 5730 Assembly

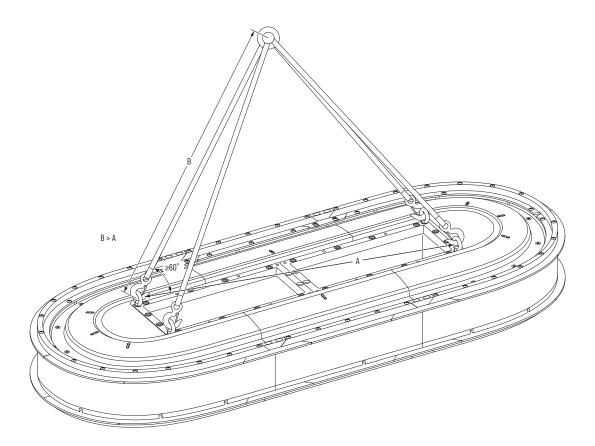
Follow these guidelines to avoid personal injury or equipment damage.

ATTENTION: There is a risk of injury by improper handling. You can be injured by being crushed, cut, struck, or sheared while handling system components.

- Only qualified persons must work with components of the system or within their proximity.
- Observe the relevant statutory regulations of accident prevention.
- Use protective equipment such as hard hat, safety goggles, safety shoes, and safety gloves while handling the system.
- Proper transport, storage, mounting and installation, and care in operation and maintenance are prerequisites for optimal and safe operation of the system.
 - Use suitable equipment for mounting and transport.
 - Use proper tools and use special tools if specified.
 - Use hoist equipment and tools in the correct manner.
 - Avoid jamming and crushing by using safety measures.
 - Do not stand under loads.
- Use the components of the system only in the manner that is defined as appropriate. See <u>Appropriate Use on page 10</u>.
- Follow the safety regulations and requirements of the country in which the system is operated.
- Only operate if the national Electromagnetic Compatibility (EMC) regulations for the application are met.
- In accordance with EMC requirements, the machine or installation manufacturer is responsible for compliance with the limit values as prescribed in the national or local regulations.

Lift the iTRAK 5730 Assembly

To prepare the appropriately rated lifting equipment, you must calculate the full assembled weight of your iTRAK 5730 system. See <u>Table 10 on page 41</u> for iTRAK 5730 components and kits weights.



ATTENTION: To avoid possible injury or equipment damage, follow local, national, and international codes, standards, regulations, or industry guidelines and your company safety procedures when you handle or lift a partially or fully assembled iTRAK 5730 system. Do not lift or move the equipment by any means other than what is described in this publication.

The structural mounting rings (cat. no. 2198T-AS-01 and 2198T-AS-02) contain eight holes that can be used to secure the appropriate M6 x 16 mm hardware that is used to lift the assembly. The holes that are used for lifting hardware during installation are shown in <u>Figure 20 on page 44</u> and <u>Figure 21 on page 44</u>.

Use a minimum of four lifting holes in the mounting rings for every 2...6 straight motor module sections. Use a minimum of six lifting holes for every 8...12 straight motor module sections. Similarly, install the lifting hardware to one side of the rings only to lift and flip the partially or fully assembled system.

Figure 23 - Lift the iTRAK System

Install the Lubrication System

Contents of an iTRAK Lubrication System

The iTRAK 5730 Lubrication System, kit catalog number 2198T-AL-SYS-4, contains the following components.

Lubricant Pumps

Four lubricant pumps are included, one for each bearing rail, the top flat rail, bottom flat rail, top rectangular rail, and bottom rectangular rail. The assembled pumps have push-to-connect connectors with plugs. These plugs help prevent oil from leaking during shipment. You remove these plugs when you are ready to connect the tubes. The pump fittings contain a check valve to help prevent backflow when a replacement reservoir is installed.

Lubricant Tubes

Four 10 m (32.8 ft) long lubricant tubes are included in the kit to connect fittings on the remotely located pumps to fittings on the iTRAK.

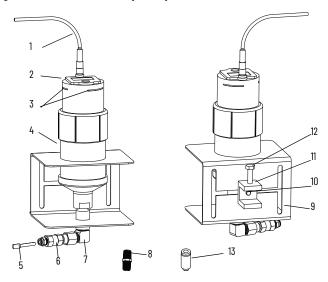
iTRAK Fittings for Lubricant Tube Connections

Four in-line one-touch fittings (item 13 in Figure 24 on page 64) are provided. These fittings are used to connect the lubricant tubes to the iTRAK. The fittings screw onto the track bottom end plate at one or both ends of the track. The Curve Motors at the ends of the track are the only motors with lubricant bleed holes, and therefore the lubrication kits must connect to the ends of the track. Once the fittings are installed, connect the fittings to the pumps with the provided tubing.

Straight Fittings to Customize the Direction of Tubing

The lubrication system is assembled with right angle fittings by default. Additional straight hex nipple fittings are provided to let you redirect pump tubing. If your system requires straight exit from the pump, use the supplied straight fittings to replace the right angle fittings. Use Teflon tape for the tapered NPT threads.

Lubricant Pump Reservoir Sealing Washer


The reservoir uses a straight 1/4 BSPP thread. A sealing washer is supplied.

Required Quantity of iTRAK Lubrication Systems

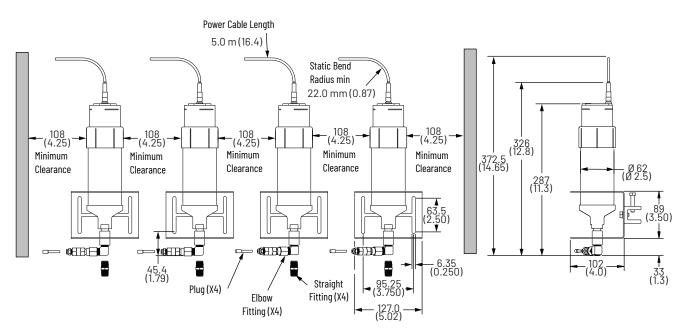
The number of iTRAK Lubrication System per track may vary according to the length of the track. The general rule is as follows:

- Tracks with up to 4800 mm (188.98 in.) of straight length (16 straight motors): use one lubrication kit 2198T-AL-SYS-4.
- Tracks with more than 4800 mm (188.98 in.) of straight length (>16 straight motors): use two lubrication kits, one kit connected to one end of the track, the other kit connected to the other end of the track.

Figure 24 - Lubricant Pump Components

ltem	Description	Item	Description
1	5 m (16.4 ft) Digital signal cable	8	Straight brass fitting ⁽¹⁾
2	Digitally activated pump	9	Mounting bracket
3	Pump status indicators	10	0.2520 x 0.5 screw
4	Lubricant cartridge	11	Beam clamp
5	Plug	12	0.2520 x 1.25 screw
6	Check valve	13	One-touch fitting M5
7	Brass elbow fitting		

 If your installation requires the tubing to exit the pumps vertically, you can replace the brass elbows with the two straight brass nipples that are supplied with the kit.


Tools Required to Install Lubricant Pumps

- 7/16 in. open-end wrench
- M2.5 hex key

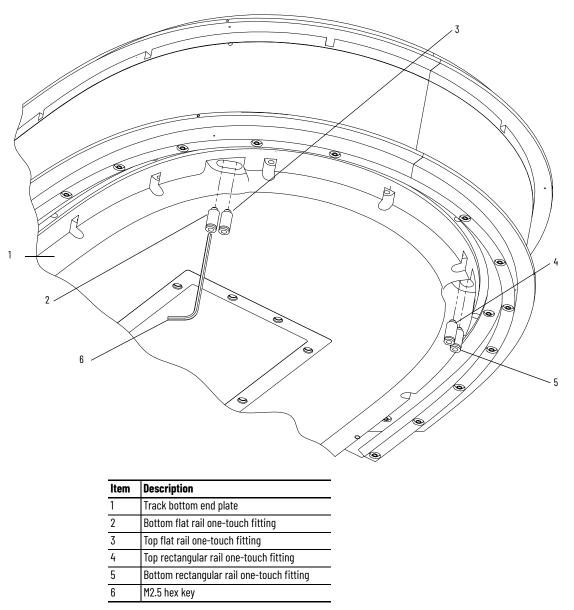
Mount the Lubricant Pumps and Connect Lubricant Tubes

To mount the lubricant pumps, complete these steps.

- 1. Choose a mounting position for each pump. Each pump must be located with the following constraints:
 - The mounting position must have a suitable mounting surface that allows the pump to be secured using its beam clamp (item 11 in <u>Figure 24</u>). The beam clamp can be positioned anywhere on the H pattern of the mounting bracket.
 - Each pump comes with 10 m (32.8 ft) of lubricant tube to connect the pump to the iTRAK 5730 system lubrication connectors, limiting the distance that the pump can be from the iTRAK 5730.
 - Power cable routing distance: Each pump comes with a 5.0 m (16.4 ft) power cable to connect it to the 24V I/O port of your controller.
 - Maintenance and monitoring: The location must be accessible for maintenance and visible for monitoring the pump status indicators.
 - Mounting clearance: Observe the clearance requirements in Figure 25.

Figure 25 - Lubricant Pump Mounting Dimensions and Clearances

- 2. Secure all pumps in their mounting locations. Use the following steps for each pump:
 - a. If necessary, adjust the position of the beam clamp within the H pattern of the mounting bracket to accommodate the attachment surface; use a 7/16 in. open-end wrench.
 - b. Secure the lubricant pump to its mounting surface (such as a beam) using the beam clamp; use a 7/16 in. open-end wrench to tighten the clamp.
- 3. Without connecting the lubricant tubes, label, route, and secure the lubricant tubes that will later be used to connect the pumps to the lubrication connectors on the iTRAK 5730 system.


ATTENTION: For the following step, if you do not connect the lubricant tubes to the lubricant pump connector soon after removing the plug from the lubricant pump connector, oil may leak out of the lubricant pump and cause a slipping hazard.

- 4. For each lubricant pump, perform the following steps a and b in immediate succession. Do not wait between the two steps.
 - a. To remove the plug (item 5 in <u>Figure 24</u>) from the lubricant pump connector, simultaneously pull back on the connector face and pull out the plug.
 - b. Connect the lubricant tube to the lubricant pump connector.

Make Lubricant Tube Connections to the iTRAK

1. Screw all lubrication-connector-in-line-one-touch fittings into place in the track bottom end plate on either end or both ends of the track, applying Loctite thread locker to the fitting threads if this is a high vibration application. Some example fittings are shown as items 2...5 in Figure 26.

Figure 26 - Installing the Lubrication-connector-in-line-one-touch Fittings on the Bottom of the iTRAK 5730 System

2. Select a lubricant tube that has already been routed and connected to a lubricant pump. Connect this lubricant tube to a lubrication-connector-in-line-one-touch fitting. This connection forms a continuous path for the lubricant from the pump to the rail lubricant bleed holes. Repeat this step for all fittings.

Fill the Lubricant Pump Reservoirs with Lubricant

The recommended lubricant to fill the reservoirs or cartridges is the standard H1 food safe oil: Kluber 4-UH1-68N.

Wire the Lubricant Pumps

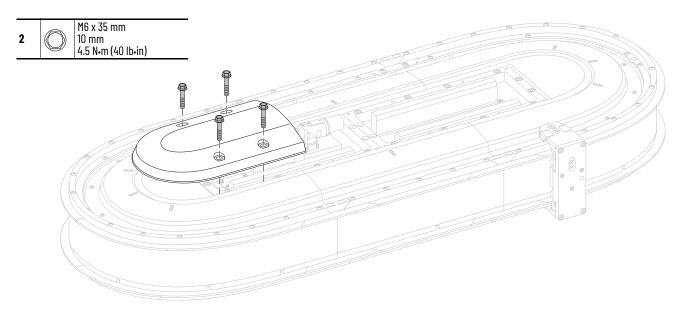
Make the following connections.

After wiring the lubricant pumps, an initial coating of oil is required on the entire track before operating the iTRAK 5730 system. See <u>Lubrication on</u> page 166.

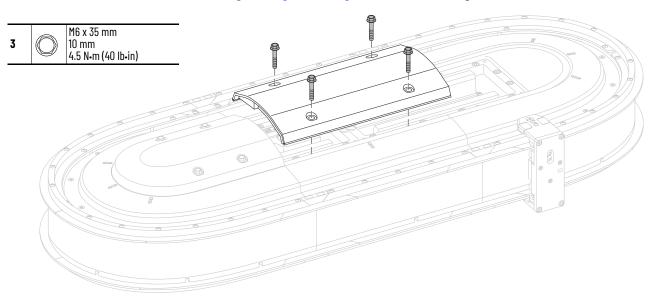
Configure the Lubrication System

See Lubrication on page 166.

Optional Infield Covers


The iTRAK 5730 system has optional infield section covers that provide additional ingress protection.

What You Need


- 10 mm hexagonal socket
- Loctite 243
- Infield Cover Kit

To install infield covers, complete these steps.

- 1. Apply Loctite 243 to the M6 x 35 hex head bolts.
- 2. Secure the curved infield cover to the assembly.

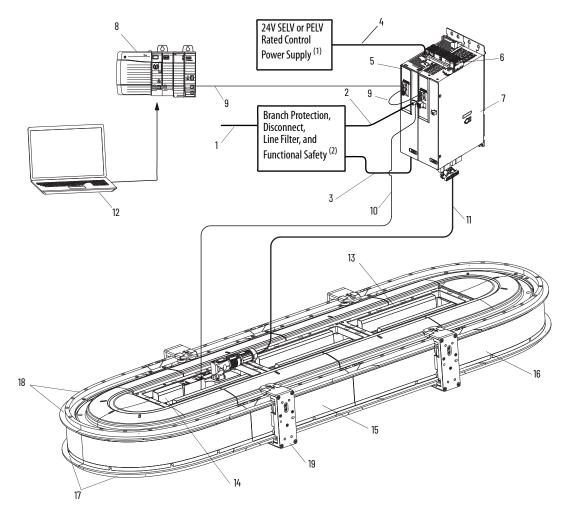
3. Repeat <u>step 1</u> and <u>step 2</u> for the remaining covers.

Connect the iTRAK 5730 System

This chapter provides information on how to connect your iTRAK[®] 5730 system components, make cable connections, and set your system IP addresses.

Торіс	Page
Typical iTRAK 5730 System	70
Provide Power to the iTRAK System	71
Connect an EtherNet/IP Network to the iTRAK 5730 System	75

Use this chapter with the Kinetix[®] 5700 iTRAK Power Supply and iTRAK Bus Conditioner Module Installation Instructions, publication <u>2198T-IN001</u> to install and connect the Kinetix 5700 iTRAK power supply to an iTRAK 5730 system.


For detailed information on how to install a Kinetix 5700 iTRAK power supply into a Kinetix 5700 system, see the Kinetix 5700 Servo Drives User Manual, publication <u>2198-UM002</u>. The Kinetix 5700 Servo Drives User Manual publication contains the information that is needed for using the other components of the Kinetix 5700 system, including:

- 2198-Pxxx Kinetix 5700 DC-bus power supply
- Other Kinetix 5700 components that can be part of your Kinetix 5700 system
- Branch protection, disconnect, and line filter hardware
- Enclosure requirements
- Requirements for EMC and agency compliance
- Kinetix 5700 hardware mounting
- Bonding, wire routing, EMC considerations

Typical iTRAK 5730 System

<u>Figure 27</u> provides a complete view of a typical iTRAK 5730 system that includes required and customer-supplied components, iTRAK solutions, and wiring.

Figure 27 - Typical iTRAK System with an iTRAK Power Supply

- In this example, 24V DC control power uses a shared-bus connection system between the Kinetix 5700 power supply and the Kinetix 5700 iTRAK power supply.
- (2) See Kinetix 5700 Servo Drives User Manual, publication 2198-UM002, for more information on these components.

ltem	Description
1	Mains power (460V nom)
2	Contactor enable signal line
3	Kinetix 5700 line voltage
4	24V control power
5	Kinetix 5700 DC-bus power supply
6	DC busbar 100 mm (3.94 in.) link
7	Kinetix 5700 iTRAK power supply (number of power supplies vary by system)
8	Programmable logic controller (PLC)
9	Machine Ethernet
10	Ethernet cable from the iTRAK power supply to connector module

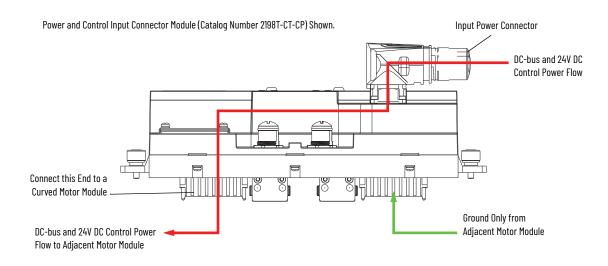
ltem	Description		
11	Power cable (DC-bus and 24V DC)		
12	Studio 5000 [®] Programming Interface (not supplied with system)		
13	Power and control pass-through connector module		
14	Power and control input connector module		
15	Straight motor module		
16	Curved motor module		
17	Bottom rectangular and flat rail systems		
18	Top rectangular and flat rail systems		
19	Mover		

Provide Power to the iTRAK System

Follow the guidance and instructions in this section to plan and complete the power connections between the iTRAK power supply and the iTRAK 5730 system. See the iTRAK 5730 System Technical Data, publication <u>2198T-TD002</u>, for detailed system power requirements.

You can use one iTRAK power supply to power up to 18 motor module sections, depending on current requirements and power cable length. You can use multiple iTRAK power supplies when your iTRAK system requires a higher current draw than can be supported by using one power supply. Use <u>Table 11</u> and <u>Table 12</u> to calculate your system current requirements.

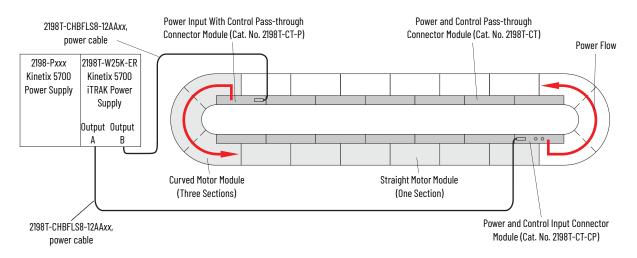
Table 11 - Current Draw for Motor Modules


Motor Module Type	Motor Sections per Module	Current Draw at 24V DC
Straight (cat. no. 2198T-L20-T0303-A00-S2)	1	0.65 A
Curved (cat. no. 2198T-L20-T0309-D18-S2)	3	1.6 A

Cable	Maximum Number of Motor Module Sections			
Length [m (ft)]	Low Line (21.6V DC)	Nominal (24V DC)	High Line (26.4V DC)	
3 (9.8)				
6 (19.7)				
9 (29.5)	18	18	18	
12 (39.4)				
15 (49.2) ⁽¹⁾				
30 (98.4) ⁽¹⁾	10	14		

(1) Requires two iTRAK 5730 power supply power outputs and cables when 14 or more motor module sections are used.

Connect Power to the iTRAK 5730 System


It is recommended that you install connector module catalog numbers 2198T-CT-CP and 2198T-CT-P, which connect DC-bus and 24V DC control power to the iTRAK 5730 system, on a curved motor module to provide maximum system power. Power, which is connected to the input power connector on the module, flows through the bottom output connector on the opposite end the module (as shown here). Connect the bottom output power connector to the input power connector on a curved motor module.

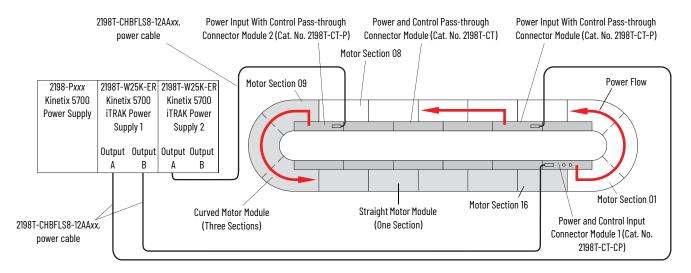
One iTRAK Power Supply

<u>Figure 28</u> illustrates a typical system wiring diagram when using one iTRAK power supply. The power supply power output A is connected to a power and control input connector module. Power supply power output B is connected to power with a control pass-through connector. The power flow through the modules is shown in the diagram and identifies where the power connector modules are installed.

Figure 28 - Wire an iTRAK 5730 System with an iTRAK Power Supply

Multiple iTRAK Power Supplies

Follow these guidelines when using multiple iTRAK power supplies in an iTRAK system. A typical iTRAK 5730 system with two power supplies is shown in <u>Figure 29</u>.


The iTRAK power supply is not designed to have the output buses of multiple power supplies connected together to create one bus of higher current capacity.

ATTENTION: To avoid personal injury and equipment damage, when multiple iTRAK power supplies are used, do not connect the DC output power bus on an iTRAK power supply to the DC output power bus on another iTRAK power supply.

When using multiple iTRAK power supplies, the system must be divided into separate electrical sections for each of the iTRAK power supplies. Use the following example to understand the use of multiple iTRAK power supplies for systems that require a higher current draw.

In this example, part of the track has a high-power demand, and the rest of the track has a lower power demand. In this case, iTRAK power supply 1 uses two power output connections (A, B) to provide power to the first eight motor sections (01...08). iTRAK power supply 2 uses one power output connection (A) to provide power to the remaining eight motor sections (09...16). The DC bus is electrically isolated between these two groups of motor modules. The power flow through the modules is shown in the diagram and identifies where the primary power connector modules are installed.

Figure 29 - Connecting Multiple iTRAK Power Supplies in a System

Connect the Power Cable

SHOCK HAZARD: Do not make any cable connections when power is applied to any component in the iTRAK 5730 system. To avoid a shock hazard, verify that system power is not applied before you begin the procedures in this chapter.

Use an iTRAK 5730 power cable (cat. no. 2198T-CHBFLS8-12AAxx) to connect the output power from an iTRAK power supply to a power input connector module installed on the iTRAK 5730 system. Follow these steps to connect the power cable to a connector module.

- 1. Verify that power is disconnected from the iTRAK 5730 system.
- 2. Connect the iTRAK 5730 power cable to the iTRAK power supply. See the Kinetix[®] 5700 iTRAK Power Supply and iTRAK Bus Conditioner Module Installation Instructions, publication <u>2198T-IN001</u>, for instructions.
- 3. Remove the protective cap from the power input connector on the connector module.
- 4. Verify that the cable connector outer housing is in the unlocked position.
- 5. Align the arrow on the cable connector with the arrow on the power input connector on the connector module.
- 6. Insert the cable connector into the power input connector on the connector module until it is fully seated.
- 7. Rotate the cable connector outer housing to the locked position.

Connect an EtherNet/IP Network to the iTRAK 5730 System

The iTRAK 5730 system is connected to an EtherNet/IP[™] network by using a Bulletin 1585D M12 Xcode Ethernet cable (catalog number 1585D-E8TGJM-*xx*) connected to the power and control input connector module.

EtherNet/IP Address Rotary Switches

Every device in an EtherNet/IP network must have a unique IP address. The power and control input connector module (cat. no. 2198T-CT-CP) contains rotary switches (S1, S2, and S3) to enable Dynamic Host Configuration Protocol (DHCP) or set static EtherNet/IP addresses manually. <u>Figure 30</u> identifies the location of the rotary switches. <u>Table 13</u> describes the possible settings for the rotary switches S1, S2, and S3.

Figure 30 - EtherNet/IP Rotary Switches and DIP Switch Locations

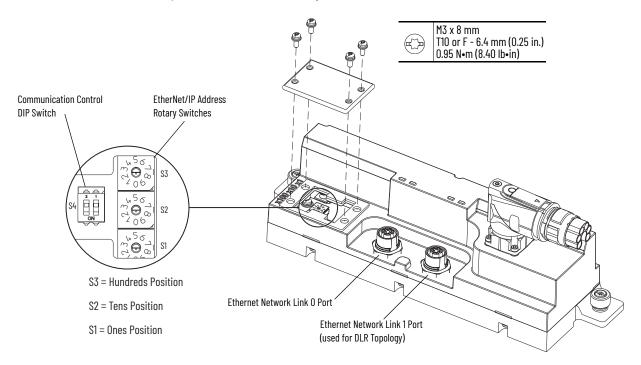


Table 13 - EtherNet/IP Rotary Switch Settings

Switch Setting	Function ⁽¹⁾
000	Used to disable Protected Mode on all downstream motor modules. See <u>Protected Mode on</u> page 83 for instructions on disabling Protected Mode.
001254	Sets the last octet of the IP address to the value indicated (xxx in 192.168.1.xxx) on the connected motor module. Every subsequent motor module is assigned an IP address with the last octet incremented by one, moving counter-clockwise around the track.
888	A power cycle after the switches are set to 888 restores all factory default settings on all downstream motor module sections. Before you use this setting, read the first IMPORTANT statement on page $\frac{76}{10}$ for critical functional safety considerations.
900	Used to enable Protected Mode on all downstream motor modules to prevent configuration changes. See <u>Protected Mode on page 83</u> for instructions on enabling Protected Mode.
999	Sets the IP address on all downstream motor modules to a value determined by either DHCP or an address that is stored in nonvolatile memory. IP addresses can be changed through the Module Configuration dialog box in RSLinx® software. '999' is the default setting.
All other values	Reserved. Applying power to the iTRAK 5730 system with the switches set to a reserved value results in an "Illegal Address" exception on all downstream motor modules.

 Downstream modules include all motor modules up to the next installed power and control input connector module (cat. no. 2198T-CT-CP).

IMPORTANT	Before changing the EtherNet/IP address rotary switch settings to 888, consider the following:
	 Restoring the factory default settings clears all functional safety configurations, resets safety ownership, and returns the motor module to the out-of-box-state. Only authorized personnel should attempt to reset the safety ownership. When the motor module returns to the out-of-box state, Safe Torque Off (STO) safety integrity is lost.

DHCP Configuration

The IP address rotary switches are set to '999' at the factory to enable DHCP. DHCP assigns IP address information from a pool of available addresses to newly connected devices (DHCP clients) in the network. You must use a BOOTP/DHCP software tool to set the IP addresses by using the hardware (MAC) addresses of the motor modules. The hardware address is on a label on the motor module.

With DHCP enabled, you must configure the IP address for each subsequent motor module in the Studio 5000 Logix Designer[®] application. IP addressing can also be changed through the Module Configuration dialog box in RSLinx[®] software. For more information about DHCP, see the Ethernet Reference Manual, publication <u>ENET-RM002</u>.

An Ethernet switch configured as a DLR ring supervisor can also act as a DHCP server to assign designated IP addresses to ring participants. Assignment of IP addresses is based on ring participant position. If a ring participant fails, a replacement device can be installed in the same position in the ring and automatically receive the same IP address as the replaced device.

Static IP Address Configuration

Manually set the rotary switches when working on a simple, isolated Ethernet network (for example, 192.168.1.xxx, where xxx is the last octet of the IP address). Switch S1 sets the '1's place, S2 the '10's place and S3 the '100's place.

IMPORTANT Changes to the EtherNet/IP address rotary switches settings only take effect after a power cycle.

When setting static IP addresses, the switches set the last octet for the motor module to which the connector module is connected and above which the switches are located, as shown in <u>Figure 31 on page 77</u>. Every subsequent motor module is assigned an IP address with the last octet incremented by one, moving counter-clockwise around the track. For an example of an iTRAK 5730 system that uses two Ethernet networks and two power and control input connector modules, see <u>Figure 32 on page 78</u>.

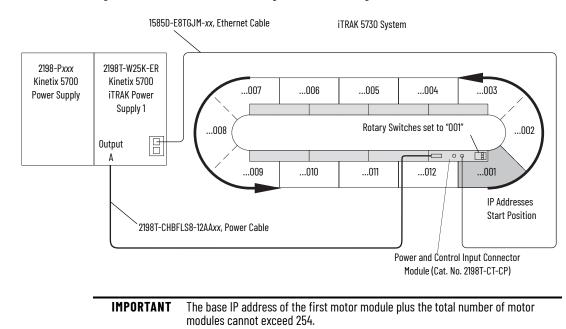


Figure 31 - Static IP Address Configuration and Assignment

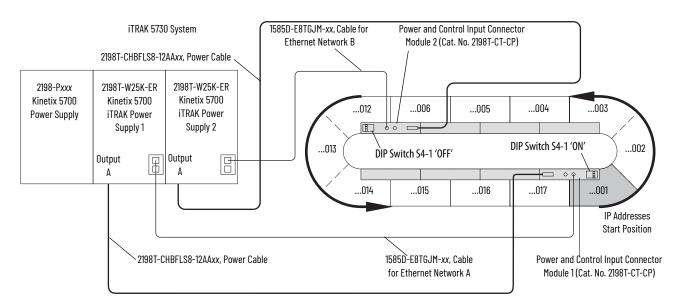
For access to the rotary switches, see <u>Figure 30 on page 75</u>. Always replace the protective cover before placing the iTRAK 5730 system into operation. For instructions on how to set the IP address manually on the power and control input connector module, see <u>Set the IP Address</u> on page <u>82</u>.

Communication Control DIP Switch

The communication control DIP switch (S4) is used to identify the backplane communication master for an iTRAK 5730 system and enables or disables access to the iTRAK 5730 diagnostic webpage. DIP switch S4 is contained on the power and control input connector module (cat. no. 2198T-CT-CP). See Figure 30 on page 75 for switch location. Table 14 identifies the possible switch settings.

Table 14 - Backplane Communication Control DIP Switch (S4) Settings

Switch	Position	Description					
S4-1	ON	The power and control input connector module is the backplane communication master and initializes backplane communication for the entire track. 'ON' is the factory default setting.					
OFF	OFF	The power and control input connector module section is not the backplane communication master.					
0/ 0	ON	Enables access to the iTRAK 5730 diagnostic webpage.					
S4-2	OFF	Disables access to the iTRAK 5730 diagnostic webpage. 'OFF' is the default setting					


IMPORTANT Verify that DIP switch S4-1 is set to "ON" for one power and control input connector module per system only.

IMPORTANT Changes to the DIP switch S4 settings only take effect after a power cycle.

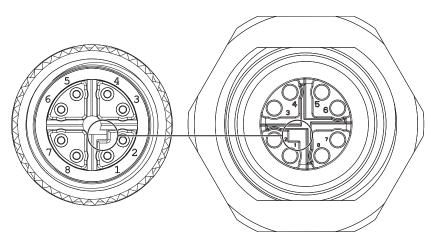
<u>Figure 32</u> provides an example of static IP addressing used in an iTRAK 5730 system with two Ethernet networks. In this example, the Kinetix 5700 iTRAK power supply 1 is on a separate Ethernet network from the Kinetix 5700 iTRAK power supply 2. The rotary switches on power and control input connector module 1 are set to "001". The rotary switches on power and control input connector module 2 must be set to "007" or greater.

DIP switch S4-1 on the power and control input connector module 1 is set to 'ON,' defining the module as the backplane communication master. DIP switch S4-1 on the power and control connector 2 must be set to "OFF."

Figure 32 - iTRAK 5730 System with Multiple Ethernet Networks and Static IP Addresses

Connect the Ethernet Cable

Use the iTRAK machine Ethernet cable (cat. no. 1585D-E8TGJM-*xx*) to connect the Ethernet port from the iTRAK power supply to the iTRAK 5730 system. Follow these steps to connect the Ethernet cable to a connector module.


It is recommended that you connect the Ethernet cable to the connector module before installing the connector module on a motor module.

1. Remove the protective caps from the Ethernet ports on the connector module. If only one port is used, remove the protective cap from the Link 0 port only.

2. Verify that the connector pins are aligned and insert the Ethernet cable connector into the Ethernet connector on the connector module.

Connector Module Ethernet Port Connector

Ethernet Cable (cat. no. 1585D-E8TGJM-xx)

3. By turning the cable outer housing clockwise, secure the cable to the connector module mounting ring until the cable is fully seated.

Notes:

Configure and Start Up the iTRAK 5730 System

This chapter provides configuration and start-up procedures for your iTRAK[®] 5730 system with a Logix 5000[®] controller by using the Studio 5000 Logix Designer[®] application.

Торіс	Page
Studio 5000 Logix Designer	81
Configure the iTRAK 5730 System	82
Configure and Customize the Project File	84
Configure the Motion Group	105
Configure the Section Axis Properties	107
Download the Program	113
Apply Power to the iTRAK 5730 System	113
Understand Bus-sharing Group Configuration	114
Commission the iTRAK 5730 System	118
Tune the Axes	120

Studio 5000 Logix Designer

To configure your iTRAK 5730 system, use a personal computer and the Studio 5000 Logix Designer application, version 33 or later. For the rest of this chapter, the Studio 5000 Logix Designer application is referred to as the Studio 5000[®] application. For help with using the Studio 5000 application as it applies to configuring the ControlLogix[®] or GuardLogix[®] controllers, see Additional Resources on page 233.

We recommend you develop your application program by using the standardized object-oriented Independent Cart Technology Libraries. Independent Cart Technology Libraries are application-centric library objects that are tested, documented, and life-cycle managed by Rockwell Automation for use with the Studio 5000 Application Code Manager. You can access and download the Independent Cart Technology Libraries on the Product Compatibility and Download Center website, <u>rock.auto/pcdc</u>.

Configure the iTRAK 5730 System

You can include the iTRAK 5730 system in your Studio 5000 application by adding it to a configured EtherNet/IP[™] module or controller under the I/O configuration tree. After setting network parameters, you can view the iTRAK 5730 system status information in the Studio 5000 environment and use it in your Studio 5000 application.

Before you begin, make sure that you know the catalog numbers for the Kinetix[®] 5700 power supply, iTRAK 5730 power supply, Logix module and /or controller, and the iTRAK motor modules used in your motion control application.

Set the IP Address

You can choose between static IP addresses or DHCP. See <u>Connect an</u> <u>EtherNet/IP Network to the iTRAK 5730 System</u> on page 75 before you complete this procedure. This procedure is used to set static IP addresses for the motor modules in your iTRAK 5730 system. IP addresses are formatted to private IP address values of 192.168.1.xxx.

The IP address rotary switches on the power and control input connector module are set to '999' with DHCP enabled at the factory.

Follow these steps to set the iTRAK 5730 system to static IP addresses on the power and control input connector module (cat. no. 2198T-CT-CP).

- 1. To access the rotary switches, remove the protective cover from the connector module chassis. For cover removal information, see <u>EtherNet/IP Address Rotary Switches</u> on page <u>75</u>.
- 2. Set the rotary switches between 001...254 to configure the last octet of the IP address.

The base address of the first motor module plus the total number of motor modules cannot exceed 254.

Settings are stored in nonvolatile memory. IP addressing can also be changed through the Module Configuration dialog box in RSLinx[®] software. Changes to the IP addressing take effect after power is cycled.

Protected Mode

The iTRAK 5730 system supports Protected Mode. When the system is in Protected Mode, the motor modules do not allow any configuration changes, resets, or firmware updates when a controller connection is open. Protected Mode is enabled by default.

Enable Protected Mode

To enable Protected Mode, follow these steps:

- 1. Set the rotary switches on the power and control input connector module to setting 900.
- 2. Apply power to the iTRAK 5730 system as described in <u>Apply Power to</u> the iTRAK 5730 System on page 113.
- 3. Verify that the status indicators provide these indications:
 - The motor module Module (MOD) status indicators are flashing red
 - The motor module Network (NET) status indicators are off
 - The connector module Link (LINK 0/1) status indicators turn off
- 4. Remove power from the iTRAK 5730 system as described in <u>Remove</u> <u>Power from the iTRAK 5730 System on page 34</u>.
- 5. Set the switches on the power and control input connector module for normal operation.
- 6. Apply power to the iTRAK 5730 system as described in <u>Apply Power to</u> <u>the iTRAK 5730 System on page 113</u>.

All motor modules downstream of the power and control connector module are now in Protected Mode.

Disable Protected Mode

To disable Protected Mode, follow these steps:

- 1. Set the rotary switches on the power and control input connector module to setting 000.
- 2. Apply power to the iTRAK 5730 system as described in <u>Apply Power to</u> <u>the iTRAK 5730 System on page 113</u>.
- 3. Verify that the status indicators provide these indications:
 - The motor module Module (MOD) status indicators are flashing red
 - The motor module Network (NET) status indicators are off
 - The connector module Link (LINK 0/1) status indicators turn off
- 4. Remove power from the iTRAK 5730 system as described in <u>Remove</u> <u>Power from the iTRAK 5730 System on page 34</u>.
- 5. Set the switches on the power and control input connector module for normal operation.
- 6. Apply power to the iTRAK 5730 system as described in <u>Apply Power to</u> <u>the iTRAK 5730 System on page 113</u>.

All motor modules downstream of the power and control connector module now have Protected Mode disabled.

Configure and Customize the Project File

These procedures assume that you have wired your iTRAK 5730 system. In this example, the GuardLogix[®] 5584ES safety controller dialog boxes are shown.

Configure the Controller

Follow these steps to configure the controller.

1. Apply power to your controller and open your Studio 5000 application.

2. From the Create menu, choose New Project.

The New Project dialog box appears.

🥥 New Project			? ×	🥑 New Project					?	×
Project Types		Search	×	Project Types			Search			×
3 Logix	 CompactLogix[™] 5380 Controll CompactLogix[™] 5480 Controll ControlLogix[®] 5570 Controlle ControlLogix[®] 5580 Controlle GuardLogix[®] 5580 Safety Con GuardLogix[®] 5580 Safety Con 1756-L82ES GuardLogix[®] 1756-L82ES GuardLogix[®] 	ler r r ttroller v 5580 Safety Controller v 5580 Safety Controller	•	ổ Logix	1756- 1756- 1756- 1756- 1756- 1756- 1756-	-L81E-NSE Cont -L81EP Cont -L82E Cont -L82E-NSE Cont -L83E Cont -L83E-NSE Cont	rolLogix® 5580 (rolLogix® 5580 (rolLogix® 5580 (rolLogix® 5580 (rolLogix® 5580 (rolLogix® 5580 (rolLogix® 5580 (Controller Controller Controller Controller Controller Controller		•
	1756-L83ES GuardLogix® 1756-L84ES GuardLogix® ▷ Studio 5000® Logix Emulate™ Name: UM_SafetyController Location: C:\Users\Kinetix\Desktr Cancel	9 5580 Safety Controller 9 Controller	Browse		1756- 1756- Name: U			Controller	Brow	vse

Example Module Properties Dialog Box with GuardLogix® Controller Selections

Example Module Properties Dialog Box with ControlLogix Controller Selections

IMPORTANT If you are configuring a safety application, you must use a GuardLogix 5580 or Compact GuardLogix 5380 safety controller.

In this example, the typical dialog boxes for GuardLogix 5584ES controllers with embedded Ethernet are shown.

- 3. Expand the Logix 5000 controller family and select your controller.
- 4. Type the file Name.
- 5. Click Next.

The New Project dialog box appears.

🥑 New Project			? ×	
1756-L84ES Guar UM_SafetyController	rdLogix® 5580 Safety Controller			
Revision:	33 ~			
Chassis:	1756-A7 7-Slot ControlLogix Chassis	~		
Slot:	0 v (i) Project default will be SIL2/PLd with no safety partner.			
Security Authority:	No Protection	~		
	Use only the selected Security Authority for authentication and authorization			
Secure With:	Logical Name <controller name=""></controller>			
	Permission Set	~		
Description:				
	Cancel Back Next	Т	Finish	1
				-

- 6. From the Revision pull-down menu, choose your software version.
- 7. Click Finish.

The new controller appears in the Controller Organizer under the I/ O Configuration folder.

8. From the Edit menu, choose Controller Properties.

The Controller Properties dialog box appears.

9. Click the Date/Time tab.

Nonvolati	le Memory	Capacity	Internet Pr	otocol	Port Conf	inuration	Secu	irity	ΔIs	arm Log
General	Major Faults	Minor Faults	Date/T		Advanced	SFC Exe		Proje		Safet
	se fields to configu Set Dat	ayed here is Contro are Time attributes e. Time and Zone f	of the Contro	iller.		me. te and Time				
Time Zone:		for Daylight Saving	(+00:00)	÷	ondige Dat					
	Time Synchroniza	tion	onl cha	ine, active assis, or an	me synchroniz axes in any co y other synch	ontroller in this ronized devic				
⊖ Is a syncl ⊖Duplicate	tem time master hronized time slav CST master dete stership disabled		👍 Gua ma	ardLogix 5	ce unexpecter 560 and 5570 s other time ma	safety control				
ON₀CST I	master					Advanced				

10. Check Enable Time Synchronization.

The motion modules set their clocks to the module that you assign as the Grandmaster.

IMPORTANT Check Enable Time Synchronization for all controllers that participate in CIP Sync[™]. The overall CIP Sync network automatically promotes a Grandmaster clock, unless the priority is set in Advanced.

11. Click OK.

Configure the Kinetix 5700 Power Supply

Follow these steps to configure a Kinetix 5700 DC-bus power supply.

1. Below the controller you created, right-click Ethernet and choose New Module.

The Select Module Type dialog box appears.

2198-P	Cl	ear Filters				Hide Filters	*
 Module Type C: Analog Communication Communications Communications 		^	✓ Ac✓ Di:✓ En	odule Type Vendor Ivanced Energy Indi alight dress+Hauser INUC CORPORATIO	ustries, Inc.		< >
Catalog Number	Description			Vendor	Category		_
2198-P031	Kinetix 5700 Bus Power	Supply, 10	DA, 324-5	2 Rockwell Aut.	Drive,Motion		
2198-P070	Kinetix 5700 Bus Power	Supply, 25	5A, 324-5	2 Rockwell Aut.	. Drive,Motion		
2198-P141	Kinetix 5700 Bus Power	Supply, 4	7A, 324-5	2 Rockwell Aut.	Drive, Motion		
2198-P208	Kinetix 5700 Bus Power	Supply, 69	9A, 324-5	2 Rockwell Aut.	. Drive,Motion		

- 2. By using the filters, put a check in the Motion checkbox and the Allen-Bradley® checkbox.
- 3. Select your 2198-Pxxx DC-bus power supply as appropriate for your hardware configuration.
- 4. Click Create.

	General			
Connection Time Sync Module Info Internet Protocol Port Configuration Network Motion Associated Axes - Power - Digital Input - Diagnostics	Type: Vendor: Parent: Name: Description: Module Defin Revision: Electronic Ke Power Struc Connection:	11.001 Change eying: Compatible Module ture: 2198-P031	, 10A, 324-528 Volt Ethernet Address Private Network: 192.168.1. 3 IP Address: Host Name:	

- 5. Configure the new module.
 - a. Type the module Name.
 - b. Select an Ethernet Address option.

In this example, the Private Network address is selected.

c. Enter the address of your 2198-Pxxx DC-bus power supply.

In this example, the last octet of the address is 3.

6. Click the Power category.

General* Connection	Power			
Time Sync Module Info	Power Structure:	2198-P031		Advanced
Internet Protocol		Kinetix 5700 Bus Power Supp	ply, 10A, 324-528 Volt	
 Port Configuration Network 	Bus Configuration:	Shared AC/DC	\sim	
Motion	Primary Bus Sharing Group:	Group1	\sim	
- Associated Axes - Power	Bus Regulator Action:	Shunt Regulator	~	
- Digital Input	Shunt Regulator Resistor Type:	External 🔘 Internal		
Diagnostics	External Shunt:	<none></none>	~	

7. From the pull-down menus, choose the power options appropriate for your hardware configuration.

Attribute	Menu	Description
Bus Configuration	Shared AC/DC ⁽¹⁾	Applies to 2198-Pxxx DC-bus power supply (converter) modules.
• Group1 Bus-sharing Group ⁽²⁾ • Group2 • Group3		Applies to any bus-sharing configuration.
Bus Regulator Action	Disabled	Disables the internal shunt resistor and external shunt option.
	Shunt Regulator	Enables the internal and external shunt options.

(1) Shared AC/DC bus configuration is the default selection for DC-bus power supplies.

(2) For more information on bus-sharing groups, see <u>Understand Bus-sharing Group Configuration</u> on page <u>114</u>.

ATTENTION: To avoid damage to equipment, all modules that are physically connected to the same shared-bus connection system must be part of the same Bus-sharing Group in the Studio 5000 application.

- 8. To close the New Module dialog box, click OK.
- 9. Your 2198-Pxxx DC-bus power supply appears in the Controller Organizer under the Ethernet network in the I/O Configuration folder.
- ✓ I/O Configuration
 ✓ 1756 Backplane, 1756-A7
 [0] 1756-L84ES UM_SafetyController
 ✓ Letternet
 [1756-L84ES UM_SafetyController
 ✓ 2198-P031 UM_Converter
- 10. To close the Select Module Type dialog box, click Close.
- 11. Right-click the DC-bus power supply that you created in the Controller Organizer and choose Properties.

The Module Properties dialog box appears.

To configure the remaining DC-bus power supply properties, you must close the New Module dialog box and reopen it as the Module Properties dialog box.

12. Click the Digital Input category.

General	Digital Input	
Connection		
Time Sync		
Module Info	Axis:	1 ~
Internet Protocol	Axis Name:	<none></none>
Port Configuration	i dia nume.	shores
Network		
Motion	Digital Input 1:	Unassigned \lor
 Associated Axes Power 	Digital Input 2:	Unassigned $$
- Digital Input		
Diagnostics		

- 13. From the Digital Input pull-down menu, choose Bus Capacitor OK or Shunt Thermal Switch OK to monitor your capacitor module status or the shunt thermal switch, respectively, depending on your application.
- 14. Click the Associated Axes category.

Module Properties: Lo	cal (2198-P031 11.001) 🛛 🗙		
General Connection Time Sync	Associated Axes		
Module Info Internet Protocol Port Configuration Network Motion Associated Axes Power Digital Input Diagnostics	Axis 1:	<none></none>	✓ New Axis

15. Click New Axis.

The New Tag dialog box appears.

New Tag		×
Name:	Axis_Converter	Create 🔻
Description:	^	Cancel
		Help
	~	
Usage:	<controller></controller>	
Туре:	Base ~ Connection	
Alias For:	~	
Data Type:	AXIS_CIP_DRIVE	
Parameter Connection:	~	
Scope:	UM_SafetyController ~	
Class:	Standard ~	
External Access:	Read/Write ~	
Style:	~	
Constant		
Sequencing		
Open AXIS_	CIP_DRIVE Configuration	
Open Param	eter Connections	

16. Type the axis Name.

AXIS_CIP_DRIVE is the default Data Type.

17. Click Create.

The axis (Axis_Converter in this example) appears in the Controller Organizer under Motion Groups > Ungrouped Axes and is assigned as Axis_Converter.

- Motion Groups
 Ungrouped Axes
 Axis_Converter
- 18. In the Module Properties dialog box, click Apply.
- 19. If you have multiple 2198-Pxxx Kinetix 5700 DC-bus power supplies, repeat <u>step 1...step 18</u>, beginning on page <u>86</u>. When you have completed adding your DC-bus power supply, continue with <u>Configure the iTRAK</u> <u>5730 Power Supply</u> on page <u>90</u>.

Configure the iTRAK 5730 Power Supply

Follow these steps to configure the iTRAK 5730 DC-bus power supply.

1. Below the controller you created, right-click Ethernet and choose New Module.

The Select Module Type dialog box appears.

Description Kinetix 5700 iTRAK Power Supply	Vendor	Category	
Kinotix E700 (TDAK Dowor Supply			
Kinetix 5700 THAAK Power Supply	Rockwell Aut	Drive,Motion	

- 2. By using the filter, enter 2198T, and select the 2198T-W25K-ER Kinetix 5700 iTRAK Power Supply.
- 3. Click Create.

New Module		>	<
General* Connection Time Sync Module Info Port Configuration Network Motion Associated Axes Power Digital Input Diagnostics	General Type: Vendor: Parent: Name: Description: Module Defini Revision: Electronic Ke Power Struct Connection:	ying: Compatible Module	
Status: Creating		OK Cancel Help	

The New Module dialog box appears.

- 4. Configure the new module.
 - a. Type the module Name.
 - b. Select an Ethernet Address option. In this example, the Private Network address is selected.
 - c. Enter the address of your 2198T-W25K-ER iTRAK DC-bus power supply. In this example, the last octet of the address is 5.

5. Click the Power category.

New Module

General*	Power			
Connection Time Sync Module Info Internet Protocol	Power Structure:	2198T-W25K-ER Kinetix 5700 iTRAK Power Supply		Advanced
Port Configuration	Bus Configuration:	Shared DC/DC	\sim	
- Motion	Primary Bus Sharing Group:	Group 1	\sim	
Associated Axes Power*	Secondary Bus Sharing	Group 2	\sim	
- Digital Input	Bus Regulator Action:	Shunt Regulator	\sim	
- Diagnostics	Shunt Regulator Resistor Type:	O External Internal		
	External Shunt:	None		

6. From the pull-down menus, choose the power options appropriate for your hardware configuration.

Attribute	Menu	Description
Bus Configuration	Shared DC/DC ⁽¹⁾	Applies to 2198T-W25K-ER iTRAK 5730 DC-bus power supply modules.
Primary Bus-sharing Group (2)	Group1Group2Group3	Applies to any primary bus-sharing configuration.
Secondary Bus-sharing Group ⁽²⁾	Group1Group2Group3	Applies to any secondary bus-sharing configuration.
Bus Regulator Action	Disabled	Disables the internal shunt resistor and external shunt option.

(1) Shared DC/DC bus configuration is the default selection for iTRAK 5730 DC-bus power supplies.

(2) For more information on bus-sharing groups, see <u>Understand Bus-sharing Group Configuration</u> on page <u>114</u>.

ATTENTION: To avoid damage to equipment, all modules that are physically connected to the same shared-bus connection system must be part of the same Bus-sharing Group in the Studio 5000 application.

- 7. To close the New Module dialog box, click OK.
- 8. Your 2198T-W25K-ER power supply appears in the Controller Organizer under the Ethernet network in the I/O Configuration folder.
- 🔺 🛋 I/O Configuration
 - 🛯 🥮 1756 Backplane, 1756-A7
 - [0] 1756-L84ES UM_SafetyController
 - ▲ 器 Ethernet
 - 1756-L84ES UM_SafetyController
 - 2198-P031 UM_Converter
 - 1 2198T-W25K-ER UM_iPS
- 9. To close the Select Module Type dialog box, click Close.
- 10. Right-click the iTRAK power supply that you created in the Controller Organizer and choose Properties.

The Module Properties dialog box appears.

To configure the remaining DC-bus power supply properties, you must close the New Module dialog box and reopen it as the Module Properties dialog box.

11. Click the Digital Input category.

General	Digital Input	
Connection		
- Time Sync		•
Module Info	Axis:	1 ~
Internet Protocol	Axis Name:	<none></none>
 Port Configuration 		
- Network		
Motion	Digital Input 1:	Unassigned ~
 Associated Axes 		
Power		
 Digital Input* 		
Diagnostics		

- 12. From the Digital Input pull-down menu choose Enable or Unassigned, depending on your application.
- 13. Click the Associated Axes category.

Module Properties: Local	al (2198T-W25K-ER 12.001) 🗙	
General	Associated Axes	
- Connection Time Sync		
 Inne Sync Module Info Internet Protocol Port Configuration Network Motion Associated Axes Power Digital Input Diagnostics 	Axis 1:	<none> v New Axis</none>

14. Click New Axis.

The New Tag dialog box appears.

New Tag			×
Name:	Axis_iPS		Create 🔻
Description:		^	Cancel
			Help
		\sim	
Usage:	<controller></controller>	\sim	
Туре:	Base \vee	Connection	
Alias For:		~	
Data Type:	AXIS_CIP_DRIVE		
Parameter Connection:		~	
Scope:	UM_SafetyController	~	
Class:	Standard	\sim	
External Access:	Read/Write	~	
Style:		~	
Constant			
Sequencing			
Open AXIS_C	CIP_DRIVE Configuration		
Open Param	eter Connections		

15. Type the axis Name.

AXIS_CIP_DRIVE is the default Data Type.

16. Click Create.

The axis (Axis_iPS in this example) appears in the Controller Organizer under Motion Groups > Ungrouped Axes and is assigned as Axis_iPS. Motion Groups
 Ungrouped Axes
 Axis_Converter
 Axis_iPS

17. Click Apply.

Configure the iTRAK 5730 Motor Modules

Follow these steps to configure iTRAK 5730 motor modules.

A curved motor module is composed of three individual sections. Each of the three curve sections must be added as a separate motor module and configured individually. You choose which section is assigned to the defined motor module later in this procedure.

1. Above the DC-bus power supply (converter) you created, right-click Ethernet and choose New Module.

The Select Module Type dialog box appears.

lect Module Type Catalog Module Discover itrak	y Favorites	Clear Filters				Hide Filter	s \$
Module Type Cate Analog Communication Communications Communications A		~	 Advant Dialight Endres 	e Type Vendor F ced Energy Indus t s+Hauser C CORPORATIO	stries, Inc.		<
Catalog Number 2198T-W25K-ER iTRAK 5730	Description Kinetix 5700 iTRAK F iTRAK 5730 Intellige		em, Sectio	Vendor Rockwell Aut Rockwell Aut		Safety	
2 of 673 Module Types Fo	bund				,	Add to Favo	rites

- 2. By using the filter, enter iTRAK, and select the iTRAK 5730 Intelligent Track System, Section.
- 3. Click Create.

The	New	Modul	le dia	log	box	ap	pears.
-----	-----	-------	--------	-----	-----	----	--------

New Module								×
General*	General							
 Connection Safety Time Sync Module Info Internet Protocol Port Configuration Network Motion Associated Axes Power Diagnostics Cyclic Read(Write Track Configuration Motion Safety Actions SS1 	Type: Vendor: Parent: Name: Description: Module Defin Revision: Electronic Ke Power Struc Safety Appli Connection: Motion Safet	Rockwell A Local UM_ITRAK ition	12.001 Compatible M iTRAK 5730 Networked Motion and Si	Bradley	tem, Section, Network Safet Ethernet Address Private Network IP Address: Safety Network Number:			
Status: Creating						ОК	Cancel	Help

Example New Module Dialog Box with GuardLogix Controller Selections

- 4. Configure the new motor module properties.
 - a. Type the module Name.
 - b. Select an Ethernet Address option.

In this example, the Private Network address is selected.

c. Enter the address of your motor module.

In this example, the last octet of the address is 10.

IMPORTANT	In addition to the motor module name and IP address, the motor module is also given a number. You do not enter this number; it is assigned automatically based on the position of the motor module relative to the power and control input connector module. The first motor module that is connected to the power and control input connector module is numbered 0, the next motor module 1, and so on. When a fault about a motor module appears, the fault text includes the motor module number as the sub code at the end of the fault text. For example, fault text "INIT FLT 28 - Sub Code 1" means that the second motor module from the power and control input connector module is affected.
-----------	--

d. Click Advanced if using Network Address Translation with safety connection to add drive module configured IP address.

5. Under Module Definition click Change.

The Module Definition dialog box appears.

Revision:	12 ~ 001 🛉	
Electronic Keying:	Compatible Module	`
Power Structure:	iTRAK 5730	`
Verify Power Rating Safety Application:	on Connection Networked	1
Connection:	Motion and Safety	~
Motion Safety:	Safe Stop Only - No Feedback	1

- 6. Define the motor module.
 - a. Select your Electronic Keying option from the pull-down menu (Compatible Module is the default setting).
 - b. From the Safety Application pull-down menu, choose between Safety Off or Networked for an integrated safety application.
 - c. From the Connection pull-down menu, choose the Connection mode for your motion application.

Connection Mode	Safety Options	Description
Motion and Safety	Integrated mode	Motion connections and integrated STO are managed by this controller.
Motion Only	Integrated mode, if there is a secondary safety controller	 Motion connections are managed by this controller. Integrated STO is managed by another controller that has a Safety-only connection to the drive.
Safety Only	Integrated mode	 Integrated STO is managed by this controller. Motion connections are managed by another controller that has a Motion-only connection to the drive.

When 'Safety' appears in the Connection mode, integrated safety is implied.

The default setting for Motion and Safety is 'Safe Stop Only - No Feedback.' The (SNN) field populates automatically when the connection mode includes an Integrated Motion and Safety or Safetyonly connection.

7. To close the Module Definition dialog box, click OK.

8. Click the Power category.

General*	Power		
Connection Safety Time Sync Module Info	Power Structure:	ITRAK 5730 ITRAK 5730 motor module with integrated 200/41	Advanced
Internet Protocol	Bus Configuration:	Shared DC \vee	
Network Motion Associated Axes Power* Diagnostics Cyclic Read/Write Track Configuration Motion Safety Actions STO SS1	Secondary Bus Sharing	Group 2 v	

IMPORTANT The Studio 5000 application enforces shared-bus configuration rules for iTRAK 5730 motor modules.

9. From the Secondary Bus-sharing pull-down menu, choose the appropriate bus-sharing group for your hardware configuration. For information on bus-sharing groups, see <u>Understand Bus-sharing</u> <u>Group Configuration on page 114</u>.

ATTENTION: To avoid damage to equipment, all modules that are physically connected to the same shared-bus connection system must be part of the same Bus-sharing Group in the Studio 5000 application.

- 10. To close the Module Properties dialog box, click OK.
- 11. To close the Select Module Type dialog box, click Close.

Your iTRAK 5730 motor module appears in the Controller Organizer under the Ethernet network in the I/O Configuration folder.

🔺 ⊆ I/O Configuration
🛽 🛲 1756 Backplane, 1756-A7
[0] 1756-L84ES UM_SafetyController
⊿ 뷺 Ethernet
1756-L84ES UM_SafetyController
2198-P031 UM_Converter
2198T-W25K-ER UM_iPS

12. Right-click the motor module that you created in the Controller Organizer and choose Properties.

The Module Properties dialog box appears.

To configure the remaining motor module properties, you must close the New Module dialog box and reopen it as the Module Properties dialog box.

If your application includes integrated safety, continue with <u>step 13</u>. Otherwise, go to <u>Continue iTRAK 5730 Motor Module Configuration</u> on page <u>99</u>. 13. Click the Safety category.

	Safety						
- Connection							
Safety	Connection	Deguasted Desket	Connection Reaction	Max Observed			
- Time Sync - Module Info	Type	Interval (RPI) (ms)	Time Limit (ms)	Network Delay (ms)			
- Module Info - Internet Protocol	Safety Input	10 ÷	· · · ·		Advanced		
- Port Configuration	Safety Output	20			Advanced		
- Network	Salety Output	20	00.0	Reset			
Motion							
 Associated Axes 	Configuration O	wnership:					
- Power							
- Diagnostics	Reset Ownership						
 Cyclic Read/Write Track Configuration 							
-Motion Safety	Configuration S	ignature:					
Actions							
STO	ID: f()d2_6124	(Hex)	Сору			
- SS1	_						
	Date:	9/20/2019					
	_						
	Time:	4:46:35 PM 🌲	56 🌲 ms				

- 14. The connection between the owner and the iTRAK 5730 motor module is based on the following:
 - Servo drive
 - GuardLogix slot number
 - GuardLogix
 - Path from the GuardLogix controller to the motor module
 - Configuration signature

If any differences are detected, the connection between the GuardLogix controller and the motor module is lost, and the yellow yield icon appears in the controller project tree after you download the program.

15. Click Advanced.

The Advanced Connection Reaction Time Limit Configuration dialog box appears.

Requested Packet Interval (RPI):	10 🔶	ms (6 - 500)
Timeout Multiplier:	2	(1-4)
Network Delay Multiplier:	200	% (10-600)
Connection Reaction Time Limit:	40.1	ms
Output		
Requested Packet Interval (RPI):	20	ms (Safety Task Period)
Timeout Multiplier:	2	(1-4)
Network Delay Multiplier:	200	% (10-600)
Connection Reaction Time Limit:	60.0	ms

Analyze each safety channel to determine the appropriate settings. The smallest Input RPI allowed is 6 ms. Selecting small RPI values consumes network bandwidth and can cause spurious trips because other devices cannot get access to the network.

For more information about the Advanced Connection Reaction Time Limit Configuration, refer to <u>Additional Resources on page 233</u> for the appropriate user manual for your GuardLogix or Compact GuardLogix controller.

- 16. To close the Advanced dialog box, click OK.
- 17. To save the Safety category parameters, click Apply.

Continue iTRAK 5730 Motor Module Configuration

Follow these steps to configure the axes for your iTRAK 5730 system motor modules.

1. Right-click the iTRAK 5730 motor module that you created and choose Properties.

The Module Properties dialog box appears.

2. Select the Track Configuration category.

🖞 Module Properties: Local (iTRAK 5730 12.001) 🗙
Image: Second Control of Control o

3. From the Track ID pull-down menu, select your Track ID.

When multiple modules share the same Track ID, these modules are identified as being configured as a single "Track System." This Track ID allows the Studio 5000 application to validate the track system as a whole. Motor modules that specify a 'O' or 'Not Specified' Track ID are not validated because they are treated as standalone sections when validating track systems.

4. From the Mover Axis Assignment Sequence pull-down menu, choose the Mover Axis Assignment Sequence for your motion application.

This configuration parameter determines how the movers are assigned a number for identification purposes. When a fault about a mover appears, the fault text includes the mover number as the sub code at the end of the fault text. Movers can be numbered based on their position at the time of assignment relative to the track position 0, or relative to a reference mover. If a reference mover is used, it is designated as Mover 0 and is the only mover with a south pole position magnet (cat. no. 2198T-N1-0304) installed. This magnet electrically identifies it as the reference mover. For descriptions of the possible mover axis assignment sequences, see the following table, <u>Figure 33 on page 100</u>, and <u>Figure 34 on page 101</u>.

Mover Axis Assignment Sequence	Description
Decreasing Position	The motor module assigns movers on the track as decreasing sequential axis instances. The mover with the highest position value is the first mover (Mover 0), followed by movers with decreasing position values (Movers 1, 2,).
Increasing Position	The motor module assigns movers on the track as increasing sequential axis instances. The mover with the lowest position value is the first mover (Mover O), followed by movers with increasing position values (Movers 1, 2,).
Decreasing Position from Reference Mover	The motor module assigns movers on the track as decreasing sequential axis instances based on the mover that is identified as the Reference Mover. The Reference Mover is the first mover (Mover 0), followed by the other movers (Movers 1, 2,) in the decreasing position direction from the Reference Mover. See <u>Figure 34 on page 101</u> .
Increasing Position from Reference Mover	The motor module assigns movers on the track as increasing sequential axis instances based on the mover that is identified as the Reference Mover. The Reference Mover is the first mover (Mover 0), followed by the other movers (Movers 1, 2,) in the increasing position direction from the Reference Mover. See Figure 34 on page 101.

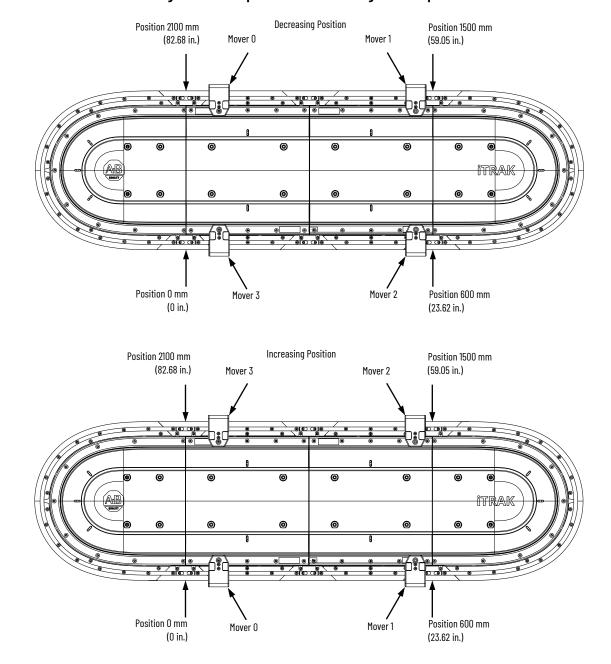
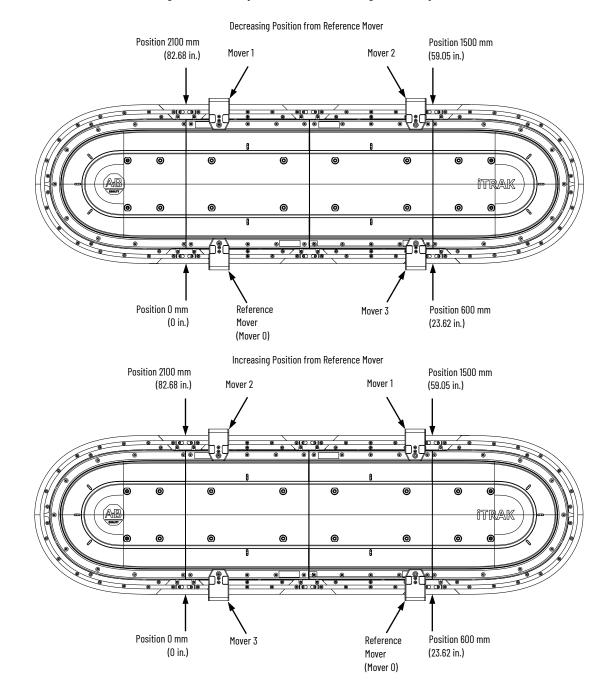



Figure 33 - Examples of Mover Axis Assignment Sequences Based on Track Position

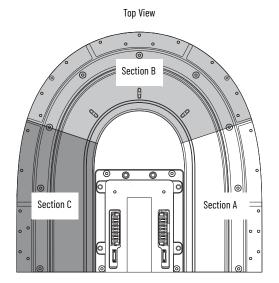


Figure 34 - Examples of Mover Axis Assignment Sequences Based on Reference Mover

5. From the Section Motor pull-down menu, select the section motor that corresponds to your motor module.

IMPORTANT A curved motor module is composed of three individual sections: curve section A, curve section B, and curve section C. Each of the three curve sections must be added as a separate motor module and configured individually.

- If your motor module is a straight section, select 2198T-L20-T0303-A00-S2
- If your motor module is a curve section A, select 2198T-L20-T0309-D18-S2-A
- If your motor module is a curve section B, select 2198T-L20-T0309-D18-S2-B
- If your motor module is a curve section C, select 2198T-L20-T0309-D18-S2-C

6. Enter the length of your track system in the Track Length field.

Take into account that each curved motor module is composed of three sections and each straight motor module is one section. Use the following equation to determine the length of your track system:

Length of track = Number of sections x 300 mm (11.8 in.)

7. To save your changes, click Apply.

8. Select the Associated Axes Category.

General	Associated Axes				
Connection Safety				_	
Time Sync Module Info	Axis 1 (Section):	<none></none>	\sim		New Axis
Internet Protocol Port Configuration	Motor Feedback Device:	Integrated Track Feedback		_	
Network	Axis 2 (Mover):	<none></none>	~		New Axis
- Associated Axes	Motor Feedback Device:	Integrated Track Feedback		_	
Power Diagnostics	Axis 3 (Mover):	<none></none>	\sim		New Axis
 Cyclic Read/Write Track Configuration 	Motor Feedback Device:	Integrated Track Feedback		_	
Motion Safety Actions	Axis 4 (Mover):	<none></none>	\sim		New Axis
-STO	Motor Feedback Device:	Integrated Track Feedback			
	Axis 5 (Mover):	<none></none>	\sim		New Axis
	Motor Feedback Device:	Integrated Track Feedback			

For each iTRAK 5730 motor module, five axes are possible; one section axis and up to four mover axes.

- Axis 1 is the section axis.
- Axis 2...Axis 5 are the mover axes.

IMPORTANT All iTRAK 5730 motor modules must have an associated section axis.

9. Next to Axis 1 (Section), click New Axis.

New Tag		×
Name:	Axis_1	Create 🔻
Description:	^	Cancel
		Help
	~	
Usage:	<controller></controller>	
Туре:	Base ~ Connection	
Alias For:	~	
Data Type:	AXIS_CIP_DRIVE	
Parameter Connection:	~	
Scope:	UM_SafetyController ~	
Class:	Standard v	
External Access:	Read/Write ~	
Style:	~	
Constant		
Sequencing		
Open AXIS_C	CIP_DRIVE Configuration	
Open Param	eter Connections	

The New Tag dialog box appears.

10. Type the axis Name.

AXIS_CIP_DRIVE is the default Data Type.

11. Click Create.

The axis (Axis_1 in this example) appears in the Controller Organizer under Motion Groups> Ungrouped Axes and is assigned as Axis_1.

Motion Groups
 Ungrouped Axes
 Axis_1
 Axis_Converter
 Axis_iPS

12. To configure a Mover axis, next to Axis *n* (Mover), click New Axis.

If a mover axis is not assigned to the motor axis, continue with <u>Configure the</u> <u>Motion Group</u> on page <u>105</u>.

The New Tag dialog box appears.

New Tag			×
Name:	Axis_2		Create 🔻
Description:		^	Cancel
			Help
		~	
Usage:	<controller></controller>	\sim	
Type:	Base \vee	Connection	
Alias For:		~	
Data Type:	AXIS_CIP_DRIVE		
Parameter Connection:		~	
Scope:	UM_SafetyController	~	
Class:	Standard	\sim	
External Access:	Read/Write	~	
Style:		\sim	
Constant			
Sequencing			
Open AXIS_0	CIP_DRIVE Configuration		
Open Param	eter Connections		

13. Type the axis Name.

AXIS_CIP_DRIVE is the default Data Type.

14. Click Create.

The axis (Axis_2 in this example) appears in the Controller Organizer under Motion Groups> Ungrouped Axes and is assigned as Axis_2.

Motion Groups
 Ungrouped Axes
 Axis_1
 Axis_2
 Axis_Converter
 Axis_IPS

- 15. Click Apply.
- 16. If you have multiple movers, repeat <u>step 12</u>...<u>step 15</u> for each mover.

Configure the Motion Group

Follow these steps to configure the motion group.


1. In the Controller Organizer, right-click Motion Groups and choose New Motion Group.

New Tag		\times
Name:	UM_Motion	Create 🗸
Description:	^	Cancel
		Help
	~	
Usage:	<controller></controller>	
Туре:	Base ~ Connection	
Alias For:	~	
Data Type:	MOTION_GROUP	
Parameter Connection:	~	
Scope:	UM_SafetyController ~	
Class:	Standard ~	
External Access:	Read/Write ~	
Style:	~	
Constant		
Sequencing		
Open MOTIC	DN_GROUP Configuration	
Open Param	eter Connections	

The New Tag dialog box appears.

- 2. Type the new motion group Name.
- 3. Click Create.

Your new motion group appears in the Controller Organizer under the Motion Groups folder.

4. Right-click the new motion group and choose Properties.

Axis Assignment Attribute Tag	n_motion	>
Unassigned:	Assigned:	
	Axis_1 Axis_2 Axis_Converter Axis_iPS	
Add>	< Remove	
ОК		

The Motion Group Properties dialog box appears.

- 5. On the Axis Assignment tab, select and add each of your axes (created earlier) to the Assigned category.
- 6. Click the Attribute tab and edit the default values as appropriate for your application.
- 7. Click OK.

Your axes appear below the new motion group that you created earlier.

Motion Groups
 WM_Motion
 Axis_1
 Axis_2
 Axis_Converter
 Axis_IPS
 Ungrouped Axes

Configure the Section Axis Properties

Follow these steps to configure section axis properties.

- 1. In the Controller Organizer, right-click a section axis and choose Properties.
- 2. Select the General category.

The General dialog box appears.

General	General				
Notor Model	Axis Configuration:	Track Section	\sim		
- Motor Feedback - Actions - Exceptions - Cyclic Parameters - Parameter List - Status - Faults & Alarms - Taq	Feedback Configuration:	Motor Feedback	v		
	Assigned Group				
	Motion Group:	UM_Motion	×	New Group	
	Update Period:	2.0			
	Associated Module				
	Module:	UM_iTRAK	~		
	Module Type:	iTRAK 5730			
	Power Structure:	iTRAK 5730			
	Axis Number:	1	~		

3. In the Associated Module section, in the Module pull-down menu, verify the name of the associated module.

The iTRAK 5730 system catalog number appears in the Module Type and Power Structure fields.

4. Click Apply.

5. Select the Actions category.

From this dialog box, you can program actions and change the action for exceptions (faults). For more information on configuration selections, see <u>iTRAK 5730 Motor Module and Mover Behavior on</u> <u>page 132</u>.

🙀 Axis Properties - Axis_1	×
Categories: General Actions to Take Upon Conditions	_
Model Standard Actions Parameters Model Disable (MSF) Stopping Action: Current Decel & Disable Exceptions Connection Loss Stopping Action: Current Decel & Disable Cyclic Parameter Ist Status Parameter Ist Parameter Ist Inverter Overload Action: Tag Inverter Overload Action: Safety Actions Safe Torque Off Action Source: Connected Drive Safe Torque Off Action Source: Connected Drive	
Axis State: Safety State: Manual Tune OK Cancel Apply	Help

6. Select the Parameter List category.

From this dialog box, you can change the values for different parameters as appropriate for your application.

- General Motor	Motion Axis Parameters			
Model	Parameter Group: All		✓ Associate	ed Page
- Motor Feedback				
- Actions	Name	Value	Unit	
Exceptions	ConnectionLossStoppingAction	Current Decel & Disable	Onit	- ~
— Cyclic Parameters — Parameter List	Feedback1CycleInterpolation		Feedback Counts/Feedback Cy	4
Status	Feedback1CycleResolution		Feedback Cycles/Meter	4
Faults & Alarms	Feedback1Length	0.3		4
- Tag	Feedback1Type	Track Section		4
	Feedback1Unit	Meter		4
	FeedbackDataLossUserLimit		Data Packets	4
	InverterOverloadAction	<none></none>		4
	InverterThermalOverloadUserLimit		% Inverter Rated	-
	MechanicalBrakeEngageDelay	0.0		-
	MechanicalBrakeReleaseDelay	0.0		-
	MotorCatalogNumber	2198T-L20-T0303-A00-S2		-
	MotorDataSource	Catalog Number		-
	MotorMaxWindingTemperature	0.0		
	MotorOverloadAction	<none></none>	-	
	MotorOverloadLimit	100.0	% Motor Rated	-
	MotorRatedContinuousCurrent		Amps (RMS)	
	MotorRatedOutputPower		kW	1
	MotorRatedPeakCurrent	4.53	Amps (RMS)	1
	MotorRatedVoltage	400.0	Volts (RMS)	~
s State:	Safety State:			

- 7. Click OK.
- 8. For each section axis, repeat <u>step 1</u>...<u>step 7</u>.

Configure the Mover Axis Properties

Follow these steps to configure mover axis properties.

- 1. In the Controller Organizer, right-click a mover axis and choose Properties.
- 2. Select the General category.

The General dialog box appears.

🙀 Axis Properties - Axis_2						×
Categories:						
General	General					
Motor Motor Motor Scaling Polarity Autotune Coad Backlash Compliance	Axis Configuration: Feedback Configuration: Application Type: Loop Response:	Position Loop Motor Feedback Basic Medium	v v v v v v			
Friction Observer Observer Velocity Loop Acceleration Loop Torque/Current Loop Planner Homing Actions	Assigned Group Motion Group: Update Period: Associated Module	UM_Motion 2.0	~		New Group	
- Exceptions - Cyclic Parameters - Parameter List - Status - Faults & Alarms - Tag	Module: Module Type: Power Structure: Axis Number:	UM_ITRAK ITRAK 5730 ITRAK 5730 2	~ ~			
Axis State: Manual Tune			ОК	Cancel	Apply	Help

3. In the General section, from the pull-down menus change configuration settings as needed for your application.

Attribute	Menu	Description
Axis Configuration	Position Loop	Position Control Mode, Closed Loop Control Method
AXIS CONTIGUIATION	Torque Loop	Torque Control Mode, Closed Loop Control Method
Feedback Configuration	Motor Feedback	When Motor Feedback is selected, then commutation, acceleration, velocity, and position feedback signals are all derived from motor- mounted Feedback.

For more information on Control Modes, see the Integrated Motion on the EtherNet/IP Network Reference Manual, publication <u>MOTION-RM003</u>.

4. Choose an Application Type, if applicable.

Position Loop	~
Motor Feedback	~
Basic	~
Custom Basic	
Tracking Point-to-Point	
	Basic Custom Basic Tracking

The Application Type determines the type of motion control application. This attribute is used to set the Gain Tuning Configuration Bits. This table lists the gains established based on application type.

Application Type	Крі	Kvi	iHold	Kvff	Kaff	torqLPF
Custom ⁽¹⁾	-	-	_	_	-	-
Basic	No	No	No	Yes	No	Yes
Tracking	No	Yes	No	Yes	Yes	Yes
Point-to-Point	Yes	No	Yes	No	No	Yes
Constant Speed	No	Yes	No	Yes	No	Yes

 If you set the type to Custom, you can control the individual gain calculations by changing the bit settings in the Gain Tuning Configuration Bits Attribute.

5. Choose a Loop Response, if applicable.

Categories:			
General	General		
Model Model Motor Feedback	Axis Configuration:	Position Loop Motor Feedback	~
Scaling	Feedback Configuration:		
Polarity Autotune	Application Type:	Basic	~
E-Load	Loop Response:	Medium	\sim
Backlash Compliance		Low Medium	
Friction Observer		High	

Loop Response settings also impact the calculations that are made that can minimize the need for you to perform an Autotune or a Manual Tune. The loop response impacts the spacing between the position loop and the proportional and integral gains. This response impacts how aggressively a given profile is tracked.

6. In the Associated Module section, from the Module pull-down menu, verify the name of the associated module.

The iTRAK 5730 system catalog number appears in the Module Type and Power Structure fields.

7. To save your changes, click Apply.

Select the Scaling Category and edit the default values as appropriate for your application. 8.

General Motor	Scaling to Convert N	lotion from Co	ntroller U	Inits to User D	efined Units				
Model	Load Type:	Direct Coup	led Linea	· · ·			Paramet	ers	
- Motor Feedback	Transmission								
Scaling Polarity	Ratio I:O:	1		: 1	Rev				
- Polarity - Autotune		1			1164				
Load	Actuator								
Backlash	Туре:	<none></none>							
Compliance Friction	Lead:	1.0		Millimeter/R	ev 🗸				
Observer	Diameter:	1.0		Millimeter					
Position Loop		1.0		Willimeter	~				
Velocity Loop	Scaling								
- Acceleration Loop	Units:	Position Un	ts						
- Torque/Current Loop Planner	Scaling:	1.0		Position Units	per	1.0		Motor Millimeter 🗸	
- Homing	Travel			1	1.5.69				
- Actions				1					
- Exceptions	Mode:	Cyclic	~						
Cyclic Parameters Parameter List	Range:	1000.0		Position Units					
- Status	Unwind:	2400.0		Position Units	per	1.0		Cycle	
- Faults & Alarms Tag	Soft Trave	d Limits		j i osidon onits					
		m Positive:	0.0		Position Units				
	Maximu	m Negative:	0.0		Position Units				

The Unwind value is the same as the overall length of your track.

- 9. To save any changes, click Apply.
- 10. Select the Load category and edit the default values as appropriate for your application.

Motor	Load Inertia/Mass			
Model	Load merca/Mass			
Motor Feedback	Load Coupling:	Rigid ~		
Scaling Polarity	Use Load Ratio			
Autotune			-	
Load	Load Ratio:	0.0		
Backlash	Motor Mass:	0.754	Кд	
Compliance				
Friction	Total Mass:	0.754	Kg	
Observer				
Position Loop				
Velocity Loop	Inertia/Mass Compensation			
Acceleration Loop	System Inertia:	1.9389263	% Rated/(Meter/s^2)	
Torque/Current Loop	•	51 531000		
Planner	System Acceleration:	51.574936	Meter/s ² @100 % Rated	
Homing Actions				
Exceptions				
Cyclic Parameters	Active Load Compensation			
Parameter List	Torque Offset	0.0	% Rated	
Status				
Faults & Alarms				
Tag				

11. To save any changes, click Apply.

12. Select the Actions category and program any actions and change the action for exceptions (faults) as appropriate for your application.

G Axis Properties - Axis_2						×
Categories:						
General	Actions to Take Upon Conditions					
Motor - Model - Model - Motor Feedback - Scaling - Polarity - Autotune - Backlash - Compliance - Friction - Observer - Position Loop - Velocity Loop - Acceleration Loop - Torque/Current Loop - Planner - Homing - Actions - Exceptions - Cyclic Parameters - Parameter List - Status - Faults & Alarms - Tag	Standard Actions Disable (MSF) Stopping Action: Connection Loss Stopping Action:	Current Decel & Disable	>	Parameters		
Axis State:						
Manual Tune			ОК	Cancel	Apply	Help

13. Select the Parameter List category and edit the values for different parameters as appropriate for your application.

General	Motion Axis Parameters				
Motor I Model Motor Feedback	Parameter Group: All		∼ Assoc	iated Page	
– Scaling – Polarity	Name	Value	Unit		
Autotune	AccelerationFeedforwardGain	0.0			
Load	Acceleration imit		Position Units/s*2		
Backlash	ActuatorDiameter	10		_	
Compliance	ActuatorDiameterUnit	Millimete	-	_	
Friction	ActuatorLead	1.0			
Observer	ActuatorLeadUnit	Millimeter/Rev			
Position Loop	ActuatorType	<none></none>			
Velocity Loop	AdaptiveTuningConfiguration	Disableo			
Acceleration Loop	AdaptiveTuningGainScalingFactorMi	n 0.1			
Torque/Current Loop	AdaptiveTuningTrackingNotchFilters	4			
Planner	AverageVelocityTimebase	0.25	s		
Homing Actions	BacklashCompensationWindow	0.0	Position Units		
- Exceptions	BacklashReversalOffset	0.0	Position Units		
- Cyclic Parameters	CoastingTimeLimit	0.0	s		
- Parameter List	CommandNotchFilter2Depth	0.0			
Status	CommandNotchFilter2Frequency	0.0	Hertz		
Faults & Alarms	CommandNotchFilter2Gain	1.0			
Tag	CommandNotchFilter2Width	1.0			
5	CommandNotchFilterDepth	0.0			
	CommandNotchFilterFrequency	0.0	Hertz	¥ .	

- 14. Click OK.
- 15. For each mover axis, repeat <u>step 1</u>...<u>step 14</u>.

Download the Program

Apply Power to the iTRAK 5730 System

After completing the Studio 5000 application and saving the file, you must download your program to the Logix 5000 processor.

You must complete the installation, power and control connections, and configuration for your iTRAK 5730 system before you complete this procedure.

SHOCK HAZARD: To avoid a hazard of electrical shock, complete all installation and power connections of the iTRAK 5730 system components before applying power. Once power is applied, connector terminals can have voltage present even when not in use.

Follow these steps to apply power to the iTRAK 5730 system.

1. Apply 24V DC control power.

The motor module status indicators begin this startup sequence:

- a. During the start-up process, NET and MOD appear steady red.
- b. During the power-up sequence, NET flashes green, red, off, and MOD flashes green, red, green.
- c. When the startup sequence completes, NET appears steady green, MOD continues to flash green.

If the startup sequence does not begin, check the 24V control power connections.

- 2. When the startup sequence completes, verify that the NET status indicator is steady green and the MOD status indicator is flashing green.
 - a. Verify that the Kinetix 5700 DC-bus power supply axis-state is PRECHARGE.
 - b. Verify the iTRAK power supply axis-state is PRECHARGE.

If the DC-bus power supply and iTRAK power supply do not reach the specified axis state and the two status indicators are not steady green, refer to <u>Interpret Status Indicators</u> on page <u>126</u>.

3. Apply mains input power and monitor the DC BUS voltage on the LCD display on the DC-bus power supply and iTRAK power supply.

If the DC BUS does not reach the expected voltage level, check the three-phase input power connections.

It can take as long as 1.8 seconds after input power is applied before the iTRAK 5730 motor modules can accept motion commands (does not apply to the iTRAK power supply).

- a. Verify that the DC-bus power supply axis-state is RUNNING.
- b. Verify that the iTRAK power supply axis-state is RUNNING.
- c. Verify that all motor module status indicators are steady green.

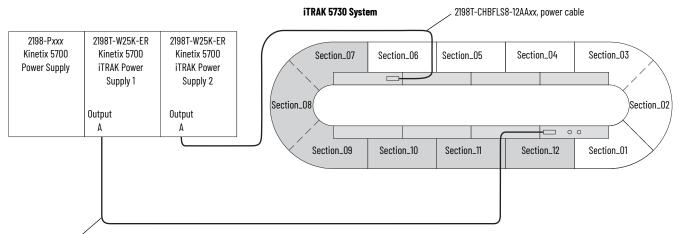
If the DC-bus power supply or iTRAK power supply does not reach the specified axis state, refer to <u>Fault Code Overview</u> on page <u>124</u>.

- 4. If the iTRAK system has not yet been commissioned, then before you apply a load to the track and movers, you must commission the iTRAK system. See, <u>Commission the iTRAK 5730 System</u> on page <u>118</u>.
- 5. If all of the following statements are true, then perform <u>step a</u>:
 - The system uses a vertical or stand-up mounting orientation (to determine orientation, see <u>Figure 1 on page 13</u>).
 - The iTRAK system has previously been powered and run and then power was removed (power removal is covered in <u>Remove Power</u> from the iTRAK 5730 System on page 34).
 - To prevent movers from falling, mechanical securing mechanisms such as an external brake, arrester, or clamp mechanism, were used to secure movers before power was last removed.
 - You intend to use the iTRAK to move the movers before you remove power from the system.
 - a. While the system is powered, and before attempting to move any movers, remove all mover securing mechanisms. Use protective equipment such as heat protective gloves to avoid burn hazards while removing the mover securing mechanisms. See <u>Protection</u> <u>Against Contact with Hot Parts on page 35</u>. If these mechanisms are removed while the system is not powered, the movers they secure will fall and may cause injury or damage.

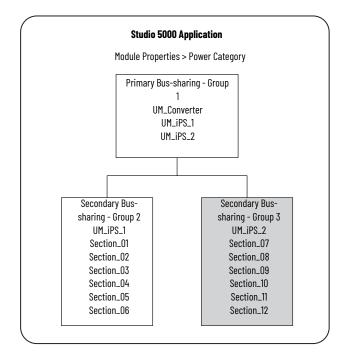
Understand Bus-sharing Group Configuration

When configuring the Module Properties > Power category for each iTRAK 5730 motor module axis, you must assign the motor module to the appropriate bus-sharing (power) group. In other words, assign each motor module to the same secondary bus-sharing group as the iTRAK power supply to which it is physically connected.

Bus-sharing Groups Example


In <u>Figure 35</u>, 12 iTRAK 5730 motor module sections are needed to support the motion application. All 12 section axes are configured in the same Motion group in the Studio 5000 application.

However, the 12 motor module sections are also configured as two bus-sharing groups. With two secondary bus-sharing groups, a fault on iTRAK Power Supply 1 only results in a Bus Power Sharing exception on motor modules in Secondary Bus-sharing Group 2. The fault has no effect on the operation of Secondary Bus-sharing Group 3 motor modules. However, a fault on the 2198-*Pxxx* Kinetix 5700 Power Supply results in Bus Power Sharing exceptions on all motor modules in both secondary bus-sharing groups since both iTRAK Power Supplies are in Primary Bus-sharing Group 1 and cascade the exception to their respective secondary bus-sharing groups.



ATTENTION: To avoid damage to equipment, all modules that are physically connected to the same shared-bus connection system must be part of the same Bus-sharing Group in the Studio 5000 application.

Figure 35 - Bus-sharing Groups Example

2198T-CHBFLS8-12AAxx, power cable

Configure Bus-sharing Groups

In both groups, the Bus Configuration for the iTRAK power supply is Shared DC/DC and the Bus Configuration for the iTRAK 5730 system is Shared DC.

Figure 36 - Group 1 iTRAK 5730 Power Supply Configuration

Module Properties: Loc	al (2198T-W25K-ER 12.001) ×			
- General	Power			
Connection Time Sync Module Info Internet Protocol	Power Structure:	2198T-W25K-ER Kinetix 5700 iTRAK Power Supply		Advanced
- Port Configuration	Bus Configuration:	Shared DC/DC	\sim	
- Motion	Primary Bus Sharing Group:	Group 1	\sim	
Associated Axes	Secondary Bus Sharing	Group 2	~	
- Digital Input	Bus Regulator Action:	Shunt Regulator	\sim	
Diagnostics	Shunt Regulator Resistor Type:	O External Internal		
	External Shunt:	None	\sim	

Module Properties: Loc	al (iTRAK 5730 12.001) 🗙			
General	Power			
Connection				
Safety	Power Structure:	ITRAK 5730		Advanced
- Time Sync - Module Info		ITRAK 5730 motor module	with integrated 200/400V servo	
- Internet Protocol	Due Carfiermetica.	Shared DC	with integrated 2007 1007 berro	
- Port Configuration	Bus Configuration:	Shared DC	~	
Network	Secondary Bus Sharing	Group 2	~	
Hotion Associated Axes Power Diagnostics Cryclic Read/Write Track Configuration Actions ST0 SS1				

_					
1	Module Properties: Loca	al (2198T-W25K-ER 12.001) 🗙			
	General	Power			
	Connection Time Sync Module Info Internet Protocol	Power Structure:	2198T-W25K-ER Kinetix 5700 iTRAK Powe	r Supply	Advanced
	- Port Configuration	Bus Configuration:	Shared DC/DC	~	
	- Motion	Primary Bus Sharing Group:	Group 1	\sim	
	 Associated Axes Power* 	Secondary Bus Sharing	Group 3	~	
	 Digital Input Diagnostics 	Bus Regulator Action:	Shunt Regulator	\sim	
	Diagnostics	Shunt Regulator Resistor Type:	O External	l.	
		External Shunt:	None		

General	Power		
Connection			
Safety	Power Structure:	ITRAK 5730	Advanced
 Time Sync 	rower structure.		Advanceam
Module Info		iTRAK 5730 motor module with integrated 200/400V servo	
Internet Protocol Port Configuration	Bus Configuration:	Shared DC $\qquad \lor$	
Network	Secondary Bus Sharing	Group 3 🗸	
Motion	,,		
Associated Axes			
Power*			
- Diagnostics			
- Cyclic Read/Write			
- Track Configuration			
Motion Safety			
Actions			
STO			
-SS1			
001			

Commission the iTRAK 5730 System

The iTRAK 5730 system must be commissioned properly to provide accurate mover position feedback on the track system. This section provides instructions on how to establish smooth mover transitions between motor module sections.

Motor Module Section Gap Position Compensation

To control mover positions accurately on the track system, the motor modules monitor feedback from the mover position magnets. Motor module sections can report different absolute positions at the gap where modules adjoin. To reconcile the difference in the reported absolute positions, the motor module sections calculate a position compensation. The position compensation is applied to the boundaries between sections to produce smooth mover sectionto-section transitions.

To calculate the position compensation, the motor module sections must identify the absolute position differences at all transitions as movers traverse the track. The calculated values for the position compensation are measured for each mover and stored in nonvolatile memory. After subsequent power cycles, each motor section reads nonvolatile memory and immediately applies the appropriate position compensation. Take the following into consideration when deciding whether to assign a reference mover:

- When you configure a reference mover, the correct sequence number and position compensation are applied automatically to each mover in the system after a power cycle.
- When you do not configure a reference mover, position accuracy across motor module gaps can be degraded after a power cycle.

ATTENTION: A pinch point hazard exists. A mover can have sudden and fast motion due to magnetic attraction. To avoid personal injury, do not put your fingers between the mover and motor module.

You can assign a reference mover and mover sequence numbers in the Mover Axis Assignment Sequence field in the Module Properties - Track Configuration dialog box. For descriptions of how the Mover Axis Assignment Sequence settings work, see <u>page 99.</u>

You must complete the procedure <u>Calculate and Store Position Gap</u> <u>Compensation Values on page 119</u> in the following situations:

- After the initial iTRAK 5730 system installation is complete, and before the system is put into service
- After a motor module has been replaced
- After a mover has been replaced, or removed from or added to the track system
- After the 'Mover Axis Assignment Sequence' field selection has been changed

This procedure assumes that you have configured your iTRAK 5730 system, your Logix 5000 controller, and applied power to the system.

IMPORTANT Before you commission the iTRAK 5730, verify that the MOD and NET status indicators are operating as described in <u>Interpret Status Indicators</u> on page <u>126</u>.

Calculate and Store Position Gap Compensation Values

Follow these steps to complete the section gap position-compensation procedure.

- 1. Enable the iTRAK system with an MSO instruction or motion direct command to all section and mover axes.
- 2. At a speed of approximately 0.5 m/s, run the movers around the track for 3...5 minutes.

If a motor overspeed fault (FLT S04) occurs, reduce the speed to less than 0.5 m/s, and repeat step 2. If an overspeed fault persists, disable the section and mover axes and manually move the movers around the track. Each mover must be moved back and forth across the motor section gaps at least 2...3 times.

- 3. Disable the track system with an MSF instruction or motion direct command to all section and mover axes.
- 4. Save your project.

Previously stored values can make calculating new values problematic. If overspeed errors persist, complete these steps.

- 1. For all motor modules in the system, in the Track Configuration dialog box, change the 'Mover Axis Assignment Sequence' field.
- 2. Download the project to delete all position compensation values from nonvolatile memory.
- 3. For all motor modules, change the 'Mover Axis Assignment Sequence' field back to the original value.
- 4. Repeat the gap position compensation procedure.

Tune the Axes

This procedure assumes that you have configured your iTRAK 5730 system, your Logix 5000 controller, and applied power to the system.

IMPORTANT Before you tune your axes, verify that the MOD and NET status indicators are operating as described in <u>Interpret Status Indicators</u> on page <u>126</u>.

For help with using the Studio 5000 application as it applies to tuning your axes with ControlLogix EtherNet/IP modules or CompactLogix 5370 controllers, see <u>Additional Resources on page 233</u>.

Tune the Axes with Load Observer

The load observer feature provides high-performance motion control without having to manually tune your axis. Using load observer with a default set of gains can yield high-performance right out of the box. Most of the time, there is no need to perform an autotune or further optimize gain settings.

Follow these steps to configure the iTRAK 5730 system for high performance by using the load observer feature.

1. Verify that the load is connected.

Reattach the load if it was disconnected.

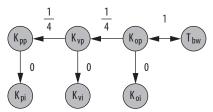
ATTENTION: If the iTRAK 5730 system has not been enabled before (new installation), verify that you have safeguards in place to safely remove power from the drive if there is an unstable situation where the drive can produce undesired motion.

- 2. Click the Autotune category in the mover Axis Properties dialog box.
 - a. From the pull-down menu for Application Type, choose Custom.
 - b. From the pull-down menu for Loop Response, choose Medium.
 - c. From the pull-down menu for Load Coupling, choose Rigid settings.
 - d. Verify that only the Velocity Feedforward box is checked.
 - e. Uncheck the Torque Low Pass Filter box (that is checked by default).

Stop	Perform Tune Start Stop	Tune Control Loop by Measuring Load Character Application Type:	General Motor
Stop			1
Stop	Start Stop		Model
	Tune Status:	Loop Response: Medium V	Analyzer Motor Feedback Scaling
ed	Loop Parameters Tuned	Load Rigid ~	Hookup Tests
Current Tuned Un	Name Curre		····· Polarity
dwidth Hz	PositionLoopBandwidth	Customize Gains to Tune	Autotune
Band Hz	PositionIntegratorBand	Position Integrator Bandwidth	E- Load
dwidth Hz	VelocityLoopBandwidth	Velocity Integrator Bandwidth	Backlash
nsation	Advanced Compensation		Compliance
ed	Load Parameters Tuned	Velocity Feedforward	Friction
Current Tuned Un		Acceleration Feedforward	Observer
		Terrus Low Page Filter	
ation r	MaximumAcceleration MaximumDeceleration	Torque Low Pass Filter	Position Loop Velocity Loop Acceleration Loop

- 3. Click the Load category in the Axis Properties dialog box.
 - a. Check Use Load Ratio.
 - b. Set the Load Ratio = 0.

🍄 Axis Properties - Axis	_1			
Categories:				
····· General	Characteristics of Motor Load			
Motor Model Madyzer Motor Feedback Scaling Hookup Tests Polanty Autotune Loss Loss	Load Inertia/Mass Load Coupling: ☑ Use Load Ratio Load Ratio: Motor Inertia: Total Inertia:	Rigid 0.0 0.000011 0.000011 0.000011	Load Inertia/Motor Inertia Kg m^2 Kg m^2	
4.	Click the Observer	category in t	he Axis Properties dialo	g box.


Click the Observer category in the Axis Properties dialog box.

a. Verify that Load Observer with Velocity Estimate appears in the Configuration field.

Load Observer is not available for Torque Loop control.

🗞 Axis Properties - Axis_1 📃 💷	×
Categories: General Model Model Model Model Configuration: Load Observer with Velocity Estimate Parameters Bandwidth: 296.33984 Hetz Integrator Bandwidth: 0.0 Hetz	

- b. Click Apply and click Yes to update all dependent attributes.
- c. The Load Observer Bandwidth and other gains are set automatically.

5. Click the Compliance category in the Axis Properties dialog box.

Axis Properties - Axis_1							- 0
tegories:							
····· General	Compliance Compensation						
- Motor							
Model	Torque Low Pass Filter Bandwidth:	0.0		Hertz			
Analyzer	Torque Notch Filter Frequency:	0.0		Hertz			
Motor Feedback							
Scaling	Torque Lag Filter Gain:	1.0					
Hookup Tests	Torque Lag Filter Bandwidth:	0.0		Hertz			
Polarity							
Autotune							
🖻 – Load	Adaptive Tuning		· ·				
Backlash	Adaptive Tuning Configuration:		Tracking N	otch	\sim		
Compliance Friction	Torque Notch Filter High Frequency	Limit:	2000.0			Hertz	
Observer	Torque Notch Filter Low Frequency	Limit:	296.33984			Hertz	
Position Loop	Torque Notch Filter Tuning Threshol	ld:	5.0			% Motor Rated	
····· Velocity Loop ····· Acceleration Loop							

d. Click Apply.

6. Enable the iTRAK 5730 system for a few seconds with an MSO instruction or motion direct command, followed by an MSF instruction or motion direct command, to make sure that no audible squealing noise is present.

IMPORTANTIf an audible squealing noise is heard, go to Axis Properties > Load >
Compliance category and set the Torque Notch Filter Frequency field
(Hz) to remove the noise. See Motion System Tuning Application
Techniques, publication MOTION-ATOO5 (Compensating for High
Frequency Resonances), for information on how to set the Torque
Notch Filter Frequency field.

7. Repeat Tune the Axes with Load Observer for each axis.

Troubleshoot the iTRAK 5730 System

This chapter provides troubleshooting information for your iTRAK® 5730 system.

Торіс	Page
Safety Precautions	
Interpret Fault Codes	123
Interpret Status Indicators	126
Axis Troubleshooting	
Logix 5000 Controller and iTRAK System Behavior	

Safety Precautions

Observe the following safety precautions when troubleshooting your iTRAK 5730 system.

ATTENTION: Capacitors on the DC bus can retain hazardous voltages after input power has been removed. Before working on the system, measure the DC bus voltage to verify it has reached a safe level or wait the full time interval as indicated in the warning on the front of the module. Failure to observe this precaution could result in severe bodily injury or loss of life.

ATTENTION: Do not attempt to defeat or override the module fault circuits. You must determine the cause of a fault and correct it before you attempt to operate the system. Failure to correct the fault could result in personal injury and/or damage to equipment as a result of uncontrolled machine operation.

ATTENTION: Provide an earth ground for test equipment (oscilloscope) used in troubleshooting. Failure to ground the test equipment could result in personal injury.

Interpret Fault Codes

See the tables in this section to identify faults, potential causes, and the appropriate actions to resolve the fault. If the fault persists after attempting to troubleshoot the system, contact your Rockwell Automation[®] sales representative for further assistance.

Knowledgebase Answer ID <u>1092901</u> iTRAK 5730 System Fault Codes has the fault codes. Download the spreadsheet from this public article. You might be asked to log in to your Rockwell Automation web account, or create an account if you do not have one. You do not need a support contract to access the article.

Fault Code Overview

The fault code tables are designed to help you determine the source of the fault or exception. When a fault condition is detected, the motor section or mover performs the appropriate fault action and the fault is added to a persistent fault log (along with diagnostics data). If a fault condition is still active following a Fault Reset service, the fault is again written to the fault log.

However, there can be a delay before the fault is posted again. In a Studio 5000 Logix Designer® application (also called the Studio 5000® application), this delay results as the AxisFault tag on the axis being cleared until the fault is posted again. During this delay, the AxisState tag continues to indicate that the axis is faulted. Use the AxisState tag on the axis object only to determine if an axis is faulted.

Although software overtravel fault codes do not exist, software overtravel detection for the AXIS_CIP_DRIVE axis type is determined in the Logix 5000[®] controller. For more information, see Integrated Motion on the EtherNet/IP[™] Network Reference Manual, publication <u>MOTION-RM003</u>.

The iTRAK 5730 maintains a fault log of the last 128 faults. The fault log includes time stamps and is stored in persistent memory. However, the fault log cannot be cleared on the module.

Fault Code Type ^{(1) (2)}	Description	
FLT Sxx	Standard runtime axis exceptions. The exception can apply to an individual axis or to all axes.	
FLT Mxx	Manufacturer-specific runtime axis exception. The exception can apply to an individual axis or to all axes.	
INIT FLT Sxx	Exceptions that prevent normal operation and occur during the initialization process.	
INIT FLT Mxx		
NODE FLT <i>xx</i>	Exceptions that can prevent normal operation and apply to the entire module and affect all axes.	
NODE ALARM <i>xx</i>	Exceptions that can prevent normal operation, but do not result in any action other than reporting the alarm to the controller.	
INHIBIT Sxx	Conditions that prevent normal operation and indicate that the axis is prevented from	
INHIBIT Mxx	being enabled.	
ALARM Sxx	An underlying exception condition that does not result in any action other than reporting	
ALARM Mxx	the alarm to the controller.	
SAFE FLT <i>xx</i>	Exception that is generated by a fault condition detected in the safety function.	

Table 15 - Fault Code Summary

(1) Sxx refers to Standard exceptions.

(2) Mxx refers to Manufacturer-specific exceptions.

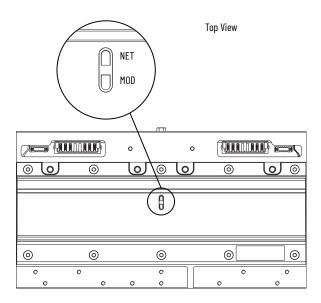
Fault codes triggered by conditions that fall outside factory set limits are identified by FL at the end of the display message. For example, FLT S07 – MTR OVERLOAD FL. Fault codes triggered by conditions that fall outside user set limits are identified by UL at the end of the display message. For example, FLT S08 – MTR OVERLOAD UL.

Mover Numbers in Fault Codes

When a fault about a mover appears, the fault text includes the mover number as the sub code at the end of the fault text. Movers are numbered based on which option you select for the Mover Axis Assignment Sequence configuration parameter, as described on <u>page 99...page 101</u>.

Motor Module Numbers in Fault Codes

In addition to the motor module name and IP address, the motor module is also given a number. You do not enter this number; it is assigned automatically based on the position of the motor module relative to the power and control input connector module. The first motor module that is connected to the power and control input connector module is numbered 0, the next motor module 1, and so on. When a fault about a motor module appears, the fault text includes the motor module number as the sub code at the end of the fault text. For example, the fault text "INIT FLT 28 - Sub Code 1" means that the second motor module from the power and control input connector module is affected.


Interpret Status Indicators

Use the information in this section to identify the status of the motor and connector modules by using the status indicators.

IMPORTANT Status indicators are not reliable for safety functions. Use status indicators only for general diagnostics during commissioning or troubleshooting. Do not attempt to use status indicators to determine operational status.

Motor Module Status Indicators

The iTRAK 5730 motor modules contain the following status indicators.

Straight Motor Module (Catalog Number 2198T-L20-T0303-A00-S2) Shown.

Condition	Status
Steady Off	There is no power applied to the motor module section or the IP address is not configured.
Flashing Green	No Motion or Safety connection is established, but the motor module section has obtained an IP address.
Steady Green	A Motion or Safety connection is established and no timeout has occurred. Normal operation.
Flashing Red	Connection timeout. One or more of the connections, for which this motor module section is the target, has timed out.
Steady Red	Duplicate IP address. The IP address that is specified is already in use.
Flashing Green/Red	Self-test. The motor module section performs a self-test during powerup. Once the self- test is complete, the Flashing Green/Red condition continues if the motor module section is processing a safety device ID proposal.

Condition Status	
Steady Off	There is no power applied to the motor module section.
Steady Green	The motor module section is operational. No faults or failures.
Flashing Green	Standby (motor module section not configured), Precharge (motor module section is configured), or one or more axes are inhibited or shut down.
Flashing Red	Major recoverable fault. The motor module section detected a recoverable fault. For example, an incorrect or inconsistent configuration occurred.
Steady Red	Major fault. The motor module section detected a nonrecoverable fault.
Flashing Green/Red	Self-test. The motor module section performs a self-test during powerup. Once the self- test is complete, the Flashing Green/Red condition continues if the motor module section is waiting for integrated STO safety configuration.

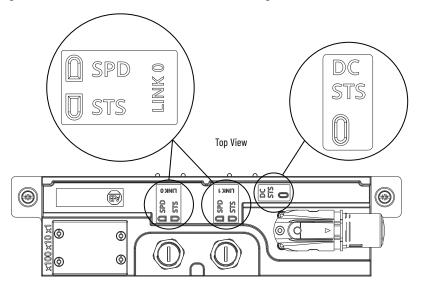

Table 17 - Module (MOD) Status Indicator Descriptions

Table 18 - Network (NET) and Module (MOD) Combined Status Indicator Descriptions

Condition	Status
NET and MOD alternately Flashing Red	A firmware update is in progress. Control power must NOT be removed during this condition. As different segments of the section complete the firmware update the status indicators can momentarily exit the firmware update indication. Be sure that the non-firmware update condition is maintained for 1 minute before removing control power.
MOD Flashing Red alternating with NET Flashing Green	A firmware update is required.

Connector Module Status Indicators

The iTRAK 5730 power and control input and power input with control passthrough connector modules contain the following status indicators.

Power and Control Input Connector Module (Catalog Number 2198T-CT-CP) Shown.

Table 19 - LINK 0/1 Ethernet Link Speed (SPD) Status Indicator Descriptions ⁽¹⁾

Condition	Status
Steady Off	No connection or less than 100 Mbit
Steady On Yellow	100 Mbit

(1) Present on the power and control (2198T-CT-CP) connector module only.

Table 20 - LINK 0/1 Ethernet Link/Activity (STS) Status Indicator Descriptions ⁽¹⁾

Condition	Status
Steady Off	No link
Steady On Green	Link established
Flashing Green	Network activity

(1) Present on the power and control (2198T-CT-CP) connector module only.

Table 21 - DC Power (DC STS) Status Indicator Descriptions (1)

Condition Status						
Steady Off	24V DC control power is off and DC bus voltage is unknown					
Steady On Green	24V DC control power is present and the DC bus voltage is < 50V DC					
Steady On Amber	24V DC control power is present and the DC bus voltage is > 50V DC					

(1) Present on the power and control (2198T-CT-CP) and power with control pass-through (2198T-CT-P) connector modules only.

SHOCK HAZARD: To avoid a shock hazard or personal injury, verify that all power has been removed before proceeding with installation or maintenance tasks. The motor modules and Kinetix[®] 5700 iTRAK power supply require 5 minutes to discharge before you handle wire and cable connections.

Axis Troubleshooting

These conditions do not always result in a fault code, but can require troubleshooting to improve iTRAK 5730 performance.

Condition **Potential Cause Possible Resolution** Unintentionally in Torque mode. Check to see what primary operation mode was programmed. Run Tune in the Studio 5000 application. Motor tuning limits are set too high. Position loop gain or position controller accel/decel rate is Run Tune in the Studio 5000 application. improperly set. Improper grounding or shielding techniques are causing noise to Axis or system is unstable be transmitted into the position feedback interface, causing Check wiring and ground. erratic axis movement. Notch filter or output filter can be required (see the Axis Properties dialog box, Compliance tab in the Studio 5000 Mechanical resonance. application). Enable adaptive tuning. See <u>Tune the Axes</u> on page <u>120</u> for more notch filter information. Torque Limit limits are set too low. Verify that torgue limits are set properly. Check motor size versus application need. The system inertia is excessive. Review servo system sizing. You cannot obtain the motor The system friction torque is excessive. Check motor size versus application need. acceleration/deceleration that Check motor size versus application need. Available current is insufficient to supply the correct accel/decel you want Review servo system sizing. rate. Acceleration limit is incorrect. Verify limit settings and correct them, as necessary. Velocity Limit limits are incorrect. Verify limit settings and correct them, as necessary. Disable the axis, wait the configured stopping time, and enable the The axis cannot be enabled until stopping time has expired. axis. Motor does not respond to a The motor module has malfunctioned. Repair or replace the motor module. command Primary operation mode is set incorrectly. Check to see what primary operation mode was programmed. Velocity or torque limits are set incorrectly. Check and properly set the limits. The motor module connections are loose or open. Check motor module connections. Foreign matter is lodged in the motor. Remove foreign matter. Verify the servo system sizing. The motor load is excessive. No movement The mover bearings are worn. Replace the mover for repair. Check brake wiring and function. The motor brake is engaged (if supplied). Return the motor for repair. Change the command profile to reduce accel/decel or increase The duty cycle is excessive. time. Motor overheating The mover is partially demagnetized causing excessive motor Return the mover for repair. current. Motor tuning limits are set too high. Run Tune in the Studio 5000 application. · Remove the loose parts. Return motor for repair. Loose parts are present in the mover or section. Replace motor module. There is insufficient lubrication on the track. Adjust lubrication application rate or refill lubrication reservoirs. There is foreign debris on the rails. Clean all rail surfaces and reapply lubricant. Abnormal noise The rails are misaligned. Realign all rails at transitions. Replace damaged rails. The rail system is worn. A through bolt or coupling is loose. Tighten bolts. The mover bearings are worn. Return the mover for repair. Notch filter can be required (refer to Axis Properties dialog box, Mechanical resonance. Compliance tab in the Studio 5000 application). Change the Track Stop exception Action setting to Ignore or Alarm. Changing the Action setting to Ignore or Alarm allows axes to continue to run when another axis on the track experiences a Undesired FLT M32 - TRACK STOP The Track Stop exception is configured with an exception Action of major fault. Setting the Action to Alarm allows the Logix controller major faults when another axis Disable or Shutdown. program to respond when a fault occurs. A possible response is to on the track experiences a fault bring other axes to a controlled stop at specific locations. However, the ability to perform the desired response can be affected by the other faulted axis.

Table 22 - Axis Troubleshooting

Condition	Potential Cause	Possible Resolution						
Uneveneeted FLT M77	A mover position magnet assembly is missing or damaged.	Inspect the movers for a missing or damaged position magnet.						
Unexpected FLT M33 - LOST MOVER	Magnetic interference has occurred.	Remove any foreign materials that can have interfered with the mover position-magnets magnetic field.						
Unexpected FLT M34 - UNASSOCIATED MOVER	There are stray magnetic fields near the track.	Remove any magnetized or unmagnetized ferrous materials furthe away from the movers and track system. Maintain a minimum distance of 50 mm (2.0 in.) away from the movers for any installed ferromagnetic material.						

Table 22 - Axis Troubleshooting (Continued)

Logix 5000 Controller and iTRAK System Behavior

By using the Studio 5000 application, you can configure how the iTRAK 5730 system responds when a module fault/exception occurs.

The INIT FLT xxx faults are always generated after powerup, but before the axis is enabled, so the stopping behavior does not apply.

NODE ALARM xxx faults do not apply because they do not trigger stopping behavior.

The iTRAK 5730 motor sections and movers support fault actions for Ignore, Alarm, Minor Fault, and Major Fault as defined in <u>Table 23</u>. They also support the configurable stopping actions as defined in the <u>Table 25</u> on page <u>132</u>.

Exception Action Definition							
Ignore	The motor section or mover completely ignores the exception condition. For some exceptions that are fundamental to the operation of the planner, Ignore is not an available option.						
Alarm	The motor section or mover sets the associated bit in the Motion Alarm Status word, but does not otherwise affect axis behavior. Like Ignore, if the exception is so fundamental to the motor section or mover, Alarm is not an available option. When an exception action is set to Alarm, the Alarm goes away by itself when the exceptional condition has cleared.						
Minor Fault	The motor section or mover latches the exception condition, but does not execute any exception action.						
Major Fault	The motor section or mover latches the exception condition and executes the configured exception action.						

You can configure exception behavior in the Studio 5000 application from the Axis Properties dialog box, Actions category. These controller exception actions are mapped to the motor section or mover exception actions.

Exception Action	Definition						
Ignore	The controller completely ignores the exception condition. For some exceptions that ar fundamental to the operation of the planner, Ignore is not an available option.						
Alarm	The controller sets the associated bit in the Motion Alarm Status word, but does not otherwise affect axis behavior. Like Ignore, if the exception is so fundamental to the axis, Alarm is not an available option. When an exception action is set to Alarm, the Alarm goes away by itself when the exceptional condition has cleared.						
Fault Status Only instructs the controller to set the associated bit in the Fault Status word, but does not otherwise affect axis behavior. However, unlike Alar explicit Fault Reset is required to clear the fault once the exceptional condition has cleared. Like Ignore and Alarm, if the exception is so fundamental to the axis, Fault Only is not an available option.							
Stop Planner	The controller sets the associated bit in the Motion Fault Status word and instructs the Motion Planner to perform a controlled stop of all planned motion at the configured maximum deceleration rate. An explicit Fault Reset is required to clear the fault once the exceptional condition has cleared. If the exception is so fundamental to the axis, Stop Planner is not an available option.						
Disable	When the exception occurs, the associated bit in the Fault Status word is set and the axis comes to a stop by using the stopping action that is defined by the axis for the particular exception that occurred. If there is a fault, there is no controller-based configuration to specify what the stopping action is. The stopping action is device-dependent.						
Shutdown	When the exception occurs, the axis comes to a stop by using the stopping action defined by the axis (as in Stop Drive) and the power module is disabled. An explicit Shutdown Reset is required to restore the axis to operation.						

iTRAK 5730 Power Supply Behavior

See the iTRAK 5730 Power Supply Behavior section in Chapter 7 of the Kinetix 5700 Servo Drive User Manual, publication <u>2198-UM002</u>, for details.

iTRAK 5730 Motor Module and Mover Behavior

For the iTRAK 5730 motor modules and movers, only selected exceptions are configurable. <u>Table 25</u> provides a list and descriptions of the available configurable stopping actions.

Stopping Action	Description	
Current Decel & Hold ⁽¹⁾	Most control	The best available stopping action is the one that maintains the
Current Decel & Disable	Less control	most control over the motor. However, not all faults support every
Disable & Coast	Least control	stopping action.

(1) This stop action is support by the movers only.

When a section axis is configured for Current Decel & Disable, the power structure remains enabled until the configured Stopping Time Limit expires. The configured Stopping Time Limit provides time for the Logix controller program to bring the movers to a controlled stop. The section does not initiate any stopping actions on mover axes during the configured Stopping Time Limit.

<u>Table 26</u> provides a list and description of the available standard and safety actions and behaviors. Actions define the motor section or mover behavior in response to specific conditions. The Actions category includes Standard Actions and Safety Actions. See <u>Standard Actions</u> and <u>Safety Actions on</u> page 133 for detailed descriptions of these actions.

Action Category	Action Name	Action Trigger Condition	Available Actions			
Standard	Disable (MSF) Stopping Action	Execution of an MSF motion instruction.	 Current Decel & Hold ⁽¹⁾ Current Decel & Disable Disable & Coast 			
	Connection Loss Stopping Action	Loss of the motion connection (for example, inhibiting the module or a network cable disconnect).	Current Decel & DisableDisable & Coast			
	Motor Overload Action ⁽²⁾	Receiving MTR OVERLOAD fault.	Current FoldbackNone			
	Inverter Overload Action ⁽²⁾	Receiving INV OVERLOAD fault.	Current FoldbackNone			
Safety	Safe Torque Off Action ⁽²⁾	Transition from logic 0 to 1 of the SafeTorqueOffActiveStatus axis tag, which indicates a Safe Torque Off (STO) action was commanded.	 Current Decel & Disable Disable & Coast 			
	Safe Torque Off Action Source ⁽²⁾	Determines whether the connected motor module section or controller initiates the stopping sequence in response to a Safe Torque Off (STO) active condition in the Axis safety status attribute.	Connected DriveRunning Controller			

Table 26 - Actions Definitions

(1) This action is supported by the movers only.

(2) This action is supported by the motor sections only.

Standard Actions

When a controller connection loss (NODE FLT 06) occurs, it is possible that other node faults can occur first, triggering a fault action of Current Decel & Disable. Without knowing if NODE FLT 06 will occur first on a connection loss fault, we recommend that you do not change the default connection loss setting of Current Decel & Disable.

Use DLR ring topology (see <u>Device Level Ring Topology</u> on page <u>30</u>) for applications where the possibility of connection loss must be minimized.

Safety Actions

When the Safe Torque Off Action Source is set to "Running Controller," the connected motor module does not perform any stopping actions in response to a STO active condition. You must configure your Logix program to perform the desired stopping action in response to a STO active condition. A section axis configured to "Disable" remains enabled until the configured STO Delay expires and the iTRAK 5730 system enters the safe state.

When the Safe Torque Off Action Source is set to "Connected Drive," the connected motor module performs the configured Safe Torque Off Action. For an iTRAK 5730 motor module section, a "Current Decel & Disable" stopping action only maintains the enabled state of the section axis for the configured stopping time limit before activating the brake control bit and disabling the section axis. The motor module section does not initiate any action on movers.

<u>Table 27</u>, <u>Table 28 on page 134</u>, and <u>Table 30 on page 135</u> provide the controlling attribute for programmable fault actions.

			ctio	n Ax	is			Mover Axis					
			Fault Action				Best Available		Fault A		ctio	n	Best Available
Exception Fault Code	Exception Text		lanore	Alarm	Minor Fault	Major Fault	Stopping Action (applies to major faults)	Supported	lgnore	Alarm	Minor Fault	Major Fault	Stopping Action (applies to major faults)
FLT SO3 – MTR OVERSPEED FL	Motor Overspeed Factory Limit Fault	-	-	-	-	-		χ	-	-	-	Х	Disable/Coast
FLT SO4 – MTR OVERSPEED UL	Motor Overspeed User Limit Fault	-	-	-	-	-	Current Decel/Hold	χ	χ	Х	Х	Х	
FLT SO5 – MTR OVERTEMP FL	Motor Overtemperature Factory Limit Fault	Х	-	-	-	Х	Disable/Coast	-	-	-	-	-	
FLT SO7 – MTR OVERLOAD FL	Motor Thermal Overload Factory Limit Fault	Х	-	-	-	Х	Disable/Coast	-	-	-	-	-	
FLT SO8 – MTR OVERLOAD UL	Motor Thermal OverLoad User Limit Fault	Х	Х	Х	χ	Х	Current Decel/Hold	-	-	-	-	-	
FLT SO9 – MTR PHASE LOSS	Motor Phase Loss ⁽¹⁾	-	-	-	-	-		χ	-	-	_	Х	Disable/Coast
FLT S10 – INV OVERCURRENT	Inverter Overcurrent Fault	Х	-	-	-	Х	Disable/Coast	-	-	-	-	-	
FLT S11 – INV OVERTEMP FL	Inverter Overtemperature Factory Limit Fault	Х	-	-	-	Х	Disable/Coast	-	-	-	-	_	
FLT S13 – INV OVERLOAD FL	Inverter Thermal Overload Factory Limit Fault	Х	-	-	-	Х	Disable/Coast	-	-	-	-	-	
FLT S14 – INV OVERLOAD UL	Inverter Thermal Overload User Limit Fault	Х	Х	Х	Х	Х	Current Decel/Hold		-	-	_	-	
FLT S22 - AC POWER LOSS	Converter AC Power Loss Fault	Х	Х	Х	Х	-	Current Decel/Disable	Х	Х	Х	Х	Х	Current Decel/ Disable
FLT S33 – BUS UNDERVOLT FL	Bus Undervoltage Factory Limit Fault	Х	-	_	-	Х	Current Decel/Disable	I	-	-	Ι		
FLT S34 – BUS UNDERVOLT UL	Bus Undervoltage User Limit Fault	Х	Х	Х	χ	Х	Current Decel/Disable	-	-	-	-	-	
FLT S35 – BUS OVERVOLT FL	Bus Overvoltage Factory Limit Fault	Х	-	-	-	Х	Disable/Coast	-	-	-	-	-	
FLT S37 – BUS POWER LOSS	Bus Power Loss	Х	Х	Х	Х	Х	Current Decel/Disable	I	-	-	Ι		
FLT S40 – BUS POWER SHARING	Bus Power Sharing Fault	Х	Х	Х	Х	Х	Current Decel/Disable	Х	χ	Х	Х	Х	Disable/Coast
FLT S45 – FDBK COMM FL	Motor Feedback Data Loss Factory Limit Fault	Х	-	-	-	Х	Disable/Coast	χ	-	-	-	Х	Disable/Coast
FLT S46 – FDBK COMM UL	Motor Feedback Data Loss User Limit Fault	Х	Х	Х	Х	Х	Current Decel/Disable	I	-	-	Ι		
FLT S47 – FDBK DEVICE FAILURE	Feedback Device Failure	Х	-	-	-	Х	Disable/Coast	I	-	-	Ι		
FLT S54 – POSN ERROR	Excessive Position Error Fault	-	-	-	-	-		χ	χ	Х	Х	Х	Disable/Coast
FLT S55 – VEL ERROR	Excessive Velocity Error Fault	-	-	-	-	-		Х	Х	Х	Х	Х	Disable/Coast
FLT S56 – OVERTORQUE LIMIT	Overtorque Limit Fault	-	_	_	-	-		χ	Х	Х	Х	Х	Current Decel/ Hold
FLT S57 – UNDERTORQUE LIMIT	Undertorque Limit Fault	-	_	_	-	_		Х	Х	Х	Х	Х	Current Decel/ Hold

Table 27 - Motor Section and Mover Fault Behavior, FLT Sxx Fault Codes

(1) The Motor Phase Loss Fault occurs when an enabled mover is on a motor module that becomes disabled or travels onto an already disabled motor module.

		Sec	ection Axis				Mover Axis						
			Fault Actio			on	Best Available		Fault Action			n	Best Available
Exception Fault Code	Exception Text	Supported	lgnore	Alarm	Minor Fault	Major Fault	Stopping Action (applies to major faults)	Supported	lgnore	Alarm	Minor Fault	ĽĽ.	Stopping Action (applies to major faults)
FLT M26 – RUNTIME ERROR	Runtime Error	Х	-	I	-	Х	Disable/Coast	Х	-	-	-	Х	Disable/Coast
FLT M27 - BACKPLANE COMM	Backplane Communication Error	Х	-	-	-	Х	Disable/Coast	Х	-	-	-	χ	Disable/Coast
FLT M28 – SAFETY COMM	Safety Module Communication Error	Х	-	-	-	Х	Disable/Coast	-	-	-	-	-	
FLT M32 - TRACK STOP	Track Stop ⁽¹⁾	Х	Х	Х	Х	Х	Current Decel/Disable	Х	Х	Х	Х	Х	Current Decel/ Disable
FLT M33 - LOST MOVER	Lost Mover Association	-	-	-	-	-		Х	-	-	-	χ	Disable/Coast
FLT M34 - UNASSOCIATED MOVER	Unassociated Mover	Х	-		—	Х	Disable/Coast	-	-	-	-	-	

(1) Occurs on all axes when a major fault occurs on any axis. The subcode indicates the slot number of the section requesting the stop. Check all axes on that section to identify the primary fault.

Table 29 - Motor Section and Mover Fault Behavior, INIT FLT Mxx Fault Codes

Exception Fault Code	tion Fault Code Exception Text Description		Section Axis	Mover Axis
INIT FLT M14 - SAFETY FIRMWARE	Invalid Safety Firmware	The loaded Safety firmware is not compatible with the motor module firmware. See <u>Appendix A on page 201</u> for instructions on how to upgrade the iTRAK 5730 firmware.	Х	-
INIT FLT M20 - UNKNOWN MODULE	Unknown Module Fault	The product code of the power board is invalid.	Х	Х
INIT FLT M21 - FACTORY CONFIG nn	Factory Configuration Error	Factory configuration data is missing or invalid.	Х	Х
INIT FLT M22 - ILLEGAL ADDRESS	Illegal IP Address	The IP address rotary switches on the power and control input connector module are set to an invalid value. See <u>EtherNet/IP</u> <u>Address Rotary Switches on page 75</u> for details on valid switch settings.	Х	_
INIT FLT M25 - MOVER AXIS Assignment error <i>nn</i>	Mover-Axis Assignment Error	An error occurred when the movers were assigned to the mover axes. Subcodes: O1: Reference Mover not Found O2: Unexpected Reference Mover Found O3: Detected Fewer Movers than Configured O4: Detected More Movers than Configured O5: Inconsistent Mover Seq O6: Movers in Motion O7: Track Max Mover Count Exceeded	X	x
INIT FLT M26 - TRACK BACKPLANE Communication nn	Backplane Communication Initialization Error	An error occurred while establishing backplane communication. Subcodes: 02: Too Many Sections on the Backplane 03: Slot Assignment Failure 04: Track Type Failure	Х	x
INIT FLT M27 - UNASSOCIATED Section Axis	Unassociated Section Axis	The motor module section that is associated with this mover axis has detected that no axis instance has been associated with Axis 1 (section axis). All iTRAK 5730 motor module sections must have an associated section axis.	_	х
INIT FLT M28 - TRACK Configuration	Track Configuration Error	A motor module section has not provided its axis and mover information to the rest of the track when expected. Possible causes of this occurrence include that the module is inhibited or has no axes associated.	Х	х

	Section Axis				Mover Axis								
			Fa	ult /	Acti		Best Available		Fault Action			n	Best Available
Exception Fault Code Exception Text		Alarm	Minor Fault	Major Fault	Stopping Action (applies to major faults)	Supported	lgnore	Alarm	Minor Fault	Major Fault	Stopping Action (applies to major faults)		
NODE FLT 01 – LATE CTRL UPDATE	Control Connection Update Fault	Х	-	-	-	Х	Current Decel/Disable	Х	-	-	-	Х	Current Decel/ Disable
NODE FLT 02 - PROC WATCHDOG	Processor Watchdog Fault	χ	—	-	-	Х	Disable/Coast	Х	-	-	-	Х	Disable/Coast
NODE FLT 03 – HARDWARE	Hardware Fault	Х	-	-	-	Х	Disable/Coast	Х	-	-	-	Х	Disable/Coast
NODE FLT 04 - DATA FORMAT ERROR	Data Format Error Fault	Х	-	-	-	Х	Disable/Coast	Х	-	-	-	Х	Disable/Coast
NODE FLT 05 – CLOCK SKEW FLT	Clock Skew Fault	Х	-	-	-	Х	Current Decel/Disable	Х	-	-	-	χ	Disable/Coast
NODE FLT 06 - LOST CTRL CONN	Lost Controller Connection Fault	Х	_	_	_	x	Programmable per Connection Loss Stopping Action (see <u>Table 26 on page 132</u>).	х	_	_	_	х	Programmable per Connection Loss Stopping Action (see <u>Table 26 on</u> <u>page 132</u>).
NODE FLT 07 – CLOCK SYNC	Clock Sync Fault	Х	-		_	Х	Current Decel/Disable	Х	-	-	-	Х	Current Decel/ Disable
NODE FLT 09 – DUPLICATE IP Address	Duplicate IP Address Fault	χ	-	_	-	Х	Disable/Coast	Х	-	-	-	Х	Disable/Coast

Table 30 - Motor Section and Mover Fault Behavior, NODE FLT Fault Codes

Notes:

Maintenance

This chapter contains information on how to maintain your iTRAK[®] 5730 system and install or replace components.

Торіс	Page
Before You Begin	137
Preventive Maintenance	137
Install or Replace Components	138
Lubrication	166

Before You Begin

Before you attempt maintenance on the system, complete these tasks.

- Make sure that the movers are motionless.
- Disconnect electrical power to the system by using the master switch and lockout.

Preventive Maintenance

To prolong the life of your iTRAK 5730 system, clean the rail system and components. The frequency at which you clean the components depends on the machine usage, the environment in which they are used, and exposure to contaminants. You must determine through best engineering practices how often to perform the following procedure.

Before You Begin

ATTENTION: Before attempting any service to an iTRAK 5730 system See <u>Safety</u> <u>Information on page 32</u>.

Rail System

Clean all rail surfaces.

1. Wipe the rails down with a lint free cloth.

If necessary, use isopropyl alcohol on the lint-free cloth.

2. Apply a thin coat of Kluber oil (Kluber 4-UH1-68N) on all exposed rail surfaces.

Track Components

Clean the following surfaces with isopropyl alcohol and soft lint-free cloth.

- Position sensor
- Motor module coil

If there is ferrous debris on the magnet plates, remove them with the sticky side of duct tape or clay.

Install or Replace Components

The procedures in this section describe how to install or replace system components.

IMPORTANT The iTRAK 5730 motor modules and safety-related system do not contain serviceable parts. No repair option is provided if there is a motor module anomaly. If there is a failure, replace the motor module.

Replacement Hardware

IMPORTANT All hardware that is removed for service must either be replaced with new hardware from kit catalog number 2198T-BE-KITCON or have thread lock (such as Loctite 243) applied to the threads before the hardware is reinstalled.

Thread patches and thread lock on hardware that is removed for service can become worn during disassembly. If the hardware is reinstalled without having thread lock applied, it will not function correctly. Always apply thread lock, or replace with new hardware. Kit catalog number 2198T-BE-KITCON contains rail kit components that can be used to replace worn hardware.

2198T-BE-KITCON Contents

Component	Quantity
M4 x 8 mm Torx screws	20
M4 x 20 mm Torx screws	28
Rectangular rail wedge	2
Flat rail wedge	2

For a complete list of tools and accessories that are required for performing these procedures, see <u>Tools and Accessories</u> on page <u>40</u>.

Procedure	Page
Install or Remove a Position Magnet Assembly	139
Install or Replace a Mover	140
Replace a Straight Motor Module	146
Replace a Curved Motor Module	151
Replace Top and Bottom Rectangular Straight Rails	154
Replace Top and Bottom Rectangular Curved Rails	155
Replace Top and Bottom Flat Straight Rails	157
Replace Top and Bottom Flat Curved Rails	159
Replace Top and Bottom Rectangular Wedges	161
Replace Top and Bottom Flat Wedges	162
Replace a Connector Module	164
Replace an Infield Cover	165

Install or Remove a Position Magnet Assembly

Use this procedure to install or remove a position magnet assembly.

Before You Begin

ATTENTION: Before attempting any service to an iTRAK 5730 system. See <u>Safety</u> Information on page 32.

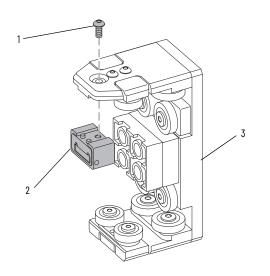
ATTENTION: A hazard of personal injury or equipment damage exists. The motor magnet protective cover must be installed on a mover whenever the mover is not installed. Before handling a mover with a mover magnet installed, read <u>Safe Magnet Handling on page 37</u>.

What You Need

- T20 Torx bit
- Thread lock (such as Loctite 243)
- 2198T-N1-0304 (south) or 2198T-NN-0304 (north) position magnet assembly
- 2198T-VT0304-E, mover

- You can check the polarity by examining the color of the magnets or by using a compass.
- The south position magnet is identified by the black anodized surface finish.
- The north position magnet is identified by a clear anodized surface finish.

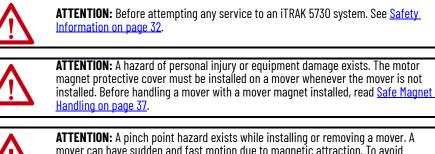
Position magnet assemblies can be replaced while the mover is on the track.


To remove a position magnet assembly, complete this task.

Remove the M4 x 10 mm Torx screw that secures the position magnet assembly to the mover.

To install a position magnet assembly, complete these steps.

- 1. Clean the M4 x 10 mm Torx screw and apply fresh thread lock.
- 2. Place the position magnet onto the locator pins on the underside of the mover top plate.
- 3. Secure the position magnet assembly to the mover by using the M4 x 10 mm Torx screw supplied with the magnet.


ltem	Description			
1	Torx head screw			
2	Position magnet assembly			
3	Mover			

IMPORTANT If you are using the Feedback1CalibrationOffset tag in the Motor Feedback Motion Axis Parameters to make fine adjustments to your mover position calibration, recalibrate the movers that have new position magnets.

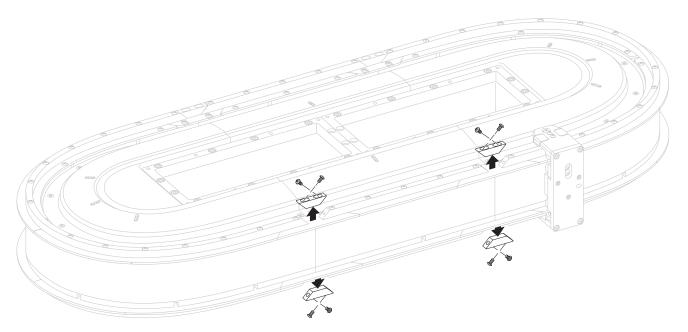
Install or Replace a Mover

Use this procedure to install or replace a mover.

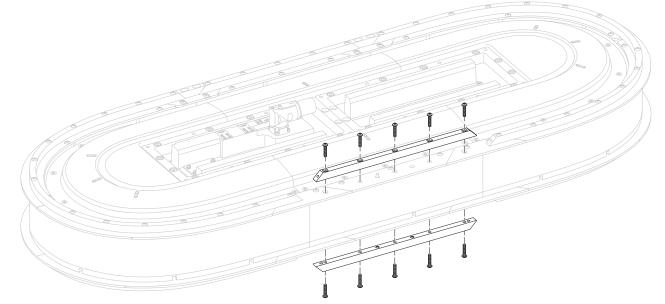
Before You Begin

mover can have sudden and fast motion due to magnetic attraction. To avoid personal injury, do not put your fingers between the mover and the motor module.

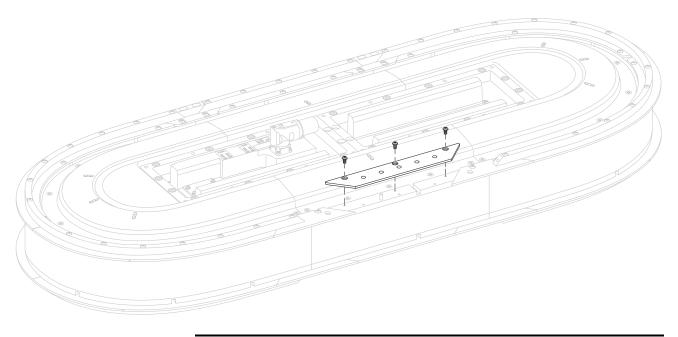
Choose an accessible straight track section next to a curved section of the track where you can remove the top and bottom rectangular wedges and rails. A top flat rail must also be removed.


To replace a mover, position the mover over the curved motor module next to the selected straight motor module. Move all other movers off the selected straight section of the track.

What You Need


- Rail alignment tool (2198T-A08)
- Mover loader tool (2198T-A09)
- 4 mm hex driver
- Thread lock (such as Loctite 243)
- 2198T-VT0304-E, mover

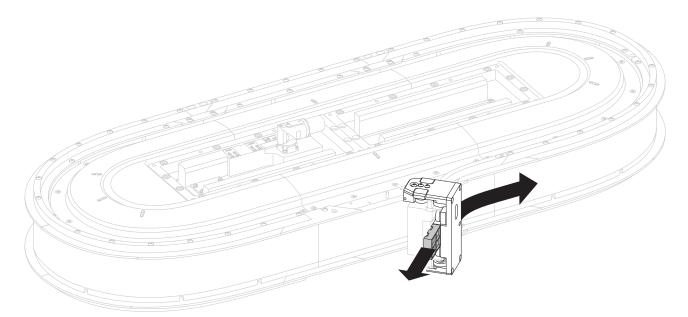
To install or remove a mover, complete these steps.


1. On both ends of the straight rectangular rail that will be removed, remove all M4 x 8 mm hardware from the top and bottom rectangular wedges using a 4 mm hex driver. Remove the wedges.

2. Remove the M4 x 20 mm screws from the top and bottom rectangular rails on the same section. Remove the rails.

3. Remove the M4 x 8 mm screws from the top flat rail section.

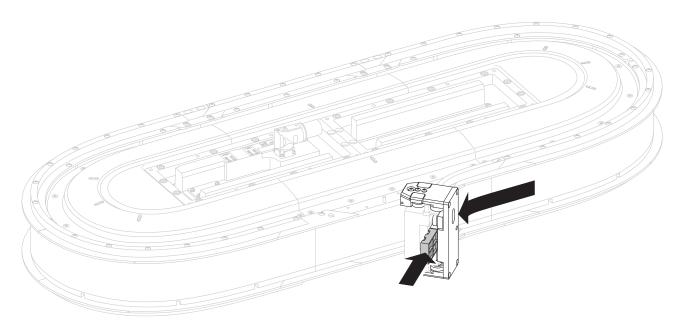
IMPORTANT Do not remove the bottom flat rail section.


- 4. Place the mover loader tool against the rectangular rail section.
- 5. Secure the mover loader tool to the assembly using two M4 x 8 mm screws.

6. Install or replace your mover.

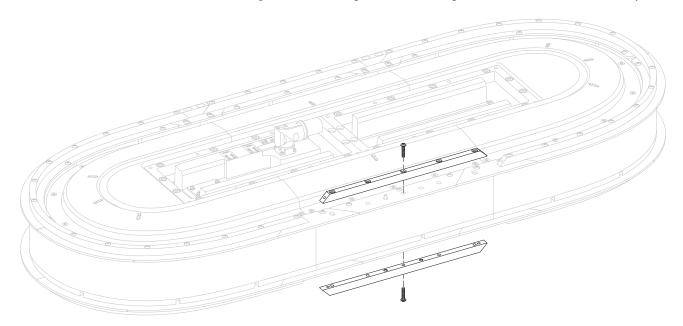
Install a Mover

• As you install a mover, the mover loader tool extracts the motormagnet protective cover.


There may be some resistance when pushing the mover across the tool/track interface.

Remove a Mover

- a. Place the motor-magnet protective cover in the loader tool.
- b. The protective cover is secured to the motor magnet as you remove the mover from the track.


There may be some resistance when pushing the mover across the tool/track interface.

- 7. Remove the mover loader tool.
- 8. Clean the screws and apply fresh thread lock.
- 9. Replace and secure the flat rail by using the M4 x 8 mm Torx screws.

10. Replace the rectangular rails and tighten the middle hardware only.

11. Replace rectangular wedges and hand-tighten all hardware.

- 12. Align the rectangular wedges using the rail alignment tool and torque hardware to 2.3 N•m (20 lb•in).
- 13. Replace all rectangular rail hardware and torque to 2.3 N•m (20 lb•in).

Replace a Straight Motor Module

Use this procedure to replace a straight motor module.

IMPORTANT The iTRAK 5730 motor modules and safety-related system do not contain serviceable parts. No repair option is provided if there is a motor module anomaly. If there is a failure, replace the motor module.

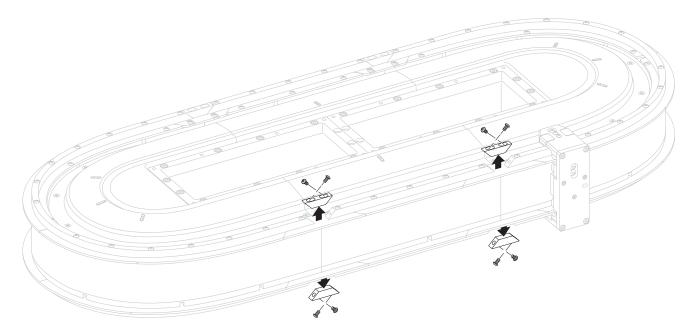
Before You Begin

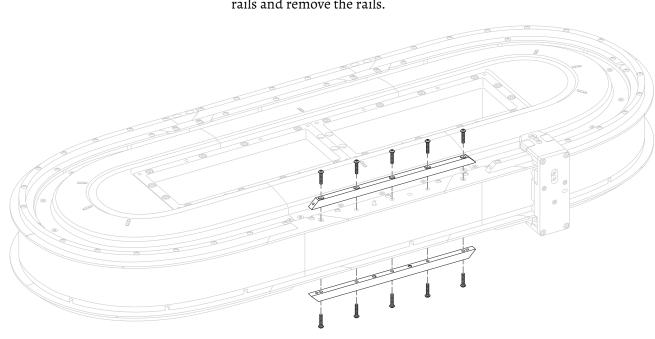
ATTENTION: Before attempting any service to an iTRAK 5730 system. See <u>Safety</u> Information on page 32.

What You Need

- 4 mm hex driver
- #2 Phillips bit
- Hard rubber mallet
- Thread lock (such as Loctite 243)
- 2198T-L20-T0303-A00-S2, straight motor module

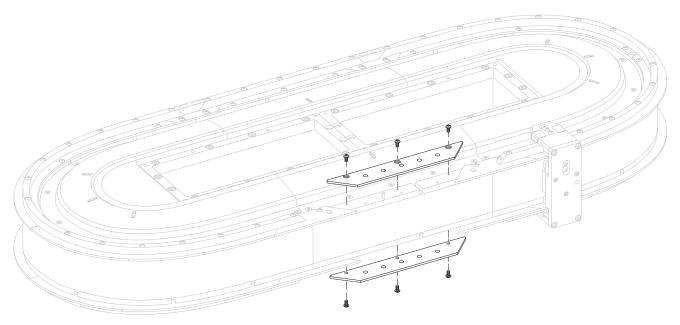
To remove the straight motor module, complete these steps.

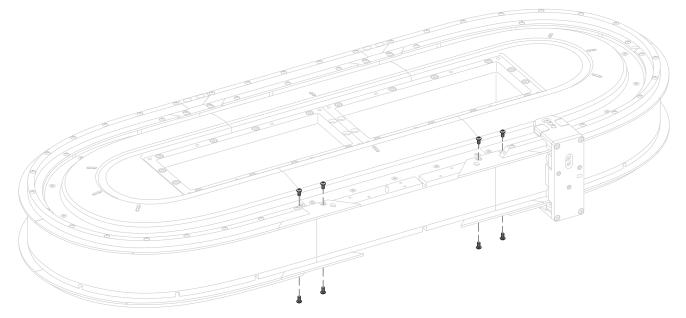

1. Move the movers away from the motor module that you want to replace.


If you have to remove the movers, follow the steps in <u>Install or Replace a</u> <u>Mover on page 140</u>.

- 2. If the infield covers are installed, use a 10 mm hexagonal socket to remove the M6 x 35 mm hex head bolts and remove the covers.
- 3. Use a #2 Phillips bit to loosen the captive screws on the connector modules that are connected to the motor section that is being removed.

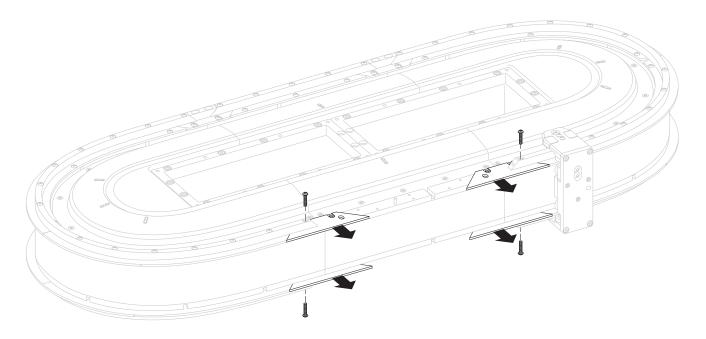
Remove the modules and set aside.

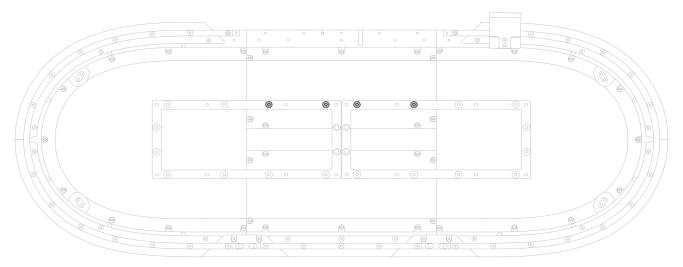

4. Remove all M4 x 8 mm hardware from the top and bottom rectangular wedges from both sides of the motor module that is being removed and remove the wedges.



5. Remove the M4 x 20 mm screws from the top and bottom rectangular rails and remove the rails.

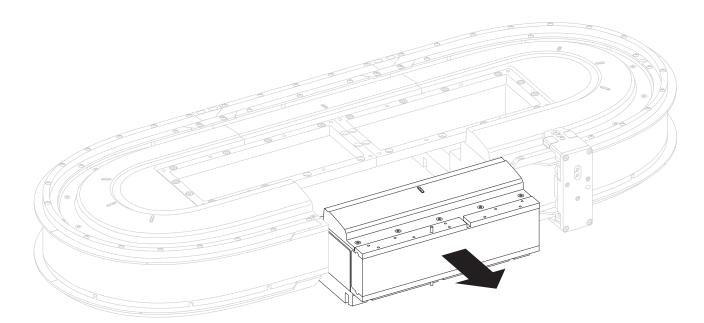
6. Remove the M4 x 8 mm screws from the top and bottom flat rail section and remove the rails.


7. Remove the M4 x 8 mm hardware from the flat wedges on either side of the section being removed.


8. Remove the first M4 x 20 mm hardware from either side of the adjacent rectangular sections and remove the wedges.


 $\ensuremath{\textbf{ATTENTION:}}$ The rail components are sharp. Wear appropriate PPE and handle the rails with care.

9. Remove the M6 x 20 mm screws from the two bottom structural mounting rings that are connected to the module being replaced. Retain the screws for reuse.


10. Remove M6 x 20 mm screws from the top structural mounting ring. Retain the screws for reuse.

11. Carefully slide the module out of the system and replace with the new straight motor module section.

If the motor module cannot be easily removed, loosen adjacent mounting ring bolts (but do not remove).

- 12. Reassemble the module in the reverse order of disassembly, using the following steps:
 - a. See <u>Install Top Structural Mounting Rings on page 45</u> to reinstall the top structural mounting ring.
 - b. See <u>Install Bottom Structural Mounting Rings on page 48</u> to reinstall the bottom structural mounting ring.
 - c. See <u>Install Bottom Flat Rails and Flat Wedges on page 49</u> to reinstall the bottom flat rails and wedges.
 - d. See <u>Install Bottom Rectangular Rails on page 52</u> to reinstall the bottom rectangular rails.
 - e. See <u>Install Rectangular Wedges and Align Rectangular Rails on</u> page 54 to reinstall the rectangular wedges and to align the rails.
 - f. See <u>Install Top Rails, Wedges, and Connector Modules on page 56</u> to reinstall the top rails, wedges, and connector modules.
 - g. See <u>Optional Infield Covers on page 67</u> to reinstall the infield covers, if used.

ATTENTION: A hazard of personal injury or equipment damage exits. Safety function validation is required after initial installation or replacement of an iTRAK 5730 motor module that is configured for functional safety.

If you have replaced a straight motor module that was configured for Integrated Safety, see <u>Understand Integrated Safety Motor Module</u> <u>Replacement on page 198</u>.

Replace a Curved Motor Module

Use this procedure to replace a curved motor module.

IMPORTANT The iTRAK 5730 motor modules and safety-related system do not contain serviceable parts. No repair option is provided if there is a motor module anomaly. If there is a failure, replace the motor module.

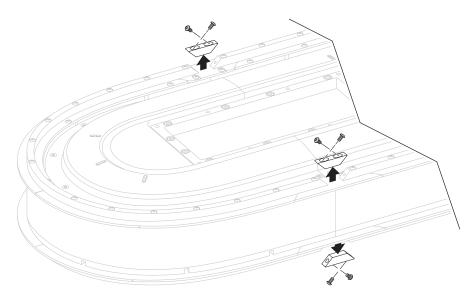
Before You Begin

ATTENTION: Before attempting any service to an iTRAK 5730 system. See <u>Safety</u> Information on page 32.

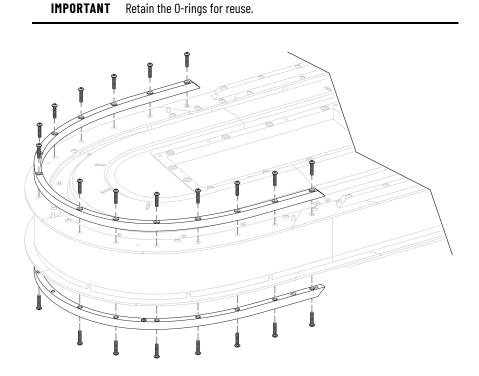
What You Need

- Rail alignment tool (2198T A08)
- 4 mm hex driver
- #2 Phillips bit
- Thread lock (such as Loctite 243)
- 2198T-L20-T0309-D18-S2, curved motor module

To remove the curved module, complete these steps.

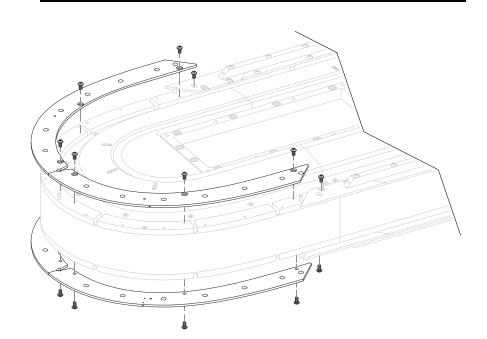

1. Slide the movers away from the motor module that you want to replace.

If you have to remove the movers, follow the steps in <u>Install or Replace a</u> <u>Mover on page 140</u>.


- 2. If the infield covers are installed, use a 10 mm hexagonal socket to remove the M6 x 35 mm hex head bolts and remove the covers.
- 3. Use a #2 Phillips bit to loosen the captive screws on the connector modules that are connected to the motor section that is being removed.

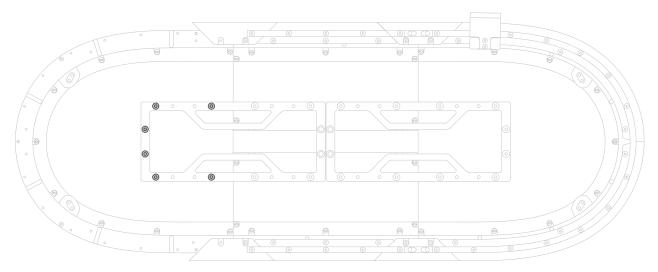
Remove the modules and set aside.

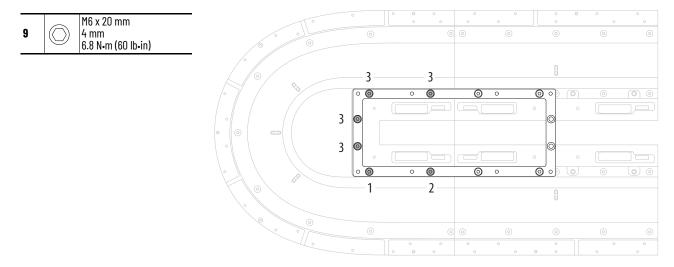
4. Remove all M4 x 8 mm hardware from the top and bottom rectangular wedges on either side of the curved motor module that is being removed.



5. Remove all M4 x 20 mm hardware from the top and bottom rectangular rails from the curved motor module. Remove the rails.

6. Remove all M4 x 8 mm hardware from the top and bottom flat rails from the curved motor module. Remove the flat rails.


IMPORTANT Retain the O-rings for reuse.


7. Remove the M6 x 20 mm screws from the top structural mounting ring. Retain the screws for reuse.

8. Remove the M6 x 20 mm screws from the bottom structural mounting ring. Retain the screws for reuse.

- 9. Remove the old motor module.
- 10. Place the new curved motor module and apply torque to the top and bottom structural mounting rings in the following order.

- 11. Reassemble the module in the reverse order of disassembly, using the following steps:
 - a. See <u>Install Bottom Flat Rails and Flat Wedges on page 49</u> to reinstall the bottom flat rails and wedges.
 - b. See <u>Install Bottom Rectangular Rails on page 52</u> to reinstall the bottom rectangular rails.
 - c. See <u>Install Rectangular Wedges and Align Rectangular Rails on</u> <u>page 54</u> to reinstall the rectangular wedges and to align the rails.
 - d. See <u>Install Top Rails, Wedges, and Connector Modules on page 56</u> to reinstall the top rails, wedges, and connector modules.
 - e. See <u>Optional Infield Covers on page 67</u> to reinstall the infield covers, if used.

ATTENTION: A hazard of personal injury or equipment damage exits. Safety function validation is required after initial installation or replacement of an iTRAK 5730 motor module that is configured for functional safety.

If you have replaced a curved motor module that was configured for Integrated Safety, see <u>Understand Integrated Safety Motor Module Replacement on</u> page 198.

Replace Top and Bottom Rectangular Straight Rails

The procedure to replace top or bottom rectangular straight rails are the same. You must also perform the rail alignment procedure. Follow these steps to replace top and bottom rectangular straight rails.

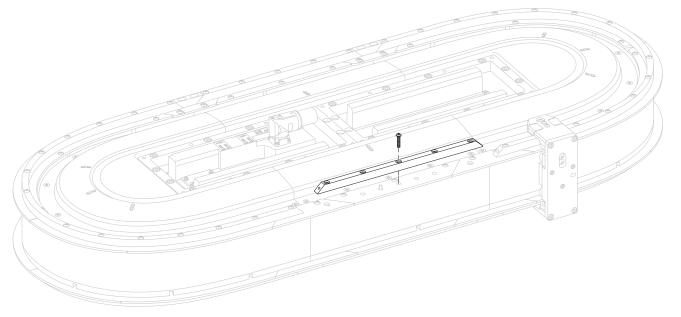
Before you Begin

ATTENTION: Before attempting any service to an iTRAK 5730 system. See <u>Safety Information on page 32</u>.

What You Need

- 4 mm hex driver
- Thread lock (such as Loctite 243)
- Straight rail kit:
 - 2198T-BE-ST03, 300 mm (11.81 in.) straight rail kit
 - 2198T-BE-ST06, 600 mm (23.62 in.) straight rail kit
 - 2198T-BE-ST09, 900 mm (35.43 in.) straight rail kit

To remove the top and bottom rectangular rails, complete these steps.


- 1. Slide the movers away from the rail to be replaced.
- 2. On either side of the rectangular straight rail that is being replaced, remove the M4 x 8 mm Torx head screws from the rectangular wedges.
- 3. Remove the wedges.
- 4. Remove all M4 x 20 mm Torx head screws from the rectangular rail that is being replaced.

5. With the counter-bored holes visible (up), place a straight rectangular rail on a straight flat rail until it is fully seated against the flat rail below.

The motor modules contain pins along the surface that are used to locate the rails properly.

6. Insert an M4 x 20 mm Torx head screw into the center counter-bored hole on the rail and tighten the screw until it is fully seated against the rail (do <u>not</u> apply final torque).

- 7. Loosen the screw one turn.
- 8. To align the new rectangular rail, complete the steps that are outlined in <u>Install Rectangular Wedges and Align Rectangular Rails on page 54</u>.

Replace Top and Bottom Rectangular Curved Rails

Follow these steps to replace top and bottom rectangular curved rails.

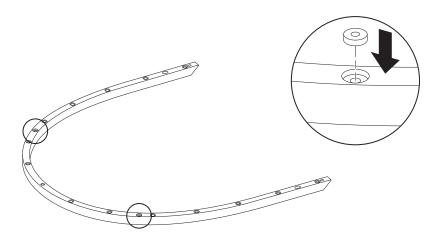
Before you Begin

ATTENTION: Before attempting any service to an iTRAK 5730 system. See <u>Safety</u> Information on page 32.

What You Need

- T20 Torx bit
- Thread lock (such as Loctite 243)
- 2198T-BE-ED18, curved rail kit

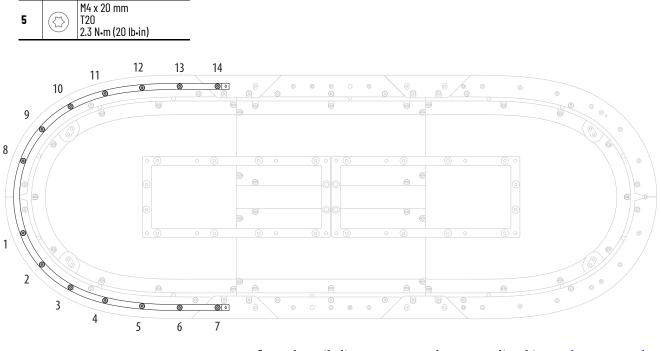
To remove the top and bottom rectangular curved rails, complete these steps.


1. Use a T20 Torx bit to remove hardware from the rectangular curved rail that is being replaced. Remove the rail.

IMPORTANT If one end of the new rail is next to a curved section, insert and align that wedge first.

2. Place and seat a rubber O-ring in each of the two lubrication system openings on a curved rectangular-rail section.

A drop of oil can help to keep the rubber O-ring in place.



3. With the counter-bored holes visible (up) of the new rail, place on the curved rectangular rail until it is fully seated against the flat rail below.

The motor modules contain pins along the surface that are used to locate the rails properly.

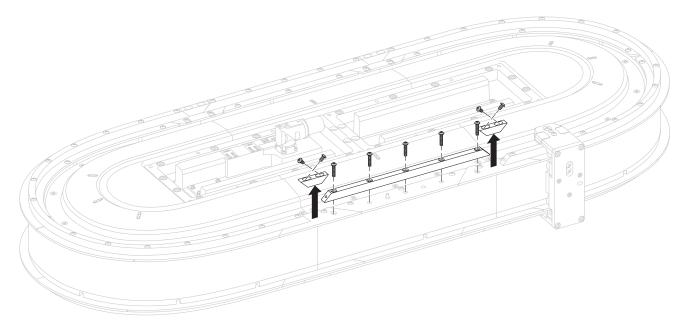
- 4. Insert 14 M4 x 20 mm Torx head screws into the counter-bored holes on the rail.
- 5. Follow the sequence shown here to apply final torque to the 14 Torx head screws.

6. Perform the rail alignment procedure as outlined in <u>Replace Top and</u> <u>Bottom Rectangular Wedges on page 161</u>.

Replace Top and Bottom Flat Straight Rails

Follow these steps to replace top and bottom flat straight rails.

Before you Begin

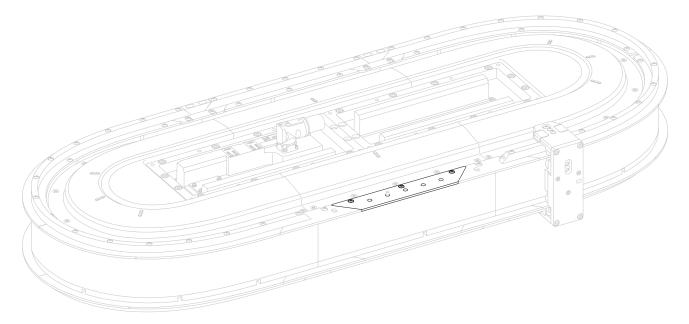

ATTENTION: Before attempting any service to an iTRAK 5730 system. See <u>Safety</u> <u>Information on page 32</u>.

What You Need

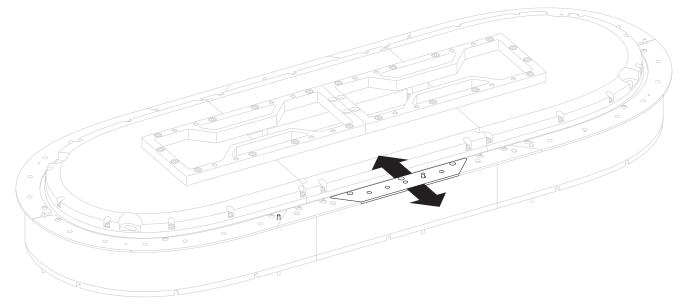
- T20 Torx bit
- Thread lock (such as Loctite 243)
- Straight rail kit
 - 2198T-BE-ST03, 300 mm (11.81 in.) straight rail kit
 - 2198T-BE-ST06, 600 mm (23.62 in.) straight rail kit
 - 2198T-BE-ST09, 900 mm (35.43 in.) straight rail kit

To remove the top and bottom flat straight rails, complete these steps.

1. Remove the hardware from the rectangular rail and rectangular wedges that are installed on the flat straight rail to be replaced.



- 2. Remove the rectangular rails and wedges.
- 3. Remove the flat rail from the motor module.
- 4. Remove the protective end-caps from the replacement rail.
- 5. By using a lint free cloth and isopropyl alcohol, clean the surface of the replacement rail.
- 6. Loosen the hardware of the flat wedges on either side of the rail being replaced.


- 7. With the counter-bored holes visible (up), place the straight flat rail on the motor module.
- 8. Insert and finger-tighten an M4 x 8 mm Torx screw in each of the counter-board holes.
- 9. Loosen each of the M4 x 8 mm Torx screws one half of a turn.

The screw heads should remain in the counter-bore just below the surface of the flat rails. The screws must be loose enough to allow for rail alignment adjustments.

10. Move the rail inward or outward until it stops against the screw head.

11. While holding the rail in place, hand-tighten the M4 x 8 mm Torx screws (do <u>not</u> apply final torque).

- 12. Align the two flat rail wedges with the straight rail section.
- 13. While holding the wedge rail in place, hand-tighten the M4 x 8 mm Torx screws (do <u>not</u> apply final torque).

- 14. When all flat rails are in alignment, apply final torque to all screws.
- 15. Replace the rectangular rails and wedges as outlined in <u>Replace Top</u> <u>and Bottom Rectangular Straight Rails on page 154</u> and <u>Replace Top</u> <u>and Bottom Rectangular Wedges on page 161</u>

Replace Top and Bottom Flat Curved Rails

Follow these steps to replace top and bottom flat curved rails.

Before you Begin

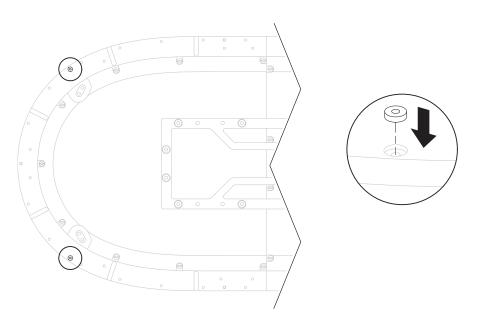
ATTENTION: Before attempting any service to an iTRAK 5730 system. See <u>Safety Information on page 32</u>.

What You Need

- T20 Torx bit
- Thread lock (such as Loctite 243)
- Isopropyl alcohol
- 2198T-BE-ED18, curved rail kit

To remove the top and bottom flat curved rails, complete these steps.

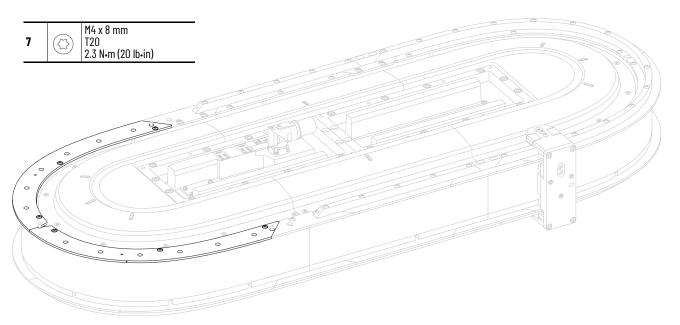
1. Use a T20 Torx bit to remove hardware from the rectangular curved rail on the flat curved rail that is being replaced.


IMPORTANT Do not lose the O-rings in the bottom of the curved rectangular rail.

- 2. Use a T20 Torx bit to remove hardware from the flat curved rail.
- 3. Remove the protective end-caps from the replacement rail.

- 4. By using a lint free cloth and isopropyl alcohol, clean the surface of the replacement rail.
- 5. Place a rubber O-ring in each of the two lubrication system openings on each of the curved motor modules.

A drop of oil can help to keep the rubber O-ring in place.



6. With the counter-bored holes visible (up), place the new curved flat rails on the surface of the curved motor modules and align the mounting holes.

The motor modules contain pins along the surface that are used to locate the rails properly.

7. Apply final torque to curved flat rail hardware.

8. Replace the rectangular rails and wedges as outlined in <u>Replace Top</u> <u>and Bottom Rectangular Straight Rails on page 154</u> and <u>Replace Top</u> <u>and Bottom Rectangular Wedges on page 161</u>

Replace Top and Bottom Rectangular Wedges

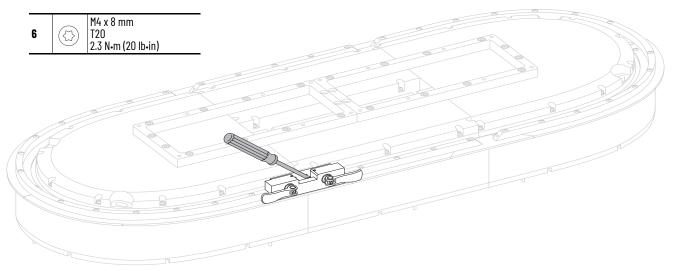
Follow these steps to replace top and bottom rectangular wedges.

Before you Begin

ATTENTION: Before attempting any service to an iTRAK 5730 system. See <u>Safety</u> Information on page 32.

What You Need

- T20 Torx bit
- Thread lock (such as Loctite 243)
- Isopropyl alcohol
- Rectangular wedge


To remove the top and bottom rectangular wedges, complete these steps.

- 1. Use a T20 Torx bit to remove the wedge hardware, and remove the wedge.
- 2. Place a rectangular wedge in the gap between the rectangular rails.
- 3. Insert an M4 x 8 mm Torx head screw into the counter-bored holes on the wedge and finger-tighten the screws.
- 4. With the tool clamps unlocked, place the rail alignment tool (cat. no. 2198T-A08) over the center of the wedge.

Verify that you can access each of the screws in the wedge with the driver bit, without interference from the alignment tool.

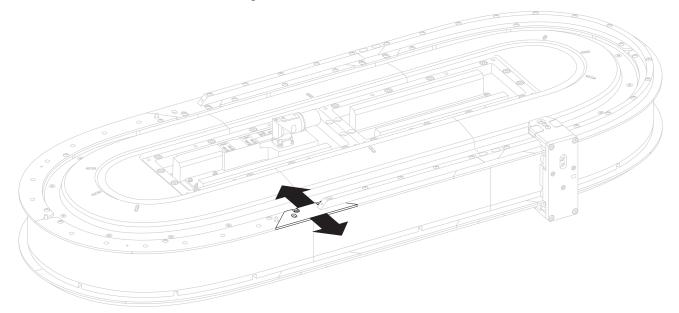
- 5. While you press downward on the rail alignment tool to ensure that the tool is in full contact with the rails, lock the tool clamps.
- 6. Apply final torque to screws in the wedge.

Replace Top and Bottom Flat Wedges

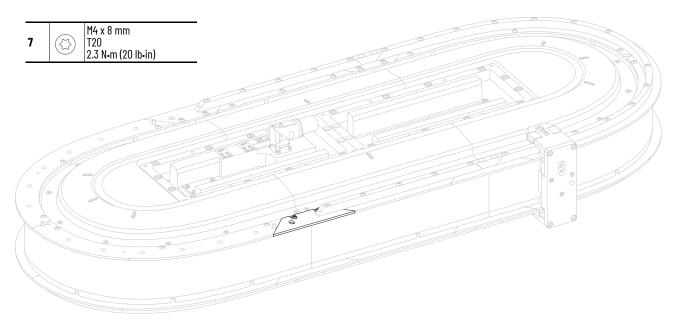
Follow these steps to replace top and bottom flat wedges.

Before you Begin

ATTENTION: Before attempting any service to an iTRAK 5730 system. See <u>Safety</u> <u>Information on page 32</u>.


What You Need

- T20 Torx bit
- Thread lock (such as Loctite 243)
- Isopropyl alcohol
- Flat wedge


To replace the top and bottom flat wedges, complete these steps.

- 1. Use a T20 Torx bit to remove hardware from the rectangular curved rail on the flat wedge that is being replaced.
- 2. Use a T20 Torx bit to remove hardware from the flat wedge.
- 3. Remove the protective end-caps from the replacement rail.
- 4. By using a lint free cloth and isopropyl alcohol, clean the surface of the replacement rail.

- 5. With the counter-bored holes visible (up), place a straight flat-rail wedge on the motor module.
- 6. Bias the wedge rail to align with the flat rails on either side and handtighten the M4 x 8 mm Torx screws.

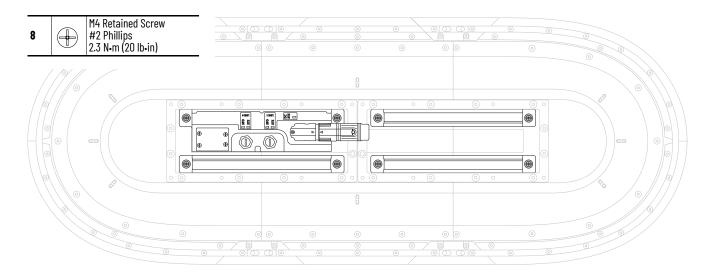
7. When all flat rails are in alignment, apply final torque to all screws.

8. Replace the rectangular rails and wedges as outlined in <u>Replace Top</u> <u>and Bottom Rectangular Straight Rails on page 154</u> and <u>Replace Top</u> <u>and Bottom Rectangular Wedges on page 161</u>.

Replace a Connector Module

Use this procedure to replace a connector module.

Before You Begin


ATTENTION: Before attempting any service to an iTRAK 5730 system. See <u>Safety</u> Information on page 32.

What You Need

- #2 Phillips bit
- Connector module:
 - 2198T-CT-CP, power and control input connector module
 - 2198T-CT-P, power input with control pass-through connector module
 - 2198T-CT, power and control pass-through connector module

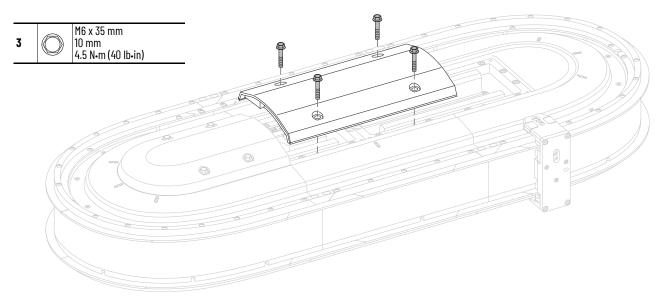
To remove the connector module, complete these steps.

- 1. If necessary, remove the infield covers in the reverse order of installation. See <u>Optional Infield Covers</u> on page <u>67</u>.
- 2. If you are replacing a power and control input connector module (cat. no. 2198T-CT-CP) or power with control pass-through connector (cat. no. 2198T-CT-P), complete steps a and b.
 - a. Rotate the power cable connector outer housing to the unlocked position.
 - b. Remove the cable connector from the motor power connector on the connector module.
- 3. If you are replacing a power and control input connector module (cat. no. 2198T-CT-CP), complete steps a and b.
 - a. Rotate the Ethernet cable outer housing counter-clockwise until it is free from the cable-connector mounting ring on the module.
 - b. Remove the Ethernet cable from the connector on the connector module.
- 4. Use a #2 Phillips bit to loosen the captive screws on the connector module and remove the module.

Replace an Infield Cover

Use this procedure to replace an infield cover.

Before You Begin


ATTENTION: Before attempting any service to an iTRAK 5730 system. See <u>Safety</u> <u>Information on page 32</u>.

What You Need

- 10 mm hexagonal socket
- Thread lock (such as Loctite 243)
- Infield cover kit:
 - 2198T-AS-CD18-U, curve covers
 - 2198T-AS-CA03-U, straight cover
 - 2198T-AS-CD18, curve covers with Allen-Bradley® logo

To remove an infield cover, complete these steps.

- 1. Remove the M6 x 35 hex head bolts and remove the infield cover.
- 2. Repeat <u>step 1</u> for the remaining covers.

- 3. Apply thread lock to the M6 x 35 hex head bolts.
- 4. Secure the infield covers to the assembly.

Replace a Lubricant Cartridge

The lubricant pumps are manufactured by perma and are part of the perma STAR CONTROL product line. See the <u>perma STAR CONTROL product line</u> <u>webpage</u>. That webpage links to the perma STAR CONTROL operating instructions, perma publication 109301_STAR_CONTROL_PE_A01_int23. In the operating instructions, see the section "LC exchange". That section provides the steps to replace a lubricant cartridge.

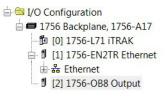
Lubrication

The rail and rail bearings are an open system that requires a regular schedule of lubrication. To avoid breakdown of the bearings, the bearings must have a film of oil on them. Typical indications of bearing breakdown are discoloration and excessive wear on the inner and outer bearing surfaces. The time interval between applications of lubricant depends on the length of stroke, duty cycle, and environmental factors. Use 68 viscosity mineral oil, such as Kluber 4-UH1-68N, to lubricate the rails and bearings.

To provide a regular schedule of lubrication, we recommend that you use the iTRAK Lubrication System, catalog number 2198T-AL-SYS-4. Installation instructions for the lubrication system start on page 63. If you design and supply your own oil bleed system, you can use these installation instructions for guidance.

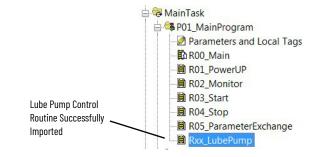
Once the iTRAK Lubrication System or customer provided oil bleed system is installed, see either <u>Lubrication Using an iTRAK Lubrication System</u> or <u>Lubrication Using a Customer Provided Oil Bleed System on page 172</u>.

Lubrication Using an iTRAK Lubrication System


Once the iTRAK lubrication system is installed and wired, use the following procedures to configure the lubrication system:

- <u>Perform Initial Lubrication with an iTRAK Lubrication System on</u> page 167
 - <u>Configure Normal Operation Lubrication with an iTRAK Lubrication</u> <u>System on page 170</u>

Perform Initial Lubrication with an iTRAK Lubrication System


During first-time start or when the rails have been cleaned, complete the following steps.

- 1. See the <u>perma STAR CONTROL product line webpage</u>. That webpage links to the perma STAR CONTROL operating instructions, perma publication 109301_STAR_CONTROL_PE_A01_int23. In the operating instructions, see the section titled Configuration IMPULSE. Use the procedure in Configuration IMPULSE to configure each pump in the system as follows.
 - a. Set the operation mode to IMPULSE mode.
 - b. Set the size of the lubricant cartridge of the pump.
 - c. Set the volume of oil dispensed per impulse to 0.7 cc (0.024 oz).
- 2. Download the lubrication-system-pump-control routine by clicking this link: <u>Rxx_LubePump [ROUTINE].L5X</u>.
- 3. Add an output module to the IO tree.

4. Import the lube pump control routine.

5. In the main routine, add a Jump to Subroutine (JSR) that jumps to the lube pump control routine.

6. Open Parameters and Local Tags and search for Out_LubePump.

Name	Alias For	Base Tag	Usage	Data Type	Description	External Acces	Constant	Style	Connections
⊡-Out_LubePump			Output	DINT		Read/Write		Decimal	{0:2} Connections
Out_LubePump.0				BOOL		Read/Write		Decimal	Local:2:0.Data.0
Out_LubePump.1				BOOL		Read/Write		Decimal	Local:2:0.Data.1
Out_LubePump.2				BOOL		Read/Write		Decimal	

- 7. In the Connections column, configure connections for the outputs to the pumps.
- 8. Open Parameters and Local Tags and search for the following input parameters:
 - Inp_PrimePump signal to start the sequence of lubricant dispensations for initial lubrication. Each dispensation in the sequence corresponds to one impulse to the pumps. The Inp_PrimePump signal is triggered from the PLC program or HMI.
 - Inp_PrimeTime the number of seconds between each lubricant dispensation during initial lubrication.

Name	Alias For	Base Tag	Usage	Data Type	Description	External Acces	Constant	Style	Connections
Inp_PrimePump	-		Input	BOOL		Read/Write		Decimal	
Inp_PrimeTime			Local	REAL	(time in seconds)	Read/Write		Float	THE REPORT OF STREET
Inp_RunPump			Input	BOOL		Read/Write		Decimal	RunProduction
Inp_RunTime			Local	REAL	(time in seconds)	Read/Write		Float	

- 9. Configure the Inp_PrimePump parameter as shown in the example in <u>step 8</u>.
- Configure the Inp_PrimeTime parameter as shown in the example in step 8, with one addition; in the Description column, include the number of seconds between each lubrication dispensation during initial lubrication. The recommended value is 600 seconds (10 minutes).
- 11. To start the prime time, or initial lubrication sequence, trigger the first Inp-PrimePump lubrication dispensation using the PLC program or HMI.
- 12. While initial lubrication is underway, and a sequence of oil dispensations occurs on the interval in Inp_PrimeTime, monitor the rails at the oil application sites to see if oil has appeared on the rails. It may be hard to see if oil has appeared. You may need to feel the rails at the oil application sites.
- 13. Once oil appears on the rails, run the iTRAK 5730 system at 0.5 m/s mover velocity, while letting the Inp_PrimePump lubrication sequence continue to run.

IMPORTANT	It is important that you not run the iTRAK 5730 system too early, before oil has appeared on the rails. Only run the iTRAK 5730 system once oil has already begun to contact the rails. Running the system with no oil damages the rails.
	It is less important, but still a consideration, to avoid starting to run the iTRAK system too long after oil has appeared on the rails. If oil begins to appear on the rails and the lubrication system continues to pump out more oil without the movers moving, oil drips away and is wasted. Once oil appears on the rails, moving the movers allows the mover cams to distribute the oil onto the rails, helping prevent dripping from the application sites.

- 14. While the iTRAK 5730 system runs, the lubrication system continues to dispense 0.7 cc (0.024 oz) of lubricant onto each rail every 10 minutes. To determine whether each rail has been lubricated along the entire perimeter of the track, monitor the rails. It may be hard to see if each rail has been lubricated along the entire perimeter of the track. If so, you can check if the rails are fully lubricated as follows:
 - a. Stop the motion of the movers.
 - b. Select a test location on each rail that is farthest from the oil application sites.
 - c. At the test location, on the surface of the rail that contacts the mover roller, touch the rail with a finger, and determine if it is adequately lubricated:
 - If oil is not present, there are signs of rusting, or most of the oil is black, more lubrication is required. If this is true, continue running the lubrication system and the iTRAK system to distribute more oil onto the tracks. It is normal for some oil to become black, so if a small percentage of the oils is black, it does not mean you have to add more lubricant to complete initial lubrication.
 - If oil is present on each rail, and the signs that more lubrication is required are not present, initial lubrication is complete.
- 15. Once initial lubrication is complete, end the Inp-PrimePump lubrication dispensation using the PLC program or HMI.
- 16. Proceed to configure normal operation lubrication.

Configure Normal Operation Lubrication with an iTRAK Lubrication System

The frequency of lubricant dispensations and the volume of lubricant dispensed during each dispensation during normal operation depend on many factors. These factors include length of track, number of movers, application motion profile, cleanliness of the operating environment, and other factors. <u>Table 31</u> provides rough guidelines for the lubrication of each rail. Adjust the lubrication frequency and volume as needed for each individual system. Adjust the lubrication frequency and volume to maintain a thin film of oil that evenly coats the rail contact surfaces.

To allow the oil to coat the rails evenly, it is best to have a higher frequency of oil dispensations, with a lower volume of oil dispensed during each dispensation. Avoid over-oiling the rails to an extent that causes excessive oil splatter.

ATTENTION: Systems with 16 or more movers may require higher volumes of lubrication than indicated in <u>Table 31</u>. For these systems, monitor the rails closely to help prevent rail damage while determining the proper lubrication schedule for the system.

Straight System Length mm (ft) ⁽²⁾	Rail	Volume of Oil Dispensed Onto the Rail During Each Dispensation cc (oz)	Runtime Interval Between Dispensations	
	Top rail			
3001200 (1.03.9)	Each middle rail	0.20 (0.007)		
	Bottom rail			
	Top rail			
12002400 (3.97.9)	Each middle rail	0.30 (0.010)		
	Bottom rail			
	Top rail			
24003300 (7.910.8)	Each middle rail	0.40 (0.014)	-3 hours of runtime	
	Bottom rail			
	Top rail			
33005100 (10.816.7)	Each middle rail	0.60 (0.020)		
	Bottom rail			
	Top rail			
51006300 (16.720.7)	Each middle rail	0.70 (0.024)		
	Bottom rail			
	Top rail			
63008700 (20.728.5)	Each middle rail	1.00 (0.034)		
	Bottom rail]		

Table 31 - Lubrication Guidelines⁽¹⁾

(1) The values in this table are guidelines. Your application may require a different volume of oil or frequency of dispensations.

(2) The straight system length is the combined length of all straight rails in the track dived by two.

To program an iTRAK lubrication system with a normal operation lubrication schedule, perform the following procedure:

1. Make sure that initial lubrication has been completed. See <u>Perform</u> <u>Initial Lubrication with an iTRAK Lubrication System on page 167</u>.

- 2. See the <u>perma STAR CONTROL product line webpage</u>. That webpage links to the perma STAR CONTROL operating instructions, perma publication 109301_STAR_CONTROL_PE_A01_int23. In the operating instructions, see the section titled Configuration IMPULSE. Use the procedure in Configuration IMPULSE to configure each pump in the system as follows.
 - a. Set the operation mode to IMPULSE mode.
 - b. Set the size of the lubricant cartridge of the pump.
 - c. Set the volume of oil dispensed per impulse to a volume you think is appropriate for your system. It is recommended to use the volumes in <u>Table 31</u> as a starting point. Volumes can be adjusted later if needed.
- 3. Open Parameters and Local Tags and search for the following input parameters:
 - Inp_RunPump signal to start the sequence of lubricant dispensations for normal operation lubrication. Each dispensation in the sequence corresponds to one impulse to the pumps.
 - Inp_RunTime the number of seconds of runtime between each lubricant dispensation during normal operation.

Name	Alias For	Base Tag	Usage	Data Type	Description	External Acces	Constant	Style	Connections
Inp_PrimePump			Input	BOOL	a na sa ang ang ang ang ang ang ang ang ang an	Read/Write		Decimal	
Inp_PrimeTime	 12		Local	REAL	(time in seconds)	Read/Write		Float	THE RANGE CONTRACTS
Inp_RunPump			Input	BOOL		Read/Write		Decimal	RunProduction
Inp_RunTime			Local	REAL	(time in seconds)	Read/Write		Float	

- 4. Configure the Inp_RunPump parameter as shown in the example in <u>step 3</u>. In the Connections column, make sure that there is a parameter connection to the RunProduction tag. This connection allows the sequence of Inp_RunPump/Inp_RunTime lubricant dispensations to be triggered when the set amount of runtime has elapsed.
- 5. Configure the Inp_RunTime parameter as shown in the example in <u>step 3</u>, with one addition; in the Description column, include the number of seconds of runtime between lubricant dispensations. The recommended value is 10,800 seconds (3 hours) of runtime.
- 6. Run the iTRAK 5730 system and monitor the rails every few minutes over the course of the period of runtime set in the Inp_RunTime parameter. Check to see if a thin film of oil is maintained throughout this period. If it is not, reduce the time in the Inp_RunTime parameter or increase the volume of oil dispensed during each dispensation. Continue to monitor the rails until an oil volume per dispensation and dispensation frequency can be established for the current application.
- 7. Check that oil dispensations occur on the Inp_RunTime parameter interval.
- 8. With the established oil volume per dispensation and dispensation frequency, and an estimate of runtime per day, you can calculate the system rate of oil consumption. With the oil consumption rate and the volume of oil in each lubricant cartridge, you can calculate how often you must replace lubricant cartridges. To ensure proper functioning and help prevent system damage, make sure to provide a regular supply of lubricant. See <u>Replace a Lubricant Cartridge on page 166</u>.

Lubrication Using a Customer Provided Oil Bleed System

Once the iTRAK lubrication system is installed and wired, use the following procedures to configure the lubrication system.

Perform Initial Lubrication with a Customer Provided Oil Bleed System

During first-time start or when the rails have been cleaned, complete these steps.

- 1. Run your lubrication system and monitor the rails at the oil application sites to see if oil has appeared on the rails. It may be hard to see if oil has appeared. You may need to feel the rails at the oil application sites.
- 2. Once oil appears on the rails, run the iTRAK 5730 system at 0.5 m/s mover velocity, while continuing to run the lubrication system.

IMPORTANT	It is important that you not run the iTRAK 5730 system too early, before oil has appeared on the rails. Only run the iTRAK 5730 system once oil has already begun to contact the rails. Running the system with no oil damages the rails.
	It is less important, but still a consideration, to avoid starting to run the iTRAK system too long after oil has appeared on the rails. If oil begins to appear on the rails and the lubrication system continues to pump out more oil without the movers moving, oil drips away and is wasted. Once oil appears on the rails, moving the movers allows the mover cams to distribute the oil onto the rails, helping prevent dripping from the application sites.

- 3. While the iTRAK system runs, use the lubrication system to dispense 0.7 cc (0.024 oz) of lubricant onto each rail every 10 minutes. Continue until each rail has been lubricated along the entire perimeter of the track. It may be hard to see if each rail has been lubricated along the entire perimeter of the track. If so, you can check if the rails are fully lubricated as follows:
 - a. Stop the motion of the movers.
 - b. Select a test location on each rail that is farthest from the oil application sites.
 - c. At the test location, on the surface of the rail that contacts the mover roller, touch the rail with a finger, and determine if it is adequately lubricated:
 - If oil is not present, there are signs of rusting, or most of the oil is black, more lubrication is required. If this is true, continue running the lubrication system and the iTRAK system to distribute more oil onto the tracks. It is normal for some oil to become black, so if a small percentage of the oils is black, it does not mean you have to add more lubricant to complete initial lubrication.
 - If oil is present on each rail, and the signs that more lubrication is required are not present, initial lubrication is complete.
 - d. Once initial lubrication is complete, proceed to configure normal operation lubrication.

Configure Normal Operation Lubrication with a Customer Provided Oil Bleed System

After initial lubrication has been completed, configure a schedule of lubrication for normal operation of the iTRAK 5730 system. See the general information paragraphs and tables on <u>page 170</u>.

iTRAK 5730 System Integrated Safety

Use this chapter to become familiar with the safe stop functions that are integrated with the iTRAK[®] 5730 system motor modules.

Торіс	Page
Certification	173
Out-of-Box State	176
Safe Torque Off Function	178
Safe Torque Off (STO) Specifications	180
Understand Safe Torque Off (STO) Behavior in an iTRAK 5730 System	182
Timed SS1 Stopping Function	182
Motion Direct Commands in Motion Control Systems	187
Explicit Messages	192
Troubleshoot the Safe Stop Function	198
Understand Integrated Safety Motor Module Replacement	198
Replace an Integrated Safety Motor Module in a GuardLogix System	199

The iTRAK 5730 system motor modules (catalog numbers 2198T-L20-T03*xx-xxx*-S2) are equipped for integrated Safe Torque Off and timed SS1 stopping functions over the EtherNet/IP[™] network. Section-based safety functions operate in the motor modules and are activated through the network safety connection.

Certification

The TÜV Rheinland group has certified the iTRAK 5730 motor modules (catalog numbers 2198T-L20-T03*xx-xxx*-S2) with support for Safe Torque Off and Timed SS1 safety functions. These safety functions are for use in safetyrelated applications up to Performance Level e (PLe) per ISO 13849-1, and Category 3, SIL 3 per IEC 61508, EN/IEC 61800-5-2, and SIL CL 3 EN/IEC 62061. Removing the motion-producing power is considered to be the safe state.

For product certifications currently available from Rockwell Automation, go to website <u>rok.auto/certifications</u>.

Important Safety Considerations

You, the system user, are responsible for the following:

- Validation of any sensors or actuators that are connected to the system
- Completing a machine-level risk assessment
- Certification of the machine to the desired ISO 13849-1 Performance Level or EN/IEC 62061 SIL level
- Project management and proof testing performed in accordance with ISO 13849-1

Safety Application Requirements

Safety application requirements include evaluating probability of failure rates (PFH), system reaction time settings, and functional verification tests that fulfill SIL 3 criteria. See <u>Probability of Dangerous Failure Per Hour</u> on <u>page 175</u> for more PFH information.

Creating, recording, and verifying the safety signature is also a required part of the safety application development process. Safety signatures are created by the safety controller. The safety signature consists of an identification number, date, and time that uniquely identifies the safety portion of a project. The safety portion of a project includes all safety logic, safety data, and safety I/O configuration.

For safety system requirements, including information on the safety network number (SNN), verifying the safety signature, and functional verification tests, see the GuardLogix[®] 5580 and Compact GuardLogix 5380 Controller Systems Safety Reference Manual, publication <u>1756-RM012</u>.

IMPORTANT You must read, understand, and fulfill the requirements that are detailed in publication <u>1756-RM012</u> before operating a safety system that uses a GuardLogix controller and motor module.

Category 3 Requirements According to ISO 13849-1

Safety-related parts are designed with these attributes:

- A single fault in any of these parts does not lead to the loss of the safety function.
- A single fault is detected whenever reasonably practicable.
- Accumulation of undetected faults can lead to the loss of the safety function and a failure to remove motion-producing power from the motor.

Stop Category Definition

You must complete a risk assessment to determine the selection of a stop category for each stop function.

- Stop Category 0, as defined in EN/IEC 60204-1 or Safe Torque Off (STO) as defined by EN/IEC 61800-5-2, is achieved with immediate removal of power to the actuator, which results in an uncontrolled coast-to-stop.
- Stop Category 1, as defined in EN/IEC 60204-1 or Safe Stop 1 (Timed SS1) as defined by EN/IEC 61800-5-2, is achieved with power available to the machine actuators to achieve the stop. Power is removed from the actuators when the configured stop is achieved.

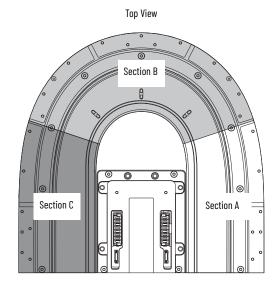
Performance Level (PL) and Safety Integrity Level (SIL)

For safety-related control systems, Performance Level (PL), according to ISO 13849-1, and Safety Integration Level (SIL), according to EN/IEC 61800-5-2, include a rating of the systems ability to perform its safety functions. All safety-related components of the control system must be included in both a risk assessment and the determination of the achieved levels.

See the ISO 13849-1, IEC 61508, and EN/IEC 62061 standards for complete information on requirements for PL and SIL determination.

Probability of Dangerous Failure Per Hour

Safety-related systems are classified as operating in a High-demand/ continuous mode. The SIL value for a High-demand/continuous mode safetyrelated system is directly related to the probability of a dangerous failure occurring per hour (PFH) within the type B 1002 architecture.


The PFH calculation is based on the equations from IEC 61508, and shows worst-case values. <u>Table 32</u> provides data for a 20-year proof test interval and demonstrates the worst-case effect of various configuration changes on the safety parameters data.

Attribute	Value
PFH (1e-9/h)	3.63
MTTFd (years)	110
HFT	1

Table 32 - Safety Parameters for 20-year Proof Test Interval

A straight motor module (catalog number 2198T-L20-T0303-A00-S2) is composed of one logical section. A curved motor module (catalog number 2198T-L20-T0309-D18-S2) is composed of three logical sections within a single module as shown in <u>Figure 40 on page 176</u>. The PFH value in <u>Table 32</u> applies to each logical section of the curved motor module individually.

Figure 40 - Curved Motor Module Logical Sections

IMPORTANT Determination of safety parameters is based on the assumptions that the system operates in high-demand/continuous mode and that the safety function is tested at least once every 3 months as per SIL 3, PLe category 3.

Out-of-Box State

The iTRAK 5730 motor modules ship in the out-of-box state.

ATTENTION: In the out-of-box state, the STO function allows motion-producing power unless an integrated safety connection configuration has been applied to the motor module at least once.

In the out-of-box state, you can configure iTRAK 5730 motor modules in the following ways:

- Without a GuardLogix 5580 or Compact GuardLogix 5380 safety controller for a standard application
- With a GuardLogix 5580 or Compact GuardLogix 5380 safety controller when the STO function is not required

Out-of-Box State Support

After the integrated safety connection configuration is applied to the iTRAK 5730 motor module at least once, you can restore the motor module to the out-of-box state.

Use a GuardLogix 5580 or Compact GuardLogix 5380 safety controller and follow these steps to restore your iTRAK 5730 motor module to the out-of-box state.

- 1. Right-click the iTRAK 5730 motor module that you created and choose Properties.
- 🔺 🚄 I/O Configuration

▲ ■ 1756 Backplane, 1756-A4
 [□] [0] 1756-L84ES CIP_Safety_Controller
 ▲ [] [1] 1756-EN3TR ENET_1
 ▲ 器 Ethernet
 ▲ 2198T-W25K-ER iPS
 ➡ TIRAK 5730 Section1
 ➡ TIRAK 5730 Section2
 [] 1756-EN3TR ENET_1

2. In the Module Properties dialog box, click the Connection tab.

The Connection tab appears.

Module Properties: ENET_1 (iTRA	AK 5730 12.001) ×				•
General	Connection				
Connection	John John				
Safety					
- Time Sync					
Module Info		Requested Packet Interval (RPI)	Connection		
Internet Protocol	Name	(ms)	over		
Port Configuration			EtherNet/IP		
Network					
- Motion	Safety Input	10 💠 Set on Safety Page	Unicast 🧹		
- Associated Axes	Safety Output	20 💠 Set by Safety Task	N/A		
Power	B_MotionSync2	2.0 🚖 Set by Motion Group	Unicast 🗸		
Diagnostics					
Cyclic Read/Write					
Track Configuration					
Motion Safety					
Actions					
STO					
SS1					
	✓ Inhibit Module				
	Major Fault On Controller If Connection Fai	ls While in Run Mode			
	Module Fault				
1					1
Status: Offline		01	O		
Status, Unine		ОК	Cancel	Apply Help	

- 3. Check Inhibit Module.
- 4. Click Apply.
- 5. Click the Safety tab.

The Safety tab appears.

General	Safety
Connection	
- Safety	
- Time Sync	Connection Requested Packet Connection Reaction Max Observed
- Module Info	Type Interval (RPI) (ms) Time Limit (ms) Network Delay (ms)
- Internet Protocol	Safety Input 10 1 40.1 Reset Advanced
- Port Configuration	Safety Output 20 60.0 Reset
- Network	
- Motion	
- Associated Axes	Configuration Ownership: Local
Power	Reset Ownership +
Diagnostics	
Cyclic Read/Write	Conferentian Directory
Track Configuration	Configuration Signature:
Motion Safety	ID: 7cb1_2533 (Hex) Copy
Actions	
- STO	Date: 12/10/2019
SS1	Date. 12/10/2013
	Time: 5:54:11 PM 🔶 906 🖕 ms
	Time: 5:54:11 PM 🗘 906 🛊 ms

6. In the Configuration Ownership field, click Reset Ownership.

IMPORTANT Only authorized personnel should use the Reset Ownership function.

If any active connection is detected, the reset is rejected.

7. Cycle power.

The motor module is in the out-of-box state.

integrity is lost.

IMPORTANT	If power to the motor module is not cycled after <u>step 6</u> , the module does not transition to the out-of-box state and maintains STO function.
IMPORTANT	When the motor module returns to the out-of-box state, STO safety

Safe Torque Off Function

The Safe Torque Off (STO) function, when used with suitable safety components, provides protection according to ISO 13849-1 (PLe), Category 3 or according to IEC 61508, EN/IEC 61800-5-2, and EN/IEC 62061 (SIL CL 3). All components in the system must be chosen and applied correctly to achieve the desired level of operator safeguarding.

The STO feature is designed to safely turn off all output-power transistors. You can use the STO feature in combination with other safety devices to achieve Stop Category 0 and protection-against-restart as specified in EN/IEC 60204-1.

ATTENTION: The STO feature is designed to restrict motion-producing power on the drive system or affected area of a machine. The STO feature does not provide electrical safety.

SHOCK HAZARD: In STO mode, hazardous voltages can still be present at the drive. To avoid an electric shock hazard, disconnect power to the system and verify that the voltage is zero before performing any work on the drive.

ATTENTION: Personnel responsible for the application of safety-related programmable electronic systems (PES) shall be aware of the safety requirements in the application of the system and shall be trained in using the system.

Safe Torque Off (STO) Function Operation

The STO function provides a method, with sufficiently low probability of failure, to force the power-transistor control signals to a disabled state. When the command to execute the STO function is received from the GuardLogix controller, all drive output-power transistors are released from the ON-state. This release from the ON-state results in a condition in which the drive coasts. Disabling the power transistor output does not provide mechanical isolation of the electrical output that is required for some applications.

The iTRAK 5730 motor module response time to a request of the STO function is less than 10 ms. The response time to a request is the delay between the time that the motor module receives the integrated safety packet with an STO request, and the time when the function begins to execute.

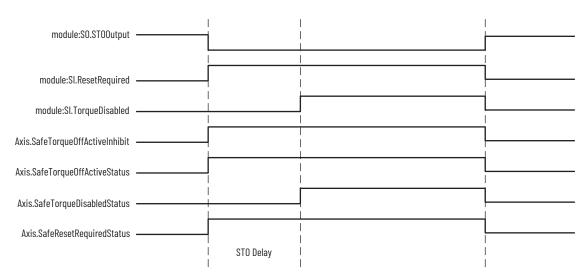
The safety function execution time is the amount of time for the safety function to complete execution. The safety function execution time depends on user configurations of the safety function and the periodic rate at which the motor module executes the safety function. The motor module executes the safety function at a periodic rate of 3 ms.

The total safety function completion time can be considered as the safety function response time to request plus the safety function execution time. Table 33 provides a STO total safety function completion time example.

Table 33 - Safe Torque Off (STO) - Safety Function Completion Time Example

STO Response Time to Request (T $_{\rm RRT}$	10 ms	
STO Execution Time (T _{ET})	17 ms (rounded up to 18 ms)	
Total STO Completion Time (T _{TCT})	28 ms	

(1) The user-configurable delay time is rounded up to the nearest integer multiple of 3 ms.


ATTENTION: A hazard of personal injury or equipment damage exists. When these two conditions exist, a limited amount of mover movement can occur:
Two simultaneous faults occur in the IGBT circuit of an iTRAK motor module section
A mover is located within 33.8 mm (1.33 in.) of the affected coil

Safe Torque Off (STO) State Reset

The iTRAK 5730 motor modules support automatic restart only for exiting the STO state. Automatic restart indicates that torque is allowed only by transitioning the SO.STOOutput tag from 0 to 1. The SO.ResetRequest tag is used only for resetting safety faults.

IMPORTANT iTRAK 5730 motor modules enter the STO state if any STO function fault is detected.

<u>Figure 41</u> provides a timing diagram for an automatic restart of an iTRAK 5730 motor module in an STO state.

Figure 41 - iTRAK 5730 Motor Module STO Timing Diagram

Safe Torque Off (STO) **Specifications**

This table provides specifications for the STO network.

Studio 5000 Logix Designer® Value Attribute Tag Name N/A Safety connection RPI, min 6 ms N/A Input assembly connections 3 Output assembly connections N/A N/A Integrated safety open request support Type 1 and Type 2 requests Bit 0: Safety fault Axis.SafetyFaultStatus Bit 1: Safety reset request Axis.SafetyResetRequestStatus Bit 2: Safety Reset Required Axis.SafetyResetRequiredStatus Axis safety status Bit 3: Safe Torque Off active Axis.SafeTorqueOffActiveStatus Bit 4: Safe torque disabled Axis.SafeTorqueDisabledStatus N/A Bit 5...31: Undefined (0) Axis.SafetyCoreFault Bit 1: Safety core fault Axis.SafeTorqueOffFault Bit 3: Safe Torque Off fault Axis safety faults All others: Undefined (0) N/A

Table 34 - Safe Torque Off (STO) Network Specifications

Safe Torque Off (STO) Assembly Tags

In integrated STO mode, a GuardLogix 5580 or Compact GuardLogix 5380 safety controller commands the iTRAK 5730 Safe Torque Off function through the appropriate tag in the safety output assembly.

The SO.Command tags are sent from the GuardLogix safety output assembly to the iTRAK 5730 safety output assembly to control the Safe Torque Off function.

The SI.SafeStatus tags are sent from the iTRAK 5730 motor module axis to the GuardLogix safety input assembly and indicate the iTRAK 5730 safety control status.

The SI.ConnectionStatus tags indicate the safety input connection status.

<u>Table 35</u> lists the safety tags that are added to the controller tags when a iTRAK 5730 motor module section axis is added to a GuardLogix I/O Configuration and the connection is configured for Motion and Safety or Safety Only.

IMPORTANT The SO.STOOutput and SO.ResetRequest tag names change when Motion Safety in the Module Definition is configured as Safe Stop Only - No Feedback.

The attribute values in <u>Table 35</u> are the Assembly Object attribute values.

Table 35 -	iTRAK 5730 Inte	arated Safe Torc	ue Off (STO) S	pecifications

Studio 5000 Logix Designer Tag Name	Attribute [bit]	Туре	Description
SI.ConnectionStatus ^{(1) (2)}	-	DINT	-
SI.RunMode	[0]	BOOL	Combinations of the RunMode and ConnectionFaulted
SI.ConnectionFaulted	[1]	BOOL	states
SI.SafeStatus ^{(1) (3)}	-	SINT	-
SI.TorqueDisabled	[0]	BOOL	0 = Torque Permitted 1 = Torque Disabled
SI.SafetyFault	[6]	BOOL	0 = STO fault not present 1 = STO fault present
SI.RestartRequired	[7]	BOOL	0 = Reset is not required 1 = Reset is required
SO.Command ^{(1) (4)}	-	SINT	-
S0.ST00utput	[0]	BOOL	0 = Disable Permit 1 = Permit Torque
SO.ResetRequest	[7]	BOOL	0> 1 = Reset STO fault

(1) Bits not listed are always zero.

(2) ConnectionStatus is determined by the Safety Validator in the GuardLogix controller.

(3) Status is sent from the drive to the controller using the integrated safety protocol.

(4) Commands are sent from the controller to the drive using the integrated safety protocol.

IMPORTANT Only the data that is listed in <u>Table 35</u> is communicated with SIL 3 integrity.

Safe Torque Off (STO) Mode

You can use the attribute STO Mode to check if an iTRAK 5730 motor module axis is in STO Bypass mode. STO Bypass mode is used to allow motion while commissioning or troubleshooting a system when Motion Direct Commands (MDC) are needed.

Table 36 - Safe Torque Off (STO) Mode: MSG

Parameter	Value	Description
Service Code	0x0E	Get attribute single
Class	0x5A	Safety stop functions
Instance	1	Motor-module safety instance associated with an axis
Attribute	0x104	STO mode
Data Type	SINT	Short integer

Table 37 - Safe Torque Off (STO) Mode: Values

Value	Definition
1	Normal operation
2	STO bypass mode

Understand Safe Torque Off (STO) Behavior in an iTRAK 5730 System

Similar to a multi-axis servo drive system, the STO function is requested for each individual section axis in an iTRAK 5730 system. Therefore, each motor module section in an iTRAK 5730 system must receive an STO request from the GuardLogix controller to place the entire iTRAK 5730 system into the STO state.

Depending on your application, particularly in large iTRAK 5730 systems, it can be desirable to define a safety zone within which the STO function is enabled on discrete motor module sections of the system. In this case, it is possible that movers that are in motion on an enabled motor module section can travel onto a motor module section that is in the STO state.

IMPORTANT The STO function is configured for each motor module section (axis) independently. As a result, movers in motion on enabled motor module sections can travel onto a motor module section that is in the STO state. You must consider the consequences of active mover motion on enabled sections of an iTRAK 5730 system that are next to a motor module section that is in the STO state.

iTRAK 5730 System Safety Considerations

ATTENTION: A hazard of personal injury and equipment damage exists in an iTRAK system that does not enable the STO function on all motor module sections (axis). Consider an MSF stopping action of Coast to Stop and Disable or mechanical guards for motor module sections that are next to a motor module section that enables the STO function.

Functional Safety Considerations

ATTENTION: Before maintenance work can be performed in Program mode, the developer of the application must consider the implications of allowing motion through motion direct commands and should consider developing logic for run-time maintenance operations to meet the requirements of machine safety operating procedures.

ATTENTION: Motion is allowed when motion direct commands are used in Program mode and the STO function is not available. Motion direct commands issued when the controller is in Program mode causes the drive to bypass the STO Active condition. It is your responsibility to implement additional preventive measures to maintain safety integrity of the machinery during execution of motion direct commands in Program mode.

ATTENTION: To avoid personal injury and damage to equipment if there is an unauthorized access or unexpected motion during authorized access, return the controller to RUN mode and remove the key before leaving the machine unattended.

The Timed SS1 function meets the requirements of Performance Level e (PLe) per ISO 13849-1 and SIL CL 3 per IEC 61508, EN/IEC 61800-5-2, and EN/IEC 62061.

In Timed SS1 mode, the GuardLogix 5580 or Compact GuardLogix 5380 safety controller issues the SS1 command over the EtherNet/IP network and the iTRAK 5730 motor module section executes the SS1 command.

Timed SS1 Stopping Function

The Timed SS1 function commands the motor-module axis to stop in a fixed amount of time. The Timed SS1 function does not monitor the speed of the mover axis or whether a mover is stopped.

Setting the SS1 Request tag in the motor-module axis Safety Output Assembly initiates the Timed SS1 function. When the Timed SS1 function is initiated, these actions occur:

- 1. The motor-module axis receives the SS1 Request
- 2. The motor-module axis safety status is updated to SS1 Active (high = 1)
- 3. The controller stops the axis within the SS1 Max Stop Time
- 4. When the SS1 Max Stop Time expires, SS1 Complete transitions to high (1)
- 5. The STO function is performed

Safety Function Operation

The iTRAK 5730 motor module response time to a request of the SS1 function is less than 10 ms. The response time to a request is the delay between the time when the iTRAK motor module receives the integrated safety packet with an SS1 request and the time when the function begins executing.

The safety function execution time is the amount of time for the safety function to complete execution. The safety function execution time depends on the user configuration of the safety function and the periodic rate at which the iTRAK 5730 motor module executes the safety function. The iTRAK 5730 motor module executes the safety function at a periodic rate of 3 ms.

The total safety function completion time can be considered as the safety function response time to request plus the safety function execution time. <u>Table 38</u> provides a Timed SS1 total safety function completion time example.

Table 38 - Timed Safe Stop (SS1) - Safety Function Completion Time Example

SS1 Response Time to Request (T $_{\rm RRT}$)		10 ms
SS1 Execution Time (T _{ET})	User-configurable SS1 Max Stop Time ^{(1) (2)}	19 ms (rounded up to 21 ms)
STO Execution Time (T _{ET})	User-configurable STO Delay Time ⁽¹⁾	17 ms (rounded up to 18 ms)
Total SS1/STO Completion Time (T _{TCT})		49 ms

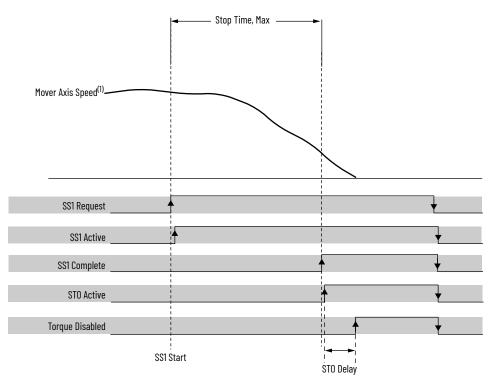
(1) The user-configurable delay time is rounded up to the nearest integer multiple of 3 ms.

(2) Max Stop Time is configured on the SS1 page of the Module Properties and can be read via Attribute 291 (Class 0x5A). The maximum is 4,294,967,296 ms.

In this example, we describe how a motion and safety control system operates and how motion and safety tasks are coordinated. In typical motion and safety system applications, an E-stop switch is used to stop the system. In the following example, the switch is used to initiate the process that brings the axis to a controlled stop before removing power. This type of stop is called Stop Category 1. The motion task and motor module axis are responsible for bringing the axis to a Category 1 stop. This sequence of events represents the steps that are required for a Timed SS1 safety function.

The words *module*, *instance*, and *axis* (italic) in these steps represent the module, instance, and section axis name assigned in the Studio 5000 Logix Designer application (also called the Studio 5000[®] application).

- 1. The safety task reads the E-stop input and detects the switch actuation.
- 2. The safety task communicates an SS1 request by setting the bit: *module*:SO.SS1Request[*instance*] tag of the motor module axis motion-safety instance.
- 3. The motion-safety instance in the motor module axis communicates to the motor module axis motion core of the Axis Safety Status.
- 4. The motion core communicates with the motion controller running the motion task by updating the motion axis tag *axis*.SS1ActiveStatus.
- 5. The motion task controls the axis to bring the motor to a stop within the SS1 time limit.
- 6. When the configured SS1 time lapse has completed, the motion-safety core activates the STO function.


Series of events when an SS1 fault occurs.

1. If an SS1 fault occurs, STO Active goes high (1), and Torque Disabled goes high (1) immediately and ignores STO Delay.

The safety instance detects a fault and activates the STO function within 6.0 ms of when the fault condition occurred.

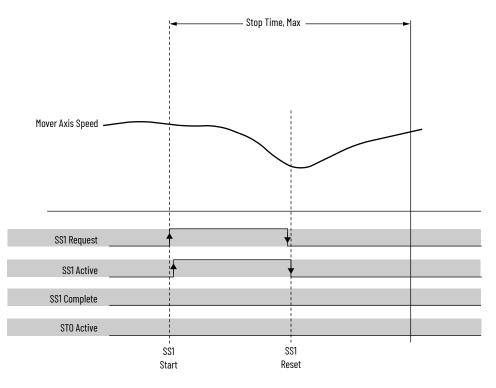
- 2. Restart Required goes high (1) whenever an SS1 fault is present.
- 3. To reset the SS1 fault, SS1 Request must go low (0), followed by Reset (0-1 transition).

Figure 42 - Timed SS1 Normal Operation

(1) Mover axis speed is independent of motor section axis safety control.

Attribute Name	Tag Name	Description	Value
SS1 Request	module:S0.SS1Request[instance]	An Output Assembly member that requests the motor module axis to initiate its Safe Stop 1 function.	0 - No Request 1 - Request
SS1 Active	module:S0.SS1Active[instance]	The SS1 Active attribute is set to Active when any bit in SS1 Activation is set.	0 – Not Active 1 – Active
SS1 Complete	Tag Name does not apply.	When the SS1 timer expires, the SS1 Complete bit is set, setting STO Active.	0 – Not Active 1 – Active
STO Active	module:SI.STOActive[instance]	When the SS1 timer expires, the STO Activation bit and SS1 Complete are set, setting STO Active.	0 – Not Active 1 – Active
Torque Disabled	module:SI.TorqueDisabled[instance]	When the drive output transistors are released from the ON state and force-producing power has been removed from the motor.	0 – Torque Permitted 1 – Torque Disabled

The Timed SS1 safety function design, which includes the STO function, has a SIL 3/PLe category 3 rating.


The words *module* and *instance* (italic) in these tag names represent the module name and instance name that are assigned in the Studio 5000 application.

IMPORTANT	If there is a malfunction, the most likely stop category is Stop Category O. When designing the machine application, timing and distance must be considered for a coast-to-stop. For more information regarding stop categories, see EN/IEC 60204-1.
IMPORTANT	If multiple safety functions are requested simultaneously, the first to reach the Safe Torque Off state takes precedence.

Timed SS1 Request Removed

This figure shows what happens when a Timed SS1 Request goes low (0) before completion.

Figure 43 - Timed SS1 Request Removed Before Completion

Attribute Name	Tag Name	Description	Value
SS1 Request	module:S0.SS1Request[instance]	An Output Assembly member that requests the motor module axis to initiate its Safe Stop 1 function.	0 - No Request 1 - Request
SS1 Active	module:S0.SS1Active[instance]	The SS1 Active attribute is set to Active when any bit in SS1 Activation is set.	0 - Not Active 1 - Active
SS1 Complete	Tag Name does not apply.	When the SS1 timer expires, the STO Activation bit SS1 Complete is set, setting STO Active to Disable Torque.	0 - Not Active 1 - Active
STO Active	module:SI.STOActive[instance]	When the SS1 timer expires, the STO Activation bit SS1 Complete is set, setting STO Active to Disable Torque.	0 - Not Active 1 - Active

The words *module* and *instance* (italic) in these tag names represent the module name and instance name that are assigned in the Studio 5000 application.

Series of events when SS1 Request is removed before completion.

- 1. When SS1 Request goes low (0) before completion, SS1 function is reset and ready for another operation.
- 2. Main task reads the SS1 Active axis tag and resumes normal operation.

Motion Direct Commands in Motion Control Systems

You can use the Motion Direct Command (MDC) feature to initiate motion while the controller is in Program mode, independent of application code that is executed in Run mode. These commands let you perform various functions, for example, move an axis, jog an axis, or home an axis.

A typical use might involve a machine integrator testing different parts of the motion system while the machine is being commissioned. Another use might be a maintenance engineer, under certain restricted scenarios in accordance with safe machine operating procedures, wanting to move an axis (like a conveyor) to clear a jam before resuming normal operation.

- **ATTENTION:** To avoid personal injury or damage to equipment, follow these rules regarding Run mode and Program mode.
- Only authorized, trained personnel with knowledge of safe machine operation should be allowed to use Motion Direct Commands
- Additional supervisory methods, like removing the controller keyswitch, should be used to maintain the safety integrity of the system after returning the safety controller to RUN mode

Understand STO Bypass When Using Motion Direct Commands

If a Safety-only connection between the GuardLogix safety controller and the iTRAK 5730 motor module was established at least once after the module was received from the factory, the module does not allow motion while the safety controller is in Program mode by default.

This default setting is used because the safety task is not executed while the GuardLogix safety controller is in Program mode. This applies to applications running in a single-safety controller (with Motion and Safety connections). When an integrated safety motor module has a Motion connection to a standard controller and a separate Safety connection to a dual-safety controller, the standard controller can transition to Program mode while the safety controller stays in Run mode and continues to execute the safety task.

However, motor module systems are designed with a bypass feature for the STO function in single-safety controller configurations. You can use the MDC feature to allow motion while following all necessary and prescribed steps per machine safety operating procedures.

ATTENTION: Consider the consequences of allowing motion by using MDC when the controller is in Program mode. You must acknowledge warning messages in the Studio 5000 application that warn of the module bypassing the STO function and unintended motion can occur. The integrated safety module does not respond to the request of STO function if MDC mode is entered.

ATTENTION: It is your responsibility to maintain machine safety integrity while executing motion direct commands. One alternative is to provide ladder logic for Machine Maintenance mode that leaves the controller in Run mode with safety functions executing.

Studio 5000 Application Warning Messages

When the controller is in Run mode, executing safety functions, one or more motor modules follow the commands that they receive from the safety controller. Safety state = Running, Axis state = Stopped/Running, as shown in Figure 44.

Figure 44 - Safety State Indications When	n Controller is in Run Mode (safety tasl
executing)	

nands:	Motion Axis St	ор		
Motion State	Axis:	axis 1		-
- Re MSO - Re MSF	Label		Operand	
- S MASD	Stop Type		All	
B- HACD	Change Decel		No	
MDO	Decel Rate		100	
- C MDF	Decel Units		Units per sec2	
- C MDS	Change Decel J	lerk	Yes	
MAFR	Decel Jerk		100	
			% of Time	
Motion Move	Jerk Units		A OF TIME	
Motion Move Motion Move MAS MAH MAJ	DANGER: Program o Execution Error.	r Run Mode may ca	ommand with controller is use axis motion.	
Motion Move WMAH WMAJ WMAJ WMAG WMCD WMCP MRP Motion Group	DANGER Program o		ommand with controller in	n Running
Motion Move - & MAS - & MAJ - & MAJ - & MAG - & MCD - & MRP - Motion Group - & MGS	DANGER: Program o Execution Error.	r Run Mode may ca	ommand with controller is use axis motion.	

When the controller transitions to Program mode, the integrated safety motor modules are in the safe state (torque not permitted). Safety state = Not Running, Axis state = Start Inhibited, as shown in Figure 45).

ommands:		Motion Ser	rvo On	
🧐 MSO 😵 MSF	^	Axis:	axis1	
الله الله الله الله الله الله الله الله	m			
MAS MAH MAJ 一般 MAG 一般 MAG 一般 MRD	4		SER: Executing motion command with am or Run Mode may cause axis mot	
MCD	-	Progr		ion.
	ults			

Figure 45 - Safety State Indications After Controller Transitions to Program Mode

When you issue a motion direct command to an axis to produce torque in Program mode, for example MSO or MDS, with the safety connection present to the motor modules, a warning message is presented before the motion direct command is executed, as shown in Figure 46.

Figure 46 - STO Bypass Prompt When the Safety Controller is in Program Mode

motor torque. Ensure that preventative measures are in place to maintain safety integrity of machinery. Do you want to permit motor torque while safety controller is in	Â	Drive is not in correct state to allow requested operation on '[HPI]'.
	•	preventing motor torque. Safe Torque Off may be bypassed to permit motor torque. Ensure that preventative measures are in place to
Program Mode and perform the operation?		Do you want to permit motor torque while safety controller is in Program Mode and perform the operation?

The warning in <u>Figure 46</u> is displayed the first time a motion direct command is issued.

After you acknowledge the warning message by clicking Yes, torque is permitted by the motor modules and a warning message is indicated in the software as shown in <u>Figure 47</u>. Safety state = Not Running (torque permitted), Axis state = Stopped/Running, Persistent Warning = Safe Torque Off Bypassed.

IMPORTANT	Switch the controller to Run mode to exit Motion Direct Command mode with
	the STO function bypassed.

ommands:		Motion Se	ervo On
《 MSO 《 MSF 《 MASD 《 MASD 《 MOS 《 MDF 《 MDS 《 MAFR	ш	Axis:	axis1 🔹 🗔
W MAS W MAH W MAJ W MAG W MAG W MCD			NGER: Executing motion command with controller in gram or Run Mode may cause axis motion.
			Safe Torque Off bypassed
			Safety State: Not Running (Torgue Permitted)

Figure 47 - Safety State Indications After Controller Transitions to Program Mode (MDC executing)

IMPORTANT	The persistent warning message text 'Safe Torque Off bypassed' appears when a motion direct command is executed.
	The warning message persists even after the dialog box is closed and reopened as long as the integrated safety motor modules are in STO Bypass mode.
	The persistent warning message is removed only after the integrated safety motor modules are restored to the safe state.

Torque Permitted in a Multi-workstation Environment

The warning in <u>Figure 48</u> displays to notify a second user working in a multiworkstation environment that the first user has placed the integrated safety motor modules in the STO state and that the current action is about to bypass the STO state and permit torque.

Figure 48 - STO Bypass Prompt When MDC is Issued in Multi-workstation Environment

Drive is permitting motor torque while the safety controller is in Program Mode							
Safe Torque Off safety function is currently bypassed.							
Do you want to perform requested operation in this state?							

Warning Icon and Text in Axis Properties

In addition to the other warnings that require your acknowledgment, the Studio 5000 application also provides warning icons and persistent warning messages in other Axis Properties dialog boxes when the integrated safety motor modules are in STO Bypass mode.

Figure 49 - Axis and Safe State Indications on the Hookup Services Dialog Box

wis State:	Stopped	Safety State:	Not Running (Torque Permitted)					
Manual Tune]	1	Safe Torque Off bypassed	OK	Cancel	Apply	Help	

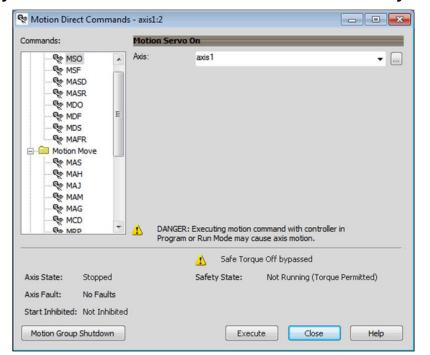


Figure 50 - Axis and Safe State Indications on Motion Direct Commands Dialog Box

Figure 51 - Axis and Safe State Indications on the Motion Console Dialog Box

Manual Tuning				Reset	Motion Generat	or		Ma	ore Commands
	3.5212	4	-0	+ Hertz	Commands		Motion Servo O	n	
Bandwidth:		0.0		47.0	Se MSO				
System 1 Damping:	0		0	•	- 🌪 MSF - 😍 MAH				
Tuning Config	uration	0.8		1.5	- Ce MAJ - Ce MAM				
Position Loop					- Se MAS				
Loop Bandwidth:		18.52124	-	+Hertz	- 😪 MDS				
Integrator Bandy	vidth:	0.0	-	+Hertz	- 😪 MAFR				
Integrator Hold:		Disabled	•	+					
Error Tolerance:		0.94524145	٢	Position Units			notion command wi		
Velocity Loop -					Program or	r Run Mode	may cause axis mo	tion.	
Loop Bandwidth:		74.08496	-	+Hertz	Execution Error.		1	Safe Torque Of	f bypassed
Integrator Bandu	idth:	0.0	-	 Hertz 	Axis State:	Stopped	Safety State:	Not Running	(Torque Permitted)
Integrator Hold:		Disabled	-	•	Axis Fault:	No Faults	1		
Error Tolerance:		26.317974	-	←Position Units/s	Start Inhibited:	Not Inhib	aited		
🔥 DANGER: Tunir	ig may	result in unstab	ole axi	s motion.	Execute	Disab	le Axis		
V Additional Tune					1				
								Close	Help

Explicit Messages

Use explicit messages to communicate with a drive and obtain additional fault, status, or configuration information that is not available in the Safety I/O Tag structure. Attribute data is useful for additional diagnostic information. An explicit message can be sent by any controller on the network and used to read any drive module attribute. See <u>Table 42</u> on page <u>193</u> for the drive-module safety attribute names, and numbers to read the attribute values by using an MSG instruction. See <u>Figure 52</u> on <u>193</u> to see how explicit messages are part of motion and safety communication.

When an explicit message is used, a class ID must be specified. The class ID identifies the safety object type in the drive module that is accessed.

Table 39 - Object Classes Available in Motion Safety Instances

Object Class	Object Instances
Safety Supervisor	1
Safe Stop Functions	1

IMPORTANT Explicit messages must not be used for any safety-related function.

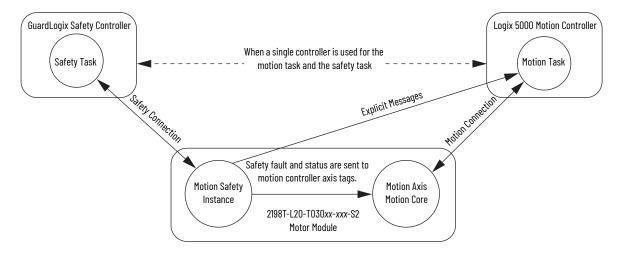
Safety Supervisor State

In the motor module, the connection to the safety instance or instances is controlled by a safety supervisor. The supervisor status can be read by the motion controller through the motion connection and the safety controller through the Safety Input Assembly or by an explicit message.

The safety supervisor state provides information on the state of the integrated safety connection and the mode of operation. There is only one safety supervisor object per motor module.

Parameter	Value	Description		
Service Code	0x0E	Get attribute single		
Class	0x39	Safety supervisor		
Instance	nce 1 Motor-module : associated with			
Attribute 0x0B Device stat		Device status		
Data Type	SINT	Short integer		

Table 40 - Safety Supervisor State: MSG


Table 41 - Safety Supervisor States

Value	Safety Supervisor State	Definition	Safety Mode
2	Configured (no safety connection)	No active connections	Integrated
4	Running	Normal running state	Integrated
7	Configuring	Transition state	Integrated
8	Not Configured	Awaiting safety controller ownership	Out-of-box
51	Not Configured (torque permitted)	Out-of-box state, safety not used	Out-of-box
52	Running (torque permitted)	STO bypass state	Integrated

Safe Monitor Network Communication

The safe monitor network executes motion and safety tasks by using the CIP[™] protocol.

Motion Connection

The motion connection communicates motor module axis motion and safety status to the motion task. The motion connection also receives motion commands from the motion task in the motion controller. Data is exchanged at a periodic rate over the connection. To configure the motor-module axis motion connection Axis Properties in the Studio 5000 application, see <u>Chapter 7 - iTRAK 5730 System Integrated Safety</u> on page <u>173</u> for detailed instructions.

Some of the axis tags are updated from the fault and safety status that is provided by the safety instance in the motor module. The safety instance sends this status to the motion core and then on to the motion controller. Axis tags show the updated status. See Figure 52 on page 193 for an illustration on how status is sent to the motion controller.

IMPORTANT Axis tags are for status only and are not used by the safety function.

Axis Tag Name (motion controller)	Motion Connection Attribute #	Data Type	Description	Safety Output Assembly Tag Name (safety controller)
Axis.AxisSafetyState	760	DINT	Motor module Safety Supervisor state. See the <u>Safety</u> <u>Supervisor State</u> on <u>192</u> for more details.	None
Axis.AxisSafetyStatus	761	DINT	Collection of bits indicating the status of the standard safety functions for the axis as reported by Motor Module Safety Instance.	See individual bits in <u>Table 43</u> on <u>194</u> .
Axis.AxisSafetyStatusRA	762	DINT	Collection of bits indicating the status of Rockwell Automation specific safety functions for the axis as reported by Motor Module Safety Instance.	See individual bits in <u>Table 43</u> on <u>194</u> .

Table 42 - Motion Connection Axis Tags

Table 42 - Motion Connection Axis Tags (Continued)

Axis Tag Name (motion controller)	Motion Connection Attribute #	Data Type	Description	Safety Output Assembly Tag Name (safety controller)
Axis.AxisSafetyFaults	763	DINT	Collection of bits indicating the Safety Fault status of the drive-module safety instances and integrated safety functions.	See individual bits in <u>Table 43</u> on <u>194</u> .
Axis.AxisSafetyFaultsRA	764	DINT	Collection of bits indicating the safety fault status of Rockwell Automation safety functions.	See individual bits in <u>Table 43</u> on <u>194</u> .
Axis.AxisSafetyAlarms	753	DINT	Reserved for future use.	_

<u>Table 43</u> provides motion-connection axis tag names that are updated to show safety instance status or controller-based safety function status.

The words *module*, *instance*, and *axis* (italic) in these tag names represent the module, instance, and axis name assigned in the Studio 5000 application.

Table 43 - Motion Connection Axis Tag Names

Axis Tag Name (motion controller)	Motion Connection Attribute Number	Data Type	Description	Safety Output Assembly Tag Name (safety controller)
Axis.AxisSafetyStatus	761	DINT	Collection of bits indicating the status of the standard safety functions for the axis as reported by Motor Module Safety Instance.	See individual bits below.
Axis.SafetyFaultStatus	[0]	BOOL	Any Safe Stop Fault occurring in the Safety Instance. 0 = Not Faulted 1 = Safety Fault	None
Axis.SafetyResetRequestStatus	[1]	BOOL	Indicates the state of the reset request output from the safety controller (in the safety output assembly) connected with the Motor-module Safety Instance. The value of Axis.SafetyResetRequestStatusis the reset input to the safety instance in the motor module. 0 = Reset Request OFF 1 = Reset Request ON	module:S0.ResetRequest[instance]
Axis.SafetyResetRequiredStatus	[2]	BOOL	Indicates that the drive-module safety instance that is associated with this Axis requires a reset of the safety function. 0 = Normal 1 = Reset Required	None
Axis.SafeTorqueOffActiveStatus	[3]	BOOL	Indicates that the state of the STO output from the safety controller, which is the STO input to the motor-module safety instance associated with this axis. 0 = STO Output Is active 1 = STO is not active, STO is not requested	module:S0.ST00uput[instance]
Axis.SafeTorqueDisabledStatus	[4]	BOOL	Indicates that the motor-module safety instance Torque Disabled Status. 0 = Axis power structure is not inhibited by the safety instance 1 = Axis power structure is inhibited	None
Axis.SS1ActiveStatus	[7]	BOOL	Indicates that the controller-based or the motor module- based SS1 function is active. 0 = SS1 Function is not Active 1 = SS1 Function is Active	module:S0.SSActive[instance]
Axis.SOSActiveStatus	[9]	BOOL	Indicates that the controller-based SOS function is active. 0 = SOS Function is not Active 1 = SOS Function is Active	module:S0.S0SActive[instance]
Axis.SOSStandstillStatus	[10]	BOOL	Indicates that the controller-based SOS function has detected standstill according to the function configuration. 0 = monitored axis is not at Standstill 1 = monitored axis is at standstill	module:S0.S0SLimit[instance]
Axis.SMTActiveStatus	[11]	BOOL	Always 0. This function is not available	None
Axis.SMTOvertemperatureStatus	[12]	BOOL	Always O. This function is not available.	None
Axis.SSMActiveStatus	[16]	BOOL	For use with a controller-based SSM function.	module:S0.SSMActive[instance]

Axis Tag Name (motion controller)	Motion Connection Attribute Number	Data Type	Description	Safety Output Assembly Tag Name (safety controller)	
Axis.SSMStatus	[17]	BOOL	For use with a controller-based SSM function.	module:S0.SSMStatus[instance]	
Axis.SLAActiveStatus	[20]	BOOL	Always 0. This function is not available.	None	
Axis.SLALimitStatus	[21]	BOOL	Always 0. This function is not available.	None	
Axis.SDIActiveStatus	[22]	BOOL	Indicates that the controller-based SDI function is active. 0 = SDI Function is not Active 1 = SDI Function is Active	module:S0.SDIActive[instance]	
Axis.SDILimitStatus	[23]	BOOL	Indicates that the controller-based SDI function detected motion greater than the limit in the unintended direction. 0 = Limit not reached 1 = Unintended motion	module:S0.SDILimit[instance]	
Axis.SafePositiveMotionStatus	[24]	BOOL	Always 0. This function is not available.	None	
Axis.SafeNegativeMotionStatus	[25]	BOOL	Always 0. This function is not available.	None	
Axis.SCAActiveStatus	[26]	BOOL	For use with a controller-based SCA function.	module:SO.SCAActive[instance]	
Axis.SCAStatus	[27]	BOOL	For use with a controller-based SCA function.	module:SO.SCAStatus[instance]	
Axis.SLPActiveStatus	[28]	BOOL	Indicates that the controller-based SLP function is active. 0 = SLP Function is not Active 1 = SLP Function is Active	module:SO.SLPActive[instance]	
Axis.SLPLimitStatus	[29]	BOOL	Indicates that the controller-based SLP function has detected the monitored axis position outside of the setpoint limits. 0 = axis position is within the limits 1 = axis position is outside of the limits	module:S0.SLPLimit[instance]	
Axis.SafetyOutputConnectionClosed Status	[30]	BOOL	Indicates the safety connection status from the controller to the motor module. 0 = connection open 1 = connection closed	None	
Axis.SafetyOutputConnectionIdleSta tus	[31]	BOOL	Indicates the safety connection status from the controller to the motor module. 0 = connection active 1 = connection idle	None	
Axis.AxisSafetyStatusRA	762	DINT	Collection of bits indicating the status of Rockwell Automation specific safety functions for the axis as reported by Motor-module Safety Instance.	See individual bits below.	
Axis.SafeBrakeIntegrityStatus	[0]	BOOL	Status of an external safety brake controlled by SBC instruction. The brake status, which can be either released or engaged, is undetermined. 0 = SBC fault 1 = No faults detected	module:SO.SBCIntegrity[instance]	
Axis.SafeFeedbackHomedStatus	[1]	BOOL	Status of the controller-based SFX position homing function.	module:S0.SFHome[instance]	
Axis.AxisSafetyFaults	763	DINT	Collection of bits indicating the Safety Fault status of the motor-module safety instances and integrated safety functions.	See individual bits below.	
Axis.SafetyCoreFault	[0]	BOOL	Indicates that an internal fault occurred within the motor-module safety instance. If there are dual-axis inverters, both safety instances fault. 0 = Normal Operation 1 = Fault	None (use explicit message)	
Axis.SafetyFeedbackFault	[2]	BOOL	Indicates that a fault occurred with the safety feedback or with the safety dual-channel feedback. 0 = Normal Operation 1 = Fault	None (use explicit message)	
Axis.SafeTorqueOffFault	[3]	BOOL	Indicates that a fault occurred within the STO function of the motor-module safety instance. 0 = Normal Operation 1 = Fault	None (use explicit message)	
Axis.SS1Fault	[4]	BOOL	Indicates that a fault occurred with the motor module- based or a controller-based SS1 function. 0 = Normal Operation 1 = Fault	module:S0.SSFault[instance]	

Axis Tag Name (motion controller)	Motion Connection Attribute Number	Data Type	Description	Safety Output Assembly Tag Name (safety controller)	
<i>Axis</i> .SSMFault	[16]	BOOL	Controller-based SSM fault. 0 = Normal Operation 1 = Fault	module:S0.SSMFault[instance]	
Axis.SLSFault	[17]	BOOL	Controller-based SLS fault. 0 = Normal Operation 1 = Fault	module:S0.SLSFault[instance]	
Axis.SLAFault	[18]	BOOL	Always O. This function is not available.	-	
Axis.SDIFault	[19]	BOOL	Controller-based SDI fault. 0 = Normal Operation 1 = Fault	module:S0.SDIFault[instance]	
Axis.SCAFault	[20]	BOOL	Controller-based SCA fault. 0 = Normal Operation 1 = Fault	module:S0.SCAFault[instance]	
Axis.SLPFault	[21]	BOOL	Controller-based SLP fault. 0 = Normal Operation 1 = Fault	module:S0.SLPFault[instance]	
Axis.AxisSafetyFaultsRA	764	DINT	Collection of bits indicating the safety fault status of Rockwell Automation safety functions.	See individual bits below.	
Axis.SFXFault	[1]	BOOL	Controller-based SFX fault. 0 = Normal Operation 1 = Fault	module:S0.SFXFault[instance]	

Table 43 - Motion Connection Axis Tag Names (Continued)

Safety Connection

The safety controller communicates with the safety instances in the motor module over the safety connection. Cyclic data are passed in each direction over the safety connection that appears in Safety Controller tag structures that are called input and output assemblies. The safety connection cyclic rate is configured in the Studio 5000 application. The Safety Input Assembly tag structure is data from the motor module safety instances to the safety controller. The Safety Output Assembly tag structure is data from the safety controller to the motor module safety instances. There is only one safety assembly per motor module, so a different assembly structure is used for single-axis and dual-axis inverters.

Table 44 - Safety Input Assembly Tags

Safety Input Assembly Tag Name (input to safety controller)	Type/[bit]	Description		
module:SI.ConnectionStatus	SINT	See individual bits in <u>Table 46</u> on <u>197</u> .		
module:SI.StopStatus[instance]	SINT	See individual bits in <u>Table 46</u> on <u>197</u> .		
module:SI.SafeStatus[instance]	SINT	See individual bits in <u>Table 46</u> on <u>197</u> .		
module:SI.FunctionSupport[instance]	SINT	See individual bits in <u>Table 46</u> on <u>197</u> .		

Table 45 - Safety Output Assembly Tags

Safety Output Assembly Tag Name (output to safety controller)	Type/[bit]	Description
<pre>module:S0.SafetyStopFunctions[instance]</pre>	SINT	See individual bits in <u>Table 47</u> on <u>198</u> .

Safety assembly tags are associated with a safety connection from a safety controller to a motor module. The data in these tags are communicated at the configured connection rate.

The words *module* and *instance* (italic) in these tag names represent the module name and instance name that are assigned in the Studio 5000 application.

Data from the motor module to the safety controller is in the safety input assembly. Data from the safety controller to the motor module is in the safety output assembly.

Safety Input Assembly Tag Name (input to safety controller)	Type/[bit]	Description
module:SI.ConnectionStatus	SINT	Collection of bits listed below.
module:SI.RunMode	[0]	Safety Connection 0= idle 1 = Run
module:SI.ConnectionFaulted	[1]	Safety Connection 0=normal 1= Faulted
module:SI.StopStatus[instance]	SINT	Collection of bits listed below.
module:SI.STOActive[instance]	[0]	Indicates STO function status. 0 = STO function not active 1 = STO function active
module:SI.SBCActive[instance]	[1]	Always O
module:SI.SS1Active[instance]	[2]	Indicates drive-based SS1 active status. 0 = SS1 function not active 1 = SS1 function active
module:SI.SS2Active[instance]	[3]	Always O
module:SI.SOSStandstill[instance]	[4]	Always O
module:SI.SafetyFault[instance]	[6]	1 = Safe Stop Fault present
module:SI.RestartRequired[instance]	[7]	1 = Reset is required
module:SI.SafeStatus[instance]	SINT	Collection of bits listed below.
module:SI.TorqueDisabled[instance]	[0]	0 = Torque Permitted 1 = Torque Disabled
module:SI.BrakeEngaged[instance]	[1]	Always O
module:SI.MotionStatus[instance]	SINT	Collection of bits listed below.
module:SI.MotionPositive[instance]	[0]	Always O
module:SI.MotionNegative[instance]	[1]	Always O
module:SI.FunctionSupport[instance]	SINT	Collection of bits listed below.
module:SI.PrimaryFeedbackValid[instance]	[0]	Always O
module:SI.SecondaryFeedbackValid[instance]	[1]	Collection of bits listed below.
module:SI.DiscrepancyCheckingActive[instance]	[2]	Always O
module:SI.SBCReady[instance]	[3]	Always O
module:SI.SS1Ready[instance]	[4]	0 = Drive-based SS1 function is not configured or faulted 1 = Drive-based SS1 function is configured and ready for operation
module:SI.SS2Ready[instance]	[5]	Always O
module:SI.SOSReady[instance]	[6]	Always O

Table 46 - Safety Input Assembly Tag Names

Table 47 - Safety Output Assembly Tag Names

Safety Output Assembly Tag Name (output to safety controller)	Type/ [bit]	Description
module:S0.SafetyStopFunctions[instance]	SINT	A collection of bits used to activate (request) safety functions as listed below.
module:S0.ST00utput[instance]	[0]	0 = Activate STO Function 1 = Permit Torque
module:S0.SBCOutput[instance]	[1]	Drive-based function not available, set to 0.
module:S0.SS1Request[instance]	[2]	0 = Remove SS1 Request 1 = Activate Drive-based SS1 Function
module:S0.SS2Request[instance]	[3]	Drive-based function not available, set to 0.
module:S0.S0SRequest[instance]	[4]	Drive-based function not available, set to 0.
module:S0.ResetRequest[instance]	[7]	0 -> 1 transition resets the drive-based Safe Stop function.

Troubleshoot the Safe Stop Function

Knowledgebase Answer ID <u>1092901</u> iTRAK 5730 System Fault Codes has the fault codes. Download the spreadsheet from this public article. You might be asked to log in to your Rockwell Automation web account, or create an account if you do not have one. You do not need a support contract to access the article.

Understand Integrated Safety Motor Module Replacement

GuardLogix controllers retain the I/O device configuration onboard and are able to download the configuration to the replacement device.

IMPORTANT If an iTRAK 5730 motor module was used previously, clear the existing configuration before installing it on a safety network by resetting the module to its out-of-box condition. See <u>Out-of-Box State Support</u> on <u>page 176</u> for instructions.

You must reconfigure a replacement motor module that is part of an integrated safety network due to the unique SNN assigned to each device.

The device number and SNN compose the safety device's DeviceID. Safety devices require this more complex identifier to make sure that duplicate device numbers do not compromise communication between the correct safety devices. The SNN is also used to provide integrity when the configuration is initially downloaded to the motor module.

When the Studio 5000 application is online, the Safety tab of the Module Properties dialog box displays the current configuration ownership. When the opened project owns the configuration, 'Local' is displayed.

Configuration Ownership: Local

'Communication error' is displayed if the module read fails. See <u>Replace an</u> <u>Integrated Safety Motor Module in a GuardLogix System</u> on <u>page 199</u> for integrated safety module replacement information.

Replace an Integrated Safety Motor Module in a GuardLogix System

When you replace an integrated safety motor module, you must configure the device properly and verify the operation of the replacement motor module.

ATTENTION: During module replacement or functional test, the safety of the system must not rely on any portion of the affected motor module.

Two options for safety motor module replacement are available on the Safety tab of the Controller Properties dialog box in the Studio 5000 application:

- Configure Only When No Safety Signature Exists
- Configure Always

Figure 53 - Safety Motor Module Replacement Options

General Ma	ajor Faults	Minor Faults	Date/Time	Advanced	SFC Exe	cution Project
Safety*	Nonve	platile Memory	Capacity	Sec	urity	Alarm Log
Safety Application:	Unlocked		S	afety Lock/Unloc	ж	
Safety Status:						
Safety Signature:				Generate	+	
ID: <none< td=""><td>></td><td></td><td></td><td>Сору</td><td></td><td></td></none<>	>			Сору		
Date: Time:				Delete	•	
Protect Sign	nature in Run	Mode				
When replacing Sa	afety I/O:					
Configure C	only When No	Safety Signature Ex	ists			
Configure A	lways					

Configure Only When No Safety Signature Exists

This setting instructs the GuardLogix controller to automatically configure a safety motor module only when the safety task does not have a safety task signature, and the replacement module is in an out-of-box condition, meaning that an SSN does not exist in the safety module.

If the safety task has a safety task signature, the GuardLogix controller automatically configures the replacement CIP Safety[™] I/O device only if the following is true:

- The device already has the correct SSN.
- The device electronic keying is correct.
- The node or IP address is correct.

For detailed information, see the 'Replace a Safety I/O Device' procedure in the user manual for the controller:

- ControlLogix 5580 and GuardLogix 5580 Controllers User Manual, publication <u>1756-UM543</u>
- CompactLogix 5380 and Compact GuardLogix 5380 User Manual, publication <u>5069-UM001</u>

Configure Always

When the Configure Always feature is enabled, the controller automatically checks for and connects to a replacement motor module that meets all of the following requirements:

- The controller has configuration data for a compatible motor module at that network address
- The motor module has an SNN that matches the configuration

ATTENTION: Enable the Configure Always feature only if the entire integrated safety control system is not being relied on to maintain SIL 3 behavior during the replacement and functional testing of an iTRAK 5730 system. If other parts of the integrated safety control system are being relied upon to maintain SIL 3, make sure that the controller's Configure Always feature is disabled. It is your responsibility to implement a process to make sure that proper safety functionality is maintained during device replacement.

ATTENTION: Do not place any devices in the out-of-box condition on any integrated safety network when the Configure Always feature is enabled, except while following the device replacement procedure in the appropriate user manual for your Logix 5000° controller:

- ControlLogix 5580 and GuardLogix 5580 Controllers User Manual, publication <u>1756–</u> <u>UM543</u>
- CompactLogix 5380 and Compact GuardLogix 5380 User Manual, publication <u>5069-</u> <u>UM001</u>

Update the iTRAK 5730 System Firmware

This appendix provides procedures to update your iTRAK 5730[®] system firmware.

Торіс	Page
Before You Begin	201
Update Your Firmware	203
Verify the Firmware Update	213

You can upgrade your iTRAK 5730 system firmware by using ControlFLASH Plus[™] or ControlFLASH[™] software. To upgrade the firmware, you must configure your communication software (such as RSLinx[®] software), select the motor module to upgrade, and complete the firmware upgrading procedure.

We recommend that you use ControlFLASH Plus software for firmware updates. See the ControlFLASH Plus Quick Start Guide, publication <u>CFP-0S001</u>, for more information.

Before You Begin

For firmware updates, you must use the software versions shown in <u>Table 48</u>.

Table 48 - iTRAK 5730 System Requirements

Description	Version
ControlFLASH software kit ⁽¹⁾	15.03.00 or later
ControlFLASH Plus software kit ⁽¹⁾	3.01 or later
FactoryTalk® Linx software ⁽²⁾	6.00.00 or later
RSLinx software ⁽³⁾	4.20.00 or later
Studio 5000 Logix Designer $^{\odot}$ application $^{(4)}$	33.00.00 or later

 Download the ControlFLASH kit from the Product Compatibility and Download Center at: <u>rok.auto/pcdc</u>. For more ControlFLASH information (not iTRAK 5730 specific), refer to the ControlFLASH User Manual, publication <u>1756-UM105</u>.

(2) Only required when using ControlFLASH Plus software.

(3) Only required when using ControlFLASH software.

(4) Also called the Studio 5000° application.

Gather the following information before you begin your firmware update.

- Network path to the targeted iTRAK 5730 modules you want to update.
- Catalog numbers of the targeted iTRAK 5730 modules you want to update.

IMPORTANTAll connector modules must be connected and secured to the motor modules.
Control power must be connected to the power and control input connector
module and power input with a control pass-through connector module (if
used), before updating the firmware.IMPORTANTFor the iTRAK 5730 system, the following status indicators must be flashing
green:

- Motor modules network (NET) and module (MOD)
- Connector modules status (STS), speed (SPD), and DC status (DC STS)

ATTENTION: To avoid personal injury or damage to equipment during the firmware update due to unpredictable motor activity, do not apply three-phase AC or common-bus DC input power to the iTRAK system.

Inhibit the Module

You must inhibit the iTRAK 5730 module before performing the firmware update. Follow these steps to inhibit a module.

- 1. Open your Studio 5000 application.
- 2. Right-click the iTRAK 5730 module you configured and choose Properties.

🖧 mov1	^				
Sec1					
≡ Ungroup	ed Axes				
👂 📕 Alarm Mana	ager				
Assets					
h. Logical Mo	del				
🔺 🚄 I/O Configu	ration				
🔺 📟 1756 Bao	kplane, 1756-A4				
📴 [0] 17	56-L85E iTRAK				
🔺 🖞 [1] 17	56-EN3TR en3tr				
▲ 윪 Eth	ernet				
1	2198T-W25K-ER IPS				
1	2198-P031 dfe				
0	iTRAK 5730 ISF1				
9	1756-EN3TR en3tr	~			
Associated Axes					
Sec1					
💪 mov1					
Description					
Power Structure	iTRAK 5730				
Status	Offline				
Module Fault					
<		>			

The Module Properties dialog box appears.

3. Select the Connection page.

		General Connection*	Connection						
		Time Sync Module Info Internet Protocol Port Configuration		Name		Requested Packet Interval (RPI) (ms)	Connection over EtherNet/IP		
		Motion	B MotionSync2			2.0 🚖 Set by Motion Gro	Unicast 🗸		
		 Associated Axes Power Diagnostics Cyclic Read/Write Track Configuration 							
			✓ Inhibit Module ☐ Major Fault On Co	ntroller If Connection Fai	is While in Run Mode				
			Module Fault						
		•	Check Inhil Click OK.	oit Module.					
		2	Save your file and download the program to the controller.						
			Verify that the network (NET) and module (MOD) status indicators on						
		7.	the motor r	nodules are	flashing	green.	(OD) stat	us marcate	513 011
Update Your	Firmware	•	To upgrade <u>ControlFLA</u> To upgrade	your firmv <u>SH Plus to</u> your firmv	vare by us <u>Update Y</u> vare by us	olFLASH to u ing ControlFl our iTRAK 573 ing ControlFl TRAK 5730 Sy	LASH Plu <u>30 Syster</u> LASH, se	ıs, see <u>Use</u> n Firmware e <u>Use</u>	<u>e</u> .
		Use Co	ontrolFLAS	H Plus to L	Jpdate Y	our iTRAK 57	730 Syst	tem Firmw	vare
		Follow	these steps	to select the	e iTRAK 5	730 system m	odule to	upgrade.	
			Start Contr			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10	
		1.	You you	i can choose to	select and i	upgrade the firmw , only one module			
		2.	On the Flas 'Browsing f	h Devices p rom path,' (age, if the complete	e device is not these steps:	already	present in	
			a. click 🖁	ī -					
Γ	A ControlFLASH Plus™							- 0	×
	Flash Devices Manage Firmwa	are Manage Favorites	_				() <u>Refresh Firn</u>	nware 🌣 <u>Settings</u>	? <u>Help</u>
	Browsing from path: V33-B51-VI	M!AB_ETH-2\192.168.1.30 ((Levels 2) 🏪				1 device	Filter by device	V
	Device		Address	In Device	Flash To Lates	st on Computer	•		

192.168.1.30

12.002

•

12.002

🕽 iTRAK 5730, iTRAK_5730

b. In the Network Browser dialog box, locate and select the device to upgrade.

🕈 ControlFLASH Plus™				×
Flash Devices Manage Firmw	Network Browser	×	e O Settings	? <u>Help</u>
Browsing from path: V33-B51-V	⊘*₩ ‡ @ @ ? ↓	Q▼ Search ▼	er by device	7
Device	♠ V33-B51-VM			
🗌 🕽 iTRAK 5730, iTRAK_5	 ▲ FactoryTalk Linx - Desktop, V33-B51-VM ▶ ■ Backplane ▲ EtherNet, AB_TH-2 ▶ ■ 192.168.1.2, FactoryTalk Linx - Desktop, V33-B51-VM ▶ ■ 192.168.1.13, 1756-L81ES, iTrak_StraightMotionSafety ▶ ■ 192.168.1.13, 1756-EN3TR, 1756-EN3TR/A ■ 192.168.1.18, 2198-P031, 2198-P031 ■ 192.168.1.2, 2198-D036, ERS4, 2198-D006-ERS4 			
	192.168.1.30, iTRAK 5730, iTRAK_5730	å C 🏓 🖕		
	▷ 🍰 EtherNet, Ethernet ▷ ᡩ USB			
	Browsing network	Zoom: 100%		
	Populate the device list by selecting a single device, a chassis, or a network. Choose number of levels to browse 2 v			
 Download Center available. Sion in 		OK Cancel	ate Favorite List	Next

c. Click OK.

3. On the Flash Devices tab, verify that the checkbox to the left of the device is checked.

🕈 ControlFLA	SH Plus™		
Flash Devices	Manage Firmware	Manage Favorites	
Browsing from	path: V33-B51-VM!AB	2_ETH-2\192.168.1.30	(Levels: 2) 🚼
Device			
🛛 🕽 itra	K 5730, iTRAK_5730		

- 4. Choose the firmware version you want to use for the update using one of the following methods:
 - If you have already downloaded the firmware, then next to Flash To, choose Latest on Computer and select the version you want.
 - Next to Flash To, choose Latest from Download Center and select the version you want.

📌 ControlFLASH Plus™					- 0	×
Flash Devices Manage Firmware Manage Favorites				() <u>Refresh Firmware</u>	e 🗘 <u>Settings</u>	? <u>Help</u>
Browsing from path: V33-B51-VM!AB_ETH-2\192.168.1.30 (Levels: 2)	0 10			1 selected, 1 device Filte	er by device	Y
Device	Address	In Device	Flash To Latest on Computer	\rightarrow		
itrak 5730, itrak_5730	192.168.1.30	12.002	12.002 -			
			12.002			
				Creat	te Favorite List	Next
😑 Download Center available. <u>Sign in</u>						

- 5. Click Next.
- 6. If a warning dialog box appears, read the warning, compete any recommendations, and click Close.

ControlFLASH Plus™					- []
lash Devices Manage Firmware Manage Favorites				() <u>Refresh Firr</u>	<u>mware</u> 🌣 <u>Settings</u>	? <u>н</u>
Danger: The selected modules are about to be updated w controlled by these modules is in a stopped state and that						ent
Device	Address	In Device	Flash To	Status		
itrak 5730, itrak_5730	192.168.1.30	12.002	12.002	A Before flashing drive ensure all mo		
			warnings in the sta g the flash operatio	n.		
					rning Flash	Can

7. After acknowledging all warnings and confirming the desired revisions, click Flash.

	H Plus™						— C) ×
ash Devices	Manage Firmware	Manage Favorites				() <u>Refresh Fir</u>	rmware 🗘 <u>Settings</u>	? <u>He</u>
Danger: The controlled b	selected modules ar y these modules is in	e about to be updated with n a stopped state and that all	ew firmware. During t safety critical function:	he update, the mo s are not affected.	dules will be unable Also, please make s	e to perform their normal control functions. Ma sure that communications bandwidth is availabl	ike sure that all equipm le.	ent
Device			Address	In Device	Flash To	Status		
🗾 🔋 itrak	5730, iTRAK_5730		192.168.1.30	12.002	12.002	A Before flashing drive ensure all mo		

A progress bar appears to show the status of the firmware update.

sh Devices Manage Firmware Manage	Favorites				() <u>Refresh Firmw</u>	are 🗘 Settir	igs ?	<u>He</u>
Flashing 1 device								
- Device	Address	In Device	Flash To	Status				
ITRAK 5730, ITRAK_5730	192.168.1.30	12.002	12.002	Transmitting update 2 of	2, block 126			

After the upgrade information is sent to the iTRAK, the iTRAK resets. During the reset, the module (MOD) and network (NET) status indicators on the motor modules change color from flashing green to steady red, or alternately flashing red. After the download, the device will apply the new firmware and restart, which may take several minutes.

```
IMPORTANT Do not cycle power to the iTRAK during this process. A power cycle results in an unsuccessful firmware update and an inoperable module.
```

After the device reboots, ControlFlash Plus will indicate success or failure of the update.

ControlFLASH Plus [™]					- 🗆 ×
Flash Devices Manage Firmware Manage Favorites				() <u>Refresh Fir</u>	mware 🗘 Settings ? Help
Flashing complete: 1 succeeded					Show: All
Device	Address	In Device	Flash To	Status	
🔲 🔋 iTRAK 5730, iTRAK_5730	192.168.1.30	12.002	12.002	V Flash finished	
Show Reports Download Center available, Sign in	1 flash atter 1 Succeeded		ults Close		Done

- 8. When the upgrade has completed, click Close.
- 9. To complete the process and close the application, click Done.

IMPORTANT You must clear the Inhibit Module checkbox on the Connection page in the iTRAK 5730 Module Properties dialog box before resuming normal operation.

Use ControlFLASH to Update Your iTRAK 5730 System Firmware

Follow these steps to select the iTRAK 5730 system module to upgrade.

When static IP addresses are assigned, it is recommended that you upgrade the firmware for the last module in the system. The last module is determined by the highest value of the last octet of the IP addresses. When the last module has been upgraded, continue to upgrade modules in descending IP address order.

Configure Your Communication Path with RSLinx

This procedure assumes that your communication method to the target device is the Ethernet network. It also assumes that any Ethernet communication module or Logix 5000[®] controller in the communication path has already been configured.

For more controller information, see <u>Additional Resources on page 233</u>.

Follow these steps to configure the communications path to the target device.

- 1. Open your RSLinx Classic software.
- 2. From the Communications menu, choose Configure Drivers.

The Configure Drivers dialog box appears.

onfigure Drivers		?
Available Driver Types:		Close
Ethernet devices	Add New	Help
Configured Drivers:		
Name and Description	Status	[]
		Configure
		Startup
		Start
		Stop
		Delete

- 3. From the Available Driver Types pull-down menu, choose Ethernet devices.
- 4. Click Add New.

The Add New RSLinx Classic Driver dialog box appears.

5. Type the new driver name.

Choose a name for the new driver. (15 characters maximum)	OK
AB ETH-1	Cancel

6. Click OK.

The Configure driver dialog box appears.

figure d	river: AB_ETH-1	
ition Mapp	- 1	
Station	Host Name	Add Nev
Station 0	10.91.36.82	Add Nev

- 7. Type the IP address of your Ethernet Module or Controller that bridges between the Ethernet network and the EtherNet/IP network.
- 8. Click OK.

The new Ethernet driver appears under Configured Drivers.

figure Drivers		?
Available Driver Types:		Close
Ethernet devices	▼ Add New	
r		Help
Configured Drivers:		
-		-
Name and Description	Status	
AB_ETH-1 A-B Ethernet RUNNING	Running	Configure
LocalSubnet A-B Ethernet RUNNING	Running	
		Startup
		Start
		Start
		Start

- 9. Click Close.
- 10. Minimize the RSLinx application dialog box.

Start the ControlFLASH Software

Follow these steps to start ControlFLASH and begin your firmware update.

1. In the Studio 5000 application, from the Tools menu, choose ControlFLASH.

You can also open the ControlFLASH software by choosing Start > Programs > FLASH Programming Tools > ControlFLASH.

The Welcome to ControlFLASH dialog box appears.

Control 1	Welcome to ControlFLASH, t tool. ControlFLASH needs th information from you before it updating a device.	e following
Control	 The Catalog Number of the 2.The Network Configuration (optional). The Network Path to the tar 4.The Firmware Revision for 	parameters get device.
	View Log View Inventory]
	Change RSLinx Edition	In use: RSLinx Classic

2. Click Next.

The Catalog Number dialog box appears.

Catalog Number	
Control FLASH	Enter the catalog number of the target device: iTRAK_5730 2198T-L20-T03 ITRAK_5730 iTRAK_5750C
	Browse Browse Cancel Help

- If your catalog number does not appear, click Browse, select the monitored folder where the firmware kit (DMK files) is located. Click Add and OK.
- 3. Select your iTRAK module.

In this example, the iTRAK 5730 is selected.

4. Click Next.

The Select Device to Update dialog box appears.

Select the device to update and click OK	×
Autobrowse Refresh	192.168.1.20 found
Construction, V33-B45-VM Construction, V33-B45-VA5-VA5-VA5-VA5-VA5-VA5-VA5-VA5-VA5-VA	192.168.1.100 192.168.1.12 1756-EN3T 192.168.1.20 192.168.1.20 192.168.1.21 17RAK_5730 192.168.1.22 192.168.1.25
< >>	192.108.1.22 192.108.1.23 17RAK_5730 192.168.1.26 192.168.1.4 KNX_TrakSF 2198T-W25
	OK Cancel

- 5. Expand your Ethernet node, Logix backplane, and EtherNet/IP network module.
- 6. Select the iTRAK 5730 system to upgrade.
- 7. Click OK.

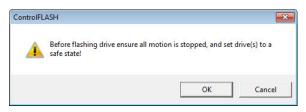
The	e Firmware	Revision	dialog	box appears.
-----	------------	----------	--------	--------------

Firmware Revision	Catalog Number: iTRAK_5730 Serial Number: 00000000 Current Revision: 12.002 Select the new revision for this update:	
FLASH	Revision F A 12.002 Image: state stat	
	Show all revisions Show all revisions < Back	lelp

- 8. Select the firmware revision to upgrade.
- 9. Click Next.

The Summary dialog box appears.

Summary	DANGER: The target module is about to be updated with new firmware. During the update the module will be unable to perform its normal control function. Please make sure that all processes affected by this equipment have been suspended and that all safety critical functions are not affected. To abort this firmware update, press Cancel now. To begin the update now, press Finish. Catalog Number: iTRAK_5730
	Serial Number: 0000000 Current Revision: 12.002 New Revision: 12.002
	More Info
	<back cancel="" finish="" help<="" td=""></back>


- 10. Confirm the device catalog number and firmware revision.
- 11. Click Finish.

	with new fire	The target module mware. During the u perform its normal co	pdate the mod	ule will be Please
Control	Are y	you sure you want ating the target de	-	quipment al functions w. To
	More In	Yes	No	

This ControlFLASH warning dialog box appears.

12. To complete the update now, click Yes.

This ControlFLASH warning dialog box appears.

13. Acknowledge the warning and click OK.

The Progress dialog box appears and updating begins.

Catalog Number: Serial Number:	iTRAK_5730 00000000
Current Revision:	12.002
New Revision:	12.002
Transmitting updat	e 2 of 2, block 3374 of 15178

After the upgrade information is
sent to the iTRAK, the iTRAK
resets. During the reset, the
module (MOD) and network
(NET) status indicators on the
motor modules change color
from flashing green to steady
red, or alternately flashing red.

Catalog Number: Serial Number:	ITRAK_5730 00000000
Current Revision:	12.002
New Revision:	12.002
Polling for power-u	p Time left until abort: 395 seconds.

14. Wait for the Progress dialog box to time out.

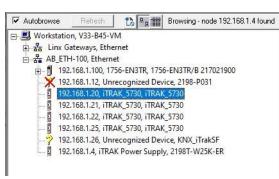
It is normal for this process to take several minutes.

IMPORTANT Do not cycle power to the iTRAK during this process. A power cycle results in an unsuccessful firmware update and an inoperable module.

- 15. Verify that the module (MOD) and network (NET) status indicators on the motor modules are flashing green.
- 16. Verify that the Update Status dialog box appears and indicates success or failure as described in the following table and image.

Upgrading Status		
Success Update complete appears in a green Status dialog box, then go to <u>step 17</u> .		
Failure	Update failure appears in a red Status dialog box, then refer to the ControlFLASH User Manual, publication <u>1756-UM105</u> for troubleshooting information.	

Update	Status		
Catalog) Number:	iTRAK_5730	ОК
Serial N	Jumber:	00000000	
Current	Revision:	12.002	Help
New Re	evision:	12.002	
Status:	firmware	complete. Please verify this new update before using the target its intended application.	<u>View Log</u>


17. Click OK.

IMPORTANT You must clear the Inhibit Module checkbox on the Connection page in the iTRAK 5730 Module Properties dialog box before resuming normal operation.

Verify the Firmware Update Follow these steps to verify that your firmware update was successful.

Verifying the firmware update is optional.

- 1. Open your RSLinx software.
- 2. From the Communications menu, choose RSWho.

- 3. Expand your Ethernet node, Logix backplane, and EtherNet/IP network module.
- 4. Right-click the iTRAK 5730 module and choose Device Properties.

AB_ETH-100\192.10	58.1.20	?	×
Device Name:	iTRAK_5730		_
Vendor:	Rockwell Automation - Aller	n-Bradley	_
Product Type:	169		_
Product Code:	1		_
Revision:	12.002		_
Serial Number:			_
EDS File Name	: 000100A900010CXX.EI	DS	_
Faults:			
	<u>Close</u> <u>H</u> elp		

- 5. Verify the new firmware revision level.
- 6. Click Close.

High-speed Data Logging Service

This appendix provides instructions for how to use the high-speed data logging service of the iTRAK[®] 5730 system.

Торіс	Page
Configure and Use the Message Instruction	215
iTRAK System Data Logging Parameters	223

The high-speed data logging service, when used with the iTRAK 5730 system, allows you to log up to 40,000 data points for one to four channels. The sample period of the data logging service can be as low as the Servo Update Rate of the iTRAK module (250 μ S). This service can be accessed through message instructions.

For more information regarding the use of the data logging service, sample code, and Add-On instructions, see Knowledgebase Answer ID <u>QA34226</u>.

Follow these steps to configure and use the high-speed data logging service with a message instruction.

- 1. In your Studio 5000 Logix Designer® project, open the routine where you want to implement data logging.
- 2. Create a Message instruction.
- 3. Right click the Message instruction and select New Tag...

The New Parameter or Tag dialog box appears.

New Parameter or Tag X				
Name:	MSG_1		Create 🗸 🔻	
Description:		^	Cancel	
			Help	
		~		
Usage:	Local Tag	~		
Type:	Base V Connec	ction		
Alias For:		~		
Data Type:	MESSAGE			
Parameter Connection:		~		
Scope:	🔓 MainProgram	~		
External Access:	Read/Write	~		
Style:		\sim		
Constant				
Sequencing				
Open MESSAGE Configuration				
Open Parameter Connections				

Configure and Use the Message Instruction

- 4. Type the tag name.
- 5. Click Create.
- 6. Open the Configuration dialog box by clicking the ellipsis (...) next to the tag name.

The Message Configuration dialog box appears.

Message Configuration - MSG_1	×
Configuration Communication Tag	
Message Type: CIP Generic	~
Service Type: Custom ✓ Service 3a (Hex) Class: 42 (Hex) Instance: 2 Attribute: 0 (Hex)	Source Element: DataLog_Req_DINT[I \rightarrow Source Length: 40 (Bytes) Destination Element: New Tag
Enable	Done Done Length: 0
O Error Code: Extended Error Code: Error Path: Straight_1 Error Text:	🗌 Timed Out 🗢
ОК	Cancel Apply Help

- 7. On the Configuration tab, set these configuration parameters:
 - Message Type: CIP Generic
 - Service Type: Custom
 - Service Code: 3A_{HEX}
 - Instance: Axis Instance that you want log data from
 - Class: 42_{HEX}
 - Attribute: 0
 - Source Element: a tag of data type DINT[10]
 - Source Length: 40 bytes (each DINT consists of 4 bytes)

Axis Instance 1 is the section axis, and axis instances 2...5 are mover axes 1...4.

The DINT[10] array in the message configuration can be set as follows:
 a. Create a User-Defined Data Type (UDT) to enter the data logging configuration.

Name:	Data_logging	g_Request			Data Type Siz	e: 40 bytes
Description:						
Members:						
🖌 Nam	ne	Data Type	Description			
Trige	gerType	SINT				
Trig	gerMode	SINT				
Trig	gerSource	INT				
Trig	gerBit	SINT				
Pres	toreSamples	SINT				
Nun	nberOfSamples	INT				
Trig	gerLevel	REAL				
PAD		REAL				
Sam	plePeriod	LINT				
Data	Source	INT[8]				
* 4	Add Member					
						~
			OK	Cancel	Apply	Help

The data structure of a data logging request is shown in this table:

Parameter	Туре	Description	Value
Trigger type	USINT	Specifies the type of trigger operation that is performed on the designated attribute. When Signal is selected, the data logger triggers based on the value of the specified attribute relative to the Trigger Level. Attribute can be of integer or floating-point data type. When Boolean is selected, the data logger triggers based on a Boolean state of the attribute or attribute bit.	Enumeration: 0 = Signal 1 = Boolean 2255 = reserved
Trigger Mode	USINT	Enumerated mode of operation for the triggering algorithm: • A positive (+) Edge Trigger looks for an attribute value transition relative to the Trigger Level. • A Level Trigger simply monitors the current attribute value relative to the Trigger Level.	Enumeration: 0 = Immediate 1 = "+" Edge Trigger 2 = "-" Edge Trigger 3 = ">=" Level Trigger 4 = "<=" Level Trigger 5255 = reserved
Trigger Source	UINT	ID of the attribute whose value is used to trigger data logging.	-
Trigger Bit	USINT	The attribute bit number whose value is evaluated to trigger data logging. This parameter is only applicable to Boolean trigger types. A value of 0 applies to the least significant bit of the attribute.	-
Pre-store Samples	USINT	The percentage of the data log buffer dedicated to pre-store samples before the trigger event. The remaining buffer is filled with samples after the trigger event. The pre-store range that is allowed is from 0 100%. Trigger events are detected until the data buffer is sufficiently full.	_
Capture Size	UINT	Specifies the number of samples to store in the data log arrays. Capture Size applies to each Data Log array. Capture Size is limited to the size of the data log array. This value is applied to the attribute, Data Capture Size.	_
Trigger Level	LREAL	The value of the trigger source that causes a trigger event. The units for this value are determined by the selected Trigger source. If a Boolean trigger type is selected, the Trigger Level is set to either 0 or 1.	Attribute-dependent units
Sample Period	LINT	Time period between samples stored in the data buffer. This value shall be an integer multiple of the minimum sample period of the device. For example, if the device can acquire data at 250 µS, the choices shall be 250 µS, 500 µS, 750 µS, and so on.	Nanoseconds
Data Source 1	UINT	ID of attribute to store in associated data log.	-
Data Source 2	UINT	ID of attribute to store in associated data log.	-
Data Source 3	UINT	ID of attribute to store in associated data log.	-
Data Source 4	UINT	ID of attribute to store in associated data log.	-

Parameter	Туре	Description	Value
Data Source 5	UINT	ID of attribute to store in associated data log.	
Data Source 6	UINT	ID of attribute to store in associated data log.	Not supported. iTRAK currently
Data Source 7	UINT	ID of attribute to store in associated data log.	supports 4 channels.
Data Source 8	UINT	ID of attribute to store in associated data log.	

b. Copy this UDT to the DINT[10] with a COP instruction before using it in the Message instruction.

c. Convert the Trigger Level from Real to LREAL and copy the value into the DINT[10] array.

The trigger level is an LREAL in the iTRAK module. However, LREAL is not a data type supported in the Studio 5000 Logix Designer application. Thus, you must convert the trigger level that is entered in the UDT as a REAL data type to a DINT data type in a format equivalent to an LREAL data type. This conversion must be performed before arming the data logging function using a COP instruction and three BTD instructions:

Convert_TriggerLevel_to_DINT			COP Source ReqBuffer1.TriggerLevel Dest TriggerLevel_DINT Length 1
Convert_TriggerLevel_to_DINT	BTD	BTD	BTD
	Source TriggerLevel_DINT		Source TriggerLevel_DINT
	0 Source Bit 27		0 +
			Source Bit 0
	Dest DataLog_Req_DINT[3]		Dest DataLog_Req_DINT[2]
	0	♠ 0 ♠	0 🖛
	Dest Bit 27	Dest Bit 0	Dest Bit 29
	Length 5	Length 27	Length 3

9. On the Communication tab, set the path to the module you want to log data from using the Message Path Browser.

onfiguration	Communicat	ion Tag					
Path:	Straight_1					Browse	
	Straight_1						
O Broado	cast:	\sim					
Communic	ation Method						
CIP	ODH+ Cł	annel:	'A'	Destination	n Link:	0 🗘	
CIP W		ource Link:	0	Destination	n Node:	0 ‡	(Octal)
Conne	ected		Cache C	onnections ┥	•	Large Conr	nection
Conne	ected		Cache C	onnections •	•	Large Conr	nection
Conne Enable	⊙ Enable Wa	iting	Cache C	Onnections •	Done La	Large Conr	nection

10. Click OK.

Data Logging Status (Attribute ID = 940) identifies the status of the data collection process. This attribute can be set to one of the following values:

- 0 = Inactive
- 1 = Buffering
- 2 = Buffered and Armed
- 3 = Triggered and Collecting
- 4 = Collected
- 11. Use these configuration parameters in the message instruction to read Data Logging Status from the iTRAK module:
 - Message Type: CIP Generic
 - Service Type: Get Attribute Single
 - Service Code: E_{HEX}
 - Instance: Axis Instance that you want log data from
 - Class: 42_{HEX}
 - Attribute: 3AC_{HEX}
 - Destination Element: a tag of data type DINT

onfigurati	on Com	nunication Ta	ig			
Message	Type:	CIP Gene	ric	~		
Service Type: Service Code: Instance	e	ibute Single (Hex) Class: Attribute:	 42 (Hex) 3ac (Hex) 	Source Element: Source Length: Destination Element:	0 ¢ Data_Log_Sta	(Bytes)
) Enable	OEna	ble Waiting	⊖ Start	⊖ Done	Done Length: 0	
		ble Waiting	⊖ Start	◯ Done	Done Length: 0	
) Enable) Error Co ror Path: ror Text:		Extend	⊖ Start ed Error Code:	O Done	Done Length: 0 Timed Out 🕈	

Data Trigger Time Stamp (Attribute ID = 941) identifies the time stamp that is associated with the data logging trigger event in nanoseconds.

- 12. Use these configuration parameters in the message instruction to read Data Trigger Time Stamp from the iTRAK module:
 - Message Type: CIP Generic
 - Service Type: Get Attribute Single
 - Service Code: E_{HEX}
 - Instance: Axis Instance that you want log data from
 - Class: 42_{HEX}
 - Attribute: 3ADH_{HEX}
 - Destination Element: a tag of data type LINT

Configurati	on Comm						
Message	Type:	CIP Gene	ic		~		
Service Type: Service Code: Instance	e (ute Single Hex) <u>C</u> lass: Attri <u>b</u> ute:		Source E Source L Hex) Destinati Element:	ength: 0 on Da	÷ ata_Trigger Ne <u>w</u> Tag…	∨ (Bytes) _Time_£ ↓

Data Trigger Index (Attribute ID = 942) identifies the index of the data point associated with the data logging trigger event. The trigger index is from 0...39999. For example, if the Pre-store Sample is 10% and the Capture Size is 32000, the Trigger Index would be 3199.

- 13. Use these configuration parameters in the message instruction to read Data Trigger Index from the iTRAK module:
 - Message Type: CIP Generic
 - Service Type: Get Attribute Single
 - Service Code: E_{HEX}
 - Instance: Axis Instance that you want log data from
 - Class: 42_{HEX}
 - Attribute: 3AE_{HEX}
 - Destination Element: a tag of data type DINT

Message Co	nfiguration - MSG_2			×
Configuration Message <u>I</u> Service Type:	n* Communication Tag Type: CIP Generic Get Attribute Single e (Hex) <u>Class</u> :		Source Element: Source Length: Destination Element:	v 0
C Enable Error Code Error Path: S Error Text:		⊖ Start Error Code: OK	ODone C Cancel	Oone Length: 0] Timed Out ←

The sampled real-time data are stored in general-purpose array attributes. The iTRAK 5730 system currently supports only four data channels and the log data from each channel is stored in these attributes:

- Data Log 1 (Attribute ID = 943)
- Data Log 2 (Attribute ID = 944)
- Data Log 3 (Attribute ID = 945)
- Data Log 4 (Attribute ID = 946)

- 14. Use these configuration parameters in the message instruction to read Log Data from the iTRAK module:
 - Message Type: CIP Generic
 - Service Type: Get Attribute Single
 - Service Code: E_{HEX}
 - Instance: Axis Instance that you want log data from
 - Class: 42_{HEX}
 - Attribute: Attribute ID of the data log channel you want log data from in Hex.
 - Data Log 1 = 3AFHEX
 - Data Log 2 = 3BoHEX
 - Data Log 3 = 3B1HEX
 - Data Log 4 = 3B2HEX
 - Destination Element: a tag of data type REAL[40000]

Message Co	onfiguration - MSG_2				×
Configuratio	on Communication Tag				
Message	Type: CIP Generic	;	~]	
Service Type:	Get Attribute Single	~	Source Element: Source Length:	0	∨ (Bytes)
Ser <u>v</u> ice Code: Instance:	e (Hex) <u>C</u> lass: 2 Attri <u>b</u> ute:	42 (Hex) 3af (Hex)	Destination Element:	Data_Log Ne <u>w</u> Tag	~
<u>^</u>	0.5.11.11.1	0.0.1	~~		
O Enable	O Enable Waiting	⊖ Start	O Done	Done Length: 0	
) Error Cod Error Path: \$ Error Text:	Second	Error Code:		🗌 Timed Out 🕈	

15. Click OK.

iTRAK System Data Logging Parameters

The attributes that are listed in the following table can be used as Data Source and Trigger Source parameters.

Table 49 - Data Logging Parameters

Attribute ID	Attribute Name	Read or Write	Mover Axis	Section Axis
483	Acceleration Feedback	R	Y	N
452	Acceleration Feedforward Command	R	Y	N
460/216	Acceleration Feedforward Gain	W	Y	N
367	Acceleration Fine Command	R	Y	N
482	Acceleration Reference	R	Y	N
844	Adaptive Tuning Gain Scaling Factor	R	Y	N
522	Current Limit Source	R	N	Y
620/266	DC Bus Voltage	R	N	Y
636	Inverter Capacity	R	N	Y
801	Load Observer Acceleration Estimate	R	Y	N
806	Load Observer Bandwidth	W	Y	N
807	Load Observer Integrator Bandwidth	W	Y	N
802	Load Observer Torque Estimate	R	Y	N
635/259	Motor Capacity	R	N	Y
521	Operative Current Limit	R	N	Y
603	Output Power	R	Y	N
436/131	Position Error	R	Y	N
1402	Position Feedback1	R	Y	N
365	Position Fine Command	R	Y	N
442	Position Integrator Bandwidth	W	Y	N
437	Position Integrator Output	R	Y	N
443	Position Lock Tolerance	W	Y	N
441	Position Loop Bandwidth	W	Y	N
438	Position Loop Output	R	Y	N
432	Position Reference	R	Y	N
431	Position Trim	W	Y	N
496	System Inertia	W	Y	N
495	Torque Estimate	R	Y	N
504/332	Torque Limit Negative	W	Y	N
505/333	Torque Limit Positive	W	Y	N
502	Torque Low Pass Filter Bandwidth	W	Y	N
843	Torque Low Pass Filter Bandwidth Estimate	R	Y	N
792	Torque Notch Filter 2 Frequency Estimate	R	Y	N
793	Torque Notch Filter 2 Magnitude Estimate	R	Y	N
794	Torque Notch Filter 2 Width Estimate	R	Y	N
795	Torque Notch Filter 3 Frequency Estimate	R	Y	N
796	Torque Notch Filter 3 Magnitude Estimate	R	Y	N
797	Torque Notch Filter 3 Width Estimate	R	Y	N
798	Torque Notch Filter 4 Frequency Estimate	R	Y	N
799	Torque Notch Filter 4 Magnitude Estimate	R	Y	N
800	Torque Notch Filter 4 Width Estimate	R	Y	N
841	Torque Notch Filter Frequency Estimate	R	Ŷ	N

Rockwell Automation Publication 2198T-UM003D-EN-P - December 2022

Attribute ID	Attribute Name	Read or Write	Mover Axis	Section Axis
842	Torque Notch Filter Magnitude Estimate	R	Y	N
791	Torque Notch Filter Width Estimate	R	Y	N
492	Torque Reference	R	Y	N
493	Torque Reference Filtered	R	Y	N
494	Torque Reference Limited	R	Y	N
491	Torque Trim	W	Y	N
12401251	Track Section Coil 1-12 Current Feedback	R	N	Y
12601271	Track Section Coil 1-12 Capacity	R	N	Y
455/135	Velocity Error	R	Y	N
454/134	Velocity Feedback	R	Y	N
433	Velocity Feedforward Command	R	Y	N
440/215	Velocity Feedforward Gain	W	Y	N
366	Velocity Fine Command	R	Y	N
462	Velocity Integrator Bandwidth	W	Y	N
456	Velocity Integrator Output	R	Y	N
458	Velocity Limit Source	R	Y	N
461	Velocity Loop Bandwidth	W	Y	N
457	Velocity Loop Output	R	Y	N
469	Velocity Low Pass Filter Bandwidth	W	Y	N
453	Velocity Reference	R	Y	N
451	Velocity Trim	W	Y	N

Table 49 - Data Logging Parameters (Continued)

History of Changes

This appendix contains the new or updated information for each revision of this publication. These lists include substantive updates only and are not intended to reflect all changes. Translated versions are not always available for each revision.

2198T-UM003C-EN-P

2198T-UM003C-EN-P, September 2022

Change	
Changed hardware torque value for flat rail installation.	
Changed hardware torque value for top and bottom flat curved rail installation.	
Changed hardware torque value for top and bottom flat wedge installation.	

2198T-UM003B-EN-P

2198T-UM003B-EN-P, September 2022

hange	
ided the system features table.	
nanged the description of mounting orientations.	
lded the Remove Power from the iTRAK® 5730 System section.	
nanged the Protection Against Contact with Hot Parts section.	
nanged hardware torque value for bottom flat rail and flat wedge installation.	
nanged hardware torque value for rectangular wedge installation.	
lded to the mounting section.	
nanged lubrication information.	
nanged the Number of Motor Module Sections Supported by a Kinetix® 5700 iTRAK Power Supply	table.
nanged the Wire an iTRAK 5730 System with an iTRAK Power Supply diagram.	
ided content about motor module numbers.	
nanged the explanation of mover axis assignment.	
nanged the Apply Power to the iTRAK 5730 System section.	
lded section on mover numbers in fault codes.	

Changed hardware torque value for installing position magnet onto the mover.

Notes:

Numerics

2198T-AL-SYS-4 166 installation 63 2198T-BE-ED18 replace 155, 159 2198T-BE-ST03 replace 154, 157 2198T-BE-ST06 replace 154, 157 2198T-BE-ST09 replace 154, 157 2198T-L20-T0303-A00-S2 components 20 replace 146 2198T-L20-T0309-D18-S2 components 20 replace 151 2198T-N1-0304 install 139 remove 139 2198T-NN-0304 install 139 remove 139 2198T-VT0304-E 27, 139 install 141 replace 141

A

abnormal noise 129 accessory components 14 actions category section axis 108 alarm motor section 130 mover 130 application requirements 174 apply power 113 assembly tag names input 197 output 198 assembly torque diagram 40 assign axes motion group 106 assignment sequence mover 99 associated axes iTRAK 5730 power supply properties 92 Kinetix 5700 DC-bus power supply properties 88 motor module properties 103 axis tag names motion connection 194 axis tags motion connection 193 axis unstable 129

B

behavior motor module 132 mover 132 bus-sharing configuration 87, 91 group 87 groups configure 114 regulator 87, 91 bus-sharing group example 114 С category 3 requirements 174 stop category definitions 175 certification application requirements 174 customer responsibilities 174 PL and SIL 175 TÜV Rheinland 173 website 173 clean components 137 rail system 137 communication path configure 208 compatibility controller 28 component description curved motor module 20 mounting ring 24 mover 27 power and control input connector module 22 power and control pass-through connector module 23 power input with control pass-through connector module 23 straight motor module 20 components 2198T-L20-T0303-A00-S2 20 2198T-L20-T0309-D18-S2 20 iTRAK 5730 system 12 configure advanced connection reaction time limit motor module 98 associated axes iTRAK 5730 power supply 92 Kinetix 5700 DC-bus power supply 88 motor module 103 bus-sharing groups 114 communication path 208

controller 84

Data Logger 215

date and time controller 85 digital inputs iTRAK 5730 power supply 92 iTRAK 5730 power supply properties 92

Kinetix 5700 DC-bus power supply 88 Kinetix 5700 DC-bus power supply properties 88 IP address 82 iTRAK 5730 power supply 90 Kinetix 5700 DC-bus power supply properties 87 message instruction 215 motion group 105 motor module 93 mover axis 109 network parameters 82 new axis iTRAK 5730 power supply 93 Kinetix 5700 DC-bus power supply 89 motor module 103 mover 104 power iTRAK power supply 91 Kinetix 5700 DC-bus power supply 87 motor module 96 safety motor module 97 section axis 107 section axis actions 108 section axis parameters 108 time synchronization controller 86 track motor module 99 ControlFLASH firmware upgrade 208 troubleshooting 213 **ControlFLASH Plus** firmware upgrade 203 controller and drive behavior 130 compatibility 28 configure 84 properties date/time tab 85 enable time synchronization 86 curved motor module component description 20 kit contents 41 curved rail kit contents 42 customer responsibilities 174

D

Data Logger configure 215 parameters 223 date/time tab controller properties 85 DC power status indicator 128

description

EtherNet/IP communication cable 15 infield cover 16 Logix 5000 controller platform 15 lubrication system 16 motor module 15 mounting ring 15 mover 15 mover loader tool 16 mover magnet 15 position magnet 15 power and control input connector module 15 power and control pass-through connector module 15 power cable 15 power circuitry 15 power input with control pass-through connector module 15 rail alignment tool 16 rail system 15 Studio 5000 environment 15 diagram assembly torque 40 fastener size 40 fastener type 40 sequence number 40 tool size 40 tool type 40 digital inputs iTRAK 5730 power supply properties 92 Kinetix 5700 DC-bus power supply properties 88 dimensions iTRAK 5730 system 43 download Logix program 113

E

electromechanical components 14 EtherNet/IP communication cable description 15 exception action Studio 5000 Logix Designer 131 explicit messages 192

F

fastener size diagram 40 fastener type diagram 40 fault code overview 124 code summary 124 firmware upgrade 201 firmware upgrade ControlFLASH 208 ControlFLASH Plus 203 system requirements 201 force continuous 11 peak 11

G

GuardLogix controllers 182

I

IEC 60204-1 185 IEC 61508 182 IEC 61800-5-2 182 IEC 62061 182 ignore 131 motor section 130 mover 130 infield cover description 16 initial lubrication using customer provided oil bleed system 172 using iTRAK Lubrication System 167 input assembly tag names 197 input assembly tags 196 inspection kit contents 42 install 2198T-N1-0304 139 2198T-NN-0304 139 2198T-VT0304-xB 141 curved motor module 151 lubricant tubes 66 lubrication system 63 mover 140 position magnet 139 straight motor module 146 track 39 installation lubricant pump 64 planning 39 integrated safety iTRAK 5730 system 173 motor module replacement 198 out-of-box state 176 protocol 187 STO state reset 179 IP address 82 IP rating 11 ISO 13849-1 182 ISO 13849-1 CAT 3 requirements 174 stop category definitions 175 iTRAK 5730 components 14 iTRAK 5730 power supply configure 90 properties 90 iTRAK 5730 power supply properties associated axes category 92 digital input category 92 new axis 93 iTRAK 5730 system components 12 dimensions 43 integrated safety 173 modules 12 **iTRAK power supply** multiple 73 **iTRAK power supply properties** 91

K

Kinetix 5700 DC-bus power supply properties 87 Kinetix 5700 DC-bus power supply properties

87

associated axes category 88 digital input category 88 new axis 89

kit contents

curved motor module 41 curved rail 42 inspection 42 lubrication system 42 mover 42 position magnet 42 power and control input connector module 42 power and control pass-through connector module 42 power input with control pass-through connector module 42 straight motor module 41 straight rail (300 mm) 41 straight rail (600 mm) 41 straight rail (900 mm) 41 structural mounting ring 42

L

lift mounting ring 44 link network status indicator 128 link speed status indicator 128 load observer 120 Logix 5000 controller platform description 15 Logix Designer 81, 84 exception action 131 Logix program download 113 lubricant pump 63 components 64 installation 64 installation tools 64 mounting dimensions 65 replace cartridge 166 reservoir sealing washer 63 wire 67 lubrication 166 frequency of dispensations 170 initial lubrication 166 normal operation lubrication 166 recommended lubricant 166 using customer oil bleed system 172 using iTRAK Lubrication System 166 volume per dispensation 170

lubrication system

contents of an iTRAK Lubrication System 63 description 16 install 63 iTRAK fittings for lubricant tubes 63 iTRAK lubrication system catalog number 166 kit contents 42 lubricant pump 63 lubricant tubes 63, 66 pump fittings 63 pump reservoir sealing washer 63 quantity of iTRAK lubrication systems 63 right angle fittings 63 straight fittings 63 straight nipple fittings 63

Μ

magnet plate how to handle 38 magnetic field strength 36, 38 maintenance preventative 137 major fault motor section 130 mover 130 mechanical components 14 message instruction configure 215 minor fault motor section 130 mover 130 modules iTRAK 5730 system 12 motion and safety connection 193 connection 193 connection axis tags 193 connection tag names 194 group configuration 105 motion direct commands STO bypass 187 warning messages 188 motion group assign axes 106 motor module accel/decel problems 129 behavior 132 change definition 95 configure 93 define 95 description 15 fault code 125 install curved 151 straight 146 number 125 overheating 129 replacement integrated safety 198 status indicator 127 tune 120 velocity 129 motor module properties 96, 97, 99 associated axes category 103 new axis 103

mounting

orientations 13 the iTRAK 5730 assembly 58 mounting ring component description 24 description 15 hole access 58 lift 44 mover add new mover axis 104 behavior 132 description 15, 27 fault code 125 installation 140 kit contents 42 loader tool 16 magnet 15 magnetic field strength 36 number 125 number assignment 99 pitch 11 replace 140 speed 11 mover axis properties 109

Ν

network parameters 82 status indicator 126 network and module status indicator 127 new axis iTRAK 5730 power supply properties 93 Kinetix 5700 DC-bus power supply properties 89 motor module properties 103 mover properties 104 noise abnormal 129 normal operation lubrication using customer provided oil bleed system 172 using iTRAK Lubrication System 170

Ω

out-of-box state 176 output assembly tag names 198 output assembly tags 196 overtravel fault code 124

Ρ

parameters Data Logger 223 section axis 108 pavload maximum 11 Performance Level (PL) 175 PFH definition 175

position magnet description 15 install 139 kit contents 42 magnetic field strength 37 remove 139 power and control input connector module component description 22 description 15 kit contents 42 power and control pass-through connector module component description 23 description 15 kit contents 42 power cable description 15 power category 87, 91, 96 bus configuration 87, 91 regulator 87, 91 bus-sharing group 87 iTRAK power supply properties 91 Kinetix 5700 DC-bus power supply properties 87 motor module properties 96 primary bus-sharing group 91 secondary bus-sharing group 91 power circuitry description 15 power input with control pass-through connector module component description 23 description 15 kit contents 42 power supply firmware 28 power up 113 primary bus-sharing group 91 properties iTRAK 5730 power supply 90 Kinetix 5700 DC-bus power supply 87 mover axis 109 section axis 107 R rail alignment tool description 16 rail system clean 137 description 15

replace 2198T-BE-ED18 155, 159

2198T-BE-ST03 154, 157 2198T-BE-ST06 154, 157 2198T-BE-ST09 154, 157 2198T-L20-T0303-A00-S2 146 2198T-L20-T0309-D18-S2 151 2198T-VT0304-E 141 curved motor module 151 mover 140 position magnet 139 **RSLinx** communication path 208

S

safe torque-off 178 **PFH 175** specifications 180 safety handling 61 machine guarding 33 risk assessment 32 supervisor state 192 safety category 97 motor module properties 97 safety connection 196 input assembly tags 196 output assembly tags 196 Safety Integration Level (SIL) 175 secondary bus-sharing group 91 section axis actions category 108 parameters 108 properties 107 sequence number diagram 40 software overtravel 124 Studio 5000 Logix Designer application 84 specifications safe torque-off 180 speed maximum 11 payload limitations 11 standard actions 132 status indicator DC power status 128 link network status 128 link speed status 128 motor module 127 network and module status 127 network status 126 STO bypass 187 state reset 179 stop category 0 185 stopping actions configure 132 straight motor module component description 20 kit contents 41

remove

2198T-N1-0304 139

2198T-NN-0304 139

position magnet 139

remove power 35

straight rail (300 mm) kit contents 41 straight rail (600 mm) kit contents 41 straight rail (900 mm) kit contents 41 structural mounting ring kit contents 42 **Studio 5000 environment** description 15 Studio 5000 Logix Designer 81 application 84 exception action 131 system features 11 system power apply 113 remove 35 Т

time synchronization controller properties 86 timed SS1 request removed 186 timing diagram request removed 186 timed SS1 185 tool size diagram 40 tool type diagram 40 track install 39 track configuration category 99 motor module properties 99 troubleshooting alarm 130 ControlFLASH 213 controller/drive fault behavior 130 DC power status indicator 128 fauİt code overview 124 code summary 124 general system problems 129 axis unstable 129 motor module accel/decel 129 motor module overheating 129 motor module velocity 129 no movement 129 ignore 130, 131 link network status indicator 128 link speed status indicator 128 major fault 130 minor fault 130 module status indicator 127 motor module behavior 132 mover behavior 132 network and module status indicator 127 network status indicator 126 standard actions 132 stopping actions 132 definitions 132 tune

U

upgrade

firmware 201

W

website certifications 173 wire

iTRAK power supply single 72 lubricant pump 67 multiple iTRAK power supplies 73

motor module 120

Additional Resources

These documents contain additional information concerning related products from Rockwell Automation. You can view or download publications at <u>rok.auto/literature</u>.

iTRAK 5730 and Kinetix System Resources

These resources provide information about the iTRAK® 5730 system and related Kinetix® products.

Resource	Description
iTRAK 5730 System Technical Data, publication <u>2198T-TD002</u>	Product specifications for Rockwell Automation® iTRAK 5730 system components, with performance, environmental, certifications, load force, and dimension drawings.
Kinetix 5700, 5500, 5300, and 5100 Servo Drives Specifications Technical Data, publication <u>KNX-TD003</u>	Provides product specifications for Kinetix Integrated Motion over the EtherNet/IP network and EtherNet/IP networking servo drive families.
Kinetix 5700 iTRAK Power Supply and iTRAK Bus Conditioner Module Supply Installation Instruction, publication <u>2198T-IN001</u>	Provides information for wiring and connecting the Kinetix 5700 iTRAK power supply to the iTRAK system.
3D CAD Models of iTRAK Components available at https://motionanalyzer.rockwellautomation.com/Products/iTrak	Provides 2D outline, assembly, and system drawings, STEP files for the movers and motor modules, and hyper links to complete system STEP files.
Independent Cart Technology Libraries, available on the Product Compatibility and Download Center website, <u>rok.auto/pcdc</u>	Provides standardized object-oriented libraries for iTRAK systems.
System Design for Control of Electrical Noise Reference Manual, publication <u>GMC-RM001</u>	Information, examples, and techniques that are designed to minimize system electrical noise failures.
Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1	Provides general guidelines for installing a Rockwell Automation industrial system.
Product Certifications website, rok.auto/certifications	Provides declarations of conformity, certificates, and other certification details.

Programmable Controllers Resources

These resourced provide information about programmable controllers.

Resource	Description
ControlLogix [®] 5580 and GuardLogix [®] 5580 Controllers User Manual, publication <u>1756-UM543</u>	Provides information about designing a system, operating a ControlLogix or GuardLogix-based controllers system, and developing applications.
GuardLogix 5580 and Compact GuardLogix 5380 Controller Systems Safety Reference Manual, publication <u>1756-RM012</u>	Describes the GuardLogix 5580 and Compact GuardLogix 5380 controller systems, which are type-approved and certified for use in safety applications.
CompactLogix™ 5480 Controllers User Manual, publication <u>5069-UM002</u>	Provides information on how to use CompactLogix 5480 controllers.
Compact GuardLogix 5380 Controllers User Manual, publication 5069-UM001	Provides information on how to install, configure, program, and use CompactLogix and Compact GuardLogix controllers.
Integrated Motion on the EtherNet/IP Network Reference Manual, publication <u>MOTION-RM003</u>	Provides information on the AXIS_CIP_DRIVE attributes and the Studio 5000 Logix Designer® application Control Modes and Methods.
Logix 5000 [™] Controllers Motion Instructions Reference Manual, publication <u>MOTION-RM002</u>	Provides a programmer with details about motion instructions for use with Logix 5000 controllers.

EtherNet/IP Resources

These resourced provide information about EtherNet/IP systems.

Resource	Description
EtherNet/IP Network Devices User Manual, publication ENET-UM006	Describes how to configure and use EtherNet/IP devices to communicate on the EtherNet/IP network.
EtherNet/IP Device Level Ring Application Technique, publication ENET-AT007	Describes Device Level Ring (DLR) topologies, configuration considerations, and diagnostic methods.
Integrated Motion on the EtherNet/IP Network Configuration and Startup User Manual, publication <u>MOTION-UM003</u>	Provides information on configuring and troubleshooting your ControlLogix and CompactLogix EtherNet/IP network modules.

Rockwell Automation Support

Use these resources to access support information.

Technical Support Center	Find help with how-to videos, FAQs, chat, user forums, Knowledgebase, and product notification updates.	<u>rok.auto/support</u>
Local Technical Support Phone Numbers	Locate the telephone number for your country.	rok.auto/phonesupport
Technical Documentation Center	Quickly access and download technical specifications, installation instructions, and user manuals.	rok.auto/techdocs
Literature Library	Find installation instructions, manuals, brochures, and technical data publications.	rok.auto/literature
Product Compatibility and Download Center (PCDC)	Download firmware, associated files (such as AOP, EDS, and DTM), and access product release notes.	<u>rok.auto/pcdc</u>

Documentation Feedback

Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form at <u>rok.auto/docfeedback</u>.

Waste Electrical and Electronic Equipment (WEEE)

At the end of life, this equipment should be collected separately from any unsorted municipal waste.

Rockwell Automation maintains current product environmental compliance information on its website at rok.auto/pec.

Allen-Bradley, CompactLogix, ControlFLASH, ControlFLASH Plus, ControlLogix, expanding human possibility, FactoryTalk, GuardLogix, iTRAK, Kinetix, Logix 5000, Rockwell Automation, RSLinx, Stratix, Studio 5000, and Studio 5000 Logix Designer are trademarks of Rockwell Automation, Inc.

CIP, CIP Safety, CIP Sync, and EtherNet/IP are trademarks of ODVA, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş. Kar Plaza İş Merkezi E Blok Kat:6 34752, İçerenköy, İstanbul, Tel: +90 (216) 5698400 EEE Yönetmeliğine Uygundur

Connect with us. 👍 🙆 in 😏

rockwellautomation.com

expanding human possibility®

AMERICAS: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 EUROPE/MIDDLE EAST/AFRICA: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 ASIA PACIFIC: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846 UNITED KINGDOM: Rockwell Automation Ltd. Pitfield, Kiln Farm Milton Keynes, MK11 3DR, United Kingdom, Tel: (44)(1908) 838-800, Fax: (44)(1908) 261-917

Publication 2198T-UM003D-EN-P - December 2022 Supersedes Publication 2198T-UM003C-EN-P - September 2022