ユーザーズマニュアル

ControlLogix システム
Cat. No. 1756-L61、1756-L62、1756-L63、1756-L63XT、1756-L64、1756-L65、1756-L71、1756-L72、1756-L73、1756-L73XT、1756-L74、1756-L75、1756-L72EROM、1756-L73EROM
お客様へのご注意

本装置の設置、構成および操作については、本書および参考資料に記載された資料に目を通してから、本製品の設置、構成、操作、メンテナンスを行なってください。ユーザは適用されるすべての条例、法律、規格要件に加えて、設置、配線指示に熟知している必要があります。

設置、調整、供給開始、使用、組立て、分解、メンテナンスを含めた作業は、適切な実施基準に従って適切な訓練を受けた作業員しか実施しないでください。

本装置を製造メーカの指定した方法以外で使用した場合、装置の保護機能が低下する可能性があります。

この機器の使用によって何らかの損害が生じても当社は一切責任を負いません。

本書で使用した図表やプログラム例は内容を理解しやすくするためのものであり、その結果としての動作を保証するものではありません。個々の用途については数値や条件が変わることがあります。当社では図表やプログラム例に基づいて実際に使用した場合の結果については責任を負いません。

本書に記載されている情報、回路、機器、装置、ソフトウェアの利用に関して特許上の問題が生じても、当社は一切責任を負いません。製品改良のため、仕様などを予告なく変更することがあります。

Rockwell Automation, Inc.の書面による許可なく本書の全部または一部を複製することは禁じられています。

本書を通じて、特定の状況下で起こりうる人体または装置の損傷に対する警告および注意を示します。

警告: 危険な環境で爆発が発生し、それにより人員の傷害や死亡、財産の損傷、あるいは経済的損失につながる可能性のある操作または状況に関する情報を示します。

注意: 人員の傷害や死亡、財産の損害、あるいは経済的損失につながる可能性のある操作または状況に関する情報を示します。危険を示し、危険を防止し、結果を認識する助けとなるよう注意を促します。

本書内の「重要」は、製品を正しく使用および理解するために特に重要な事項を示します。

ラベルは特定の注意を促すために、装置の外部もしくは内部にも貼ってあります。

感電の危険: 危険な電圧が生じる恐れがあることを警告するために、ドライプやモータなどの装置または装置の内部にラベルを貼っています。

やけどの危険: 表面が危険な温度に達する恐れがあることを警告するために、ドライプやモータなどの装置または装置の内部にラベルを貼っています。

アーク闪光の危険: モータ・コントロール・センタなどの装置上、または装置内にあるラベルは、アーク闪光などが発生する可能性があることを警告します。アーク闪光は重傷または死亡にいたる恐れがあります。適切な保護具(PPE)を装着してくださ。作業の安全と保護具(PPE)に必要な規制要件を順守してください。
目次

はじめに ... 9
変更内容 ... 9
ControlLogix コントローラの概要 9
 ControlLogix 標準コントローラ 10
 ControlLogix 冗長コントローラ 11
 過酷な環境向けの ControlLogix コントローラ 11
 Armor ControlLogix コントローラ 11
作業を開始する前に 12
 必要なソフトウェア 12
参考資料 ... 13

第 1 章
1756-L7x コントローラの取付け 19
お使いになる前に 19
1756-L7x コントローラ部品 19
 1756-L7x コントローラに付属する部品 19
 1756-L7x コントローラに使用可能な部品 ... 20
1756-L7x コントローラの取付け 20
 コントローラのシャーシへの取付け 21
 キーの挿入 22
 SD カードの取付け 23
 SD カードの取り外し 25
 ESM の取付け 26
 ESM の取り外し 27

第 2 章
1756-L6x コントローラの取付け 33
お使いになる前に 33
 1756-L6x コントローラ部品 33
 1756-L6x コントローラに付属しない部品 33
 1756-L6x コントローラの取付け 34
 CompactFlash カードの取付け / 取り外し 34
 バッテリの接続と交換 38
 コントローラのシャーシへの取付け 40
 シャーシからのコントローラの取り外し 42

第 3 章
コントローラの使用の開始 43
 接続 ... 43
 1756-L7x 接続オプション 43
 1756-L6x 接続オプション 44
 1756-L7x コントローラへの接続 44
 USB ドライバの構成 45
 1756-L6x コントローラへの接続 47
 シリアルドライバの構成 48
 コントローラのファームウェアのアップグレード ... 50
 必要なコントローラのファームウェアの判断 51
 コントローラのファームウェアの取得 52
 ControlFLASH ソフトウェアを使用したファームウェアのアップグレード 52
AutoFlash を使用したファームウェアのアップグレード 57
通信パスの設定 ... 60
コントローラをオンラインにする ... 61
コントローラへのダウンロード ... 61
Who Active ダイアログボックスを使用したダウンロード 62
Controller Status メニューを使用したダウンロード 63
コントローラからのアップロード ... 63
Who Active ダイアログボックスを使用したアップロード 63
Controller Status メニューを使用したアップロード 64
モードスイッチを使用した動作モードの変更 65
Logix Designer を使用した動作モードの変更 67
メモリカードへのロード / 保存 ... 68
メモリカードへの保存 ... 68
メモリカードからのロード ... 71
メモリカードに関連するその他のタスク ... 73
ControlLogix エネルギー貯蔵モジュール (ESM) の使用 73
搭載した NVS メモリへのプログラムの保存 74
搭載した NVS メモリのプログラムのクリア 74
ESM による WallClockTime の概算値 ... 75
バッテリの保守 (1756-L6x コントローラのみ) 75
バッテリの状態の確認 ... 76
1756-BA1 または 1756-BATA バッテリの持続時間 76
1756-BATM バッテリモジュールとバッテリ持続時間 77
1756-BA2 バッテリ持続時間の概算値 .. 78
警告後の 1756-BA2 のバッテリ持続時間の概算値 79
バッテリの保管と処分 ... 80

第 4 章
ControlLogix システムおよびコントローラ ... 81
構成オプション ... 81
ControlLogix システムの設計 ... 84
ControlLogix コントローラの機能 .. 85
システム、通信、プログラミング機能 .. 85
メモリオプション .. 86
電子キーイング .. 87

第 5 章
使用可能なネットワーク ... 89
EtherNet/IP ネットワーク通信 ... 90
ControlLogix EtherNet/IP モジュールの機能 91
ControlLogix EtherNet/IP 通信モジュール 91
目次

EtherNet/IP ネットワークのソフトウェア 93
EtherNet/IP ネットワーク上のコネクション 93
ダブル・データ・レート (DDR) バックプレーン 通信 93
ControlNet ネットワーク通信 .. 94
ControlLogix ControlNet モジュールの機能 95
ControlLogix ControlNet モジュール 96
ControlNet ネットワークのソフトウェア 96
ControlNet ネットワーク上のコネクション 97
DeviceNet ネットワーク通信 ... 97
ControlLogix DeviceNet モジュールの機能 98
ControlLogix DeviceNet モジュール 99
DeviceNet ネットワークのソフトウェア 99
DeviceNet ネットワーク上のコネクション 100
Data Highway Plus (DH+) ネットワーク通信 100
DH+ ネットワーク上の通信 ... 101
汎用リモート I/O (RIO) 通信 102
汎用リモート I/O ネットワーク上の通信 103
Foundation Fieldbus 通信 ... 104
HART 通信 ... 105

第6章
1756-L6x コントローラでのシリアル通信
1756-L6x コントローラのシリアルポート 107
ControlLogix シャーシのシリアル通信オプション 108
シリアルデバイスとの通信 ... 108
DF1 マスタプロトコル .. 108
DF1 Point to Point プロトコル 109
DF1 Radio Modem プロトコル 109
DF1 Radio Modem の利点 ... 110
DF1 無線モデムの制限事項 .. 110
DF1 Radio Modem プロトコルのパラメータ 111
DF1 Slave プロトコル ... 112
DH-485 プロトコル .. 112
ASCI プロトコル ... 113
シリアル通信用の1756-L6x コントローラの構成 114
シリアルポートによるブロードキャストメッセージ 116
コントローラのシリアル・ポート・プロパティの構成 117
Message 命令のプログラム ... 118
Modbus のサポート .. 118

第7章
コントローラ通信の管理
コネクションの概要 .. 119
データの生成と消費 (インターロック) 119
<table>
<thead>
<tr>
<th>節目</th>
<th>目次</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>プロデューサタグまたはコンシューマタグのコネクション要件</td>
</tr>
<tr>
<td></td>
<td>メッセージの送受信</td>
</tr>
<tr>
<td></td>
<td>メッセージコネクションのキャッシュの判断</td>
</tr>
<tr>
<td></td>
<td>使用するコネクションの計算</td>
</tr>
<tr>
<td></td>
<td>ローカルコネクション</td>
</tr>
<tr>
<td></td>
<td>リモートコネクション</td>
</tr>
<tr>
<td></td>
<td>コネクションの例</td>
</tr>
<tr>
<td></td>
<td>第8章</td>
</tr>
<tr>
<td></td>
<td>I/Oモジュール</td>
</tr>
<tr>
<td></td>
<td>ControlLogix I/Oモジュールの選択</td>
</tr>
<tr>
<td></td>
<td>ローカルI/Oモジュール</td>
</tr>
<tr>
<td></td>
<td>ローカルI/OをI/O構成に追加する</td>
</tr>
<tr>
<td></td>
<td>リモートI/Oモジュール</td>
</tr>
<tr>
<td></td>
<td>リモートI/OをI/O構成に追加する</td>
</tr>
<tr>
<td></td>
<td>分散I/O</td>
</tr>
<tr>
<td></td>
<td>分散I/OをI/O構成に追加する</td>
</tr>
<tr>
<td></td>
<td>I/Oモジュールの再構成</td>
</tr>
<tr>
<td></td>
<td>Module Propertiesを使用したI/Oモジュールの再構成</td>
</tr>
<tr>
<td></td>
<td>メッセージ命令を使用したI/Oモジュールの再構成</td>
</tr>
<tr>
<td></td>
<td>オンライン時のI/O構成への追加</td>
</tr>
<tr>
<td></td>
<td>オンライン時に追加可能なモジュールとデバイス</td>
</tr>
<tr>
<td></td>
<td>オンライン時の追加-ControlNetに関する注意事項</td>
</tr>
<tr>
<td></td>
<td>オンライン時の追加-EtherNet/IPに関する注意事項</td>
</tr>
<tr>
<td></td>
<td>データ更新時期の判断</td>
</tr>
<tr>
<td></td>
<td>第9章</td>
</tr>
<tr>
<td></td>
<td>モーションアプリケーションの概要</td>
</tr>
<tr>
<td></td>
<td>軸情報の取得</td>
</tr>
<tr>
<td></td>
<td>モーションコントロールのプログラム</td>
</tr>
<tr>
<td></td>
<td>例</td>
</tr>
<tr>
<td></td>
<td>第10章</td>
</tr>
<tr>
<td></td>
<td>制御アプリケーションの要素</td>
</tr>
<tr>
<td></td>
<td>タスク</td>
</tr>
<tr>
<td></td>
<td>タスクの優先順位</td>
</tr>
<tr>
<td></td>
<td>プログラム</td>
</tr>
<tr>
<td></td>
<td>スケジュール型/非スケジュール型プログラム</td>
</tr>
<tr>
<td></td>
<td>ルーチン</td>
</tr>
<tr>
<td></td>
<td>パラメータおよびローカルタグ</td>
</tr>
<tr>
<td></td>
<td>拡張プロパティ</td>
</tr>
<tr>
<td></td>
<td>ロジックによる拡張プロパティへのアクセス</td>
</tr>
</tbody>
</table>
目次

プログラミング言語 160
アドオン命令 160
モジュールオブジェクトへのアクセス 162
アドオン命令の作成 162
コントローラのステータスのモニタ 163
I/O コネクションのモニタ 163
I/O 通信のタイムアウトの判断 165
特定の I/O モジュールに対する I/O 通信
のタイムアウトの判断 165
ロジックの実行中断とフォルトハンドラの実行 166
システムオーバヘッドのタイムスライス 167
システムオーバヘッドのタイムスライスの構成 ... 168
サンプルのコントローラプロジェクト 169

第 11 章
PhaseManager ツールの使用
PhaseManager の概要 171
最低限のシステム要件 173
状態モデルの概要 173
機器の状態の変更方法 174
手動での状態の変更 175
PhaseManager ツールと他の状態モデルの比較 ... 176
機器フェーズ命令 176

第 12 章
冗長システム
ControlLogix 冗長の概要 177
システム要件 179
システムの注意事項 180
拡張冗長と標準冗長の比較 181
冗長システムの構築 181
冗長システムにおける ControlNet の注意事項 ... 182
冗長システムにおける EtherNet/IP の注意事項 ... 182
IP アドレスのスワッピング IP あどれすのす
わっぴんぐ 182
冗長およびスキャンタイム 183

付録 A
モジュールのトラブルシューティング
Logix Designer アプリケーションを使用したトラブル
シューティング 185
フォルトタイプの判断 187
1756-L7x コントローラのステータス表示
とインジケータ 188
1756-L7x コントローラのステータス表示
一般的なステータスマッセージ 188
フォルトメッセージ 190
メジャー・フォルト・メッセージ 191
I/O フォルトコード 193
1756-L7x コントローラのステータスインジケータ ... 196
目次

RUN インジケータ 196
FORCE インジケータ 196
SD インジケータ 197
OK インジケータ 197
1756-L6x ステータスインジケータ 198
RUN インジケータ 198
I/O インジケータ 198
FORCE インジケータ 199
RS232 インジケータ 199
BAT インジケータ 199
OK インジケータ 200

索引 .. 201
はじめに

本書では、以下について説明します。

- 設計と計画に関する注意事項
- 取付け手順
- 構成手順
- メンテナンスおよびトラブルシューティング方法

本マニュアルは、ControlLogix®システムの計画と実装を行なう担当者向けに設計されています。

- アプリケーションエンジニア
- コントロールエンジニア
- 計装技術者

本書の内容は、Logix5000™制御システム、プログラム技術、および通信ネットワークについて既に理解している担当者を対象にしています。

変更内容

1756-L72EROMおよび1756-L73EROM Armor™ ControlLogixコントローラを本ユーザーズマニュアルに追加しました。

ControlLogixコントローラの概要

5つのタイプのControlLogixコントローラを使用できます。3つのタイプを以下に示します。

- ControlLogix標準コントローラ
- 過酷な環境向けのControlLogixコントローラ
- Armor™ ControlLogixコントローラ
- GuardLogix®標準コントローラ
- Armor GuardLogixコントローラ

本書では、標準および過酷な環境向けのArmor ControlLogixコントローラについて説明します。
GuardLogixおよびArmor GuardLogixセーフティコントローラの詳細は、以下の資料を参照してください。

<table>
<thead>
<tr>
<th>マニュアル名</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>GuardLogix 5570コントローラユーザーズマニュアル（Pub.No. 1756-UM022）</td>
<td>バージョン21以前のStudio 5000®プロジェクトで、GuardLogix 5570コントローラを取付、構成、操作する方法に関する説明。</td>
</tr>
<tr>
<td>GuardLogix 5570 and Compact GuardLogix 5370 Controller Systems Reference Manual（Pub.No. 1756-RM099）</td>
<td>バージョン21以前のStudio 5000®プロジェクトで、GuardLogix 5570およびGuardLogix 5570コントローラを取付、構成、操作する方法に関する説明。</td>
</tr>
<tr>
<td>GuardLogixコントローラユーザーズマニュアル（Pub.No. 1756-UM020）</td>
<td>バージョン20以下のRSLogix 5000®プロジェクトでGuardLogix 5560およびGuardLogix 5570コントローラ取付、構成、操作する方法に関する説明。</td>
</tr>
<tr>
<td>GuardLogix Controller Systems Safety Reference Manual（Pub.No. 1756-RM093）</td>
<td>バージョン20以下のRSLogix 5000®プロジェクトで、GuardLogix 5560およびGuardLogix 5570コントローラが安全アプリケーションの要件を満たすための方法に関する情報</td>
</tr>
</tbody>
</table>

ControlLogix標準コントローラ

ControlLogix標準コントローラには、2つの製品ラインが用意されています。これらは、カタログ番号の略記に基づいて、1756-L6xコントローラと1756-L7xコントローラと呼ばれます。

表1 - ControlLogixのカタログ番号

<table>
<thead>
<tr>
<th>Cat. No.（略記）</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756-L6x</td>
<td>1756-L61, 1756-L62, 1756-L63, 1756-L64, 1756-L65</td>
</tr>
<tr>
<td>1756-L7x</td>
<td>1756-L71, 1756-L72, 1756-L73, 1756-L74, 1756-L75</td>
</tr>
</tbody>
</table>

ControlLogix標準コントローラでは多くの機能は共通していますが、一部の機能が異なります。表2に、コントローラ間の相違点についてまとめ示します。これらの機能と差異の詳細は、本書の該当する章を参照してください。

表2 - 1756-L7xコントローラと1756-L6xコントローラの相違点

<table>
<thead>
<tr>
<th>機能</th>
<th>1756-L7x</th>
<th>1756-L6x</th>
</tr>
</thead>
<tbody>
<tr>
<td>電源切断時のメモリ保持用のクロックサポートとバックアップ</td>
<td>エネルギー貯蔵モジュール（ESM）</td>
<td>バッテリ</td>
</tr>
<tr>
<td>通信ポート（内蔵）</td>
<td>USB</td>
<td>シリアル</td>
</tr>
<tr>
<td>コネクション、コントローラ</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>不揮発性メモリ</td>
<td>セキュアデジタル (SD) カード</td>
<td>CompactFlash カード</td>
</tr>
<tr>
<td>ステータス表示とステータスインジケータ</td>
<td>ステータス表示のスクロール機能および4つのステータスインジケータ</td>
<td>6つのステータスインジケータ</td>
</tr>
<tr>
<td>非接続型バッファ (デフォルト)</td>
<td>20 (最大40)</td>
<td>10 (最大40)</td>
</tr>
</tbody>
</table>

ControlLogix冗長コントローラ
一部のControlLogixコントローラは、冗長システムにも対応しています。コントローラおよび冗長システムの詳細は、第12章を参照してください。

過酷な環境向けのControlLogixコントローラ
過酷な環境向けのControlLogixコントローラ (Cat.No. 1756-L73XTおよび1756-L63XT)は、1756-L73および1756-L63コントローラと同じ機能を備えていますが、-25〜+70°C (-13〜+158°F)の温度まで耐えることができます。

Armor ControlLogixコントローラ
Armor ControlLogixコントローラは、1756-L72または1756-L73 ControlLogixコントローラを、マシンに取付けるIP67定格筐体で、2台のEtherNet/IPのDLR対応1756-EN3TR通信モジュールと組み合わせます。Armor ControlLogixコントローラ (Cat. No. 1756-L72EROM、1756-L73EROM)の詳細は、『Armor ControlLogix Controller Installation Instructions』(Pub.No. 1756-IN061)を参照してください。

1756-L72EROMおよび1756-L73EROMコントローラは、1756-L72および1756-L73コントローラと同じ機能を備えていますが、Armorコントローラのエネルギー貯蔵モジュール(ESM)を取り外したり交換したりすることはできません。
はじめに

作業を開始する前に

ControlLogixコントローラの使用を開始する前に、コントローラの構成とプログラムに必要なアプリケーションを確認してください。

必要なソフトウェア

表3には、ControlLogixコントローラの使用に必要なソフトウェアの最低限のバージョンを記載しています。

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Studio 5000環境</th>
<th>RSLogix 5000ソフトウェア</th>
<th>RSlnx® Classic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756-L61/A</td>
<td>—</td>
<td>バージョン12.06.00以降</td>
<td>すべてのバージョン</td>
</tr>
<tr>
<td>1756-L61/B</td>
<td>—</td>
<td>バージョン13.04.00以降</td>
<td>すべてのバージョン</td>
</tr>
<tr>
<td>1756-L62/A</td>
<td>—</td>
<td>バージョン12.06.00以降</td>
<td>すべてのバージョン</td>
</tr>
<tr>
<td>1756-L62/B</td>
<td>—</td>
<td>バージョン13.04.00以降</td>
<td>すべてのバージョン</td>
</tr>
<tr>
<td>1756-L63/A</td>
<td>—</td>
<td>• CompactFlashカードを使 用しない場合、バージョン10.07.00以降 • CompactFlashカードを使 用しない場合、バージョン11.16.00以降</td>
<td>すべてのバージョン</td>
</tr>
<tr>
<td>1756-L63/B</td>
<td>—</td>
<td>バージョン13.04.00以降</td>
<td>すべてのバージョン</td>
</tr>
<tr>
<td>1756-L63XT/B</td>
<td>—</td>
<td>バージョン13.04.00以降</td>
<td>バージョン25.55.00以降</td>
</tr>
<tr>
<td>1756-L64/A</td>
<td>—</td>
<td>バージョン16.03.00以降</td>
<td>すべてのバージョン</td>
</tr>
<tr>
<td>1756-L65/B</td>
<td>—</td>
<td>バージョン17.01.02以降</td>
<td>すべてのバージョン</td>
</tr>
<tr>
<td>1756-L71</td>
<td>バージョン21.00.00以降</td>
<td>バージョン20.01.02</td>
<td>バージョン25.90.00以降</td>
</tr>
<tr>
<td>1756-L72</td>
<td>バージョン20.00.00以降</td>
<td>バージョン19.01.00以降</td>
<td>バージョン25.70.00以降</td>
</tr>
<tr>
<td>1756-L73</td>
<td>2.59.02以上</td>
<td>2.59.02以上</td>
<td>すべてのバージョン</td>
</tr>
<tr>
<td>1756-L73XT</td>
<td>2.59.02以上</td>
<td>2.59.02以上</td>
<td>すべてのバージョン</td>
</tr>
<tr>
<td>1756-L74</td>
<td>2.59.02以上</td>
<td>2.59.02以上</td>
<td>すべてのバージョン</td>
</tr>
<tr>
<td>1756-L75</td>
<td>2.59.02以上</td>
<td>2.59.02以上</td>
<td>すべてのバージョン</td>
</tr>
</tbody>
</table>

1756-L72EROM
1756-L73EROM
以下の表に、ロックウェル・オートメーション製品に関連する参考資料を記載しています。

<table>
<thead>
<tr>
<th>マニュアル名</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756 ControlLogix and GuardLogix Controllers Technical Data (Pub.No. 1756-TD001)</td>
<td>ControlLogixおよびGuardLogixコントローラの仕様</td>
</tr>
<tr>
<td>1756 ControlLogix I/O Specifications Technical Data (Pub.No. 1756-TD002)</td>
<td>ControlLogix/I/Oモジュールの仕様が記載されている。</td>
</tr>
<tr>
<td>Armor ControlLogix Controllers Installation Instructions (Pub. No. 1756-IN001)</td>
<td>Armor ControlLogixコントローラの取付け方法に関する情報</td>
</tr>
<tr>
<td>ControlLogix Battery Module Installation Instructions (Pub.No.1756-IN575)</td>
<td>バッテリモジュールの取付けに関する情報</td>
</tr>
<tr>
<td>ControlLogix Chassis and Power Supply Installation Instructions (Pub. No. 1756-IN007)</td>
<td>標準およびControlLogix XT*バージョンの1756シャーシと電源(冗長電源など)の設置方法とトラブルシューティング</td>
</tr>
<tr>
<td>ControlLogixアナログI/Oモジュールユーザーマニュアル (Pub.No.1756-UM009)</td>
<td>アナログI/Oモジュールの構成プロパティに関する情報</td>
</tr>
<tr>
<td>ControlLogix Configurable Flowmeter Module User Manual (Pub.No. 1756-UM010)</td>
<td>構成可能なフローメータの構成プロパティに関する情報</td>
</tr>
<tr>
<td>ControlLogixデジタルI/Oモジュールユーザーマニュアル (Pub.No. 1756-UM558)</td>
<td>デジタルI/Oモジュールの構成プロパティに関する情報</td>
</tr>
<tr>
<td>ControlLogix強化型冗長システムユーザーズマニュアル (Pub.No. 1756-UM533)</td>
<td>ControlLogix冗長システムに関する詳細情報</td>
</tr>
<tr>
<td>ControlLogix HART Analog I/O Modules User Manual (Pub.No. 1756-UM533)</td>
<td>HARTアナログI/Oモジュールの使用方法</td>
</tr>
<tr>
<td>ControlLogix ハイスピードアナログ I/O モジュールユーザーズマニュアル (Pub.No. 1756-UM005)</td>
<td>ハイスピードアナログI/Oモジュールの構成プロパティに関する情報</td>
</tr>
<tr>
<td>ControlLogix/ハイスピード・カウンタ・モジュールユーザーズマニュアル(Pub.1756-UM007)</td>
<td>ハイスピード・カウンタ・モジュールの構成プロパティに関する情報</td>
</tr>
<tr>
<td>ControlLogix Low-speed Counter Module User Manual (Pub. No. 1756-UM536)</td>
<td>低速カウンタモジュールの構成プロパティに関する情報</td>
</tr>
<tr>
<td>ControlLogix Peer I/O Control Application Technique (Pub. 1756-AT016)</td>
<td>一般的なピア制御アプリケーションの説明、およびピア制御操作のI/Oモジュールの構成方法の詳細に説明する。</td>
</tr>
<tr>
<td>ControlLogix Programmable Limit Switch Module User Manual (Pub.1756-UM002)</td>
<td>プログラム可能なリミットスイッチの構成プロパティに関する情報</td>
</tr>
<tr>
<td>ControlLogix冗長システムユーザーズマニュアル (Pub.1756-UM524)</td>
<td>ControlLogix標準冗長システムに関する情報</td>
</tr>
<tr>
<td>ControlLogix Remote I/O Communication Module User Manual (Pub.1756-UM534)</td>
<td>リモートI/Oネットワーク通信の構成に関する情報</td>
</tr>
<tr>
<td>ControlLogix SIL2 System Configuration Using RSLogix 5000 Subroutines Application Technique (Pub.1756-AT010)</td>
<td>ControlLogix SIL2認定フォルトトレランスシステムに関する情報</td>
</tr>
<tr>
<td>ControlLogix SIL2システム構造SIL2アドオン命令の使用アプリケーションのテクニックマニュアル(Pub.1756-AT012)</td>
<td>ControlLogix SIL2認定フォルトトレランスシステムに関する情報</td>
</tr>
<tr>
<td>マニュアル名</td>
<td>説明</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>CompactLogixシステム選択ガイド (Pub. No. 1756-SG001)</td>
<td>ControlLogixシステムのコンポーネントの設計および選択方法</td>
</tr>
<tr>
<td>ControlLogixネットワーク構成ユーザーズマニュアル (Pub. No. CNET-UM001)</td>
<td>ControlNetモジュールの使用方法</td>
</tr>
<tr>
<td>DeviceNetネットワーク構成ユーザーズマニュアル (Pub. No. DNRT-UM004)</td>
<td>DeviceNetモジュールおよびデバイスに関する情報</td>
</tr>
<tr>
<td>Ethernet Design Considerations Reference Manual (Pub.No. ENET-RM002)</td>
<td>システムのネットワーク設計に関する参考資料</td>
</tr>
<tr>
<td>EtherNet/IPネットワーク構成ユーザーズマニュアル (Pub. No. ENET-UM001)</td>
<td>EtherNet/IP通信モジュールに関する情報</td>
</tr>
<tr>
<td>FOUNDATION Fieldbus Design Considerations Reference Manual (Pub. No. PROCES-RM005)</td>
<td>使用可能なFoundation Fieldbusデバイスの使用に関する詳細</td>
</tr>
<tr>
<td>Guidelines for Handling Lithium Batteries Technical Data (Pub.No. AG-5.4)</td>
<td>リチウムバッテリーの保管、処理、輸送、および廃棄に関する情報。</td>
</tr>
<tr>
<td>Integrated Architecture and CIP Sync Configuration Application Technique (Pub.No. IA-AT001)</td>
<td>Integrated Architecture®製品およびアプリケーションによるCIP Syncの構成方法</td>
</tr>
<tr>
<td>EtherNet/IPネットワーク上の統合モーションの構成と上位ユーザーのユーザーズマニュアル (Pub.No. MOTION-UM003)</td>
<td>EtherNet/IP上の統合モーションアプリケーション用のControlLogixシステムの設計方法に関する詳細</td>
</tr>
<tr>
<td>Logic5000 Controllers Add-On Instructions Programming Manual (Pub.No. 1756-PM010)</td>
<td>アドオン命令の使用に関する詳細情報</td>
</tr>
<tr>
<td>Logic5000コントローラ汎用命令リファレンスマニュアル (Pub. No. 1756-RM003)</td>
<td>GSV命令、SSV命令、オブジェクト、および属性に関する詳細情報</td>
</tr>
<tr>
<td>Logic5000 Controllers I/O and Tag Data Programming Manual (Pub. 1756-PM004)</td>
<td>タスクとプログラム実行の最適化のためのプログラマタグの作成および構成に関する情報</td>
</tr>
<tr>
<td>Logic5000 Controllers Major, Minor and I/O Faults Programming Manual (Pub. 1756-PM014)</td>
<td>I/Oフォルトに関する詳細情報</td>
</tr>
<tr>
<td>Logic5000 Controllers Messages Programming Manual (Pub. 1756-PM012)</td>
<td>コントローラメッセージに関する情報</td>
</tr>
<tr>
<td>Logic5000 Controllers Motion Instructions Reference Manual (Pub. 1756-PM010)</td>
<td>Logic5000コントローラで使用できるモーション命令の詳細(プログラム向け)</td>
</tr>
<tr>
<td>Logic5000 Controllers Nonvolatile Memory Card Programming Manual (Pub. 1756-PM017)</td>
<td>不揮発性メモリからロード可能なプロジェクトの変更に関する情報</td>
</tr>
<tr>
<td>Logic5000 Controllers Produced and Consumed Tags Programming Manual (Pub. 1756-PM011)</td>
<td>プロデューサタグとコンシューマタグに関する詳細情報</td>
</tr>
<tr>
<td>Motion Coordinated Systems User Manual (Pub.No. MOTION-UM002)</td>
<td>建物系モーション・アプリケーション・システムの作成および構成方法の詳細</td>
</tr>
<tr>
<td>PhaseManager™ユーザーズマニュアル (Pub.No. LOGIX-UM001)</td>
<td>機器フェーズでの使用のための命令に関する詳細情報</td>
</tr>
<tr>
<td>SERCOS and Analog Motion Configuration and Startup Manual (Pub.No. MOTION-UM003)</td>
<td>Serconモーション・アプリケーション・システムの構成方法の詳細</td>
</tr>
<tr>
<td>SIL2アプリケーションでのControlLogixの使用セーフティ・リファレンスマニュアル (Pub. No. 1756-8R001)</td>
<td>特定の構成およびプログラミング上の注意事項</td>
</tr>
<tr>
<td>Using Logic5000 Controllers as Masters or Slaves on Modbus Application Solution(Pub. No. Q5-EJ129)</td>
<td>Modbusサンプルプログラムの使用に関する詳細情報</td>
</tr>
<tr>
<td>マニュアル名</td>
<td>説明</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Industrial Automation Wiring and Grounding Guidelines (配線と接地に関するガイドライン) (Pub.No. 1770-4.1)</td>
<td>ロックウェル・オートメーションの産業用システムの設置に関する詳細情報</td>
</tr>
<tr>
<td>製品の認可に関するWebサイト、http://www.rockwellautomation.com/rockwellautomation/certification/overview.page</td>
<td>適合宣言書、認可、およびその他証明の詳細を記載している。</td>
</tr>
<tr>
<td>Programmable Controllers Battery Reference (プログラマブルコントローラのバッテリに関する参照Webサイト)(英語) http://www.ab.com/programmablecontrol/batteries.html</td>
<td>交換バッテリごとの製品安全データシート(MSDS)の詳細</td>
</tr>
</tbody>
</table>

これらの資料は、http://www.rockwellautomation.com/literature/で閲覧またはダウンロードできます。印刷版マニュアルを購入するには、当社の代理店または営業所までお問い合わせください。
はじめに

Notes:
第1章

1756-L7xコントローラの取付け

<table>
<thead>
<tr>
<th>項目</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>お使いになる前に</td>
<td>19</td>
</tr>
<tr>
<td>1756-L7xコントローラ部品</td>
<td>19</td>
</tr>
<tr>
<td>1756-L7xコントローラの取付け</td>
<td>20</td>
</tr>
<tr>
<td>コントローラのシャーシへの取付け</td>
<td>21</td>
</tr>
<tr>
<td>キーの挿入</td>
<td>22</td>
</tr>
<tr>
<td>SDカードの取付け</td>
<td>23</td>
</tr>
<tr>
<td>SDカードの取り外し</td>
<td>25</td>
</tr>
<tr>
<td>ESMの取付け</td>
<td>26</td>
</tr>
<tr>
<td>ESMの取り外し</td>
<td>27</td>
</tr>
</tbody>
</table>

注意: 安全関連のプログラマブル電子システム(PES)のアプリケーション担当者は、システムのアプリケーションにおける安全要件を把握するとともに、システムの使用に関するトレーニングを受講しておく必要があります。

表4 環境およびエンクロージャ

注意:
この装置は、過電圧カテゴリⅡアプリケーション(IEC60664-1に定義)、高度2000m(6562フィート)までディレーティングなし、汚染度2の産業用環境での使用を意図しています。
この装置は、居住環境での使用を目的として設計されていないため、居住環境内の無線通信サービスに適切な保護を提供することはできません。
この装置は、「開放型」装置として出荷されています。特定の環境条件に適合し、帯電部への接點にによる人体への危険を防ぐように適切に設計されたエンクロージャ内に取付ける必要があります。
このエンクロージャは適切な難燃性を持ち、火災の広がりを防ぐもので、非金属製の場合は火炎伝播率が5VAであるか、用途に対して承認されたものである必要があります。また、何らかのツールを使用しなければエンクロージャの内部にアクセスできないような構造が必要です。以降のセクションには、特定の製品の安全要件を満たすのに必要な特定のエンクロージャタイプの定格に関する追加情報が記載されています。
他の参考文献:
• 設置要件の詳細は、『配線と接地に関するガイドライン』(Pub.No. 1770-4.1)を参照してください。
• エンクロージャの保護等級については、対応するNEMA規格250およびIEC60529を参照してください。
表5 - 北米における危険な領域に関する規格

以下の情報は、危険な領域で本装置を動作する場合に適用されます。

「CL I, DIV 2, GPA, B, C, D」とマークされている製品は、クラスIビジネスコングループA、B、C、Dの危険な領域および非危険な領域での使用にのみ適しています。各製品は、危険な場所の温度コードを記した定格銘板でマーキングして出荷されます。システム内で製品を組み合わせる場合、最大的に危険な温度コード（最低の「T」番号）を使用すると、システム全体の温度コードの判別に役立ちます。システム内の装置の組合せは、取付け時に各地域の管轄機関による検査を受ける必要があります。

警告: 爆発の危険

- 電力が除去されるか、または領域が危険でないと確認できるまでは、装置を取り外さないでください。
- 電力が除去されるか、または領域が危険でないと確認できるまでは、接続を切り離さないでください。
- この製品に付属するねじ、スライディングラッチ、ねじ式のコネクタ、または他の方法でこの装置に接続されている外部接続を固定します。
- 別のコンポーネントを使用すると、クラスIビジネスコングループへの適合性を損ないます。
- この製品にバッテリーが含まれている場合は、領域が危険でないとわたったときにのみバッテリーを交換してください。

表6 - 欧州における危険な領域に関する規格

本製品にEXマークがある場合は、以下の規格が適用されます。

この製品は、欧州連合指令94/9/ECにより定義された爆発の危険のある大気中での使用を意図しており、本指令の付録IIに記載された、ゾーン2（爆発の危険のある大気中）での使用を意図するカテゴリ3装置の設計および構築に関する、重要な健康および安全の要件（Essential Health and Safety Requirements）に適合することが判明しました。

重要な健康および安全の要件への適合は、EN 60079-15およびEN 60609-0への適合により保証されました。

注意: この装置は、日光またはその他の紫外線放射源に対する耐性はありません。

警告:

- この装置は、「ゾーン2環境で使用される場合、IPT以下が保護等級（IEC60529）で規定」を備えたATEX認可済みエンクロージャに取付けて、汚染度2（IEC60064-1で規定）以下の環境で使用する必要があります。エンクロージャには、工具での取り外しが可能なカバーまたはドアを使用する必要があります。
- この装置は、ロックウェル・オートメーションにより定義された指定の定格内で使用するものとします。
- この装置は、ATEX認可済みのロックウェル・オートメーション製バックプレーン以外には使用できません。
- この製品に付属するねじ、スライディングラッチ、ねじ式のコネクタ、または他の方法でこの装置に接続されている外部接続を固定します。
- 電力が除去されるか、または領域が危険でないと確認できるまでは、装置を取り外さないでください。
お使いになる前に
コントローラと電源を取付ける前に、ControlLogix®シャーシと電源を取付けるには、1756-IN005を参照してください。

1756-L7xコントローラ
部品
以降のセクションでは、L7xコントローラに付属する部品および選択可能な付属品について説明します。

1756-L7xコントローラに付属する部品
コントローラには、以下の部品が付属します。
- 1756-ESMCAPコンデンサ式エネルギー貯蔵モジュール(ESM)
- 1784-SD1セキュアデジタル(SD)カード(1GB)
- 1747-KYコントローラキー

図1- 1756-L7xコントローラの付属部品

重要 1756-L7xコントローラは、SDカードを挿入した状態で出荷されます。SDカードは挿入したままにしておくことをお勧めします。
1756-L7xコントローラに使用可能な部品

コントローラに付属する部品に加えて、アプリケーションに応じて以下の部品を選択することができます。

<table>
<thead>
<tr>
<th>アプリケーション要件</th>
<th>使用可能な部品</th>
</tr>
</thead>
<tbody>
<tr>
<td>コンピュータとコントローラ間のUSB接続</td>
<td>USBケーブル(1)</td>
</tr>
<tr>
<td>不揮発性メモリフキハツセイメモリ</td>
<td>1784-SD1 (1GB) または 1784-SD2 (2GB)</td>
</tr>
<tr>
<td>WallClockTimeバックアップ電源を使用しないESM</td>
<td>1756-ESMNSE</td>
</tr>
</tbody>
</table>

このESMはWallClockTimeバックアップ電源を使用しません。取付けたESMの残りの貯蔵エネルギーを40μJ以下にまで消費させてからアプリケーションに着脱する必要がある場合は、このESMを使用します。また、このESMを使用できるのは、1756-L73 (8MB) 以下のメモリサイズのコントローラのみです。

| 1756-ESMNRM |
| 1756-ESMNRM |

ESMにより、USB接続およびSDカードの使用を禁止することでコントローラの安全を確保する。

| 警告: USBポートは危険な領域では使用しないでください。 |
| 注意: |
| • USBポートは一時的なローカルでのプログラミングのみを目的としています。永続的な接続には使用しないでください。USBケーブルの長さは3.0m未満で、ハブを含めてはなりません。 |
| • USBポートの長さは3.0m未満で、ハブを含めてはなりません。 |

1756-L7xコントローラの取付け

以降のセクションでは、1756-L7xコントローラの取付け方法について説明します。1756-L7xコントローラを取付けるには、以下の表に記載された作業を完了する必要があります。

<table>
<thead>
<tr>
<th>タスク</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>コントローラのシャーシへの取付け</td>
<td>21</td>
</tr>
<tr>
<td>キーの挿入</td>
<td>22</td>
</tr>
<tr>
<td>SDカードの取付け</td>
<td>23</td>
</tr>
<tr>
<td>SDカードの取り外し</td>
<td>25</td>
</tr>
<tr>
<td>ESMの取付け</td>
<td>26</td>
</tr>
</tbody>
</table>
コントローラのシャーシへの取付け

ControlLogixコントローラを取付ける場合、以下を行なってください。

• コントローラを任意のスロットに取付けます。
• 同じシャーシで複数のコントローラを使用します。

シャーシの電源が投入され、システムが稼動している状態でも、ControlLogixコントローラの取付け/取り外しを行なうことができます。

警告: バックプレーン電源が投入されている状態でモジュールの取付け/取り外しを行うと、アーク放電が発生することがあります。危険な領域での取付けは、爆発につながる可能性があります。

作業を進める前に電源を切断し、作業領域が危険のない領域であることを確認してください。アーク放電が繰り返し発生すると、コントローラとシャーシの対応するコネクタの両方の接点が著しく摩耗する原因になります。接点が摩耗すると、コントローラの動作に影響を与える電気抵抗が発生することがあります。

表7 - 静電防止対策

注意: この装置には、静電気(ESD)に敏感な部品が含まれており、静電気に弱い内部の部品を損傷する恐れがあります。この装置を扱う際は、以下の静電防止対策が必要になります。

• 接地されたものに触れて、静電気を放電してください。
• 認可された接地用リストストラップを着用すること。
• コンポーネントボード上のコネクタやピンに触れないでください。
• 装置内部の回路部品に触れないでください。
• 可能であれば、静電防止ワークステーションを使用する。
• 使用しないときは、装置を適切な静電防止袋に入れて保管してください。

重要: ESMは、以下のいずれかが起きたときに充電を開始します。
• コントローラとESMを電源付きシャーシに取付ける。
• ESMを取付けた状態でコントローラが取付けられたシャーシに電源を投入する。
• ESMを電源付きコントローラに取付ける。

電源の投入後、ESMは最大2時間充電を行いません。このときステータス表示にはCHRGまたはESM Chargingと表示されます。
第1章 コントローラの取付け

1. 上部と底部のサーキットボードをシャーシのガイドに合わせます。

2. モジュールをカチッと音がするまでスライドさせてシャーシにはめ込みます。

3. コントローラと電源または他に取付けたモジュールの高さが同じであることを確認します。

コントローラをシャーシに取付けた後のステータスインジケータの説明については、185ページの「モジュールのトラブルシューティング」を参照してください。

キーの挿入

コントローラを取付けたら、次にキーを挿入します。
SDカードの取付け

以下の手順に従って、SDカードを1756-L7xコントローラに取付けてください。

SDカードは使用しない場合でも、コントローラに取付けておくことをお勧めします。コントローラに回復不能の重大なフォルトが発生した場合は、フォルト情報がカードに保存されます。

1. 設定によりSDカードがロックされているか、またはロック解除されているかを確認します。

警告: 電源を投入した状態でセキュアデジタル(SD)メモリカードの挿入/取り外しを行なうと、アーク放電が発生することがあります。危険な領域での取付けは、爆発につながる可能性があります。作業を進める前に電源を切断し、作業領域が危険のない領域であることを確認してください。

メモリのロック/ロック解除の設定の詳細は、68ページの「メモリカードへのロード/保存」を参照してください。

2. SDカードスロットのドアを開きます。

3. SDカードスロットにSDカードを挿入します。
4. カードはカチッと音がするまでしっかりと押し込みます。

5. SDカードスロットのドアを閉じます。
SDカードの取り外し

1756-L7xコントローラは、SDカードを挿入した状態で出荷されています。以下の手順に従って、SDカードを1756-L7xコントローラから取り外してください。

警告: 電源を投入した状態でセキュアデジタル(SD)メモリカードの挿入/取り外しを行うと、アーク放電が発生することがあります。危険な領域での取付けは、爆発につながる可能性があります。
作業を進める前に電源を切断し、作業領域が危険のない領域であることを確認してください。

重要
- SDカードのステータスインジケータが消灯しており、カードが使用中でないことを確認してから取り外してください。
- 以下を行なうことをお奨めします。
 - SDカードを挿入したままにしておきます。
 - ロックウェル・オートメーションのSDカード(Cat.No. 1784-SD1または1784-SD2)を使用します。
- 他のSDカードもコントローラに使用できますが、ロックウェル・オートメーション以外のSDカードを使用する場合、データの破損や損失が生じることもあります。
- また、ロックウェル・オートメーション以外のSDカードは、産業、環境、認可に関する同等の等級を保持していません。

1. SDカードのインジケータが消灯しており、カードが使用中でないことを確認します。

ヒント コントローラをハード・ラン・モードに設定すると、SDカードを取り外すときにカードへの書込みを禁止することもできます。

2. SDカードスロットのドアを開きます。
第1章 1756-L7x コントローラの取付け

3. SDカードを押してから放してカードをイジェクトします。

4. SDカードを取り出してドアを閉じます。

ESMの取付け

以下の手順に従って、ESMを1756-L7xコントローラに取付けてください。

1. ESMとコントローラの溝型スロットの位置を合わせます。

2. ESMをカチッと音がするまで後方にスライドさせます。

取付けが完了したら、ESMは充電を開始します。以下のステータスメッセージは、充電状態を示しています。
- ESM Charging
- CHRG

注意: ESMの取付け時に製品に損傷を与えないようにするために、ESMをトラックの位置に合わせてから、余分な力を加えずにカチッと音がするまで前方にスライドさせます。
ESMの取付け後、充電のステータスメッセージが表示されるまで最大15秒かかる場合があります。

重要 ESMの充電が完了してからコントローラの電源を切断してください。そうしないと、アプリケーションプログラムが失われる可能性があります。この場合、電源投入時にタイプ1、コード40のメジャーフォルトが記録されます。

完全に充電されたことを確認するには、ステータス表示を使用します。ステータス表示にCHRGまたはESM Chargingのメッセージが表示されなくなると、ESMは完全に充電されています。

ヒント ESMを取付けた後にWallClockTimeオブジェクト属性を確認して、コントローラの時刻が正確であることを確認することをお奨めします。

ESMにはリアルタイムクロックが搭載されています。新規のESMまたは他のコントローラから移動したESMである場合、コントローラのWallClockTimeオブジェクト属性が変更されることがあります。

ESMの取り外し

警告 ESMの残りの貯蔵エネルギーを40μJ以下にまで消費させてからアプリケーションに着脱する必要がある場合は、必ず1756-(SP)ESMNSE(XT)モジュールを使用してください。この場合、以下の手順を実行してから、ESMを取り外します。

- シャーシの電源を切断します。
 シャーシの電源を切断すると、コントローラのOKステータスインジケータは緑色から赤色に変化して消灯します。
- 20分間以上待って残りの貯蔵エネルギー40μJ以下まで消費してから、ESMを取り外します。
 20分経過しても特に何も表示されません。そのため、時間を計っておく必要があります。

警告 バックプレーン電源を投入した状態でエネルギー貯蔵モジュールの取付け/取り外しを行うと、アーク放電が発生することがあります。危険な領域での取付けは、爆発につながる可能性があります。

作業を進める前に電源を切換し、作業領域が危険のない領域であることを確認してください。アーク放電が発生すると、モジュールと接続するコネクタの両方の接点が著しく摩耗する原因になります。

重要 ESMを取り外す前に、WallClockTime属性の変化を考慮してプログラムを調整する必要があります。
ESMを取り外す前に、以下の点を検討してください。

- 以下の ESM モジュールは、1756-L7x または 1756-L7xXT コントローラに取付けられている可能性があります。
 - 1756-ESMCAP
 - 1756-ESMNSE
 - 1756-ESMCAPXT
 - 1756-ESMNSEXT

- 1756-L7x コントローラには、あらかじめ 1756-ESMCAP モジュールが取付けられています。過酷な温度環境向けの 1756-L7xXT コントローラには、あらかじめ 1756-ESMCAPXT モジュールが取付けられています。1756-ESMNSE、1756-ESMNRM、1756-ESMNSEXT、または 1756-ESMNRMXT モジュールの使用方法については、26ページを参照してください。

- シャーシの電源を切断するか、または 1756-L7x または 1756-L7xXT コントローラを電源付きシャーシから取り外して、コントローラの電源を切断した後に、ESM をすぐに取り外さないでください。この場合、コントローラの OK ステータスインジケータが緑色から赤色に変化して消灯するまで待ってから、ESM を取り外します。

- 1756-ESMNSE モジュールを使用できるのは、1756-L73 (8MB) 以下のメモリサイズのコントローラのみです。

- 取付けた ESM の残りの蓄積エネルギーを 40μJ 以下にまで消費させてからアプリケーションに着脱する必要がある場合は、1756-ESMNSE モジュールを使用します。

- 1756-ESMNRM または 1756-ESMNRMXT モジュールは、1756-L7x または 1756-L7xXT コントローラから取り外すことはできません。

- Armor™ コントローラエネルギー貯蔵モジュール (ESM) を取り外したり交換したりすることはありません。
以下の手順に従って、ESMモジュールをコントローラから取り外してください。

1. モードスイッチからキーを取り外します。

重要 以下の手順は、アプリケーションに適用される以下の条件に応じて異なります。

- ESMを電源付き1756-L7xコントローラから取り外す場合は、ステップ2に進んでください。
- シャーシの電源を切断するか、またはコントローラを電源付きシャーシから取り外すことにより、電源が切断された1756-L7xコントローラから、ESMをすぐに取り外さないでください。

この場合、コントローラのOKステータスインジケータが緑色から赤色に変化して消灯するまで待ってから、ESMを取り外します。

OKステータスインジケータの消灯後に、ステップ2に進みます。

2. 親指で黒色の部分を押してから放し、ESMをコントローラから引き出します。
第1章 1756-L7x コントローラの取付け

Notes:
第2章

1756-L6x コントローラの取付け

<table>
<thead>
<tr>
<th>項目</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>お使いになる前に</td>
<td>33</td>
</tr>
<tr>
<td>1756-L6x コントローラの部品</td>
<td>33</td>
</tr>
<tr>
<td>1756-L6x コントローラの取付け</td>
<td>34</td>
</tr>
<tr>
<td>CompactFlash カードの取付け/取り外し</td>
<td>34</td>
</tr>
<tr>
<td>バッテリの接続と交換</td>
<td>38</td>
</tr>
<tr>
<td>コントローラのシャーシへの取付け</td>
<td>40</td>
</tr>
<tr>
<td>シャーシからのコントローラの取り外し</td>
<td>42</td>
</tr>
</tbody>
</table>

注意: この装置は、日光またはその他の紫外線放射源に対する耐性はありません。

表 8- 環境およびエンクロージャ

注意:
この装置は、過電圧カテゴリーIIアプリケーション (IEC60664-1 に定義)、高度2000m (6562 フィート) までディレーティングなし、汚染度2 の産業用環境での使用を意囲しています。

この装置は、居住環境での使用を目的として設計されていないため、居住環境内の無線通信サービスに適切な保護を提供することはできません。

この装置は、「開放型」装置として出荷されています。特定の環境条件に適合し、帯電部への接触による人体への危険を防ぐように適切に設計されたエンクロージャ内に取付ける必要があります。

このエンクロージャは適切な難燃性を持ち、火災の広がりを防ぐための最小限に抑えられるため、非金属製の場合は火災伝播率が5VA であるか、用途に対して承認されたものである必要があります。また、何らかのツールを使用しなければエンクロージャの内部にアクセスできないような構造が必要です。

他のセクションには、特定の製品の安全要件を満たすのに必要な特定のエンクロージャタイプの定格に関する追加情報が記載されています。

他の参考文献:
- 設置要件の詳細は、『配線と接地に関するガイドライン』(Pub.No. 1770-4.1) を参照してください。
- エンクロージャの保護等級については、対応するNEMA規格250およびIEC60529を参照してください。
表9 - 北米における危険な領域に関する規格

以下の情報は、危険な領域で本装置を動作する場合に適用されます。

「CL I, DIV 2, GPA, B, C, D」とマークされている製品は、クラスIディビジョン2グループA, B, C, Dの危険な領域および非危険な領域での使用にのみ適しています。各製品は、危険な場所の温度コードを記した定格銘板でマーキングして出荷されます。システム内で製品を組み合わせる場合、最も厳しい温度コード（最低の「T」番号）を使用すると、システム全体の温度コードの判定に役立ちます。システム内の装置の組合せは、取付け時に各地域の管轄機関による検査を受けなければなりません。

警告：爆発の危険

- 電力が除去されるか、または領域が危険でないと確認できるまでは、装置を取り外さないでください。
- 電力が除去されるか、または領域が危険でないと確認できるまでは、接続を取り外さないでください。
- この製品に付属するねじ、スライディングラッチ、ねじ式のコネクタ、または他の方法でこの装置に接続されている外部接続を固定します。
- 別のコンポーネントを使用すると、クラスIディビジョン2への適合性を損ないます。
- この製品にバッテリーが含まれている場合は、領域が危険でないとわかったときにのみバッテリーを交換してください。

表10 - 欧州における危険な領域に関する規格

この製品にはEXマークがある場合があります。以下の情報は適用されます。

この製品は、欧州連合指令94/9/ECにより定義された爆発の危険がある大気中での使用を意図しており、本指令の付録IIに記載された、ゾーン2（爆発の危険がある大気中）での使用を意図する、カテゴリ3装置の設計および構築に関する、重要な健康および安全の要件（Essential Health and Safety Requirements）に合致することが判明しました。

重要な健康および安全の要件の適合は、EN 60079-15およびEN 60079-0への適合により保証されました。

注意：この装置は、日光またはその他の紫外線放射源に対する耐性はありません。

警告:

- この装置は、ゾーン2環境で使用される場合、IP54以上の保護等級（IEC60529で規定）を備えたATEX認可済みエンクロージャに取付けて、汚染度2（IEC60664-1で規定）以下の環境で使用する必要があります。エンクロージャには、工具での取り外しが可能なカバーまたはドアを使用する必要があります。
- この装置は、ロックウェル・オートメーションにより定義された指定の定格内で使用するものとします。
- この装置は、ATEX認可済みのロックウェル・オートメーション製パックプレーン以外には使用できません。
- この製品に付属するねじ、スライディングラッチ、ねじ式のコネクタ、または他の方法でこの装置に接続されている外部接続を固定します。
- 電力が除去されるか、または領域が危険でないと確認できるまでは、装置を取り外さないでください。
お使いになる前に

コントローラと電源を取付ける前に、ControlLogix®シャーシと電源を取付けるには、1756-IN005を参照してください。

1756-L6xコントローラの部品

以降のセクションでは、1756-L6xコントローラに付属する部品および選択可能な付属品について説明します。

- コントローラには、以下のいずれかのバッテリが付属します。
 - シリーズAコントローラ向け(Cat.No. 1756-BA1)
 - シリーズBコントローラ向け(Cat.No. 1756-BA2)
- キー(Cat.No. 1747-KY)

図2-1756-L6xコントローラに付属する部品

1756-L6xコントローラ

1756-BA1または1756-BA2

1747-KYキー

1756-L6xコントローラに付属しない部品

コントローラに付属する部品に加えて、アプリケーションに応じて以下の選択可能なコンポーネントを追加することができます。

<table>
<thead>
<tr>
<th>アプリケーション要件</th>
<th>使用可能なコンポーネント</th>
</tr>
</thead>
<tbody>
<tr>
<td>コントローラへのRS-232接続</td>
<td>1756-CF3シリアルケーブル</td>
</tr>
<tr>
<td>不揮発性メモリ Activated Flashメモリ</td>
<td>1784-CF128 CompactFlashカード</td>
</tr>
<tr>
<td>バッテリ持続時間の延長によるメモリ保持の強化</td>
<td>1756-BATMバッテリモジュール(1)</td>
</tr>
</tbody>
</table>

(1) 1756-BATMは、シリーズAコントローラには使用できますが、シリーズBコントローラには使用できません。シリーズAコントローラは、以前のコントローラとはバッテリの電源が異なるため、このシリーズのコントローラとはバッテリの注意事項が異なります。使用するバッテリの選択については、「ControlLogix選択ガイド」(Pub.No. 1756-SC001)を参照してください。
第2章 1756-L6xコントローラの取付け

1756-L6xコントローラの取付け

以降のセクションでは、1756-L6xコントローラの取付け方法について説明します。1756-L6xコントローラを取付けるには、以下の表に記載された作業を完了する必要があります。

<table>
<thead>
<tr>
<th>タスク</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompactFlashカードの取付け/取り外し</td>
<td>34</td>
</tr>
<tr>
<td>バッテリの接続と交換</td>
<td>38</td>
</tr>
<tr>
<td>コントローラのシャーシへの取付け</td>
<td>40</td>
</tr>
<tr>
<td>シャーシからのコントローラの取り外し</td>
<td>42</td>
</tr>
</tbody>
</table>

CompactFlashカードの取付け/取り外し方法は、コントローラに応じて異なります。

警告: 電源を投入した状態でCompactFlashカードの挿入/取り外しを行なうと、アーク放電が発生することがあります。危険な領域での取付けは、爆発につながる可能性があります。

作業を進める前に電源を切断し、作業領域が危険のない領域であることを確認してください。

- シリーズAコントローラを使用する場合は、以下のセクションを参照してください。
 - 35ページの「シリーズAコントローラでのCompactFlashカードの取付け」。
 - 35ページの「シリーズAコントローラでのCompactFlashカードの取り外し」。

- シリーズBコントローラを使用する場合は、以下のセクションを参照してください。
 - 36ページの「シリーズBコントローラでのCompactFlashカードの取付け」。
 - 37ページの「シリーズBコントローラでのCompactFlashカードの取り外し」。
シリーズAコントローラでのCompactFlashカードの取付け

以下の手順に従って、シリーズAコントローラにCompactFlashカードを取り付けてください。

1. コントローラの前面が左側を向くように、コントローラを横向きにします。
2. ロッククリップを上に起こします。
3. コントローラ下部のスロットにCompactFlashカードを挿入します。
4. クリップを手前に引いてからカチッと音がするまで下ろし、カードに固定します。

シリーズAコントローラでのCompactFlashカードの取り外し

以下の手順に従って、シリーズAコントローラからCompactFlashカードを取り外します。

1. コントローラのモードスイッチが左側を向くように、コントローラを横向きにします。
2. ロッククリップを上に起こします。
3. スロットからカードをゆっくりと引き出します。
シリーズB コントローラでのCompactFlashカードの取付け

以下の手順に従って、シリーズB コントローラにCompactFlashカードを取り付けます。

1. コントローラのドアを開き、CompactFlashラッチを左側に押し
 ます。
2. Allen-Bradley®のロゴが左側にくるようにして、CompactFlashカードを挿入します。
3. ラッチを解除してCompactFlashカードに固定します。
シリーズBコントローラでのCompactFlashカードの取り外し

以下の手順に従って、シリーズBコントローラからCompactFlashカードを取り外します。

1. OKインジケータが緑色に点灯していることを確認してから、コントローラのドアを開きます。
2. CompactFlashのラッチを左に押し、保持します。
3. イジェクトボタンを押して、カードを取出します。
4. ラッチを外します。
バッテリの接続と交換

本製品は密閉式リチウムバッテリを搭載しています。バッテリは、製品の耐用年数内に交換が必要になる場合があります。
製品の使用済みバッテリは、寿命がきたたら、分別されない都市廃棄物とは別に収集してリサイクルしてください。
バッテリの収集とリサイクルは環境保護に役立ち、価値ある材料が再利用されるため自然資源の保護に貢献します。

警告: バッテリの接続/切断時に、アーク放電が発生することがあります。危険な領域での取付けは、爆発につながる可能性があります。作業を進める前に電源を切断し、作業領域が危険のない領域であることを確認してください。
液漏れのバッテリの処分など、リチウムバッテリの安全な取り扱いについては、『Guidelines for Handling Lithium Batteries』(Pub.No. AG-5.4)を参照してください。

重要: プログラムの損失を防止するには、BATステータスインジケータがオフの場合でも、以下のスケジュールに従って1756-BA1または1756-BA2バッテリを交換してください。

<table>
<thead>
<tr>
<th>シャーシ下2.54cm (1インチ)</th>
<th>バッテリ交換の目安</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25〜+35°C (-13〜+95°F)</td>
<td>交換の必要はありません</td>
</tr>
<tr>
<td>36〜40°C (96.8〜104°F)</td>
<td>3年</td>
</tr>
<tr>
<td>41〜45°C (105.8〜113°F)</td>
<td>2年</td>
</tr>
<tr>
<td>46〜50°C (114.8〜122°F)</td>
<td>16ヶ月</td>
</tr>
<tr>
<td>51〜55°C (122.8〜131°F)</td>
<td>11ヶ月</td>
</tr>
<tr>
<td>56〜70°C (132.8〜150°F)</td>
<td>8ヶ月</td>
</tr>
</tbody>
</table>

注意: バッテリは、涼しく乾燥した環境で保管してくださ。40〜60%の相対湿度で25°C (77°F)の保管環境をお薦めします。輸送中などでは、-45〜+85°C (-49〜+185°F)の環境であれば最大30日間保管できます。液漏れやその他の危険を防止するために、60°C (140°F)以上の環境で30日間以上バッテリを保管しないでください。

バッテリの接続方法は、使用するコントローラーシリーズに応じて異なります。
- シリーズ A コントローラを使用する場合は、39ページを参照してください。
- シリーズ B コントローラを使用する場合は、40ページを参照してください。
シリーズAコントローラでのバッテリの取付け

以下の手順に従って、シリーズAコントローラに1756-BA1バッテリを取り付けます。

1756-BATMバッテリモジュールの取付けや、1756-BATMアセンブリの交換については、『ControlLogix Battery Module Installation Instructions』(Pub.No. 1756-IN576)を参照してください。

注意: シリーズAコントローラには、1756-BA1バッテリまたは1756-BATMバッテリモジュールのみを接続してください。これ以外のバッテリを使用すると、コントローラが損傷する場合があります。

配線端子の位置	接続する配線
上面 | 接続なし
中央 | 黒色のリード(-)
底面 | 赤色のリード(+)

1. バッテリコネクタをバッテリスロットの右側のポートに接続します。
2. カチッと音がするまでバッテリをバッテリスロットに挿入します。
3. バッテリのラベルに日付を記入します。
4. ラベルをコントローラのドアの内側に貼り付けます。
第2章 1756-L6x コントローラの取付け

シリーズB コントローラでのバッテリの取付け

以下の手順に従って、シリーズB コントローラにバッテリを取付けてください。

注意: シリーズB コントローラには、1756-BA2バッテリのみを接続してください。これ以外のバッテリを使用すると、コントローラが損傷する場合があります。

1. バッテリコネクタをバッテリポートに接続します(+赤色、–黒色)。
2. 矢印が上向きになるようにして、バッテリをバッテリストロットに挿入します。
3. バッテリのラベルに日付を記入します。
4. ラベルをコントローラのドアの内側に貼り付けます。

コントローラーのシャーシへの取付け

ControlLogix コントローラを取付ける場合、以下を行なってください。

- コントローラを任意のスロットに取付けます。
- 同じシャーシで複数のコントローラを使用します。

警告: バックプレーン電源が投入されている状態でモジュールの取付け/取り外しを行なうと、アーク放電が発生することがあります。危険な領域での取付けは、爆発につながる可能性があります。作業を進める前に電源を切断し、作業領域が危険のない領域であることを確認してください。アーク放電が繰返し発生すると、コントローラとシャーシの対応するコネクタの両方の接点が著しく摩耗する原因になります。接点が摩耗すると、コントローラの動作に影響を与える電気抵抗が発生することがあります。
以下の手順に従って、コントローラをシャーシに取付けてください。

1. コントローラにキーを挿入します。
2. キーをPROGの位置まで回します。
3. 上部と底部のサーキットボードをシャーシのガイドに合わせます。
4. モジュールをシャーシ内にスライドさせます。
5. コントローラと電源または他のモジュールの高さが同じであることを確認します。
6. 上部と下部のラッチが固定されていることを確認します。

コントローラをシャーシに挿入したら、185ページの「モジュールのトラブルシューティング」でコントローラ情報の状態を確認します。

表11-静電防止対策

注意：この装置には、静電気(ESD)に敏感な部品が含まれており、静電気により内部的に損傷し通常の動作に影響する恐れがあります。この装置を取り扱う場合は、以下の静電防止対策が必要になります。

- 接地されたものに触れ、静電気に放電してください。
- 認可された接地ストラップを着用すること。
- コンポーネントボード上のコネクタやピンに触れないでください。
- 装置内部の回路部品に触れていけください。
- 可能であれば、静電防止ワークステーションを使用する。
- 使用しないときは、装置を適切な静電防止袋に入れて保管してください。

注意：本装置を製造メーカーの指定した方法以外で使用した場合、装置の保護機能が低下する可能性があります。
シャーシからコントローラの取り外し

シャーシの電源が投入されており、システムが稼動している状態でも、コントローラを取り外すことができます。コントローラを取り外すと、コントローラが所有する装置は、構成済みのフォルト状態になります。

以下の手順に従って、コントローラをシャーシから取り外してください。

1. コントローラの上部と下部にあるロックタブを押します。
2. コントローラをシャーシから外側にスライドさせます。

警告：バックプレーン電源が投入されている状態でモジュールの取付け/取り外しを行うと、アーク放電が発生することがあります。危険な領域での取付けは、爆発につながる可能性があります。作業を進める前に電源を切断し、作業領域が危険のない領域であることを確認してください。

アーク放電が繰り返し発生すると、コントローラとシャーシの対応するコネクタの両方の接点が著しく摩耗する原因になります。接点が摩耗すると、コントローラの動作に影響を与える電気抵抗が発生することがあります。
第3章

コントローラの使用の開始

<table>
<thead>
<tr>
<th>項目</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>接続</td>
<td>43</td>
</tr>
<tr>
<td>1756-L7xコントローラへの接続</td>
<td>44</td>
</tr>
<tr>
<td>1756-L6xコントローラへの接続</td>
<td>47</td>
</tr>
<tr>
<td>コントローラのファームウェアのアップグレード</td>
<td>50</td>
</tr>
<tr>
<td>通信バスの設定</td>
<td>60</td>
</tr>
<tr>
<td>コントローラをオンラインにする</td>
<td>61</td>
</tr>
<tr>
<td>コントローラへのダウンロード</td>
<td>61</td>
</tr>
<tr>
<td>コントローラからのアップロード</td>
<td>63</td>
</tr>
<tr>
<td>コントローラの動作モードの選択</td>
<td>65</td>
</tr>
<tr>
<td>モードスイッチを使用した動作モードの変更</td>
<td>65</td>
</tr>
<tr>
<td>Logix Designerを使用した動作モードの変更</td>
<td>67</td>
</tr>
<tr>
<td>メモリカードへのロード/保存</td>
<td>68</td>
</tr>
<tr>
<td>ControlLogixエネルギー貯蔵モジュール(ESM)の使用</td>
<td>73</td>
</tr>
<tr>
<td>ESMによるWallClockTimeの推算値</td>
<td>75</td>
</tr>
<tr>
<td>バッテリの保守(1756-L6xコントローラのみ)</td>
<td>75</td>
</tr>
</tbody>
</table>

接続

コントローラの使用を開始するには、コントローラに接続する必要があります。

1756-L7x接続オプション

1756-L7xには、以下の接続オプションが用意されています。

- USBケーブルを使用して接続します。詳細は、44ページの「1756-L7xコントローラへの接続」を参照してください。

- コントローラのシャーシに通信モジュールを取付けて構成します。詳細は、通信モジュールの取付け方法を参照してください。

ダブル・データ・レート(DDR)バックプレーン通信の使用については、93ページの「ダブル・データ・レート(DDR)バックプレーン通信」を参照してください。
第3章 コントローラの使用の開始

1756-L6x接続オプション

1756-L6xには、以下の接続オプションが用意されています。

- シリアルケーブルを使用して接続します。詳細は、47ページの「1756-L6x コントローラへの接続」を参照してください。

- コントローラのシャーシに通信モジュールを取付けて構成します。詳細は、通信モジュールの取付け方法を参照してください。

ヒント 1756-L6xコントローラファームウェアをアップグレードする場合、シリアルケーブル以外のネットワーク接続を使用することをお勧めします。シリアル接続の場合、他の通信接続と比較して通信速度が大幅に低下します。

1756-L7xコントローラへの接続

このコントローラには、タイプBリセプタクルを使用するUSBポートがあります。ポートはUSB 2.0と互換性があり、通信速度は12Mbpsです。

コントローラのUSBポートを使用するには、RSLogixソフトウェア（Ver. 2.56以降）をワークステーションにインストールする必要があります。ワークステーションとUSBポートの接続にはUSBケーブルを使用します。USBポートに接続すると、ワークステーションから直接、コントローラのファームウェアをアップグレードすることや、プログラムをコントローラにダウンロードすることが可能になります。

注意: USBポートは一時的なローカルでのプログラミングのみを目的としています。永続的な接続には使用しないでください。USBケーブルの長さは3.0m未満で、ハブを含めてはなりません。

警告: USBポートは危険な領域では使用しないでください。
図3-USB接続

USBドライバの構成

USBポートを使用するようにRSLinxソフトウェアを構成するには、最初にUSBドライバをセットアップする必要があります。

以下の手順に従って、USBドライバをセットアップしてください。

1. USBケーブルを使用して、コントローラとワークステーションを接続します。

 Found New Hardware Wizardダイアログボックスが表示されます。

 2. Windows Updateの接続オプションを選択し、Nextをクリックします。

 ヒント USBドライバのソフトウェアが見つからずにインストールがキャンセルされた場合は、RSLinx Classicソフトウェア(Ver.2.57以降)がインストールされていることを確認してください。
第3章 コントローラの使用の開始

3. Install the software automatically (Recommended) (ソフトウェアを自動的にインストール(推奨)) をクリックしてから、Nextをクリックします。ソフトウェアがインストールされます。

4. Finishをクリックして、USBドライバをセットアップします。
5. Communicationsプルダウンメニューから、RSWhoを選択します。

USBポートドライバが表示されます。

コントローラは、仮想シャーシドライバとUSBポートドライバの2つのドライバの下にそれぞれ表示されます。いずれかのドライバを使用して、コントローラを表示できます。
1756-L6xコントローラへの接続

1756-L6x ControlLogixコントローラでは、ワークステーションとの接続にシリアルポートを使用します。

警告: このモジュールまたはケーブルの反対側のシリアルデバイスに電源が投入されている状態でシリアルケーブルを接続または切り離すと、電気的なアークが起こることがあります。危険な領域での取付けは、爆発につながる可能性があります。作業を進める前に電源を断切し、作業領域が危険のない領域であることを確認してください。

ワークステーションとシリアルポートの接続には、シリアルケーブルまたは以下のいずれかのケーブルを使用できます。
- 1756-CP3シリアルケーブル
- SLC™製品ファミリーの1747-CP3ケーブル（このケーブルを使用した場合、コントローラのドアを開じることはできません。）

ワークステーション側 コントローラ側

シリアルケーブルを使用する場合、以下のガイドラインに従ってください。
- 長さ: 最長15.2m（50フィート）。
- 図に示すようにコネクタを配線します。
- 両方のコネクタにシールドを接続します。

ワークステーション側 コントローラ側

| 1 CD |
| 2 RDX |
| 3 TXD |
| 4 DTR |
| COMMON |
| 6 DSR |
| 7 RTS |
| 8 CTS |
| 9 |

| 1 CD |
| 2 RDX |
| 3 TXD |
| 4 DTR |
| COMMON |
| 6 DSR |
| 7 RTS |
| 8 CTS |
| 9 |
第3章 コントローラの使用の開始

コントローラ側のシリアルケーブルをコントローラ前面のRS-232ポートに接続します。

シリアルドライバの構成

以下の手順に従って、RSLinxソフトウェアを使用してRS-232 DF1デバイスドライバをシリアル通信用に構成します。

以下の手順に従って、ドライバを構成してください。

1. RSLinxソフトウェアのCommunicationsメニューから、Configure Driversを選択します。
2. **Available Driver Types**プルダウンメニューから、RS-232 DF1デバイスドライバを選択します。

3. Add Newをクリックします。

Add New RSLinx Driverダイアログボックスが表示されます。

4. ドライバ名を入力してOKをクリックします。
第3章 コントローラの使用の開始

5. シリアルポート設定を指定します。
 a. Comm Portプルダウンメニューから、ケーブルを接続するワークステーションのシリアルポートを選択します。
 b. Deviceプルダウンメニューから、Logix 5550/CompactLogixを選択します。
 c. Auto-Configureをクリックします。

6. 自動構成が正常に終了したら、OKをクリックします。
 自動構成が失敗したら、正しいCommポートが選択されているか確認します。

7. Closeをクリックします。

コントローラのファームウェアのアップグレード

以下のいずれかのツールを使用して、コントローラのファームウェアをアップグレードできます。
- Studio 5000環境パッケージに付属するControlFLASH®ソフトウェア
- Logix DesignerアプリケーションのAutoFlash機能

コントローラのファームウェアをアップグレードするには、以下の表に記載された作業を完了する必要があります。

<table>
<thead>
<tr>
<th>タスク</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>必要なコントローラのファームウェアの判断</td>
<td>51</td>
</tr>
<tr>
<td>コントローラのファームウェアの取得</td>
<td>52</td>
</tr>
<tr>
<td>ControlFLASHソフトウェアを使用したファームウェアのアップグレード</td>
<td>52</td>
</tr>
<tr>
<td>AutoFlashを使用したファームウェアのアップグレード</td>
<td>57</td>
</tr>
</tbody>
</table>
必要なコントローラのファームウェアの判断

重要
アップグレードを実行するには、コントローラをリモート・プログラム・モードまたはプログラムモードに設定し、回復可能な主要フォルトをすべてクリアしておく必要があります。

表12 を使用して、コントローラに必要なファームウェアリビジョンを特定します。

表12 - コントローラに必要なファームウェア

<table>
<thead>
<tr>
<th>コントローラ</th>
<th>シリーズ</th>
<th>ファームウェアリビジョン</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756-L61</td>
<td>A</td>
<td>12.x以降</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>13.40以降</td>
</tr>
<tr>
<td>1756-L62</td>
<td>A</td>
<td>12.x以降</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>13.40以降</td>
</tr>
<tr>
<td>1756-L63</td>
<td>A</td>
<td>10.x以降</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>13.40以降</td>
</tr>
<tr>
<td>1756-L63XT</td>
<td>B</td>
<td>13.40以降</td>
</tr>
<tr>
<td>1756-L64</td>
<td>B</td>
<td>16以降</td>
</tr>
<tr>
<td>1756-L65</td>
<td>B</td>
<td>17以降</td>
</tr>
<tr>
<td>1756-L71</td>
<td>A</td>
<td>20以降</td>
</tr>
<tr>
<td>1756-L72</td>
<td>A</td>
<td>19以降</td>
</tr>
<tr>
<td>1756-L72ROM</td>
<td>A</td>
<td>19以降</td>
</tr>
<tr>
<td>1756-L73</td>
<td>A</td>
<td>19以降</td>
</tr>
<tr>
<td>1756-L73XT</td>
<td>A</td>
<td>19以降</td>
</tr>
<tr>
<td>1756-L73EROM</td>
<td>A</td>
<td>19以降</td>
</tr>
<tr>
<td>1756-L74</td>
<td>A</td>
<td>19以降</td>
</tr>
<tr>
<td>1756-L75</td>
<td>A</td>
<td>19以降</td>
</tr>
</tbody>
</table>
第3章 コントローラの使用の開始

コントローラのファームウェアの取得

コントローラのファームウェアは、Studio 5000環境パッケージに付属します。また、ロックウェル・オートメーションのテクニカルサポートWebサイト（http://www.rockwellautomation.com/support/）からダウンロードすることもできます。

ControlFLASHソフトウェアを使用したファームウェアのアップグレード

ControlFLASHソフトウェアでコントローラファームウェアをアップグレードするには、以下の手順を行なってください。

1. 適切なネットワークコネクションが確立され、RSLinxソフトウェアでネットワークドライバが構成されていることを確認します。
2. ControlFLASHソフトウェアを起動し、Nextをクリックしてアップグレードプロセスを開始します。
3. コントローラのカタログ番号を選択し、Nextをクリックします。
4. ネットワークドライバを展開して、コントローラを見つけます。

USB ネットワークドライバを使用する 1756-L7x コントローラ

5. コントローラを選択し、Nextをクリックします。
6. 目的のファームウェアリビジョンを選択し、Nextをクリックします。

1756-Lxコントローラのアップグレード
ヒント 1756-L7xコントローラを使用しているときに、ファームウェアリビジョン番号の選択後にスクリプト・ファイル・エラーが発生した場合（下の例を参照）、ファームウェアファイルの問題が考えられます。

回復するには、以下の手順を実行します。
- http://www.rockwellautomation.com/support にアクセスし、アップグレードするファームウェアリビジョンをダウンロードします。以前にインストールしたファームウェアリビジョンを、テクニカルサポート Web サイトに公開されているファームウェアリビジョンに置き換えます。
- ファームウェアリビジョンを置き換えても問題が解決されない場合は、ロックウェル・オートメーションのテクニカルサポートにお問い合わせください。

7. Finish をクリックします。
第3章 コントローラの使用の開始

8. 確認のダイアログボックスが表示されたら、Yesをクリックします。

ファームウェア更新が開始される前に、このダイアログボックスが表示されます。必要な操作を実行します。この例では、OKをクリックすると、アップグレードが続行されます。

Progressダイアログボックスに、ファームウェアアップグレードの進捗が表示されます。1756-L7xコントローラは、更新とブロックの進捗を示します。1756-L6xコントローラは、ブロックのみの進捗を示します。

警告: ファームウェアの更新が完全に終了してから、電源を切断して再投入してください。そうしないと、アップグレードが中断されます。

ヒント コントローラのControlFLASHのアップグレードが中断された場合、コントローラはブートファームウェア(ファームウェアリビジョン1.xxx)に戻ります。
アップグレードが完了すると、Update Status ダイアログボックスにアップグレードが完了したことが表示されます。

9. OK をクリックします。

![Update Status ダイアログボックス](image)

10. ControlFLASH ソフトウェアを閉じます。

AutoFlashを使用したファームウェアのアップグレード

以下の手順に従って、AutoFlash 機能を使用してコントローラのファームウェアをアップグレードしてください。

1. 以下を確認します。
 - ネットワーク接続が確立されている。
 - RS LINX Classic ソフトウェアでネットワークドライバが構成されている。
 - コントローラがリモートプログラムまたはプログラムモードであり、回復可能なすべてのメジャーフォルトが解消されている。

2. Logix Designer アプリケーションを使用してコントローラプロジェクトを作成します。

3. Path バーの Who Active をクリックします。
第3章 コントローラの使用の開始

4. コントローラを選択し、Update Firmwareをクリックします。

USB ドライバを使用する 1756-L6x コントローラ

イーサネットドライバを使用する 1756-L6x コントローラ
5. アップグレードするファームウェアリビジョンを選択し、update をクリックします。

6. Update Firmware ダイアログボックスで Yes をクリックします。

7. ControlFLASH ダイアログボックスで Yes をクリックします。

Progress ダイアログボックスに、ファームウェアアップグレードの進捗が表示されます。1756-L7x コントローラは、更新とブロックの進捗を示します。1756-L6x コントローラは、ブロックのみの進捗を示します。
第3章 コントローラの使用の開始

ヒント コントローラのControllFLASHのアップグレードが中断された場合、コントローラはブートファームウェア(ファームウェアリビジョン1.xxx)に戻ります。

ヒント コントローラのControlFLASHのアップグレードが中断された場合、コントローラはブートファームウェア(ファームウェアリビジョン1.xxx)に戻ります。

通信パスの設定

コントローラをオンラインに設定するには、Logix Designerアプリケーションで通信パスを指定する必要があります。コントローラプログラムを作成してから、通信パスを指定します。

プログラムを作成してから、以下の手順に従って通信パスを指定してください。

1. Who Activeをクリックします。

 ![Who Active画面](image1.png)

2. 通信パスを展開し、コントローラを選択します。

 ![Who Active画面](image2.png)

3. Set Project Pathをクリックします。

警告: ファームウェアの更新が完全に終了してから、電源を切断して再投入してください。そうしないと、アップグレードが中断されます。
コントローラをオンラインにする

コントローラをオンラインに設定するには、以下のいずれかの方法を使用します。

- 通信パスの設定後に、Who ActiveダイアログボックスのGo Onlineをクリックします。
- Controller Statusメニューから、Go Onlineを選択します。

コントローラへのダウンロード

コントローラにプロジェクトをダウンロードすると、プロジェクトがLogix Designerアプリケーションからコントローラに移動します。プロジェクトをダウンロードするには、以下の2つの方法があります。

- 62ページの「Who Activeダイアログボックスを使用したダウンロード」
- 63ページの「Controller Statusメニューを使用したダウンロード」
第3章 コントローラの使用の開始

Who Activeダイアログボックスを使用したダウンロード

通信パスの設定後に、Who Activeダイアログボックスの機能を使用して、コントローラへのダウンロードを行なうことができます。以下の手続きに従って、コントローラにダウンロードしてください。

1. 通信パスの設定後に、Who ActiveダイアログボックスのDownloadをクリックします。

2. Downloadダイアログボックスの警告を確認したら、Downloadをクリックします。
Controller Statusメニューを使用したダウンロード

Logix Designerアプリケーションで通信パスを設定した後に、Controller Statusメニューを使用してコントローラへのダウンロードを行うことができます。Controller Statusメニューからダウンロードするには、Downloadを選択します。

図4 - Controller Statusメニューを使用したダウンロード

ヒント ダウンロードが1756-L7xコントローラで完了すると、スクロールステータス表示にプロジェクト名が表示されます。

コントローラからのアップロード

コントローラにプロジェクトをアップロードすると、プロジェクトがコントローラからLogix Designerアプリケーションにコピーされます。プロジェクトをアップロードするには、以下のいずれかの方法を使用します。
- Who Activeダイアログボックスを使用したアップロード、63ページ
- Controller Statusメニューを使用したアップロード、64ページ

Who Activeダイアログボックスを使用したアップロード

通信パスの設定後に、Who Activeダイアログボックスの機能を使用して、コントローラからアップロードすることができます。以下の手順に従って、コントローラからアップロードしてください。

1. 通信パスの設定後に、Who ActiveダイアログボックスのUploadをクリックします。
2. Connected to Uploadダイアログボックスでアップロードするプロジェクトを確認してから、Uploadをクリックします。

Controller Statusメニューを使用したアップロード

プロジェクトで通信パスを設定した後に、Controller Statusメニューを使用してコントローラからアップロードすることができます。Controller Statusメニューからアップロードするには、Uploadを選択します。
コントローラの動作モードの選択

表13を参照して、コントローラの動作モードを決定してください。

表13- コントローラの動作モードと用途

<table>
<thead>
<tr>
<th>行なう操作</th>
<th>動作モード</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ラン</td>
</tr>
<tr>
<td></td>
<td>ラン</td>
</tr>
<tr>
<td>出力をプロジェクトのロジックで指令された状態に設定する。</td>
<td>X</td>
</tr>
<tr>
<td>出力をプログラムモードのための構成済みの状態に設定する。</td>
<td></td>
</tr>
<tr>
<td>タスクを実行(スキャン)する。</td>
<td>X</td>
</tr>
<tr>
<td>Logix Designerアプリケーションを使用してコントローラのモードを変更する。</td>
<td>X</td>
</tr>
<tr>
<td>プロジェクトをダウンロードする。</td>
<td>X</td>
</tr>
<tr>
<td>ControlNetネットワークのスケジュールを設定する。</td>
<td></td>
</tr>
<tr>
<td>オンライン中にプロジェクトを編集する。</td>
<td></td>
</tr>
<tr>
<td>メッセージを送信する。</td>
<td>X</td>
</tr>
<tr>
<td>他のコントローラからのメッセージに応答してデータを送信/受信する。</td>
<td>X</td>
</tr>
<tr>
<td>タグを生成/消費する。</td>
<td>X</td>
</tr>
</tbody>
</table>

モードスイッチを使用した動作モードの変更

モードスイッチを使用して動作モードを変更します。コントローラのモードスイッチは、コントローラおよび制御システムのセキュリティを強化するための機械的な手段です。コントローラの動作モードをラン、リモート、またはプログラムに変更するために、コントローラ上のモードスイッチを現実的に動かす必要があります。コントローラのモードスイッチをランモードに設定すると、オンライン編集やプログラムのダウンロード、ファームウェアのアップグレードは禁止されます。使用できない機能の詳細は、表13を参照してください。

物理的なモードスイッチにより、以下に示すようなユーザによるコントローラへのアクセスを制御する他の認可方法や認証方法を補足することができます。

- Logix CPU Securityツール
- FactoryTalk® Securityサービス

重要 実行中は、コントローラのモードスイッチをランモードに設定し、スイッチからキーを取り外しておくことをお勧めします（該当する場合）。これにより、コントローラへの未承認のアクセスや、コントローラのプログラム、構成、デバイスのファームウェアなどの改ざんを防止できます。コントローラの立て上げやメンテナンス時、および製品のプログラム、構成、ファームウェアの変更に伴い一時的なアクセスが必要な場合は、モードスイッチをリモートまたはプログラムに設定します。
コントローラの前面にあるモードスイッチを使用して、コントローラを以下のいずれかのモードに変更できます。

- ラン (RUN)
- リモート (REM)
- プログラム (PROG)

モードスイッチの位置

<table>
<thead>
<tr>
<th>モード</th>
<th>使用可能なコントローラモード</th>
<th>注意</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN</td>
<td>ランモード - コントローラはプロセス/マシンを常に制御しています。ランモードでは、Logix Designerアプリケーションでプロジェクトを編集することはできません。</td>
<td>ランモードは、すべての状況が安全である場合にのみ使用します。</td>
</tr>
<tr>
<td>REM</td>
<td>リモート・ラン・モード - このモードは、プロジェクトをオンラインで編集できるという点を除いてはランモードと同じです。</td>
<td>リモート・ラン・モードでは、ユーザはプロジェクトファイルをオンラインで変更できます。人体への傷害や装置への損傷が発生しないように、注意して出力を制御してください。</td>
</tr>
<tr>
<td>PROG</td>
<td>プログラムモード - このモードはプログラムモードと同じです。</td>
<td>出力はプログラムモードの状態に指令されるため、危険な状況が発生する可能性があります。</td>
</tr>
</tbody>
</table>

出力モジュール

出力モジュールは、プログラムモードの状態(オン、オフ、または保持)に指令されます。

注: コントローラのモードは、Logix Designerアプリケーションから変更できます。

非常停止(Eストップ)としてプログラムモードを使用しないでください。プログラムモードは安全装置ではありません。

出力はプログラムモードの状態に指令されるため、危険な状況が発生する可能性があります。
Logix Designerを使用した動作モードの変更

モードスイッチを使用して指定するコントローラのモードに応じて、Logix Designerアプリケーションでコントローラの動作モードを変更できます。

コントローラをオンラインに設定し、コントローラのモードスイッチをリモート(REMまたは中央の位置)に設定すると、アプリケーションウィンドウの左上隅にあるController Statusメニューから、以下の動作モードを指定できます。

- リモートプログラム
- リモートラン
- リモートテスト

図6- 動作モード

ヒント 例えば、コントローラのモードスイッチをリモートモードに設定しているとします。コントローラのモードスイッチをランモードまたはプログラムモードに設定すると、メニュー項目が変化します。
メモリカードへのロード/保存

メモリカードへのロード/保存

コントローラをオンラインに設定し、コントローラをプログラムモードまたはリモート・プログラム・モードに設定した後に、以下の手順に従って、プロジェクトをメモリカードに保存してください。

1. Controller Properties ダイアログボックスを開き、Nonvolatile Memory タブをクリックします。
2. Load/Store（ロード/保存）をクリックします。

ヒント
Load/Storeが灰色に表示されている場合は、以下を確認してください。

- 正しい通信パスが指定され、コントローラはプログラムモードでオンラインになっている。
- メモリカードが取付けられている。
- 1756-L7xコントローラで、SDカードをロックしている場合、Storeは灰色表示され、ロック状態がNonvolatile memory/Load Storeダイアログボックスの左下隅に表示されている。ステップ4を参照してください。

メモリカードが取付けられていない場合、以下に示すようにNonvolatile Memoryタブの左下隅にカードが見つからないことを示すメッセージが表示されます。
3. Application requirements and then Load Image, Load Mode, Automatic Firmware Update of the various properties.

The table below describes the loadable Load Image options available in the project.

<table>
<thead>
<tr>
<th>Event Time</th>
<th>Select Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller power on or reboot</td>
<td>Power on, reboots</td>
</tr>
<tr>
<td>Controller loses project or power off</td>
<td>Memory damage, memory hang</td>
</tr>
<tr>
<td>Logix Designer application start</td>
<td>User initiated start</td>
</tr>
</tbody>
</table>

The table below describes the loadable Load Mode options available in the project.

<table>
<thead>
<tr>
<th>Default Controller Setting Mode</th>
<th>Select Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program (remote only)</td>
<td>Program</td>
</tr>
<tr>
<td>Run (remote only)</td>
<td>Run</td>
</tr>
</tbody>
</table>

The table below describes the loadable Automatic Firmware Update options within the controller's configuration tree.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Select Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable and Store Files to Image</td>
<td>Enable and Store Files to Image(1)</td>
</tr>
<tr>
<td>Disable and Delete Files from Image</td>
<td>Disable and Delete Files from Image</td>
</tr>
</tbody>
</table>

(1) This option should be used for devices that do not support the new firmware version.

Important: SD card locked, save project Load Image option set to Power on or reboots, firmware upgrade, controller firmware will not be updated. Instead, the previously saved firmware and project will be loaded.

Important: SD card locked, save project Load Image option set to Power on or reboots, firmware upgrade, controller firmware will not be updated. Instead, the previously saved firmware and project will be loaded.
4. Storeをクリックします。

5. 確認のダイアログボックスが表示されたら、Yesをクリックします。

プロジェクトがメモリカードに保存され、コントローラのステータスインジケータにその状態が示されます。

<table>
<thead>
<tr>
<th>コントローラ</th>
<th>保存ステータスの表示内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756-L6x</td>
<td>保存処理中の場合</td>
</tr>
<tr>
<td></td>
<td>・コントローラのOKインジケータが赤色に点灯します。</td>
</tr>
<tr>
<td></td>
<td>・保存処理中であることを示すLogix Designerアプリケーションのダイアログボックスが表示されます。</td>
</tr>
<tr>
<td></td>
<td>保存が完了した場合</td>
</tr>
<tr>
<td></td>
<td>・コントローラのOKインジケータが赤色に点滅した後に緑色に点灯します。</td>
</tr>
<tr>
<td>1756-L7x</td>
<td>保存処理中の場合</td>
</tr>
<tr>
<td></td>
<td>・OKインジケータが緑色に点滅します。</td>
</tr>
<tr>
<td></td>
<td>・SDインジケータが緑色に点滅します。</td>
</tr>
<tr>
<td></td>
<td>・ステータス表示にSAVEが表示されます。</td>
</tr>
<tr>
<td></td>
<td>・保存処理中であることを示すLogix Designerアプリケーションのダイアログボックスが表示されます。</td>
</tr>
<tr>
<td></td>
<td>保存が完了した場合</td>
</tr>
<tr>
<td></td>
<td>・コントローラのOKインジケータが赤色に点滅した後に緑色に点灯します。</td>
</tr>
<tr>
<td></td>
<td>・コントローラのSDインジケータが消灯します。</td>
</tr>
</tbody>
</table>

| 重要 | 保存が完了するまでは割込み操作を行わないでください。保存を中断した場合、データが破損または失われることがあります。 |
メモリカードからのロード

通信パスを設定し、コントローラをオンラインに設定して、コントローラをプログラムモードに設定した後に、以下の手順に従って、プロジェクトをメモリカードからコントローラにロードしてください。

1. Controller Propertiesダイアログボックスを開き、Nonvolatile Memoryタブをクリックします。
2. Load/Store（ロード/保存）をクリックします。

ヒント Load/Storeが灰色に表示されている場合は、以下を確認してください。

- 正しい通信パスが指定され、コントローラはオンラインになっている。
- メモリカードが取付けられている。

メモリカードが取付けられていない場合、以下に示すようにNonvolatile Memoryタブの左下隅にカードが見つからないことを示すメッセージが表示されます。

ヒント メモリカードにプロジェクトが保存されていない場合、以下のようにNonvolatile Memoryタブの左下隅に、イメージ（プロジェクト）が見つからないことを示すメッセージが表示されます。

ヒント 不揮発性メモリからロード可能なプロジェクトを変更する方法については、「Logix5000™コントローラ不揮発性メモリカードプログラムマニュアル」(Pub.No. 1756-PM017)を参照してください。
第3章 コントローラの使用の開始

4. Loadをクリックします。

5. 確認のダイアログボックスが表示されたら、Yesをクリックします。
プロジェクトがコントローラにロードされ、コントローラのステータスインジケータにその状態が示されます。

<table>
<thead>
<tr>
<th>コントローラ</th>
<th>保存ステータスの表示内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756-L6x</td>
<td>ロード処理中の場合</td>
</tr>
<tr>
<td></td>
<td>• コントローラのOKインジケータが緑色に点滅します。</td>
</tr>
<tr>
<td></td>
<td>• 保存処理中であることを示すLogix Designerアプリケーションのダイアログボックスが表示されます。</td>
</tr>
<tr>
<td></td>
<td>ロードが完了した場合</td>
</tr>
<tr>
<td></td>
<td>• コントローラのOKインジケータが赤色に点滅した後に緑色に点灯します。</td>
</tr>
<tr>
<td>1756-L7x</td>
<td>ロード処理中の場合</td>
</tr>
<tr>
<td></td>
<td>• OKインジケータが赤色に点灯します。</td>
</tr>
<tr>
<td></td>
<td>• SDインジケータが緑色に点滅します。</td>
</tr>
<tr>
<td></td>
<td>• ステータス表示にLOADが表示されます。</td>
</tr>
<tr>
<td></td>
<td>• ロードによりファームウェアも更新する場合、ステータス表示にUPDTが表示されることがあります。</td>
</tr>
<tr>
<td></td>
<td>• 保存処理中であることを示すLogix Designerアプリケーションのダイアログボックスが表示されます。</td>
</tr>
<tr>
<td></td>
<td>ロードが完了した場合</td>
</tr>
<tr>
<td></td>
<td>• コントローラのOKインジケータが赤色に点滅した後に緑色に点灯します。</td>
</tr>
<tr>
<td></td>
<td>• コントローラのSDインジケータが消灯します。</td>
</tr>
</tbody>
</table>

重要 ロードが完了するまでは割込み操作を行わないでください。ロードを中断した場合、データが破損または失われることがあります。
メモリカードに関連するその他のタスク

コントローラのメモリカードを使用して行なうその他のタスクを以下に示します。

- カードからロードしたイメージの変更
- ロード完了の確認
- メモリカードからのイメージのクリア
- 空イメージの保存
- ロードパラメータの変更
- カードを使用したアプリケーションデータの読取り/書き込み

これらのタスクの詳細は、『Logix5000コントローラ 不揮発性メモリカードプログラミングマニュアル』(Pub.No. 1756-PM017)を参照してください。

ControlLogixエネルギー貯蔵モジュール(ESM)の使用

ControlLogix ESMを使用すると、以下のいずれかのタスクを実行できます。

- シャーシの電源を切断した後、または電源付きシャーシからコントローラを取り外した後に、1756-L7xコントローラに電力を供給し、コントローラに搭載された不揮発性ストレージ(NVS)メモリにプログラムを保存します。

以下の表は、エネルギー貯蔵モジュール(ESM)について説明したものですが。

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>説明</th>
</tr>
</thead>
</table>
| 1756-ESMCAP | コンデンサ式ESM
1756-L7xコントローラには、このESMがあらかじめ取付けられています。 |
| 1756-ESMNSE | WallClockTimeバックアップ電源を使用しないコンデンサ式ESM
取付けたESMの残りの貯蔵エネルギーを40μJ以下にまで消費させてからアプリケーションに着脱する必要がある場合
は、このESMを使用します。また、このESMを使用できるのは、1756-L73 (8MB)以下のメモリサイズのコントローラのみです。 |
| 1756-ESMNRM | 安全保護付きコンデンサ式ESM(取り外し不可)
このESMは、USBケーブルやSDカードへの物理アクセスを防止することで、アプリケーションの安全保護レベルを強化します。 |
第3章 コントローラの使用の開始

搭載したNVSメモリへのプログラムの保存

以下の手順に従って、コントローラの電源切断時にプログラムをNVSメモリに保存してください。

1. コントローラの電源を切断します。
 電源を切断するには、以下の2つの方法があります。
 • コントローラをシャーシに取付けている場合、シャーシの電源を切断します。
 • 電源付きシャーシからコントローラを取り外します。
コントローラの電源を切断するとすぐにプログラムの保存が開始され、OKステータスインジケータが緑色（通常動作よりも薄い緑色）に点灯し、プログラムの保存が完了すると赤色になります。
ESMが動作を停止すると、インジケータは消灯します。
以下の図に、コントローラのOKステータスインジケータを示します。

2. OKステータスインジケータが消灯するまで、コントローラのESMをそのままにします。

搭載したNVSメモリのプログラムのクリア

アプリケーションで可能な場合は、以下の手順に従って、1756-L7xコントローラに搭載したNVSメモリからプログラムをクリアしてください。

1. コントローラからESMを取り外します。
2. コントローラの電源を切断します。
 電源を切断するには、以下の2つの方法があります。
 • コントローラをシャーシに取付けている場合、シャーシの電源を切断します。
 • 電源付きシャーシからコントローラを取り外します。
3. ESMをコントローラに再び取付けます。
4. コントローラに電源を再投入するには、以下の2つの方法があります。
 • コントローラをシャーシに取付けている場合、シャーシの電源を再投入します。
 • コントローラをシャーシに取付けていない場合、コントローラをシャーシに再び取付けて、シャーシの電源を再投入します。
ESMによるWallClockTimeの概算値

ESMは、電源切断時にコントローラのWallClockTimeを保持します。以下の表に、コントローラと取付けたESMの温度に基づいたESMの許容遮断時間の概算値を示します。

<table>
<thead>
<tr>
<th>温度</th>
<th>許容遮断時間(日)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1756-ESMCAP</td>
</tr>
<tr>
<td>20°C(68°F)</td>
<td>12</td>
</tr>
<tr>
<td>40°C(104°F)</td>
<td>10</td>
</tr>
<tr>
<td>60°C(140°F)</td>
<td>7</td>
</tr>
</tbody>
</table>

重要 ESMを取付けていない状態で、1756-L7xコントローラをリセット(ハードリセットまたはソフトリセット)する操作を行なうと、コントローラの時計が工場出荷時のデフォルト値(01/01/1998)にリセットされます。

ESMのステータスの確認については、188ページの「一般的なステータスメッセージ」を参照してください。

バッテリの保守(1756-L6xコントローラのみ)

ここでは、ControlLogixコントローラがサポートするリチウムバッテリをモニタおよび保持する方法について説明します。

表14 - 1756-L6xコントローラおよび互換性のあるバッテリ

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>シリーズ</th>
<th>互換性のあるバッテリ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756-L61</td>
<td>A</td>
<td>1756-BA1</td>
</tr>
<tr>
<td>1756-L62</td>
<td></td>
<td>または1756-BA1A</td>
</tr>
<tr>
<td>1756-L63</td>
<td></td>
<td>または1756-BATM</td>
</tr>
<tr>
<td>1756-L61</td>
<td>B</td>
<td>1756-BA2</td>
</tr>
<tr>
<td>1756-L62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L63XT</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

詳細は、「はじめに」の参考資料セクションを参照してください。
第3章 コントローラの使用の開始

バッテリの状態の確認

バッテリが約95%放電すると、バッテリ残量不足の警告が表示されます。
- BATが赤色に点灯します。
- マイナーフォルト (タイプ10、コード10) が記録されます。

<table>
<thead>
<tr>
<th>シャーシ下2.54cm（1インチ）の温度</th>
<th>バッテリ交換の目安</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25〜35℃ (-13〜95°F)</td>
<td>交換の必要はありません。</td>
</tr>
<tr>
<td>36〜40℃ (96.8〜104°F)</td>
<td>3年</td>
</tr>
<tr>
<td>41〜45℃ (105.8〜113°F)</td>
<td>2年</td>
</tr>
<tr>
<td>46〜50℃ (114.8〜122°F)</td>
<td>16ヶ月</td>
</tr>
<tr>
<td>51〜55℃ (123.8〜131°F)</td>
<td>11ヶ月</td>
</tr>
<tr>
<td>56〜70℃ (132.8〜158°F)</td>
<td>8ヶ月</td>
</tr>
</tbody>
</table>

1756-BA1または1756-BATAバッテリの持続時間

以下の手順に従って、1756-BA1または1756-BATAバッテリが1756-L6xシリーズAコントローラのコントローラメモリを保持する時間を概算してください。

1. シャーシ下2.54cm（1インチ）の温度を測定します。
2. コントローラの電源を投入している時間の週単位の割合を算出します。

例 以下に示すいずれかの時間にコントローラをオフにしている場合

- 1週間に5日間（1日当たり8時間）
- 土曜日と日曜日の終日
 この場合、コントローラがオフである割合は52%です。
- 1週間の合計オフ時間 = 7 x 24 = 168時間
- 1週間の合計オフ時間 = （5日 x 8時間/日）+ 土曜日 + 日曜日 = 88時間
- オフ時間の割合 = 88/168 = 52%
3. BAT ステータスインジケータが点灯する前後の最短の概算バッテリ持続時間を算出します。

4. バッテリの使用年数が経過することに、BAT ステータスインジケータが点灯するまでの時間を、表に示した割合で減算します。BAT ステータスインジケータが点灯した後で、時間を減算しないでください。

| 重要 | コントローラに電源を投入しているときにBATステータスインジケータが点灯した場合、バッテリの残りの持続時間は表15の数値よりも短い場合があります。コントローラがオフでBATステータスインジケータを点灯できなかったときに、バッテリが消費された可能性があります。

<table>
<thead>
<tr>
<th>表15 - 1756-BA1の最短のバッテリ持続時間の概算値</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>60°C (140°F)</td>
</tr>
<tr>
<td>25°C (77°F)</td>
</tr>
<tr>
<td>0°C (32°F)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表16 - 1756-BATAの最短のバッテリ持続時間の概算値</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>60°C (140°F)</td>
</tr>
<tr>
<td>25°C (77°F)</td>
</tr>
<tr>
<td>0°C (32°F)</td>
</tr>
</tbody>
</table>

1756-BATMバッテリモジュールとバッテリ持続時間

1756-L6x/A コントローラには、1756-BATM バッテリモジュールを使用します。これは、上位メモリコントローラ向けの推奨バッテリモジュールです。

| 重要 | プロジェクトを不揮発性メモリに保存しない場合、バッテリモジュールの使用をお奨めします。

1756-BATMモジュールの1756-BATAバッテリが約50%放電すると、バッテリ残量不足の警告が表示されます。
- BATが赤色に点灯します。
- マイナーフォルト（タイプ10、コード10）が記録されます。
第3章 コントローラの使用の開始

1756-BA2バッテリ持続時間の概算値

1756-BA2バッテリは、1756-L6x/Bコントローラ用です。表17に、バッテリが残量不足になるまでの概算時間を示します。

表17-温度と電源を切断後再投入する回数に基づいた1756-BA2の最短のバッテリ持続時間の概算値

<table>
<thead>
<tr>
<th>シャーシ下2.54cm (1インチ)の最大温度</th>
<th>電源サイクル回数</th>
<th>BATステータスインジケータが赤色に点灯するまでのバッテリ持続時間</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>プロジェクトサイズ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1MB</td>
</tr>
<tr>
<td>-25～35°C (-13～95°F)</td>
<td>1日に3回</td>
<td>3年</td>
</tr>
<tr>
<td></td>
<td>2回以下/日</td>
<td>3年</td>
</tr>
<tr>
<td>41～45°C (105.8～113°F)</td>
<td>1日に3回</td>
<td>2年</td>
</tr>
<tr>
<td></td>
<td>2回以下/日</td>
<td>2年</td>
</tr>
<tr>
<td>46～50°C (105.8～113°F)</td>
<td>3回以下/日</td>
<td>16ヶ月</td>
</tr>
<tr>
<td>51～55°C (123.8～131°F)</td>
<td>3回以下/日</td>
<td>11ヶ月</td>
</tr>
<tr>
<td>56～70°C (132.8～158°F)</td>
<td>3回以下/日</td>
<td>8ヶ月</td>
</tr>
</tbody>
</table>
警告後の1756-BA2のバッテリ持続時間の概算値

以下の表に、バッテリ残量不足の警告が表示された後のバッテリ持続時間の概算値を示します。バッテリは常に少しずつ消耗しているため、コントローラの電源を切断している場合でも、これらの値を使用します。

重要

コントローラの電源を投入したときに、バッテリ残量不足の警告を確認してください。初めてバッテリ残量不足の警告が表示された場合、この表の値よりもバッテリ持続時間は短くなります。電源切断時にもコントローラはバッテリを消耗しますが、この場合、バッテリ残量不足の警告を表示できません。

<table>
<thead>
<tr>
<th>シャーシ下2.54cm (1インチ)最大温度</th>
<th>電源サイクル回数</th>
<th>BATステータスインジケータが赤色に点灯した後のバッテリ持続時間(最短)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1日に1回</td>
<td>1日に3回、コントローラの電源を切断後再投入する。</td>
</tr>
<tr>
<td></td>
<td>1ヶ月に1回</td>
<td>コントローラが8MBのプロジェクトを使用する。</td>
</tr>
<tr>
<td>0～20°C (32～68°F)</td>
<td>1日に1回</td>
<td>1日に3回、コントローラの電源を切断後再投入する。</td>
</tr>
<tr>
<td></td>
<td>1日に1回</td>
<td>コントローラが8MBのプロジェクトを使用する。</td>
</tr>
<tr>
<td></td>
<td>1ヶ月に1回</td>
<td>コントローラが8MBのプロジェクトを使用する。</td>
</tr>
<tr>
<td>21～40°C (69.8～104°F)</td>
<td>1日に1回</td>
<td>1日に3回、コントローラの電源を切断後再投入する。</td>
</tr>
<tr>
<td></td>
<td>1ヶ月に1回</td>
<td>コントローラが8MBのプロジェクトを使用する。</td>
</tr>
<tr>
<td>41～45°C (105.8～113°F)</td>
<td>1日に1回</td>
<td>1日に3回、コントローラの電源を切断後再投入する。</td>
</tr>
<tr>
<td></td>
<td>1ヶ月に1回</td>
<td>コントローラが8MBのプロジェクトを使用する。</td>
</tr>
<tr>
<td>46～50°C (105.8～113°F)</td>
<td>1日に1回</td>
<td>1日に3回、コントローラの電源を切断後再投入する。</td>
</tr>
<tr>
<td></td>
<td>1ヶ月に1回</td>
<td>コントローラが8MBのプロジェクトを使用する。</td>
</tr>
<tr>
<td>51～55°C (123.8～131°F)</td>
<td>1日に1回</td>
<td>1日に3回、コントローラの電源を切断後再投入する。</td>
</tr>
<tr>
<td></td>
<td>1ヶ月に1回</td>
<td>コントローラが8MBのプロジェクトを使用する。</td>
</tr>
<tr>
<td>56～60°C (132.8～140°F)</td>
<td>1日に1回</td>
<td>1日に3回、コントローラの電源を切断後再投入する。</td>
</tr>
<tr>
<td></td>
<td>1ヶ月に1回</td>
<td>コントローラが8MBのプロジェクトを使用する。</td>
</tr>
<tr>
<td></td>
<td>1日に1回</td>
<td>コントローラが8MBのプロジェクトを使用する。</td>
</tr>
</tbody>
</table>

例

以下の条件では、BATステータスインジケータが赤色に点灯するまで、バッテリは最低20カ月間持続します。

- シャーシ下2.54cm (1インチ)最大温度 = 45°C (113°F)。
- 1日に3回、コントローラの電源を切断後再投入する。
第3章 コントローラの使用の開始

バッテリの保管と処分

バッテリを保管する場合、以下の一般的な規則に従います。

• バッテリは、涼しく乾燥した環境で保管してください。40～60%の相対湿度で25℃（77°F）の保管環境をおすすめします。
• バッテリは、輸送時などには、-45～+85℃（-49～+185°F）で最大30日間保管できます。
• 液漏れやその他の危険を防止するために、60℃（140°F）以上の環境で30日間以上バッテリを保管しないでください。

本製品は密閉式リチウムバッテリを搭載しています。バッテリは、製品の耐用年数内に交換が必要になる場合があります。
製品の使用済みバッテリは、寿命がきたら、分別されない都市廃棄物とは別に収集してリサイクルしてください。
バッテリの収集とリサイクルは環境保護に役立ち、価値ある材料が再利用されるため自然資源の保護に貢献します。
第4章

ControlLogixシステムおよびコントローラ

ControlLogixシステムはシャーシベースで、通信機能やI/O機能の他に、シーケンシャル、プロセス、モーション、およびドライプ制御を使用する制御システムを構成することができます。

構成オプション

ここでは、ControlLogixコントローラで使用可能な多くのシステム構成オプションについて説明します。

スタンドアロンコントローラおよびI/O

最も簡単なControlLogix構成として、単一のシャーシで組み立てるI/O付きスタンドアロンコントローラがあります。

図7・スタンドアロンコントローラおよびI/O

<table>
<thead>
<tr>
<th>項目</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ControlLogixシステム</td>
<td>81</td>
</tr>
<tr>
<td>ControlLogixシステムの設計</td>
<td>84</td>
</tr>
<tr>
<td>ControlLogixコントローラの機能</td>
<td>85</td>
</tr>
</tbody>
</table>
単一シャーシ内の複数のコントローラ

一部のアプリケーションでは、複数のコントローラを単一のControllLogixシャーシで使用できます。例えば、性能を向上させるために、モーションアプリケーションでは複数のコントローラを使用できます。

図8 - 単一シャーシ内の複数のコントローラ
複数のネットワークを介して接続した複数のデバイス

一部のアプリケーションでは、複数の通信ネットワークを使用してさまざまなデバイスをControlLogixシャーシに接続できます。例えば、以下のようシステムを接続できます。

- Ethernetネットワークを介して分散I/Oに接続
- DeviceNetネットワークを介してPowerFlexドライブに接続
- HART接続経由で流量計に接続

図9-複数のネットワークを介して接続した複数のデバイス
第4章 ControlLogixシステムおよびコントローラ

ControlLogixシステムの設計

ControlLogixシステムを設計する場合、アプリケーションでいくつかのシステムコンポーネントを検討する必要があります。これらのコンポーネントには以下のものがあります。

- I/O装置
- モーションコントロールおよびドライプの要件
- 通信モジュール
- コントローラ こんとろーら
- シャーシ
- 電源[デンゲン]
- Studio 5000®環境

ControlLogixシステムのコンポーネントの設計と選択の詳細は、「ControlLogix選択ガイド」(Pub.No. 1756-SG001)を参照してください。

以下のアプリケーションでControlLogixシステムを設計する場合は、詳細は「はじめに」の参考資料セクションを参照してください。

- EtherNet/IP ネットワーク上の統合モーションに関するモーション
- 座標系を使用するモーション
- SERCOSでのモーションまたはアナログモーション
- 冗長性の拡張
- 標準の冗長性
- SIL2
- Studio 5000®サブルーチンによるSIL2フォルトトレランスI/O
- Studio 5000アドオン命令によるSIL2フォルトトレランスI/O
ControlLogixコントローラの機能

ControlLogixコントローラは、ロックウェル・オートメーションが提供するLogix5000™ファミリーのコントローラです。以下、各ControlLogixコントローラの機能を以下に説明します。

システム、通信、プログラミング機能

表18に、ControlLogixコントローラで使用できるシステム、通信、およびプログラミング機能を示します。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>コントローラのタスク</td>
<td>- 32タスク</td>
<td>- 32タスク</td>
<td>- 32タスク</td>
</tr>
<tr>
<td></td>
<td>- 100プログラム/タスク</td>
<td>- 1000プログラム/タスク</td>
<td>- 1000プログラム/タスク</td>
</tr>
<tr>
<td></td>
<td>- イベントタスク:すべてのイベントトリガ</td>
<td>- イベントタスク:すべてのイベントトリガ</td>
<td>- イベントタスク:すべてのイベントトリガ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1ポート – USB 2.0フルスピード、タイプB</td>
<td>1ポート – USB 2.0フルスピード、タイプB</td>
</tr>
<tr>
<td>通信オプション</td>
<td>• EtherNet/IP</td>
<td>• EtherNet/IP</td>
<td>• EtherNet/IP</td>
</tr>
<tr>
<td></td>
<td>• ControlNet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DeviceNet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Data Highway Plus™</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• リモートI/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Synclink™</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• サードパーティのプロセスおよびデバイスネットワーク</td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリアルポート通信</td>
<td>• ASCII</td>
<td></td>
<td>適用しない</td>
</tr>
<tr>
<td></td>
<td>• DF1全二重/半二重</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DF1無線モデム</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DH-485</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ロジックを介したModbus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>サポートされるコントローラ接続(最大)</td>
<td>250</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>ネットワークモジュール当たりのネットワークコネクション</td>
<td>• 128 ControlNet (1756-CN2/B)</td>
<td>256 EtherNet/IP; 128 TCP (1756-EN2x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 100 ControlNet (1756-CN2/A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 40 ControlNet (1756-CN8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 256 EtherNet/IP; 128 TCP (1756-EN2x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 128 EtherNet/IP; 64 TCP (1756-EN8T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>コントローラの冗長性</td>
<td>完全にサポート(モーションアプリケーションを除く)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>統合モーション</td>
<td>• EtherNet/IPネットワーク上の統合モーション</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SERCOS Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• アナログオプション</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- エンコーダ入力</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- LDT入力</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- SSI入力</td>
<td></td>
<td></td>
</tr>
<tr>
<td>プログラミング言語</td>
<td>• リレーラダー</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 構造化テキスト</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ファンクションブロック</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• シーケンシャル・ファンクション・チャート(SFC)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
メモリオプション

ControlLogix コントローラは、さまざまなユーザメモリを組み合わせて使用できます。表19を使用して必要メモリ容量に適したコントローラを選択してください。

表19 - ControlLogix コントローラのメモリオプション

<table>
<thead>
<tr>
<th>コントローラ</th>
<th>データ/ロジック用のメモリ</th>
<th>I/O</th>
<th>バックアップメモリ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756-L61</td>
<td>2MB</td>
<td></td>
<td>CompactFlashカード(1)</td>
</tr>
<tr>
<td>1756-L62</td>
<td>4MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L63, 1756-L63XT</td>
<td>8MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L64</td>
<td>16MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L65</td>
<td>32MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L71</td>
<td>2MB</td>
<td>0.98MB (1006KB)</td>
<td>SDカード</td>
</tr>
<tr>
<td>1756-L72</td>
<td>4MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L73, 1756-L73XT</td>
<td>8MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L74</td>
<td>16MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L75</td>
<td>32MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L72EROM</td>
<td>4MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-L73EROM</td>
<td>8MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) これらの不揮発性メモリカードはオプションであり、コントローラには付属しません。

重要 1756-L7x コントローラは、SDカードを挿入した状態で出荷されます。SDカードを取り外さないことをお勧めします。これは、フォルトが発生した場合に診断データが自動的にカードに書込まれ、そのデータをロックウェル・オートメーションがトラブルシューティングに利用できるためです。

ロックウェル・オートメーションのSDカード(Cat.No.1784-SD1または1784-SD2)を使用することをお勧めします。他のSDカードもコントローラーに使用できますが、ロックウェル・オートメーションでは、コントローラに他のSDカードを使用した場合のテストを実施していません。ロックウェル・オートメーション以外のSDカードを使用する場合、データの破損や損失が生じることがあります。また、ロックウェル・オートメーション以外のSDカードは、産業、環境、認可に関する同等の等級を保持していない場合があり、ロックウェル・オートメーションのカードと比較して、同じ産業環境での使用に対応できない場合があります。
電子キーイング

電子キーイングは、制御システムで間違ったデバイスを使用する可能性を低減します。プロジェクト内で定義されたデバイスと取付けられたデバイスを比較します。キーイングに失敗した場合、フォルトが起こります。以下の属性が比較対象です。

以下の電子キーイングオプションを使用できます。

電子キーイングオプション

<table>
<thead>
<tr>
<th>項目</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor (ベンダー)</td>
<td>デバイスの製造メーカー</td>
</tr>
<tr>
<td>Device Type (デバイスタイプ)</td>
<td>製品の一般的なタイプ（例:デジタルI/Oモジュール）</td>
</tr>
<tr>
<td>Product Code (製品コード)</td>
<td>製品の特定のタイプ。製品コードはカタログ番号にマップされる。</td>
</tr>
<tr>
<td>Major Revision (メジャーリビジョン)</td>
<td>デバイスの機能を表す番号</td>
</tr>
<tr>
<td>Minor Revision (マイナーリビジョン)</td>
<td>デバイスの動作変更を表した番号</td>
</tr>
</tbody>
</table>

次のキーイングオプションを選択する場合、各オプションの意味合いを慎重に検討します。

意味

<table>
<thead>
<tr>
<th>キーイングオプション</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatible Module (互換モジュール)</td>
<td>取付けられたデバイスが定義されたデバイスをエミュレートできる場合。取付けられたデバイスがプロジェクトで定義されたデバイスのキーを承認できるようにする。Compatible Moduleでは、以下の特性を持つ他のデバイスに置き換えることができる。</td>
</tr>
<tr>
<td>• 同じカタログ番号</td>
<td></td>
</tr>
<tr>
<td>• メジャーリビジョンが同じか、それ以上</td>
<td></td>
</tr>
<tr>
<td>• マイナーリビジョンについては以下に従う。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- メジャーリビジョンが同じ場合は、マイナーリビジョンが同等またはそれ以上であることが必要</td>
</tr>
<tr>
<td></td>
<td>- メジャーリビジョンが大きい場合、マイナーリビジョンは任意の番号</td>
</tr>
<tr>
<td>Disable Keying (キーイング無効)</td>
<td>デバイスとの通信試行時にキーイングは考慮されない。Disable Keyingでは、プロジェクトで指定されたタイプ以外のデバイスで通信を行うことができる。</td>
</tr>
<tr>
<td>注意: Disable Keyingの使用には特に注意が必要です。使い方を誤ると、人身傷害もしくは死亡、物的損害、経済的損失につながる可能性があろう。</td>
<td></td>
</tr>
<tr>
<td>Exact Match (正確に一致)</td>
<td>すべてのキーイング属性は通信を確立するために一致する必要がある。属性が一致しない場合、デバイスとの通信は発生しない。</td>
</tr>
</tbody>
</table>

キーイングオプションを選択する場合、各オプションの意味合いを慎重に検討します。

重要 オンライン中に電子キーイングのパラメータを変更すると、デバイスとそのデバイスを介して接続されているすべてのデバイスへのコネクションが中断されます。他のコントローラからの接続も切断されます。デバイスへのI/Oコネクションが中断された場合、データが損失する可能性があります。
詳細

電子キーイングの詳細は、『Electronic Keying in Logix5000 Control Systems Application Technique』(Pub.No. LOGIX-AT001) を参照してください。
通信ネットワーク

<table>
<thead>
<tr>
<th>項目</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用可能なネットワーク</td>
<td>89</td>
</tr>
<tr>
<td>EtherNet/IPネットワーク通信</td>
<td>90</td>
</tr>
<tr>
<td>ControlNetネットワーク通信</td>
<td>94</td>
</tr>
<tr>
<td>DeviceNetネットワーク通信</td>
<td>97</td>
</tr>
<tr>
<td>Data Highway Plus (DH+)ネットワーク通信</td>
<td>100</td>
</tr>
<tr>
<td>汎用リモートI/O (RIO)通信</td>
<td>102</td>
</tr>
<tr>
<td>Foundation Fieldbus通信</td>
<td>104</td>
</tr>
<tr>
<td>HART通信</td>
<td>105</td>
</tr>
</tbody>
</table>

ControlLogix®システムでは、複数の通信ネットワークを使用できます。表20に、ControlLogixシステムで一般的に使用されるネットワークアプリケーションと、そのアプリケーションをサポートするために使用できるネットワークを示します。

<table>
<thead>
<tr>
<th>アプリケーションタイプ</th>
<th>サポートされるネットワーク</th>
</tr>
</thead>
<tbody>
<tr>
<td>統合モーション</td>
<td>EtherNet/IP</td>
</tr>
<tr>
<td>EtherNet/IPネットワーク上の統合モーションによる同期</td>
<td>EtherNet/IP</td>
</tr>
<tr>
<td>他のデバイスとのメッセージの送受信(Studio 5000 Logix Designer®アプリケーションによるコントローラへのアクセスなど)</td>
<td>システムのネットワーク設計の詳細は、『Ethernet Design Considerations Reference Manual』(Pub.No. ENET-RM002)を参照してください。</td>
</tr>
</tbody>
</table>
EtherNet/IPネットワーク通信

EtherNet/IPネットワークは、TCP/IPおよびUDPなどの標準的なインターネットプロトコル上でCIP(Common Industrial Protocol:産業用共通プロトコル)レイヤを使用して制御、構成、およびデータ収集サービスの完全なスイートを提供します。広く使用されている規格をこのように組み合わせることで、情報データの交換と制御アプリケーションをサポートするのに必要な機能が得られます。

EtherNet/IPネットワークでは、市販のイーサネットコンポーネントと物理メディアを使用するため、コスト効率の高いプラント・フロア・ソリューションを実現できます。

図10 - EtherNet/IPネットワークの例

EtherNet/IPモジュールの詳細は、「Logix5000™制御システム内のEtherNet/IPモジュールユーザーズマニュアル」(Pub.No. ENET-UM001)を参照してください。
ControlLogix EtherNet/IPモジュールの機能

ControlLogix EtherNet/IP通信モジュールは、以下の機能を備えています。

- メッセージ送信、プロデューサ / コンシューマタグ、HMI、および分散I/Oのサポート
- 標準的なTCP/UDP/IPプロトコルでのメッセージをカプセル化した機能
- ControlNet/DeviceNetネットワークと共通のアプリケーションレイヤ
- RJ45ケーブルによるネットワーク接続
- 半二重/全二重の10/100MB動作のサポート
- 標準スイッチのサポート

ControlLogix EtherNet/IP通信モジュール

ControlLogixシステムのEtherNet/IPネットワーク通信では、複数のモジュールを選択できます。表21にその主要機能を示します。

表21 - EtherNet/IP通信モジュールと機能

<table>
<thead>
<tr>
<th>モジュール</th>
<th>用途</th>
</tr>
</thead>
</table>
| 1756-ENBT | • コントローラをI/Oモジュールに接続します(分散I/O用のアダプタが必要)。
• 他のEtherNet/IPデバイスと通信します(メッセージ)。
• Logix5000コントローラ間で共有するデータの経路として機能します(生成/消費)。
• EtherNet/IPノードをブリッジ接続して、他のネットワーク上のディバイスにメッセージを転送します。 |
| 1756-EN2T | • 1756-ENBTモジュールと同じ機能を備えますが、容量が2倍になり、より要件の厳しいアプリケーションに対応します。
• USBポートを使用した一時的な構成接続を確立します。
• ロータリスイッチを使用してIPアドレスを迅速に構成します。
• 8つのCIP Motion軸をサポートします。 |
| 1756-EN2F | • 1756-EN2Tモジュールと同じ機能を備えます。
• モジュールのLCファイバーコネクタによりファイバーメディアを接続します。 |
| 1756-EN2TR | • 1756-EN2Tモジュールと同じ機能を備えます。
• リングトポロジでの通信をサポートし、DLR（デバイス・レベル・リング）の単一フォルト・トランス・リング・ネットワークに対応します。 |
| 1756-EN2TRXT | • 1756-EN2Tモジュールと同じ機能を備えます。
• リングトポロジでの通信をサポートし、DLR（デバイス・レベル・リング）の単一フォルト・トランス・リング・ネットワークに対応します。
• 温度が-25〜+70℃(-13〜+158°F)の過酷な環境で動作する。 |
| 1756-EN3TR | • 1756-EN2TRモジュールと同じ機能を備えます。
• EtherNet/IPネットワーク上の統合モーションを拡張します。
• 最大128モーション軸をサポートします。 |
第5章 通信ネットワーク

表21 - EtherNet/IP通信モジュールと機能

<table>
<thead>
<tr>
<th>モジュール</th>
<th>用途</th>
</tr>
</thead>
</table>
| 1756-EN2TSC | 1756-ENBTモジュールと同じ機能を備えますが、容量が2倍になり、より要件の厳しいアプリケーションに対応します。
USBポートを使用した一時的な構成接続を確立します。
ロータリスイッチを使用してIPアドレスを迅速に構成します。
| 1756-EN2TXT | 1756-EN2Tモジュールと同じ機能を備えます。
温度が-25〜+70°C (-13〜+158°F)の過酷な環境で動作する。
| 1756-EWEB | コントローラの情報に外部からアクセスできるように、Webページをカスタマイズできます。
インターネットブラウザによる、ローカルのControlLogixコントローラのタグへのリモートアクセスを提供します。
他のEtherNet/IPデバイスと通信します(メッセージ)。
EtherNet/IPノードをブリッジ接続して、他のネットワーク上のデバイスにメッセージを転送します。
ソケットインターフェイスを使用するEtherNet/IPベースではないEthernetデバイスをサポートします。
このモジュールは、I/Oおよびプロデューサ/コンシューマタグをサポートしません。
EtherNet/IPネットワークのソフトウェア

表22に、EtherNet/IPネットワークおよびモジュールで使用されるソフトウェアを示します。

表22 - EtherNet/IPネットワーク向けのソフトウェア

<table>
<thead>
<tr>
<th>ソフトウェア</th>
<th>用途</th>
<th>必須/オプション</th>
</tr>
</thead>
</table>
| Logix Designerアプリケーション | • ControlLogixプロジェクトを構成する。
• EtherNet/IP通信を定義する。 | 必須かどうか |
| RSLinx® Classicまたは RSLinx® Enterprise | • 通信デバイスを構成する。
• 診断を行う。
• デバイス間の通信を確立する。 | 必須かどうか |
| BOOTP/DHCPユーティリティ | Ethernet/IPネットワークのデバイスのIPアドレスを割付ける。 | オプション |
| RSLinx® Classicまたは RSLinx® Enterprise | • 通信デバイスを構成する。
• 診断を行う。
• デバイス間の通信を確立する。 | 必須かどうか |
| RSNetWorx™ for EtherNet/IP | • IPアドレス/ホスト名でEtherNet/IPデバイスを構成する。
• バンド幅のステータスを取得する。 | オプション |

EtherNet/IPネットワーク上のコネクション

コントローラが使用するコネクション数は、システム内の他のデバイスと通信できるようにコントローラを構成すると決まります。コネクションは、非接続型メッセージに比べて信頼性の高いデバイス間通信を行うリソースの割当てです。

EtherNet/IPコネクションはすべて非スケジュール型です。要求パケット間隔(RPI)によるI/O制御またはプログラム(MSG命令など)によって、非スケジュール型コネクションがトリガされます。非スケジュール型メッセージでは、必要なときにデータを送受信できる。

ダブル・データ・レート (DDR)バックプレーン通信

1756-L7xコントローラでは、DDR通信を実現できます。1756-L7xコントローラと共に使用する場合、以下の通信モジュールがDDRをサポートします。また、最小限必要なシリーズも併記します。

• 1756-EN2T/C
• 1756-EN2TR/B
• 1756-EN2TF/B
• 1756-EN2TXT/C
• 1756-EN3TR/A
• 1756-RM/B
• 1756-RM2/A

DDR通信は、通信パスのすべてのモジュールがDDRモジュールである場合、つまり、DDRモジュール間のみの単一の会話(コネクション)である場合に最も効率的に実現されます。
第5章 通信ネットワーク

DDR通信は、シャーシにDDRモジュールとそれ以外のモジュールを組み合わせて使用できます。DDR通信は、これをサポートするモジュール間で発生します。DDR以外のモジュールをシャーシに追加している場合、そのモジュール間の通信はDDR以外のレートになります。

例えば、1つのシャーシで、スロット0と1に取付けた1つの1756-L7xコントローラをDDRを使用して相互に通信し、スロット2と3に取付けた2つの1756-L6xコントローラをDDR以外を使用して通信することもできます。

シャーシ内で複数のモジュールにマルチキャスト通信を使用する場合、伝送速度は最低速度のモジュール(DDR以外のモジュール)に制限されます。

例えば、1756-L7xコントローラが同じマルチキャストコネクションにある1756-L7xコントローラおよび1756-L6xコントローラに対してタグを生成している場合、DDR以外のレートの伝送速度を使用する必要があります。

ControlNetネットワーク

ControlNetネットワークは、リアルタイム制御ネットワークであり、タイムクリティカルなI/Oとインターロックデータとメッセージデータの両方の高速転送を実現します。これには、単一の物理メディアリンクでのプログラムおよび構成データのアップロードとダウンロードが含まれます。ControlNetネットワークの高効率データ転送機能は、システムやアプリケーションのI/O性能およびピア・ツー・ピア通信を大幅に強化します。

ControlNetネットワークは定時性および再現性が高く、デバイスによるネットワークへの接続/切断時の影響を受けません。この特質により、信頼性が高く、リアルタイムの同期および調整機能を実装します。

多くの場合、ControlNetネットワークは、以下のように使用されます。

- ControlNetネットワークは多数のI/Oポイントを効率的に処理できるため、リモートI/O(RIO)ネットワークの代替
- 複数の分散型DeviceNetネットワークのバックボーン
- ピア・インターロック・ネットワーク
通信ネットワーク 第5章

図11 - ControlNetネットワークの概要

この例では、以下の処理はControlNetネットワークを介して実行されます。

- コントローラがタグを生成/消費します。
- コントローラが、以下のMSG命令を起動します。
 - データの送受信
 - デバイスの構成
- ワークステーションを以下の目的で使用します。
 - ControlNetデバイスとControlNetネットワークの両方を構成します。
 - コントローラからプロジェクトをダウンロード/アップロードします。

ControlNetモジュールの詳細は、『Logix5000制御システム内のControlNetモジュールユーザーズマニュアル』(Pub.No. CNET-UM001)を参照してください。

ControlLogix ControlNetモジュールの機能

ControlNet通信モジュールは、以下の機能を備えています。

- メッセージ送信、プロデューサ/コンシューマタグ、分散I/Oのサポート
- DeviceNetおよびEtherNet/IPネットワークと共通のアプリケーションレイヤを使用
- ルーティングテーブルが必要
- 同軸/ファイバーリピータの使用による距離の延長や分離をサポート
第5章 通信ネットワーク

冗長性メディアをサポート（1756-CNBR、1756-CN2R、および1756-CN2RXT モジュールのみ）

ControlLogix ControlNet モジュール

表23に、使用可能なControlLogix ControlNet モジュールとその主要機能を示します。

表23 - ControlNetモジュールと機能

<table>
<thead>
<tr>
<th>モジュール</th>
<th>用途</th>
</tr>
</thead>
</table>
| 1756-CNB | • I/O モジュールを制御します。
| | • 他のControlNetデバイスと通信します(メッセージ)。
| | • 他のLogic5000コントローラとデータを共有します(生成/消費)。
| | • ControlNet リンクをブリッジ接続して、他のネットワーク上のデバイスにメッセージを転送します。 |
| 1756-CNBR | • 1756-CNBモジュールと同じ機能を備えています。
| | • ControlNet冗長メディアをサポートします。 |
| 1756-CN2 | • 1756-CN8モジュールと同じ機能を備えています。
| | • 容量が2倍になり、より要件の厳しいアプリケーションに対応します。 |
| 1756-CN2R | • 1756-CN2モジュールと同じ機能を備えています。
| | • ControlNet冗長メディアをサポートします。 |
| 1756-CN2RXT| • 1756-CN2Rモジュールと同じ機能を備えています。
| | • 温度が-25〜+70°C (-13〜+158°F)の過酷な環境で動作する。 |

ControlNetネットワークのソフトウェア

表24に、ControlNetネットワークおよびモジュールで使用されるソフトウェアを示します。

表24 - ControlNetネットワーク向けのソフトウェア

<table>
<thead>
<tr>
<th>ソフトウェア</th>
<th>用途</th>
<th>必須/オプション</th>
</tr>
</thead>
</table>
| Logix Designerアプリケーション | • ControlLogixプロジェクトを構成する。
 | • ControlNet通信を定義する。 | 必須かどうか |
| RSNetWorx™ for ControlNet | • ControlNetデバイスを構成する。
 | • ネットワークのスケジュールを設定する。 | |
| RSLinx ClassicまたはEnterprise | • 通信デバイスを構成する。
 | • 診断を行う。
 | • デバイス間の通信を確立する。 | |
ControlNetネットワーク上のコネクション

コントローラが使用するコネクション数は、システム内の他のデバイスと通信できるようにコントローラを構成すると決まります。コネクションは、非接続型メッセージに比べて信頼性の高いデバイス間通信を行うためのリソースの割当てです。

表25 - ControlNetコネクション

<table>
<thead>
<tr>
<th>コネクション</th>
<th>定義</th>
</tr>
</thead>
</table>
| スケジュール型 (ControlNetネットワーク固有) | スケジュール型コネクションはControlNet通信で固有です。スケジュール型コネクションは、定義済みの間隔（要求パケット間隔（RPI））で繰返しデータを送受信できます。例えば、モジュールからデータを指定間隔で繰返し受信するため、IOモジュールへのコネクションはスケジュール型コネクションです。他のスケジュール型コネクションには、以下へのコネクションが含まれます。
 • 通信デバイス
 • プロデューサ/コンシューマタ
ControlNetネットワークでは、RSNetWorx for ControlNetソフトウェアを使用して、すべてのスケジュール型コネクションを有効にし、ネットワーク更新時間（NUT）を確立する必要があります。コネクションをスケジュール設定すると、そのコネクションの処理専用のネットワークバンド幅が予約されます。 |
| 非スケジュール型 | 非スケジュール型コネクションでは、要求パケット間隔（RPI）またはプログラム（MSG命令など）によってデバイス間のメッセージがトリガされ、転送されます。非スケジュール型メッセージでは、必要なときにデータを送受信できます。非スケジュール型コネクションは、スケジュール型コネクションを割当てた後で残りのネットワークバンド幅を使用します。 |

ControlNetモジュールのコネクション

1756-CNBと1756-CNBR通信モジュールは、ControlNetネットワークを介した64のCIPコネクションをサポートしています。ただし、最適な性能を得るには、モジュールごとに最大48コネクションで構成する必要があります。

1756-CN2, 1756-CN2R, 1756-CN2RXT 通信モジュールは、ControlNetネットワーク上で128のコネクションをサポートし、すべてのコネクションを性能低下のリスクなしに構成できます。

DeviceNetネットワーク通信

DeviceNetネットワークはCIP (Common Industrial Protocol)を使用して、産業デバイスの制御、構成、およびデータ収集機能を提供します。DeviceNetネットワークは、定評のあるコントローラ・エリア・ネットワーク(CAN)テクノロジーを使用し、取付けコストを低減して、取付け時間がコストのかかるダウンタイムを短縮します。
DeviceNetネットワークでは、各デバイスをI/Oモジュールに配線することで、プラント・フロア・コントローラに直接接続できるため、デバイスの各種情報を取得できます。

ControlLogix システムで DeviceNet 通信を使用するには、1756-DNB DeviceNet通信モジュールが必要です。

図12 - ControlLogix DeviceNetネットワークの概要

この例では、ControlLogixコントローラは、1788-EN2DNR リンキングデバイスを介して DeviceNet ネットワークおよびデバイスに接続されています。

DeviceNetモジュールおよびデバイスの詳細は、『Logix5000制御システム内のDeviceNetモジュールユーザーズマニュアル』(Pub.No. DNET-UM004)を参照してください。

ControlLogix DeviceNetモジュールの機能

DeviceNet通信モジュールは、以下の機能を備えます。

- コントローラ間ではなく、デバイスへのメッセージ送信をサポートする。
- ControlNet および EtherNet/IP ネットワークと共通のアプリケーションレイヤを共有する。
- データ収集やフォルト検出を改善するために診断を実行する。
- 標準的なハード配線システムよりも必要な配線が少ない。
ControlLogix DeviceNetブリッジモジュールおよびリンクデバイス

表26に、DeviceNetネットワークで使用できるControlLogix DeviceNetブリッジモジュールおよびリンクデバイスを示します。

表26 - DeviceNet通信モジュールと機能

<table>
<thead>
<tr>
<th>モジュール/デバイス</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756-DNB</td>
<td>• I/Oモジュールを制御します。</td>
</tr>
<tr>
<td></td>
<td>• 他のDeviceNetデバイスと通信します（メッセージを使用）。</td>
</tr>
<tr>
<td>1788-EN2DNR</td>
<td>EtherNet/IPネットワークをDeviceNetネットワークにリンクします。</td>
</tr>
<tr>
<td>1788-CN2DN</td>
<td>ControlNetネットワークをDeviceNetネットワークにリンクします。</td>
</tr>
</tbody>
</table>

DeviceNetネットワークのソフトウェア

表27に、DeviceNetネットワークおよびモジュールで使用されるソフトウェアを示します。

表27 - DeviceNetネットワーク向けのソフトウェア

<table>
<thead>
<tr>
<th>ソフトウェア</th>
<th>用途</th>
<th>必須/オプション</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logix Designerアプリケーション</td>
<td>• ControlLogixプロジェクトを構成する。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DeviceNet通信を定義する。</td>
<td>必須かどうか</td>
</tr>
<tr>
<td>RSNetWorx™ for DeviceNet</td>
<td>• DeviceNetデバイスを構成する。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• これらのデバイスのスキャンリストを定義する。</td>
<td></td>
</tr>
<tr>
<td>RSLinx® ClassicまたはEnterprise</td>
<td>• 通信デバイスを構成する。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 診断を行なう。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• デバイス間の通信を確立する。</td>
<td></td>
</tr>
</tbody>
</table>

DeviceNetネットワーク上のコネクション

ControlLogixコントローラでは、1756-DNBモジュールごとに2つのコネクションが必要です。1つはモジュールステータスと構成用のコネクションで、もう1つは、デバイスデータ用のラック最適化コネクションです。
第5章 通信ネットワーク

ControlLogix DeviceNetモジュールのメモリ

1756-DNBモジュールには、ネットワーク上のDeviceNetデバイスの入出力データ用に一定のメモリセクションが用意されています。ネットワーク上の各デバイスには、スキャナの入力または出力のメモリが必要です。一部のデバイスはデータを送受信するため、入力と出力の両方のメモリが必要です。1756-DNBモジュールは、以下の最大追加メモリをサポートしています。

- 124 DINTの入力データ
- 123 DINTの出力データ

Data Highway Plus (DH+) ネットワーク通信

DH+ネットワーク通信では、ControlLogixシャーシに使用できる2つのモジュールオプションがあります。表28に、DH+モジュールとその機能をリストします。

表28 - DH+モジュールと機能

<table>
<thead>
<tr>
<th>RIOモジュール</th>
<th>用途</th>
</tr>
</thead>
</table>
| 1756-DHRIO | リモートI/O (RIO)スキャナとして使用します。
・チャネル当たり32の論理ラックコネクションまたは16のブロック転送コネクションをサポートします。
・コントローラとI/Oアダプタ間の接続を確立します。
・各コントローラが独自のI/Oを保持するように制御を分散します。 |
| 1756-DHRIOXT | リモートI/O (RIO)スキャナとして使用します。
・チャネル当たり32の論理ラックコネクションまたは16のブロック転送コネクションをサポートします。
・コントローラとI/Oアダプタ間の接続を確立します。
・各コントローラが独自のI/Oを保持するように制御を分散します。
・温度が-25〜+70°C (-13〜+158°F)の過酷な環境で動作します。 |

DH+ネットワーク通信では、ControlLogixシャーシに1756-DHRIOまたは1756-DHRIOXTモジュールを使用して、以下のコントローラ間で情報を交換します。

- PLCおよびSLC® コントローラ
- ControlLogix コントローラおよびPLCまたはSLC コントローラ
- ControlLogix コントローラ

DH+ネットワークは、以下の機能も備えています。

- コントローラ間のデータ交換
- 工場全体でのデータ共有
- セルレベルでのデータ共有

単一のDH+リンクに最大32のステーションを接続できます。

- チャネルAは57.6Kbps, 115.2Kbps, 230.4Kbpsをサポートします。
- チャネルBは、57.6Kbpsと115.2Kbpsをサポートします。
DH+ネットワーク上の通信

コントローラからワークステーションや他のデバイスにDH+ネットワークを介して通信する場合、RSLinx Classicソフトウェアを使用して、以下の操作を行ないます。

- ControlLogixバックプレーンおよび通信パスの追加ネットワークごとに、固有のリンクIDを指定します。
- 1756-DHRIOまたは1756-DHRIOXTモジュールのルーティングテーブルを構成します。

1756-DHRIOまたは1756-DHRIOXTモジュールは、最大4つの通信ネットワークと3つのシャーシからメッセージを転送できます。この制限が適用されるのは、メッセージの転送の場合のみであり、システムのネットワークおよびシャーシの合計数には適用されません。

汎用リモートI/O (RIO) 通信

汎用リモートI/O通信では、ControlLogixシャーシに使用できる2つのモジュールオプションがあります。表29に、RIOモジュールと機能を示します。

表29 - RIOモジュールと機能

<table>
<thead>
<tr>
<th>RIOモジュール</th>
<th>用途</th>
</tr>
</thead>
</table>
| 1756-RIO | • RIOスキャナおよびアダプタとして使用します。
 • ラックサイズまたはブロック転送を組み合わせて、32のラックへの接続をサポートします。
 • スケジュール型コネクションを使用して、ControlLogixコントローラのデータを更新します。 |
| 1756-DHRIO | • RIOスキャナとして使用します。
 • チャネル当たり32の論理ラックコネクションまたは16のブロック転送コネクションをサポートします。
 • コントローラとI/Oアダプタ間の接続を確立します。
 • 各コンテローラが独自のI/Oを保持するために制御を分散します。 |
| 1756-DHRIOXT | • RIOスキャナとして使用します。
 • チャネル当たり32の論理ラックコネクションまたは16のブロック転送コネクションをサポートします。
 • コントローラとI/Oアダプタ間の接続を確立します。
 • 各コンテローラが独自のI/Oを保持するために制御を分散します。
 • 温度が-25～+70℃ (-13～+158°F) の過酷な環境で動作します。 |

1756-DHRIOまたは1756-DHRIOXTモジュールをリモートI/O用に構成すると、モジュールは汎用リモートI/Oネットワーク用のスキャナとして機能します。コントローラはモジュールと通信し、汎用リモートI/Oネットワーク上でI/Oデータを送受信します。

1756-RIOモジュールは、リモートI/Oネットワーク上でスキャナまたはアダプタとして使用できます。1756-RIOモジュールは、メッセージ命令なしでデジタル、ブロック転送、アナログ、および専用データの転送を行いません。

図14 - ControlLogix汎用リモートI/O通信の例

ControlLogix
汎用リモートI/Oネットワーク上の通信

汎用リモートI/Oネットワーク上でコントローラからI/Oを制御するには、以下の手順を行なう必要があります。

1. リモートI/Oアダプタを構成します。
2. リモートI/Oネットワークケーブルを配置します。
3. リモートI/Oネットワークケーブルを接続します。
4. スキャナチャネルを構成します。

1756-PIO、1756-DHRIO、または1756-DHRIOTモジュールでのリモートI/Oネットワークの構成の詳細は、以下の資料を参照してください。

- ControlLogix Remote I/O Communication Module User Manual (Pub.No. 1756-UM534)

リモートI/Oネットワークを設計する場合、以下の点に注意してください。

- リモートI/Oネットワークに接続するすべてのデバイスは、同じ通信速度で通信する必要があります。リモートI/Oでは、以下の通信速度を使用できます。
 - 57.6Kbps
 - 115.2Kbps
 - 230.4Kbps
- リモートI/Oスキャナモードで使用する各チャネルには、固有のラック(一部および全部)を割付ける必要があります。

1756-DHRIOモジュールまたは1756-DHRIOTの両方のチャネルで、同一のラックアドレス(一部または全部)をスキャンすることはできません。両方のモジュールは、00〜37または40〜77(8進数値)に通信できますが、各チャネルはこの範囲内であっても、一度に1つのアドレスしか通信できません。
第5章 通信ネットワーク

Foundation Fieldbus通信

Foundation Fieldbusは、プロセス制御計装向けに設計されたオープンで相互運用可能なフィールドバスです。表30に記載されているフィールドバスデバイスは、以下の例に示すように他のネットワークを介してControlLogixコントローラに接続できます。

<table>
<thead>
<tr>
<th>フィールドバスデバイス</th>
<th>用途</th>
</tr>
</thead>
</table>
| 1788-EN2FFR | • EtherNet/IPネットワークをFoundation Fieldbusにブリッジ接続します。
 • 低速シリアル(H1)および高速Ethernet(HSE)ネットワーク接続を確立します。
 • OPCサーバからデバイスに直接アクセスします。 |
| 1788-CN2FFR | • 低速シリアル(H1)接続を確立します。
 • ControlNetネットワークをFoundation Fieldbusにブリッジ接続します。
 • ControlNet冗長メディアをサポートします。 |

Foundation Fieldbusは、デバイスの制御を分散および実行します。Foundation Fieldbusのリンクデバイスは、以下を行ないます。

- EtherNet/IPネットワークからH1接続にブリッジ接続します
- HSEまたはEtherNet/IPメッセージを受信し、H1プロトコルに変換します

図15 - Foundation Fieldbusの例

- ControlLogix
- 1756-ENBT

ロックウェル・オートメーションが提供するFoundation Fieldbusの詳細は、以下の資料を参照してください。

- FOUNDATION Fieldbus Design Considerations Reference Manual (Pub. No. PROCES-RM005)
HART通信

HART (Highway Addressable Remote Transducer) は、プロセス制御装置向けに設計されたオープンプロトコルです。

デバイスと用途

<table>
<thead>
<tr>
<th>デバイス</th>
<th>用途</th>
</tr>
</thead>
</table>
| 1756アナログHART1/Oモジュール: | - HARTマスタとして外部からのHART装置と通信します。
- フィールドデバイスと直接インターフェイスします（内蔵のHARTモデム経由）。これにより、外付けハードウェアや追加の配線が不要になります。
- 電圧や電流の測定値など、フィールドデバイスの多数のデータにアクセスします。
- 資産管理ソフトウェアをHARTデバイスに直接接続します。
- ノイズイミュニティを強化する必要がある環境のディファレンシャル配線をサポートします（入力モジュール）。 |
| ProSoftインターフェイス MVI56-HART | - 石油貯蔵施設などで、更新要件が遅れた場合にデータを取得するか、またはアプリケーションを制御します。
- 外付けハードウェアからHART信号にアクセスする必要はありません。
- 資産管理ソフトウェアに直接接続しません。 |

HARTプロトコルは、デジタル信号とアナログ信号を組み合わせて、プロセス変数(PV)用のデジタル信号を作成します。また、HARTプロトコルは、送信機からの診断データを提供します。

図16- HARTプロトコルの例

HART I/Oモジュールの詳細は、『ControlLogix HART Analog I/O Modules User Manual』(Pub.No. 1756-UM533)を参照してください。

ProSoft HARTインターフェイスの詳細は、ProSoft TechnologyのWebサイト(http://www.prosoft-technology.com)をご覧ください。
第5章 通信ネットワーク

Notes:
1756-L6xコントローラでのシリアル通信

### 項目	参照ページ
1756-L6xコントローラのシリアルポート | 107
シリアルデバイスとの通信 | 108
DF1マスタプロトコル | 108
DF1 Point to Pointプロトコル | 109
DF1 Radio Modemプロトコル | 109
DF1 Slaveプロトコル | 112
DH-485プロトコル | 112
ASCIIプロトコル | 113
シリアル通信用の1756-L6xコントローラの構成 | 114
シリアルポートによるブロードキャストメッセージ | 116
Modbusのサポート | 118

1756-L6xコントローラのシリアルポート

1756-L6x ControlLogix®コントローラはRS-232ポートを装備しており、さまざまなシリアルベースのアプリケーションに使用できます。以下のシリアル通信アプリケーションなどに使用できます。

- DF1モード（ブロードキャストメッセージのサポートなど）
- DF1 Radio Modem（DF1無線モデム）
- ASCIIデバイス通信

図17 - ControlLogix DF1デバイス通信の例
第6章 1756-L6xコントローラでのシリアル通信

ControlLogixのシリアル通信オプション

ControlLogixコントローラのシリアルポートまたはControlLogixでProSoftモジュールを使用すると、シリアル通信を確立できます。この章では、ControlLogixコントローラのシリアルポート専用のオプションについて説明します。

シリアル通信を確立できるProSoftモジュールの詳細は、ProSoft TechnologyのWebサイトまたはhttp://www.prosoft-technology.comにアクセスし、該当する製品をご確認ください。

シリアルデバイスとの通信

シリアル通信向けにコントローラを構成する場合は、まずシリアル・ポート・モード(SystemまたはUser)を指定してからプロトコルを指定します。

図18-Controller Propertiesのシリアル・ポート・モード

表31は、各モードで使用できるシリアル通信プロトコルについて説明しています。

表31-シリアル・ポート・モード、プロトコル、用途

<table>
<thead>
<tr>
<th>モード</th>
<th>プロトコル</th>
<th>用途</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>メイン</td>
<td>DF1 Master (DF1 マスタ)</td>
<td>マスタとスレーブ間のポーリングおよびメッセージ送信を制御します。</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>DF1 Point to Point</td>
<td>コントローラと他の1つのDF1プロトコルと互換性のあるデバイス間で通信します。</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>DF1 Radio Modem (DF1 無線モデル)</td>
<td>SLC 500®およびMicroLogix™1500コントローラと通信します。</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>DF1 Slave (DF1スレーブ)</td>
<td>コントローラをマスタ/スレーブシリアル通信ネットワークのスレーブステーションとしてセットアップします。</td>
<td>112</td>
</tr>
<tr>
<td>User (ユーザ)</td>
<td>ASCII</td>
<td>ASCIIデバイスと通信します。</td>
<td>112</td>
</tr>
</tbody>
</table>

DF1マスタプロトコル

マスタ/スレーブネットワークには、マスタノードとして構成される1つのコントローラと、最大254のスレーブノードが含まれます。モデムまたはラインドライバを使用してスレーブノードをリンクする。

マスタ/スレーブネットワークのノード番号は0〜254。各ノードには固有のノードアドレスが必要です。また、最低2つのノード(1つのマスタと1つのスレーブ)が存在し、リンクをネットワークとして定義する必要があります。
DF1 Point to Point プロトコル

DF1 Point to Point プロトコルは、コントローラから1つのDF1デバイスに接続する場合に使用します。DF1 Point to Point プロトコルは、デフォルトのシステム・モード・プロトコルです。表32にデフォルトパラメータを示します。

表32 - デフォルトのDF1 Point to Pointパラメータ

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td>19,200</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>なし</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
</tr>
<tr>
<td>Control Line</td>
<td>No Handshake(ハンドシェイクなし)</td>
</tr>
<tr>
<td>RTS send Delay</td>
<td>0</td>
</tr>
<tr>
<td>RTS Off Delay</td>
<td>0</td>
</tr>
</tbody>
</table>

DF1 Radio Modem プロトコル

ControlLogixコントローラには、DF1 Radio Modem (DF1無線モデム)プロトコルでの通信を可能にするドライバが用意されています。このドライバは、無線モデムネットワーク用に最適化されたプロトコルを実装し、DF1全二重プロトコルとDF1半二重プロトコルのハイブリッドであるため、これらのプロトコルのいずれとも互換性はありません。

重要 DF1無線モデムドライバは、DF1 Radio Modemプロトコルをサポートし、このプロトコル用に構成されたデバイス間でのみ使用してください。
また、DF1無線モデムドライバを使用すると機能しない無線モデムネットワーク構成もあります。このような構成では、引き続きDF1半二重プロトコルを使用してください。

図19 - DF1無線モデムネットワークの例
第6章 1756-UM001P-JA-P - May 2017

DF1全二重プロトコルと同様に、DF1無線モデムでは、いつでもノードから他のノードを起動できます（無線モデムネットワークが、全二重データ・ポート・バッファ機能と無線送信の衝突防止機能をサポートしている場合）。DF1全二重プロトコルと同様に、ノードは宛先アドレスが自分以外である受信パケットをすべて無視します。ただし、ブロードキャストパケットとパススルーパケットを除きます。

DF1全二重/半二重プロトコルとは異なり、DF1 Radio Modemプロトコルには、ACK、NAK、ENQ、およびポーリングパケットは含まれません。CRCチェックサムがデータのその状態、データの整合性を照合します。

DF1 Radio Modemの利点

無線モデムネットワークにDF1 Radio Modemプロトコルを使用する大きな利点は、送信の効率性です。各読取り/書込み処理（コマンドと応答）には、送信側の1つの送信（コマンドの送信）と受信側の1つの送信（応答の返信）のみが必要です。これにより、無線が送信にキーアップする回数を最小限に抑え、無線の効率性を最大限に高めて、無線の消費電力を最小限に抑えます。

これとは対照的に、DF1半二重プロトコルでは、DF1マスターがDF1スレーブとの読取り/書込み処理を完了するために、5回の送信が必要です（3回はマスター、2回はスレーブ）。

指定したマスターノードがMSG命令を開始する唯一のノードであり、1つのMSG命令だけが一度にトリガされる場合であれば、どの無線モデムでもDF1無線モデムドライバを疑似マスタ/スレーブモードで使用できます。

全二重データ・ポート・バッファ機能と無線送信の衝突防止機能をサポートする最新のシリアル無線モデムでは、DF1無線モデムドライバを使用して、マスタなしのピア・ツー・ピア無線ネットワークをセットアップできます。この場合、すべてのノードが他の送信データを受信できる無線範囲内であれば、いつでもノードから他のノードに通信を開始できます。

DF1無線モデムの制限事項

無線モデムネットワークに新しいDF1無線モデムドライバを実装する場合、以下の点に注意する必要があります。

- ネットワーク上のすべてのデバイスがControlLogixコントローラである場合、RSLogix 5000®ソフトウェア（バージョン17.01.02以降）またはLogix Designerアプリケーション（バージョン21.00.00以降）で、DF1無線モデムドライバを使用してデバイスを構成する必要があります。これに該当しない場合は、すべてのノードがDF1無線モデムプロトコルをサポートしていることを確認してください。
・ノードが他の複数のノードの無線送信を受信し、それが無線の送信/受信圏内にあり、共通の受信周波数である場合（単信無線モード経由または単一の共通全二重リピータ経由）、無線モデムは全二重データ・ポート・バッファ機能と無線送信の衝突防止機能を使用する必要があります。

この場合、すべてのノードでビア・ツー・ビア・メッセージ機能を活用できます（例えば、ノードのラダーロジックでいつでも他のノードに MSG 命令をトリガできます）。

すべてのモデムが全二重データ・ポート・バッファ機能と無線送信の衝突防止機能を処理できない場合は、DF1 無線モデムドライバを使用できます。他のノードと相互に送信する単一のマスタノードに MSG 命令の開始を制限する場合にのみ、DF1 無線モデムドライバを使用します。

・相互のノードの無線送信をすべてのノードが受信できない場合は、DF1 無線モデムドライバを使用できます。ネットワークの他の無線モデムと相互に送信するマスタ無線モデムに接続するノードに MSG 命令の開始を制限する場合にのみ、DF1 無線モデムドライバを使用します。

・ControlLogix コントローラのチャネル間パススルーを活用すると、ローカルのControlLogixコントローラに接続したパーソナルコンピュータで RSLinx® Classic および Logix Designer アプリケーションを実行し、DH-485、DH+、またはイーサネットネットワークを介して他のノードをリモートでプログラムできます。

DF1 Radio Modem プロトコルのパラメータ

DF1 Radio Modem プロトコルのパラメータを設定する場合、表33 を参照してください。

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station Address</td>
<td>シリアルネットワーク上のコントローラのノードアドレスを指定します。1～254（10進数）の数字を選択します。ネットワークの性能を最適化するには、ノードアドレスを連番で割り付けてください。ネットワークの初期設定時間を最低限に抑えるには、パーソナルコンピュータなどの送信側に最も小さいアドレス番号を割り付けてください。</td>
</tr>
</tbody>
</table>
| Error Detection | いずれかのラジオボタンをクリックして、すべてのメッセージに使用するエラー検出スキームを指定します。
 - BCC – プロセッサは BCC バイトで終了するメッセージを送信/受信します。
 - CRC – プロセッサは 2 バイトの CRC 付きのメッセージを送信/受信します。 |
| Enable Store and Forward| 保存/転送機能を有効にする場合、Enable Store and Forward をオンにします。これを有効にすると、受信したメッセージの宛先アドレスを Store and Forward タグテーブルと比較します。一致した場合、メッセージは転送（再ブロードキャスト）されます。
 - Store and Forward Tag プルダウンメニューから、整数（INT[16]）タグを選択します。
 - 各ビットはステーションアドレスを表します。このコントローラは、このテーブルにビットがセットされたステーション宛てのメッセージを読取ると、メッセージを転送します。 |
第6章 1756-L6X コントローラでのシリアル通信

DF1 Slaveプロトコル

DF1 Slaveプロトコルでは、コントローラはDF1半二重プロトコルを使用します。1つのノードをマスタとして指定し、誰がリンクへのアクセス権を持つかを制御する。他のノードはすべてスレーブステーションで、送信する前にマスタからの許可を持つ必要があります。

DF1 Slaveプロトコルを使用する場合、以下の点に注意してください。
- ネットワークで複数のスレーブステーションを使用する場合、モデムまたはラインドライバを使用して、スレーブステーションをマスタにリンクします。
- ネットワークで単一のスレーブステーションを使用する場合、モデムを使用してスレーブステーションをマスタに接続する必要はありません。
- 制御パラメータをハンドシェイクなしで構成できます。
- 2〜255ノードを単一のリンクに接続できます。

DH-485プロトコル

DH-485ネットワークでは、コントローラは他のコントローラとメッセージを送受信できます。DH-485接続は、Logix Designerアプリケーションによるリモートプログラミング/モニタをサポートします。ただし、DH-485接続で過剰なトラフィックが発生すると、コントローラの全体的な性能に影響が生じ、タイムアウトや構成の性能低下を引き起こす可能性があります。

重要 コントローラを既存のDH-485ネットワークに追加する場合にのみ、DH-485ネットワーク上でLogix5000® コントローラを使用してください。
新しいアプリケーションでLogix5000コントローラを使用する場合は、NetLinxオープンアーキテクチャのネットワークを使用することをお奨めします。

DH-485プロトコルは、物理的インターフェイスとしてRS-485半二重を使用します。RS-485は、電気的特性の定義であり、プロトコルではありません。ControlLogixコントローラのRS-232ポートを構成して、DH-485インターフェイスとして使用できます。

コントローラをDH-485ネットワークに接続するには、以下のコンポーネントを使用する必要があります。
- 1761-NET-AICコンバータ (2台のコントローラを1台のコンバータに接続できます)
- RS-232ケーブル(Cat.No. 1756-CP3または1747-CP3)。各コントローラをコンバータに接続します
重要 DH-485ネットワークは複数のケーブルセグメントで構成されます。すべてのセグメントの最大長は1219m (4000フィート)に制限されています。

ASCIIプロトコル

ユーザーモードおよびASCIIプロトコル向けにシリアルポートを構成すると、以下を行なうことができます。

- 重量計モジュールやバーコードリーダのASCII文字を読取ることができます。
- MessageView™ターミナルなどのASCIIトリガ式デバイスでメッセージを送受信できます。
コントローラをASCIIプロトコルに構成してから、ASCII命令を使用してコントローラをプログラムします。ASCII命令の詳細は、『Logix5000コントローラ汎用インストラクション・セット・リファレンス・マニュアル』(Pub.No. 1756-RM003)を参照してください。

シリアル通信用の1756-L6xコントローラの構成

Logix Designerアプリケーションでコントローラプロジェクトを作成してから、以下の手順に従って、1756-L6xコントローラをシリアル通信向けに構成してください。

1. Controller Propertiesダイアログボックスを開き、Serial Portタブをクリックします。

2. Modeプルダウンメニューから、目的のプロトコルに対応したモードを選択します。以下の表を参照してください。

<table>
<thead>
<tr>
<th>プロトコル</th>
<th>選択するモード</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF1 Master (DF1マスタ)</td>
<td>システムI/Oしてむ</td>
</tr>
<tr>
<td>DF1 Point to Point</td>
<td></td>
</tr>
<tr>
<td>DF1 Radio Modem (DF1無線モデム)</td>
<td></td>
</tr>
<tr>
<td>DF1 Slave (DF1スレーブ)</td>
<td></td>
</tr>
<tr>
<td>DH-485</td>
<td></td>
</tr>
<tr>
<td>ASCII</td>
<td>User [ユーザ]</td>
</tr>
</tbody>
</table>
3. 通信設定に従って、Serial Port タブの残りのプロパティを指定します。

<table>
<thead>
<tr>
<th>Mode</th>
<th>Baud Rate</th>
<th>Data Bits</th>
<th>Parity</th>
<th>Stop Bits</th>
<th>Control Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>9600</td>
<td>8</td>
<td>None</td>
<td>1</td>
<td>None</td>
</tr>
</tbody>
</table>

RTS Send Delay: 0 (20 ms)
RTS Off Delay: 0 (20 ms)
DCD Wait Delay: 0 (1 sec)

4. System モードのプロトコルを使用する場合、System Protocol タブをクリックして、プロトコルパラメータを指定します。
 a. Protocol プルダウンメニューから、必要なプロトコルを選択します。

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Station Address</th>
<th>NAK Receive Limit</th>
<th>ENQ Transmit Limit</th>
<th>ACK Timeout</th>
<th>Embedded Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPT Point to Point</td>
<td>DPT Master</td>
<td>DPT Point to Point</td>
<td>DPT Radio Modem</td>
<td>50</td>
<td>AutoDetect</td>
</tr>
</tbody>
</table>

4. System モードのプロトコルを使用する場合、System Protocol タブをクリックして、プロトコルパラメータを指定します。
 b. プロトコルのパラメータを指定します。

5. User モードのプロトコル (ASCII) を使用する場合、User Protocol タブをクリックして、ASCII パラメータを指定します。

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Read/Write Buffer Size</th>
<th>Termination Character 1</th>
<th>Append Character 1</th>
</tr>
</thead>
</table>
| ASCII | 12 (Bytes) | 1: ‘
’ | 2: ‘
’ |

Delete Mode: Ignore, CRT, Printer
第6章 1756-Lxコントローラでのシリアル通信

ASCIIプロトコル通信向けにコントローラの構成を完了し、使用可能なASCII命令を確認する場合は、『Logix5000コントローラ汎用インストラクション・セット・リファレンス・マニュアル』(Pub.No. 1756-RM003)を参照してください。

シリアルポートによるブロードキャストメッセージ

シリアルポート接続では、複数の通信プロトコルを使用して、マスタコントローラからそのすべてのスレーブコントローラにメッセージをブロードキャストできます。以下のプロトコルを使用できます。

- DF1 Master (DF1マスター)
- DF1 Radio Modem (DF1無線モデム)
- DF1 Slave (DF1スレーブ)

シリアルポートによるブロードキャストを行うには、「message」タグを使用します。メッセージは受信側のコントローラに送信されるため、ブロードキャストには「書込み」タイプのメッセージのみを使用できます。

ブロードキャスト機能をセットアップするには、ラダーロジックまたは構造化テキストを使用します。また、タグエディタでメッセージタグのパス値を変更することでも、ブロードキャスト機能を設定できます。

コントローラを構成/プログラムしてシリアルポートからメッセージをブロードキャストするには、以下の手順に従ってください。

- 117ページの「コントローラのシリアルポート・プロパティの構成」
- 118ページの「Message命令のプログラム」

これらの手順の例では、ラダーロジック・プログラミングを使用しています。
コントローラのシリアル・ポート・プロパティの構成

最初に、以下の手順に従ってSystem Protocolを設定します。

1. コントローラオーガナイザで、コントローラを右クリックしてProperties（プロパティ）を選択します。
2. Controller Propertiesダイアログボックスで、System Protocolタブからコントローラの設定を選択し、OKをクリックします。
各プロトコルの設定には、以下の表を使用してください。

<table>
<thead>
<tr>
<th>フィールド</th>
<th>DF-1 Masterプロトコル</th>
<th>DF-1 Slaveプロトコル</th>
<th>DF-1 Radio Modemプロトコル</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station Address</td>
<td>コントローラのステーションアドレス番号</td>
<td>コントローラのステーションアドレス番号</td>
<td>コントローラのステーションアドレス番号</td>
</tr>
<tr>
<td>Transmit Retries</td>
<td>1</td>
<td>3</td>
<td>適用しない</td>
</tr>
<tr>
<td>ACK Timeout</td>
<td>50</td>
<td>適用しない</td>
<td>適用しない</td>
</tr>
<tr>
<td>Slave Poll Timeout</td>
<td>適用しない</td>
<td>3000</td>
<td>適用しない</td>
</tr>
<tr>
<td>Reply Message Wait</td>
<td>適用しない</td>
<td>適用しない</td>
<td>適用しない</td>
</tr>
<tr>
<td>Polling Mode</td>
<td>メッセージ：メッセージ命令を使用してスレーブをポーリングスレーブ：スレーブ間のブロードキャストメッセージを開始標準：スレーブのポーリングをスケジュール設定</td>
<td>適用しない</td>
<td>適用しない</td>
</tr>
<tr>
<td>EOT Suppression</td>
<td>適用しない</td>
<td>無効</td>
<td>適用しない</td>
</tr>
<tr>
<td>Error Detection</td>
<td>BCC</td>
<td>BCC</td>
<td>BCC</td>
</tr>
<tr>
<td>Duplicate Detection</td>
<td>Enabled</td>
<td>Enabled</td>
<td>適用しない</td>
</tr>
<tr>
<td>Enable Store and Forward</td>
<td>適用しない</td>
<td>適用しない</td>
<td>保存/転送タグを使用する場合は有効にします。INT[16] Enable Store and Forward 配列の最後のビットをオノにする必要があります。例えば、EnableSandFという名前のINT[16]タグを作成します。次に、無線モデムでブロードキャストを使用するために、EnableSandF[15].15を1に設定する必要があります。</td>
</tr>
</tbody>
</table>

Message命令のプログラム

使用するプロトコルに応じて、Message命令を追加および構成します。構成の詳細の指定については、「Logix5000コントローラ汎用インストラクション・セット・リファレンス・マニュアル」(Pub.No. 1756-RM003)を参照してください。

重要 構造化テキストを使用する場合、シリアルポートでのブロードキャストを設定するには、「MSG(aMsg)」と入力してMSGを右クリックしてMessage Configurationダイアログボックスを開きます。

Modbusのサポート

ControlLogixコントローラでModbusプロトコルを使用するには、シリアルポート接続を確立し、特定のラダー・ロジック・ルーチンを実行します。

Logix Designerアプリケーション内のサンプルプログラムとして、Modbusネットワーク専用の以下の2つのコントローラプロジェクトが用意されています。

- ModbusMaster.ACD
- ModbusSlave.ACD

これらのサンプルプログラムの使用方法については、「Using Logix5000 Controllers as Masters or Slaves on Modbus Application Solution」(Pub.No. CIG-AP129)を参照してください。
コントローラ通信の管理

コネクションの概要

Logix5000™ システムは、コネクションを使用して2つのデバイス間に通信リンクを確立します。コネクションには、以下のタイプがあります。

- コントローラとローカルI/Oモジュールまたは通信モジュール
- コントローラとリモートI/O モジュールまたはリモート通信モジュール
- コントローラとリモートI/O (ラック最適化)モジュール
- プロデューサ/コンシューマタグ
- メッセージメッセージ
- Studio 5000 Logix Designer® アプリケーションを使用するコントローラアクセス
- RSLinx® ClassicまたはRSLinx Enterpriseアプリケーションを使用するコントローラアクセス(HMIまたはその他のアプリケーション)

データの生成と消費(インターロック)

ControlLogix® コントローラを使用すると、システム共有タグを生成(送信)および消費(受信)できます。

図21 - プロデューサ/コンシューマタグ
第7章 コントローラ通信の管理

表34 で、システム共有タグについて説明します。

表34 プロデューサ/コンシューマタグの定義

<table>
<thead>
<tr>
<th>タグ</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>プロデューサタグ</td>
<td>コントローラを他のコントローラで使用できるようにするタグ。複数のコントローラがデータを同時に消費(受信)できます。プロデューサタグは、ロジックを使用せずにそのデータを1つまたは複数のコンシューマタグ(コンシューマ)に送信します。</td>
</tr>
<tr>
<td>コンシューマタグ</td>
<td>プロデューサタグのデータを受信するタグ。コンシューマタグのデータタイプは、プロデューサタグのデータタイプ(配列定義など)と一致する必要がありま す。コンシューマタグのRPHにより、データの更新時間が決まります。</td>
</tr>
</tbody>
</table>

2台のコントローラでプロデューサタグまたはコンシューマタグを共有するには、両方のコントローラが同じネットワークに接続している必要があります。プロデューサタグまたはコンシューマタグを2つのネットワーク上でブリッジ接続することはできません。

プロデューサタグまたはコンシューマタグは、コントローラとその通信モジュールの両方のコネクションを使用します。ControlNetネットワークでは、プロデューサ/コンシューマタグはスケジュール型コネクションを使用します。

プロデューサタグまたはコンシューマタグのコネクション要件

プロデューサおよびコンシューマタグには、それぞれコネクションが必要です。プロデューサタグを消費できるコントローラの数を増加すると、通信やI/Oなどの他の動作で使用できるコントローラのコネクションの数が減少します。

| 重要 | コンシューマタグのコネクションが失敗すると、そのリモートコントローラから消費される他のすべてのタグが、新しいデータの受信を停止します。 |

Pub.No. 1756-UM001P-JA-P - May 2017
プロデューサタグまたはコンシューマタグはそれぞれ、表35に記載される数のコネクションを使用します。ステータス情報をプロデューサ/コンシューマタグに追加しても、使用するコネクションの数には影響しません。

表35・プロデューサ/コンシューマタグのコネクション

<table>
<thead>
<tr>
<th>タグのタイプ</th>
<th>使用するコネクション数</th>
<th>モジュール</th>
</tr>
</thead>
<tbody>
<tr>
<td>プロデューサタグ</td>
<td>number_of_configuredconsumers + 1</td>
<td>コントローラ</td>
</tr>
<tr>
<td>コンシューマタグ</td>
<td>1</td>
<td>Communication (通信)</td>
</tr>
<tr>
<td>プロデューサタグまたはコンシューマタグ</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

例

プロデューサタグまたはコンシューマタグのコネクションの計算:
- 1台のコントローラに4つのタグを生成するControlLogixコントローラは、8つのコネクションを使用します。各タグは2つのコネクションを使用します(1コネクション + 1 = 2)。
 2+2+2+2 = 8コネクション。
- コントローラから4つのタグを消費する場合、4つのコネクション(1コネクション/タグ x4タグ = 4コネクション)を使用します。

使用可能なコネクションの数により、生成または消費できるタグの数が制限されます。コントローラがI/Oデバイスと通信デバイスにすべてのコネクションを使用する場合、プロデューサ/コンシューマタグに使用できるコネクションはありません。

表36・ControlLogixモジュールと使用可能なコネクション

<table>
<thead>
<tr>
<th>モジュールタイプ</th>
<th>Cat. No.</th>
<th>使用可能なコネクション</th>
</tr>
</thead>
<tbody>
<tr>
<td>コントローラ</td>
<td>1756-L7x</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>1756-L6x</td>
<td>250</td>
</tr>
<tr>
<td>EtherNet/IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1756-EN2F</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>1756-EN2T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1756-EN2TXT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1756-EN2TR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1756-ENDT</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>1756-EWEB</td>
<td></td>
</tr>
<tr>
<td>ControlNet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1756-CN2</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>1756-CN2R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1756-CN2RTXT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1756-CN2TR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1756-CNB</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>1756-CNBR</td>
<td></td>
</tr>
</tbody>
</table>

プロデューサ/コンシューマタグの詳細は、「Logix5000コントローラプログラミングマニュアル」(Pub.No. 1756-PM011)を参照してください。
第7章 コントローラ通信の管理

メッセージの送受信

メッセージは、他のコントローラやオペレータインタフェースなどの他のデバイスにデータを転送します。MSG命令は、ラダーロジック出力命令であり、バックプレーンまたはネットワーク上で他のモジュールに対して、データブロックの読取り/書込みを非同期に行ないます。命令のサイズは、ユーザがプログラムするデータタイプとメッセージコマンドに応じて異なります。

メッセージはコネクションリソースを使用して、データを送受信します。メッセージは、送信実行時にコネクションをオープン（キャッシュ）またはクローズの状態に保持できます。

各メッセージは、メッセージバスにあるデバイスの数に関係なく、コントローラの1つのコネクションを使用します。コネクションを保持するには、複数のデバイスに対して読取り/書込みを行なえるように1つのメッセージを構成します。

メッセージの詳細は、以下の資料を参照してください。
- Logix5000 Controllers Messages (Pub.No. 1756-PM012)
- Logix5000 コントローラ汎用インストラクション・セット・リファレンス・マニュアル (Pub.No. 1756-RM003)

メッセージコネクションのキャッシュの判断

MSG命令を構成する場合、コネクションをキャッシュするかどうかを選択できます。表38を使用して、コネクションをキャッシュするかどうかを判断します。

メッセージの実行方法	キャッシュ
繰返し | コネクションをキャッシュします。
不定期 | コネクションをキャッシュしません。

(1) CIP汎用メッセージに接続できます。ただし、大多数のアプリケーションでは、CIP汎用メッセージを非接続型にすることをお奨めします。
(2) キャッシュは、ターゲットモジュールにコネクションが必要な場合にのみ検討してください。
使用するコネクションの計算

ControlLogixシステムの全体的なコネクション要件には、ローカルコネクションとリモートコネクションの両方が含まれます。

ローカルコネクション

ローカルコネクションとは、同じControlLogixシャーシ内のモジュール間の通信に使用するコネクションを表します。表39を使用して、ローカルシャーシの構成に応じたローカルコネクションの数を計算してください。

<table>
<thead>
<tr>
<th>ローカルコネクションの接続先</th>
<th>デバイスの数</th>
<th>デバイス当たりのコネクション</th>
<th>合計コネクション</th>
</tr>
</thead>
<tbody>
<tr>
<td>ローカルI/Oモジュール(直接コネクション)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-MI6SE, 1756-MO8SE、または1756-MO2AEサーボモジュール</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-CN2、1756-CN2R、1756-CN2RT ControlNet通信モジュール</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-CN8、1756-CN8R ControlNet通信モジュール</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-CN2、1756-CN2T、1756-CN2TXT、または1756-CN2TR EtherNet/IP通信モジュール</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-EN2F、1756-EN2T、1756-EN2TXT、または1756-EN2TR EtherNet/IP通信モジュール</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-EWEB EtherNet/IP Webサーバモジュール</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-DNB DeviceNet通信モジュール</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-RIOリモートI/O通信モジュール(コネクション数はモジュール構成に応じて異なる、モジュール当たり10のコネクションを使用できる。)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-DH80R DH+/汎用リモートI/O通信モジュール</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>モジュールに各アダプタを関連付け</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-DH485X DH+/汎用リモートI/O通信モジュール</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>モジュールに各アダプタを関連付け</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1756-DH485S DH-485通信モジュール</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

合計
リモートコネクション

通信モジュールがコントローラからリモートにあるシャーシに配置されている場合、リモートコネクションを使用します。通信モジュールがサポートするコネクションの数により、コントローラがそのモジュールからアクセスできるリモートコネクションの数が決まります。

表40 - リモートコネクション

<table>
<thead>
<tr>
<th>リモート・コネクション・タイプ</th>
<th>デバイスの数</th>
<th>デバイス当たりのコネクション</th>
<th>合計コネクション</th>
</tr>
</thead>
<tbody>
<tr>
<td>リモート ControlNet通信モジュール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>直接コネクションとして構成されたI/O(なし)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ラック最適化コネクションとして構成されたI/O</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ControlNetネットワーク上のリモートI/Oモジュール(直接コネクション)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>リモートEtherNet/IP通信モジュール</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>直接コネクションとして構成されたI/O(なし)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ラック最適化コネクションとして構成されたI/O</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EtherNet/IPネットワーク上のリモートI/Oモジュール(直接コネクション)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeviceNetネットワーク上のリモートデバイス(ローカル1756-DNB用のラック最適化コネクションを考慮)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>リモートシャーシ内のDeviceNetモジュール</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他のリモート通信アダプター</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>プロデューサタグプロデューサタグ各コンシューマ</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>コンシューマタグコンシューマタグ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メッセージ(メッセージタイプについては、表37を参照)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>接続型</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非接続型</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ブロック転送メッセージ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

各コンシューマ、メッセージタイプについては、表37を参照
コネクションの例

この例にあるシステムでは、1756 ControlLogixコントローラは以下を行います。

- 同じシャーシ内のローカルデジタルI/Oモジュールを制御します。
- DeviceNetネットワーク上でリモートI/Oデバイスを制御します。
- EtherNet/IPネットワーク上でCompactLogix™コントローラとメッセージを送受信します。
- 1794 FlexLogix™コントローラが消費する1つのタグを生成します。
- Logix Designerアプリケーションを使用してプログラムします。

この例では、ControlLogixコントローラは以下のコネクションを使用します。

表41 - コネクションの計算例

<table>
<thead>
<tr>
<th>コネクションタイプ</th>
<th>デバイスの数</th>
<th>デバイス当たりのコネクション</th>
<th>合計コネクション</th>
</tr>
</thead>
<tbody>
<tr>
<td>コントローラからローカルI/Oモジュールへ</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>コントローラから1756-ENBTモジュールへ</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>コントローラから1756-DNBモジュールへ</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>コントローラからLogix Designerアプリケーションへ</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>メッセージからCompactLogixコントローラへ</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>プロデューサタグプロデューサタグ FlexLogixコントローラが消費</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>
第7章 コントローラ通信の管理

Notes:
第8章

I/Oモジュール

ロックウェル・オートメーションでは、ControlLogixシステム向けに複数のControlLogix® I/Oモジュールを提供しています。I/Oモジュールを選択する場合、以下の点に注意してください。

- ロックウェル・オートメーションでは、デジタル、アナログ、特殊I/Oモジュールなど各種モジュールを取り揃えています。各I/Oモジュールは、以下のような機能を備えています。
 - フィールド側診断
 - 電子ヒューズ保護
 - 入力/出力の個別絶縁

- I/Oモジュールを使用するには、脱着式端子台(RTB)または1492配線システムが必要です。

- 1492 PanelConnect®モジュールおよびケーブルを使用して、入力モジュールをセンサに接続できます。

ControlLogix I/Oモジュールの機能、仕様、配線オプションの詳細は、「ControlLogixシステム選択ガイド」(Pub.No. 1756-SG001)を参照してください。

ローカルI/Oモジュール

選択するControlLogixシャーシに応じて、使用できるローカルI/Oモジュールの数が異なります。構成要件に合わせて、複数のControlLogixシャーシサイズから選択できます。シャーシのスロットには、コントローラ、通信モジュール、I/Oモジュールを自由に組み合わせて配置できます。

<table>
<thead>
<tr>
<th>項目</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ControlLogix I/Oモジュールの選択</td>
<td>127</td>
</tr>
<tr>
<td>ローカルI/Oモジュール</td>
<td>127</td>
</tr>
<tr>
<td>リモートI/Oモジュール</td>
<td>129</td>
</tr>
<tr>
<td>分散I/O</td>
<td>133</td>
</tr>
<tr>
<td>I/Oモジュールの再構成</td>
<td>136</td>
</tr>
<tr>
<td>オンライン時のI/O構成への追加</td>
<td>138</td>
</tr>
<tr>
<td>データ更新時期の判断</td>
<td>143</td>
</tr>
</tbody>
</table>
表42に、使用可能なControlLogixおよびControlLogix-XT™シャーシと、各シャーシに使用可能なスロット数を示します。

表42・ControlLogixおよびControlLogix-XTシャーシとスロット数

<table>
<thead>
<tr>
<th>シャーシ</th>
<th>スロット数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756-A4</td>
<td>4</td>
</tr>
<tr>
<td>1756-A4LXT</td>
<td></td>
</tr>
<tr>
<td>1756-A5XT</td>
<td>5</td>
</tr>
<tr>
<td>1756-A7</td>
<td>7</td>
</tr>
<tr>
<td>1756-A7LXT</td>
<td></td>
</tr>
<tr>
<td>1756-A7XT</td>
<td></td>
</tr>
<tr>
<td>1756-A10</td>
<td>10</td>
</tr>
<tr>
<td>1756-A10XT</td>
<td></td>
</tr>
<tr>
<td>1756-A13</td>
<td>13</td>
</tr>
<tr>
<td>1756-A17</td>
<td>17</td>
</tr>
</tbody>
</table>

シャーシに空スロットがある場合、1756-N2または1756-N2XTスロット・フィラー・モジュールを使用してください。

ローカルI/OをI/O構成に追加する

ローカルI/Oを追加する場合、I/Oモジュールをコントローラのバックプレーンに追加します。以下の手順に従って、I/Oモジュールをローカルシャーシに追加してください。

1. バックプレーンを右クリックしてNew Moduleを選択します。

![New Module Selection](image)

2. 追加するI/Oモジュールを選択し、OKをクリックします。

![Module Selection](image)
3. 使用するモジュールとネットワーク構成に応じて、構成プロパティを指定します。
以下のモジュールでControlLogixシステムを設計する場合は、詳細は「はじめに」の参考資料セクションを参照してください。
- アナログI/O [アナログI/O]
- 構成可能な流量計
- デジタルI/O
- HARTアナログI/O
- 高速アナログI/O
- 高速カウンタ
- 低速カウンタ
- プログラマブル・リミット・スイッチ

リモートI/Oモジュール
リモートI/Oとは、ローカルシャーシに配置されていないI/Oを表し、通信ネットワークを介してコントローラに接続します。
ControlLogixコントローラは、以下のネットワークを使用したリモートI/Oをサポートします。
- EtherNet/IP
- ControlNet
- DeviceNet
- 汎用リモートI/O

リモートI/Oの接続に使用できるネットワーク構成の詳細は、89ページの「通信ネットワーク」を参照してください。

図22 - ControlLogixコントローラとリモートI/Oの例
リモートI/OをI/O構成に追加する

リモートI/Oを追加する場合、コントローラに接続したリモート通信モジュールのバックプレーンにI/Oモジュールを追加します。以下の手順に従って、Logix DesignerアプリケーションでリモートI/OをI/O Configurationフォルダに追加してください。

1. コントローラを収めたバックプレーンに通信モジュールを追加します。

2. ネットワーク構成に応じて、通信モジュールのプロパティを指定します。
 通信モジュールとネットワークプロパティの詳細は、「はじめに」の参考資料セクションを参照してください。

3. 通信ネットワークを右クリックしてNew Moduleを選択します。
4. 使用するリモート通信モジュールを追加します。

5. ネットワーク構成に応じて、シャーシと接続のプロパティを指定します。

6. 新しく追加した通信モジュールのバックプレーンを右クリックしてNew Moduleを選択します。

7. 追加するI/Oモジュールを選択し、OKをクリックします。
8. モジュールとアプリケーションに応じて、モジュールのプロパティを指定します。
以下のモジュールのモジュール構成プロパティの詳細は、「はじめに」の参考資料セクションを参照してください。
- アナログI/O [アナログI/O]
- 構成可能な流量計
- デジタルI/O
- HARTアナログI/O
- 高速アナログI/O
- 高速カウンタ
- 低速カウンタ
- プログラマブル・リミット・スイッチ

9. リモートシャーシで使用するその他のI/Oモジュールを追加します。

10. 使用するリモートI/OネットワークとI/Oモジュールの構成が完了するまで、手順1〜9を実行します。
分散I/O

分散I/Oとは、コントローラから離れた場所に配置されたI/Oを表し、特定のコントローラ向けに設計されていません。以下に、Logix5000™コントローラで使用できる分散I/Oの例を示します。

- 1794 FLEX™ I/Oモジュール
- 1734 POINT I/O™モジュール
- 1797 FLEX Ex™ I/Oモジュール
- 1738 ArmorPOINT™ I/Oモジュール
- 1732 ArmorBlock™ I/Oモジュール
- 1753 GuardPLC™安全I/Oモジュール
- 1790 CompactBlock™ LDX I/Oモジュール
- 1791 CompactBlock Guard安全I/Oモジュール
- 1791 CompactBlock I/Oモジュール
- 1732DS ArmorBlock Guard安全I/Oモジュール
- 1792 ArmorBlock MaXum™ I/Oモジュール

分散I/Oでは、通信ネットワークを介してControlLogixコントローラに接続します。ControlLogixコントローラは、以下のネットワークを使用した分散I/Oをサポートします。

- EtherNet/IP
- ControlNet
- DeviceNet

図23 - ControlLogixシステムと分散I/Oの例
分散I/OをI/O構成に追加する

分散I/Oを追加する場合、I/OモジュールをI/Oの通信アダプタに追加します。分散I/OをControlLogixコントローラのI/O構成フォルダに追加するには、以下の手順を実行してください。

1. コントローラを収めたバックプレーンに通信モジュールを追加します。

2. ネットワーク構成に応じて、通信モジュールのプロパティを指定します。
 通信モジュールとネットワークプロパティの詳細は、「はじめに」の参考資料セクションを参照してください。

3. 通信ネットワークを右クリックしてNew Moduleを選択します。
4. 使用する分散I/Oプラットフォームの通信アダプタを追加します。

5. ネットワーク構成に応じて、モジュールと接続のプロパティを指定します。

6. 新しく追加した通信アダプタのバスを右クリックしてNew Moduleを選択します。

7. 追加するI/Oモジュールを選択し、OKをクリックします。
第8章 I/Oモジュール

8. モジュールとアプリケーションに応じて、モジュールのプロパティを指定します。

モジュール構成プロパティの詳細は、追加するI/Oモジュールに関するユーザーズマニュアルを参照してください。

9. バスで使用するその他のI/Oモジュールを追加します。

10. 使用するリモートI/Oネットワークと分散I/Oモジュールの構成が完了するまで、手順1～9を実行します。

I/Oモジュールの再構成

I/Oモジュールが再構成をサポートする場合、以下を使用してモジュールを再構成できます。

- I/O ConfigurationフォルダのModule Propertiesダイアログボックス
- プログラムロジック内のMSG命令

重要 I/Oモジュールの構成は慎重に変更してください。I/Oモジュールが正常に動作しなくなる場合があります。

Module ReconfigureタイプのMSG命令を使用して、新しい構成情報をI/Oモジュールに送信します。再構成時には、以下を考慮してください。

- 入力モジュールは引き続き入力データをコントローラに送信します
- 出力モジュールは引き続き出力装置を制御します
Module Properties を使用したI/Oモジュールの再構成

Module Properties を使用してI/Oモジュールを再構成するには、I/O Configurationツリーのモジュールを右クリックしてPropertiesを選択します。次に、変更が必要なプロパティを編集してApplyをクリックします。
メッセージ命令を使用したI/Oモジュールの再構成

以下の手順に従って、メッセージ命令を使用してI/Oモジュールを再構成してください。

1. モジュールの構成タグの必要なメンバを新しい値に設定します。
2. Module Reconfigureメッセージをモジュールに送信します。

例 I/Oモジュールの再構成

オンライン時のI/O構成への追加

RSLogix 5000ソフトウェア（バージョン15.02.00以降）およびLogix Designerアプリケーション（バージョン21.00.00以降）を使用すると、ランモードのオンライン状態であっても、I/Oおよびその他のデバイスをコントローラ構成に追加できます。

オンライン時に追加できるモジュールとデバイスは、使用するソフトウェアのバージョンに応じて異なります。バージョンが新しくなれば、それだけオンライン時に追加できるモジュールとデバイスの数が多くなります。

非スケジュール型のControlNetネットワークまたはEtherNet/IPネットワークを介して、モジュールとデバイスをローカルまたはリモートのシャーシに追加できます。
オンライン時に追加可能なモジュールとデバイス

以下モジュールとデバイスはオンライン時にControlLogixコントローラのI/O構成に追加できます。これは、RSLogix 5000ソフトウェアのバージョン19.01.00以降およびLogix Designerアプリケーションのバージョン21.00.00以降を使用した場合です。

- 1756コントローラ
- 1756 ControlNetモジュール
- 1756 DeviceNetブリッジ
- 1756 EtherNet/IPモジュール
- 1756 I/Oおよび特殊モジュール
- 1756-DHRIO
- 1756-DHRIOXT

オンライン時の追加

ControlNetに関する注意事項は、使用するControlLogix ControlNetモジュールに応じて異なります。

1756-CNBおよび1756-CNBRモジュール

1756-CNBまたは1756-CNBRモジュールを使用してI/OをControlNetネットワークに追加する場合、以下の点に注意してください。

- デジタルI/Oモジュールは、親モジュールがすでにラック最適化コネクション向けに構成されている場合、ラック最適化コネクションとして追加できます。

ヒント 新しいデジタルI/Oモジュールを既存のラック最適化コネクションに追加できますが、オンライン時にラック最適化コネクションを追加することはできません。

- デジタルI/Oモジュールは直接コネクションとしても追加できます。

- アナログI/Oモジュールは直接コネクションとしてのみ追加できます。
入力がRPIよりも先に送信されてしまう可能性があるため、デジタル入力モジュールのチェンジ・オブ・ステータス(COS)機能を無効にします。

多数のI/OをControlNetネットワークに追加する予定の場合、単一のControlNetネットワークをI/O専用にしてください。専用のControlNetネットワークについては、以下がほとんどまたはまったくないことを確認してください。

- HMIトラフィック
- MSGトラフィック
- プログラミングワークステーション

非スケジュール型モジュールの要求パケット間隔(RPI)を25msecより高速に設定すると、1756-CNBまたは1756-CNBR通信モジュールで過負荷が生じる可能性があります。過負荷を回避するには、以下の検討してください。

- 10msecより大きいNUTを使用します。
- SMAX値とUMAX値を可能なかぎり小さくします。

モジュールがリアル・タイム・サンプリング(RTS)を実装する場合、これを無効にするか、RPIよりも大きい速度に設定する必要があります。

以下の制限に達するまで、I/Oモジュールを追加できます。

- 1756-CNBまたは1756-CNBR通信モジュールのCPU使用率75%
- 追加するI/Oモジュールごとの1756-CNBまたは1756-CNBRモジュールのCPU使用率が1〜4%増加(RPIに応じて異なる)
- 1756-CNBR通信モジュールで48コネクション
- ネットワークのスケジュール設定後に、RSNetWorx™forControlNet™ソフトウェアに表示されるバイト数が1秒当たり400,000非スケジュール型バイト未満

1756-CN2、1756-CN2R、1756-CN2RXTモジュール

1756-CN2/B、1756-CN2R/B、および1756-CN2RXTモジュールを使用すると、1756-CN5または1756-CNBRモジュールと比較して、オンライン時に追加できるI/Oの容量が増加します。容量が増加すると、I/Oを簡単に追加して、使用するControlNetコネクションの数を増加することができ、システム全体への影響を大幅に軽減することもできます。

表43に、オンライン時にI/Oを追加するときの1756-CN2/B、1756-CN2R/B、および1756-CN2RXTモジュールの性能係数を示します。
<table>
<thead>
<tr>
<th>オンライン時に追加するアナログI/Oの直接コネクションの数</th>
<th>CPU % (1)</th>
<th>平均API (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.50%</td>
<td>適用しない</td>
<td>1.50%</td>
<td>適用しない</td>
<td>1.50%</td>
<td>適用しない</td>
<td>1.50%</td>
<td>適用しない</td>
<td>1.50%</td>
<td>適用しない</td>
<td>1.50%</td>
<td>適用しない</td>
</tr>
<tr>
<td>1</td>
<td>4.80%</td>
<td>2.0</td>
<td>3.70%</td>
<td>4.0</td>
<td>2.50%</td>
<td>10.0</td>
<td>2.30%</td>
<td>20.0</td>
<td>1.90%</td>
<td>50.0</td>
<td>1.70%</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>7.00%</td>
<td>2.0</td>
<td>5.00%</td>
<td>4.0</td>
<td>3.30%</td>
<td>10.0</td>
<td>2.70%</td>
<td>20.0</td>
<td>2.10%</td>
<td>50.0</td>
<td>1.90%</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>9.00%</td>
<td>2.0</td>
<td>6.10%</td>
<td>4.0</td>
<td>3.80%</td>
<td>10.0</td>
<td>3.00%</td>
<td>20.0</td>
<td>2.20%</td>
<td>50.0</td>
<td>2.00%</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>11.20%</td>
<td>2.2</td>
<td>7.40%</td>
<td>4.0</td>
<td>4.40%</td>
<td>10.0</td>
<td>3.40%</td>
<td>20.0</td>
<td>2.40%</td>
<td>50.0</td>
<td>2.10%</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>11.50%</td>
<td>3.3</td>
<td>8.70%</td>
<td>4.0</td>
<td>5.00%</td>
<td>10.0</td>
<td>3.70%</td>
<td>20.0</td>
<td>2.60%</td>
<td>50.0</td>
<td>2.20%</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>12.80%</td>
<td>3.3</td>
<td>9.70%</td>
<td>4.0</td>
<td>5.50%</td>
<td>10.0</td>
<td>4.00%</td>
<td>20.0</td>
<td>2.70%</td>
<td>50.0</td>
<td>2.30%</td>
<td>100.0</td>
</tr>
<tr>
<td>7</td>
<td>13.80%</td>
<td>3.4</td>
<td>10.80%</td>
<td>4.0</td>
<td>5.90%</td>
<td>10.0</td>
<td>4.30%</td>
<td>20.0</td>
<td>2.90%</td>
<td>50.0</td>
<td>2.30%</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>15.10%</td>
<td>3.4</td>
<td>11.90%</td>
<td>4.0</td>
<td>6.40%</td>
<td>10.0</td>
<td>4.50%</td>
<td>20.0</td>
<td>3.00%</td>
<td>50.0</td>
<td>2.50%</td>
<td>100.0</td>
</tr>
<tr>
<td>9</td>
<td>15.00%</td>
<td>3.3</td>
<td>13.20%</td>
<td>4.0</td>
<td>7.00%</td>
<td>10.0</td>
<td>4.80%</td>
<td>20.0</td>
<td>3.20%</td>
<td>50.0</td>
<td>2.60%</td>
<td>100.0</td>
</tr>
<tr>
<td>10</td>
<td>15.60%</td>
<td>3.6</td>
<td>13.20%</td>
<td>4.0</td>
<td>7.50%</td>
<td>10.0</td>
<td>5.20%</td>
<td>20.0</td>
<td>3.40%</td>
<td>50.0</td>
<td>2.70%</td>
<td>100.0</td>
</tr>
<tr>
<td>11</td>
<td>16.40%</td>
<td>3.8</td>
<td>13.50%</td>
<td>4.0</td>
<td>8.20%</td>
<td>10.0</td>
<td>5.50%</td>
<td>20.0</td>
<td>3.50%</td>
<td>50.0</td>
<td>2.70%</td>
<td>100.0</td>
</tr>
<tr>
<td>12</td>
<td>17.00%</td>
<td>3.8</td>
<td>14.00%</td>
<td>4.0</td>
<td>8.80%</td>
<td>10.0</td>
<td>5.80%</td>
<td>20.0</td>
<td>3.70%</td>
<td>50.0</td>
<td>2.80%</td>
<td>100.0</td>
</tr>
<tr>
<td>13</td>
<td>17.80%</td>
<td>3.7</td>
<td>14.60%</td>
<td>4.0</td>
<td>9.30%</td>
<td>10.0</td>
<td>6.10%</td>
<td>20.0</td>
<td>3.80%</td>
<td>50.0</td>
<td>2.90%</td>
<td>100.0</td>
</tr>
<tr>
<td>14</td>
<td>18.50%</td>
<td>3.7</td>
<td>15.20%</td>
<td>4.0</td>
<td>9.90%</td>
<td>10.0</td>
<td>6.40%</td>
<td>20.0</td>
<td>4.00%</td>
<td>50.0</td>
<td>2.90%</td>
<td>100.0</td>
</tr>
<tr>
<td>15</td>
<td>19.40%</td>
<td>3.9</td>
<td>15.80%</td>
<td>4.0</td>
<td>10.50%</td>
<td>10.0</td>
<td>6.70%</td>
<td>20.0</td>
<td>4.10%</td>
<td>50.0</td>
<td>3.00%</td>
<td>100.0</td>
</tr>
</tbody>
</table>

(1) 適切な非スケジュール型帯域幅が使用可能な場合の例です。
(2) モジュールのCPUの概算使用率です。
(3) 2000サンプルを使用した実際のパケット間隔の平均値です(単位はmsec)。

1756-CN2、1756-CN2R、および1756-CN2RXTモジュールでは性能が向上したため、1756-CNBおよび1756-CNBRモジュールの注意事項の多くは適用されません。1756-CN2、1756-CN2R、1756-CN2RXTモジュールでは、適正なRPI設定を使用し、ControlNetモジュールのCPU制限を超えないかぎり、オンライン時にI/Oを追加できます。

1756-CN2、1756-CN2R、1756-CN2RXTモジュールを使用してI/O構成を追加する場合、以下の点に注意してください。

- デジタルI/Oモジュールは、親モジュールがすでにラック最適化コネクション向けに構成されている場合、ラック最適化コネクションとして追加できます。

ヒント 新しいデジタルI/Oモジュールを既存のラック最適化コネクションに追加できますが、オンライン時にラック最適化コネクションを追加することはできません。

- デジタルI/Oモジュールは直接コネクションとしても追加できます。
- アナログI/Oモジュールは直接コネクションとしてのみ追加できます。
第8章 I/Oモジュール

- 入力がRPIよりも先に送信されてしまう可能性があるため、デジタル入力モジュールのチェンジ・オブ・ステータス（COS）機能を無効にします。

- 多数のI/OをControlNetネットワークに追加する予定の場合、単一のControlNetネットワークをI/O専用にしてください。専用のControlNetネットワークについては、以下がほとんどまたはまったくないことを確認してください。
 - HMIトラフィック
 - MSGトラフィック
 - プログラミングワークステーション

- モジュールがリアルタイム・サンプリング（RTS）を実装する場合、これを無効にするか、RPIよりも大きい速度に設定する必要があります。

- 以下の制限に達するまで、I/Oモジュールを追加できます。
 - 1756-CN2, 1756-CN2R, または1756-CN2RXT通信モジュールのCPU使用率80%
 - ネットワークのスケジュール設定後に、RSNetWorx for ControlNetソフトウェアに表示されるバイト数が1秒当たり400,000非スケジュール型バイト未満

オンライン時の追加 - EtherNet/IPに関する注意事項

Ethernet/IPネットワークにI/Oモジュールを追加する場合、以下の点に注意してください。

- EtherNet/IP I/Oモジュールは、以下のコネクションタイプとして追加できます。
 - ラック最適化コネクション（新規および既存のコネクションを含む）
 - 直接コネクション[チョクセツコネクション]

- 通信モジュールの接続制限に達するまで、I/Oモジュールを追加できます。

EtherNet/IPモジュールの制限事項については、「Logix5000制御システム内のEtherNet/IPモジュールユーザーズマニュアル」(Pub.No. ENET-UM001)を参照してください。
データ更新時期の判断

ControlLogixコンソートラは、ロジックの実行とは非同期にデータを更新します。以下のフローチャートを使用して、コンソートラ、入力モジュール、ブリッジモジュールなどのプロデューサがデータを送信するタイミングを決定してください。

図24・データ更新のフローチャート

- ControlNet ネットワークでは、リモートデータは実際のパケット間隔で送信されます。
- EtherNet/IP ネットワークでは、リモートデータは通常は RPI に近い間隔で送信されます。
Notes:
第9章

モーションアプリケーションの開発

モーション・コントロール・オプション

ControlLogix®コントローラはデジタル、アナログ、および統合モーションのインターフェイスをサポートします。

- デジタル・ドライブ・インターフェイスには、EtherNet/IP接続ドライブとSERCOS Interface接続ドライブがあります。
- アナログドライブは、±10Vのアナログ出力をサポートし、チャエンドコーダ、SSI、LVDTフィードバックなど、さまざまなタイプのフィードバック装置とインターフェイスできます。
- 統合モーションは、Kinetix® 350、Kinetix 5500、Kinetix 6500、およびPowerFlex® 755ドライブにサポートされています。

項目	参照ページ
モーション・コントロール・オプション | 145
モーションの概要 | 146
軸情報の取得 | 146
モーションコントロールのプログラム | 147
モーションの概要

構成プロセスは、使用するアプリケーションと選択するドライブに応じて異なります。以下に、モーションアプリケーションを構成するための一般的な手順を示します。

1. コントローラのプロジェクトを作成します。
2. ドライブのタイプを選択します。

<table>
<thead>
<tr>
<th>ドライブタイプ</th>
<th>要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP Sync</td>
<td>• EtherNet/IP通信モジュール
• EtherNet/IP接続を使用するデジタルドライブ</td>
</tr>
<tr>
<td>SERCOS Interface</td>
<td>以下のSERCOS Interfaceモジュールを選択します。
- 1756-M03SE
- 1756-M08SE
- 1756-M16SE</td>
</tr>
<tr>
<td>アナログインターフェイス</td>
<td>以下のアナログ・インターフェイス・モジュールを選択します。
- 1756-HY02
- 1756-M02AE
- 1756-M02AS</td>
</tr>
</tbody>
</table>

3. 必要に応じて軸タグを作成します。
4. ドライブを構成します。
5. 必要に応じて軸を作成します。

軸情報の取得

軸情報を取得するには、以下の方法を使用します。
- 軸をダブルクリックして、Axis Propertiesダイアログボックスを開きます。
- システム値の取得 (GSV) またはシステム値の設定 (SSV) 命令を使用して、実行時の構成の読み取りまたは変更を行ないます。
- Quick View領域で、軸の状態とフォルトを確認します。
- 軸タグを使用してステータスとフォルトを取得します。

図25 - 軸情報の取得
モーションコントロールのプログラム

コントローラには、軸のモーションコントロール命令セットが用意されています。

- コントローラは、その他の Logix5000™ 命令と同様にこれらの命令を使用します。
- 各モーション命令は、1つまたは複数の軸で動作します。
- モーション命令ごとにMotion Controlタグが必要です。タグはMOTION_INSTRUCTIONデータタイプを使用し、命令の情報ステータスを保存します。
- 以下のプログラミング言語で、モーションコントロール命令をプログラムできます。
 - ラダーディアグラム(LD)
 - 構造化テキスト(ST)
 - シーケンシャル・ファンクション・チャート(SFC)

図26-モーションコントロール命令

注意: モーション命令のMotion Controlオペランドには1つのタグのみを使用します。別の命令で同じMotion Controlタグを再利用すると、制御変数に予期しない動作が生じることがあります。
Chapter 9 Motion Application Development

Example

Below is an example of a simple ladder diagram.

Initialize_Pushbutton = ON で、軸 = OFF (My_Axis_X.ServoActionStatus = OFF) のとき、M50 命令により軸が ON になります。

Home_Pushbutton = ON で、軸がまだ原点復帰していない (My_Axis_X.AxisHomedStatus = OFF) のとき、MAH 命令により軸が原点復帰します。

Jog_Pushbutton = ON で、軸 = ON (My_Axis_X.ServoActionStatus = ON) のとき、MAJ 命令により軸が前方向に 8 単位 / 秒、移動します。

Jog_Pushbutton = OFF のとき、MAS 命令により軸が 100 単位 / 秒で、停止します。

Move_Command = ON で、軸 = ON (My_Axis_X.ServoActionStatus = ON) のとき、MAM 命令により軸が移動します。軸は、1 単位 / sec の速度で 10 単位の位置に移動します。
第10章

アプリケーションの開発

<table>
<thead>
<tr>
<th>項目</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>制御アプリケーションの要素</td>
<td>149</td>
</tr>
<tr>
<td>タスク</td>
<td>150</td>
</tr>
<tr>
<td>プログラム</td>
<td>153</td>
</tr>
<tr>
<td>ルーチン</td>
<td>156</td>
</tr>
<tr>
<td>パラメータおよびローカルタグ</td>
<td>157</td>
</tr>
<tr>
<td>プログラミング言語</td>
<td>160</td>
</tr>
<tr>
<td>アドオン命令</td>
<td>160</td>
</tr>
<tr>
<td>モジュールオブジェクトへのアクセス</td>
<td>162</td>
</tr>
<tr>
<td>コントローラのステータスのモニタ</td>
<td>163</td>
</tr>
<tr>
<td>I/Oコネクションのモニタ</td>
<td>163</td>
</tr>
<tr>
<td>システムオーバーヘッドのタイムスライス</td>
<td>167</td>
</tr>
</tbody>
</table>

制御アプリケーションの要素

制御アプリケーションは、効率的なアプリケーションの実行に必要な複数の要素で構成されます。以下のアプリケーション要素があります。

- タスク
- プログラム
- ルーチン/ルーチン
- パラメータおよびローカルタグ
タスク

Logix5000®コントローラでは、複数のタスクを使用し、特定の条件に基づいてプログラムの実行のスケジュール設定と優先順位（プライオリティ）を付けることができます。このマルチタスク処理では、アプリケーションのさまざまな動作に対してコントローラの処理時間を割当てます。

- コントローラは一度に1つのタスクしか実行しません。
- 1つのタスクが別のタスクの実行に割込み、制御することができます。
- タスクでは、複数のプログラムを使用できます。ただし、一度に実行されるプログラムは1つのみです。
- 必要に応じて、タスクをコントローラーオーガナイザや論理オーガナイザのビューに表示することができます。
図28-制御アプリケーション内のタスク

図29-タスク
タスクは、1つまたは複数のプログラムのスケジュール設定と優先情報を提供します。Task Propertiesダイアログボックスを使用して、タスクを連続、周期的、イベントとして構成できます。

図30-タスクタイプの構成

表44に、構成可能なタスクのタイプを示します。

<table>
<thead>
<tr>
<th>タスクタイプ</th>
<th>タスクの実行</th>
<th>説明</th>
</tr>
</thead>
</table>
| 連続 Constant | 連続タスクはバックグラウンドで実行されます。他の処理（モーション、通信、その他のタスクなど）に割当てられていないCPU時間を使用して、連続タスクでプログラムを実行します。 | 連続タスクは常時実行されます。連続タスクはフルスキャンを完了するとすぐに再始動します。プロジェクトには連続タスクは不要です。使用すると、全ての連続タスクとなります。
| | 連続タスクはフルスキャンを完了するとすぐに再始動します。 | 連続タスクはフルスキャンを完了するとすぐに再始動します。
| 周期的 | 設定した間隔（100msecごとなど） 他のロジックのスキャン内に複数回 | 周期的タスクは設定した間隔で機能を実行します。周期的タスクは期間が満了するたびに、優先順位の低いタスクに割込み、以前のタスクが中止された位置に復帰します。
| | 期間は、0.1～2,000,000.00msecの間で構成できます。デフォルトは10msecです。これは、コントローラおよび構成に応じて異なります。
| | 周期的タスクの性能は、Logix5000 コントローラのタイプとタスクのロジックに応じて異なります。 | 期間は、0.1～2,000,000.00msecの間で構成できます。デフォルトは10msecです。これは、コントローラおよび構成に応じて異なります。
| イベント | イベントの発生直後 | イベントタスクは、特定のイベント（トリガ）が発生した場合にのみ機能を実行します。イベントタスクのトリガとして、以下を設定できます。
| | | • モジュール入力データのチェンジ・オブ・ステータス
| | | • コンシューマ・タグ・トリガ
| | | • EVENT命令
| | | • 軸トリガ
| | | • モーション・イベント・トリガ

ControlLogix®コントローラは最大32タスクをサポートし、連続タスクに設定できるのは1つのみです。

タスクには最大1,000のプログラムを設定でき、Logix DesignerアプリケーションVer.24.00.00以降、それぞれ独自の実行可能ルーチンとプログラム用タグを設定できます。タスクがトリガ（アクティブ化）されると、タスクに割付けられたプログラムがグループ化された順番に実行されます。プログラムはコントローラオーガナイザで1回のみ表示でき、複数のタスクで共有することはできません。
タスクの優先順位

コントローラの各タスクには優先順位があります。オペレーティングシステムでは、複数のタスクがトリガされたときに、優先順位を使用して実行するタスクを決定します。優先順位の高いタスクは、優先順位の低いタスクに割り込みます。連続タスクには最も低い優先順位が割付けられ、周期的またはイベントタスクによって割り込まれます。

周期的タスクとイベントタスクを構成して、優先順位が最低である15から優先順位が最高である1までを実行できます。タスクの優先順位は、Task Propertiesダイアログボックスを使用して構成します。

図31- タスクの優先順位の構成

プログラム

コントローラのオペレーティングシステムは、IEC 1131-3に準拠したプリエンプティブ・マルチタスク・システムです。このシステムでは、以下の機能を使用することができます。

- データとロジックをグループ化するプログラム
- 單一のプログラミング言語で作成された実行可能コードをカプセル化するルーチン

各プログラムには、以下が含まれます。

- ローカルタグ
- パラメータ
- 実行可能なメインルーチン
- その他のルーチン
- オプションのフォルトルーチン
第10章 アプリケーションの開発

図32 - 制御アプリケーション内のプログラム

図33 - プログラム
スケジュール型/非スケジュール型プログラム

タスク内のスケジュール型プログラムは、最初から最後まで順番に実行されます。どのタスクにも関連付けられていないプログラムは、非スケジュール型プログラムとして表示されます。

タスク内の非スケジュール型プログラムは、プロジェクト全体を収めるコントローラにダウンロードされます。このコントローラは、非スケジュール型プログラムを確認しますが、実行しません。

コントローラでプログラムをスキャンするには、タスク内のプログラムをスケジュール設定する必要があります。非スケジュール型プログラムをスケジュール設定するには、Task PropertiesダイアログボックスのProgram/Phase Scheduleタブを使用します。

図34-非スケジュール型プログラムのスケジュール設定
ルーチン

ルーチンは、ラダーディアグラム（ラダーロジック）などの単一のプログラミング言語によるロジック命令のセットです。ルーチンは、コントローラのプロジェクトに実行可能コードを提供します。ルーチンは、PLCまたはSLC（プロセッサ）プロセッサにおけるプログラムファイルまたはサブルーチンに似ています。

プログラムごとに1つのメインルーチンがあります。これは、コントローラが関連タスクをトリガして関連プログラムを呼出すときに最初に実行されるルーチンです。サブルーチンへのジャンプ（JSR）命令などのロジックを使用して、他のルーチンを呼出します。

また、オプションのプログラム・フォルト・ルーチンを指定することもできます。コントローラは、関連プログラムのルーチン内で命令実行時にフォルトが発生した場合に、このルーチンを実行します。

図35-制御アプリケーション内のルーチン

図36-ルーチンルーチン
パラメータおよびローカルタグ

Logix5000コントローラでは、タグ（英数字の名前）を使用して、データ（変数）のアドレスを指定します。Logix5000コントローラには、固定の数字形式はありません。タグの名前はデータを示し、これにより以下を行うことができます。

- データを構成して装置をミラーリングします。
- アプリケーションの開発時にドキュメントを作成します。

以下の例に、コントローラのメインプログラムの範囲内で作成されたデータタグを示します。

図37-タグの例

コントローラオーガナイザー・メイン・プログラム・パラメータおよびローカルタグ

パラメータおよびローカルタグを作成および構成して、タスクとプログラムの実行を最適化するには、複数の指針があります。詳細は、『Logix5000コントローラのI/Oおよびタグデータプログラミングマニュアル』(Pub.No. 1756-PM004)を参照してください。
拡張プロパティ

拡張プロパティ機能を使用すると、コントローラプロジェクト内の各種コンポーネントの制限、工学単位、状態識別子などの追加情報を定義できます。

<table>
<thead>
<tr>
<th>コンポーネント</th>
<th>拡張プロパティ</th>
</tr>
</thead>
<tbody>
<tr>
<td>タグ</td>
<td>タグエディタで、拡張プロパティをタグに追加します。</td>
</tr>
<tr>
<td>ユーザ定義データタイプ</td>
<td>データ・タイプ・エディタで、拡張プロパティをデータタイプに追加します。</td>
</tr>
<tr>
<td>アドオン命令アドオンメイレイ</td>
<td>アドオン命令定義に関連するプロパティで、拡張プロパティをアドオン命令に追加します。</td>
</tr>
</tbody>
</table>

パススルー動作は、上位構造またはアドオン命令で拡張プロパティを割付ける機能であり、その拡張プロパティは自動的にすべてのメンバで使用できるようになります。パススルー動作は、説明、状態識別子、および工学単位に使用でき、ユーザが構成できます。パススルー動作は、Controller PropertiesダイアログボックスのProjectタグで構成します。パススループロパティを表示しない場合、所定のコンポーネント向けに構成された拡張プロパティのみが表示されます。

パススルー動作は、制限には使用できません。タグのインスタンスを作成すると、制限がデータタイプに関連する場合、そのインスタンスはコピーされます。

拡張プロパティはタグに定義されていることがタグブラウザに表示されないため、制限が関連付けられたタグを把握しておく必要があります。ただし、タグに定義されていない拡張プロパティを使用する場合、エディタに視覚情報が表示され、ルーチンでは照合されません。

ロジックによる拡張プロパティへのアクセス

タグに定義されている制限にアクセスするには、@Minおよび@Maxシンタックスを使用します。

- ロジックにより拡張プロパティの値を書込むことはできません。
- アドオン命令で拡張タグプロパティを使用するには、入力オペランドとしてアドオン命令に渡す必要があります。
- 拡張プロパティを持つタグのエイリアスは、ロジックで拡張プロパティにアクセスすることはできません。
- 制限は、アドオン命令の入力/出力パラメータ向けに構成できます。ただし、アドオン命令のInOutパラメータで制限を定義するとはできません。
- 制限は、アドオン命令のロジック内部でアクセスすることはできません。制限を使用できるのは、HMIアプリケーションのみです。
アプリケーションの開発 第10章

配列タグが間接アドレス指定を使用して、ロジックで制限にアクセスする場合、以下の条件が適用されます。

- 配列タグが制限を構成する場合、拡張プロパティは、明示的にその拡張プロパティを構成していない配列要素に適用されます。例えば、配列タグMyArrayでMaxを100に構成した場合、Maxを構成していない配列のすべての要素はロジックでの使用時にこの値100を継承します。ただし、MyArrayから継承された値がタグプロパティで構成されていることは、ユーザには通知されません。

- 少なくとも1つの配列要素では、間接的に参照される配列ロジックでの照合用に制限を構成する必要があります。例えば、MyArray[x].@Maxをロジックで使用するときにMaxがMyArrayによって構成されていない場合、MyArray[]の少なくとも1つの配列要素では、Max拡張プロパティを構成する必要があります。

- 以下の状況では、データタイプのデフォルト値が使用されます。
 - 配列が間接的な参照によりプログラムからアクセスされる。
 - 配列タグで拡張プロパティを構成していない。
 - 配列のメンバで拡張プロパティを構成していない。

例えば、SINTタイプの配列で、最大制限がロジックでメンバーに呼出された場合、値127が使用されます。

配列要素を直接アクセスする場合、その要素では拡張プロパティを定義する必要があります。定義しない場合は、照合が失敗します。
アプリケーションの開発

プログラミング言語

ControlLogixコントローラは、オンラインとオフラインの両方で、以下のプログラミング言語をサポートします。

表45 - ControlLogixコントローラのプログラミング言語

<table>
<thead>
<tr>
<th>言語</th>
<th>プログラムでの最適な用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>リレーラダー</td>
<td>複数処理の連続または並列実行（順次実行ではない）</td>
</tr>
<tr>
<td></td>
<td>ブーリアンまたはビットベースの演算</td>
</tr>
<tr>
<td></td>
<td>複雑な論理演算</td>
</tr>
<tr>
<td></td>
<td>メッセージおよび通信処理</td>
</tr>
<tr>
<td></td>
<td>マシンインターロック</td>
</tr>
<tr>
<td></td>
<td>ポイント/メンテナンス担当者が、マシンやプロセスのトラブルシューティングのために解析する必要のある処理</td>
</tr>
<tr>
<td>ファンクション・ブロック・ダイアグラム</td>
<td>連続プロセスおよびドライプ制御</td>
</tr>
<tr>
<td></td>
<td>ループ制御</td>
</tr>
<tr>
<td></td>
<td>サーミットフローの計算</td>
</tr>
<tr>
<td>シーケンシャル・ファンクション・チャート (SFC)</td>
<td>複数処理の高度な管理</td>
</tr>
<tr>
<td></td>
<td>反復の処理シーケンス</td>
</tr>
<tr>
<td></td>
<td>パッチプロセス</td>
</tr>
<tr>
<td></td>
<td>構造化テキストを使用するモーションコントロール</td>
</tr>
<tr>
<td></td>
<td>状態マシン処理</td>
</tr>
<tr>
<td>構造化テキスト</td>
<td>複雑な算術演算</td>
</tr>
<tr>
<td></td>
<td>特殊な配列またはテーブルループ処理</td>
</tr>
<tr>
<td></td>
<td>ASCII文字列の処理またはプロトコルの処理</td>
</tr>
</tbody>
</table>

これらの言語のプログラミングについては、『Logix5000コントローラ・コモン・プロシージャプログラミングマニュアル』(Pub.No. 1756-PM001)を参照してください。

アドオン命令

RSLinx 5000®ソフトウェア(バージョン16.03.00以降)およびLogix Designerアプリケーション（バージョン21.00.00以降）を使用すると、よく使用する命令セットを設計および構成して、プロジェクトの一貫性を高めることができます。Logix5000コントローラの組込み命令と同様に、作成した命令はアドオン命令と呼ばれます。アドオン命令は、共通の制御アルゴリズム再利用します。これらを使用すると、以下を行なうことができます。

- 単一インスタンスのロジックをアニメートすることで、メンテナンスを簡単にします。
- ロック命令により知的財産を保護します。
- ドキュメントの開発期間を短縮します。
アドオン命令は複数のプロジェクトで使用できます。命令の定義、他のユーザからの命令の取得、または他のプロジェクトへの命令のコピーを行うことができます。

表46は、アドオン命令の一部の機能と利点を説明したものです。

表46-アドオン命令の機能

<table>
<thead>
<tr>
<th>機能</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>時間の短縮</td>
<td>アドオン命令により、最もよく使用するロジックを再利用可能な命令セットに統合することができます。プロジェクト間でコピー＆貼り付けを行うことにより、作業時間を短縮できます。アドオン命令を使用すると、プロジェクトを実行するユーザに関係なく、よく使用されるアルゴリズムがすべて同じ方法で実行されるため、プロジェクトの一貫性が向上します。</td>
</tr>
<tr>
<td>標準エディタの使用</td>
<td>以下のいずれかのプログラミングエディタを使用して、アドオン命令を作成します。</td>
</tr>
<tr>
<td>アドオン命令のエクスポート</td>
<td>アドオン命令を他のプロジェクトにエクスポートできます。また、プロジェクト間でコピー＆貼り付けを行なうこともできます。同名の別の命令を上書きしないように、各命令には固有の名前を付けてください。</td>
</tr>
<tr>
<td>コンテクストビューの使用</td>
<td>コンテクストビューを使用すると、ロジックを視覚情報で直ちに確認できるため、オンライントラブルシューティングを簡略化できます。各命令には、リビジョン、変更履歴、および自動生成されるヘルプページが含まれます。</td>
</tr>
<tr>
<td>カスタムヘルプの作成</td>
<td>命令を作成するときに、説明フィールドに情報を入力します。この情報がカスタムヘルプになります。</td>
</tr>
<tr>
<td>ソース保護の適用</td>
<td>アドオン命令の作成者は、命令のユーザを読取り専用アクセスに制限することや、命令で使用される内部ロジックやローカルパラメータへのアクセスを禁止することができます。このソース保護により、命令の不要な変更を防止し、知的財産を保護できます。</td>
</tr>
</tbody>
</table>

プロジェクトで定義したアドオン命令は、Logix5000コントローラの組込み命令と同様に動作します。内部命令とともに命令ツールバーに表示されるため、簡単にアクセスできます。

図38-アドオン命令アドオンメイレイ

![コントローラオーガナイザ](image-url)

命令ツールバー

![命令ツールバー](image-url)
モジュールオブジェクトへのアクセス

MODULEオブジェクトは、モジュールに関するステータス情報を提供します。特定のモジュールオブジェクトを選択するには、モジュール名に対するGSV/SSV命令のObject Nameオペランドを設定します。指定されたモジュールは、コントローラーオーガナイザのI/O構成セクションに存在し、デバイス名を持っている必要があります。

アドオン命令の作成

Logix DesignerアプリケーションのVer. 24.00.00以降では、アドオン命令から直接、MODULEオブジェクトにアクセスすることができます。以前は、MODULEオブジェクトデータにはアクセスできても、アドオン命令内からのアクセスはできませんでした。

MODULEオブジェクトデータにアクセスするアドオン命令を定義する場合は、Module Referenceパラメータを作成する必要があります。Module Referenceパラメータは、ハードウェアモジュールのMODULEオブジェクトを指し示す、MODULEデータタイプのInOutパラメータです。アドオン命令ロジックとプログラムロジックの両方で、Module Referenceパラメータを使用することができます。

Module Referenceパラメータの詳細は、『Logix5000コントローラのアドオン命令プログラミングマニュアル』(Pub.No. 1756-PM010) および Logix Designerアプリケーションのオンラインヘルプを参照してください。

MODULEオブジェクトは、以下の属性を使用してステータス情報を提供します。
- EntryStatus
- FaultCode
- FaultInfo
- FWSupervisorStatus
- ForceStatus
- インスタンス
- LEDStatus
- モード
- Path

Path属性は、Logix DesignerアプリケーションVer. 24.00.00以降で使用することができます。この属性により、モジュールへの通信パスを使用することができます。

MODULEオブジェクトで使用可能な属性の詳細は、『Logix 5000コントローラ汎用インストラクション・セット・リファレンス・マニュアル』(Pub.No. 1756-RM003)を参照してください。
コントローラのステータスのモニタ

ControlLogixコントローラは、システム値の取得(GSV)命令とシステム値の設定(SSV)命令を使用して、コントローラのデータを取得および設定(変更)します。コントローラは、システムデータをプロジェクトに保存します。PLC-5®プロセッサのようなステータスファイルはありません。

GSV命令は、指定された情報を取得して宛先に配置します。SSV命令は、ソースデータの指定された属性を設定します。これらの命令は、いずれも命令ツールバーのInput/Outputタブから使用できます。

図39- GSV/SSV命令による属性のモニタと設定

GSV/SSV命令をプログラムに追加すると、命令の有効なオブジェクトクラス、オブジェクト名、および属性名が表示されます。GSV命令では、使用可能なすべての属性の値を取得できます。SSV命令では、設定可能な属性のみが表示されます。

一部のオブジェクトタイプが繰返し表示される場合があるため、必要に応じてオブジェクト名を指定します。例えば、アプリケーションに複数のタスクが存在する場合があります。各タスクは独自のタスクオブジェクトを備え、これにタスク名でアクセスします。

複数のオブジェクトと属性に対して、GSV/SSV命令を使用してシステムをモニタおよび設定できます。GSV命令、SSV命令、オブジェクト、および属性の詳細は、『Logix5000コントローラ汎用インストラクション・セット・リファレンス・マニュアル』(Pub.No. 1756-RM003)を参照してください。

I/Oコネクションのモニタ

コントローラのI/O構成内のデバイスとの通信がアプリケーションで指定した時間内に実行されない場合、通信タイムアウトが発生し、コントローラは警告を発行します。

無通信状態になってからタイムアウトするまでの最小のタイムアウト時間は、100msecです。タイムアウト時間は、アプリケーションのRPIに応じて大きくなる場合があります。例えば、アプリケーションでデフォルトRPIを20msecに設定した場合、タイムアウト時間は160msecです。
アプリケーションの時間の決定については、ロックウェル・オートメーションのナレッジベース（回答ID 38535）を検索してください。このドキュメントは、http://www.rockwellautomation.com/knowledgebaseから入手できます。

タイムアウトが発生すると、コントローラは以下の警告を発行します。

- 1756-L7x コントローラのステータス表示に、I/O フォルト・ステータス・コードが表示されます。

- 1756-L6x コントローラの前面にあるI/O ステータスインジケータが緑色に点滅します。

- モジュールのフォルトコードが生成されます。このコードには、以下からアクセスできます。
 - Module Properties ダイアログボックス
 - GSV命令

I/O フォルトの詳細は、『Logix5000 コントローラ メジャーやマイナー、およびI/O フォルトプログラミングマニュアル』(Pub.No. 1756-PM014)を参照してください。
I/O通信のタイムアウトの判断

以下の例は、1756-L7xまたは1756-L6xコントローラに適用できます。

- GSV 命令により、I/O ステータスインジケータのステータスを取得し（Module オブジェクトの LEDStatus 属性を使用）、これを IO_LEDタグに保存します。

- IO_LEDはDINTタグであり、コントローラ前面のI/Oステータスインジケータまたはステータス表示のステータスを保存します。

- IO_LEDが2の場合、少なくとも1つのI/Oコネクションが失われており、Fault_Alertが設定されます。

図40- GSVによるI/Oタイムアウトの特定

Moduleオブジェクトで使用可能な属性の詳細は、『Logix5000コントローラ汎用インストラクション・セット・リファレンス・マニュアル』（Pub.No. 1756-RM003）を参照してください。

特定のI/Oモジュールに対するI/O通信のタイムアウトの判断

コントローラのI/O構成内のデバイス（モジュール）との通信でタイムアウトが発生した場合、コントローラはモジュールのフォルトコードとフォルト情報を生成します。GSV命令を使用して、ModuleオブジェクトのFaultCodeおよびFaultInfo属性からフォルトコードと情報を取得できます。

Moduleオブジェクトで使用可能な属性の詳細は、『Logix5000コントローラ汎用インストラクション・セット・リファレンス・マニュアル』（Pub.No. 1756-RM003）を参照してください。
第10章 アプリケーションの開発

ロジックの実行中断とフォルトハンドラの実行

アプリケーションに応じて、I/Oコネクションエラー時にコントローラ・フォルト・ハンドラを実行することができます。これを行うには、I/Oコネクションエラーによりメジャーフォルトを生成するようにモジュールプロパティを設定します。次に、メジャーフォルトにより、コントローラ・フォルト・ハンドラを実行します。

まず、I/Oコネクションフォルトに応答できるコントローラ・フォルト・ハンドラのルーチンを作成します。次に、I/Oモジュールまたは親通信モジュールのModule Propertiesダイアログボックスで、Major Fault On Controller If Connection Fails While in Run Modeをオンにします。

図41-I/Oコネクションフォルトによるメジャーフォルトの生成

<table>
<thead>
<tr>
<th>General</th>
<th>Connection*</th>
<th>Module Info</th>
<th>Configuration</th>
<th>Diagnostics</th>
<th>Backplane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requested Packet Interval (RPI):</td>
<td>20.0 ms (0.2 - 750.0 ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibit Module</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Fault On Controller If Connection Fails While in Run Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

親通信モジュールのプロパティ

<table>
<thead>
<tr>
<th>General</th>
<th>Connection*</th>
<th>Module Info</th>
<th>Backplane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requested Packet Interval (RPI):</td>
<td>20.0 ms (0.2 - 750.0 ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibit Module</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Fault On Controller If Connection Fails While in Run Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Scheduled Connection over ControlNet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

コントローラ・フォルト・ハンドラのプログラミングの詳細は、「Logix5000コントローラ・メジャー、マイナー、およびI/Oフォルトプログラミングマニュアル」(Pub.No. 1756-PM014)を参照してください。
システムオーバヘッドのタイムスライス

システムオーバヘッドのタイムスライスでは、コントローラが通信サービスを提供する時間の割合を指定します。連続タスクがある場合、Controller PropertiesダイアログボックスのAdvancedタブで入力するシステムオーバヘッドのタイムスライスは、連続タスク/通信サービスの割合を示します。ただし、連続タスクがない場合、オーバヘッドのタイムスライスは影響しません。

表47に、RSLogix 5000ソフトウェア(バージョン 16.03.00以降)およびLogix Designerアプリケーション(バージョン 21.00.00以降)での、さまざまなシステムオーバヘッドのタイムスライスにおける連続タスクと通信サービスの割合を示します。

<table>
<thead>
<tr>
<th>タイムスライス</th>
<th>連続タスクの時間</th>
<th>通信サービスの時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>9mssec</td>
<td>1mssec</td>
</tr>
<tr>
<td>20%</td>
<td>4mssec</td>
<td>1mssec</td>
</tr>
<tr>
<td>25%</td>
<td>3mssec</td>
<td>1mssec</td>
</tr>
<tr>
<td>33%</td>
<td>2mssec</td>
<td>1mssec</td>
</tr>
<tr>
<td>50%</td>
<td>1mssec</td>
<td>1mssec</td>
</tr>
<tr>
<td>66%</td>
<td>1mssec</td>
<td>2mssec</td>
</tr>
<tr>
<td>75%</td>
<td>1mssec</td>
<td>3mssec</td>
</tr>
<tr>
<td>80%</td>
<td>1mssec</td>
<td>4mssec</td>
</tr>
<tr>
<td>90%</td>
<td>1mssec</td>
<td>9mssec</td>
</tr>
</tbody>
</table>

表に示したように、システムオーバヘッドのタイムスライスが50%以下の場合、時間は1msに固定されます。複数の1msの間隔がある点を除いては、66%の場合も同じことが当てはまります。例えば、66%では2つの1ms間隔の連続時間があり、90%では9つの1ms間隔の連続時間があります。
システムオーバヘッドのタイムスライスの構成

システムオーバヘッドのタイムスライスを構成するには、以下の手順に従います。

1. コントローラオーガナイザで、コントローラを右クリックしてProperties（プロパティ）を選択します。

 Controller Propertiesダイアログボックスが表示されます。

2. Advancedタブをクリックします。

3. System Overhead Time Sliceボックスに数値を入力します。

4. Run Continuous Task（デフォルト）またはReserve for System Tasksを使用します。
 - Run Continue Taskラジオボタンは、通信やバックグラウンドタスクを処理しない場合に使用します。コントローラは直ちに連続タスクに戻ります。
 - Reserve for System Taskラジオボタンは、コントローラが連続タスクに制御を戻す前に実行する通信タスクまたはバックグラウンドタスクがあるかどうかに関係なく、全体で1msecのシステムオーバヘッドのタイムスライスを割り当てます。これにより、HMI、コントローラ間のメッセージ送信などを構成する前に、設計やプログラミング時にコントローラの通信負荷のシミュレーションを行うことができます。

5. OKをクリックします。
サンプルのコントローラプロジェクト

Studio 5000 Logix Designerアプリケーションには、サンプルプロジェクトが用意されており、これをコピーし、アプリケーションに合わせて変更できます。サンプルプロジェクトにアクセスするには、Studio 5000°インターフェイスで、Open Sample Projectを選択し、Samples→ENU→v24→Rockwell Automationを順番に選択します。

図42-サンプルプロジェクトのオープン
Notes:
PhaseManagerツールの使用

PhaseManagerツールでは、機器フェーズをコントローラに追加できます。機器フェーズを使用すると、コードをセクションに整理して、コードの書込み、検索、変更などを簡略化できます。

表 48 - PhaseManagerの用語の説明

<table>
<thead>
<tr>
<th>用語</th>
<th>説明</th>
</tr>
</thead>
</table>
| 機器フェーズ | • プログラムと同様に、機器フェーズはタスクで実行され、ルーチンおよびタグのセットを指定します。
| | • プログラムとは異なり、機器フェーズは状態モデルによって実行され、1つのアクティビティを実行できます。 |
| 状態モデル | • 状態モデルは、機器の動作サイクルを一連の状態に分割したもので、各状態は、機器の動作のインスタンスであり、所定の時間の機器の動作や状況を表します。
| | • 機器フェーズの状態モデルは、S88およびPackMLの状態モデルと類似しています。 |
| 状態マシン | 機器フェーズには、以下を実行する状態マシンが組込まれています。
| | • アクティブ状態に関連付けられたルーチンを呼出します。
| | • 状態間のトランジションを最小限のコーディングで管理します。
| | • 機器が許容可能なパスに沿って状態間を移行することを確認します。 |
| PHASEタグ | 機器フェーズを追加すると、アプリケーションはその機器フェーズのタグを作成します。タグはPHASEデータタイプを使用します。 |
図43 - PhaseManagerの概要

PHASE タグは、機器フェーズの状態を提供します。

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Force Mask</th>
<th>Style</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add_Water</td>
<td>0</td>
<td>Decimal</td>
<td>BOOL</td>
<td></td>
</tr>
<tr>
<td>Add_Water_Running</td>
<td>0</td>
<td>Decimal</td>
<td>BOOL</td>
<td></td>
</tr>
<tr>
<td>Add_Water_Holding</td>
<td>0</td>
<td>Decimal</td>
<td>BOOL</td>
<td></td>
</tr>
<tr>
<td>Add_Water_Releasing</td>
<td>0</td>
<td>Decimal</td>
<td>BOOL</td>
<td></td>
</tr>
</tbody>
</table>

機器フェーズは、機器の1つのアクティビティを指定します。状態モデルは、アクティビティを一連の状態に分割します。

実行状態ルーチン

給水方法

他のコードで機器の特定動作を制御します。
最低限のシステム要件

PhaseManagerプログラムを開発するには、以下が必要です。

- ファームウェアリビジョン16以降のControlLogix®コントローラ
- コントローラへの通信バス
- RSLogix 5000®ソフトウェア（バージョン16.03.00以降）またはLogix Designerアプリケーション（バージョン21.00.00以降）

PhaseManagerサポートを有効にするには、完全版またはプロフェッショナル版のソフトウェアまたはPhaseManagerソフトウェアが付属するソフトウェア（Cat.No. 9324-RLDMENE）が必要です。

状態モデルの概要

状態モデルは、さまざまな状況における機器の実行内容と、各状態の相互の関連性を定義します。各状態は、動作中または待機中として表されます。

表49 - PhaseManagerソフトウェアの状態

<table>
<thead>
<tr>
<th>状態</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>動作中</td>
<td>一定の時間または特定の条件を満たすまで、何らかのあるいは複数の処理を実行します。動作中の状態は、1回または繰返し実行されます。</td>
</tr>
<tr>
<td>待機中</td>
<td>特定の条件が満たされて、信号が次の状態に移行することを機器が待機していることを示します。</td>
</tr>
</tbody>
</table>

図44 - PhaseManagerの状態トランジション

機器は、ボックス内のどの状態からでも、停止中またはアボート中の状態に移行できます。

動作中の状態は、指定時間に機器が処理を実行していることを表します。

待機中の状態は、動作中の状態の間にある機器の状況を表します。
状態モデルでは、動作中の状態での機器の動作を定義します。

表 50 - PhaseManager状態モデルの動作中の状態

<table>
<thead>
<tr>
<th>状態</th>
<th>確認内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>シャットダウン</td>
<td>機器を実行可能な状態にする方法</td>
</tr>
<tr>
<td>実行中</td>
<td>機器の生産のために必要のある動作</td>
</tr>
<tr>
<td>保留中</td>
<td>機器がスクラップを出さずに一時的に生産を停止する方法</td>
</tr>
<tr>
<td>再始動中</td>
<td>機器が保留後に生産を再開する方法</td>
</tr>
<tr>
<td>停止中</td>
<td>通常のシャットダウン時の処理内容</td>
</tr>
<tr>
<td>アボート中</td>
<td>ボルトまたは障害が発生した場合の機器のシャットダウン方法</td>
</tr>
</tbody>
</table>

機器の状態の変更方法

状態モデルの矢印は、機器が移行できる状態を示します。

- 各矢印はトランジションと呼ばれています。
- 状態モデルを使用すると、機器に特定のトランジションのみを設定できます。この制限により、同じモデルを使用する他の機器が同じ動作を実行するように、機器の動作を標準化できます。

図45 - PhaseManagerのトランジションコマンド

- トランジションコマンド 終了 → コマンドなし。かわりに PSC 命令を使用します。
- 機器は停止またはアボートコマンドを受信すると、ボックス内のどの状態からでも移行できます。
手動での状態の変更

機器フェーズは手動で変更できます。以下の手順に従って、PhaseManagerの状態を手動で変更してください。

1. Equipment Phase Monitorを開きます。
2. Ownersをクリックし、Yesをクリックして機器フェーズのオーナシップを取得します。
3. コマンドをクリックして、目的の状態を開始します（開始、リセットなど）。
4. 手動による状態の変更が完了したら、Ownersをクリックしてオーナシップを解放します。
PhaseManagerツールと他の状態モデルの比較

表52では、PhaseManager状態モデルと他の状態モデルを比較しています。

<table>
<thead>
<tr>
<th>PhaseManagerツール</th>
<th>S88</th>
<th>PackML</th>
</tr>
</thead>
<tbody>
<tr>
<td>リセット中〜アイドル</td>
<td>アイドル</td>
<td>始動中〜レディ</td>
</tr>
<tr>
<td>実行中〜完了</td>
<td>実行中〜完了</td>
<td>生成中</td>
</tr>
<tr>
<td>サブルーチンまたはブレークポイント</td>
<td>一時停止中〜一時停止</td>
<td>スタンバイ</td>
</tr>
<tr>
<td>保留中〜保留済み</td>
<td>保留中〜保留済み</td>
<td>保留中〜保留済み</td>
</tr>
<tr>
<td>再起動中</td>
<td>再起動中</td>
<td>なし</td>
</tr>
<tr>
<td>停止中〜停止</td>
<td>停止中〜停止</td>
<td>停止中〜停止</td>
</tr>
<tr>
<td>アボート中〜アボート</td>
<td>アボート中〜アボート</td>
<td>アボート中〜アボート</td>
</tr>
</tbody>
</table>

機器フェーズ命令

コントローラは、機器フェーズに関する複数のリレーラダー/構造化テキスト命令をサポートします。

表53 - PhaseManagerツールで使用可能な命令

<table>
<thead>
<tr>
<th>命令</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSC</td>
<td>状態ルーチンが完了したフェーズに信号を送信し、次の状態に移行します。</td>
</tr>
<tr>
<td>PCMD</td>
<td>フェーズの状態またはサブ状態を変更します。</td>
</tr>
<tr>
<td>PFL</td>
<td>フェーズの障害の信号を送信します。</td>
</tr>
<tr>
<td>PCLF</td>
<td>フェーズの障害コードをクリアします。</td>
</tr>
<tr>
<td>PXRO</td>
<td>RSBizWare®バッチソフトウェアとの通信を開始します。</td>
</tr>
<tr>
<td>PRRP</td>
<td>フェーズのNewInputParametersビットを0にリセットします。</td>
</tr>
<tr>
<td>PPDP</td>
<td>フェーズのログック内にブレークポイントをセットアップします。</td>
</tr>
<tr>
<td>PATT</td>
<td>フェーズのオーナーシップを取得し、以下のいずれかを実行します。</td>
</tr>
<tr>
<td>• 他のプログラムまたはRSBizWareバッチソフトウェアがフェーズにコマンドを送信することを禁止します。</td>
<td></td>
</tr>
<tr>
<td>• 他のプログラムまたはRSBizWareバッチソフトウェアがフェーズを所有済みでないことを確認します。</td>
<td></td>
</tr>
<tr>
<td>PDT</td>
<td>フェーズのオーナーシップを解放します。</td>
</tr>
<tr>
<td>POVR</td>
<td>コマンドをオーバライドします。</td>
</tr>
</tbody>
</table>

機器フェーズの使用方法については、『PhaseManager User Manual』(Pub.No. LOGIX-UM001)を参照してください。
冗長システム

ControlLogix冗長の概要

プライマリコントローラのシャーシでフォルトが発生すると、セカンダリコントローラのシャーシに制御が切り換わるため、冗長性によりシステムの可用性が向上します。

冗長システムは、以下のフォルトが発生した場合にプライマリからセカンダリに制御を切換えます。

- プライマリシャーシの電源喪失
- プライマリシャーシにおけるモジュールのハードウェアまたはファームウェアの障害
- プライマリコントローラのユーザプログラムでのメジャー・フォルト
- プライマリシャーシとリモートControlNet/EtherNet/IPモジュール間の通信喪失
- プライマリシャーシにおけるEtherNet/IP通信モジュールからのEthernetパッチケーブルの切断、またはControlNet通信モジュールのControlNetケーブルコネクタの切断
- プライマリシャーシにおけるモジュールの取り外し/取付け
- ユーザコマンドによるスイッチオーバ
冗長には追加のプログラミングは不要であり、EtherNet/IP または ControlNet ネットワークで接続したデバイスにはトランスペアレントです。

プロジェクトの構成に応じて、スイッチオーバ時に出力の状態変化（バンプ）が発生する場合があります。

- スイッチオーバ時に、最も優先順位が高いタスクが制御する出力はバンプなしに切換ります。例えば、出力が以前の状態に戻るようなことはありません。
- 優先順位が低いタスクの出力では、状態変化が発生することがあります。

システム要件

最も冗長性の高いシステムでは、少なくとも以下のシステムコンポーネントを使用する必要があります。一部のアプリケーションでは、ControlNet/EtherNet/IPモジュールはオプションです。

表54・システム要件

<table>
<thead>
<tr>
<th>数量</th>
<th>項目</th>
<th>注</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ControlLogixシャーシ</td>
<td>いずれのシャーシも同じサイズを使用します。</td>
</tr>
<tr>
<td>2</td>
<td>ControlLogix電源装置</td>
<td>シャーシごとに同じものを使用します。</td>
</tr>
</tbody>
</table>
| 2 | ControlLogixコントローラ | - 1756-L6x または 1756-L7x コントローラを使用します。
 | - 各シャーシで同じカタログ番号、シリーズ、ファームウェアリビジョン、メモリ容量のコントローラを使用します。
 | - スロット配置を同一にします。 |
| 2 | ControlLogix ControlNet/通信モジュール | - 1756-CN2/B, 1756-CN2R/B, または 1756-CN2RTモジュールを使用します。
 | - 両方のシャーシのControlNetモジュールでは、ファームウェアリビジョン、シリーズ、スロット配置、モジュールタイプを同じにします。 |
| 2 | ControlLogix EtherNet/IP通信モジュール | - 1756-EN2T, 1756-EN2TXT, または 1756-EN2TRモジュールを使用します。
 | - ファームウェアリビジョン、スロット配置、モジュールタイプを同じにします。 |
| 2 | 冗長モジュール | - 1756-RM2モジュールまたは1756-RM2XTモジュールを使用します。
 | - 両方のシャーシの冗長モジュールでは、ファームウェアリビジョンとスロット配置を同じにします。
 | - L7x高性能システムでは、RMモジュールにはRM/8を使用し、両方のシャーシでシリーズとファームウェアリビジョンを同じにします。 |
| 1または2 | 冗長モジュールケーブル(光ファイバー) | - 1756-RMCxケーブルを使用します。
 | - 標準長を使用できます。 |
| 2 | 追加のControlNetノード | - すべてのI/OをリモートシャーシまたはDINレールに配置します。
 | - 冗長シャーシのペアに加えて、少なくとも2つのノードを各ControlNetネットワークに追加します。
 | - 拡張冗長システムを構築するには、冗長シャーシのControlNetモジュールのノードアドレスよりも下位のノードアドレスに少なくとも1つのキーパ対応のControlNetデバイスを配置します。- |

Pub.No. 1756-UM001P-JA-P - May 2017 179
システムの注意事項

ControlLogix冗長システムを構成する場合、以下の点に注意してくださ
い。これは冗長シャーシのモジュールに固有の注意事項です。

<table>
<thead>
<tr>
<th>プライマリ/セカンダリシャーシのコンポーネント</th>
<th>注意事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>ControlLogixコントローラ</td>
<td>• 冗長システムとして構成すると、セカンダリコントローラは
 自動的にデータを受信してバッファに格納します。
 • 冗長コントローラは、冗長コントローラの2倍のデータメ
 モリおよびI/Oメモリスペースを使用します。
 • 冗長コントローラでは、冗長コントローラと比較して、ス
 キャンタイムが大幅に長くなります。
 • スキャンタイムの影響を最小限にする方法については、
 『ControlLogix Enhanced Redundancy User Manual』(Pub.No. 1756-UM535) を参照してください。
 • 冗長システム専用バージョンのLogix Designerソフトウェアは
 不要ですが、拡張冗長システムのリビジョンレベルを一致
 させる必要があります。
 • 拡張冗長システムでは、同じタイプの2つのコントローラを
 コントローラシャーシに配置できます。</td>
</tr>
<tr>
<td>通信モジュール</td>
<td>• 拡張冗長システムでは、7つの通信モジュールをコントロー
 ラシャーシに配置でき、EtherNet/IPモジュールとControlNet
 モジュールを自由に組み合わせることができます。
 • 他のネットワークに接続するには、冗長システム外部の別の
 ControlLogixシャーシにブリッジ接続します。
 • 最適な結果を得るには、HMIとI/O通信に個別のネットワーク
 を使用します。</td>
</tr>
<tr>
<td>I/Oモジュール I/Oモジュール</td>
<td>• すべてのI/Oは、冗長コントローラーシャーシからリモートに配
 置します。
 • 拡張冗長システムリビジョン9.50から、冗長システムでEtherNet/IP
 ネットワークをリモートI/Oまたは生成/消費データに使用
 できるようになりました。</td>
</tr>
<tr>
<td>冗長電源</td>
<td>1756-PA75Rおよび1756-PB75R冗長電源はシャーシ電源の信頼性を
 高めます。</td>
</tr>
<tr>
<td>ControlNet冗長メディア</td>
<td>冗長メディアはControlNet通信の信頼性を高めます。</td>
</tr>
<tr>
<td>Ethernetデバイス・レベル・リング</td>
<td>デュアルポートEthernetモジュール(1756-EN2TR)を使用してリング
 に接続し、Ethernet通信の信頼性を高めます。</td>
</tr>
</tbody>
</table>

ControlLogix冗長シャーシ向けのモジュールの設計と計画の詳細は、『ControlLogix拡張冗長システムユーザーズマニュアル』(Pub.No. 1756-UM535) を参照してください。
拡張冗長と標準冗長の比較

拡張冗長システムと標準冗長システムは同様に動作しますが、2つのプラットフォームには重要な違いがあります。表55では、拡張冗長システムと標準冗長システムの機能を比較しています。

表55 - 拡張冗長と標準冗長の比較

<table>
<thead>
<tr>
<th>機能</th>
<th>拡張システム</th>
<th>標準システム</th>
</tr>
</thead>
<tbody>
<tr>
<td>拡張ControlLogix ControlNetおよびEtherNet/IP通信モジュールのサポート（1756-CN2B/2Eモジュールなど）</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>標準ControlLogix ControlNetおよびEtherNet/IP通信モジュールのサポート（1756-CN2B/0や1756-ENBTモジュールなど）</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>シングルスロット1756-RM冗長モジュールとの互換性</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ダブルスロット1757-SRM冗長モジュールとの互換性</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>すべての1756-L6xおよび1756-L7xControlLogixコントローラのサポート</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ControlLogixシステムコンポーネントの使用（1756-L63XTコントローラ、1756-CN2XTモジュールなど）</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>EtherNet/IPネットワーク上のI/Oの可用性（冗長I/Oシステムなど）</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

(1) 拡張冗長システムでサポートされる一部の機能の可用性は、使用するシステムリビジョンに応じて異なります。詳細は、「ControlLogix Enhanced Redundancy System User Manual」(Pub.No. 1756-UM535)を参照してください。

冗長システムの構築

以下の手順に従って、標準的な冗長システムを構築してください。

1. ControlLogixシャーシおよび電源を取り付けて。
2. プライマリシャーシに1756-L6xまたは1756-L7xコントローラを追加します。
 1756-L6xおよび1756-L7xコントローラを同じシャーシに配置することはできません。
3. 1つまたは複数のControlNetまたはEtherNet/IP通信モジュールを追加します。
4. 1つの冗長モジュールを追加します。
5. プライマリシャーシと同じになるようにセカンダリシャーシをセットアップします。

重要 冗長シャーシペアのコンポーネントは同じモジュール構成にする必要があります。

6. 両方のシャーシの冗長モジュールを接続します。
7. I/OモジュールをControlNetまたはEtherNet/IPネットワークに追加します。
8. オペレータインタフェイスをControlNetまたはEtherNet/IPネットワークに追加します。

拡張冗長システムの設計と構築の詳細は、「ControlLogix拡張冗長システムユーザーズマニュアル」(Pub.No. 1756-UM535)を参照してください。
第12章 冗長システム

冗長システムにおけるControlNetの注意事項

冗長シャーシには、最大7つのControlNet通信モジュールを配置できます。

冗長シャーシには、最大7つのEtherNet/IPモジュールを配置できます。

重要 各ControlNetネットワークでは、少なくとも2つのノードを冗長コンタクトローラシャーシの外部に配置して、スイッチオーバでのタイムアウトを回避する必要があります。

各ControlNetネットワークの最下位ノードは、冗長コンタクトローラシャーシの外部に配置する必要があります。

拡張冗長システムにおけるControlNetの注意事項については、『ControlLogix拡張冗長システムユーザーズマニュアル』(Pub.No. 1756-UM535)を参照してください。

冗長システムにおけるEtherNet/IPの注意事項

冗長システムでは、HMI通信またはコントローラ間のメッセージ送信にEtherNet/IPを使用できます。HMIは、プライマリコントローラと直接通信できます。RSLinx® Alias Topicsは不要です。

ControlLogix冗長システムは、拡張冗長システムリビジョン19.50により、EtherNet/IPによるI/O制御またはデータの生成/消費をサポートし、以下に対して使用できるようになりました。

- 1715冗長I/O
- リモートI/Oモジュール
- プライマリコントローラへのHMI接続
- データの生成/消費

拡張冗長システムにおけるEtherNet/IPの注意事項については、『ControlLogix拡張冗長システムユーザーズマニュアル』(Pub.No. 1756-UM535)を参照してください。

IPアドレスのスワッピング

ファームウェアリビジョン13以降では、冗長システムでのIPアドレスのスワッピングをサポートしています。IPアドレスのスワッピングでは、プライマリとセカンダリのEtherNet/IPモジュールと同じIPアドレスとして構成します。プライマリEtherNet/IPモジュールがこのIPアドレスを使用し、セカンダリモジュールがこのIPアドレスの最後のアドレスセグメントに1を加えたアドレスを使用します。

スイッチオーバ時に、EtherNet/IPモジュールはIPアドレスをスワップします。HMIデバイスは、IPアドレスがスワップされたため、自動的に新しいプライマリコントローラと通信を続行します。EtherNet/IP モジュールの動作仕様により、スイッチオーバ時に、コントローラとHMIデバイス間の通信は数秒間(通常は1分以内)停止します。
冗長およびスキャンタイム

各プログラムの終了時に、プライマリコントローラは同期して、セカンダリコントローラに新しいデータをクロスロードします。これにより、セカンダリコントローラを最新の状態に保ち、制御の引き継ぎに備えます。また、非冗長システムに比べてスキャンタイムも増加します。

クロスロードの時間は、プライマリコントローラがクロスロードするデータ量に応じて異なります。

- プライマリコントローラは同期して、前回のクロスロード以降に、命令により値が書込まれたタグを（同じ値の場合でも）すべてクロスロードします。

- クロスロードでは、プライマリコントローラが実行しているプログラムをセカンダリコントローラに通知するために、短いオーバヘッド時間（クロスロード当たり1msec）も必要になります。

冗長ファームウェアのリビジョン16.53以上では、どのプログラムが同期およびデータクロスロードに先行するかについて制限があります。多くのアプリケーションでは、これを変更することで、データエリアを同期する回数が減少するため、タスクのスキャンタイムへの全体的な影響を軽減できます。同期ポイントを削除すると、データのクロスロード時間がだけでなく、オーバヘッド時間も1msec短縮できます。

第12章 冗長システム

Notes:
モジュールのトラブルシューティング

<table>
<thead>
<tr>
<th>項目</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756-L7xコントローラのステータス表示とインジケータ</td>
<td>188</td>
</tr>
<tr>
<td>1756-L7xコントローラのステータス表示</td>
<td>188</td>
</tr>
<tr>
<td>1756-L7xコントローラのステータスインジケータ</td>
<td>196</td>
</tr>
<tr>
<td>1756-L6xステータスインジケータ</td>
<td>198</td>
</tr>
</tbody>
</table>

Studio 5000 Logix Designerアプリケーションは、フォルト状態を下記の方法で示します。

- モジュールの横にあるメイン画面での警告信号 - これはモジュールへのコネクションが切断された場合に表示されます。コントローラの状態も表示され、「Faulted」や「Controller fault」のメッセージが赤色で点灯します。

Logix Designerアプリケーションを使用したトラブルシューティング
付録A モジュールのトラブルシューティング

- 画面のステータス行のメッセージ

Module Info タブのStatusセクションに、Major FaultsおよびMinor FaultsがモジュールのInternal Stateと共に表示されます。

タグエディタでの通知 - モジュールの一般的なフォルトはタグエディタにも報告されます。診断フォルトはタグエディタにのみ報告されます。

Valueフィールドには、フォルトが番号1で表示されます。
フォルトタイプの判断

Module Properties画面のMajor Faultsタブに最新のフォルト情報を表示するには、ConnectionタブのControllerオプションでMajor Faultをチェックする必要があります。

Logix Designerアプリケーションでモジュールの構成プロパティをモニタし、通信フォルトメッセージを受信する場合、Major FaultsタブのRecent Faultsにフォルトタイプが表示されます。
1756-L7xコントローラのステータス表示とインジケータ

1756-L7xコントローラは、4つのステータスインジケータと1つのスクロール式ステータス表示(4桁)を搭載しています。

図47 - 1756-L7xのステータス表示とインジケータ

1756-L7xコントローラのステータス表示では、メッセージがスクロールして、コントローラのファームウェアリビジョン、ESMステータス、プロジェクトステータス、メジャーフォルトに関する情報を表示します。

一般的なステータスメッセージ

表56に記載されるメッセージは、通常、電源投入時、電源切断時に表示され、また、コントローラの動作時にはコントローラおよびESMのステータスを表示します。

表56 - 一般的なステータスメッセージ

<table>
<thead>
<tr>
<th>メッセージ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>No message is indicated</td>
<td>コントローラはオフの状態です。OKインジケータを確認し、コントローラに電源が投入されているかどうか、およびコントローラの状態を判断します。</td>
</tr>
<tr>
<td>TEST</td>
<td>コントローラで電源投入時の診断が実行されています。</td>
</tr>
<tr>
<td>PASS</td>
<td>電力投入時のテストが正常に完了しました。</td>
</tr>
<tr>
<td>SAVE</td>
<td>プロジェクトをSDカードに保存しています。ステータス情報の詳細は、SDインジケータでも確認できます（197ページを参照）。保存が完了するまでは、以下の操作を行わないでください。</td>
</tr>
<tr>
<td>LOAD</td>
<td>コントローラの電源投入時にプロジェクトをSDカードからロードしています。ステータス情報の詳細は、SDインジケータでも確認できます（197ページを参照）。ロードが完了するまでは、以下の操作を行わないでください。</td>
</tr>
<tr>
<td>UPDT</td>
<td>電源投入時にSDカードからファームウェアアップグレードが実行されています。ステータス情報の詳細は、SDインジケータでも確認できます（197ページを参照）。</td>
</tr>
<tr>
<td>CHRG</td>
<td>コンデンサ式ESMが充電中です。</td>
</tr>
<tr>
<td>1756-L7x/X</td>
<td>コントローラのCat. No.とシリーズ</td>
</tr>
</tbody>
</table>
表56 一般的なステータスメッセージ（続き）

<table>
<thead>
<tr>
<th>メッセージ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Project</td>
<td>コントローラにプロジェクトがロードされていません。プロジェクトをロードするには、以下のいずれかを実行します。 ・Logix Designerアプリケーションを使用して、プロジェクトをコントローラにダウンロードします ・SDカードを使用して、プロジェクトをコントローラにロードします</td>
</tr>
<tr>
<td>BUSY</td>
<td>コントローラに関連付けられたI/Oモジュールに、まだ完全に電源が投入されていません。電源投入およびI/Oモジュールのセルフテストのための時間が必要です。</td>
</tr>
<tr>
<td>Corrupt Certificate Received</td>
<td>ファームウェアに関連付けられた安全証明書が破損しています。http://www.rockwellautomation.com/support/にアクセスし、アップグレードするファームウェアリビジョンをダウンロードします。以前にインストールしたファームウェアリビジョンを、テクニカルサポートWebサイトに公開されているファームウェアリビジョンに置き換えます。</td>
</tr>
<tr>
<td>Corrupt Image Received</td>
<td>ファームウェアファイルが破損しています。http://www.rockwellautomation.com/support/にアクセスし、アップグレードするファームウェアリビジョンをダウンロードします。以前にインストールしたファームウェアリビジョンを、テクニカルサポートWebサイトに公開されているファームウェアリビジョンに置き換えます。</td>
</tr>
<tr>
<td>ESM Not Present</td>
<td>ESMが存在しないため、コントローラは電源切断時にアプリケーションを保存できません。互換性のあるESMを取り付けます。コンデンサ式ESMを使用する場合、ESMが充電されるまで電源を切断しないでください。</td>
</tr>
<tr>
<td>ESM Incompatible</td>
<td>ESMとコントローラのメモリ容量に互換性がありません。互換性のあるESMと交換します。</td>
</tr>
<tr>
<td>ESM Hardware Failure</td>
<td>ESMに障害が発生しているため、コントローラは電源切断時にプログラムを保存できません。コントローラの電源を切断する前に、コントローラプログラムが保存されるようにESMを交換してください。</td>
</tr>
<tr>
<td>ESM Energy Low</td>
<td>コンデンサ式ESMに十分な残量がないため、コントローラは電源切断時にプログラムを保存できません。ESMを交換してください。</td>
</tr>
<tr>
<td>ESM Charging</td>
<td>コンデンサ式ESMが充電中です。充電が完了するまで電源を切断しないでください。</td>
</tr>
<tr>
<td>Flash in Progress</td>
<td>ControlFLASH™またはAutoFlashユーティリティによるファームウェアアップグレードが実行中です。ファームウェアのアップグレードが完了するまでは割込み操作を行わないでください。</td>
</tr>
<tr>
<td>Firmware Installation Required</td>
<td>コントローラはブートファームウェア(リビジョン1.xx)を使用しており、ファームウェアのアップグレードが必要です。コントローラのファームウェアをアップグレードしてください。</td>
</tr>
<tr>
<td>SD Card Locked</td>
<td>ロック状態のSDカードが挿入されています。</td>
</tr>
</tbody>
</table>
フォルトメッセージ

コントローラにフォルトが発生した場合、ステータス表示に以下のメッセージが表示される場合があります。

表57・フォルトメッセージフォルトメッセージ

<table>
<thead>
<tr>
<th>メッセージ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Fault T00:C00 message</td>
<td>タイプXXおよびコードXXのメジャーフォルトが検出されました。例えば、ステータス表示に、Major Fault T04:C42 Invalid JMP Targetと表示された場合、JMP命令が無効なLBL命令にジャンプするようにプログラムされています。回復可能なメジャーフォルトの詳細は、『Logix5000™コントローラメジャー、マイナー、およびI/Oフォルトプログラミングマニュアル』(Pub.No. 1756-PM014)を参照してください。</td>
</tr>
<tr>
<td>I/O Fault Local: X XXXX message</td>
<td>ローカルシャーシのモジュールでI/Oフォルトが発生しました。簡単な説明と共にスロット番号とフォルトコードが表示されます。例えば、I/O Fault Local:0107 Connection Not Foundと表示された場合、スロット3のローカルI/Oモジュールへのコネクションが開いていません。表示されるフォルトのタイプに基づいて対処してください。I/Oフォルトコードの詳細は、『Logix5000コントローラのメジャー、マイナー、およびI/Oフォルトプログラミングマニュアル』(Pub.No. 1756-PM014)を参照してください。</td>
</tr>
<tr>
<td>I/O Fault ModuleName # XXXX message</td>
<td>リモートシャーシのモジュールでI/Oフォルトが発生しました。フォルトコードとフォルトの簡単な説明と共に、フォルトが発生したモジュール名が表示されます。例えば、I/O Fault My_Module #0107 Connection Not Foundと表示された場合、My_Moduleという名前のモジュールへの接続が開いていません。表示されるフォルトのタイプに基づいて対処してください。I/Oフォルトコードの詳細は、『Logix5000コントローラのメジャー、マイナー、およびI/Oフォルトプログラミングマニュアル』(Pub.No. 1756-PM014)を参照してください。</td>
</tr>
<tr>
<td>I/O Fault ModuleParent: X XXXX message</td>
<td>リモートシャーシのモジュールでI/Oフォルトが発生しました。Logic DesignerアプリケーションのI/O Configurationツリーでモジュール名が構成されていないため、モジュールの親の名前が表示されています。フォルトの簡単な説明と共にフォルトコードも表示されます。例えば、I/O Fault My_Olet:0107 Connection Not Foundと表示された場合、My_Oletという名前の通信モジュールに含まれるスロット3のモジュールへの接続が開いていません。表示されるフォルトのタイプに基づいて対処してください。I/Oフォルトコードの詳細は、『Logix5000コントローラのメジャー、マイナー、およびI/Oフォルトプログラミングマニュアル』(Pub.No. 1756-PM014)を参照してください。</td>
</tr>
<tr>
<td>X I/O Faults</td>
<td>I/Oフォルトが存在します。X=I/Oフォルトの数。複数のI/Oフォルトが発生した場合、コントローラは最初に報告されたフォルトを表示します。各I/Oフォルトが解決されると、表示されるフォルトの数が減り、次に報告されたフォルトがI/Oフォルトメッセージによって表示されます。表示されるフォルトのタイプに基づいて対処してください。I/Oフォルトコードの詳細は、『Logix5000コントローラのメジャー、マイナー、およびI/Oフォルトプログラミングマニュアル』(Pub.No. 1756-PM014)を参照してください。</td>
</tr>
</tbody>
</table>
メジャー・フォルト・メッセージ

コントローラのステータス表示のMajor Fault TXX:CXX messageは、メジャー・フォルトを示しています。表58に、ステータス表示に示される特定のフォルトタイプ、コード、関連メッセージを示します。

メジャー・フォルトの説明と対処法の詳細は、『Logix5000コントローラ メジャー、マイナー、およびI/Oフォルト システム管理マニュアル』(Pub.No. 1756-PM014)を参照してください。

表58 - メジャー・フォルトのステータスメッセージ

<table>
<thead>
<tr>
<th>タイプ</th>
<th>コード</th>
<th>メッセージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Run Mode Powerup</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>Nonrecoverable</td>
</tr>
<tr>
<td>1</td>
<td>61</td>
<td>Nonrecoverable -- Diagnostics Saved on CF Card</td>
</tr>
<tr>
<td>1</td>
<td>62</td>
<td>Nonrecoverable -- Diagnostics and Program Saved on SD Card</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>I/O Connection Failure</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>Chassis Failure</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>Connection Failure</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Unknown Instruction</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>Invalid Array Subscript</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>Control Structure LEN or POS < 0</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>Invalid JSR Parameter</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>Timer Failure</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>Invalid JMP Target</td>
</tr>
<tr>
<td>4</td>
<td>82</td>
<td>SFC Jump Back Failure</td>
</tr>
<tr>
<td>4</td>
<td>83</td>
<td>Value Out of Range</td>
</tr>
<tr>
<td>4</td>
<td>84</td>
<td>Stack Overflow</td>
</tr>
<tr>
<td>4</td>
<td>89</td>
<td>Invalid Target Step</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>Invalid Instruction</td>
</tr>
<tr>
<td>4</td>
<td>91</td>
<td>Invalid Context</td>
</tr>
<tr>
<td>4</td>
<td>92</td>
<td>Invalid Action</td>
</tr>
<tr>
<td>4</td>
<td>990</td>
<td>User-defined</td>
</tr>
<tr>
<td>4</td>
<td>991</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>992</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>993</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>994</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>995</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>996</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>997</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>998</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>999</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Task Watchdog Expired</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>Save Failure</td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>Bad Restore Type</td>
</tr>
</tbody>
</table>
表58: メジャーフォルトのステータスメッセージ（続き）

<table>
<thead>
<tr>
<th>タイプ</th>
<th>コード</th>
<th>メッセージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>42</td>
<td>Bad Restore Revision</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>Bad Restore Checksum</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>Failed to Restore Processor Memory</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Keyswitch Change Ignored</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Positive Overtravel Limit Exceeded</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>Negative Overtravel Limit Exceeded</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>Position Error Tolerance Exceeded</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>Encoder Channel Connection Fault</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>Encoder Noise Event Detected</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>SERCOS Drive Fault</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>Synchronous Connection Fault</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>Servo Module Fault</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>Asynchronous Connection Fault</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>Motor Fault</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Motor Thermal Fault</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>Drive Thermal Fault</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>SERCOS Communications Fault</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>Inactive Drive Enable Input Detected</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>Drive Phase Loss Detected</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>Drive Guard Fault</td>
</tr>
<tr>
<td>11</td>
<td>32</td>
<td>Motion Task Overlap Fault</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>CST Reference Loss Detected</td>
</tr>
<tr>
<td>12</td>
<td>32</td>
<td>Disqualified Secondary Controller Cycle Power</td>
</tr>
<tr>
<td>12</td>
<td>33</td>
<td>Unpartnered Controller Identified in New Primary Chassis</td>
</tr>
<tr>
<td>12</td>
<td>34</td>
<td>Keyswitch Positions of Primary and Secondary Controllers Mismatched</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Safety Task Watchdog Expired</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>Error In Routine of Safety Task</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>Safety Partner Missing</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>Safety Partner Unavailable</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>Safety Partner Hardware Incompatible</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>Safety Partner Firmware Incompatible</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>Safety Task Inoperable</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>Coordinated System Time (CST) Not Found</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>Safety Partner Nonrecoverable Controller Fault</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>CIP Motion Initialization Fault</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>CIP Motion Initialization Fault Mfg</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>CIP Motion Axis Fault</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>CIP Motion Axis Fault Mfg</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>CIP Motion Fault</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>CIP Module Fault</td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>Motion Group Fault</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>CIP Motion Configuration Fault</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>CIP Motion APR Fault</td>
</tr>
</tbody>
</table>
モジュールのトラブルシューティング 付録

I/Oフォルトコード

コントローラはI/Oフォルトを以下のフォーマットのうちの1つのステータス表示で示します。
- I/O Fault Local: X #XXXX message
- I/O Fault ModuleName #XXXX message
- I/O Fault ModuleParent: X #XXXX message

形式の最初の部分は、フォルトが発生したモジュールの位置を示します。位置の表示方法は、I/O構成およびLogix Designerアプリケーションで指定するモジュールのプロパティに応じて異なります。

形式の後半部分の#XXXX messageは、I/Oフォルトおよび可能な修正処置の診断に使用できます。I/Oフォルトコードの詳細は、『Logix5000 コントローラのメジャー、マイナー、およびI/Oフォルトプログラミングマニュアル』 (Pub. No. 1756-PM014) を参照してください。

表58 - メジャーフォルトのステータスメッセージ（続き）

<table>
<thead>
<tr>
<th>タイプ</th>
<th>コード</th>
<th>メッセージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>10</td>
<td>CIP Motion APR Fault Mfg</td>
</tr>
<tr>
<td>18</td>
<td>128</td>
<td>CIP Motion Guard Fault</td>
</tr>
</tbody>
</table>

表59 - I/Oフォルトメッセージ

<table>
<thead>
<tr>
<th>コード</th>
<th>メッセージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>#0001</td>
<td>Connection Failure</td>
</tr>
<tr>
<td>#0002</td>
<td>Insufficient Resource</td>
</tr>
<tr>
<td>#0003</td>
<td>Invalid Value</td>
</tr>
<tr>
<td>#0004</td>
<td>IOI Syntax</td>
</tr>
<tr>
<td>#0005</td>
<td>Destination Unknown</td>
</tr>
<tr>
<td>#0006</td>
<td>Partial Data Transferred</td>
</tr>
<tr>
<td>#0007</td>
<td>Connection Lost</td>
</tr>
<tr>
<td>#0008</td>
<td>Service Unsupported</td>
</tr>
<tr>
<td>#0009</td>
<td>Invalid Attribute Value</td>
</tr>
<tr>
<td>#000A</td>
<td>Attribute List Error</td>
</tr>
<tr>
<td>#000B</td>
<td>State Already Exists</td>
</tr>
<tr>
<td>#000C</td>
<td>Object Mode Conflict</td>
</tr>
<tr>
<td>#000D</td>
<td>Object Already Exists</td>
</tr>
<tr>
<td>#000E</td>
<td>Attribute Not Settable</td>
</tr>
<tr>
<td>#000F</td>
<td>Permission Denied</td>
</tr>
<tr>
<td>#0100</td>
<td>Connection In Use</td>
</tr>
<tr>
<td>コード</td>
<td>メッセージ</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>#0103</td>
<td>Transport Not Supported</td>
</tr>
<tr>
<td>#0106</td>
<td>Ownership Conflict</td>
</tr>
<tr>
<td>#0107</td>
<td>Connection Not Found</td>
</tr>
<tr>
<td>#0108</td>
<td>Invalid Connection Type</td>
</tr>
<tr>
<td>#0109</td>
<td>Invalid Connection Size</td>
</tr>
<tr>
<td>#0110</td>
<td>Module Not Configured</td>
</tr>
<tr>
<td>#0111</td>
<td>RPI Out of Range</td>
</tr>
<tr>
<td>#0113</td>
<td>Out of Connections</td>
</tr>
<tr>
<td>#0114</td>
<td>Wrong Module</td>
</tr>
<tr>
<td>#0115</td>
<td>Wrong Device Type</td>
</tr>
<tr>
<td>#0116</td>
<td>Wrong Revision</td>
</tr>
<tr>
<td>#0117</td>
<td>Invalid Connection Point</td>
</tr>
<tr>
<td>#0118</td>
<td>Invalid Configuration Format</td>
</tr>
<tr>
<td>#0119</td>
<td>Module Not Owned</td>
</tr>
<tr>
<td>#011A</td>
<td>Out of Connection Resources</td>
</tr>
<tr>
<td>#0203</td>
<td>Connection Timeout</td>
</tr>
<tr>
<td>#0204</td>
<td>Unconnected Message Timeout</td>
</tr>
<tr>
<td>#0205</td>
<td>Invalid Parameter</td>
</tr>
<tr>
<td>#0206</td>
<td>Message Too Large</td>
</tr>
<tr>
<td>#0301</td>
<td>No Buffer Memory</td>
</tr>
<tr>
<td>#0302</td>
<td>Bandwidth Not Available</td>
</tr>
<tr>
<td>#0303</td>
<td>No Bridge Available</td>
</tr>
<tr>
<td>#0304</td>
<td>ControlNet Schedule Error</td>
</tr>
<tr>
<td>#0305</td>
<td>Signature Mismatch</td>
</tr>
<tr>
<td>#0306</td>
<td>CCM Not Available</td>
</tr>
<tr>
<td>#0311</td>
<td>Invalid Port</td>
</tr>
<tr>
<td>#0312</td>
<td>Invalid Link Address</td>
</tr>
<tr>
<td>#0315</td>
<td>Invalid Segment Type</td>
</tr>
<tr>
<td>#0317</td>
<td>Connection Not Scheduled</td>
</tr>
<tr>
<td>#0318</td>
<td>Invalid Link Address</td>
</tr>
<tr>
<td>#0319</td>
<td>No Secondary Resources Available</td>
</tr>
<tr>
<td>#031E</td>
<td>No Available Resources</td>
</tr>
<tr>
<td>#031F</td>
<td>No Available Resources</td>
</tr>
<tr>
<td>#0800</td>
<td>Network Link Offline</td>
</tr>
<tr>
<td>#0801</td>
<td>Incompatible Multicast RPI</td>
</tr>
<tr>
<td>#0814</td>
<td>Data Type Mismatch</td>
</tr>
<tr>
<td>#FD01</td>
<td>Bad Backplane EEPROM</td>
</tr>
<tr>
<td>#FD02</td>
<td>No Error Code</td>
</tr>
<tr>
<td>#FD03</td>
<td>Missing Required Connection</td>
</tr>
<tr>
<td>#FD04</td>
<td>No CST Master</td>
</tr>
<tr>
<td>#FD05</td>
<td>Axis or GRP Not Assigned</td>
</tr>
<tr>
<td>#FD06</td>
<td>SERCOS Transition Fault</td>
</tr>
<tr>
<td>#FD07</td>
<td>SERCOS Init Ring Fault</td>
</tr>
<tr>
<td>コード</td>
<td>メッセージ</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>#FD08</td>
<td>SERCOS Comm Fault</td>
</tr>
<tr>
<td>#FD09</td>
<td>SERCOS Init Node Fault</td>
</tr>
<tr>
<td>#FD0A</td>
<td>Axis Attribute Reject</td>
</tr>
<tr>
<td>#FD1F</td>
<td>安全 I/O</td>
</tr>
<tr>
<td>#FD20</td>
<td>No Safety Task</td>
</tr>
<tr>
<td>#FE01</td>
<td>Invalid Connection Type</td>
</tr>
<tr>
<td>#FE02</td>
<td>Invalid Update Rate</td>
</tr>
<tr>
<td>#FE03</td>
<td>Invalid Input Connection</td>
</tr>
<tr>
<td>#FE04</td>
<td>Invalid Input Data Pointer</td>
</tr>
<tr>
<td>#FE05</td>
<td>Invalid Input Data Size</td>
</tr>
<tr>
<td>#FE06</td>
<td>Invalid Input Force Pointer</td>
</tr>
<tr>
<td>#FE07</td>
<td>Invalid Output Connection</td>
</tr>
<tr>
<td>#FE08</td>
<td>Invalid Output Data Pointer</td>
</tr>
<tr>
<td>#FE09</td>
<td>Invalid Output Data Size</td>
</tr>
<tr>
<td>#FE0A</td>
<td>Invalid Output Force Pointer</td>
</tr>
<tr>
<td>#FE0B</td>
<td>Invalid Symbol String</td>
</tr>
<tr>
<td>#FE0C</td>
<td>Invalid Scheduled Personal Computer Instance</td>
</tr>
<tr>
<td>#FE0D</td>
<td>Invalid Symbol Instance</td>
</tr>
<tr>
<td>#FE0E</td>
<td>Module Firmware Updating</td>
</tr>
<tr>
<td>#FE0F</td>
<td>Invalid Firmware File Revision</td>
</tr>
<tr>
<td>#FE10</td>
<td>Firmware File Not Found</td>
</tr>
<tr>
<td>#FE11</td>
<td>Firmware File Invalid</td>
</tr>
<tr>
<td>#FE12</td>
<td>Automatic Firmware Update Failed</td>
</tr>
<tr>
<td>#FE13</td>
<td>Update Failed - Active Connection</td>
</tr>
<tr>
<td>#FE14</td>
<td>Searching Firmware File</td>
</tr>
<tr>
<td>#FE22</td>
<td>Invalid Connection Type</td>
</tr>
<tr>
<td>#FE23</td>
<td>Invalid Unicast Allowed</td>
</tr>
<tr>
<td>#FF00</td>
<td>No Connection Instance</td>
</tr>
<tr>
<td>#FF01</td>
<td>Path Too Long</td>
</tr>
<tr>
<td>#FF04</td>
<td>Invalid State</td>
</tr>
<tr>
<td>#FF08</td>
<td>Invalid Path</td>
</tr>
<tr>
<td>#FF0B</td>
<td>Invalid Config</td>
</tr>
<tr>
<td>#FF0E</td>
<td>No Connection Allowed</td>
</tr>
</tbody>
</table>
付録A モジュールのトラブルシューティング

1756-L7xコントローラのステータスインジケータ

ステータスインジケータは、コントローラのステータス表示の下にあります。これは、以下の表に示すようにコントローラの状態を表します。

RUNインジケータ

RUNインジケータに表示されるコントローラモードを変更するには、コントローラ前面にあるモードスイッチを使用するか、またはLogix DesignerアプリケーションのController Statusメニューを使用します。

表60・RUNインジケータ

<table>
<thead>
<tr>
<th>状態</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>消灯</td>
<td>コントローラがプログラムモードまたはテストモードです。</td>
</tr>
<tr>
<td>緑色に点灯</td>
<td>コントローラがランモードです。</td>
</tr>
</tbody>
</table>

FORCEインジケータ

FORCEインジケータは、コントローラでI/O強制が有効であるかどうかを示します。

表61・FORCEインジケータ

<table>
<thead>
<tr>
<th>状態</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>消灯</td>
<td>I/O強制値を含むタグは存在しません。</td>
</tr>
<tr>
<td>アンバー</td>
<td>I/O強制値が構成されているかどうかは不明ですが、I/O強制がアクティブ(有効)です。</td>
</tr>
</tbody>
</table>
強制をインストール(追加)する場合は、慎重に行なってください。強制をインストール(追加)すると、即座に有効になります。|
| アンバーが点滅 | 1つまたは複数の入力/出力アドレスが強制的にオンまたはオフになりましたが、強制は有効ではありません。I/O強制を有効にする場合は、慎重に行なってください。I/O強制を有効にすると、既存のすべてのI/O強制が有効になります。 |
モジュールのトラブルシューティング 付録

SDインジケータ

SDインジケータは、セキュアデジタル(SD)カードが使用中であるかどうかを示します。

表 62 - SDインジケータ

<table>
<thead>
<tr>
<th>状態</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>消灯</td>
<td>SDカードを使用するアクティビティが発生していません。</td>
</tr>
<tr>
<td>緑色に点滅</td>
<td>コントローラがSDカードの読み取り/書き込み処理を実行中です。</td>
</tr>
<tr>
<td>緑色に点灯</td>
<td>読取り/書き込み処理中にSDカードを取り外さないでください。</td>
</tr>
<tr>
<td>赤色に点滅</td>
<td>SDカードに有効なファイルシステムが存在しません。</td>
</tr>
<tr>
<td>赤色</td>
<td>コントローラがSDカードを認識しません。</td>
</tr>
</tbody>
</table>

表 63 - OKインジケータ

<table>
<thead>
<tr>
<th>状態</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>消灯</td>
<td>コントローラに電源が投入されていません。</td>
</tr>
<tr>
<td>赤色に点滅</td>
<td>以下のいずれかを示します。</td>
</tr>
<tr>
<td></td>
<td>• 未使用の新規のコントローラであり、ファームウェアのアップグレードが必要です。ファームウェアアップグレードが必要な場合、ステータス表示には、Firmware Installation Requiredと表示されます。ファームウェアをアップグレードする場合は、50ページの「コントローラのファームウェアのアップグレード」を参照してください。</td>
</tr>
<tr>
<td></td>
<td>• 以前に使用していても、または現在使用中のコントローラであり、メジャーフォルトが発生しています。回復可能/回復不能なメジャーフォルトの詳細は、『Logix5000コントローラ メジャー、マイナーおよびI/Oフォルト プログラミングマニュアル』(Pub.No. 1756-PM014)を参照してください。</td>
</tr>
<tr>
<td>赤色</td>
<td>以下のいずれかを示します。</td>
</tr>
<tr>
<td></td>
<td>• コントローラが電源投入時の診断を実行しています。</td>
</tr>
<tr>
<td></td>
<td>• 電源切断時にESMのコンデンサが放電しています。</td>
</tr>
<tr>
<td></td>
<td>• コントローラの電源は投入されていますが、動作不能です。</td>
</tr>
<tr>
<td></td>
<td>• コントローラがプロジェクトを不揮発性メモリにロードしている。</td>
</tr>
<tr>
<td>緑色に点灯</td>
<td>コントローラは正常に動作しています。</td>
</tr>
</tbody>
</table>
付録A モジュールのトラブルシューティング

1756-L6xステータスインジケータ

1756-L6xコントローラの前面にはステータスインジケータが搭載されており、コントローラの状態を示します。

ステータスインジケータ

RUNインジケータ

RUNインジケータに表示されるコントローラモードを変更するには、コントローラ前面にあるモードスイッチを使用するか、またはLogix DesignerアプリケーションのController Statusメニューを使用します。

表64 - RUNインジケータ

<table>
<thead>
<tr>
<th>状態</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>消灯</td>
<td>コントローラがプログラムモードまたはテストモードです。</td>
</tr>
<tr>
<td>緑色に点灯</td>
<td>コントローラがランモードです。</td>
</tr>
</tbody>
</table>

I/Oインジケータ

I/Oインジケータは、コントローラのプロジェクトのI/Oモジュールの状態を示します。

表65 - I/Oインジケータ

<table>
<thead>
<tr>
<th>状態</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>消灯</td>
<td>以下のいずれかを示します。</td>
</tr>
<tr>
<td></td>
<td>• コントローラのI/O構成内にデバイスが存在しません。必要に応じて、</td>
</tr>
<tr>
<td></td>
<td>コントローラのI/O構成にデバイスを追加します。</td>
</tr>
<tr>
<td></td>
<td>• コントローラにプロジェクトが存在しません(コントローラメモリが空です)。プロジェクトを作成し、コントローラにダウンロードします。</td>
</tr>
<tr>
<td>緑色に点滅</td>
<td>コントローラはI/O構成のすべての機器と通信しています。</td>
</tr>
<tr>
<td>緑色に点滅</td>
<td>コントローラのI/O構成内の1つまたは複数のデバイスが応答していません。詳細は、オンラインでLogix Designerアプリケーションを使用して、コントローラのI/O構成を確認してください。</td>
</tr>
<tr>
<td>赤色に点滅</td>
<td>シャーシフォルトが存在します。シャーシのトラブルシューティングを行ない、必要に応じてシャーシを交換します。</td>
</tr>
</tbody>
</table>
FORCEインジケータ

FORCEインジケータは、I/O強制が有効であるかどうかを示します。

表 66 - FORCEインジケータ

<table>
<thead>
<tr>
<th>状態</th>
<th>説明</th>
</tr>
</thead>
</table>
| 消灯 | 以下のいずれかを示します。
・I/O強制値を含むタグは存在しません。
・I/O強制は無効です。 |
| アンバー| I/O強制値が構成されているかどうかは不明ですが、I/O強制がアクティブ(有効)です。
強制をインストール(追加)する場合は、慎重に行ってください。強制をインストール(追加)すると、即座に有効になります。 |
| アンバーが点滅| 1つまたは複数の入力/出力アドレスが強制的にオンまたはオフになりましたが、強制は有効ではありません。
I/O強制を有効にする場合は、慎重に行なってください。I/O強制を有効にすると、既存のすべてのI/O強制が有効になります。 |

RS232インジケータ

RS232インジケータは、シリアルポートが使用中であるかどうかを示します。

表 67 - RS232ステータスインジケータ

<table>
<thead>
<tr>
<th>状態</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>消灯</td>
<td>シリアル接続アクティブティは存在しません。</td>
</tr>
<tr>
<td>緑色に点滅</td>
<td>シリアル接続アクティブティが存在します。</td>
</tr>
</tbody>
</table>

BATインジケータ

BATインジケータは、バッテリの充電状態とプログラムが保存されているかどうかを示します。

表 68 - BATインジケータ BATインジケータ

<table>
<thead>
<tr>
<th>状態</th>
<th>コントローラのシリーズ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>消灯</td>
<td>適用しない</td>
<td>コントローラはメモリをサポートできる状態です。</td>
</tr>
<tr>
<td>緑色に点灯</td>
<td>A</td>
<td>シリーズAコントローラでは、この状態は使用されません。</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>シリーズBコントローラが、コントローラの電源切断時にプログラムを内部の不揮発性メモリに保存しています。</td>
</tr>
</tbody>
</table>
| 赤色 | 適用しない | 以下のいずれかを示します。
・バッテリが取付けられていません。
・バッテリが95%の放電状態であり、交換が必要です。
電源を切断する前にインジケータが赤色に点灯した場合、コントローラが内部の不揮発性メモリにプログラムを保存している間、インジケータは赤色のままになります。 |

Pub.No. 1756-UM001P-JA-P - May 2017 199
OKインジケータ

OKインジケータはコントローラの状態を示します。

表 69 - OKインジケータ

<table>
<thead>
<tr>
<th>状態</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>消灯</td>
<td>コントローラに電源が投入されていません。</td>
</tr>
<tr>
<td>赤色に点滅</td>
<td>以下のいずれかを示します。</td>
</tr>
<tr>
<td></td>
<td>• 未使用の新規のコントローラであり、ファームウェアのアップグレードが必要です。</td>
</tr>
<tr>
<td></td>
<td>• 以前に使用していたか、または現在使用中のコントローラであり、メジャーフォルトが発生しています。</td>
</tr>
<tr>
<td></td>
<td>• コントローラに回復不能なメジャーフォルトが発生しています。</td>
</tr>
<tr>
<td>赤色に点灯</td>
<td>• 回復不能なメジャーフォルトが発生し、プログラムがメモリから消去されました。</td>
</tr>
<tr>
<td></td>
<td>• コントローラが診断モードであり、電源は完全に投入されています。</td>
</tr>
<tr>
<td></td>
<td>• コントローラの電源は投入されていますが、動作不能です。</td>
</tr>
<tr>
<td>緑色に点灯</td>
<td>コントローラは正常に動作しています。</td>
</tr>
<tr>
<td>緑色に点滅</td>
<td>コントローラがプロジェクトを非揮発性メモリに保存中またはメモリからロード中です。</td>
</tr>
<tr>
<td></td>
<td>CompactFlashカードを使用している場合、OKインジケータが緑色に点灯するまで、コントローラのカードを取り外さないでください。</td>
</tr>
</tbody>
</table>
数字
1747-KY コントローラキー キー 19
1756-BA1 保管 80 コントローラ部品 33 レベルの確認 76
1756-BA2 概算持続時間 78 警告後の持続時間 79 保管 80 コントローラ部品 33 レベルの確認 76
1756-BATM コントローラ部品 33 バッテリ 77
1756-CN2 用途 96
1756-CN2R 用途 96
1756-CN2RXT 用途 96
1756-CNBR 用途 96
1756-CP3 コントローラ部品 33
1756-DHRIO 用途
1756-DHRIOXT 用途 100, 102 を介した通信 101
1756-DHRIOXTR 用途 100, 102
1756-DNB 用途 99
1756-EN2F 用途 91
1756-EN2TR 用途 91
1756-EN2TRXT 用途 91
1756-EN2TRXCT 用途 91
1756-EN2TRXCT 用途 92
1756-EN2TXT 用途 92
1756-EN3TR 用途 91
1756-ENBT 用途 91
1756-ESMCAP ESM 28 コントローラ部品 19
1756-ESMCAPXT ESM 28
1756-ESMNRM 28 ESM 28 コントローラ部品 20
1756-ESMNRMXT ESM 28
1756-ESMNSE ESM 28 コントローラ部品 20
1756-ESMNSEXT ESM 28
1756-EWEB 用途 92
1756-IF8H 用途 105
1756-L0x BAT インジケータ 199 CPU 86 FORCE インジケータ 199 I/O インジケータ 198 OK インジケータ 200 RS232 インジケータ 199 ポート 107 針付け CompactFlash カード, 取り外し 34 シャーシへの 40 バッテリ, 針付け 38 バッテリ, 取り外し 38 シリアルドライブ 48 シリアルポート 47 メモリオプション 86
1756-L72EROM 9, 11
1756-L73EROM 9, 11
1756-L7x CPU 86 FORCE インジケータ 196 OK インジケータ 197 SD インジケータ 197 取付け ESM, 取り外し 26 SD カード、取付け 23 SD カード、取り外し 25 キー 22 シャーシへの 21 部品 付属 19 ステータス表示 188 ステータスインジケータ 196, 198 ダブル・データ・レート (DDR) 43, 93 メモリオプション 86
1756-L7xXT 過酷な温度環境向けのコントローラ 28
1756-N2 128
1756-N2XT 128
1756-RIO 用途 102
1784-SD1 20 SD カード 19 からのロード 71 への保存 68
1784-SD2 からのロード 71 コントローラ部品 20 への保存 68
1788-CN2DN 用途 99
索引

1788-CN2FFR
用途 104
1788-EN2DNR
用途 99
1788-CN2FFR
用途 104

A
Armor ControlLogix コントローラ
1756-L72EROM 11
Armor ControlLogix コントローラ 9
1756-L72EROM 9
1756-L73EROM 9, 11
ASCII 113
AutoFlash
アップグレード 57

B
BAT インジケータ
1756-L6x 199

C
CompactFlash カード
取付け 34
取り外し 34
からのロード 71
その他のタスク 73
への保存 68
ControlFLASH ソフトウェア 52
ControlLogix
I/O
選択 127
リモート 129
冗長
説明 177
システムの設計 84
シャーシ
リスト 128
スロットフィラーリ 128
リモート I/O
ローカル 127
ControlLogix-XT
シャーシ
リスト 128
ControlNet
冗長システムおよび 182
非スケジュール型コネクション
非スケジュール型コネクション 97
スケジュール型コネクション
スケジュール型コネクション 97
ネットワーク 94
モジュールの機能 95
モジュールリスト 96
CPU
コントローラ 86

D
Data Highway Plus ネットワーク 100
DeviceNet
用のソフトウェア 99
コネクションの使用 99
ネットワーク 97
モジュール
メモリ 100
DF1
無線モデム 109
スレーブ 112
ポイント・ツー・ポイント
109
マスタ 108
DH-485 ネットワーク
概要 112
構成例 112

E
ESM 28
1756-ESMCAP 28
1756-ESMCAPXT 28
1756-ESMNRMXT 28
1756-ESMNSE 28
1756-ESMNSEXT 28
取り外し 26
EtherNet/IP
冗長システムおよび 182
用のソフトウェア 93
オンライン時に追加 142
コネクション 93
ネットワーク 90
モジュールの機能 91

F
FORCE インジケータ
1756-L6x 199
1756-L7x 196
Foundation Fieldbus 104

G
GSV
フォルトコード 165
モニタ
モニタ 165

H
HART。Highway Addressable Remote
Transducer を参照してください。
Highway Addressable Remote
Transducer 105

I
I/O
ControlLogix
選択 127
索引

リモート 129
再構成 136
分散 133
データ更新の判断 143
フォルトコード 193
リモート 129
I/O 構成
追加
分散 I/O 134
オンライン時 138
リモート I/O 130
ローカル I/O 128
I/O インジケータ
1756-L6x 198
IP アドレスのスワッピング 182

L
Logix Designer アプリケーション
アドオン命令 160
タグ 157
タスク 150
プログラム 153
ルーチン 156

M
Modbus ネットワーク 118
MV156-HART
用途 105

O
OK インジケータ
1756-L6x 200
1756-L7x 197

P
PhaseManager
機器フェーズ命令 176
状態の変更 175
状態モデル 173
説明 171
比較 176
用語の説明 171
システム要件 173
トランジション 174

R
RIO。汎用リモート I/O を参照してください。
RS232
DF1 デバイスドライバ 48
インジケータ
1756-L6x 199
RSWho
設定 パス 60

S
SAMTEC RSP-119350
コントローラ部品 20
SD インジケータ
1756-L7x 197
SD カード
1784-SD1 19
取付け 23
取り外し 25
からのロード 71
その他のタスク 73
への保存 68

U
USB
必要なソフトウェア 44
ケーブル カタログ番号 20
タイプ 44

Z
一般的なステータスメッセージ 188
過酷な温度環境向けのコントローラ
1756-L7xXT 28
開発
アプリケーション 149
モーションアプリケーション 145
拡張冗長。冗長を参照してください。
機器フェーズ
命令 176
機能 85
通信 85
プログラミング 85
許容遮断時間
ESM WallClockTime 75
計算
コントローラの使用 123
交換
バッテリ スケジュール 76
更新
頻度の判断 143
構成
システムオーバーヘッドのタイ
ムスライス 168
シリアルドライバ 48
モーション 146
構成例
DH-485 ネットワーク 112
仕様 13
軸
情報の取得 146
取得
軸情報 146
ファームウェア 52
索引

取付け
1756-L6x
CompactFlash カード 34
シャーシへの取付け 40
バッテリ 38
1756-L7x
SD カード 23
キー、挿入 22
シャーシへの取付け 21
CompactFlash カード 34
SD カード 23
バッテリ 38

取り外し
1756-L6x
CompactFlash カード 34
バッテリ 38
1756-L7x
ESM 26
SD カード 25
CompactFlash カード 34
ESM 26
SD カード 25
バッテリ 38

受信
メッセージ 122
周期的タスク 152
消費
データ 119
冗長
ControlNet ネットワーク 182
EtherNet/IP ネットワーク 182
説明 177
注意事項 180
システム要件 179
システムの構築 181
スキャンタイム 183

状態モデル
概要 173
生成
データ 119
生成 / 消費
コネクション 119
データ 119

静電気 41
静電防止対策 41
接続
DH-485 ネットワーク 112
設計
システム 84
選択
I/O 127

通信
Data Highway Plus 100, 101
DH-485 ネットワーク 112
Foundation Fieldbus 104
HART 105
汎用リモート I/O 102
ネットワークオプション 85
パス
セット、設定 60

通信サービス 167
電子キーイング
説明 87
汎用リモート I/O 102
を介した通信 103
比較
PhaseManager 176

非スケジュール型
プログラム 155
必要
コネクション
メッセージ 121, 122
標準冗長、冗長を参照してください。
表示
1756-L7x 188
不揮発性メモリ 86
分散
I/O 133
追加 134
変更
機器フェーズ 175
保管
バッテリ 80
保存
メモリカードへの 68

命令
ASCII 114
モーション 147
優先順位
タスク 153
要件
PhaseManager
システム 173
冗長 179
要素
制御アプリケーション 149
連続タスク 152

アップグレード
ファームウェア
AutoFlash, 使用 57
アップロード
プロジェクト 63
アドオン命令
プロジェクト 160
アプリケーション
要素 149
ネットワークと 89
イベントタスク 152
インジケータ 196
BAT 1756-L6x 199
FORCE 1756-L6x 199
1756-L7x 196
I/O 1756-L6x 198
OK 1756-L6x 198
1756-L7x 197
RS232 1756-L6x 199
SD 1756-L6x 198
1756-L7x 197
エラー 55
エラーメッセージ 122
メッセージオプション 122
リモート 124
ローカル 123

コントローラ
1756-L6x
CompactFlash カード, 取付け 34
CompactFlash カード, 取り外し 34
シャーシへの取付け 40
シリアルドライバ 48
バッテリ, 取付け 38
バッテリ, 取り外し 38
1756-L7x
ESM, 取り外し 26
SD カード, 取付け 23
SD カード, 取り外し 25
通信オプション 85
キー、挿入 22
シャーシへの取付け 21
ステータス表示 188
ステータスインジケータ 196, 198
CPU リソース 86
概算 78
通信パス 60
設定 60
付属品 20
アップロード 63
オンラインに移行 61
コネクション 123
システムの設計 84
ダウンロード 61
タグ 157
タスク 150
バッテリ確認 76
ファームウェア 50
取得 52
プログラム 153
メモリオプション 86
モニタ 163, 164
ルーチン 156
コントローラ部品
1756-BA1 33
1756-BA2 33
1756-BATM 33
1756-CP3 33
1756-ESMCAP 19
1756-ESMNRM 20
1756-ESMNSE 20
1756-SD2 20
SAMTEC RSP-119350 20
USB ケーブル 20
エネルギー貯蔵モジュール 19, 20
カタログ番号 ESM, エネルギー貯蔵モジュール参照してください
シリアルケーブル 33
バッテリ 33
システム 85
システム要件
 PhaseManager 173
冗長 179
システムオーバヘッドのタイムスライス 167
構成 168
シャーチ
ControlLogix
リスト 128
コントローラの取付け 21, 40
シリアル
DH-485 ネットワーク構成 112
Modbus ネットワーク 118
ケーブル
カタログ番号 33
ドライバ 48
フロードキャスト 116
シリアルポート
1756-L6x 47
ASCII 113
DF1
無線モデム 109
スレープ 112
ポイント・ツー・ポイント 109
マスタ 108
プロトコル 108
モード 108

スキャンタイム
冗長および 183
スクリプトファイル
エラー 55
スケジュール型
プログラム 155
ステータス
表示
1756-L7x 188
インジケータ
1756-L7x 196, 198
バッテリ 76
フォルトメッセージ 190
メッセージ
表示 188
モニタ、モニタ
コネクション 163, 164

セキュリティ証明書
エラー 55
セットアップ
シリアルドライバ 48

ソフトウェア
DeviceNet および 99
EtherNet/IP および 93
必要な USB 44

パッテリ
1756-BA2
概算 78
警告後の持続時間 79
交換 76
残量の確認 76
持続時間と使用 77
取付け 38
取り外し 38
保管 80
カタログ番号 33
スケジュール 76

ネットワーク
ControlNet 94
ControlNet 冗長 182
Data Highway Plus 101
Data Highway Plus DH+、Data
Highway Plus を参照してください。
DeviceNet 97
EtherNet/IP 90
EtherNet/IP 冗長 182
Foundation Fieldbus 104
HART 105
汎用リモート I/O 102
アプリケーションと 89
コントローラオプション 85
ファームウェア
取得 52
アップグレード
AutoFlash, 使用 57
コントローラ 50
セキュリティ証明書, エラーチェック 55

フィラースロット
スロットフィラー 128

フォルトコード
GSV による取得 165

フォルトハンドラ
I/O フォルト発生時に実行 166
フォルトメッセージ 190
I/O 193

ブロードキャスト
メッセージ 116
プログラミング言語 160
プログラム
非スケジュール型 155
システムオーバヘッドのタイムスライス 167
スケジュール型 155
プロジェクト 153
プロジェクト要素 149
アドオン命令 147
オンラインに移行 61
ダウンロード 61
タグ 157
タスク 150
プログラム 153
ルーチン 156

プロトコル
ASCII 113
DF1
無線モジュール 109
スレーブ 112
ポイント・ツー・ポイント 109
マスタ 108
Modbus ネットワーク 118
シリアルポート 108

ポート
通信 85

メッセージ
I/O モジュールの再構成 136
説明 122
キャッシュ 122
判断 122
シリアルによるブロードキャスト 136
ステータス表示 188
フォルト 190

メモリ
DeviceNet モジュール 100
オプション 86
メモリカード
からロード 71
その他のタスク 73
への保存 68

モーション
説明 146
命令 147
アプリケーション 145
プログラム 147
モード
シリアルポート 108
モジュール
ControlNet 95, 96
EtherNet/IP 91

リモート
I/O 129
コネクション 124
リモート I/O
ControlLogix
ローカル 127
追加 130
汎用 102

ルーチン
プロジェクト 156

ロード
メモリカードからの 71
当社のサポートサービス
サポート情報については、以下のリソースをご利用ください。

<table>
<thead>
<tr>
<th>タイトル</th>
<th>内容</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>テクニカルサポートセンター</td>
<td>ナレッジベース記事、ハウツービデオ、FAQ、チャット、ユーザーフォーラム、製品更新のお知らせ。</td>
<td>https://www.rockwellautomation.com/roothelp.com/</td>
</tr>
<tr>
<td>最寄りのテクニカルサポート窓口の電話番号</td>
<td>お住まいの地域の電話番号を検索していただけます。</td>
<td>http://www.rockwellautomation.com/global/support/get-support-now.page</td>
</tr>
<tr>
<td>直接ダイヤルコード</td>
<td>製品別の直接ダイヤルコードが記載されています。このコードを使用すると、テクニカルサポートエンジニアと直接通話できます。</td>
<td>http://www.rockwellautomation.com/global/support/direct-dial.page</td>
</tr>
<tr>
<td>文書ライブラリ</td>
<td>インストレーションインストラクション、マニュアル、カタログ、テクニカルデータ。</td>
<td>http://www.rockwellautomation.com/global/literature-library/overview.page</td>
</tr>
<tr>
<td>製品互換性およびダウンロードセンター(PCDC)</td>
<td>製品がどのように連携しているかの特定に役立つ情報、特長および機能の確認、対応するファームウェアを検索できます。</td>
<td>http://www.rockwellautomation.com/global/support/gpcd.page</td>
</tr>
</tbody>
</table>

マニュアルに関するご意見やご要望
お客様のコメントはより良いマニュアル作りに役立ちます。本書の内容の改訂についてご意見がある場合は、http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_en-e.pdfの「How We Are Doing？」に記入のうえお送りください。

ロックウェル・オートメーションウェブサイトでは、以下のWebサイトで最新の製品環境情報を公開しています。

Allen-Bradley、ArmorBlock、ArmorBlock MaXum、ArmorPOINT、Compact I/O、CompactLogix、ControlFLASH、ControlLogix、ControlLogix-KT、Data Highway Plus、DH+, FactoryTalk、FLEX、FLEX Ex、FlexLogix、GuardLogix、Integrated Architecture、Kinetic、Logix5000、MessageView、Micromaster、PanelView、PhanexManager、PIC-5、POINT I/O、PowerFlex、RedStation、Rockwell Automation、Rockwell Software、RSBusWare、RSFieldbus、RSLogix、RSLogix 5000、RSNetWorx、RSView、Series 9000、SIC、Stratus、Studio 5000、およびStudio 5000 Logix Designerは、Rockwell Automationの商標です。
ControlNet、DeviceNet、およびEtherNet/IPは、ODVA Inc.の商標です。

Rockwell Automationに属さない商標は、それぞれの企業に所有されています。

www.rockwellautomation.com

Power, Control and Information Solutions Headquaters
Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation NV, Peppas Park, De Kleeflaan 12a, 1831 Drogen, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887-4788, Fax: (852) 2508 1846

ロックウェル・オートメーションジャパン株式会社

出版者 1756-UM001P-JA-P - May 2017

Copyright © 2017 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.