
ALLEN–BRADLEY

Hand–Held Terminal
(Catalog Number 1747–PT1)

User Manual

Solid state equipment has operational characteristics differing from those of
electromechanical equipment. “Safety Guidelines for the Application,
Installation and Maintenance of Solid State Controls” (Publication SGI-1.1)
describes some important differences between solid state equipment and
hard–wired electromechanical devices. Because of this difference, and also
because of the wide variety of uses for solid state equipment, all persons
responsible for applying this equipment must satisfy themselves that each
intended application of this equipment is acceptable.

In no event will the Allen-Bradley Company be responsible or liable for
indirect or consequential damages resulting from the use or application of
this equipment.

The examples and diagrams in this manual are included solely for illustrative
purposes. Because of the many variables and requirements associated with
any particular installation, the Allen-Bradley Company cannot assume
responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Allen-Bradley Company with respect to use
of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without
written permission of the Allen-Bradley Company is prohibited.

Throughout this manual we use notes to make you aware of safety
considerations.

!
ATTENTION: Identifies information about practices or
circumstances that can lead to personal injury or death, property
damage, or economic loss.

Attentions help you:

• identify a hazard
• avoid the hazard
• recognize the consequences

Important: Identifies information that is especially important for successful
application and understanding of the product.

PLC, PLC 2, PLC 3, and PLC 5 are registered trademarks of Allen-Bradley Company, Inc.
SLC, SLC 100, SLC 500, SLC 5/01, SLC 5/02, PanelView, RediPANEL, and Dataliner are trademarks of Allen-Bradley Company, Inc.
IBM is a registered trademark of International Business Machines, Incorporated.

Important User Information

Summary of Changes

Summary of Changes

The information below summarizes the changes to this manual since the last
printing as 1747–809 in July 1989, which included the supplement
40063–079–01(A) from October 1990.

The table below lists sections that document new features and additional
information about existing features, and shows where to find this new
information.

For This New Information See Chapter

4 – Data File Organization and Addressing

6 – Creating a Program

Using the HHT with an SLC 8 – Saving and Compiling a ProgramUsing the HHT with an SLC
5/02 (in general) 14 – Using EEPROMs and UVPROMs

15 – Instruction Set Overview

27 – The Status File

32–Bit Addition and
Subtraction

20 – Math Instructions

22 – File Copy and File Fill Instructions

Index Register 23 – Bit Shift, FIFO, and LIFO InstructionsIndex Register
24 – Sequencer Instructions

DH–485 devices 9 – Configuring Online Communication

28 – Troubleshooting Faults
User Fault Routine 29 – Understanding the User Fault Routine – SLC 5/02

Processor Only

Selectable Timed Interrupts 30 – Understanding Selectable Timed Interrupts – SLC 5/02
Processor Only

I/O Interrupts 31 – Understanding I/O Interrupts – SLC 5/02 Processor Only

Instruction Execution Times C – Memory Usage, Instruction Execution Times

Scan Time Worksheets D – Estimating Scan Time

New Information

Hand–Held Terminal
User Manual

Table of Contents

i

Preface

Who Should Use this Manual P–1.
Purpose of this Manual P–1.
Contents of this Manual P–2.

Related Documentation P–4.
Common Techniques Used in this Manual P–4.
Allen–Bradley Support P–5.

Local Product Support P–5.
Technical Product Assistance P–5.
Your Questions or Comments on this Manual P–5.

Chapter 1

HHT Features 1–1.
Installing the Memory Pak, Battery, and Communication Cable 1–3.
HHT Powerup 1–7.
HHT Display Format 1–8.
The Keyboard 1–9.

Menu Function Keys (F1, F2, F3, F4, F5) 1–9.
Data Entry Keys 1–9.
Auto Shift 1–9.
Cursor Keys 1–10.
ZOOM and RUNG Keys 1–12.

Chapter 2

Using the HHT Menu 2–1.
Progressing through Menu Displays 2–1.
The ENTER Key 2–2.
The ESCAPE Key 2–2.

The Main Menu 2–3.
Main Menu Functions 2–3.

SELFTEST, [F1] 2–3.
TERMINAL, [F2] 2–3.
PROGRAM MAINTENANCE, [F3] 2–3.
UTILITY, [F5] 2–4.

The Menu Tree 2–4.
HHT Function Keys and Instruction Mnemonics 2–11.

Function Keys 2–11.
Instruction Mnemonics 2–14.

Features, Installation,
Powerup

The Menu Tree

Hand–Held Terminal
User Manual

Table of Contents

ii

Chapter 3

Program, Program Files, and Data Files 3–1.
Program 3–2.
Program Files 3–2.
Data Files 3–3.
Downloading Programs 3–3.
Uploading Programs 3–4.
Using EEPROM and UVPROM Memory Modules for Program Backup 3–4. . . .

Chapter 4

Data File Organization 4–1.
Data File Types 4–2.

Addressing Data Files 4–2.
Data File 2 – Status 4–3.
Data Files 0 and 1 – Outputs and Inputs 4–4.
Data File 3 – Bit 4–8.
Data File 4 – Timers 4–9.
Data File 5 – Counters 4–10.
Data File 6 – Control 4–11.
Data File 7 – Integer 4–12.

Indexed Addressing
SLC 5/02 Processors Only 4–13.

Offset Value (S:24 Index Register) 4–13.
Example 4–13.

Creating Data for Indexed Addresses 4–14.
Crossing File Boundaries 4–14.

Example 4–14.
Monitoring Indexed Addresses 4–15.

Example 4–15.
Effects of File Instructions on Indexed Addressing 4–15.
Effects of Program Interrupts on Index Register S:24 4–15.

File Instructions – Using the File Indicator # 4–16.
Bit Shift Instructions 4–16.
Sequencer Instructions 4–17.
File Copy and File Fill Instructions 4–18.

Creating Data 4–19.
Creating Data for Indexed Addresses 4–19.

Deleting Data 4–20.
Program Constants 4–20.
M0 and M1 Data Files – Specialty I/O Modules 4–21.

Addressing M0–M1 Files 4–21.
Restrictions on Using M0-M1 Data File Addresses 4–21.
Monitoring Bit Instructions Having M0 or M1 Addresses 4–22.

Understanding File
Organization

Data File Organization and
Addressing

Hand–Held Terminal
User Manual

Table of Contents

iii

Transferring Data Between Processor Files and M0 or M1 Files 4–23.
Access Time 4–24.
Minimizing the Scan Time 4–25.
Capturing M0–M1 File Data 4–26.
Specialty I/O Modules with Retentive Memory 4–26.

G Data Files – Specialty I/O Modules 4–27.
Editing G File Data 4–28.

Chapter 5

Ladder Programming 5–1.
A 1–Rung Ladder Program 5–2.
Logical Continuity 5–3.
Series Logic 5–4.

Example – Series Inputs 5–4.
Parallel Logic 5–4.

Example – Parallel Inputs 5–4.
Input Branching 5–5.

Example – Parallel Input Branching 5–5.
Output Branching 5–5.

Example – Parallel Output Branching 5–5.
Example – Parallel Output Branching with Conditions (SLC 5/02 Only) 5–6. .

Nested Branching 5–6.
Example – Nested Input and Output Branches 5–6.
Example 5–7.

A 4–Rung Ladder Program 5–8.
Application Example 5–9.

Operating Cycle (Simplified) 5–11.
When the Input Goes True 5–12.
When the Input Goes False 5–13.

Chapter 6

Creating a Program Offline with the HHT 6–1.
Clearing the Memory of the HHT 6–1.
Configuring the Controller 6–2.

Configuring the Processor 6–2.
Configuring the I/O 6–3.
Configuring Specialty I/O Modules – (SLC 5/02 Specific) 6–5.

Naming the Ladder Program 6–8.
Naming Your Main Program File 6–9.

Passwords 6–10.
Entering Passwords 6–11.
Entering Master Passwords 6–12.
Removing and Changing Passwords 6–13.

Ladder Program Basics

Creating a Program

Hand–Held Terminal
User Manual

Table of Contents

iv

Chapter 7

Creating and Deleting Program Files 7–1.
Creating a Subroutine Program File using the Next Consecutive File Number 7–1
Creating a Subroutine Program File using a Non–Consecutive File Number 7–2
Deleting a Subroutine Program File 7–3.

Editing a Program File 7–4.
Ladder Rung Display 7–4.

Entering a Rung 7–5.
Entering an Examine if Closed Instruction 7–6.
Entering an Output Energize Instruction 7–7.
Adding a Rung with Branching 7–8.
Adding a Rung to a Program 7–9.
Entering a Parallel Branch 7–11.
Inserting an Instruction Within a Branch 7–12.

Modifying Rungs 7–14.
Adding an Instruction to a Rung 7–14.

Modifying Instructions 7–16.
Changing the Address of an Instruction 7–16.
Changing an Instruction Type 7–18.

Modifying Branches 7–19.
Extending a Branch Up 7–19.
Extending a Branch Down 7–22.
Appending a Branch 7–24.

Delete and Undelete Commands 7–26.
Deleting a Branch 7–26.
Deleting an Instruction 7–29.
Copying an Instruction from One Location to Another 7–30.
Deleting and Copying Rungs 7–31.

Abandoning Edits 7–34.
The Search Function 7–35.

Searching for an Instruction 7–37.
Searching for an Address 7–38.
Searching for a Particular Instruction with a Specific Address 7–40.
Reversing the Search Direction 7–41.
Searching for Forced I/O 7–42.
Searching for Rungs 7–44.

Creating and Deleting Program Files 7–45.
Creating Data Files 7–45.
Deleting Data Files 7–46.

Creating and Editing
Program Files

Hand–Held Terminal
User Manual

Table of Contents

v

Chapter 8

Saving and Compiling Overview 8–1.
Saving a Program 8–1.

Available Compiler Options 8–3.
[F1] Future Access (All Processors) 8–3.
[F2] Test Single Rung (SLC 5/02 Specific) 8–4.
[F3] Index Checks (Index Across Files) (SLC 5/02) 8–5.
[F4] File Protection (SLC 5/02) 8–5.

Viewing Program Memory Layout 8–5.

Chapter 9

Online Configuration 9–1.
Exceptions 9–3.

The Who Function 9–4.
Diagnostics 9–6.
Attach 9–7.

Exception 9–8.
Node Configuration 9–8.

Consequences of Changing a Processor Node Address 9–9.
Entering a Maximum Node Address 9–10.
Changing the Baud Rate 9–10.

Set and Clear Ownership 9–10.
Recommendations When Using DH–485 Devices 9–12.

Chapter 10

Downloading a Program 10–1.
Uploading a Program 10–3.

Chapter 11

Processor Modes 11–1.
Program Mode 11–1.
Test Mode 11–2.

Changing Modes 11–2.
Changing the Mode 11–2.

Saving and Compiling a
Program

Configuring Online
Communication

Downloading/Uploading a
Program

Processor Modes

Hand–Held Terminal
User Manual

Table of Contents

vi

Chapter 12

Monitoring a Program File 12–1.
True/False Indication 12–2.

Monitoring Data Files 12–2.
Data Files 12–2.
Accessing Data Files 12–3.

Option 1 12–3.
Option 2 12–3.
Option 3 12–3.
Option 4 12–3.

Monitoring a Data File 12–3.
Data File Displays 12–5.

Output File (O0) 12–5.
Input File (I1) 12–5.
Status Data File (S2) 12–6.
Bit Data File (B3) 12–8.
Timer Data File (T4) 12–8.
Counter Data File (C5) 12–8.
Control Data File (R6) 12–9.
Integer Data File (N7) 12–9.

Online Data Changes 12–9.

Chapter 13

Forcing I/O 13–1.
Forcing an External Input 13–2.

To Close an External Input Circuit 13–2.
To Close and Open an External Circuit 13–4.

Searching for Forced I/O 13–6.
Forcing an External Output 13–8.
Forces Carried Offline 13–9.

Chapter 14

Using an EEPROM Memory Module 14–1.
Transferring a Program to an EEPROM Memory Module 14–1.
Transferring a Program from an EEPROM Memory Module 14–3.

EEPROM Burning Options 14–5.
Burning EEPROMs for a SLC 5/01 Processor or Fixed Controller 14–5.
Burning EEPROMs for a SLC 5/02 Processor 14–5.
Burning EEPROMS for SLC Configurations 14–6.

UVPROM Memory Modules 14–6.

Monitoring Controller
Operation

The Force Function

Using EEPROMs and
UVPROMs

Hand–Held Terminal
User Manual

Table of Contents

vii

Chapter 15

Instruction Classifications 15–1.
Bit Instructions – Chapter 16 15–1.
Timer and Counter Instructions – Chapter 17 15–2.
I/O Message and Communications Instructions – Chapter 18 15–3.
Comparison Instructions – Chapter 19 15–4.
Math Instructions – Chapter 20 15–5.
Move and Logical Instructions – Chapter 21 15–6.
File Copy and File Fill Instructions – Chapter 22 15–6.
Bit Shift, FIFO, and LIFO Instructions – Chapter 23 15–7.
Sequencer Instructions – Chapter 24 15–7.
Control Instructions – Chapter 25 15–8.
Proportional Integral Derivative Instruction – Chapter 26 15–9.

Instruction Locator 15–9.

Chapter 16

Bit Instructions Overview 16–1.
Examine if Closed (XIC) 16–2.
Examine if Open (XIO) 16–3.
Output Energize (OTE) 16–4.
Output Latch (OTL), Output Unlatch (OTU) 16–5.
One-Shot Rising (OSR) 16–7.

Instruction Parameters 16–7.

Chapter 17

Timer and Counter Instructions Overview 17–1.
Indexed Word Addresses 17–2.

Timer Data File Elements, Timebase, and Accuracy 17–2.
Timebase 17–2.
Accuracy 17–2.

Timer On-Delay (TON) 17–3.
Status Bits 17–3.

Timer Off-Delay (TOF) 17–4.
Status Bits 17–4.

Retentive Timer (RTO) 17–5.
Status Bits 17–6.

Count Up (CTU) and
Count Down (CTD) 17–7.

Status Bits 17–8.
High–Speed Counter (HSC) 17–9.

Instruction Parameters 17–11.
Application Example 17–11.

Reset (RES) 17–13.

Instruction Set Overview

Bit Instructions

Timer and Counter
Instructions

Hand–Held Terminal
User Manual

Table of Contents

viii

Chapter 18

Message Instruction (MSG) 18–1.
Related Status File Bits 18–2.

Available Configuration Options 18–3.
Entering Parameters 18–3.
Control Block Layout 18–7.
MSG Instruction Status Bits 18–7.
Successful MSG Instruction Timing Diagram 18–8.
MSG Instruction Error Codes 18–9.
Application Examples 18–10.
Example 1 18–10.
Example 2 – Program File 2 of SLC 5/02 Processor 18–11.
Example 2 – Program File 2 of SLC 5/01 Processor at Node 3 18–12.
Example 3 18–13.

Service Communications (SVC) 18–14.
Immediate Input with Mask (IIM) 18–15.

Entering Parameters 18–15.
Immediate Output with Mask (IOM) 18–16.

Entering Parameters 18–16.
I/O Event-Driven Interrupts 18–17.

I/O Interrupt Disable and Enable (IID, IIE) 18–18.
Reset Pending I/O Interrupt (RPI) 18–18.
Entering Parameters 18–18.

I/O Refresh (REF) 18–19.

Chapter 19

Comparison Instructions Overview 19–1.
Indexed Word Addresses 19–1.

Equal (EQU) 19–2.
Entering Parameters 19–2.

Not Equal (NEQ) 19–3.
Entering Parameters 19–3.

Less Than (LES) 19–4.
Entering Parameters 19–4.

Less Than or Equal (LEQ) 19–5.
Entering Parameters 19–5.

Greater Than (GRT) 19–6.
Entering Parameters 19–6.

Greater Than or Equal (GEQ) 19–7.
Entering Parameters 19–7.

Masked Comparison for Equal (MEQ) 19–8.
Entering Parameters 19–8.

Limit Test (LIM) 19–9.

I/O Message and
Communication
Instructions

Comparison Instructions

Hand–Held Terminal
User Manual

Table of Contents

ix

Entering Parameters 19–9.
True/False Status of the Instruction 19–10.

Chapter 20

Math Instructions Overview 20–1.
Entering Parameters 20–1.
Using Arithmetic Status Bits 20–2.
Overflow Trap Bit, S:5/0 20–2.
Math Register, S:14 and S:13 20–2.
Indexed Word Addresses 20–2.

Add (ADD) 20–3.
Using Arithmetic Status Bits 20–3.
Math Register 20–3.

Subtract (SUB) 20–4.
Using Arithmetic Status Bits 20–4.
Math Register 20–4.

32-Bit Addition and Subtraction–Series C and Later SLC 5/02 Processors 20–5. . .
Bit S:2/14 Math Overflow Selection 20–5.
Example of 32-Bit Addition 20–5.

Multiply (MUL) 20–7.
Using Arithmetic Status Bits 20–7.
Math Register 20–7.

Divide (DIV) 20–8.
Using Arithmetic Status Bits 20–8.
Math Register 20–8.

Double Divide (DDV) 20–9.
Using Arithmetic Status Bits 20–9.
Math Register 20–9.

Negate (NEG) 20–10.
Using Arithmetic Status Bits 20–10.
Math Register 20–10.

Clear (CLR) 20–11.
Using Arithmetic Status Bits 20–11.
Math Register 20–11.

Convert to BCD (TOD) 20–12.
Entering Parameters 20–12.
Using Arithmetic Status Bits 20–13.
Math Register (When Used) 20–13.

Convert from BCD (FRD) 20–15.
Entering Parameters 20–15.
Using Arithmetic Status Bits 20–16.
Math Register (When Used) 20–16.
Ladder Logic Filtering of BCD Input Devices 20–16.

Math Instructions

Hand–Held Terminal
User Manual

Table of Contents

x

Decode 4 to 1 of 16 (DCD) 20–19.
Entering Parameters 20–20.
Using Arithmetic Status Bits 20–20.

Square Root (SQR) 20–20.
Using Arithmetic Status Bits 20–21.
Math Register 20–21.

Scale Data (SCL) 20–21.
Entering Parameters 20–22.
Using Arithmetic Status Bits 20–22.
Math Register 20–23.
Typical Application – Converting Degrees Celsius to Degrees Fahrenheit 20–23. .

Chapter 21

Move and Logical Instructions Overview 21–1.
Entering Parameters 21–1.
Indexed Word Addresses 21–1.
Using Arithmetic Status Bits 21–1.
Overflow Trap Bit, S:5/0 21–2.
Math Register, S:13 and S:14 21–2.

Move (MOV) 21–2.
Entering Parameters 21–2.
Using Arithmetic Status Bits 21–3.

Masked Move (MVM) 21–3.
Entering Parameters 21–4.
Using Arithmetic Status Bits 21–4.
Operation 21–4.

And (AND) 21–5.
Using Arithmetic Status Bits 21–5.

Or (OR) 21–6.
Using Arithmetic Status Bits 21–6.

Exclusive Or (XOR) 21–7.
Using Arithmetic Status Bits 21–7.

Not (NOT) 21–8.
Using Arithmetic Status Bits 21–8.

Chapter 22

File Copy and Fill Instructions Overview 22–1.
Effect on Index Register in SLC 5/02 Processors 22–1.

File Copy (COP) 22–2.
Entering Parameters 22–2.

File Fill (FLL) 22–3.
Entering Parameters 22–4.

Move and Logical
Instructions

File Copy and File Fill
Instructions

Hand–Held Terminal
User Manual

Table of Contents

xi

Chapter 23

Bit Shift, FIFO, and LIFO Instructions Overview 23–1.
Effect on Index Register in SLC 5/02 Processors 23–1.

Bit Shift Left (BSL), Bit Shift Right (BSR) 23–2.
Entering Parameters 23–3.
Effect on Index Register in SLC 5/02 Processors 23–3.
Operation – Bit Shift Left 23–4.
Operation – Bit Shift Right 23–4.

FIFO Load (FFL), FIFO Unload (FFU) 23–5.
Entering Parameters 23–6.
Status Bits 23–6.
Operation 23–7.
Effects on Index Register S:24 23–7.
SLC 5/02 Processors Only 23–8.

LIFO Load (LFL), LIFO Unload (LFU) 23–8.
Entering Parameters 23–8.
Operation 23–9.
Effects on Index Register S:24 23–9.

Chapter 24

Sequencer Instructions Overview 24–1.
Applications Requiring More than 16 Bits 24–1.
Effect on Index Register in SLC 5/02 Processors 24–1.

Sequencer Output (SQO), Sequencer Compare (SQC) 24–2.
Entering Parameters 24–3.
Status Bits of the Control Element 24–4.
Operation – Sequencer Output 24–4.
Effect on Index Register in SLC 5/02 Processors 24–5.
Operation – Sequencer Compare 24–6.
Effect on Index Register in SLC 5/02 Processors 24–6.

Sequencer Load (SQL) 24–7.
Entering Parameters 24–7.
Status Bits 24–8.
Operation 24–9.
Effect on Index Registers in SLC 5/02 Processors 24–9.

Chapter 25

Control Instructions Overview 25–1.
Jump to Label (JMP) 25–2.

Entering Parameters 25–2.
Label (LBL) 25–3.

Entering Parameters 25–3.
Jump to Subroutine (JSR) 25–4.

Bit Shift, FIFO, and LIFO
Instructions

Sequencer Instructions

Control Instructions

Hand–Held Terminal
User Manual

Table of Contents

xii

Nesting Subroutine Files 25–4.
Entering Parameters 25–5.

Subroutine (SBR) 25–6.
Return from Subroutine (RET) 25–6.
Master Control Reset (MCR) 25–7.
Temporary End (TND) 25–8.
Suspend (SUS) 25–9.

Entering Parameters 25–9.
Selectable Timed

Interrupt (STI) 25–10.
Selectable Timed Interrupt Disable and Enable (STD, STE) 25–11.
Selectable Timed Interrupt Start (STS) 25–11.

Interrupt Subroutine (INT) 25–11.

Chapter 26

Proportional, Integral, Derivative (PID) 26–1.
The PID Concept 26–3.
The PID Equation 26–4.
Entering Parameters 26–4.
Control Block Layout 26–8.
PID Instruction Flags 26–9.
Runtime Errors 26–11.
PID and Analog I/O Scaling 26–12.
Online Data Changes 26–14.

Using Scaled Values 26–15.
Changing Values in the Manual Mode 26–15.

Application Notes 26–16.
Input/Output Ranges 26–16.
Scaling to Engineering Units 26–16.
Zero-crossing Deadband DB 26–17.
Output Alarms 26–18.
Output Limiting with Anti-reset Windup 26–18.
The Manual Mode 26–19.
Feed Forward 26–21.
Time Proportioning Outputs 26–21.
PID Tuning 26–23.
Procedure 26–23.

Chapter 27

Status File Functions 27–1.
Status File Display –SLC 5/02 Processors 27–32.
Status File Display – SLC 5/01 and Fixed Processors 27–33.

PID Instruction

The Status File

Hand–Held Terminal
User Manual

Table of Contents

xiii

Chapter 28

Troubleshooting Overview 28–1.
User Fault Routine Not in Effect 28–1.
User Fault Routine in Effect – SLC 5/02 Processors Only 28–1.

Status File Fault Display 28–2.
Error Code Description, Cause, and Recommended Action 28–2.
Powerup Errors 28–3.
Going–to–Run Errors 28–3.
Runtime Errors 28–4.
User Program Instruction Errors 28–6.
I/O Errors 28–8.

Chapter 29

Overview of the User Fault Routine 29–1.
Status File Data Saved 29–1.

Recoverable and Non–Recoverable User Faults 29–1.
Recoverable User Faults 29–2.
Non-Recoverable User Faults 29–4.

Creating a User Fault Subroutine 29–5.
Application Example 29–5.

Chapter 30

STI Overview 30–1.
Basic Programming Procedure for the STI Function 30–1.

Operation 30–1.
STI Subroutine Content 30–2.
Interrupt Occurrences 30–2.
Interrupt Latency 30–2.
Interrupt Priorities 30–3.
Status File Data Saved 30–3.

STI Parameters 30–4.
STD and STE Instructions 30–6.

STD/STE Zone Example 30–7.
STS Instruction 30–8.
INT Instruction 30–9.

Troubleshooting Faults

Understanding the User
Fault Routine – SLC 5/02
Processor Only

Understanding Selectable
Timed Interrupts – SLC 5/02
Processor Only

Hand–Held Terminal
User Manual

Table of Contents

xiv

Chapter 31

I/O Overview 31–1.
Basic Programming Procedure for the I/O Interrupt Function 31–1.

Operation 31–2.
Interrupt Subroutine (ISR) Content 31–2.
Interrupt Occurrences 31–2.
Interrupt Latency 31–3.
Interrupt Priorities 31–3.
Status File Data Saved 31–4.

I/O Interrupt Parameters 31–4.
IID and IIE Instructions 31–6.

IID/IIE Zone Example 31–8.
RPI Instruction 31–9.

Appendix A

Appendix B

Binary Numbers B–1.
Positive Decimal Values B–1.
Negative Decimal Values B–2.

BCD Numbers B–3.
Hexadecimal Numbers B–4.
Hex Mask B–5.

Appendix C

Memory Usage C–1.
Fixed and SLC 5/01 Processors C–2.
SLC 5/02 Processor C–6.

Appendix D

Events in the Operating Cycle D–1.
Scan Time Worksheets D–2.

Defining Worksheet Terminology D–2.
Worksheet A — Estimating the Scan Time of Your Fixed Controller D–3. . . .
Worksheet B — Estimating the Scan Time of Your 1747–L511 or 1747–L514

Processor D–4.
Worksheet C — Estimating the Scan Time of Your 1747–L524 Processor D–5

Example Scan Time Calculation D–6.
Example: Worksheet B – Estimating the Scan Time of a 1747–L514 Processor

Application D–7.

Understanding I/O
Interrupts – SLC 5/02
Processor Only

HHT Messages and Error
Definitions
Number Systems, Hex Mask

Memory Usage, Instruction
Execution Times

Estimating Scan Time

A–B PPreface

P–1

Preface

Read this preface to familiarize yourself with the rest of the manual. This
preface covers the following topics:

• who should use this manual
• the purpose of this manual
• conventions used in this manual
• Allen–Bradley support

Use this manual if you are responsible for designing, installing,
programming, or troubleshooting control systems that use Allen–Bradley
small logic controllers.

You should have a basic understanding of SLC 500 products. If you do not,
contact your local Allen–Bradley representative for information on available
training courses before using this product.

We recommend that you review The Getting Started Guide for HHT, catalog
number 1747–NM009 before using the Hand–Held Terminal (HHT).

This manual is a reference guide for technical personnel who use the
Hand–Held Terminal (HHT) to develop control applications. It describes
those procedures in which you may use an HHT to program an SLC 500
controller.

This manual:

• explains memory organization and instruction addressing
• covers status file functions and individual instructions
• gives you an overview of ladder programming
• explains the procedures you need to effectively use the HHT

Who Should Use this Manual

Purpose of this Manual

Preface

P–2

Chapter Title Contents

Preface
Describes the purpose, background, and scope of
this manual. Also specifies the audience for whom
this manual is intended.

1 Features, Installation,
Powerup

Introduces you to the Hand–Held Terminal (HHT).

2 The Menu Tree Guides you through the HHT display menu tree.

3 Understanding File
Organization

Defines programs, program files, and data files,
explaining how programs are created, stored, and
modified.

4 Data File Organization and
Addressing

Provides details on data files, covering file formats
and how to create and delete data.

5 Ladder Program Basics Explains ladder programming. Includes examples
of simple rungs and 4–rung programs.

6 Creating a Program Steps you through creation of a program.

7 Creating and Editing Program
Files

Shows you how to create and edit a program, and
use the search function.

8 Saving and Compiling a
Program

Covers the procedures used to compile and save a
program.

9 Configuring Online
Communication

Describes online communication between the HHT
and SLC 500.

10 Downloading/Uploading a
Program

Provides the procedures for downloading and
uploading.

11 Processor Modes Describes the different operating modes a
processor can be placed in while using the HHT.

12 Monitoring Controller
Operation

Briefly covers how to monitor controller operation.

13 The Force Function Explains and demonstrates the force function.

14 Using EEPROMs and
UVPROMs

Provides procedures for transferring a program
to/from an EEPROM. Briefly covers using
UVPROMs.

15 Instruction Set Overview Gives you a brief overview of the instruction set with
cross references for detailed information.

16 Bit Instructions Provides detailed information about these
instructions.

17 Timer and Counter
Instructions

Provides detailed information about these
instructions.

18 I/O Message and
Communication Instructions

Provides detailed information about these
instructions.

Contents of this Manual

Preface

P–3

Chapter Title Contents

19 Comparison Instructions Provides detailed information about these
instructions.

20 Math Instructions Provides detailed information about these
instructions.

21 Move and Logical
Instructions

Provides detailed information about these
instructions.

22 File Copy and File Fill
Instructions

Provides detailed information about these
instructions.

23 Bit Shift, FIFO, and LIFO
Instructions

Provides detailed information about these
instructions.

24 Sequencer Instructions Provides detailed information about these
instructions.

25 Control Instructions Provides detailed information about these
instructions.

26 PID Instruction Provides detailed information about these
instructions.

27 The Status File Covers the status file functions of the fixed, SLC
5/01, and SLC 5/02 processors.

28 Troubleshooting Faults
Explains the major error fault codes by indicating
the probable causes and recommending corrective
action.

29
Understanding the User Fault
Routine–SLC 5/02 Processor
Only

Covers recoverable and non–recoverable user
faults.

30
Understanding Selectable
Timed Interrupts–SLC 5/02
Processor Only

Explains the operation of selectable timed
interrupts.

31
Understanding I/O
Interrupts–SLC 5/02
Processor Only

Explains the operation of I/O interrupts.

Appendix A HHT Messages and Error
Definitions

Provides details about the messages that appear
on the prompt line of the HHT display.

Appendix B Number Systems, Hex Mask Explains the different number systems needed to
use the HHT.

Appendix C Memory Usage, Instruction
Execution Times

Covers memory usage and capacity.

Appendix D Estimating Scan Time Provides worksheets and examples for estimating
scan time.

Preface

P–4

Related Documentation

The following documents contain additional information concerning
Allen–Bradley SLC and PLC products. To obtain a copy, contact your local
Allen–Bradley office or distributor.

For Read this Document Document
Number

An overview of the SLC 500 family of products SLC 500 System Overview 1747–2.30

A description on how to install and use your Modular SLC 500
programmable controller

Installation & Operation Manual for Modular Hardware
Style Programmable Controllers

1747–NI002

A description on how to install and use your Fixed SLC 500
programmable controller

Installation & Operation Manual for Fixed Hardware Style
Programmable Controllers

1747–NI001

A procedural manual for technical personnel who use APS to develop
control applications

Allen–Bradley Advanced Programming Software (APS)
User Manual

1747–NM002

A reference manual that contains status file data, instruction set, and
troubleshooting information about APS

Allen–Bradley Advanced Programming Software (APS)
Reference Manual

1747–NR001

An introduction to APS for first–time users, containing basic concepts but
focusing on simple tasks and exercises, and allowing the reader to begin
programming in the shortest time possible

Getting Started Guide for APS 1747–NM001

A procedural and reference manual for technical personnel who use the
APS import/export utility to convert APS files to ASCII and conversely
ASCII to APS files

APS Import/Export User Manual 1747–NM006

An introduction to HHT for first–time users, containing basic concepts but
focusing on simple tasks and exercises, and allowing the reader to begin
programming in the shortest time possible

Getting Started Guide for HHT 1747–NM009

A complete listing of current Automation Group documentation, including
ordering instructions. Also indicates whether the documents are
available on CD–ROM or in multi–languages.

Automation Group Publication Index SD499

A glossary of industrial automation terms and abbreviations Allen–Bradley Industrial Automation Glossary ICCG–7.1

The following conventions are used throughout this manual:

• Bulleted lists such as this one provide information, not procedural steps.
• Numbered lists provide sequential steps or hierarchical information.
• Italic type is used for emphasis.
• Text in this font indicates words or phrases you should type.
• Key names match the names shown and appear in bold, capital letters

within brackets (for example, [ENTER]).

Common Techniques Used in
this Manual

Preface

P–5

Allen–Bradley offers support services worldwide, with over 75 Sales/Support
Offices, 512 authorized Distributors and 260 authorized Systems Integrators
located throughout the United States alone, plus Allen–Bradley
representatives in every major country in the world.

Local Product Support

Contact your local Allen–Bradley representative for:

• sales and order support
• product technical training
• warranty support
• support service agreements

Technical Product Assistance

If you need to contact Allen–Bradley for technical assistance, please review
the information in the Troubleshooting Faults, chapter 28, first. Then call
your local Allen–Bradley representative.

Your Questions or Comments on this Manual

If you have any suggestions for how this manual could be made more useful
to you, please send us your ideas on the enclosed reply card.

If you find a problem with this manual, please notify us of it on the enclosed
Publication Problem Report.

Allen–Bradley Support

1Chapter

1–1

Features, Installation, Powerup

This chapter introduces you to the Hand–Held Terminal (HHT) hardware. It
covers:

• HHT features
• installing the memory pak, battery, and communication cable
• powerup
• display format
• the keyboard

The Hand–Held Terminal is used to:

• configure the SLC 500 fixed, SLC 5/01, and SLC 5/02 controllers
• enter/modify a user program
• download/upload programs
• monitor, test, and troubleshoot controller operation

You can use the HHT as a standalone device (for remote programming
development with 1747–NP1 or NP2 power supply), point–to–point
communication (one HHT to one controller), or on a DH–485 network
(communicate with up to 31 nodes over a maximum of 4,000 feet or 1219
meters). When equipped with a battery (1747–BA), the HHT retains a user
program in memory for storage and later use.

Specifications:

Environmental conditions
Operating temperature 0 to +40° C (+32° to +104° F)
Storage temperature –20° to +65° C (–4° to +149° F)
Humidity rating 5 to 95% (non–condensing)

Display 8 line x 40 character super–twist nematic LCD

Keyboard 30 keys

Operating Power 0.105 Amps (max.) at 24 VDC

Communications DH–485

Certification UL listed, CSA approved

Memory Retention with Battery 2 years

Compatibility
Fixed, SLC 5/01, SLC 5/02

Not SLC 5/03

Dimensions
201.0 mm H x 193.0 mm W x 50.8 D

(7.9 in H x 7.6 in W x 2.0 in D)

HHT Features

Chapter 1
Features, Installation, Powerup

1–2

The HHT is menu–driven. The display area accommodates 8 lines by 40
characters. You can display up to five rungs of a user program. When
monitoring a program ONLINE, in the Run mode, instructions in a ladder
diagram are intensified to indicate “true” status. A zoom feature is included
to give immediate access to instruction parameters.

SLC 500 PROGRAMMING SOFTWARE Rel. 2.03

1747 – PTA1E
Allen–Bradley Company Copyright 1990

All Rights Reserved

F1 F2 F3 F4 F5

N O
SPACEPRE/LEN

S
ACC/POS

I
U ESC

A
7

D
4

T
1

B
8

E
5

R
2

#
0

–
: /

.

C
9

F
6

M
3

SHIFT
ENTER

ZOOMRUNG

Calculator–style,
 Color–coded Keyboard

Keys operate with motion and
tactile response.

Display Area

F1 F2 F3 F4 F5

PRESS A FUNCTION KEY OFL
SELFTEST TERM PROGMAINT UTILITY

Chapter 1
Features, Installation, Powerup

1–3

The HHT (with communication cable), memory pak, and battery are supplied
separately. Install each as follows:

1. Install the memory pak first. The English version is catalog number
1747–PTA1E.

!
ATTENTION: The memory pak contains CMOS devices. Wear
a grounding strap and use proper grounding procedures to guard
against damage to the memory pak from electrostatic discharge.

a. To install the memory pak, remove the cover from the back of the
HHT.

Backside of HHT

Slide cover to the left. Lift off cover.

Installing the Memory Pak,
Battery, and Communication
Cable

Chapter 1
Features, Installation, Powerup

1–4

b. Insert the memory pak in its compartment as indicated in the following
figure:

Backside of HHT

.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

After the memory pak
is in the compartment,
press down on handle
to secure connector in
socket.

Chapter 1
Features, Installation, Powerup

1–5

2. Install the battery, catalog number 1747–BA. The battery compartment is
next to the memory pak compartment.

!
ATTENTION: The letter B appears flashing on the prompt line
of the HHT display if the battery is not installed correctly or the
battery power is low; in addition, each time you power up, the
self–diagnostic is interrupted, and the prompt BATTERY TEST
FAILED appears.

To prevent this from happening, leave the “battery low defeat
jumper” inserted in the battery socket. The HHT is functional,
but your user program is cleared from memory when you
de–energize the HHT. If you do not download the user program
to the processor before you de–energize the HHT, your program
will be lost.

a. Remove the jumper from the battery socket, then connect the battery
as shown in the figure below:

Backside of HHT

Battery Compartment

Plug battery connector
into socket (red wire up).

Secure battery
between clips.

.

.

b. Replace the cover.

Chapter 1
Features, Installation, Powerup

1–6

3. Locate the communication port on the SLC 500 controller, or peripheral
port on the 1747–AIC Link Coupler. The figure below shows where it is
located on the different devices:

 Processor Module
(Modular Controller)

SLC 500 Fixed Controller

(Communication Port)

(Peripheral Port)

 Isolated Link
 Coupler

 (Cover Open)

The connectors are keyed. Connect one end of the 1747–C10
communication cable to the top of the HHT. The other connector plugs
into the communication port on the SLC 500 controllers or the peripheral
port on the 1747–AIC.

SLC Controller
 (Modular)

1747–C10 Cable

HHT

If you are using a 1747–NP1 wall mount power supply or a 1747–NP2
desktop power supply, plug the communication cable connector into the
socket provided.

Chapter 1
Features, Installation, Powerup

1–7

After you install the memory pak and battery, and plug in the cable, you can
test the operation of the HHT by applying power to the SLC 500 controller
or plugging in the external power supply such as the 1747–NP1 or –NP2.

When the HHT is energized, it performs a series of diagnostic tests. When
the selftest is successfully completed, the following display appears:

SLC 500 PROGRAMMING SOFTWARE Rel. 2.03

1747 – PTA1E
Allen–Bradley Company Copyright 1990

All Rights Reserved

F1 F2 F3 F4 F5

PRESS A FUNCTION KEY

SELFTEST TERM PROGMAINT
OFL

UTILITY

If any of the tests fail, the failure is indicated by the appropriate message on
the display. For a detailed list of HHT messages and error definitions, refer
to appendix A in this manual.

After powerup, you may perform any of five diagnostic tests using the
selftest function. Press [F1], SELFTEST. The following display appears:

SLC 500 SELFTEST UTILITY

F1 F2 F3 F4 F5

DISPLAY KEYPAD RAM ROM WTCHDOG
OFL

From this menu, you may choose the test you wish to perform. Press [ESC]
to return to the previous screen.

HHT Powerup

Chapter 1
Features, Installation, Powerup

1–8

The HHT display format consists of the following:

• display area
• prompt/data entry/error message area
• menu tree functions

The figure below indicates what appears in these areas. To access this
particular screen, press [F3], PROGMAINT.

Prompt/Data Entry/Error Area

Menu tree functions
are directly accessible.

Select menu function keys
with [F1] to [F5] keys. When the > symbol is present, pressing [ENTER]

toggles additional menu functions.

File Name: 101 Prog Name: 1492
File Name Type Size(Instr)
0 System *
1 Reserved *
2 101 Ladder *

CHG_NAM CRT_FIL EDT_FIL DEL_FIL MEM_MAP >

F1 F2 F3 F4 F5

OFL

Display Area
Indicates that the HHT is offline.
When online, the node address and
processor mode are shown.

HHT Display Format

Chapter 1
Features, Installation, Powerup

1–9

This section is intended only as a brief preview of keyboard operation.
Starting in chapter 6, you will become familiar with the keyboard as you are
guided through various programming procedures.

Menu Function Keys (F1, F2, F3, F4, F5)

The top row of purple keys, F1 through F5, are menu function keys. They
select the menu functions shown on the bottom line of the display. Note that
when the > symbol is present, the [ENTER] key will toggle additional menu
functions (if any) at a particular menu level. The [ESC] key exits the display
to the previous menu level.

Data Entry Keys

These blue keys (A 7, B 8, C 9...) include numbers, letters, and symbols used
for addresses, password, file numbers, and other data. The data you enter
always appears on the prompt/data entry/error message area of the display.

To obtain the upper function of a key, press and release the [SHIFT] key,
then press the desired key.

If you make an error while entering data, press [ESC] and re–enter the data,
or use the cursor (arrow) keys and/or the [SPACE] key to locate and correct
the error. To complete a data entry, press [ENTER]. You can also use the
[ESC] key to exit the data entry and return to the previous menu level.

Auto Shift

When you enter an instruction address, the HHT automatically goes to
SHIFT mode to enable you to enter the upper function of a key without first
pressing the [SHIFT] key. This mode is indicated by a small arrow in the
bottom right hand corner of the display.

ENTER BIT ADDR:

ZOOM on XIC
NAME: EXAMINE IF CLOSED
BIT ADDR:

F1 F2 F3 F4 F5

] [2.6.0.0.*

Indicates that the HHT is in
SHIFT mode (e.g., to enter
the letter “I” you do not
have to first press SHIFT).

The data you enter
appears here,
at the cursor location.

The Keyboard
F1 F2 F3 F4 F5

N O
SPACEPRE/LEN

S
ACC/POS

I
U ESC

A
7

D
4

T
1

B
8

E
5

R
2

#
0

–
: /

.

C
9

F
6

M
3

SHIFT
ENTER

ZOOMRUNG

Chapter 1
Features, Installation, Powerup

1–10

Cursor Keys , , ,

Use the four arrow keys to:

• change or modify instruction addresses
• locate and correct data entry errors (either type over or use the [SPACE]

key)
• move the cursor left, right, up, and down in a ladder program (rungs not

shown on the HHT display automatically scroll into view as you move the
cursor up [or down] in the program)

• scroll through controller and I/O configuration selections
• scroll through program file directories
• scroll through active node addresses
• scroll through the elements and bits of individual data files

F1 F2 F3 F4 F5

ZOOM on OTE –()– 2.1.1.0.2
NAME: OUTPUT ENERGIZE
BIT ADDR:O0:2.0/7

ENTER BIT ADDR: O0:2.0/7
 EDT_DAT ACCEPT

The keys move
the cursor left and right
between the items of the
address.

The keys
move the cursor left, right,
up, and down in a ladder
diagram.

] [

 OFL

INS RNG MOD RNG SEARCH DEL RNG UND RNG >

F1 F2 F3 F4 F5

XIC:I1:2.0/2 NO FORCE 2.4.0.0.1

()
()
()
()

] [
()

Chapter 1
Features, Installation, Powerup

1–11

F1 F2 F3 F4 F5

Rack 1 = 1746–A4 4–SLOT RACK
Rack 2 = NONE
Rack 3 = NONE
Slot 0 = 1747–L511 CPU–1K USER MEMORY

Slot 1 = 1746–IA4 4–INPUT 100/120 VAC
Slot 1 = 1746–IA4 4–INPUT 100/120 VAC

The keys scroll
through the I/O module
choices in this display.
Similarly, these keys scroll
through rack and CPU
choices in the appropriate
displays.

CHG NAM CRT FIL EDT FIL DEL FIL MEM MAP >

F1 F2 F3 F4 F5

File Name: Prog Name:2A
File Name Type Size(Instr)
0 System 217
1 Reserved 0
2 Ladder 30

 OFL

The keys scroll
through user program
files.

DIAGNSTC ATTACH NODE CFG OWNER

F1 F2 F3 F4 F5

Node Addr. Device Max Addr./Owner
 0 APS (31)
 1 TERMINAL (31)
*** 2 5/02 (31) ***
 3 500–20 (31)
Node Addr: 0 Baud Rate: 19200
 OFL

The keys scroll
through active node
addresses.

ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

Address 15 data 0
B3:0 0010 0011 0100 1111
B3:1 1000 0010 0000 0000
B3:2 0000 0000 1110 0000
B3:3 0000 0000 0100 0000
B3:4 0101 1101 0100 1000
B3/31 = 1 RUN

The keys
move the cursor left, right,
up and down in a data file
display.

Chapter 1
Features, Installation, Powerup

1–12

ZOOM and RUNG Keys

The [ZOOM] key brings up a display that shows the parameters of an
instruction.

The [RUNG] key moves the cursor to a particular rung. Using this key saves
time when you have a long ladder diagram. When you press [RUNG], you are
prompted for the rung number that you want to edit or monitor. Enter the
rung number and press [ENTER], the cursor moves to the selected rung and
the rung appears at the top of the display.

] [

 OFL

INS RNG MOD RNG SEARCH DEL RNG UND RNG >

F1 F2 F3 F4 F5

TON:T4:2 2.2.0.0.2

()
()
()
()

] [
(TON)

F1 F2 F3 F4 F5

ZOOM on TON –(TON)– 2.2.0.0.2
NAME: TIMER ON DELAY
TIMER: T4:2 TIME BASE .01 SEC
PRESET: 20
ACCUM: 0

 EDT_DAT

Press the [ZOOM] key
with the cursor on an
instruction. The Zoom
display shows the
instruction parameters.

Exit the Zoom display by
pressing [ESC] or
[ZOOM].

] [
] [
] [

(TON)] [

 OFL

INS RNG MOD RNG SEARCH DEL RNG UND RNG >

F1 F2 F3 F4 F5

TON:T4:2 2.6.0.0.*

()
()
()
()

] [
] [
] [
] [

Press [RUNG][6][ENTER].
The cursor moves from the Timer
rung to the left power rail of rung 6.

2Chapter

2–1

The Menu Tree

This chapter guides you through the HHT display menu tree. It is intended
as an overview. For a more detailed introduction to ladder programming,
refer to The Getting Started Guide for HHT, catalog number 1747–NM009.

The abbreviated function and instruction mnemonic keys you encounter in
this manual and on the HHT displays are explained at the end of this chapter.

Before you begin using the HHT to develop a user program or communicate
online, you should be familiar with the following:

Progressing through Menu Displays

To progress through the HHT menu displays, press the desired function key.
When that display appears, press the next appropriate function key, and so
on.

1. For example, to clear the HHT memory, start from the Main menu.

SLC 500 PROGRAMMING SOFTWARE Rel. 2.03

1747 – PTA1E
Allen–Bradley Company Copyright 1990

All Rights Reserved

F1 F2 F3 F4 F5

PRESS A FUNCTION KEY

SELFTEST TERM PROGMAINT
OFL

UTILITY

2. Press [F3], PROGMAINT. The following menu is displayed:

File Name: 101 Prog Name: 1492
File Name Type Size(Instr)
0 System 217
1 Reserved 0
2 101 Ladder 465

CHG_NAM CRT_FIL EDT_FIL DEL_FIL MEM_MAP >

F1 F2 F3 F4 F5

OFL

Using the HHT Menu

Chapter 2
The Menu Tree

2–2

The ENTER Key

1. Because the > symbol appears in the lower right hand corner of the
display, press [ENTER] to display additional menu functions.

File Name: 101 Prog Name: 1492
File Name Type Size(Instr)
0 System 217
1 Reserved 0
2 101 Ladder 465

EDT_DAT SEL_PRO EDT_I/O CLR_MEM >

F1 F2 F3 F4 F5

OFL

2. Press [F4], CLR_MEM to clear the HHT memory. You are asked to
confirm:

File Name: 101 Prog Name: 1492
File Name Type Size(Instr)
0 System 217
1 Reserved 0
2 101 Ladder 465

ARE YOU SURE?
 YES NO >

F1 F2 F3 F4 F5

OFL

3. Press [F2], YES. This deletes the current program in the HHT. After
you confirm, the display returns to the previous menu.

File Name: Prog Name: Default
File Name Type Size(Instr)
0 System
1 Reserved
2 Ladder

EDT_DAT SEL_PRO EDT_I/O CLR_MEM >

F1 F2 F3 F4 F5

OFL

The ESCAPE Key

Use [ESC] to exit a menu and move to the previous one.
1. Press [ESC] to return to the Main menu.

SLC 500 PROGRAMMING SOFTWARE Rel. 2.03

1747 – PTA1E
Allen–Bradley Company Copyright 1990

All Rights Reserved

F1 F2 F3 F4 F5

PRESS A FUNCTION KEY

SELFTEST TERM PROGMAINT
OFL

UTILITY

Chapter 2
The Menu Tree

2–3

After going through diagnostic tests at startup/powerup, the HHT displays
the Main menu. It consists of the following function keys:

• Selftest
• Terminal
• Program Maintenance
• Utility

The display appears as follows:

SLC 500 PROGRAMMING SOFTWARE Rel. 2.03

1747 – PTA1E
Allen–Bradley Company Copyright 1990

All Rights Reserved

F1 F2 F3 F4 F5

PRESS A FUNCTION KEY

SELFTEST TERM PROGMAINT
OFL

UTILITY

Some of the procedures you may perform from the Main menu are:

SELFTEST, [F1]

Allows you to test the following components of the HHT:

• display
• keypad
• random access memory
• read only memory
• internal watchdog timer

TERMINAL, [F2]

Allows you to:

• configure the HHT for IMC 110 mode (when attached to a
1746–HS module)

• monitor and debug MML programs

PROGRAM MAINTENANCE, [F3]

Allows you to:

• name programs and program files
• create, delete, and edit program files
• create and delete data files
• edit data files
• select processors and configure the I/O
• clear HHT memory

The Main Menu

Main Menu Functions

Chapter 2
The Menu Tree

2–4

UTILITY, [F5]

Allows you to:

• attach online to a processor
– upload and download programs between the processor and HHT
– change processor mode
– transfer processor memory between RAM and EEPROM
– force inputs and outputs

• access network diagnostic functions
• create or delete processor passwords
• clear processor memory
• monitor the ladder diagram while the processor is in Run mode

The figures that follow, graphically guide you through the HHT menus and
sub–menus.

DISPLAYF1

KEYPADF2

RAMF3

ROMF4

WTCHDOGF5

DSTRUCTF2

NONDESTF4

Main Menu

Refer to page 2–6.

Refer to page 2–7 to 2–10.

F1 SELFTEST

F2 TERM

F3 PROGMAINT

F5 UTILITY

Main Menu Function Key Use For

SELFTEST HHT unit diagnostics

TERM terminal mode for IMC 110

PROGMAINT program development and editing

UTILITY processor/network communications and online monitoring

The Menu Tree

Chapter 2
The Menu Tree

2–5

PROGMAINTF3 CHG_NAMF1

CRT_FILF2

EDT_FILF3

PROGRAMF2

FILEF4

INS_RNG_F1

MOD_RNGF2

SEARCHF3

DEL_RNGF4

UND_RNGF5

CUR–INSF1

CUR–OPDF2

NEW–INSF3

UPF4

FORCEF5

EDT_DATF1

SAVE_CTF4

SAVE_EXF5

ADDRESSF1

NEXT_FLF2

PREV_FLF3

NEXT_PGF4

PREV_PGF5

MEM_MAPF5

DEL_FILF4

CRT_DTF1

DEL_DTF2

NEXT_PGF3

PRG_SIZEF5

EDT_DATF1

SEL_PROF2

EDT_I/OF3

CLR_MEMF4

ADDRESSF1

NEXT_FLF2

PREV_FLF3

NEXT_PGF4

PREV_PGF5

TYPEF1

SERIESF3

MOD_RCKF1

MOD_SLTF2

DEL_SLTF3

UND_SLTF4

RACK 1F1

RACK 2F2

RACK 3F3

OTHERF3

ADV_SETF5 INT_SBRF1

MOD_SETF2 BINF1

DECF2

HEX/BCDF3

NEXT_PGF4

PREV_PGF5

CFG_SIZF3

ADV_SIZF4

INS_INSTF1

BRANCHF2

MOD_INSTF3

ACP_RNGF5

DEL_INSTF2

UND_INSTF4

EXT_UPF1

EXT_DWNF2

APP_BRF3

INS_BRF4

DEL_BRF5

ENTER

ENTER

ENTER

Main Menu – Program Maintenance [F3]

See next
page.

Legend

Modular controllers only

•

*

SLC 5/02 only

Toggle operation

Enter file number

May have to select
node first

PREV_PGF4

Chapter 2
The Menu Tree

2–6

Program Maintenance [F3] – Ladder Editing

See previous
BITF1

FILEF2

SFT/SEQF3

CONTROLF4

COPF1

FLLF2

OTHERSF5

BSLF1

BSRF2

SQCF3

SQLF4

SQOF5

FFLF1

FFUF2

LFLF3

LFUF4

OTHERSF5

JMPF1

LBLF2

JSRF3

RETF4

MCRF5

SBRF1

INTF2

STEF3

STSF4

STDF5

SUSF3

TNDF4

OTHERSF5

ENTER

ENTER

ENTER

MOV/LOGF1 MOVF1

MVMF2

ANDF3

ORF4

XORF5

NOTF1

OTHERSF5

ENTER

page.

ENTER

CPT/MTHF5 ADDF1

SUBF2

MULF3

DIVF4

DDVF5

NEGF1

CLRF2

SQRF3

TODF4

FRDF5

DCDF2

SCLF3

PIDF4

OTHERSF5

ENTER

ENTER

COMPAREF4 LIMF1

MEQF3

EQUF4

NEQF5

LESF1

GRTF2

LEQF3

GEQF4

OTHERSF5

ENTER

I/O_MSGF3 IIMF1

IOMF2

MSGF3

IIEF4

IIDF5

RPIF1

REFF3

SVCF4

OTHERSF5

ENTER

TMR/CNTF2 TONF1

TOFF2

RTOF3

CTUF4

CTDF5

RESF1

HSCF2

OTHERSF5

ENTER

–] [–F1

–] / [–F2

–()–F3

–(L)–F4

–(U)–F5

OSRF1

OTHERSF5

ENTER

Chapter 2
The Menu Tree

2–7

UTILITYF5

Main Menu – Utility [F5], Default Program in Processor (First Time)

ONLINEF1

WHOF2

PASSWRDF3

CLR_MEMF5

DIAGNSTCF1

ATTACHF3

NODE_CFGF4

OWNERF5

NODEF1

NETWORKF5 RESETF5

OFFLINEF1

CHG_ADRF1

MAX_ADRF2

BAUDF3

SET_OWNRF1

CLR_OWNRF5

ENTF1

REMF2

ENT_MASF3

REM_MASF4

DWNLOADF2

CLR_PRCF3

MEM_PRCF4

*

19200F1

9600F2

2400F3

1200F4

UTILITYF5

Main Menu – Utility [F5], Default Program in Processor (If Previously Attached to that Processor)

ONLINEF1

WHOF2

OFFLINEF1

OWNERF2

DWNLOADF2

CLR_PRCF3

MEM_PRCF4

DIAGNSTCF1

ATTACHF3

NODE_CFGF4

NODEF1

NETWORKF5 RESETF5

OFFLINEF1

CHG_ADRF1

MAX_ADRF2

BAUDF3

SET_OWNRF1

CLR_OWNRF5

DWNLOADF2

CLR_PRCF3

MEM_PRCF4

PASSWRDF3

CLR_MEMF5

ENTF1

REMF2

ENT_MASF3

REM_MASF4

Legend

Modular controllers only

•

*

SLC 5/02 only

Toggle operation

Enter file number

May have to select
node first

*

19200F1

9600F2

2400F3

1200F4

Chapter 2
The Menu Tree

2–8

Main Menu – Utility [F5], Processor Program Does Not Equal HHT Program (First Time)

UTILITYF5 ONLINEF1

OFFLINEF1

UPLOADF2

DWNLOADF3

MODEF4

CLR_PRCF5

RUNF1

TESTF3 CONTF2

SINGLEF4PROGRAMF5

DIAGNSTCF1

ATTACHF3

NODE_CFGF4

NODEF1

NETWORKF5 RESETF5

CHG_ADRF1

MAX_ADRF2

BAUDF3

SET_OWNRF1

CLR_OWNRF5WHOF2

PASSWRDF3

CLR_MEMF5

ENTF1

REMF2

ENT_MASF3

REM_MASF4

OWNERF5

*

F2

F3

F4

F1 19200

9600

2400

1200

Main Menu – Utility [F5], Processor Program Does Not Equal HHT Program (If Previously Attached to that Processor)

UTILITYF5 ONLINEF1

OFFLINEF1

UPLOADF2

DWNLOADF3

MODEF4

CLR_PRCF5

RUNF1

TESTF3 CONTF2

SINGLEF4PROGRAMF5

DIAGNSTCF1

ATTACHF3

NODE_CFGF4

NODEF1

NETWORKF5 RESETF5

CHG_ADRF1

MAX_ADRF2

BAUDF3

SET_OWNRF1

CLR_OWNRF5

WHOF2

PASSWRDF3

CLR_MEMF5

ENTF1

REMF2

ENT_MASF3

REM_MASF4

OWNERF5

OFFLINEF1

UPLOADF2

DWNLOADF3

MODEF4

CLR_PRCF5

RUNF1

TESTF3 CONTF2

SINGLEF4PROGRAMF5

*

•
•
•

F2

F3

F4

F1 19200

9600

2400

1200

Chapter 2
The Menu Tree

2–9

UTILITYF5

Main Menu – Utility [F5], Processor Program Equals HHT Program (First Time)

ONLINEF1

WHOF2

PASSWRDF3

CLR_MEMF5

DIAGNSTCF1

ATTACHF3

NODE_CFGF4

OWNERF5

NODEF1

NETWORKF5 RESETF5

OFFLINEF1

CHG_ADRF1

MAX_ADRF2

BAUDF3

SET_OWNRF1

CLR_OWNRF5

ENTF1

REMF2

ENT_MASF3

REM_MASF4

UPLOADF2

DWNLOADF3

MODEF4

CLR_PROCF5

PASSWRDF1

XFERMEMF3

EDT_DATF4

MONITORF5

RUNF1

TESTF3 CONTF2

SINGLEF4PROGRAMF5

ENTF1

REMF2

ENT_MASF3

REM_MASF4

MEM_PRCF2

PRC_MEMF4

ADDRESSF1

NEXT_FLF2

PREV_FLF3

NEXT_PGF4

PREV_PGF5

MODEF1

FORCEF2

EDT_DATF3

RUNF1

TESTF3 CONTF2

SINGLEF4PROGRAMF5

ONF1

OFFF2

REMF3

REM_ALLF4

ENABLEF5

ADDRESSF1

NEXT_FLF2

PREV_FLF3

NEXT_PGF4

PREV_PGF5

CUR–INSF1

CUR–OPDF2

NEW–INSF3

UPF4

FORCEF5

SEARCHF4

ENTER

Legend

Modular controllers only

•

*

SLC 5/02 only

Toggle operation

Enter file number

May have to select
node first

•

•

F2

F3

F4

F1 19200

9600

2400

1200

Chapter 2
The Menu Tree

2–10

Main Menu – Utility [F5], Processor Program Equals the HHT Program (If Previously Attached to that Processor)

UTILITYF5 ONLINEF1

WHOF2

PASSWRDF3

CLR_MEMF5

DIAGNSTCF1

ATTACHF3

NODE_CFGF4

NODEF1

NETWORKF5 RESETF5

CHG_ADRF1

MAX_ADRF2

BAUDF3 19200F1

9600F2

2400F3

1200F4

OWNERF5 SET_OWNRF1

CLR_OWNRF5

ENTF1

REMF2

ENT_MASF3

REM_MASF4

OFFLINEF1

UPLOADF2

DWNLOADF3

MODEF4

CLR_PROCF5

PASSWRDF1

XFERMEMF3

EDT_DATF4

MONITORF5

RUNF1

TESTF3 CONTF2

SINGLEF4PROGRAMF5

ENTF1

REMF2

ENT_MASF3

REM_MASF4

MEM_PRCF2

PRC_MEMF4

ADDRESSF1

NEXT_FLF2

PREV_FLF3

NEXT_PGF4

PREV_PGF5

MODEF1

FORCEF2

EDT_DATF3

RUNF1

TESTF3

PROGRAMF5

ONF1

OFFF2

REMF3

REM_ALLF4

ENABLEF5

ADDRESSF1

NEXT_FLF2

PREV_FLF3

NEXT_PGF4

PREV_PGF5

CUR–INSF1

CUR–OPDF2

NEW–INSF3

UPF4

FORCEF5

SEARCHF4

ENTER

CONTF2

SINGLEF4

Legend

Modular controllers only

•

*

SLC 5/02 only

Toggle operation

Enter file number

Select node first

*

•

•

Chapter 2
The Menu Tree

2–11

The following table provides a listing of the abbreviated function keys and
their meanings. The next table provides a list of instruction mnemonics.

Function Keys

Abbreviation Meaning

ACCUM accumulator value

ACP_RNG accept rung

ADDR address

ADV_SET advanced setup

ADV_SIZ advanced size

APP_BR append branch

B battery

BIN binary number

CAN_ED cancel edit

CAN_RNG cancel rung

CFG_SIZ configure size

CHG_ADR change node address

CHG_NAM change name

CLR_MEM clear memory

CLR_OWNR clear ownership

CLR_PRC clear processor

CONT continuous

CPT/MTH compute/math

CRT_DT create data

CRT_FIL create file

CSN continuous scan

CUR–INS current instruction

CUR–OPD current operand

DEC decimal number

DEL_BR delete branch

DEL_DT delete data

DEL_FIL delete file

DEL_INST delete instruction

DEL_RNG delete rung

DEL_SLT delete slot

DIAGNSTC diagnostic

DWNLOAD download

HHT Function Keys and
Instruction Mnemonics

Chapter 2
The Menu Tree

2–12

Abbreviation Meaning

EDT_DAT edit data

EDT_FIL edit file

EDT_I/O edit I/O

ENT enter

ENT_MAS enter master

EXEC_FILE executable files

EXT_DWN extend down

EXT_UP extend up

F force

FILEPRT file protection

FLT fault

FUTACC future access

HEX/BCD hexadecimal/binary coded decimal number

INDXCHK index across files

INS_BR insert branch

INS_INST insert instruction

INS_RNG insert rung

INT_SBR interrupt subroutine

I/O_MSG I/O message

MAX_ADR maximum node address

MEM_MAP memory map

MEM_PRC memory module to processor

MEM_SIZ memory size

MOD_INST modify instruction

MOD_RCK modify rack

MOD_RNG modify rung

MOD_SET modify setup

MOD_SLT modify slot

MOR_CPT more compute

MOV/LOG move/logic

NEW–INS new instruction

NEW_PRG new program

NEXT_FL next file

NEXT_PG next page

NODE_CFG node configuration

OFL offline

OTHERS other instruction choices

Chapter 2
The Menu Tree

2–13

Abbreviation Meaning

PASSWRD password

PRC_MEM processor to memory module

PREV_FL previous file

PREV_PG previous page

PRG program

PRG_SIZE program size

PROGMAINT program maintenance

RLY relay

REM remove

REM_ALL remove all

REM_MAS remove master

SAVE_CT save and continue

SAVE_EX save and exit

SEL_PRO select processor

SET_OWNR set ownership

SFT/SEQ shift/sequencer

SNK sink

SRC source

SSN single scan

TERM terminal

TMR/CNT timer/counter

TRANS transistor

TRI triac

TSTRUNG test single rung

UND_INST undelete instruction

UND_RNG undelete rung

UND_SLT undelete slot

WTCHDOG watchdog

XFERMEM transfer memory

Chapter 2
The Menu Tree

2–14

Instruction Mnemonics

Mnemonic Instruction

ADD add

AND and

BSL bit shift left

BSR bit shift right

CLR clear

COP copy file

CTD count down

CTU count up

DCD decode 4 to 1 of 16

DDV double divide

DIV divide

EQU equal

FFL FIFO load

FFU FIFO unload

FLL file fill

FRD convert from BCD

GEQ greater than or equal to

GRT greater than

HSC high–speed counter

IID I/O interrupt disable

IIE I/O interrupt enable

IIM immediate input with mask

INT interrupt subroutine

IOM immediate output with mask

JMP jump to label

JSR jump to subroutine

LBL label

LEQ less than or equal to

LES less than

LFL LIFO load

LFU LIFO unload

LIM limit test

MCR master control reset

MEQ masked comparison for equal

MOV move

MSG message

MUL multiply

MVM masked move

Chapter 2
The Menu Tree

2–15

Mnemonic Instruction

NEG negate

NEQ not equal

NOT not

OR or

OSR one–shot rising

OTE output energize

OTL output latch

OTU output unlatch

PID proportional integral derivative

REF I/O refresh

RES reset

RET return from subroutine

RPI reset pending I/O interrupt

RTO retentive on–delay timer

SBR subroutine

SCL scale data

SQC sequencer compare

SQL sequencer load

SQO sequencer output

SQR square root

STD STI disable

STE STI enable

STS STI start immediately

SUB subtract

SUS suspend

SVC service communications

TND temporary end

TOD convert to BCD

TOF timer off–delay

TON timer on–delay

XIC examine if closed

XIO examine if open

XOR exclusive or

3Chapter

3–1

Understanding File Organization

This chapter:

• defines program, program files, and data files
• indicates how programs are stored and transferred
• covers the use of EEPROMs and UVPROMs for program backup

As explained in the following sections, the program can reside in:

• the Hand–Held Terminal
• an SLC 500 processor
• a memory module
• the APS terminal

Notes on terminology: The term program used in Hand-Held Terminal
(HHT) displays is equivalent to the term processor file used in APS software
displays. These terms mean the collective program files and data files
created under a particular program or processor file.

Most of the operations you perform with the HHT involve the program and
the two components created with it: program files and data files.

Program

Program Files Data Files

Program, Program Files, and
Data Files

Chapter 3
Understanding File Organization

3–2

Program

A program is the collective program files and data files of a particular user
program. It contains all the instructions, data, and configuration information
pertaining to that user program. The HHT allows only numbers and certain
letters available on the keyboard to be entered for a program name.

The program is a transferable unit. It can be located in the Hand-Held
Terminal (or in the APS programming terminal); it can be transferred to/from
an SLC 500, 5/01, or 5/02 processor, or to/from a memory module located in
the processor.

Program 01 Program 02 Program 03

HHT SLC 500 Processor Memory Module

HHT SLC 500 Processor

Upload

Download

The HHT and each CPU hold one program at a time. A program is created
in the offline mode using your HHT. You first configure your controller,
then create your user program. When you have completed and saved your
program, you download it to the processor RAM memory for online
operation. (See page 3–3 for more information on downloading.) You may
also keep a back–up of your program in the EEPROM memory module
located in the processor.

Program Files

Program files contain controller information, the main control program, and
any subroutine programs. The first three program files are required for each
program. These are:

• System Program (file 0)–This file is always included and contains
various system related information and user-programmed information
such as processor type, I/O configuration, program name and password.

• Reserved (file 1)– This file is always included and is reserved for internal
controller use.

• Main Ladder Program (file 2)–This file is always included and contains
user-programmed instructions defining how the controller is to operate.

• Subroutine Ladder Program (files 3 – 255)–These are user-created and
activated according to subroutine instructions residing in the main ladder
program file.

Chapter 3
Understanding File Organization

3–3

Data Files

Data files contain the data associated with the program files. Each program
can contain up to 256 data files. These files are organized by the type of data
they contain. Each piece of data in each of these files has an address
associated with it that identifies it for use in the program file. For example,
an input point has an address that represents its location in the input data file.
Likewise, a timer in the timer data file has an address associated with it that
allows you to represent it in the program file.

The first 9 data files (0 – 8) have default types. You designate the remainder
of the files (9 – 255) as needed. The default types are:

• Output (file 0) – This file stores the status of the output terminals or
output information written to speciality modules in the system.

• Input (file 1) – This file stores the status of the input terminals or input
information read from the speciality modules in the system.

• Status (file 2) – This file stores controller operation information. This
file is useful for troubleshooting controller and program operation.

• Bit (file 3) – This file is used for internal relay logic storage.
• Timer (file 4) – This file stores the timer accumulated and preset values

and status bits.
• Counter (file 5) – This file stores the counter accumulated and preset

values and the status bits.
• Control (file 6) – This file stores the length, pointer position, and status

bits for specific instructions such as shift registers and sequencers.
• Integer (file 7) – This file is used to store numeric values or bit

information.
• Reserved (file 8) – This file is not accessible to the user.
• User–Defined (file 9 – 255) – These files are user–defined as Bit, Timer,

Counter, Control and/or Integer data storage. In addition, file 9 is
specifically available as a Communication Interface File for
communication with non–SLC 500 devices on a DH–485 network.

Downloading Programs

When you have completed your program, it is necessary to transfer it to the
SLC 500 processor in order to run the program. You do this by attaching
your HHT to the processor and using the download function to transfer the
program into the processor RAM. When downloading, you must take the
processor out of the Run mode.

HHT

RAM RAM

1000

PROCESSOR

1000 Download

Chapter 3
Understanding File Organization

3–4

Uploading Programs

When you need to modify a program, it may be necessary to upload the
program from an SLC 500 processor to the HHT. If the original HHT
program is not current or the HHT has been attached to a different processor,
uploading is necessary. Use the upload function to do this. When you are
uploading, you can leave the processor in the Run mode.

HHT

RAM RAM

10001000

PROCESSOR

Upload

Using EEPROM and UVPROM Memory Modules for Program Backup

An EEPROM or UVPROM memory module can be inserted in SLC 500
controllers. You can use the HHT to transfer a copy of the program in
processor RAM to an EEPROM memory module. UVPROM memory
modules cannot be programmed by a processor. (You need an external
PROM burner.) You can also transfer a program from an EEPROM or
UVPROM memory module to the processor’s RAM memory. Refer to page
14–1 for more information on using EEPROMs and UVPROMs.

RAM

1000

MEMORY
MODULE

1000

PROCESSOR

Processor
to Memory

Processor
Memory to

4Chapter

4–1

Data File Organization and Addressing

This chapter discusses the following topics:

• data file organization and addressing
• indexed addressing (SLC 5/02 processors)
• file instructions (using the file indicator #)
• creating and deleting data
• program constants
• M0-M1 files, G files (SLC 5/02 processors with specialty I/O modules)

Data files contain the status information associated with external I/O and all
other instructions you use in your main and subroutine ladder program files.
In addition, these files store information concerning processor operation.
You can also use the files to store “recipes” and lookup tables if needed.

Data Files associated with Specialty I/O modules (SLC 5/02
processors)

Data Files residing in the processor memory

Note: Data file 9 can be used for network transfer on the
DH-485 network. Non-SLC 500 devices are able to read
and write to this file. Data file 9 can be used as an
ordinary data file if the processor is not on a network.
Designate this file as Integer or Bit when using the
network transfer function.
This file is also called “Common Interface File 485CIF” or
“PLC–2 compatibility file.”

M0 and M1 files

These data files reside in the memory of the specialty I/O
module. Their function depends on the particular specialty I/O
module.

In most cases, you can address these files in your ladder
program.

G files

These data files are the software equivalent of DIP switches.

G files are accessed and edited offline under the I/O
Configuration function. The information is passed on to the
specialty I/O module when you enter the Run or Test mode.

Bit, Timer, Counter,
Control, or Integer,
assigned as needed

Output image

Input image

Status

Bit

Timer

Counter

Control

Integer

Reserved

See Note below

0

1

2

3

4

5

6

7

8

9

10–255

Data File Organization

Chapter 4
Data File Organization and Addressing

4–2

Data File Types

For the purposes of addressing, each data file type is identified by a letter
(identifier) and a file number.

File numbers 0 through 7 are the default files, created for you. If you need
additional storage, you can create files by specifying the appropriate
identifier and a file number from 9 to 255. This applies to Bit, Timer,
Counter, Control, and Integer files only. Refer to the tables below:

Output
Input

Status
Bit

Timer
Counter
Control
Integer

O
I
S
B
T
C
R
N

0
1
2
3
4
5
6
7

File
Type

File
NumberIdentifier

Bit
Timer

Counter
Control
Integer

B
T
C
R
N

9–255

File
Type

File
NumberIdentifier

User–Defined Files

Data file types, identifiers, and numbers

Data files contain elements. As shown below, some data files have 1-word
elements, some have 3-word elements. You will be addressing elements,
words, and bits.

Output and Input files have 1-word elements, with each element specified
by slot and word number:

Elements in Timer, Counter, and Control files consist of 3 words:

Status, Bit, and Integer files have 1-word elements:

0123456789101112131415

0123456789101112131415

0123456789101112131415

O:1.0

O:1.1

O:1.2

Element

0

1

2

Word

Addresses are made up of alpha-numeric characters separated by delimiters.
Delimiters include the colon, slash, and period.

Addressing Data Files

Chapter 4
Data File Organization and Addressing

4–3

Typical element, word, and bit addresses are shown below:

Type

N7:15

ElementNumber
File

File

Delimiter
Element

Type

T4:7.ACC

Element
Number

File
File

Delimiter
Element

Word

Delimiter
Word

Type

B3:64/15

Element
Number

File
File

Delimiter
Element

Bit

Delimiter
Bit

An element address A word address A bit address

The address format varies, depending on the file type. This is explained in
the following sections, beginning with file 2, the status file, and following
with files 0, 1, 3, 4, 5, 6, and 7.

Data File 2 – Status

The status file is explained in chapter 27. You can address various bits and
words as follows:

Format Explanation

S Status file

: Element delimiter

S:e/b e Element
number

Ranges from 0 to 15 in a SLC 5/01 or fixed controller, 0-32
in a SLC 5/02. These are 1-word elements. 16 bits per
element.

/ Bit delimiter

b Bit number Bit location within the element. Ranges from 0 to 15.

Examples:
S:1/15 Element 1, bit 15. This is the “first pass” bit, which you can use to

initialize instructions in your program.

S:3 Element 3. The lower byte of this element is the current scan time.
The upper byte is the watchdog scan time.

Chapter 4
Data File Organization and Addressing

4–4

Data Files 0 and 1 – Outputs and Inputs

Bits in file 0 are used to represent external outputs. Bits in file 1 are used to
represent external inputs. In most cases, a single 16-bit word in these files
will correspond to a slot location in your controller, with bit numbers
corresponding to input or output terminal numbers. Unused bits of the word
are not available for use.

I/O Addressing for a Controller with Fixed I/O: In the figure below, a
fixed I/O controller has 24 inputs and 16 outputs. An expansion rack has
been added. Slot 1 of the rack contains a module having 6 inputs and 6
outputs. Slot 2 contains a module having 8 outputs.

The figure shows how these outputs and inputs are arranged in data files 0
and 1. For these files, the element size is always 1 word.

The table on the following page explains the addressing format for outputs
and inputs. Note that the format specifies e as the slot number and s as the
word number. When you are dealing with file instructions, refer to the
element as e.s (slot and word), taken together.

Slot Numbers

Data File 0 – Output Image

0123456789101112131415

X

X

INVALID

INVALID

Slot 0 outputs (0–15)

Slot 1 outputs (0–5)

Slot 2 outputs (0–7)

Data File 1 – Input Image

0123456789101112131415

XINVALID

INVALID

Slot 0 inputs (0–15)

Slot 0 inputs (16–23)

Slot 1 inputs (0–5)

X

O:0

O:1

O:2

I:0

I:0.1

I:1

0
1
2

24
6

None

16
6
8

Slot Inputs Outputs

I/O I/O I/O

0 1 2

Fixed I/O
Controller

Expansion
rack

X

See Addressing “Examples,” next page.X

Chapter 4
Data File Organization and Addressing

4–5

Assign I/O addresses to fixed I/O controllers as shown in the table below:

Format Explanation

O Output

I Input

: Element delimiter

Slot number
(decimal)

fixed I/O controller: 0

O:e.s/b
e left slot of expansion rack: 1

right slot of expansion rack: 2

I:e.s/b . Word delimiter. Required only if a word number is necessary as noted
below.

s Word
number

Required if the number of inputs or outputs exceeds 16 for
the slot. Range: 0 – 255 (range accommodates
multi-word “specialty cards”)

/ Bit delimiter

b Terminal
number

Inputs: 0 to 15
Outputs: 0 to 15

Examples (applicable to the controller shown on page 4-4):

O:0/4 Controller output 4 (slot 0)
O:2/7 Output 7, slot 2 of the expansion rack
I:1/4 Input 4, slot 1 of the expansion rack
I:0/15 Controller input 15 (slot 0)
I:0.1/7 Controller input 23 (bit 07, word 1 of slot 0)

Word addresses:

O:1 Output word 0, slot 1
I:0 Input word 0, slot 0
I:0.1 Input word 1, slot 0

Default Values: Your programming device will display an address more formally. For example,
when you assign the address I:1/4, the HHT shows it as I1:1.0/4 (Input file, file #, slot 1, word 0,
terminal 4).

Chapter 4
Data File Organization and Addressing

4–6

I/O Addressing for a Modular Controller: With modular controllers, slot
number 0 is reserved for the processor module (CPU). Slot 0 is invalid as an
I/O slot.

The figure below shows a modular controller configuration consisting of a
7-slot rack interconnected with a 10-slot rack. Slot 0 contains the CPU.
Slots 1 through 10 contain I/O modules. The remaining slots are saved for
future I/O expansion.

The figure indicates the number of inputs and outputs in each slot and also
shows how these inputs and outputs are arranged in the data files. For these
files, the element size is always 1 word.

Slot Numbers

CPU

I/O I/O

0 1 2

Power
Supply

I/O I/O

3 4

I/O I/O

5 6

I/O I/O

7 8

Power
Supply

I/O I/O

9 10

Future Expansion

Modular controller using a 7–slot rack interconnected with a 10–slot rack.

2
3

6
32

None

6
None

16

Slot Inputs Outputs

4
5
6
7
8
9
10

8
None

16
16
8

None
None

8
32

None
None
None

16
16

1

Data File 0 – Output Image

0123456789101112131415

X

INVALIDSlot 1 outputs (0–5)

Slot 3 outputs (0–15)

Slot 4 outputs (0–7)

Data File 1 – Input Image

0123456789101112131415

X

Slot 1 inputs (0–5)

Slot 2, word 0 inputs (0–15)

Slot 2, word 1 inputs (0–15)

O:1

O:3

O:4

I:1

I:2

I:2.1

See Addressing “Examples,” next page.

XSlot 5, word 0 outputs (0–15)

Slot 5, word 1 outputs (0–15)

Slot 9 outputs (0–15)

Slot 10 outputs (0–15)

Slot 4 inputs (0–7)

X

Slot 6 inputs (0–15)

Slot 7 inputs (0–15)

Slot 8 inputs (0–7)

X

INVALID

INVALID

INVALID

INVALID

I:4

I:6

I:7

I:8

O:5

O:5.1

O:9

O:10

Chapter 4
Data File Organization and Addressing

4–7

The table below explains the addressing format for outputs and inputs. Note
that the format specifies e as the slot number and s as the word number.
When you are dealing with file instructions, refer to the element as e.s (slot
and word), taken together.

Format Explanation

O Output

I Input

: Element delimiter

O:e.s/b e Slot number
(decimal)

Modular Processor:
Slot 0, adjacent to the power supply in the first rack,
applies to the processor module (CPU). Succeeding slots
are I/O slots, numbered from 1 to a maximum of 30.

I:e.s/b . Word delimiter. Required only if a word number is necessary as noted
below.

s Word
number

Required if the number of inputs or outputs exceeds 16 for
the slot. Range: 0 – 31

/ Bit delimiter

b Terminal
number

Inputs: 0 to 15
Outputs: 0 to 15

Examples (applicable to the controller shown on page 4-6):

O:3/15 Output 15, slot 3
O:5/0 Output 0, slot 5
O:10/11 Output 11, slot 10
I:2.1/3 Input 3, slot 2, word 1
I:7/8 Input 8, slot 7

Word addresses:

O:5 Output word 0, slot 5
O:5.1 Output word 1, slot 5
I:8 Input word 0, slot 8

Default Values: Your programming device will display an address more formally. For example,
when you assign the address O:5/0, the HHT shows it as O0:5.0/0 (Output file, file #, slot 5, word
0, terminal 0).

Chapter 4
Data File Organization and Addressing

4–8

Data File 3 – Bit

File 3 is the bit file, used primarily for bit (relay logic) instructions, shift
registers, and sequencers. The maximum size of the file is 256 1-word
elements, a total of 4096 bits. You can address bits by specifying the element
number (0 to 255) and the bit number (0 to 15) within the element. You can
also address bits by numbering them in sequence, 0 to 4095.

You can also address elements of this file.

0123456789101112131415

B3:0

B3:1

B3:2

B3:3

B3:252

B3:253

B3:254

B3:255

Bit 14, Element 3
Address B3:3/14.

Can also be
expressed as bit 62.
Address B3/62.

Bit 0, Element 252
Address B3:252/0.

Can also be
expressed as bit
4032. Address
B3/4032.

Element

Format Explanation Examples

B Bit type file

Bf:e/b f
File number. Number 3 is the default file. A file
number between 10 – 255 can be used if additional
storage is required.

B3:3/14
Bit 14, element 3

: Element delimiter

e Element
number

Ranges from 0 to 255. These are
1-word elements. 16 bits per
element.

B3:252/0
Bit 0, element 252

/ Bit delimiter

b Bit number Bit location within the element.
Ranges from 0 to 15.

B3:9
Bits 0–15, element 9

Bf/b
B
f
/

Same as above.
Same as above.
Same as above.

B3/62
Bit 62

b Bit number Numerical position of the bit within
the file. Ranges from 0 to 4095.

B3/4032
Bit 4032

Your programming device may display addresses slightly different than what
you entered on the HHT.

The HHT and APS always display the Bf/b format in XIO, XIC, and OTE
instructions.

Chapter 4
Data File Organization and Addressing

4–9

Data File 4 – Timers

Timers are 3-word elements. Word 0 is the control word, word 1 stores the
preset value, and word 2 stores the accumulated value. This is illustrated
below:

0123456789101112131415

0

1

2

Word

EN TT DN

Preset Value PRE

Accumulated Value ACC

Timer Element

Addressable Bits Addressable Words

EN = Bit 15 Enable
TT = Bit 14 Timer Timing
DN = Bit 13 Done

PRE = Preset Value
ACC = Accumulated Value

Internal Use

Bits labeled “Internal Use” are not addressable.

Assign timer addresses as follows:

Format Explanation

T Timer

Tf:e f File number. Number 4 is the default file. A file number between 10 –
255 can be used if additional storage is required.

: Element delimiter

e Element
number

Ranges from 0 to 255. These are 3-word elements.
See figure above.

Example: T4:0 Element 0, timer file 4.

Address bits and words by using the format Tf:e.s/b
where Tf:e is explained above, and:

. is the word delimiter
s indicates subelement
/ is the bit delimiter
b indicates bit

T4:0/15 Enable bit
T4:0/14 Timer timing bit
T4:0/13 Done bit

T4:0.1 or T4:0.PRE Preset value of the timer
T4:0.2 or T4:0.ACC Accumulated value of the timer

T4:0.1/0 Bit 0 of the preset value
T4:0.2/0 Bit 0 of the accumulated value

Chapter 4
Data File Organization and Addressing

4–10

Data File 5 – Counters

Counters are 3-word elements. Word 0 is the control word, word 1 stores the
preset value, and word 2 stores the accumulated value. This is illustrated
below:

0123456789101112131415

0

1

2

Word

Preset Value PRE

Accumulated Value ACC

Counter Element
Addressable Bits Addressable Words

CU = Count up enable
CD = Count down enable
DN = Done bit

PRE = Preset
ACC = AccumCU CD DN Internal UseOV UN UA

OV = Overflow bit
UN = Underflow bit
UA = Update accum. value

(HSC in fixed controller only)

Bits labeled “Internal Use” are not addressable.

Assign counter addresses as follows:

Format Explanation

C Counter

Cf:e f File number. Number 5 is the default file. A file number between 10 – 255
can be used if additional storage is required.

: Element delimiter

e Element
number

Ranges from 0 to 255. These are 3-word elements. See
figure above.

Example: C5:0 Element 0, counter file 5.

Address bits and words by using the format Cf:e.s/b
where Cf:e is explained above, and;

. is the word delimiter
s indicates subelement
/ is the bit delimiter
b indicates bit

C5:0/15 Count up enable bit
C5:0/14 Count down enable bit
C5:0/13 Done bit
C5:0/12 Overflow bit
C5:0/11 Underflow bit
C5:0/10 Update accum. bit (HSC in fixed controller only)

C5:0.1 or C5:0.PRE Preset value of the counter
C5:0.2 or C5:0.ACC Accumulated value of the counter

C5:0.1/0 Bit 0 of the preset value
C5:0.2/0 Bit 0 of the accumulated value

Chapter 4
Data File Organization and Addressing

4–11

Data File 6 – Control

These are 3-word elements, used with Bit Shift, FIFO, LIFO, and Sequencer
instructions. Word 0 is the status word, word 1 indicates the length of stored
data, and word 2 indicates position. This is shown below:

0123456789101112131415

0

1

2

Word

Length of Bit array or File

Position

Control Element Addressable Bits Addressable Words

EN = Enable
EU = Unload Enable (FFU,LFU)
DN = Done

LEN = Length
POS = Position

EN EU DN Internal UseEM ER UL

EM = Stack Empty (stacks only)

FD

ER = Error
UL = Unload (Bit shift only)
FD = Found (SQC only)

Bits labeled “Internal Use” are not addressable.

Assign control addresses as follows:

Format Explanation

R Control file

Rf:e f File number. Number 6 is the default file. A file number between 10 – 255
can be used if additional storage is required.

: Element delimiter

e Element
number

Ranges from 0 to 255. These are 3-word elements. See
figure above.

Example: R6:2 Element 2, control file 6.

Address bits and words by using the format Rf:e.s/b
where Rf:e is explained above, and:

. is the word delimiter
s indicates subelement
/ is the bit delimiter
b indicates bit

R6:2/15 Enable bit
R6:2/14 Unload Enable bit
R6:2/13 Done bit
R6:2/12 Stack Empty bit
R6:2/11 Error bit
R6:2/10 Unload bit
R6:2/8 Found bit

R6:2.1 or R6:2.LEN Length value
R6:2.2 or R6:2.POS Position value

R6:2.1/0 Bit 0 of length value.
R6:2.2/0 Bit 0 of position value.

Chapter 4
Data File Organization and Addressing

4–12

Data File 7 – Integer

These are 1-word elements, addressable at the element and bit level.

N7:0 0
N7:1 495
N7:2 0
N7:3 66

Element 1 has a
decimal value of 495.

Element 3 has a
decimal value of 66.

Address Data

Assign integer addresses as follows:

Format Explanation

N Integer file

Nf:e/b f File number. Number 7 is the default file. A file number between 10 – 255
can be used if additional storage is required.

: Element delimiter

e Element
number

Ranges from 0 to 255. These are 1-word elements.
16 bits per element.

/ Bit delimiter

b Bit number Bit location within the element. 0 to 15

Examples:

N7:2 Element 2, integer file 7
N7:2/8 Bit 8 in element 2, integer file 7
N10:36 Element 36, integer file 10 (you designate file 10 as an integer file)

Chapter 4
Data File Organization and Addressing

4–13

An indexed address is offset from its indicated address in the data table.
Indexing of addresses applies to word addresses in bit and integer data files,
preset and accumulator words of timers and counters, and to the length and
position words of control elements. You can also index I/O addresses.

The indexed address symbol is #. When programming, place it immediately
before the file type identifier in the word address. Examples:

• #N7:2
• #B3:6
• #T4:0.PRE
• #C5:1.ACC
• #R6:0.LEN

Offset Value (S:24 Index Register)

An indexed address in a bit or integer data file is offset from its indicated
address by the number of words you specify in word 24 of the status file.
Operation takes place at the address plus the offset number of words. If the
indexed address is word 1 or 2 of a timer, counter, or control element, the
offset value in S:24 is the offset in elements. For example, an offset value of
2 will offset #T4:0.ACC to T4:2.ACC, which is 2 elements (6 words). The
number in S:24 can be a positive or negative integer, resulting in a positive or
negative offset.

You can use more than one indexed address in your ladder program. All
indexed addresses will have the same offset, stored in word S:24. You can
manipulate the offset value in your program before each indexed address is
operated on.

Note that file instructions (SQO, COP, LFL for example) overwrite S:24
when they execute. For this reason, you must insure that the index register is
loaded with the intended value prior to the execution of an indexed
instruction that follows a file instruction.

Example

Suppose that during the operation of the ADD instruction, an offset value of
10 is stored in word S:24. The processor will take the value at N7:12
(N7:2+10) and add it to the value at N10:0. The result is placed at N11:15
(N11:5+10).

ADD
ADD
Source A #N7:2

Source B N10:0

Dest #N11:5

Indexed Addressing SLC 5/02
Processors Only

Chapter 4
Data File Organization and Addressing

4–14

Creating Data for Indexed Addresses

Data tables are not expanded automatically to accommodate indexed
addresses. You must create this data with the memory map function as
described in chapter 6. In the example on the previous page, data words
N7:3 through N7:12 and N11:6 through N11:15 must be allocated.

Important: Failure to allocate these data file elements will result in an
unintended overwrite condition or a major fault.

Crossing File Boundaries

An offset value may extend operation to an address outside the data file
boundary. You can either allow or disallow crossing file boundaries. If you
choose to disallow crossing file boundaries, a runtime error occurs if you use
an offset value which would result in crossing a file boundary.

You are allowed to select crossing file boundaries only if no indexed
addresses exist in the O: (output), I: (input), or S: (status) files. This
selection is made at the time you save your program. The file order from
start to finish is:

• B3:, T4:, C5:, R6:, N7:, x9:, x10: . . .
• x9: and x10: . . . are application-specific files where x can be of types B,

T, C, R, N.

Example

The figure below indicates the maximum offset for word address #T4:3.ACC
when allowing and disallowing crossing file boundaries.

#T4:3.ACC

T4:9.ACC

T4:0.ACC

Crossing file boundaries is disallowed.

Crossing file boundaries is allowed.

#T4:3.ACC

End of Highest File Created

B3:0

Maximum.
positive of 6

Maximum negative
of –3

Crossing file boundaries disallowed: In the example above, the highest
numbered element in the timer data file is T4:9. This means that #T4:3.ACC
can have a maximum negative offset of –3 and a maximum positive offset of
6.

Crossing file boundaries allowed: The maximum negative offset extends
to the beginning of data file 3. The maximum positive offset extends to the
end of the highest numbered file created.

Chapter 4
Data File Organization and Addressing

4–15

Monitoring Indexed Addresses

The offset address value is not displayed when you monitor an indexed
address. For example, the value at N7:2 appears when you monitor indexed
address #N7:2.

Example

If your application requires you to monitor indexed data, we recommend that
you use a MOV instruction to store the value.

 B3

1

MOV
MOVE
Source #N7:2

Dest N10:2

ADD
ADD
Source A #N7:2

Source B T4:0.ACC

Dest T4:1.PRE

] [

N10:2 will contain the data value that was added to T4:0.ACC.

Effects of File Instructions on Indexed Addressing

The # symbol is also required for addresses in file instructions. The indexed
addresses used in these file instructions also make use of word S:24 to store
an offset value upon file instruction completion. Refer to the next page for a
list of file instructions that use the # symbol for addressing.

!
ATTENTION: File instructions manipulate the offset value
stored in word S:24. Make sure that you load the correct offset
value in S:24 prior to using an indexed address that follows a file
instruction. Otherwise, unpredictable operation could occur,
resulting in possible personal injury and/or damage to equipment.

Effects of Program Interrupts on Index Register S:24

When normal program operation is interrupted by the user error handler, an
STI (selectable timed interrupt), or an I/O interrupt, the content of index
register S:24 is saved; then, when normal program operation is resumed, the
content of index register S:24 is restored. This means that if you alter the
value in S:24 in these interrupt subroutines, the system will overwrite your
alteration with the original value contained on subroutine entry.

Chapter 4
Data File Organization and Addressing

4–16

File instructions employ user-created files. These files are addressed with
the # sign. They store an offset value in word S:24, just as with indexed
addressing discussed in the last section.

COP
FLL
BSL
BSR
FFL
FFU

Copy File
File Fill
Bit Shift Left
Bit Shift Right
(FIFO Load)*
(FIFO Unload)*

LFL
LFU
SQO
SQC
SQL

(LIFO Load)*
(LIFO Unload)*
Sequencer Output
Sequencer Compare
Sequencer Load*

* Available in the SLC 5/02 processor only.

!
ATTENTION: SLC 5/02 processor users
If you are using file instructions and also indexed addressing,
make sure that you monitor and/or load the correct offset value
prior to using an indexed address. Otherwise, unpredictable
operation could occur, resulting in possible personal injury and/or
damage to equipment.

The following paragraphs explain user-created files as they apply to Bit Shift
instructions, Sequencer instructions, and File Copy and File Fill instructions.

Bit Shift Instructions

The figure below shows a user-defined file within bit data file 3. For this
particular user-defined file, enter the following parameters when
programming the instruction:

• #B3:2 The address of the bit array. This defines the starting bit as bit 0
in element 2, data file 3.

• 58 This is the length of the bit array, 58 bits. Note that the bits “left
over” in element 5 are unusable.

You can program as many bit arrays as you like in a bit file. Be careful that
they do not overlap.

Address of the bit array is #B3:2
Length of the bit array is 58,
entered as a separate parameter
in the Bit Shift instruction.

0
1
2
3
4
5
6

INVALID

015

#B3:2

Bit Data File 3

File Instructions – Using the
File Indicator #

Chapter 4
Data File Organization and Addressing

4–17

Sequencer Instructions

The figure below shows a user-defined file within bit data file 3. For this
particular user-defined file, enter the following parameters when
programming the instruction:

• #B3:4 The address of the file. This defines the starting element as
element 4, bit file 3.

• 6 This is the specified length of the file, 6 elements beyond the starting
address (totals 7 elements).

You can use user-defined integer files or bit files with sequencer instructions,
depending on the application.

You can program as many files as you like within another file. However, be
careful that the files do not overlap.

Address of the user-defined file is #B3:4.

Length of the file is 6 elements beyond the starting
address (elements labeled 0-6 in the diagram).

0
1
2
3
4
5
6

015

#B3:4

Bit Data File 3

7
8
9
10
11

0
1
2
3
4
5
6

Chapter 4
Data File Organization and Addressing

4–18

File Copy and File Fill Instructions

These instructions manipulate user-defined files. The files are used as source
or destination parameters in File Copy or File Fill instructions. Files can be
Output, Input, Status, Bit, Timer, Counter, Control, or Integer files. Two
examples are shown below. Note that the file length is the specified number
of elements of the destination file; this differs from the file length
specification for sequencer instructions. Refer to the previous page.

The first example is a user-defined file within Data File 7 – Integer. The file
is #N7:14, specified as 6 elements long.

The second example is a user-defined file within Data File 0 – Output Image.
We used this particular data file configuration in regard to I/O addressing on
page 4-6. Here, we are defining a file 5 elements long.

Note that for the output file (and the input file as well), an element is always
one word, referenced as the slot and word taken together. For example,
element O:3.0 refers to output file, slot 3, word 0. This defaults to O:3,
where word 0 is implied.

O:1

O:3

O:4

O:5

O:5.1

O:9

O:10

015

#O:3

INVALID

INVALID

Data File 0 – Output Image

File #O:3 shown above is 5 elements long: Elements 3, 4, 5, 5.1, 9.

N7:14 0
N7:15 0
N7:16 0
N7:17 0
N7:18 0
N7:19 0

Address File #N7:14

This file is 6 elements
long: Elements 14, 15,
16, 17, 18, 19.

Data

Chapter 4
Data File Organization and Addressing

4–19

The SLC 500 controller provides the flexibility of a user-configured memory.
Data is created, in the Offline mode, in two ways:

• Assign addresses to instructions in your program – When you assign
an address to an instruction in your ladder program, you are allocating
memory space in a data file. Data files are expanded for instructions that
use File Addresses. As more and more addresses are assigned, the
various data files increase in size, according to the needs of your program.
Memory space is allocated in element blocks, beginning with element 0.
For example, suppose the first address you assign in your program is
B3/16. This allocates two elements to your program: B3:0, which
consists of bits B3/0 through B3/15; and B3:1, which consists of bits
B3/16 through B3/31. Since B3/16 is the first bit of element B3:1, all 16
bits of that element are created, therefore, the highest bit address now
available to you is B3/31. If the first timer element you assign in your
program is T4:99, you allocate timers T4:0 through T4:99. As described
on page 4–9, timers are 3–word elements. By assigning timer T4:100
you allocate 100 elements using 300 words of memory. So whether you
use timers T4:0 through T4:98 later in the program, they are allocated in
memory.
Obviously, you can keep the size of your data files to a minimum by
assigning addresses beginning at element 0 of each data file, and trying to
avoid creating blocks of addresses that are allocated but unused.

• Create files with the memory map function – The memory map
function of the programming device allows you to create data files by
entering addresses directly, rather than assigning addresses to instructions
in your program. You can create data files to store recipes and lookup
tables if needed.
You create a data file by entering the highest numbered element you want
to be included in the file. For example, entering address N7:20 creates 21
integer elements, N7:0 through N7:20.

Creating Data for Indexed Addresses

Data tables are not expanded automatically to accommodate indexed
addresses as described on page 4–14. However, the data tables are expanded
for file addresses. You must create this data with the memory map function
as described in chapter 6.

Creating Data

Chapter 4
Data File Organization and Addressing

4–20

Deleting data is accomplished only in the Offline mode. There are two ways
to delete the contents of data files:

• Clear memory – This deletes your entire program, including all files
except the system program file (0) and the status data file (2).

• Use the memory map function – The memory map function allows you
to delete data in individual files or portions of files. For example, you can
delete blocks of addresses that have been allocated but are not being used.

Not Used

Not Used

Allocated Space
You cannot delete
these files.

You can delete
these files.

You cannot delete an element if it is used in your program. Neither can you
delete an unused element if a higher numbered element in the file is used in
your program. (For example, if you are using element B3:5, you cannot
delete B3:0 through B3:4, even if you aren’t using them in your program.)

Important: Make certain that you do not inadvertently delete data originally
reserved for indexed addressing. Unexpected operation will
result.

You can enter integer constants directly into many of the instructions you
program. The range of values for most instructions is –32,768 through
+32,767.

Instructions such as SQO, SQC, MEQ, and MVM allow you to enter a hex
mask, which is also a program constant. The hex mask is represented in
hexadecimal, range 0-FFFF.

Program constants are used in place of data file elements. They cannot be
manipulated by the user program. You must enter the offline program editor
to change the value of a constant.

See appendix B in this manual for more information on number systems.

Deleting Data

Program Constants

Chapter 4
Data File Organization and Addressing

4–21

M0 and M1 files are data files that reside in specialty I/O modules only.
There is no image for these files in the processor memory. The application
of these files depends on the function of the particular specialty I/O module.
For some modules, the M0 file is regarded as a module output file and the
M1 file is regarded as a module input file. In any case, both M0 and M1 files
are considered read/write files by the SLC 5/02 processor.

M0 and M1 files can be addressed in your ladder program and they can also
be acted upon by the specialty I/O module – independent of the processor
scan. It is important that you keep the following in mind in creating and
applying your ladder logic:

Important: During the processor scan, M0 and M1 data can be changed by
the processor according to ladder diagram instructions
addressing the M0 and M1 files. During the same scan, the
specialty I/O module can change M0 and M1 data, independent
of the rung logic applied during the scan.

Addressing M0–M1 Files

The addressing format for M0 and M1 files is below:

Mf:e.s/b

Where M = module
f = file type (0 or 1)
e = slot (1-30)
s = word (0 to max. supplied by module)
b = bit (0-15)

Restrictions on Using M0-M1 Data File Addresses

M0 and M1 data file addresses can be used in all instructions except the OSR
instruction and the instruction parameters noted below:

Instruction Parameter (uses file indicator #)

BSL, BSR File (bit array)

SQO, SQC, SQL File (sequencer file)

LFL, LFU LIFO (stack)

FFL, FFU FIFO (stack)

M0 and M1 Data Files –
Specialty I/O Modules

Chapter 4
Data File Organization and Addressing

4–22

Monitoring Bit Instructions Having M0 or M1 Addresses

When you monitor a ladder program in the Run or Test mode, the following
bit instructions, addressed to an M0 or M1 file, are indicated as false
regardless of their actual true/false logical state.

When you are monitoring the ladder program in the Run or Test mode, the
HHT display does not show these instructions as being true when the
processor evaluates them as true.

] [
Mf:e.s

 b
]/[

Mf:e.s

 b
()

Mf:e.s

 b
(L)

Mf:e.s

 b
(U)

Mf:e.s

 b

f = file (0 or 1)

If you need to show the state of the M0 or M1 addressed bit, you can transfer
the state to an internal processor bit. This is illustrated below, where an
internal processor bit is used to indicate the true/false state of a rung.

This rung will not show its true rungstate because the EQU instruction is always shown as
true and the M0 instruction is always shown as false.

OTE instruction B3/2 has been added to the rung. This instruction shows the true or
false state of the rung.

EQU
EQUAL
Source A N7:12

Source B N7:3

] [
B3

 0
] [

B3

 1
()

M0:3.0

 1

()
M0:3.0

 1

] [
B3

 0
] [

B3

 1

EQU
EQUAL
Source A N7:12

Source B N7:3

()
B3

 2

Chapter 4
Data File Organization and Addressing

4–23

Transferring Data Between Processor Files and M0 or M1 Files

As pointed out earlier, the processor does not contain an image of the M0 or
M1 file. As a result, you must edit and monitor M0 and M1 file data via
instructions in your ladder program. For example, you can copy a block of
data from a processor data file to an M0 or M1 data file or vice versa using
the COP instruction in your ladder program.

The COP instructions below copy data from a processor bit file and integer
file to an M0 file. Suppose the data is configuration information affecting
the operation of the specialty I/O module.

COP
COPY FILE
Source #B3:0
Dest #M0:1.0
Length 16

COP
COPY FILE
Source #N7:0
Dest #M0:1.16
Length 27

] [
S:1

15

First scan bit. It makes this
rung true only for the first
scan after entering the Run
mode.

The COP instruction below copies data from an M1 data file to an integer
file. This technique is used to monitor the contents of an M0 or M1 data file
indirectly, in a processor data file.

COP
COPY FILE
Source #M1:4.3
Dest #N10:0
Length 6

Chapter 4
Data File Organization and Addressing

4–24

Access Time

During the program scan, the processor must access the specialty I/O card to
read/write M0 or M1 data. This access time must be added to the execution
time of each instruction referencing M0 or M1 data. The following table
shows approximate access times per instruction or word of data for the
SLC 5/02 processors.

Processor Access Time per Bit
Instruction or Word of Data

Access Time per
Multi–Word Instruction

SLC 5/02 Series B 1.93 ms 1.58 ms plus 0.67 ms per word

SLC 5/02 Series C 1.16 ms 0.95 ms plus 0.40 ms per word

If you are using a Series B processor, add 1.93 ms to the program scan time for
each bit instruction addressed to an M0 or M1 data file. If you are using a Series C
processor, add 1.16 ms.

If you are using a Series B processor, add 1.58 ms plus 0.67 ms per word of data
addressed to the M0 or M1 file. This adds 24.36 ms to the scan time of the COP
instruction. If you are using a Series C processor, add 0.95 ms plus 0.40 ms per word.
This adds 14.55 ms to the scan time of the COP instruction.

] [
M0:2.1

 1
]/[

M1:3.1

 1
()

M0:2.1

10

COP
COPY FILE
Source #B3:0
Dest #M0:1.0
Length 34

Chapter 4
Data File Organization and Addressing

4–25

Minimizing the Scan Time

You can keep the processor scan time to a minimum by economizing on the
use of instructions addressing the M0 or M1 files. For example, XIC
instruction M0:2.1/1 is used in rungs 1 and 2 of figure 1 below, adding
approximately 2 ms to the scan time if you are using a Series B processor. In
the equivalent rungs of figure 2, XIC instruction M0:2.1/1 is used only in
rung 1, reducing the scan time by approximately 1 ms.

Figure 1. XIC instructions in rungs 1 and 2 are addressed to the M0 data file.
Each of these instructions adds approximately 1 ms to the scan time (Series
B processor).

Figure 2. These rungs provide equivalent operation to those of figure A by
substituting XIC instruction B3/10 for XIC instruction M0:2.1/1 in rung 2. Scan
time is reduced by approximately 1 ms (Series B processor).

1

] [
B3

12
] [

M0:2.1

 1
()

B3

14

] [
M0:2.1

 1
()

B3

10

2

] [
B3

12
] [

B3

10
()

B3

14

] [
M0:2.1

 1
()

B3

10
1

2

The following figure illustrates another economizing technique. The COP
instruction addresses an M1 file, adding approximately 4.29 ms to the scan
time if you are using a Series B processor. Scan time economy is realized by
making this rung true only periodically, as determined by clock bit S:4/8
(clock bits are discussed in chapter 27). A rung such as this might be used
when you want to monitor the contents of the M1 file, but monitoring need
not be on a continuous basis.

[OSR]
B11

 0

COP
COPY FILE
Source #M1:4.3
Dest #N10:0
Length 6

] [
S:4

8S:4/8 causes the #M1:4.3
file to update the #N10:0 file
every 2.56 seconds.

Chapter 4
Data File Organization and Addressing

4–26

Capturing M0–M1 File Data

The first and second figures in the last section illustrate a technique allowing
you to capture and use M0 or M1 data as it exists at a particular time. In the
first figure, bit M0:2.1/1 could change state between rungs 1 and 2. This
could interfere with the logic applied in rung 2. The second figure avoids the
problem. If rung 1 is true, bit B3/10 takes a snapshot of this condition, and
remains true in rung 2, regardless of the state of bit M0:2.1/1 during this
scan.

In the second example of the last section, a COP instruction is used to
monitor the contents of an M1 file. When the instruction goes true, the 6
words of data in file #M1:4.3 is captured as it exists at that time and placed
in file #N10:0.

Specialty I/O Modules with Retentive Memory

Certain specialty I/O modules retain the status of M0-M1 data after power is
removed. See your specialty I/O module user’s manual. This means that an
OTE instruction having an M0 or M1 address remains on if it is on when
power is removed. A “hold-in” rung as shown below will not function as it
would if the OTE instruction were non-retentive on power loss. If the rung is
true at the time power is removed, the OTE instruction latches instead of
dropping out; when power is again applied, the rung will be evaluated as true
instead of false.

] [
B3

 0
()

M0:2.1

 1

] [
M0:2.1

 1

!
ATTENTION: When used with a speciality I/O module having
retentive outputs, this rung can cause unexpected start–up on
powerup.

You can achieve non-retentive operation by unlatching the retentive output
with the first pass bit at powerup:

] [
S:1

15
(U)

M0:2.1

 1

] [
B3

 0
()

M0:2.1

 1

] [
M0:2.1

 1

This rung is true for
the first scan after
powerup to unlatch
M0:2.1/1.

Chapter 4
Data File Organization and Addressing

4–27

Some specialty I/O modules use G (confiGuration) files (indicated in the
specialty I/O module user’s manual). These files can be thought of as the
software equivalent of DIP switches.

The content of G files is accessed and edited offline under the I/O
Configuration function. You cannot access G files under the Monitor File
function. Data you enter into the G file is passed on to the specialty I/O
module when you download the processor file and enter the Run or Test
mode.

The following figure illustrates the three G file data formats that you can
select on the HHT. Word addresses begin with the file identifier G and the
slot number you have assigned to the specialty I/O module. In this case, the
slot number is 1. Four words have been created (addresses G1:0 through
G1:3).

Important: Word 0 of the G file is configured automatically by the
processor according to the particular specialty I/O module.
Word 0 is read only.

address DEC data
G1:0 xxxx
G1:1 0
G1:2 0
G1:3 0

4–word G file, I/O slot 1, decimal format

address HEX/BCD data
G1:0 xxxx
G1:1 0000
G1:2 0000
G1:3 0000

address BIN 15 data 0
G1:0 xxxx xxxx xxxx xxxx
G1:1 0000 0000 0000 0000
G1:2 0000 0000 0000 0000
G1:3 0000 0000 0000 0000

4–word G file, I/O slot 1, hex/bcd format

4–word G file, I/O slot 1, binary format

G Data Files – Specialty I/O
Modules

Chapter 4
Data File Organization and Addressing

4–28

Editing G File Data

Data in the G file must be edited according to your application and the
requirements of the specialty I/O module. You edit the data offline under the
I/O configuration function only. With the decimal and hex/bcd formats, you
edit data at the word level:

• G1:1 = 234 (decimal format)
G1:1 = 00EA (hex/bcd format)

• With the binary format, you edit data at the bit level:
G1/19 = 1

Important: Word 0 of the G file is configured automatically by the
processor according to the particular specialty I/O module.
Word 0 cannot be edited.

5Chapter

5–1

Ladder Program Basics

This chapter discusses the basic operation of ladder programs. For a more
simplified introduction to ladder programming, refer to The Getting Started
Guide for HHT, catalog number 1747–NM009. This guide is intended for
the first time user.

The ladder program you enter into the controller’s memory contains bit
(relay logic) instructions representing external input and output devices. It
also contains other instructions, as described in the section “The Instruction
Set,” chapters 15 through 26.

As your program is scanned during controller operation, the changing on/off
state of the external inputs is applied to your program, energizing and
de-energizing external outputs according to the ladder logic you have
programmed.

To illustrate how ladder programming works, we chose to use bit (relay
logic) instructions, since they are the easiest to understand. The three
instructions discussed in this section are:

] [
Examine if Closed (XIC)

Analogous to the normally open relay contact. For this instruction, we ask
the processor to “Examine if (the contact is) Closed.”

]/[
Examine if Open (XIO)

Analogous to the normally closed relay contact. For this instruction, we ask
the processor to “Examine if (the contact is) Open.”

()

Output Energize (OTE)

Analogous to the relay coil. The processor makes this instruction true
(analogous to energizing a coil) when there is a path of true XIC and XIO
instructions in the rung.

Keep in mind that operation of these instructions is similar but not equivalent
to that of relay contacts and coils. In fact, a knowledge of relay control
techniques is not a prerequisite for programming the SLC 500 Programmable
Controller.

These instructions are explained in greater detail in chapter 16, Bit
Instructions.

Ladder Programming

Chapter 5
Ladder Program Basics

5–2

A ladder program consists of individual rungs, each containing at least one
output instruction and one or more input instructions. Variations of this
simple rung construction are discussed in later chapters.

This ladder rung has two input instructions and an output instruction. An
output instruction always appears at the right, next to the right power rail.
Input instructions always appear to the left of the output instruction.

XIC = Examine if Closed
XIO = Examine if Open
OTE = Output energize

Address B3/10
Address B3/11
Address B3/12

A Simple Rung, Using Relay Logic Instructions

B3

10

B3

11

XIC XIO OTE

Input Instructions Output Instructions

B3

12

Note that each instruction in the diagram above has an address. As described
in the chapter 4, this address identifies a location in the processor’s data files,
where the on/off state of the bit is stored. Addresses of the above
instructions indicate they are located in the Bit data file (B3), bits 10, 11, and
12:

OTE XICXIO

Bit Data File 3
– Element 0

Bit Status

 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

In the preceding diagram, we indicated that bit 10 is logic 1 (on), bit 11 is
logic 0 (off), and bit 12 is logic 1 (on). These logic states indicate whether
an instruction is true or false, as pointed out in the table below.

The status of the instruction is

If the data table bit
is

XIC
Examine if Closed

] [

XIO
Examine if Open

]/[

OTE
Output Energize

()

Logic 0 False True False

Logic 1 True False True

From the diagram and table above, we see that the state of bits 10, 11, and 12
indicate that the XIC, XIO, and OTE instructions of our rung are all true.
The true/false state of instructions is the basis of controller operation, as
indicated in the following paragraphs.

A 1–Rung Ladder Program

Chapter 5
Ladder Program Basics

5–3

During controller operation, the processor determines the on/off state of the
bits in the data files, evaluates the rung logic, and changes the state of the
outputs according to the logical continuity of rungs. More specifically, input
instructions set up the conditions under which the processor will make an
output instruction true or false. These conditions are:

• When the processor finds a continuous path of true input instructions in a
rung, the OTE output instruction will become (or remain) true. We then
say that “rung conditions are true.”

• When the processor does not find a continuous path of true input
instructions in a rung, the OTE output instruction will become (or remain)
false. We then say that “rung conditions are false.”

The figure below shows the on/off state of output B3/12 as determined by the
changing states of the inputs in the rung.

B3

10

B3

11

XIC XIO OTE

Input Instructions Output Instructions

B3

12

Inputs Output Bit Status

Time XIC XIO OTE XIC XIO OTE

t1(initial) False True False 0 0 0

t2 True True Goes True 1 0 1

t3 True False Goes False 1 1 0

t4 False False Remains False 0 1 0

Logical Continuity

Chapter 5
Ladder Program Basics

5–4

In the previous section on logical continuity, you have seen examples of
series (And) logic. This means that when all input conditions in the path are
true, energize the output.

Example – Series Inputs

A B C

In the above example, if A and B are true, energize C.

Another form of logical continuity is Parallel (OR) logic. This means that
when one or another path of logic is true, energize the output.

Example – Parallel Inputs

A C

B

In the above example, if A or B is true, energize C.

Use branching to form parallel logic in your user program. Branches can be
established at both input and output portions of a rung. The upper limit on
the number of levels which can be programmed in a branch structure is 75.
The maximum number of instructions per rung is 127.

Series Logic

Parallel Logic

Chapter 5
Ladder Program Basics

5–5

Input Branching

Use an input branch in your application program to allow more than one
combination of input conditions to form parallel branches (OR–logic
conditions.) If at least one of these parallel branches forms a true logic path,
the rung logic is enabled. If none of the parallel branches forms a true logic
path, rung logic is not enabled and the output instruction logic will not be
true. (Output is not energized.)

Example – Parallel Input Branching

A B D

C

In the above example, either A and B, or C provides a true logical path.

Output Branching

You can program parallel outputs on a rung to allow a true logic path to
control multiple outputs. When there is a true logic path, all parallel outputs
become true.

Example – Parallel Output Branching

MOV

U

A

B

C

E

In the above example, either A or B provides a true logic path to all three
output instructions.

Chapter 5
Ladder Program Basics

5–6

With the SLC 5/02 processor, additional input logic instructions (conditions)
can be programmed in the output branches to further condition control of the
outputs. When there is a true logic path, including extra input conditions on
an output branch, that branch becomes true.

Example – Parallel Output Branching with Conditions (SLC 5/02 Only)

A

B

C

D E

In the above example, either A and D or B and D provide a true logic path
to E

Nested Branching

With the SLC 5/02 processor, input and output branches can be “nested” to
avoid redundant instructions, to speed–up processor scan time, and provide
more efficient programming. A “nested” branch is a branch that starts or
ends within another branch. You can nest branches up to four levels deep.

Example – Nested Input and Output Branches

Important: APS allows all branching combinations to be programmed in a
fixed, SLC 5/01, or SLC 5/02 processor. The HHT does not
support nested input or output branches or additional conditions
on output branches to be programmed in a fixed or SLC 5/01
processor.

Chapter 5
Ladder Program Basics

5–7

Nested branches can be converted into non–nested branches by repeating
instructions to make parallel equivalents.

Example
A B C F

D

E

A B C F

D

E

C

Nested Branch

Non–nested Equivalent Parallel Branch

Chapter 5
Ladder Program Basics

5–8

The following 4-rung ladder program uses the same 3 bit addresses as our
simple 1-rung diagram. It also uses an external input bit address and an
external output bit address. Note that individual bits are addressed
repeatedly. For example, B3/11 is addressed with an XIC instruction in
rungs 1 and 4, and it is addressed with both an XIC and an OTE instruction
in rung 2.

During normal controller operation, the processor checks the state of the
input data file bits then executes the program instructions individually, rung
by rung, from the beginning to the end of the program; as it does, it updates
the data file bits and the appropriate output data file bits accordingly.

When XIC instruction I:0/1 goes true (because an external momentary push
button closes):

• Rung 1 is evaluated as false, because XIC instruction B3/11 is false at this
time.

• Rung 2 is evaluated as true. XIC B3/11 in the branch of this rung goes
true to maintain continuity in the rung.

• Rung 3 is evaluated as true.
• Rung 4 is evaluated as true because XIC B3/11 has gone true. The

external device represented by OTE O:0/2 is energized.

A 4–Rung Ladder Program

Chapter 5
Ladder Program Basics

5–9

Application Example

Use the following program to achieve the maintained contact action of an
On–Off toggle switch using a momentary contact push button. (Press for
On; press again for Off.)

The first time you press the push button (represented by address I:0/1),
instruction B3/11 is latched, energizing output O:0/2. The second time you
press the push button, instruction B3/12 unlatches instruction B3/11,
de–energizing output O:0/2. Instruction B3/10 prevents interaction between
instructions B3/12 and B3/11.

Status Bit

I:0/1Rung B3/10 B3/12 O:0/2B3/11

1

2

3

4

]/[
B3

 10
1

] [
I:0.0

1
()

B3

11

()
B3

12

2

] [
B3

 11

]/[
B3

 12
]/[

B3

10

()
2

()
B3

10
] [
I:0.0

 1

] [
B3

 11

3

4

] [
B3

 11

] [
I:0.0

1

] [

] [

] [()

]/[

]/[()] [

] [

] [()

()

]/[

O:0.0

As previously indicated, the processor executes instructions individually,
rung by rung, from the beginning to the end of the program. This is called a
program scan and it is repeated many times a second. The figure on the next
page indicates in greater detail what happens during individual scans when
an external input device (represented by I:0/1) is operated.

Chapter 5
Ladder Program Basics

5–10

When the state of a bit changes during the scan, the effects this may have in
earlier rungs of the program are not accounted for until the next scan. To
point this out, we have shown successive scans (1000 and 1001, 2000 and
2001, etc.).

The diagram above is the same one that appears on the
preceding page. This diagram is also represented below,
with each instruction replaced with a T or F, indicating
the initial True/False status of the instruction.

The table at the right indicates how the instructions are
executed when XIC instruction I:0/1 changes state.
(I:0/1 represents an external momentary contact push
button.)

T T F F

T T T T

F

T T

T T

T F T F

T F T T

T

T T

T T

F T F F

F T T F

F

F F

F F

Instruction Execution
T = true at time of execution
F = false at time of execution

XIC
I:0/1

Goes
True

Goes
False

Scan 1000 Scan 1001

F F T F

F F T T

T

F F

T T

F T T F

F T T T

T

F F

T T

Scan 2000 Scan 2001

T T T T

T T F F

T

T T

F F

T F F F

T F T F

F

T T

F F

Scan 3000 Scan 3001

F F F F

F F T F

F

F F

F F

F T F F

F T T F

F

F F

F F

Scan 4000 Scan 4001Goes
False

Goes
True

]/[
B3

 10
1

] [
I:0.0

1
()

B3

11

()
B3

12

2

] [
B3

 11

]/[
B3

 12
]/[
B3

10

()
2

()
B3

10
] [
I:0.0

 1

] [
B3

 11

3

4

] [
B3

 11

] [
I:0.0

1

O:0.0

Chapter 5
Ladder Program Basics

5–11

The diagram below shows a simplified operating cycle, consisting of the
program scan, discussed in the last section, and the I/O scan.

PROGRAM SCAN

I/O SCAN

In the I/O scan, data associated with external outputs is transferred from the
output data file to the output terminals. (This data was updated during the
preceding program scan.) In addition, input terminals are examined, and the
associated on/off state of the bits in the input data file are changed
accordingly.

In the program scan, the updated status of the external input devices is
applied to the user program. The processor executes the entire list of
instructions in ascending rung order. Status bits are updated according to
logical continuity rules as the program scan moves from instruction to
instruction through successive ladder rungs.

The I/O scan and program scan are separate, independent functions. Thus,
any status changes occurring in external input devices during the program
scan are not accounted for until the next I/O scan. Similarly, data changes
associated with external outputs are not transferred to the output terminals
until the next I/O scan.

Important: The description here does not account for the processor
overhead and communications portions of the operating cycle.
These are discussed in appendix D, Estimating Scan Time.

Operating Cycle (Simplified)

Chapter 5
Ladder Program Basics

5–12

The following figures indicate how the operating cycle works for the 4-rung
ladder program discussed on pages 5–7 through 5–10.

When the Input Goes True

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2

O:0.0

1

I:0.0

Scan before input goes true (scan 999).

Input Data File

Ladder Program

Output Data File

O:0

I:0

Output Bit De–energized

Input Bit De–energized

Instructions are normal
intensity.

Input Scan

Program
Scan

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2

O:0.0

1

First scan after input goes true (scan 1000).

Input Data File

Ladder Program

Output Data File

O:0

I:0

Instructions Intensified

Output Bit De–energized

Input bit energized

I:0.0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2

O:0.0

1

Second scan after input goes true (scan 1001).

Input Data File

O:0

I:0

Output Data File

Ladder ProgramInstructions Intensified

Output Bit Energized

Input Bit Energized

I:0.0

Input Scan

Program
Scan

Input Scan

Program
Scan

Chapter 5
Ladder Program Basics

5–13

When the Input Goes False

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2

O:0.0
1

Input Data File

O:0

I:0

Output Data File

Ladder ProgramInstructions intensified

Output Bit Energized

Input Bit Energized

Scan before input goes false (scan 1999).

I:0.0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2

O:0.0

1

Input Data File

Ladder Program

Output Data File

O:0

I:0

Output Bit Energized

Input Bit De–energized

Instructions are normal
intensity.

First scan after input goes false (scan 2000).

I:0.0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2

O:0.0

Input Data File

Ladder Program

Output Data File

O:0

I:0

Output Bit De–energized

Input Bit De–energized

Instructions are normal
intensity

Second scan after input goes false (scan 2001).

1

I:0.0

Input Scan

Program
Scan

Input Scan

Program
Scan

Input Scan

Program
Scan

6Chapter

6–1

Creating a Program

In this chapter you create a ladder program. The tasks you will perform are:

• configure your SLC 500 controller
• name your program

A program is always created offline using the HHT. In creating the program,
you:
1. Clear the memory of the HHT.

2. Configure the processor.

3. Configure the I/O.

4. Name the ladder program and main program file.

Clearing the Memory of the HHT

To create a new program, clear the HHT memory (DEFAULT program).

1. Energize your HHT. After it goes through the self–diagnostic tests, the
main menu display appears:

SLC 500 PROGRAMMING SOFTWARE Rel. 2.03

1747 – PTA1E
Allen–Bradley Company Copyright 1990

All Rights Reserved

F1 F2 F3 F4 F5

PRESS A FUNCTION KEY
SELFTEST TERM PROGMAINT

OFL
UTILITY

Creating a Program Offline
with the HHT

Chapter 6
Creating a Program

6–2

2. Press [F3], PROGMAINT. Then press [ENTER] to view the additional
menu functions (as indicated by the > symbol in the lower right corner).
The following display appears:

File Name: Prog Name:2345
File Name Type Size(Instr)
0 System *
1 Reserved *
2 Ladder *

F1 F2 F3 F4 F5

EDT_DAT SEL_PRO EDT_I/O
OFL

CLR_MEM >

3. Press [F4], CLR_MEM. The following display appears:

File Name: Prog Name:2345
File Name Type Size(Instr)
0 System 76
1 Reserved 0
2 Ladder 5

ARE YOU SURE?

F1 F2 F3 F4 F5

YES
OFL

NO

4. Press [F2], YES. This clears the HHT memory and the following display
appears:

File Name: Prog Name:DEFAULT
File Name Type Size(Instr)
0 System *
1 Reserved *
2 Ladder *

F1 F2 F3 F4 F5

EDT_DAT SEL_PRO EDT_I/O
OFL

CLR_MEM >

Configuring the Controller

After clearing the HHT memory, you must configure the processor and I/O
structure for your application.

Configuring the Processor

1. Press [F2], SEL_PRO. Then press [F1], TYPE. The following display
appears:

Type = 1747–L511 CPU–1K USER MEMORY
Series =
Memory Size = 1 K INSTRUCTIONS

F1 F2 F3 F4 F5

Type = 1747–L511 CPU–1K USER MEMORY

OTHER

Chapter 6
Creating a Program

6–3

2. Use the cursor keys [↑] or [↓] then press [ENTER] to select the correct
processor type. For this example, select the 1747–L511 processor. Since
this is the default selection on the display, press [ENTER]. Processor
module 1747–L511 is entered into memory. The previous display
appears.

3. Press [ESC] to return to the following display:

File Name: Prog Name:DEFAULT
File Name Type Size(Instr)
0 System *
1 Reserved *
2 Ladder *

F1 F2 F3 F4 F5

EDT_DAT SEL_PRO EDT_I/O
OFL

CLR_MEM >

Configuring the I/O

1. Press [F3], EDT_I/O. The following display appears:

Rack 1 = 1746–A4 4–SLOT RACK
Rack 2 = NONE
Rack 3 = NONE
Slot 0 = 1747–L511 CPU–1K USER MEMORY

Slot 1 = NONE

F1 F2 F3 F4 F5

MOD_RCK MOD_SLT DEL_SLT UND_SLT

The display shows that the processor module we just entered is assigned
to slot 0. It also shows the default rack selection 1746–A4. For this
example you do not have to change the rack selection. If you are using a
different rack, press [F1], MOD_RCK, then [F1], RACK 1. Select the
appropriate rack, using the [↓] and [↑] keys, then press [ENTER].

If you are using more than one rack, follow the same procedure for racks
2 and 3. The next task is to assign the I/O module slots. For this
example, use slots 1, 2, and 3.

2. Press [F2], MOD_SLT.

The following display appears:

Rack 1 = 1746–A4 4–SLOT RACK
Rack 2 = NONE
Rack 3 = NONE
Slot 0 = 1747–L511 CPU–1K USER MEMORY

Slot 1 = NONE
Slot 1 = NONE

F1 F2 F3 F4 F5

OTHER

Slot 1 = NONE appears on the prompt line.

Chapter 6
Creating a Program

6–4

3. Assign the input module found in slot 1 by scrolling with the [↓] key.
For this example, press the [↓] key once to assign the 1746–IA4
module. (The [F3], OTHER key is for configuring I/O modules not
found in the list of catalog numbers. See your specialty I/O user manual
or instruction sheet for the proper code).

4. Press [ENTER]. The 1746–IA4 AC input is entered for slot 1. The
following display appears:

Rack 1 = 1746–A4 4–SLOT RACK
Rack 2 = NONE
Rack 3 = NONE
Slot 0 = 1747–L511 CPU–1K USER MEMORY

Slot 1 = 1746–IA4 4–INPUT 100/120 VAC

F1 F2 F3 F4 F5

MOD_RCK MOD_SLT DEL_SLT UND_SLT

5. Call up another slot number using the [↓] and [↑] keys. Press the
[↓] key once for slot 2. Assign the other slots by following the
procedure for slot 1.

Your controller is now fully configured. The configuration can be
changed at any time by using the functions shown here. UND_SLT can
be used to undelete a slot if it is accidently removed or to configure
multiple slots with the same module type.

6. Press [ESC]. This returns you to the display shown below.

File Name: Prog Name:DEFAULT
File Name Type Size(Instr)
0 System *
1 Reserved *
2 Ladder *
3 Ladder *

F1 F2 F3 F4 F5

EDT_DAT SEL_PRO EDT_I/O
OFL

CLR_MEM >

If needed, use SEL_PRO to change the processor type.

Chapter 6
Creating a Program

6–5

Configuring Specialty I/O Modules – (SLC 5/02 Specific)

When you use a specialty I/O module, you must indicate the type of module
to the HHT. The configuration menu provides a list of available modules to
select from. Each module is pre–configured, so after selecting the module
from the list you have the option of viewing its configuration by pressing
[F5], ADV_SET, advanced setup. Alteration of the fields is not
recommended since these fields are pre–configured. However, if you select a
module not listed, you may be required to alter some of the fields. Refer to
your specialty I/O module user manual for more information regarding the
required parameters.

To configure a specialty I/O module not listed:

1. Configure your SLC 5/02 processor, racks, and standard I/O as described
earlier.

2. Assign the specialty I/O module to an open slot in your rack. We are
using slot 6 in a 1747–A7, 7–slot rack for the following example. We are
also using the Remote I/O Scanner Module, catalog number 1747–SN for
this example. Refer to RIO Scanner User Manual, catalog number
1747–NM005, for a detailed description of the parameters.

From the previous display press [F3], EDT_I/O and [↓] five times. The
following display appears:

Rack 1 = 1746–A7 7–SLOT RACK
Rack 2 = NONE
Rack 3 = NONE
Slot 0 = 1747–L524 CPU–4K USER MEMORY

Slot 6 = NONE

F1 F2 F3 F4 F5

MOD_RCK MOD_SLT DEL_SLT UND_SLT ADV_SET

3. Press [F2], MOD_SLT. The following display appears:

Rack 1 = 1746–A7 7–SLOT RACK
Rack 2 = NONE
Rack 3 = NONE
Slot 0 = 1747–L524 CPU–4K USER MEMORY

Slot 6 = NONE
Slot 6 = NONE

F1 F2 F3 F4 F5

OTHER

Chapter 6
Creating a Program

6–6

4. Press [F3], OTHER. For the RIO Scanner Module, enter the module ID
code. Type 13608, then press [ENTER]. (For some module ID codes, the
HHT may request additional information). The next display appears:

Rack 1 = 1746–A7 7–SLOT RACK
Rack 2 = NONE
Rack 3 = NONE
Slot 0 = 1747–L524 CPU–4K USER MEMORY

Slot 6 = OTHER 13608

F1 F2 F3 F4 F5

MOD_RCK MOD_SLT DEL_SLT UND_SLT ADV_SET

5. Press [F5], ADV_SET to view or modify the RIO scanner module’s
parameters:

–––––– Advanced I/O Configuration ––––––

Current Subroutine File: 0

Current Configuration File: G6

F1 F2 F3 F4 F5

OFL

INT_SBR MOD_SET CFG_SIZ ADV_SIZ

6. Press [F4], ADV_SIZ to view or modify the I/O and M0/M1 file sizes:

–––––––– Advanced I/O Size Setup ––––––––
Note: All sizes are in words. Slot = 6
Output Size: 32 M0 File Size: 0
Input Size: 32 M1 File Size: 0
Scanned Output Size: 32
Scanned Input Size: 32
ENTER SCANNED OUTPUT: 32

F1 F2 F3 F4 F5

OFL

The default for the scanned output size is 32 words. In this example, to
reduce the processor scan time, enter 16 words.

7. Type 16, then press [ENTER].

The display changes as follows:

–––––––– Advanced I/O Size Setup ––––––––
Note: All sizes are in words. Slot = 6
Output Size: 32 M0 File Size: 0
Input Size: 32 M1 File Size: 0
Scanned Output Size: 16
Scanned Input Size: 32
ENTER SCANNED INPUT: 32

F1 F2 F3 F4 F5

OFL

8. View or modify the remaining parameters by pressing [ENTER]. See the
Remote I/O Scanner User Manual, catalog number 1747–NM005, for
specific values.

Chapter 6
Creating a Program

6–7

9. Press [ESC]. The following display appears:

–––––– Advanced I/O Configuration ––––––

Current Subroutine File: 0

Current Configuration File: G6

F1 F2 F3 F4 F5

OFL

INT_SBR MOD_SET CFG_SIZ ADV_SIZ

10.Set the G file (configuration file) size to 3. Press [F3], CFG_SIZ. The
following display appears:

–––––– Advanced I/O Configuration ––––––

Current Subroutine File: 0

Current Configuration File: G6

ENTER CONFIG. FILE SIZE: 0

F1 F2 F3 F4 F5

OFL

11.Type 3, then press [ENTER]. You are returned to the previous display.
Press [F2], MOD_SET to view or modify the G file contents. The
following display appears, with the cursor positioned on G6:0:

Address HEX/BCD Data
G6:0 2020
G6:1 0000
G6:2 0000

ELEMENT CANNOT BE EDITED!

F1 F2 F3 F4 F5

OFL

BIN DEC HEX/BCD NEXT_PG PREV_PGIndicates Slot 6

Word 0 of the G file is configured automatically by the processor
according to the particular specialty I/O module. Word 0 is read only.
For a description of G files, refer to page 4–27 in this manual.

12.Press [↓] to edit other words in the G file. The display changes as
follows:

Address HEX/BCD Data
G6:1 0000
G6:2 0000
G6:0 2020

G6:1 = 000

F1 F2 F3 F4 F5

OFL
BIN DEC HEX/BCD NEXT_PG PREV_PG

Chapter 6
Creating a Program

6–8

13.From this display you may choose the data format you prefer to use to
configure the module for your application: BINary, DECimal,
HEXadecimal/Binary Coded Decimal. Refer to Remote I/O Scanner User
Manual, catalog number 1747–NM005, for a detailed description of the
configuration specifications.

14.When you finish configuring your specialty I/O module, press [ESC] to
return to the previous display:

–––––– Advanced I/O Configuration ––––––

Current Subroutine File: 0

Current Configuration File: G6

F1 F2 F3 F4 F5

OFL

INT_SBR MOD_SET CFG_SIZ ADV_SIZ

The [F1], INT_SBR, interrupt subroutine number, designates the I/O
event-driven interrupt function that is used with the SLC 5/02 processor
only. This function allows a specialty I/O module to interrupt the normal
processor operating cycle in order to scan a specified subroutine file.
This is described in detail starting on page 31–1. Interrupt operation for a
specific module is described in the user’s manual for the module.

Naming the Ladder Program

In addition to configuring your controller, you must give the program a
name, other than DEFAULT, before continuing. When naming your ladder
program, the HHT allows only numbers and certain letters available on the
keypad, to be entered.

Important: Ladder program names may be created on an APS terminal
using the characters A–Z, 0–9, and underscore (_). These
programs may be uploaded to and displayed on the HHT.

1. From this display:

File Name: Prog Name:DEFAULT
File Name Type Size(Instr)
0 System *
1 Reserved *
2 Ladder *

F1 F2 F3 F4 F5

CHG_NAM CRT_FIL EDT_FIL
OFL

MEM_MAPDEL_FIL >

Chapter 6
Creating a Program

6–9

2. Press [F1], CHG_NAM. The following display appears:

––––––– Change Program/File Name –––––––

File Name:

Program Name: DEFAULT

F1 F2 F3 F4 F5

OFL
PROGRAM FILE

3. Press [F2], PROGRAM.

The following display appears:

––––––– Change Program/File Name –––––––

File Name:

Program Name: DEFAULT

ENTER NAME: DEFAULT

F1 F2 F3 F4 F5

OFL

4. Name your program 1000. Type 1000, then press [SPACE], then
[ENTER]. The program name is entered and you are returned to the
previous display.

––––––– Change Program/File Name –––––––

File Name:

Program Name: 1000

F1 F2 F3 F4 F5

OFL
PROGRAM FILE

Important: If you forget to press the [SPACE] key, the program name is now
1000ULT. Whenever you create a new program name or change
the name; if the previous name consists of more characters than
the new one, the [SPACE] key must be used to clear the
additional characters. To correct the name, repeat the above
procedure.

Naming Your Main Program File

Unlike the ladder program name, it is not required that you name the main
program file. However, a main program file name is helpful, especially if
there are multiple program files, such as a main program file (always file 2)
and one or more subroutine files (files 3 through 255).

Chapter 6
Creating a Program

6–10

1. Continuing from the change name display, press [F4], FILE. This
display appears:

––––––– Change Program/File Name –––––––

File Name:

Program Name: 1000

ENTER NAME:

F1 F2 F3 F4 F5

OFL

2. Name the main program file 222. Type 222, then press [ENTER]. The
main program file name is entered and you are returned to the previous
menu.

The same restrictions apply to the characters for the main program file
name as to ladder program names. Also, using the [SPACE] key may be
necessary if you are re–naming the main program file.

3. Exit this menu level by pressing [ESC]. The program maintenance
display appears:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System *
1 Reserved *
2 222 Ladder *

F1 F2 F3 F4 F5

CHG_NAM CRT_FIL EDT_FIL
OFL

DEL_FIL >MEM_MAP

Program NameMain Program
File Name

File Size

The program directory now shows the name of the program, which is
1000 and the name of the main program file, which is 222. The display
also shows the file sizes. At this point, asterisks (*) are displayed
because no ladder programs are entered.

Password protection prevents access to a program file and prevents changes
from being made to the program. Each program may contain two passwords;
the password and the master password. The master password overrides the
password. This function is available for the offline HHT program, from the
utility menu display and for the online processor program, from the attach
display. You can only use numeric–based passwords.

Passwords

Chapter 6
Creating a Program

6–11

You can use passwords in the following combinations:

Only Password Designated You must enter the password to gain access to the program
file.

Only Master Password Designated

You do not have to enter the master password to gain
access to the program file. A master password is used by
itself to allow access if a regular password is accidentally
entered.

Password and Master Password
Designated

You must enter either the password or the master password
to gain access to the program file.

Generally, if you are using a number of processors, each processor is given a
different password, and a master password is applied to all of the processors.
You can use the master password to change or remove any password.

Important: There is no password override to defeat the protection. Contact
your Allen-Bradley representative if you are not able to locate
your password.

Entering Passwords

Ordinarily, you do not enter a password until your ladder program is
completed, tested, and ready to be applied. This avoids having to type in the
password each time you edit the program, download, edit again, and so on.

Passwords can consist of up to 10 characters, numbers 0 through 9.

In this example, enter the password, 123, for program file 1000. Use the
Offline mode for this procedure.

1. Begin at the utility display:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System *
1 Reserved *
2 222 Ladder *

F1 F2 F3 F4 F5

ONLINE WHO PASSWRD
OFL

CLR_MEM

2. Press [F3], PASSWRD. The following display appears:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System *
1 Reserved *
2 222 Ladder *

F1 F2 F3 F4 F5

ENT REM ENT_MAS
OFL

REM_MAS

Chapter 6
Creating a Program

6–12

3. Press [F1], ENT. The display prompts you for the password:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System *
1 Reserved *
2 222 Ladder *

F1 F2 F3 F4 F5

ENTER NEW PASSWORD: OFL

4. Type 123. Notice that as you enter the characters, X’s are displayed for
security reasons:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System *
1 Reserved *
2 222 Ladder *

F1 F2 F3 F4 F5

ENTER NEW PASSWORD: XXX OFL

5. Press [ENTER].

You are prompted to verify the password, by re–typing it:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System *
1 Reserved *
2 222 Ladder *

F1 F2 F3 F4 F5

RE–ENTER NEW PASSWORD: OFL

6. Type 123 again. The password is now accepted.

7. Cycle power to the HHT for the password to take effect.

After the HHT powers up, you are requested to enter the password if you
press [F3], PROGMAINT or [F5], UTILITY.

Entering Master Passwords

If a master password is required, press [F3], ENT_MAS, from the password
menu display. The entry procedure is the same as for a password.

Chapter 6
Creating a Program

6–13

Removing and Changing Passwords

To remove a password or master password, do one of the following:

Removing Passwords Removing Master Passwords

1. Press [F3], PASSWRD. 1. Press [F3], PASSWRD.

2. Press [F2], REM 2. Press [F4], REM_MAS.

3. Type existing password and press [ENTER]. 3. Type the existing master password and press
 [ENTER].

To change a password or master password, do one of the following:

Changing Passwords Changing Master Passwords

1. Press [F3], PASSWRD. 1. Press [F3], PASSWRD.

2. Press [F1], ENT 2. Press [F4], ENT_MAS.

3. Type existing password and press [ENTER]. 3. Type the existing master password and press
 [ENTER].

4. Type the new password and press [ENTER]. 4. Type the new master password and press
 [ENTER].

5. Re–type the new password and press
 [ENTER].

5. Re–type the new master password and press
 [ENTER].

6. Cycle power to the HHT. 6. Cycle power to the HHT.

7Chapter

7–1

Creating and Editing Program Files

In this chapter you create a ladder program. The topics include:

• creating and deleting program files
• editing program files
• using the search function
• creating and deleting data files

As described in chapter 2, a program must contain the main program file (file
2) for user–programmed instructions defining how the controller is to
operate. Additional program files may be created for specialized user
defined program routines. User error handler, STI interrupts and interrupt
programs require subroutine program files. These are described later in this
manual. Valid file numbers range from 3 to 255.

Creating a Subroutine Program File using the Next Consecutive File
Number

Create subroutine program file 3.

1. Begin at the program maintenance display.

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System *
1 Reserved *
2 222 Ladder *

F1 F2 F3 F4 F5

CHG_NAM CRT_FIL EDT_FIL
OFL

DEL_FIL >MEM_MAP

2. Press [F2], CRT_FIL. The following display appears:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System *
1 Reserved *
2 222 Ladder *

ENTER FILE NUMBER:

F1 F2 F3 F4 F5

OFL

Creating and Deleting
Program Files

Chapter 7
Creating and Editing a Program File

7–2

3. To create subroutine program file 3, press [3] then [ENTER]. File 3 is
created and the following display appears showing subroutine file 3 as a
ladder file.

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System *
1 Reserved *
2 222 Ladder *
3 Ladder *

F1 F2 F3 F4 F5

CHG_NAM CRT_FIL EDT_FIL
OFL

DEL_FIL >MEM_MAP

You may not name any of the subroutine program files using the HHT.
Subroutine program files may be named on an APS terminal. These
programs may be uploaded to, and displayed on the HHT.

Creating a Subroutine Program File using a Non–Consecutive File
Number

In this example create subroutine program file 6.

1. From the above display press [F2], CRT_FIL.

2. Press [6], then [ENTER]. File 6 is created, but the display does not
change.

3. Press the [↓] key 3 times to view file 6.

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
3 Ladder *
4 Undefined *
5 Undefined *
6 Ladder *

F1 F2 F3 F4 F5

CHG_NAM CRT_FIL EDT_FIL
OFL

DEL_FIL >MEM_MAP

These files are listed, but
not created.

Notice that files 4 and 5 are listed as Undefined and file 6, the file you
created, is listed as Ladder. Although files 4 and 5 are not created, they
are still displayed. You may create the files at a later time by repeating
the above procedure.

Chapter 7
Creating and Editing a Program File

7–3

Deleting a Subroutine Program File

All created program files (file numbers 3 – 255) can be deleted. You cannot
delete files 0 and 1. Deleting file 2 deletes all ladder rungs in the main
program file. Attempting to delete file 0, file 1, or an undefined subroutine
file displays the FILE CANNOT BE DELETED! prompt. In the case of a
subroutine file, the error message indicates that a subroutine program file of
a higher number exists.

Delete subroutine program file 6.

1. From the previous display, press [F4], DEL_FIL.

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
3 Ladder *
4 Undefined *
5 Undefined *
6 Ladder *
ENTER FILE NUMBER:

F1 F2 F3 F4 F5

OFL
>

2. You are prompted for the file number to delete. Press [6], then [ENTER].
The following display appears:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
3 Ladder *
4 Undefined *
5 Undefined *
6 Ladder *
DATA/FORCES IN LAST STATE,DELETE?

F1 F2 F3 F4 F5

OFL
>YES NO

3. Press [F2], YES to delete the file. Refer to appendix A for a description
of HHT messages and error definitions. The following display appears:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System *
1 Reserved *
2 222 Ladder *
3 Ladder *

F1 F2 F3 F4 F5

CHG_NAM CRT_FIL EDT_FIL
OFL

DEL_FIL >MEM_MAP

Now that you have created all necessary subroutine program files, enter a
simple program.

Chapter 7
Creating and Editing a Program File

7–4

This section describes the following editing techniques:

• entering a rung
• adding a rung with branching
• modifying rungs
• modifying instructions
• modifying branches
• deleting branches
• deleting and copying instructions
• deleting and copying rungs

Important: In the following examples, there may be multiple ways to enter
certain instructions. The examples are chosen to show the
simplest methods of programming and editing.

Ladder Rung Display

When you are editing a ladder program offline, a typical rung display
appears as follows:

F1 F2 F3 F4 F5

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

OFL

OTE:O0:3.0/0

<END>
] [()

These numbers in the upper right corner of the display provide
you with the following ladder program information:

When you locate the cursor on an instruction
(as shown below), the HHT displays the
instruction mnenomic and address in the upper
left corner of the display.

The HHT displays the full address. For example, when
you assign the address O:3/0, the programming device
displays it as O0:3.0/0 (output file, file 0, slot 3, word 0,
terminal 0).

2.0.0.0.2

file number
rung number
nest level
branch level
instruction number in rung (An
asterisk [*] means the cursor is not
on an instruction, but rather on a
power rail or a branch.)

NO FORCE

Indicates the force status of the cursored instruction.

Editing a Program File

Chapter 7
Creating and Editing a Program File

7–5

Entering a Rung

To enter a rung, do the following:

1. Press [F3], EDT_FIL from the program maintenance display. The
following display appears:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System *
1 Reserved *
2 222 Ladder *
3 Ladder *
ENTER FILE NUMBER:

F1 F2 F3 F4 F5

OFL

2. Edit file number 2, the main program file. Press [2], then [ENTER]. The
display shows the END of program statement. No other rungs exist at this
time. The numbers 2.0.0.0.* appear in the upper right corner of the
display. This indicates that you are editing program file 2, and the cursor
is located on rung 0, nest level 0, branch level 0, and not presently on an
editable instruction (the cursor is located on the END of program
statement).

F1 F2 F3 F4 F5

2.0.0.0.*

INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

OFL

>

<END>

3. Press [F1], INS_RNG. The following display appears:

F1 F2 F3 F4 F5

2.0.0.0.*

INS_INST BRANCH MOD_INST ACP_RNG

OFL

>

<END>
II

The I symbol in the power rails
indicate this rung is being

inserted or edited.

The Insert Rung command inserts the new rung above the rung where the
cursor is positioned. In this case, since there are no other rungs, the new
rung is placed directly above the END statement. The cursor is now
located on the left power rail of rung 0. The first rung of a program file is
always numbered 0.

Chapter 7
Creating and Editing a Program File

7–6

Entering an Examine if Closed Instruction

1. Press [F1], INS_INST. The following display appears:

F1 F2 F3 F4 F5

2.0.0.0.*

BIT TMR/CNT I/O_MSG CPT/MTH

OFL

>COMPARE

<END>
II

2. Press [F1], BIT. The following display appears:

F1 F2 F3 F4 F5

2.0.0.0.*

>] [()]/[()L
OFL
()U

<END>
II

3. Press [F1], —] [— , for the examine if closed instruction.
The following zoom display appears:

ENTER BIT ADDR:

ZOOM on XIC
NAME: EXAMINE IF CLOSED
BIT ADDR:

F1 F2 F3 F4 F5

] [2.0.0.0.*

This symbol indicates that the
HHT has automatically
shifted for you. You can then
enter the file type (I, O, S, B,
T, C, R, and N).

4. At the ENTER BIT ADDR: prompt, type the address I:1/0, which is an
abbreviated form of the address. The display appears as follows:

ENTER BIT ADDR:I:1/0

ZOOM on XIC
NAME: EXAMINE IF CLOSED
BIT ADDR:

F1 F2 F3 F4 F5

] [2.0.0.0.*

5. Before continuing, make certain that the information entered is correct. If
you entered the wrong instruction by mistake, press [ESC] twice and
re–enter the correct instruction. If you entered the wrong address, press
[ESC] once and re–enter the correct address. When all the information
displayed is correct, press [ENTER].

Chapter 7
Creating and Editing a Program File

7–7

This zoom display, once again gives you a chance to verify that all the
information entered is accurate. Notice that the address displayed is
shown in its full format:

ENTER BIT ADDR: I1:1.0/0

ZOOM on XIC
NAME: EXAMINE IF CLOSED
BIT ADDR: I1:1.0/0

F1 F2 F3 F4 F5

] [2.0.0.0.*

EDT_DAT ACCEPT

6. Press [F5], ACCEPT. This inserts the instruction and address into the
rung. The following rung display appears:

F1 F2 F3 F4 F5

>
OFL

2.0.0.0.*
] [

<END>
II

] [()]/[()L ()U

Notice that the cursor is now located on the right power rail of rung 0. In
the next section, the Output Energize instruction is inserted to the left of
the cursor.

Further instructions may be entered in the same way.

Entering an Output Energize Instruction

1. Press [F3], —()— , for the output energize instruction. The following
display appears:

ENTER BIT ADDR:

ZOOM on OTE
NAME: OUTPUT ENERGIZE
BIT ADDR:

F1 F2 F3 F4 F5

2.0.0.0.*()

2. Type bit address O:3/0, then press [ENTER].

ENTER BIT ADDR: O0:3.0/0

ZOOM on OTE
NAME: OUTPUT ENERGIZE
BIT ADDR: O0:3.0/0

F1 F2 F3 F4 F5

2.0.0.0.*()

EDT_DAT ACCEPT

Chapter 7
Creating and Editing a Program File

7–8

3. Press [F5], ACCEPT, then press [ESC] twice to move up through the
menu displays. Now press [F5], ACP_RUNG.

The following display appears:

<END>

F1 F2 F3 F4 F5

>

2.1.0.0.*

INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

OFL

] [()

Notice the I symbol in the power
rails has changed to a solid line,
indicating the rung is accepted

into the program.

Important: Saving and compiling your ladder program is explained in
detail, in the next chapter. But before you continue with the
additional editing examples, save the work you have done so
far. Whenever you are adding or editing rungs of a program it
is recommended to periodically save your program. In the
event of a power loss to the HHT, any edits that you have made
up to this point are not recoverable.

4. At this point the rung is entered and accepted. Now save this rung and
continue editing. Press [ENTER] to display additional menu options.

<END>

F1 F2 F3 F4 F5

>

2.1.0.0.*

EDT_DAT SAVE_CT SAVE_EX

OFL

] [()

5. To save and continue editing, press [F4], SAVE_CT, then press [F5],
ACCEPT.

Adding a Rung with Branching

Refer to chapter 5 for a description and example of different types of
branching.

Chapter 7
Creating and Editing a Program File

7–9

Adding a Rung to a Program

1. From the previous display, press [ENTER] for the additional menu
functions. The following display appears:

<END>

F1 F2 F3 F4 F5

>

2.0.0.0.*

INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

OFL

] [()

2. Press the [↓] key once to place the cursor on the END of program
statement.

3. Press [F1], INS_RNG. The insert rung function always places the new
rung above the rung on which the cursor is positioned. This places the
new rung between the first rung and the END of program statement. If you
did not move the cursor, the new rung is inserted above the original rung.
The display appears as follows:

<END>

F1 F2 F3 F4 F5

>

2.1.0.0.*

INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

OFL

] [()
II

Position of the new rung
indicated by the I symbol

in the power rails.

4. Press [F1], INS_INST, then [F1], BIT, then [F1], —] [— . The
following display appears:

ENTER BIT ADDR:

ZOOM on XIC
NAME: EXAMINE IF CLOSED
BIT ADDR:

F1 F2 F3 F4 F5

] [2.1.0.0.*

Chapter 7
Creating and Editing a Program File

7–10

5. Enter the address for the first examine if closed instruction. Type the
address I:1/0, then press [ENTER], then [F5], ACCEPT. The following
display appears with the cursor positioned on the right power rail:

<END>

F1 F2 F3 F4 F5

>

2.1.0.0.*

OFL

] [()
II] [

] [()]/[()L ()U

6. Enter the output energize instruction. Press [F3], —()— . The
following zoom display appears:

ENTER BIT ADDR:

ZOOM on OTE
NAME: OUTPUT ENERGIZE
BIT ADDR:

F1 F2 F3 F4 F5

2.0.0.0.*()

7. Type the address O:3/1, then press [ENTER], then [F5], ACCEPT. The
cursor is now positioned on the output energize instruction and the
following display appears:

Notice that with the cursor placed
on the output instruction, the

instruction mnemonic and
address are displayed in the

upper left corner.

The cursor location is also
displayed in the upper right

corner. This indicates that the
cursor is located in program file
2, rung 1, nest level 0, branch

level 0 and on the second
instruction in the rung.

<END>

F1 F2 F3 F4 F5

>

2.1.0.0.2

OFL

] [()
II] [

] [()]/[()L ()U

()

OTE:O0:3.0/1 NO FORCE

Chapter 7
Creating and Editing a Program File

7–11

Entering a Parallel Branch

The five branching instructions available on the HHT are listed below.

Function Key Description

[F1], Extend Up Adds a parallel branch above the cursored branch.

[F2], Extend Down Adds a parallel branch below the cursored branch.

[F3], Append Branch Places the starting point of a branch to the right of the
cursored instruction or at the cursor.

[F4], Insert Branch Places the starting point of the branch to the left of the
cursored instruction or at the cursor.

[F5], Delete Branch Removes a branch and the instructions within the branch
from a rung.

In this example use the insert branch command. The other branching
commands are described starting on page 7–19.

1. Starting from the previous display, press [ESC] twice to bring up the
following menu display:

<END>

F1 F2 F3 F4 F5

>

2.1.0.0.1

OFL

] [()
II] [()

OTE:O0:3.0/1 NO FORCE

INS_INST BRANCH MOD_INST ACP_RNG

2. Press [F2], BRANCH. The display shows the various branching
instructions:

<END>

F1 F2 F3 F4 F5

2.1.0.0.1

OFL

] [()
II] [()

OTE:O0:3.0/1 NO FORCE

EXT_UP EXT_DWN APP_BR DEL_BRINS_BR

Chapter 7
Creating and Editing a Program File

7–12

3. With the cursor still on the output energize instruction, press
[F4], INS_BR.

The display changes as follows:

<END>

F1 F2 F3 F4 F5

2.1.0.0.*

OFL

] [()
II] [()

SELECT BRANCH TARGET, PRESS ENTER

The insert branch instruction places the start of the branch to the left of
the cursor position. (You choose the direction of the branch target by
using the [←] or [→] keys.)

4. The cursor is now positioned on the branch start and you are prompted to
move the cursor to the branch target. Press the[←] key once. The cursor
is now positioned to the left of the examine if closed instruction:

<END>

F1 F2 F3 F4 F5

2.1.0.0.*

OFL

] [()
II] [()

SELECT BRANCH TARGET, PRESS ENTER

5. Press [ENTER]. The branch is inserted around the examine if closed
instruction:

<END>

F1 F2 F3 F4 F5

2.1.1.1.*

OFL

] [()
II] [()

EXT_UP EXT_DWN APP_BR DEL_BRINS_BR

II

Inserting an Instruction Within a Branch

1. Press [ESC] to display the previous editing menu.

<END>

F1 F2 F3 F4 F5

>

2.1.1.1.*

OFL

] [()
II] [()
II

INS_INST BRANCH MOD_INST ACP_RNG

Chapter 7
Creating and Editing a Program File

7–13

2. Press [F1], INS_INST, then [F1], BIT, then [F1], —] [— .

The zoom display prompts you for the bit address:

ENTER BIT ADDR:

ZOOM on XIC
NAME: EXAMINE IF CLOSED
BIT ADDR:

F1 F2 F3 F4 F5

] [2.1.0.0.*

3. Type the address I:1/1, then press [ENTER], then [F5], ACCEPT. The
display appears as follows:

>] [()]/[()L ()U

<END>

F1 F2 F3 F4 F5

2.1.1.1.*

OFL

] [()
II] [()
II] [

4. To accept the new rung into your program, press [ESC] twice, then
[F5], ACP_RNG. The rung is now a part of your program, as indicated
by the absence of I’s in the power rails:

<END>

F1 F2 F3 F4 F5

2.2.0.0.*

OFL

] [()
] [()

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

] [

5. Press [ENTER] for additional menu options, then press [F4], SAVE_CT, to
save and continue editing, then press [F5], ACCEPT.

Chapter 7
Creating and Editing a Program File

7–14

Modifying Rungs

In the previous two examples you created rungs by inserting them into the
program. After rungs are part of a ladder program, you can modify those
rungs offline, at any time.

Adding an Instruction to a Rung

In this example, add an examine if closed instruction to the first rung (rung
0) of your program. The modified rung should appear as follows.

] [
I:1.0

 0
()

O:3.0

 0
] [

I:1.0

 2
Add this instruction to the rung.

By adding an examine if closed instruction to this rung, you are creating a
rung of series logic, that is: when input I:1.0/0 and input I:1.0/2 are both
energized, output O:3.0/0 is energized.

1. From the previous display, press [ENTER] to display the additional menu
functions.

F1 F2 F3 F4 F5

>

2.0.0.0.*

OFL

] [()

INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

The cursor is located on the left
power rail of rung 0.

<END>

] [()
] [

2. To place the new instruction between the existing input and output
instructions, press the [→] key twice to place the cursor on the output
instruction. The display changes as follows:

F1 F2 F3 F4 F5

>

2.0.0.0.2

OFL

] [()

INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

OTE:O0:3.0/0 NO FORCE

Notice that with the cursor placed
on the output instruction, the

instruction mnemonic and
address are displayed in the

upper left corner.

The cursor location is also
displayed in the upper right

corner. This indicates that the
cursor is located in program file
2, rung 0, nest level 0, branch

level 0 and on the second
instruction in the rung.

<END>

] [()
] [

3. Press [F2], MOD_RNG then [F1], INS_INST, then [F1], BIT for the
following display to appear:

I

F1 F2 F3 F4 F5

>
OFL

] [I

] [()]/[()L ()U

2.0.0.0.2

()

OTE:O0:3.0/0 NO FORCE

<END>

] [()
] [

Chapter 7
Creating and Editing a Program File

7–15

4. Press [F1], —] [— for the new examine if closed instruction. The
following zoom display appears:

ENTER BIT ADDR:

ZOOM on XIC
NAME: EXAMINE IF CLOSED
BIT ADDR:

F1 F2 F3 F4 F5

] [2.0.0.0.2

5. At the ENTER BIT ADDR: prompt, type the address I:1/2, then press
[ENTER].

6. Press [F5], ACCEPT. This inserts the instruction and address into the
rung. The following display appears:

I

F1 F2 F3 F4 F5

>
OFL

] [I

] [()]/[()L ()U

2.0.0.0.3

()

OTE:O0:3.0/0 NO FORCE

] [

] [
<END>

] [()

7. Press [ESC] twice. Then press [F5], ACP_RNG.

The new examine if closed instruction is now part of your rung, as
indicated by the absence of I’s in the power rails.

F1 F2 F3 F4 F5

>

2.1.0.0.*

INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

OFL

] [()] [

] [
] [()

<END>

Once again, press [ENTER], then [F4], SAVE_CT, then [F5], ACCEPT to
compile and save these edits, and continue editing.

Chapter 7
Creating and Editing a Program File

7–16

Modifying Instructions

In the previous example you modified a rung by adding an instruction to the
rung. Another function available in the HHT is the ability to modify
instructions. Instructions may be edited by changing the address and/or
changing the type of instruction. The following examples show you how to
do both.

Changing the Address of an Instruction

Change the address of the second examine if closed instruction, in the first
rung (rung 0) of the program, from I:1.0/2 to I:1.0/1. The new rung should
appear as follows:

] [
I:1.0

 0
()

O:3.0

 0
] [

I:1.0

 1
Change this address.

1. From the previous save and continue display, press [ENTER]. The
following display appears:

F1 F2 F3 F4 F5

>

2.0.0.0.*

INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

OFL

] [()] [

] [
] [()

<END>

2. To change the address of the second examine if closed instruction, press
[→] twice.

3. With the cursor positioned on the examine if closed instruction with
address I1:1.0/2, press [F2], MOD_RNG. The following display
appears:

] [

F1 F2 F3 F4 F5

2.0.0.0.2

OFL

] [()

] [
] [()

<END>

>INS_INST BRANCH MOD_INST ACP_RNG

XIC:I1:1.0/2 NO FORCE

I I

Chapter 7
Creating and Editing a Program File

7–17

4. Press [F3], MOD_INST, then [ZOOM].

The following display appears with the cursor on the first character of the
instruction address, on the prompt line:

ZOOM on XIC
NAME: EXAMINE IF CLOSED
BIT ADDR:I1:1.0/2

ENTER BIT ADDR: I1:1.0/2

F1 F2 F3 F4 F5

] [2.0.0.0.2

ACCEPTEDT_DAT

5. To change the address:

• either write over the 2 with a 1 by pressing the [→] key seven times
to position the cursor over the 2, then press [1], then [ENTER]

• or enter the entire new address and then press [ENTER]

Important: When using the second method, you must press the [SHIFT]
key for the file type (I, O, B...). Also, if the previous address
contains more characters than the new one, you must use the
[SPACE] and the [→] keys to clear each remaining character
before pressing [ENTER].

When the new address is displayed on the prompt line:

ZOOM on XIC
NAME: EXAMINE IF CLOSED
BIT ADDR: I1:1.0/1

ENTER BIT ADDR: I1:1.0/1

F1 F2 F3 F4 F5

] [2.0.0.0.2

ACCEPTEDT_DAT

6. Press [F5], ACCEPT. The display returns to the ladder display, and the
address is changed, as indicated in the upper left corner.

II] [

2.0.0.0.2

OFL

] [()

] [
] [()

<END>

XIC:I1:1.0/1 NO FORCE

F1 F2 F3 F4 F5

BIT TMR/CNT I/O_MSG COMPARE CPT/MTH

7. To accept the new address, press [ESC] once to display the proper menu,
then press [F5], ACP_RNG.

8. Save the changes.

Chapter 7
Creating and Editing a Program File

7–18

Changing an Instruction Type

Change the second examine if closed instruction, in the first rung of the
program, to an examine if open instruction. Keep the same address for the
new instruction. The new rung should appear as follows:

] [
I:1.0

 0
()

O:3.0

 0
]/[

I:1.0

 1
Change this instruction type.

1. From the previous save and continue display, press [ENTER]. The
following display appears:

F1 F2 F3 F4 F5

>

2.0.0.0.*

INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

OFL

] [()] [

] [
] [()

<END>

2. To change the examine if closed instruction, press the [→] key twice.
With the cursor positioned on the examine if closed instruction with
address I1:1.0/1, press [F2], MOD_RNG. The following display
appears:

] [

F1 F2 F3 F4 F5

2.0.0.0.2

OFL

] [()

] [
] [()

<END>

>INS_INST BRANCH MOD_INST ACP_RNG

XIC:I1:1.0/1 NO FORCE

I I

3. Press [F3], MOD_INST, then [F1], BIT, then [F2], —] / [— . The
following zoom display appears:

ZOOM on XIO
NAME: EXAMINE IF OPEN
BIT ADDR: I1:1.0/1

ENTER BIT ADDR: I1:1.0/1

F1 F2 F3 F4 F5

2.0.0.0.2

ACCEPTEDT_DAT

]/[

Chapter 7
Creating and Editing a Program File

7–19

4. Since all the information is correct, press [F5], ACCEPT.

The new instruction is inserted into the rung.

II

2.0.0.0.2

OFL

] [()

] [
] [()

<END>

XIC:I1:1.0/1 NO FORCE

>] []/[

F1 F2 F3 F4 F5

()()L ()U()()

]/[

5. To accept the new instruction, press [ESC] twice to display the proper
menu, then press [F5], ACP_RNG.

6. Save the changes.

Modifying Branches

Earlier in this chapter you programmed a rung containing a branch, using the
insert branch function. The branch menu contains several different
branching functions. This example deals with those functions.

Extending a Branch Up

Use the extend branch up command to create a new branch level on an
existing branch, above your cursor location. The new branch shares the same
start and target locations as the branch on which the cursor is located. In this
example, modify rung 1 of your program to appear as follows:

] [
I:1.0

 0
()

O:3.0

 1

] [
B3

 1

] [
I:1.0

 1

Add this branch to the rung.

] [
B3

 2

1. From the previous save and continue display, press [ENTER]. The
following display appears:

F1 F2 F3 F4 F5

>

2.0.0.0.*

INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG
OFL

] [()

] [
] [()

<END>

]/[

Chapter 7
Creating and Editing a Program File

7–20

2. Because the cursor is positioned on the left power rail of rung 0, move the
cursor to a position within nest level 1, branch level 1 of rung 1; by
pressing the [↓] key, then the [→] key, then the [↓] key.

The display changes to the following:

F1 F2 F3 F4 F5

>

2.1.1.1.*

INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG
OFL

] [()

] [
] [()

<END>

Cursor Location]/[

3. Press [F2], MOD_RNG, then [F2], BRANCH. The following menu
display appears:

F1 F2 F3 F4 F5

2.1.1.1.*

OFL

] [()

] [
] [()

<END>

EXT_UP EXT_DWN APP_BR DEL_BRINS_BR

]/[
I
II

I

4. Press [F1], EXT_UP. The display changes as follows:

I
II

I

I I

F1 F2 F3 F4 F5

2.1.1.1.*

OFL

] [()
] [()

<END>
EXT_UP EXT_DWN APP_BR DEL_BRINS_BR

] [

]/[

5. Press [ESC]. The proper menu is displayed:

I
II

I

I I

F1 F2 F3 F4 F5

2.1.1.1.*

OFL

] [()
] [()

<END>
] [

>INS_INST BRANCH MOD_INST ACP_RNG

]/[

Chapter 7
Creating and Editing a Program File

7–21

6. First insert the examine if closed instruction with address B3/1, by
pressing [F1], INS_INST, then [F1], BIT, then [F1], —] [— .

7. In the zoom display type the address B3/1, then press [ENTER], then,
[F5], ACCEPT. The display appears as follows:

I
II

I

I I

F1 F2 F3 F4 F5

2.1.1.1.*

OFL

] [()

] [
] [()

<END>
] [

>] []/[()()L ()U()()

]/[

8. Now insert the examine if closed instruction with address B3/2. Since the
cursor is located on the right rail of the branch, press [F1], —] [— .

9. In the zoom display type the address B3/2, then press [ENTER], then
[F5], ACCEPT. The display appears as follows:

I
II

I

I I

F1 F2 F3 F4 F5

2.1.1.1.*

OFL

] [()

] [
] [()

<END>
] [

] [

>] []/[()()L ()U()()

]/[

Notice that the length of both branches has increased .

10. Press [ESC] twice to return to the proper menu. Then press
[F5], ACP_RNG.

11. Save the changes.

Chapter 7
Creating and Editing a Program File

7–22

Extending a Branch Down

Use the extend branch down command to create a new branch level on an
existing branch, below your cursor location. The new branch shares the same
start and target locations as the branch on which the cursor is located. In this
example, modify rung 1 of your program to appear as follows:

] [
I:1.0

 0
()

O:3.0

 1

] [
B3

 1

] [
I:1.0

 1 Add this branch level to the rung.

] [
B3

 2

] [
B3

 3

1. From the previous save and continue display, press [ENTER]. The
following display appears:

F1 F2 F3 F4 F5

2.0.0.0.*

OFL

] [()

] [
] [()

<END>
] [

] [

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

]/[

2. Because the cursor is positioned on the left power rail of rung 0, move the
cursor to a position within nest level 1, branch level 2 of rung 1; by
pressing the [↓] key , then the [→] key, then the [↓] key twice. The
display changes to the following:

Cursor Location

F1 F2 F3 F4 F5

2.1.1.2.*

OFL

] [()

] [
] [()

<END>
] [

] [

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

]/[

Chapter 7
Creating and Editing a Program File

7–23

3. Press [F2], MOD_RNG, then [F2], BRANCH.

The following menu display appears:

I
II

I

I I

F1 F2 F3 F4 F5

2.1.1.2.*

OFL

] [()

] [
] [()

<END>
] [

] [

]/[

EXT_UP EXT_DWN APP_BR DEL_BRINS_BR

4. Press [F2], EXT_DWN. The display changes as follows:

II

II
I

I I

F1 F2 F3 F4 F5

2.1.1.3.*

OFL

] [()

] [
] [()

] [
] [

]/[

EXT_UP EXT_DWN APP_BR DEL_BRINS_BR

I

5. Press [ESC]. The proper menu is displayed:

II

II
I

I I

F1 F2 F3 F4 F5

2.1.1.3.*
] [()

] [
] [()

] [
] [

]/[
I

OFL
>INS_INST BRANCH MOD_INST ACP_RNG

6. Now insert the examine if closed instruction with address B3/3, by
pressing [F1], INS_INST, then [F1], BIT, then [F1], —] [— .

7. In the zoom display type the address B3/3, then press [ENTER], then,
[F5], ACCEPT. The display appears as follows:

II

II
I

I I

F1 F2 F3 F4 F5

2.1.1.3.*
] [()

] [
] [()

] [
] [

]/[
I

] [OFL
>] []/[()()L ()U()()

Notice that the length of the newest branch is the same as the rest.

8. Press [ESC] twice to return to the proper menu. Then press
[F5], ACP_RNG.

9. Save the changes.

Chapter 7
Creating and Editing a Program File

7–24

Appending a Branch

Use the append branch command to place the start of a branch to the right of
the cursor location. In this example, you use the append branch command to
create a parallel output branch. Modify rung 1 of your program to appear as
follows:

] [
I:1.0

 0
()

O:3.0

 1

] [
B3

 1

] [
I:1.0

 1

Add this branch to the rung.
] [

B3

 2

] [
B3

 3

()
O:3.0

 2

1. From the previous save and continue display, press [ENTER] for the main
editing display menu:

F1 F2 F3 F4 F5

2.0.0.0.*
] [()

] [
] [()

] [
] [

]/[

] [OFL
>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

2. Press the [↓] key once then the [→] key three times to position the cursor
on the right power rail of branch level 0:

F1 F2 F3 F4 F5

2.1.1.0.*
] [()

] [
] [()

] [
] [

]/[

] [OFL
>] []/[()()L ()U()()

3. Press [F2], MOD_RNG, then [F2], BRANCH. The branch menu display
appears:

II

II
I

I I

OFL
EXT_UP EXT_DWN APP_BR DEL_BRINS_BR

I

F1 F2 F3 F4 F5

2.1.1.0.*
] [()

] [
] [()

] [
] [

]/[

] [

Chapter 7
Creating and Editing a Program File

7–25

4. Press [F3], APP_BR. The following display appears:

II

II
I

I I

I

F1 F2 F3 F4 F5

2.1.1.0.*
] [()

] [
] [()

] [
] [

]/[

] [
OFLSELECT BRANCH TARGET, PRESS ENTER

5. Press the [→] key once to place the cursor to the right of the output.

I

II

II
I

I I

F1 F2 F3 F4 F5

2.1.1.0.6
] [()

] [
] [()

] [
] [

]/[

] [
OFLSELECT BRANCH TARGET, PRESS ENTER

6. Press [ENTER]. The branch is placed around the output:

I I

I

II

II
I

F1 F2 F3 F4 F5

2.1.1.1.*
] [()

] [
] [()

] [
] [

]/[

] [OFL
EXT_UP EXT_DWN APP_BR DEL_BRINS_BR

7. Press [ESC] to return to the editing menu display:

I I

I

II

II
I

F1 F2 F3 F4 F5

2.1.1.1.*
] [()

] [
] [()

] [
] [

]/[

] [OFL
>INS_INST BRANCH MOD_INST ACP_RNG

Chapter 7
Creating and Editing a Program File

7–26

8. To enter the output energize instruction, press [F1], INS_INST, then
[F1], BIT, then [F3], —()— .

9. In the zoom display, type the address O:3/2, then [ENTER], and [ACCEPT].
The display appears as follows:

II
I I

I

II

I

F1 F2 F3 F4 F5

2.1.1.1.7
] [()

] [
] [()

] [
] [

]/[

] [

()

>] []/[()()L ()U()()
OFL

10. Press [ESC] twice to return to the proper menu. Then press
[F5], ACP_RNG.

11. Save the changes.

Delete and Undelete Commands

Delete commands are used to delete branches, instructions, and rungs. In
addition, undelete commands are used to copy an instruction or a rung and
create new instructions or rungs.

Deleting a Branch

Use the delete branch command to remove a parallel branch and the
instructions located within the branch. Modify rung 1 of your program to
appear as follows:

] [
I:1.0

 0
()

O:3.0

 1

] [
I:1.0

 1
()

O:3.0

 2

Important: Unlike the delete rung and delete instruction commands, there is
no associated undelete branch command, in the HHT, to
re–insert a deleted branch.

Chapter 7
Creating and Editing a Program File

7–27

1. From the previous save and continue display, press [ENTER] for the main
editing display menu:

F1 F2 F3 F4 F5

2.0.0.0.*
] [()

] [
] [()

] [
] [

]/[

] [

()

OFL
>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

2. Press the [↓] key to position the cursor on rung 1, then press
[F2], MOD_RNG. The following display appears with the cursor
positioned on the left power rail of rung 1:

II
I I

I

II

I

F1 F2 F3 F4 F5

2.1.0.0.*
] [()

] [
] [()

] [
] [

]/[

] [

()

OFL
>INS_INST BRANCH MOD_INST ACP_RNG

3. To remove branch level 1, position the cursor on the branch by pressing
the [→] key, then the [↓] key. The display appears as follows:

I
II

I I

I

II

F1 F2 F3 F4 F5

2.1.1.1.*
] [()

] [
] [()

] [
] [

]/[

] [

()

OFL
>INS_INST BRANCH MOD_INST ACP_RNG

4. Press [F2], BRANCH, the branch menu display appears:

I
II

I I

I

II

F1 F2 F3 F4 F5

2.1.1.1.*
] [()

] [
] [()

] [
] [

]/[

] [

()

OFL
EXT_UP EXT_DWN APP_BR DEL_BRINS_BR

Chapter 7
Creating and Editing a Program File

7–28

5. Press [F5], DEL_BR.

The following display cautions you that address references on this branch
remain in their last state (either energized or de–energized) when you
delete the instructions.

I
II

I I

I

II

F1 F2 F3 F4 F5

2.1.1.1.*
] [()

] [
] [()

] [
] [

]/[

] [

()

DATA/FORCES IN LAST STATE,DELETE?
YES NO

OFL

Important: When you modify a program after leaving the Run mode, the
status bits associated with the instructions that are energized
(true) or forced on, remain in that state even after they are
deleted. This can cause incorrect program operation if these
addresses are associated with other instructions.

6. Press [F2], YES to delete the branch. The display changes as follows:

I
II

I

I I

F1 F2 F3 F4 F5

2.1.1.1.*
] [()

] [
] [()

<END>
] [

]/[

OFL
EXT_UP EXT_DWN APP_BR DEL_BRINS_BR

()

7. To remove the bottom branch level, press [↓], then [F5], DEL_BR.

8. Press [F2], YES, then press [ESC], to return to the previous display.
Press [F5], ACP_RNG and save the changes.

Chapter 7
Creating and Editing a Program File

7–29

Deleting an Instruction

 Modify your program to appear as follows:

] [
I:1.0

 0
()

O:3.0

 0

] [
I:1.0

 0
()

O:3.0

 1

] [
I:1.0

 1
()

O:3.0

 2

] [
I:1.0

 1

1. From the previous save and continue display, press [ENTER] for the main
editing display menu:

F1 F2 F3 F4 F5

2.0.0.0.*
] [()

] [
] [()

<END>

]/[

OFL

()

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

2. Press the [→] key twice to place the cursor on the instruction to be
deleted. Then press [F2], MOD_RNG. The following display appears:

I I

F1 F2 F3 F4 F5

2.0.0.0.2

] [()

] [
] [()

<END>

]/[

OFL

()

>INS_RNG BRANCH MOD_INST ACP_RNG

XIO:I1:1.0/1 NO FORCE

3. Press [ENTER] to display additional menu functions:

I I

F1 F2 F3 F4 F5

2.0.0.0.2

] [()

] [
] [()

<END>

]/[

OFL

()

>DEL_INST UND_INST

XIO:I1:1.0/1 NO FORCE

4. Press [F2], DEL_INST, then,[F2], YES to confirm the deletion.

5. Press [ENTER], then [F5], ACP_RNG. The instruction is removed and
placed in a delete buffer. This instruction remains in the delete buffer
until another instruction is deleted to replace it.

Chapter 7
Creating and Editing a Program File

7–30

Copying an Instruction from One Location to Another

Use the delete instruction command in conjunction with the undelete
instruction command to copy an instruction from one location to another,
within the same rung or to a different rung.

1. To copy the examine if closed instruction with address I:1.0/1, in rung 1,
and place it between the input and output instructions in rung 0, start with
the display from the previous procedure, with the cursor positioned on the
left power rail of rung 1.

F1 F2 F3 F4 F5

2.1.0.0.*
] [()

] [
] [()

<END>
OFL

()

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

2. Press the [→] key two times, then the [↓] key once to position the cursor
on the instruction to be copied. The display appears as follows:

F1 F2 F3 F4 F5

2.1.1.1.2

] [()

] [
] [()

<END>
OFL

()

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

XIC:I1:1.0/2 NO FORCE

3. Press [F2], MOD_RNG, then [ENTER], for additional menu functions.
Then press [F2], DEL_INST, then [F2], YES to confirm the deletion and
place the instruction in the delete buffer.

4. Press [F4], UND_INST to re–insert the instruction into rung 1, then
[ENTER], then press [F5], ACP_RNG. The display appears with the
cursor on the END statement:

F1 F2 F3 F4 F5

2.2.0.0.*

] [()

] [
] [()

<END>
OFL

()

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

5. To insert the deleted instruction, between the input and output instructions
in rung 0, press the [↑] key three times, then the [→] key once to
position the cursor on the output energize instruction. Then press [F2],
MOD_RNG, then [ENTER].

The undelete instruction command operates the same as the insert
instruction command. The instruction is placed to the left of the cursor
position.

Chapter 7
Creating and Editing a Program File

7–31

6. Press [F4], UND_INST, then [ENTER], then [F5], ACP_RNG. The
examine if closed instruction is now pasted into rung 0.

F1 F2 F3 F4 F5

2.1.0.0.*

] [()

] [
] [()

<END>
OFL

()

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

] [] [] [

7. To confirm this, press the [↑] key, then the [→] key twice. The display
shows you that the examine if closed instruction with address I:1.0/1 is
now the second instruction in rung 0.

F1 F2 F3 F4 F5

2.0.0.0.2

] [()

] [
] [()

<END>
OFL

()

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

] [] [] [

XIC:I1:1.0/1 NO FORCE

Deleting and Copying Rungs

Use the delete and undelete rung commands to copy rung 0 and create rungs
2 and 3. After copying the rungs, change the instruction addresses so that
your program appears as follows:

] [
I:1.0

 0
()

O:3.0

 0

] [
I:1.0

 0
()

O:3.0

 1

] [
I:1.0

 1
()

O:3.0

 2

] [
I:1.0

 1

] [
I:1.0

 3
()

O:3.0

 3
] [

I:2.0

 0

] [
I:2.0

 1
()

O:3.0

 4
] [

I:2.0

 2

1. Starting from the previous display, with the cursor positioned on rung 0,
press [F4], DEL_RNG. The display changes as follows:

F1 F2 F3 F4 F5

2.0.0.0.2

] [()

] [
] [()

<END>
()

] [] [] [

XIC:I1:1.0/1 NO FORCE

DATA/FORCES IN LAST STATE,DELETE?
YES NO

OFL

Chapter 7
Creating and Editing a Program File

7–32

2. Confirm the deletion by pressing [F2], YES.

3. Rung 0 is now placed in the delete buffer. Re–insert the rung by pressing
[F5], UND_RNG.

4. Copy the rung before the END statement. Position the cursor on the END
statement by pressing the [↓] key twice.

The undelete rung command functions the same as the insert rung
command, the new rung is inserted above the rung that the cursor is
positioned on.

5. Press [F5], UND_RNG. The new rung is inserted above the END
statement:

F1 F2 F3 F4 F5

2.2.0.0.*
] [()

] [
] [()

<END> OFL

()

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

] [] [] [

] [()] [] [] [

6. Since the two new rungs are identical at this point, you are not concerned
with the position of the next rung. With the cursor positioned on the left
power rail of the first new rung, press [F5], UND_RNG. The second
new rung is inserted above the previous one:

2.2.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

OFL

()

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

] [] [] [

] [()] [] [] [
] [()] [] [] [

7. To change the addresses of the instructions in the new rungs, position the
cursor on the first instruction by pressing the [→] key. The address
appears in the upper left corner of the display:

2.2.0.0.1

F1 F2 F3 F4 F5

] [()

] [
] [()

OFL

()

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG

] [] [] [

] [()] [] [] [
] [()] [] [] [

XIC:I1:1.0/0 NO FORCE

Chapter 7
Creating and Editing a Program File

7–33

8. Press [F2], MOD_RNG, then [F3], MOD_INST, then [ZOOM]. The
zoom display for that instruction appears:

ZOOM on XIC
NAME: EXAMINE IF CLOSED
BIT ADDR:I1:1.0/0

ENTER BIT ADDR: I1:1.0/0

F1 F2 F3 F4 F5

] [2.2.0.0.1

ACCEPTEDT_DAT

9. To change the address to I:1.0/3, press the [→] key seven times to
position the cursor on the bit element.

10. Press [3], then [ENTER], then [F5], ACCEPT. The new address is
assigned to the instruction.

I I

2.2.0.0.1

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [] [] [
] [()] [] [] [

XIC:I1:1.0/3 NO FORCE

11. To change the next address, press [→], then [ZOOM]. The zoom display
for this instruction appears:

ZOOM on XIC
NAME: EXAMINE IF CLOSED
BIT ADDR:I1:1.0/3

F1 F2 F3 F4 F5

] [2.2.0.0.2

ACCEPTEDT_DAT

ENTER BIT ADDR: I1:1.0/3

Chapter 7
Creating and Editing a Program File

7–34

12. Since you are assigning an input address from a different slot, press the
[→] key three times, then press [2]. Press the [→] key three more times,
then press [0], then [ENTER]. Verify that the new address is correct, then
press [F5], ACCEPT.

13. Press the [→] key, then [ZOOM] to change the output address. The zoom
display for the output energize instruction appears:

ZOOM on OTE
NAME: OUTPUT ENERGIZE
BIT ADDR: O0:3.0/0

F1 F2 F3 F4 F5

2.2.0.0.3()

EDT_DAT ACCEPT

ENTER BIT ADDR: O0:3.0/0

14. Press the [→] key seven times to position the cursor on the bit element.

15. Press [3], then [ENTER], then [F5], ACCEPT.

16. To complete editing this rung, press [ESC], then [F5], ACP_RNG.

17. Repeat the above procedure for the instructions in rung 3.

18. Save and compile your changes.

Abandoning Edits

If you have made changes that you do not want and they are not saved, press
[ESC] and [F2], YES. This deletes your edits up to the last program save.

Chapter 7
Creating and Editing a Program File

7–35

The search function allows you to quickly locate instructions and addresses
in ladder program files. This section shows you how to search for:

• instruction types, such as XIC
• addresses, such as I:1/2
• combined instruction/address, such as OTE + O:3/4
• forced I/O instructions
• a specific rung

The HHT search function is done only within the existing program file.
Subroutine files require that you go to those files to initiate another search.

The search function is accessible offline, from the edit file menu display
[F3], SEARCH, or...

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG
OFL

online, from the monitor file menu display [F4], SEARCH.

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

MODE FORCE EDT_DAT SEARCH
RUN

The Search Function

Chapter 7
Creating and Editing a Program File

7–36

The following is a list of the search commands available on the HHT:

Function Key Description

[F1], CURSOR–INSTRUCTION Searches for all instructions that are the same type as the
instruction that the cursor is positioned on.

[F2], CURSOR–OPERAND
Searches for every instruction that contains the address
associated with the instruction that the cursor is positioned
on.

[F3], NEW–INSTRUCTION Displays the ladder editing menu of the available instruction
symbols and/or mnemonics.

[F4], UP/DOWN

Toggles the search direction within the program.
When UP is displayed, the search starts at the cursor
location and continues down to the end of the program,
then wraps around to the start of the program.
When DOWN is displayed, the search starts at the cursor
location and continues up to the start of the program, then
wraps around to the end of the program.

[F5], FORCE Searches for all forces installed in a program.

Additionally, a search rung feature is available from either the offline, edit
file display or the online, monitor file display, using the [RUNG] key located
on the keypad.

Chapter 7
Creating and Editing a Program File

7–37

Searching for an Instruction

In this example, search for every examine if closed instruction (XIC) in the
program, regardless of address. A search can be initiated with the cursor
located anywhere in the program. In this example, the cursor is located on
the left power rail of rung 0.

1. Start at the offline edit file display:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG
OFL

2. Press [F3], SEARCH. The search display appears:

The search address is
displayed here.] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFL+The instruction

mnemonic is displayed
here.

3. There are two ways to select the examine if closed instruction:

• either use the [→] key to position the cursor on an examine if closed
instruction, then press [F1], CUR–INS

• or press [F3], NEW–INS, then [F1], BIT, then [F1], —] [— , then
[ENTER]

The display changes as follows with the cursor on the first examine if closed
instruction. Notice the instruction mnemonic is displayed in the search
buffer, in the lower left corner of the display:

XIC:I1:1.0/0

] [] [

2.0.0.0.1

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFLXIC +

NO FORCE

The instruction
mnemonic is displayed
in the Search Buffer.

Each time the search object is found, the new cursor location becomes the
search start point.

Chapter 7
Creating and Editing a Program File

7–38

4. To find the next occurrence of the same instruction, press [ENTER].

The following display appears with the cursor positioned on the second
examine if closed instruction in rung 0. Once again, notice that the
display shows the instruction mnemonic and address in the upper left
corner, and the cursor location in the upper right corner.

Instruction
Mnemonic
and Address

] [] [

] [] [

2.0.0.0.2

] [

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFLXIC +

NO FORCEXIC:I1:1.0/1
Cursor
Location

5. Pressing [ENTER] again, brings up the next occurrence of the instruction,
the first instruction in rung 1, nest level 1, branch level 0.

] [

] [] [

F1 F2 F3 F4 F5

] [
()

()

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFLXIC +

NO FORCEXIC:I1:1.0/0 2.1.1.0.1

<END>

You may continue to search for each XIC instruction in the program by
pressing [ENTER]. When you reach the last occurrence of this instruction
in the program, the cursor wraps around to the start of the program.

6. To conclude this search procedure and clear the search buffer, press
[ESC].

Searching for an Address

In this example, search for every occurrence of address I:1/1 in the program,
regardless of instruction type. A search can be initiated with the cursor
located anywhere in the program.

1. Use the cursor keys to position the cursor on the left power rail of rung 0:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG
OFL

Chapter 7
Creating and Editing a Program File

7–39

2. Press [F3], SEARCH. The search display appears:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFL+

3. To search for the specific address, press [SHIFT], then type the
abbreviated form of the address, I:1/1. Then press [ENTER] to place the
address into the search buffer:

The address is
displayed in the
search buffer.

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFL+ I:1/1

4. Press [ENTER] again, to find the first occurrence of the address, which is
the second instruction in rung 0.

] [] [

] [] [

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFL+ I:1/2

NO FORCEXIC:I1:1.0/1 2.0.0.0.2

5. Press [ENTER] again, to find the next occurrence of the address, which is
located in rung 1, nest level 1, branch level 1, instruction number 2:

] [] [

F1 F2 F3 F4 F5

] [
] [()

()

] [()] [
()] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFL+ I:1/1

NO FORCEXIC:I1:1.0/1 2.1.1.1.2

<END>

Chapter 7
Creating and Editing a Program File

7–40

6. Press [ENTER] again.

The cursor wraps around to the beginning of the program and locates the
cursor on the previous occurrence of the address, in rung 0:

] [] [

] [] [

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFL+ I:1/1

NO FORCEXIC:I1:1.0/1 2.0.0.0.2

7. Exit the search. Press [ESC].

Searching for a Particular Instruction with a Specific Address

In most applications, you search for the location of an instruction and its
associated address. In the procedure below, the search is for the location of
output energize (OTE), O:3/4.

1. Use the cursor keys to position the cursor on the left power rail of rung 0:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG
OFL

2. Press [F3], SEARCH. The search display appears:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFL+

Chapter 7
Creating and Editing a Program File

7–41

3. Press [F3], NEW–INS, then [F1], BIT, then [F3], —()— , then
[ENTER]. The following display appears, with the instruction mnemonic
displayed in the search buffer:

()

Instruction Mnemonic
for the Output Energize
Instruction

] [] [

2.0.0.3.*

F1 F2 F3 F4 F5

] [

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFLOTE +

4. To enter the address, press [SHIFT], then type the abbreviated address
O:3/4. Then press [ENTER] to insert the information into the search
buffer. The display appears as follows:

()

Instruction Mnemonic and
the Address for the Output
Energize Instruction

] [] [

2.0.0.3.*

F1 F2 F3 F4 F5

] [

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFLOTE + O:3/4

5. Press [ENTER] to locate the instruction. Since this is an output energize
instruction, there should be only one occurrence of this instruction and
address. For other types of instructions, such as the examine if closed
(XIC) instructions that you saw earlier, pressing [ENTER], finds each
additional occurrence of the instruction with that address.

Reversing the Search Direction

The default setting for the search direction is to search from the cursor
position down to the end of the program, then wrap around to the start of the
program. In a large ladder program, you may want to change the search
direction.

Each time you bring up the search display, the direction function displays UP:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFL+

With UP displayed, the search starts at the cursor location, in this case at the
start of the program, and continues toward the end of the program.

Chapter 7
Creating and Editing a Program File

7–42

To change the search direction, press [F4], UP. The display changes as
follows:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEDOWN
OFL+

With DOWN displayed, the search starts at the cursor location, in this case at
the start of the program, wraps around to the end of the program and
continues toward the start of the program.

Whenever you exit the search function, the direction display defaults back to
UP.

Searching for Forced I/O

Searching for forced I/O is most useful in the Online Monitor mode, but can
be used in the Offline Editing mode after a ladder program has been running
in a processor and uploaded to the HHT. Refer to chapter 10 for details
regarding uploading a ladder program and chapter 13 for a detailed
description of the force function.

In the Online Monitor mode, use the search forced I/O function to locate all
forced inputs and outputs that are inserted in your program.

In the Offline monitor mode, use the search forced I/O function to locate all
forced inputs and outputs that were inserted into your program the last time it
was operating in the Run mode before being uploaded to the HHT. Then
document the location of each force and investigate the effects on machine
operation before downloading the modified program.

!
ATTENTION: Use the search force function to locate all forces
that have been uploaded to the HHT. Downloading a program
containing forces can cause personal injury and damage to
equipment.

Chapter 7
Creating and Editing a Program File

7–43

In this example, a force has been inserted into the ladder program on input
I1:1.0/0. Start from the offline edit file display with the cursor positioned on
the left power rail of rung 0:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG
OFL

1. To search for any forces, press [F3], SEARCH. The search display
appears:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

CUR–INS CUR–OPD NEW–INS FORCEUP
OFL+

2. Press [F5], FORCE. The following prompt appears:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

UP
OFLENTER TO FIND FORCE

3. Press [ENTER] to find the first force. The cursor is positioned on the
forced bit. The instruction mnemonic and address, the force status of the
bit, and the location of the instruction are displayed along the top of the
display:

XIC:I1:1.0/0

] [] [

2.0.0.0.1

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

UP
OFLENTER TO FIND FORCE

FORCE ON
Force Information

4. To find any additional forces, press [ENTER] again. Since this program
contains no other forces, press [ESC] twice to exit the search function.

Chapter 7
Creating and Editing a Program File

7–44

Searching for Rungs

You can search for a specific rung number by using the rung key located at
the lower right corner of the keypad:

F1 F2 F3 F4 F5

N O
SPACEPRE/LEN

S
ACC/POS

I
U ESC

A
7

D
4

T
1

B
8

E
5

R
2

#
0

–
: /

.

C
9

F
6

M
3

SHIFT
ENTER

ZOOMRUNG

Press [RUNG], type the desired rung
number, and then press [ENTER].

To use the search rung function you must be in either the offline, edit file
display or the online, monitor file display.

1. To search for rung 3, start at the following display with the cursor located
on the left power rail of rung 0.

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG
OFL

2. Press [RUNG]. The following prompt appears:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

>INS_RNG MOD_RNG DEL_RNG UND_RNG
OFLENTER RUNG NUMBER:

SEARCH

Chapter 7
Creating and Editing a Program File

7–45

3. Type 3, then press [ENTER]. The cursor is now positioned on the left
power rail of rung 3.

2.3.0.0.*

F1 F2 F3 F4 F5

] [()] [] [] [

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG
OFL

<END>

4. To search for additional rungs, repeat steps 1 through 3.

The memory map function also allows you to create and delete data elements
and files. To locate the Memory Map function from the HHT’s main menu,
press [F3], PROG_MAINT and [F5], MEM_MAP.

Creating Data Files

If your application requires a lot of data manipulation or use of sequencers,
you may want to create the data files and enter the data prior to developing
the ladder diagram. Also, if you are using indexed addressing in your SLC
5/02 program, you need to create the data file elements that the instructions
may index into.

You cannot create additional elements in the output file (file 0), input file
(file 1), or status file (file 2). These files can only be created through the
processor and I/O configuration.

Data is created by entering the highest numbered element you want to be
included. For example if they have not already been created, entering
element N7:12 (default integer file 7) creates element N7:12 and all lower
numbered elements down to N7:0.
1. From the main menu, press [F3], PROG_MAINT and [F5], MEM_MAP.

The following display appears:

CRT DT DEL DT NEXT PG PREV PG PRG SIZE

F1 F2 F3 F4 F5

File Type LastAddr Elements Words
0 O output O0:3.0 1 1
1 I input I1:2.0 2 2
2 S status S2:15 16 16
3 B bit B3/15 1 1
4 T timer – – –
 OFL

Creating and Deleting
Program Files

Chapter 7
Creating and Editing a Program File

7–46

2. To create elements N7:0 through N7:12, press [F1], CRT_DAT, type
N7:12 and press [ENTER]. The following display appears:

CRT DT DEL DT NEXT PG PREV PG PRG SIZE

F1 F2 F3 F4 F5

File Type LastAddr Elements Words
7 N integer N7:12 13 13
8 Reserved – – –
0 O output O0:3.0 1 1
1 I input I1:2.0 2 2
2 S status S2:15 16 16
 OFL

The memory map indicates that the integer (N) file 7 size is 13 elements
(equivalent to 13 words) and the last address is N7:12.

Deleting Data Files

When you modify your ladder program and delete instructions, any
corresponding data file addresses are not de–allocated. For efficient memory
usage, it is best to delete unused data file addresses.

You cannot delete a data file element that is used in your ladder program.
Neither can you delete an unused element within a file if a higher number in
the file is used in your ladder program. Also, you cannot delete elements in
the output file (file 0), input file (file 1), or status file (file 2). These files can
only be deleted through the processor and I/O configuration.

Data is deleted by entering the lowest numbered element you want to be
deleted. For example, entering element N7:12 (default integer file 7) deletes
element N7:12 and all existing higher numbered elements.

To delete elements N7:5 through N7:12, press [F2], DEL_DT from the
memory map display, type N7:5 and press [ENTER]. The following display
appears:

CRT DT DEL DT NEXT PG PREV PG PRG SIZE

F1 F2 F3 F4 F5

File Type LastAddr Elements Words
7 N integer N7:4 5 5
8 Reserved – – –
0 O output O0:3.0 1 1
1 I input I1:2.0 2 2
2 S status S2:15 16 16
 OFL

The memory map now indicates that the integer (N) file 7 size is 5 elements
(equivalent to 5 words) and the last address is N7:4.

8Chapter

8–1

Saving and Compiling a Program

This chapter discusses the procedures used to save and compile ladder
programs. Topics include:

• save and continue editing
• save and exit offline editing
• view memory layout

When you are entering a new program or editing an existing program, the
ladder program is stored in the work area of the HHT. After completing your
editing session, you must save your program to the HHT RAM memory.
First, your program is compiled, transforming it into a more efficient
package. Then the program and data files are updated. When you save and
exit, a summary of the data words and instruction words used along with the
available memory is updated.

Since programs are created or edited offline, it is important to save your
work before downloading it to the processor.

As mentioned in the previous chapter, whenever you are creating a new
program or editing an existing one, you should periodically save your work.
In the event of a power loss to the HHT, any edits that you have made up to
that point, are not recoverable. Save and Continue (SAVE_CT) allows you
to save your work and continue editing. Save and Exit (SAVE_EX) allows
you to save your work and exit offline editing.

To save your program, start at the main editing display:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

>INS_RNG MOD_RNG SEARCH DEL_RNG UND_RNG
OFL

1. Press [ENTER] to display additional menu selections. The following
display appears:

] [] [

2.0.0.0.*

F1 F2 F3 F4 F5

] [()

] [
] [()

()

] [] [] [

] [()] [
] [()] [] [] [

>EDT_DAT SAVE_CT SAVE_EX
OFL

Saving and Compiling
Overview

Saving a Program

Chapter 8
Compiling and Saving a Program

8–2

2. To save this program and continue editing, press [F4], SAVE_CT. To
save this program and exit offline editing, press [F5], SAVE_EX.

If you are using a SLC 5/02 processor, the following display appears:

Compiler Options

F1 F2 F3 F4 F5

TSTRUNGFUTACC ACCEPT

OFL

Future Access: Yes

MODIFY OPTIONS, ACCEPT TO COMPILE

Test Single Rung: Disable
Index Across Files: Disallow
File Protection: Outputs
MODIFY OPTIONS, ACCEPT TO COMPILE OFL

INDXCHK FILEPRT

Important: The above display appears if you have a SLC 5/02. If you have
a fixed controller or a SLC 5/01 processor only [F1]and [F5]
appear.

Function Key Description

[F1], Future Access – Fixed, SLC 5/01, and SLC
5/02 processors

Toggles between Yes and No. This option allows
you to protect proprietary program data and
algorithms. The protection takes affect only after
the processor file is downloaded to a controller.

[F2], Test Single Rung – SLC 5/02 processor Toggles between Enable and Disable. This
option allows you to execute your program one
rung at a time or a section at a time. Use this
function for debugging purposes.

[F3], Index Checks – SLC 5/02 processor Toggles between Allow and Disallow. This
option allows you to use indexed addressing to
address data table elements outside of the base
address data file.

[F4], File Protect – SLC 5/02 processor Toggles between Outputs, None, and All. This
option allows you to protect your data table files
from external modification by devices on the
DH–485 network.

[F5], ACCEPT Starts the compile.

3. After you have made your selections press [F5], ACCEPT.

Chapter 8
Compiling and Saving a Program

8–3

If you selected SAVE_CT, you are returned to the editing display when
the compile and save is complete. If you selected SAVE_EX, the
following display appears:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

CHG_NAM CRT_FIl EDT_FIL
OFL

DEL_FIL >MEM_MAP

Available Compiler Options

[F1] Future Access (All Processors)

This option allows you to protect proprietary program data and algorithms.

Important: The protection takes effect only after the program is
downloaded to a controller. The protection does not allow
online access to the processor unless a matching copy of the
online processor program is resident on the terminal hard disk
or in the HHT. Otherwise you are not able to upload the
program.

Yes: Online access to the processor program and data table using a
programming terminal is unrestricted. This is the default.
No: Online access to the processor program and data table is not permitted
unless a matching copy of the online processor program is in the HHT. You
cannot:

• monitor the program
• enter or change the processor password
• upload the online processor program to HHT RAM
• transfer the program from the processor memory to a memory module

However, you can:

• clear the processor memory
• download a different program to the processor
• change the processor mode

Important: If you lose or delete the offline copy of the program, you cannot
access the program in the controller. You must clear the
controller memory and re–enter the program.

Chapter 8
Compiling and Saving a Program

8–4

[F2] Test Single Rung (SLC 5/02 Specific)

This option allows you to execute your program one rung at a time or a
section at a time. Use this function for debugging purposes.
Enable: When selected the size of your program increases by 0.375
instruction words per rung.
Disable: Test Single Rung is not available. This is the default selection.

Important: The HHT can save the program enabling Test Single Rung;
however, the Test Single/Rung mode is available with APS.

[F3] Index Checks (Index Across Files) (SLC 5/02)

This option allows you to use indexed addressing to address data table
elements outside of the base address data file. Refer to chapter 5 for more
information.

Allow: The processor will not verify if the indexed address, the sum of the
base address, and the offset value is in the same data file as the base address.
The processor does check to ensure that the indexed address is contained
within the data table address space.

Disallow: The processor performs runtime checks on indexed addresses to
ensure that the indexed address is contained within the same data file as the
base address. This is the default selection.

[F4] File Protection (SLC 5/02)

This function key toggles between Outputs, None, and All. This option
allows you to protect your data table files from external modification by
devices on the DH–485 network.

Outputs: Only the output file (O0) is protected from external data
modification. This is the default selection.
None: External devices may change any data address within the data table
files, including the output file (O0).

All: The entire data table is protected from external data modification.

Chapter 8
Compiling and Saving a Program

8–5

The memory map function allows you to view your program memory layout.
It shows you the type and size of the data files used. It also gives you a
summary of the number of the program files created and the number of
instructions used in them. Lastly, it shows you how much user memory is
left. This section covers:

• viewing data files
• viewing program file sizes

To view your program memory layout, start from the previous display or
select [F3], PROG_MAINT from the main display.

1. Press [F5], MEM_MAP. The following display appears:

File Type LastAddr Elements Words
 0 O output O0:3.0 1 1
 1 I input I1:2.1 2 2
 2 S status S2:15 16 16
 3 B bit B3/15 1 1
 4 T timer – – –

F1 F2 F3 F4 F5

CRT_DT DEL_DT NEXT_PG
OFL

PRG_SIZEPREV_PG

This display shows one output file word and two input file words created
by the I/O configuration.

There are 16 words in the status file (file 2). The number of words in the
status file is determined by the particular processor:

• fixed and SLC 5/01 processor–16 words
• SLC 5/02 processor–33 words. There is one word in bit file 3 due to

addresses used in the sample ladder program (B3/1, B3/2, B3/3).

To view additional data files, press [F3], NEXT_PG.

For a detailed description of data files refer to chapter 4, Data File
Organization and Addressing.

2. To view the memory usage, press [F5], PRG_SIZE. The following
display appears:

––––––––––––– MEMORY LAYOUT –––––––––––––

F1 F2 F3 F4 F5

OFL

20 data words used in 9 data files
90 instr. used in 4 program files
929 instructions of available memory

Viewing Program Memory
Layout

Chapter 8
Compiling and Saving a Program

8–6

––––––––––––– MEMORY LAYOUT –––––––––––––
20 data words used

 20 � 4 = 5 instruction words (data)

1024–95 = 929 words left

90 instruction words (ladder program and overhead)

+ 90 instruction words (ladder)
95 instruction words

1 output
2 input
16 status
1 bit

If you had not saved your program after adding or deleting program files,
or modifying data files, the following display appears with asterisks (*)
indicating that the program has not been compiled.

––––––––––––– MEMORY LAYOUT –––––––––––––

F1 F2 F3 F4 F5

OFL

**** data words used in *** data files
**** instr. used in *** program files
**** instructions of available memory

3. Press [ESC] three times to return to the main menu display.

9Chapter

9–1

Configuring Online Communication

This chapter describes online communication between the HHT and SLC 500
processors. Topics include:

• online configuration
• the Who function

As described in chapter 1, the HHT may be connected directly to a port
located on an SLC 500 processor or it may be connected to any fixed, SLC
5/01, or SLC 5/02 processor that is active on a DH–485 network.

Important: The HHT is not compatible with the SLC 5/03 processor.

For the examples in this section, the DH–485 network is configured as
follows:

Node Address Network Device

0 APS Terminal

1 Hand–Held Terminal

2 SLC 5/02 Processor

3 SLC 500 Processor

4 SLC 5/01 Processor

Allen–Bradley 1784–T45, T47
or Compatible Laptop

SLC 500 20
I/O Fixed Controller

SLC 500 5/02
Modular I/O Controller

1747–AIC Isolated

1747–PIC
Interface Converter

Link Coupler
1747–AIC Isolated

Link Coupler
1747–AIC Isolated

Link Coupler

SLC 500
Hand–Held Terminal

SLC 500 5/01
Modular I/O Controller

Node 2

Node 0
Node 1

Node 4Node 3

Online Configuration

Chapter 9
Configuring Online Communication

9–2

To configure your HHT for online communication, begin at the main menu
display of the HHT.

SLC 500 PROGRAMMING SOFTWARE Rel. 2.03

1747 – PTA1E
Allen–Bradley Company Copyright 1990

All Rights Reserved

F1 F2 F3 F4 F5

PRESS A FUNCTION KEY
SELFTEST TERM PROGMAINT

OFL
UTILITY

Press [F5], UTILITY. The following display appears:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 76
1 Reserved 0
2 222 Ladder 56
3 Ladder 0

F1 F2 F3 F4 F5

ONLINE WHO PASSWRD
OFL

CLR_MEM

The following functions are available from this display:

Function Key Description

[F1], ONLINE

Allows you to go online and communicate with
the processor you were previously attached to.
If you were not previously attached to a
processor, the Who function is entered.

[F2], WHO

Allows you to view the nodes on the network, run
network diagnostics, attach to and communicate
with a specific node, change a node
configuration, and set and clear ownership.

[F3], PASSWRD Allows you to change a password in the HHT
offline program.

[F4], CLR_MEM Allows you to clear the HHT offline memory.

In the following example, go online to the processor at node address 4.
Assume that the HHT has previously been attached to node 4, and that the
program in the HHT and the program in the processor are identical.

From the UTILITY menu, press [F1], ONLINE. The display changes as
follows:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

OFFLINE UPLOAD DWNLOAD
RUN

CLR_PRCMODE

Display toggles between the
processor node address and
the processor operating
mode.

>

Chapter 9
Configuring Online Communication

9–3

Because the program files match, there are 2 menu screens and 10 function
keys. The greater than sign (>), in the lower right corner of the display,
indicates that a second function key menu is available.

The following functions are available to you:

Function Key Description

[F1], OFFLINE Returns you to the utility menu display.

[F2], UPLOAD

Reads the program from the processor RAM and
copies it to the HHT RAM. This function
overwrites any program currently stored in HHT
RAM.

[F3], DOWNLOAD
Copies the program stored in HHT RAM to the
processor RAM. This function overwrites the
program stored in the processor RAM.

[F4], MODE Allows you to change the processor operating
mode to Run, Test, or Program.

[F5], CLR_PRC Allows you to the clear the processor RAM and
place the memory in the Default state.

Pressing [ENTER] displays the second set of function keys.

Function Key Description

[F1], PASSWORD Allows you to change the processor
password/master password.

[F3], TRANSFER MEMORY Transfers processor RAM to EEPROM or
EEPROM/UVPROM to processor RAM.

[F4], EDT_DAT Allows you to monitor or edit processor data
files.

[F5], MONITOR Allows you to observe the program operation of
the processor program file that you specify.

Exceptions

The function keys and menus vary depending on how the HHT and processor
programs relate. In the following example, assume that the HHT has
previously been attached to this processor, but the offline program in the
HHT has been altered and no longer matches the program in processor RAM.
If the HHT and processor programs do not match, the following display
appears when you press [F1], ONLINE:

Program Directory
Programmer Processor

F1 F2 F3 F4 F5

CLR_PRCDWNLOADOFFLINE MODEUPLOAD

Prog: 1000 Prog: 1000
File: 222 File:
Exec Files: 4 Exec Files: 4
Data Files: 9 Data Files: 9
PROGRAM FILES DIFFER RUN

When the program files do not match, there is only one menu display and
five function keys. Notice the absence of the greater than sign (>), in the
lower right corner.

Chapter 9
Configuring Online Communication

9–4

Another exception is when the processor contains the default program. The
following screen appears:

F1 F2 F3 F4 F5

CLR_PRCOFFLINE MEM_PRCDWNLOAD

Program Directory
Programmer Processor

Prog: 1000 Prog: DEFAULT
File: 222 File:
Exec Files: 4 Exec Files: 3
Data Files: 9 Data Files: 3
DEFAULT FILE IN PROCESSOR PRG

The Who function allows you to view the nodes on the network, run network
diagnostics, attach to and communicate with a specific node, change a node
configuration, and set and clear ownership.

From the utility display, press [F2], WHO. The following display appears:

Node Addr. Device Max Addr./Owner
2 5/02 (31)
3 500–20 (31)

*** 4 5/01 (31)
0 APS (31)

Node Addr: 2 Baud Rate: 19200

F1 F2 F3 F4 F5

DIAGNSTC ATTACH
OFL

OWNERNODE_CFG

Current Node

Asterisks indicate the node
previously attached to.

Important: The HHT uses top–line editing. This means that the
information shown nearest the top of the display is the current
node address. For example, the above display indicates that
pressing [F3], ATTACH, causes the HHT to go online with
node 2.

In the following sections, “selected” refers to the node nearest the top of the
display. The current node is also indicated on the status line of the display.
To change the node address, or to view additional nodes on the network, use
the [↑] and [↓] keys.

The Who Function

Chapter 9
Configuring Online Communication

9–5

The following functions are available from the Who display:

Function Key Description

[F1], DIAGNSTC Allows you to monitor the status of the network
or the selected node.

[F3], ATTACH

Initiates communication with the selected node
for uploading/downloading a program, changing
the processor operating mode, clearing
processor memory, changing processor
password/master password, monitoring a
program, viewing or modifying data files, or
clearing the processor memory.

[F4], NODE_CFG
Allows you to change the node address, the
maximum node address, and the baud rate of
each node.

[F5], OWNER

Allows you to clear or set ownership of the
selected processor. Setting ownership prevents
other programmers from accessing the owned
processor program.

Chapter 9
Configuring Online Communication

9–6

Diagnostics

1. To monitor the diagnostics of the network or the selected node, press
[F1], DIAGNSTC from the Who display. The following display appears:

Node Addr. Device Max Addr./Owner
2 5/02 (31)
3 500–20 (31)
4 5/01 (31)
0 APS (31)

Node Addr: 2 Baud Rate: 19200

F1 F2 F3 F4 F5

NODE
OFL

NETWORK

2. To monitor the diagnostic display of the selected node press [F1], NODE.
 The following display appears:

Node: 2 Device Type: 5/02
Firmware Rel: 5 Series: C

Mode: PRG
Fault Code: 0000H
Program Name 1000
Forces: Not Installed

F1 F2 F3 F4 F5

OFL

3. To monitor the diagnostic display of the network press [ESC], then
[F5], NETWORK.

The following display appears:

Total Nodes: 5 Max. Addr.: 31
Msgs Sent: 29736 Msgs Rcvd: 202
Retries: 0 Limit Exceeded: 0
Bad Msgs Rcvd: 0
NAK Sent: 0 NAK Rcvd: 0
Node Addr: 2

F1 F2 F3 F4 F5

OFL
RESET

4. From this display, you can reset the messages sent and messages received
counters by pressing [F5], RESET.

5. Press [ESC] twice to return to the Who menu.

Chapter 9
Configuring Online Communication

9–7

Attach

The Attach function initiates communication between the HHT and a
processor. The Attach function allows you to:

• upload/download a program
• change processor operating modes
• clear the processor memory
• enter or remove a password/master password
• transfer memory between processor RAM and EEPROM
• monitor program execution
• monitor and change data file values
• force I/O
• search the user program for specific instructions and/or addresses

The function keys and menus vary depending on how the HHT and processor
programs relate. In this example, attach the HHT to node 4. Assume that the
HHT and processor programs are identical.

1. Start at the Who display:

Node Addr. Device Max Addr./Owner
2 5/02 (31)
3 500–20 (31)

*** 4 5/01 (31)
0 APS (31)

Node Addr: 2 Baud Rate: 19200

F1 F2 F3 F4 F5

DIAGNSTC ATTACH
OFL

OWNERNODE_CFG

Current Node

2. Press the [↓], twice to select node 4.

The display appears as follows:

Node Addr. Device Max Addr./Owner
*** 4 5/01 (31)

0 APS (31)
1 TERMINAL (31)
2 5/02 (31)

Node Addr: 4 Baud Rate: 19200

F1 F2 F3 F4 F5

DIAGNSTC ATTACH
OFL

OWNERNODE_CFG

Current Node

3. Press [F3], ATTACH. The following menu is displayed:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

OFFLINE UPLOAD DWNLOAD
RUN

CLR_PRCMODE

Display toggles between the
processor node address and
the processor operating
mode.

>

Chapter 9
Configuring Online Communication

9–8

Because the program files match, there are 2 menu displays and 10
function keys. The greater than sign (>), in the lower right corner of the
display, indicates that a second function key menu is available.

At this point, all the functions listed on page 9–3 are available to you.

Return to the utility display by pressing [F1], OFFLINE or press [ESC],
then [F2], YES.

Exception

The function keys and menus vary depending on how the HHT and processor
programs relate. In this example, attach the HHT to node 2. Assume that the
processor contains a program other than the default, and the program is
different from the program in the HHT.

1. From the utility menu display, press [F2], WHO to bring up the Who
display:

Node Addr. Device Max Addr./Owner
2 5/02 (31)
3 500–20 (31)

*** 4 5/01 (31)
0 APS (31)

Node Addr: 2 Baud Rate: 19200

F1 F2 F3 F4 F5

DIAGNSTC ATTACH
OFL

OWNERNODE_CFG

Current Node

2. Use the [↑] and [↓] keys to change the order of the nodes listed, if
necessary. Press [F3], ATTACH, since the current node is already 2.

The following menu is displayed:

Program Directory
Programmer Processor

F1 F2 F3 F4 F5

PRG
CLR_PRC

Prog: 1000 Prog: 2345
File: File:
Exec Files: 4 Exec Files: 4
Data Files: 9 Data Files: 9
PROGRAM FILES DIFFER

DWNLOADOFFLINE MODEUPLOAD

3. You may now perform one of the five functions displayed.

4. Press [F1], OFFLINE or press [ESC], then [F2], YES, to return to the
utility display.

Node Configuration

The Node Configuration function allows you to configure a processor or the
HHT for online communication. The Node Configuration functions are:

• change the node address
• change the maximum address
• change the baud rate

Chapter 9
Configuring Online Communication

9–9

Begin at the WHO display. Press[F4], NODE_CFG.

Node Addr. Device Max Addr./Owner
2 5/02 (31)
3 500–20 (31)
4 5/01 (31)
0 APS (31)

Node Addr: 2 Baud Rate: 19200

F1 F2 F3 F4 F5

CHG_ADDR BAUD
OFL

MAX_ADDR

The following functions are available from this menu:

Function Key Description

[F1], CHG_ADDR

Allows you to change the node address of your
HHT or the node address of any active
processor on the DH–485 network. Cycle power
to the processor for your changes to take effect.

[F2], MAX_ADDR
Allows you to set the maximum node address for
your HHT or any active processor on the
network.

[F3], BAUD

Allows you to set or change the communication
rate of your HHT or any active processor on the
network. Cycle power to the processor for the
changes to take effect.

You do not need to cycle power if you change your HHT node address, the
address changes as soon as you press [ENTER].

Important: Each programming device and processor on a DH–485 network
must have a unique address from 0 through 31. The default
node address of a processor is 1 and a programmer is 0.

Consequences of Changing a Processor Node Address

Remember that the processor node address resides in the status data file
(word S:15) of a program. This means that when you overwrite the contents
of processor memory by using the download function or transfer memory
function, the node address may change as follows:

• Download – When you download a program and cycle processor power,
the node address of the downloaded program takes effect, overwriting the
previous node address.

• Memory Transfer – When you transfer a program from a memory module
to the processor and cycle processor power, the node address of the
transferred file takes effect, overwriting the previous node address.

Important: Immediately after you download a program for transfer a
program from a memory module to the processor, press [F1],
CHG_ADR and re–enter the current node address. Failure to do
this can result in a duplicate or incorrect node address after you
cycle power to the processor.

Chapter 9
Configuring Online Communication

9–10

Entering a Maximum Node Address

You may change the maximum node address for your HHT and any active
processors on the DH–485 network. However, you cannot alter the value on
another programming device. For the most efficient network operation, it is
best to set the maximum node addresses of all devices on the DH–485
network to the lowest available value.

The default maximum node address for all SLC 500 family processors and
programming devices is 31. To minimize the network scan time, it is
recommended to eliminate any unused node addresses of a higher number
than the addresses used on the network. For example, if the highest node
address used on your network is 5, then you should set the maximum node
address of all devices on the network to 5. Consequently, the polling devices
on the network no longer take the time to look for nodes 6 through 31.

Important: If you later add a device to the network with a higher node
address than the present maximum node address, you must
change the maximum node addresses to include that address.
Failure to do so causes the devices on the network to ignore the
new device.

When you cycle power to a Series A SLC 500 or SLC 5/01
processor, the maximum node address returns to the default
selection of 31.

Changing the Baud Rate

The baud rate of a processor or programming device is the speed at which it
communicates with other devices on the DH–485 network. The available
baud rates are:

• 19200 baud (default setting for all SLC 500 family devices)
• 9600 baud
• 2400 baud (not available on SLC 500 and SLC 5/01 processors)
• 1200 baud (not available on SLC 500 and SLC 5/01 processors)

You do not need to cycle power if you change your HHT baud rate. The
baud rate changes as soon as you press [ENTER].

Important: The baud rate change to a processor does not take effect until
power is cycled to the processor.

Set and Clear Ownership

The set and clear ownership function allows a terminal to “own” one or more
processor files on the network. Ownership means that as long as the owner
is active on the network, other terminals cannot access the online functions
of the owned processor files. Only a programming device can own a
processor.

Chapter 9
Configuring Online Communication

9–11

When the owner exits the network or goes offline, another terminal can clear
the ownership of the inactive node and gain access to an owned processor
file.

In this example, the SLC 5/02 processor with node address 5 is owned by the
APS terminal with address 0, which is no longer online. Clear node 0’s
ownership of the processor and set the HHT, node 1, as owner of node 5.

1. Begin at the Who display. To indicate ownership by a programmer, the
node address of the owner is included in parentheses with the maximum
node address.

Node Addr. Device Max Addr./Owner
3 500–20 (5)
4 5/01 (5)
5 5/02 (5/0)
1 TERMINAL (5)

Node Addr: 3 Baud Rate: 19200

F1 F2 F3 F4 F5

DIAGNSTC ATTACH
OFL

OWNERNODE_CFG

Indicates that node 5
is owned by node 0.

2. To claim ownership of node 5, press the [↓] key twice, then press [F5],
OWNER. The display changes as follows:

Node Addr. Device Max Addr./Owner
5 5/02 (5/0)
1 TERMINAL (5)
3 500–20 (5)
4 5/01 (5)

Node Addr: 5 Baud Rate: 19200

F1 F2 F3 F4 F5

SET_OWNR
OFL

CLR_OWNR

3. Press [F1], SET_OWNR. Since the previous owner, node 0, is no longer
active, the display changes as follows:

Node Addr. Device Max Addr./Owner
5 5/02 (5/1)
1 TERMINAL (5)
3 500–20 (5)
4 5/01 (5)

Node Addr: 5 Baud Rate: 19200

F1 F2 F3 F4 F5

SET_OWNR
OFL

CLR_OWNR

Indicates that node 5 is
now owned by node 1.

4. To clear ownership, place the cursor on the desired node and press [F5],
CLR_OWNR. In order to succeed, you must be the current owner or the
current owner cannot be active on the network.

Chapter 9
Configuring Online Communication

9–12

Recommendations When Using DH–485 Devices

The following summarizes the recommendations for a DH–485 network.

• Use node 0 (default) and the lowest node numbers for the programming
device(s).

• Number the processor nodes consecutively, beginning at the lowest
possible number.

• When establishing a multi–node network, keep in mind that the default
node address for a processor is 1. This means that unless the address has
been changed previously, all processor nodes on the network initially
have node address 1, this makes it impossible to communicate with an
individual processor. You must bring up the network one node at a time,
assigning each node address before proceeding to the next.

• Set the maximum node address as low as possible. The highest numbered
node should have its maximum node address set to its own address.

• Set the maximum node address the same for all nodes on the network.
• Make certain that the baud rate settings of all nodes are the same. A

terminal only communicates with processors set at the same baud rate.
The baud rate change for a processor does not take effect until you cycle
power to the processor. The default baud rate for a device on the network
is 19200.

• Make certain that the node address and baud rate are correct before
making a processor memory change using the upload or download
functions. These functions overwrite the existing node address and
existing baud rate when you cycle processor power.

!
ATTENTION: If two processors on the DH–485 network are
assigned the same node address, it is possible that the processor
file in one of the processors will be lost and replaced with the
default file.

10Chapter

10–1

Downloading/Uploading a Program

This chapter discusses how to:

• download a program from the HHT to a processor
• upload a program from a processor to the HHT➀

When you have finished creating your program offline, you must download it
from the HHT to a processor. In this example you will download program
1000, that you created in the previous chapters.

1. Start at the main menu:

SLC 500 PROGRAMMING SOFTWARE Rel. 2.03

1747 – PTA1E
Allen–Bradley Company Copyright 1990

All Rights Reserved

F1 F2 F3 F4 F5

PRESS A FUNCTION KEY
SELFTEST TERM PROGMAINT

OFL
UTILITY

2. Press [F5], UTILITY. The following display appears if a password is
required:

SLC 500 PROGRAMMING SOFTWARE Rel. 2.03

1747 – PTA1E
Allen–Bradley Company Copyright 1990

All Rights Reserved

F1 F2 F3 F4 F5

ENTER PASSWORD: OFL

or this display appears after the password is entered or if a password is
not required:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

ONLINE WHO PASSWRD
OFL

CLR_MEM

➀ APS uses the terminology restoring for downloading and saving for uploading.

Downloading a Program

Chapter 10
Downloading/Uploading a Program

10–2

In this example assume that the HHT has not been previously attached to
a processor.

3. Press [F2], WHO.

4. Use the [↑] and [↓] keys to display node 4 as the current node. The
display should appear as follows:

Node Addr. Device Max Addr./Owner
4 5/01 (5)
5 5/02 (5)
1 TERMINAL (5)
3 500–20 (5)

Node Addr: 4 Baud Rate: 19200

F1 F2 F3 F4 F5

DIAGNSTC
OFL

OWNER

Indicates that node 4 is the current
node.

ATTACH NODE_CFG

5. Press [F3], ATTACH.

Either the following display appears if a program is not in processor
memory:

Program Directory
Programmer Processor

F1 F2 F3 F4 F5

CLR_PRCDWNLOADOFFLINE MEM_PRC

Prog: 1000 Prog: DEFAULT
File: 222 File:
Exec Files: 4 Exec Files: 3
Data Files: 9 Data Files: 3
DEFAULT FILE IN PROCESSOR PRG

DEFAULT indicates that a
program is not in the pro-
cessor.

or this display appears if a program is in processor memory:

Program Directory
Programmer Processor

F1 F2 F3 F4 F5

CLR_PRCDWNLOADOFFLINE MODEUPLOAD

Prog: 1000 Prog: 1952
File: 222 File:
Exec Files: 4 Exec Files: 3
Data Files: 9 Data Files: 9
PROGRAM FILES DIFFER PRG

1952 (or anything other than
DEFAULT) indicates that a
program is in the processor.

The processor node address
that you have attached to and
the processor operating mode
are intermittently displayed.
The processor must be in the
Program mode.

Important: The processor must be in the Program mode to download a
program. If the above display appears and the processor is not
in the Program mode, do the following:
a. Press [F4], MODE.

b. Press [F5], PROGRAM.

c. Press [F2], YES.

d. Press [ESC].

Refer to the following chapter for details regarding processor modes.

Chapter 10
Downloading/Uploading a Program

10–3

6. Press [F3], DWNLOAD. The following display appears:

Program Directory
Programmer Processor

F1 F2 F3 F4 F5

NOYES

Prog: 1000 Prog: 1952
File: 222 File:
Exec Files: 4 Exec Files: 3
Data Files: 9 Data Files: 9
DOWNLOAD TO PROCESSOR? PRG

7. Press [F2], YES to confirm. If necessary, the HHT requests you to
compile the program.

When complete, the display then changes as follows:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 76
1 Reserved 0
2 222 Ladder 56
3 Ladder 0

F1 F2 F3 F4 F5

OFFLINE UPLOAD DWNLOAD
PRG

CLR_PRC>MODE

You are now ready to perform the functions described in the following
chapters. These functions are:

• change processor operating mode
• transfer memory
• monitor or edit data files
• monitor online program operation

!
ATTENTION: If forces are installed in an offline program, they
are downloaded to the processor in their last state. Be absolutely
certain that the installed forces will not cause unexpected
machine operation before continuing.

Any changes made to a program running in a processor, such as data file
values or bit changes, or I/O forces installed, reside in the processor RAM.
If you wish to save these changes, you must upload the program from the
processor to the HHT. Also, if you wish to monitor a program, other than the
program stored in the HHT, you must upload that program.

!
ATTENTION: Uploading a program to the HHT clears the
current HHT program from memory. There is no way to recover
this program.

Uploading a Program

Chapter 10
Downloading/Uploading a Program

10–4

In this example you will upload program 03CLOCK stored in processor
node 3. The processor can be in any mode to upload a program.

1. Start at the main menu display:

SLC 500 PROGRAMMING SOFTWARE Rel. 2.03

1747 – PTA1E
Allen–Bradley Company Copyright 1990

All Rights Reserved

F1 F2 F3 F4 F5

PRESS A FUNCTION KEY
SELFTEST TERM PROGMAINT

OFL
UTILITY

2. Press [F5], UTILITY. The following display appears if a password is
required:

SLC 500 PROGRAMMING SOFTWARE Rel. 2.03

1747 – PTA1E
Allen–Bradley Company Copyright 1990

All Rights Reserved

F1 F2 F3 F4 F5

ENTER PASSWORD: OFL

or this display appears after the password is entered (for the current
offline program, which is 1000) or if a password is not required:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

ONLINE WHO PASSWRD
OFL

CLR_MEM

3. Press [F2], WHO, then use the [↑] and [↓] keys to display node 3 as the
current node. The display should appear as follows:

Node Addr. Device Max Addr./Owner
3 500–20 (5)
4 5/01 (5)
5 5/02 (5)
1 TERMINAL (5)

Node Addr: 3 Baud Rate: 19200

F1 F2 F3 F4 F5

DIAGNSTC
OFL

OWNER

Indicates that node 3
is the current node.

ATTACH NODE_CFG

Chapter 10
Downloading/Uploading a Program

10–5

4. Press [F3], ATTACH. If a password is required for program 03CLOCK,
the following display appears:

Program Directory
Programmer Processor

Prog: 1000 Prog: 03CLOCK
File: 222 File: 03M
Exec Files: 4 Exec Files: 3
Data Files: 9 Data Files: 9
ENTER PASSWORD: PRG

F1 F2 F3 F4 F5

or this display appears after the password is entered (for the current online
program, which is 03CLOCK) or if a password is not required:

Program Directory
Programmer Processor

F1 F2 F3 F4 F5

CLR_PRCDWNLOADOFFLINE MODEUPLOAD

Prog: 1000 Prog: 03CLOCK
File: 222 File: 03M
Exec Files: 4 Exec Files: 3
Data Files: 9 Data Files: 9
PROGRAM FILES DIFFER PRG

5. Press [F2], UPLOAD. The display changes as follows:

Program Directory
Programmer Processor

F1 F2 F3 F4 F5
NOYES

Prog: 1000 Prog: 03CLOCK
File: 222 File: 03M
Exec Files: 4 Exec Files: 3
Data Files: 9 Data Files: 9
OVERWRITE EXISTING PROGRAM? PRG

6. Press [F2], YES to replace program 1000 with 03CLOCK in the HHT
RAM.

Program 03CLOCK is now stored in the HHT RAM and program 1000
has been erased.

You are now ready to perform the following functions:

• go offline and edit the program
• change processor operating mode
• clear processor memory
• change the password/master password
• transfer memory
• monitor or edit data files
• monitor online program operation

11Chapter

11–1

Processor Modes

This chapter describes the different operating modes a processor can be
placed in while using the HHT. Available processor modes include:

• Run
• Program
• Test

The Test mode has the following options:

– continuous scan
– single scan

Run Mode

While in the Run mode, the processor scans or executes the ladder program
and monitors input devices. It also energizes output devices and acts on
enabled I/O forces.

The Run mode allows you to:

• Monitor the ladder program, rung state, and data as it is being executed.
• Use the search function.
• Force I/O.
• Upload a processor program to HHT RAM.
• Monitor and edit data.

Program Mode

The Program mode facilitates the transfer of programs through the download
and upload function. In this mode the processor does not scan or execute the
ladder program and all outputs are de–energized regardless of their current
states.

Once a program is downloaded, you can:

• Monitor the ladder program in the processor without rung state indication.
• Set up I/O forces without enables being executed.
• Use the search function.
• Monitor last run mode state of data files.
• Edit data files.
• Transfer programs to and from a memory module.

Processor Modes

Chapter 11
Processor Modes

11–2

Test Mode

The Test mode allows you to:

• Monitor the current ladder program as it is being executed.
• Use the search function.
• Force I/O.
• Monitor and edit data.

While you are in the Test mode, the processor scans or executes the ladder
program, monitors input devices, and updates the output data files without
energizing output circuits or devices.

The Test mode provides the following ladder program tests:
Continuous Scan – This mode is the same as the Run mode, except output
circuits are not energized. This allows you to troubleshoot or test your ladder
program without energizing external output devices.

Single Scan – In this mode, the processor executes a single operating cycle
which includes reading the inputs, executing the ladder program, and
updating all data without energizing output circuits.

The remaining portion of this chapter takes you step by step through
changing processor modes.

The previous chapters described going online to a processor and
downloading/uploading programs.

Changing the Mode

To change any mode (Program, Test, or Run) the same steps are used.

1. To change your processor operating mode, start at the program utility
display for program 1000, resident in processor node 4.

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

OFFLINE UPLOAD DWNLOAD
PRG

CLR_PRC>MODE

Display toggles between the
processor node address and
the processor operating
mode.

Program Name

In this case, the processor is in the Program mode.

Changing Modes

Chapter 11
Processor Modes

11–3

2. Press [F4], MODE.

The following display appears:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

RUN TEST
PRG

PROGRAM

3. Change the processor to the Run mode by pressing [F1], RUN. The
display requests you to confirm your selection:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1
ARE YOU SURE?

F1 F2 F3 F4 F5

YES NO
PRG

4. Press [F2], YES. The display changes as follows:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

RUN TEST
RUN

PROGRAM

Display toggles between the
processor node address and
the processor operating
mode, which is now Run.

12Chapter

12–1

Monitoring Controller Operation

This chapter briefly describes monitoring controller operation. Topics
include:

• monitoring a program file
• monitoring data files
• monitoring data file displays
• online data changes

The following demonstrates how to monitor a program file while online:
1. Start from the main online display:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 76
1 Reserved 0
2 222 Ladder 56
3 Ladder 0

F1 F2 F3 F4 F5

OFFLINE UPLOAD DWNLOAD
RUN

CLR_PRC>MODE

2. Press [ENTER] to view additional menu functions. Then press [F5],
MONITOR. The following display appears requesting the file number
you want to monitor:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 76
1 Reserved 0
2 222 Ladder 56
3 Ladder 0
ENTER FILE NUMBER:

F1 F2 F3 F4 F5

RUN

3. To view the main program file (2), press 2, then [ENTER]. The ladder
program display appears:

� �

The cursor location is displayed
in the upper right corner. This
indicates that the cursor is
located in program file 2, rung 0,
nest level 0, branch level 0 and
the asterisk (*) means the cursor
is not on an instruction, in this
case the cursor is located on the
left power rail.

] [] [

2.0.0.0.*

] [

F1 F2 F3 F4 F5

()

] [()

] [

] [()] [
] [()] [] [] [

MODE FORCE EDT_DAT SEARCH
RUN

Processor Node Address and
Operating Mode

Program Cursor

Another Mode
Menu

� �

� �

Further details of the ladder display are provided in chapter 7, Creating
and Editing a Program.

Monitoring a Program File

Chapter 12
Monitoring Controller Operations

12–2

True/False Indication

Once the processor is operating in the Run or Test mode, the ladder program
indicates the logical state of the instructions, either true or false.

In the previous display and on the following pages, true instructions and the
program cursor appear as follows:

• true instructions are intensified (heavier line weight)
• the cursor is the blinking reverse video block
• a true instruction at the cursor location flashes between the intensified

instruction and the reverse video block

This section describes the types of data files, where to access them in the
HHT, and how to monitor them.

Data Files

These files contain information used in your ladder program. Data table files
include:

• Data File 0 – Output
• Data File 1 – Input
• Data File 2 – Status
• Data File 3 – Binary or Bit
• Data File 4 – Timer
• Data File 5 – Counter
• Data File 6 – Control
• Data File 7 – Integer
• Data File 8– Reserved file
• Data Files 9–255 – User created files. They can be bit, timer, counter,

control, and integer files.
When offline, use data files 3–255 to set up sequencers, math routines,
“recipes,” and look-up tables. When online, use data files to reset timers and
counters, and sequencers to test and/or troubleshoot.

Monitoring Data Files

Monitoring Controller Operations
Chapter 12

12–3

Accessing Data Files

There are four ways to access the data table:

Option 1

While offline, press [F3], PROGMAINT, from the menu display, then
[ENTER], and [F1], EDT_DAT.

Option 2

While monitoring a program offline, press [ENTER] and [F1], EDT_DAT.

Option 3

While online, press [ENTER] from the main online display, then [F4],
EDT_DAT.

Option 4

While monitoring a program online, press [F3], EDT_DAT.

Important: Data table file protection is available with any of the SLC 500
processors. However, the form of protection can only be
changed during offline programming.

• Fixed and SLC 5/01 processors – output files are always
protected and all other files are unprotected from online
changes while the processor is in the Run mode.

• SLC 5/02 processors – at the time you save your program
you can protect output files, all files, or no files from online
changes while the processor is in the Run mode.

Monitoring a Data File

The following count–up ladder program is an example of how to monitor
data files.

CTU
COUNT UP
Counter C5:0
Preset 3
Accum 0

] [
I:1.0

0
Rung 0 (CU)

(DN)

] [
C5:0

CU

0:3.0

0
()

] [
C5:0

DN

0:3.0

1
()

] [
C5:0

OV

0:3.0

2
()

0:5.0

Rung 1

Rung 2

Rung 3

Rung 4 (RES)

END

] [
I:1.0

1

Chapter 12
Monitoring Controller Operations

12–4

The following HHT display shows the ladder program being monitored in
the online mode. The cursor is located on the XIC instruction C5:0/DN on
rung 2.

(CTU)

(RES)

] [] [

2.2.0.0.1

] [

F1 F2 F3 F4 F5

()
()

] [] [] [

MODE FORCE EDT_DAT SEARCH
RUN

] [
] [

()

XIC:C5:0/13

When you are monitoring a file, the location of the cursor in the ladder
program determines how you access a particular address within a data file:

• If the cursor is on an instruction when you press [F3], EDT_DAT, the
cursor moves to the address (bit or word level) of the instruction in the
appropriate data file.

• If the cursor is on a power rail or branch intersection when you press [F3],
EDT_DAT, the cursor moves to the beginning of the first data file, the
Output data file. You can then use the ADDRESS function key, followed
by [ENTER] to specify any address in the data table.

Monitor the counter data file by pressing [F3], EDT_DAT. The following
display appears:

ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

COUNTER C5:0
 CU CD DN OV UN UA
STATUS 0 0 0 0 0 0
PRESET 3
ACCUM 0

STATUS=000 000 RUN

Function Key Description

[F1], ADDRESS Locates any address in the data table

[F2], NEXT_FL Displays the next consecutive file in the data table

[F3], PREV_FL Displays the previous file in the data table

[F4], NEXT_PG Displays the next page of elements in the existing data file

[F5], PREV_PG Displays the previous page of elements in the existing data
file

Monitoring Controller Operations
Chapter 12

12–5

The following section provides you with an example of what each data table
display appears as. The radix (or number system) that the file elements are
displayed in is fixed: binary for Input, Output, and Bit files; decimal for
Integer files; and formatted display for Status, Timer, Counter, and Control
files.

To access the data table, place the cursor on the left power rail in the online
monitor display and press [F3], EDT_DAT. The first file in the data table
appears, the output data file.

Output File (O0)

The output data file displays the elements that correspond to the specified
controller I/O configuration. The following output file display indicates that
there is an 8–point output module in slot 3. Each bit in the word represents
the On/Off status of an output circuit or terminal. All bits are presently reset
(0).

Important: If the processor is in the Run mode, you can only save changed
data in the output file if you have a SLC 5/02 processor and
your file was saved allowing this option. Refer to chapter 8.

ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

Address 15 data 0
O0:3.0 0000 0000

O0:3.0/0 = 0 RUN

To display the next consecutive data file – the input data file, press [F2],
NEXT_FL.

Input File (I1)

The input data file displays the elements that correspond to the specified
controller I/O configuration. The following input file display indicates that
there is a 4–point input module in slot 1 and an 8–point input module in slot
2. Each input slot is shown as a word/element address. Each bit in the word
represents the On/Off status of an input circuit or terminal. All bits are
presently reset (0).

ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

Address 15 data 0
I1:1.0 0000
I1:2.0 0000 0000

I1:1.0/0 = 0 RUN

Data File Displays

Chapter 12
Monitoring Controller Operations

12–6

To display the next consecutive data file – the status data file, press [F2],
NEXT_FL.

Status Data File (S2)

The status data file contains information about processor operation,
diagnostics, memory module loading, fault codes, etc. The displays below
show the 16–word status file for a fixed controller or a SLC 5/01 processor.

To move between displays, press [F3], NEXT_PG.

F1 F2 F3 F4 F5

 Status File
Arithmetic Flags S:0 Z:0 V:0 C:0
S2:0 Proc Status 0000 0000 0000 0000
S2:1 Proc Status 0000 0000 1000 0001
S2:2 Proc Status 1000 0000 0000 0010

S2:0/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:5 Minor Fault 0000 0000 0000 0000
S2:6 Fault Code 0000H
Desc: No Error
S2:3L Program Scan [x10mS] last: 0
S2:3H Watchdog [x10mS] 10
S2:5/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:7 Suspend Code 0
S2:8 Suspend File 0
S2:4 Running Clock 0000 0000 0000 0000
S2:13&14 Math Register 00000000H

S2:7 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:15H Communication KBaud Rate 19.2
S2:15L Processor Address 1
Note:
 Enter 3 for 9600
 Enter 4 for 19200
S2:15H = 4 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:9 & S2:10 Active Node List
 1 2 3
0 0 0 0
0111 1000 0000 0000 0000 0000 0000 0000
Node = 0
S2:9/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:11 & S2:12 I/O Slot Enables
 1 2 3
0 0 0 0
1111 1111 1111 1111 1111 1111 1111 1111
Slot = 0
S2:11/0 = 1 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

Monitoring Controller Operations
Chapter 12

12–7

The displays below show the 33–word status file for a SLC 5/02 processor.
To move between displays, press [F3], NEXT_PG. To display the next
consecutive data file – the bit data file, press [F2], NEXT_FL.

F1 F2 F3 F4 F5

 Status File
Arithmetic Flags S:0 Z:0 V:0 C:0
S2:0 Proc Status 0000 0000 0000 0000
S2:1 Proc Status 0000 0000 1000 0001
S2:2 Proc Status 1000 0000 0000 0010

S2:0/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:5 Minor Fault 0000 0000 0000 0000
S2:6 Fault Code 0000H
Desc: No Error
S2:29 Err File: 0 Indx Cross File: No
S2:24 Index Reg: 0 Single Step: No
S2:5/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:7 Suspend Code 0
S2:8 Suspend File 0
S2:4 Running Clock 0000 0000 0000 0000
S2:13&14 Math Register 00000000H

S2:7 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:15H Communication KBaud Rate 19.2
S2:15L Processor Address 1
Note:
 Enter 1 for 1200 Enter 3 for 9600
 Enter 2 for 2400 Enter 4 for 19200
S2:15H = 4 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:9 & S2:10 Active Node List
 1 2 3
0 0 0 0
0111 1000 0000 0000 0000 0000 0000 0000
Node = 0
S2:9/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:11 & S2:12 I/O Slot Enables
 1 2 3
0 0 0 0
1111 1111 1111 1111 1111 1111 1111 1111
Slot = 0
S2:11/0 = 1 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:3H Watchdog [x10mS] 10

S2:3L Last Scan [x10mS] 0
S2:23 Avg. Scan [x10mS] 0
S2:22 Max. Scan [x10mS] 2
S2:3H = 10 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
 Selectable Timed Interrupt
S2:31 Subroutine File: 0
S2:30 Frequency [x10mS]: 0
 Enabled: 0 Executing: 0 Pending: 0

S2:31 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
 Debug Single Step
 File Rung
S2:16&17 Single Step 0 0
S2:18&19 Breakpoint 0 0
S2:20&21 Fault/Powerdown 1 2
S2:16 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:27 & S2:28 I/O Interrupt Enables
 1 2 3
0 0 0 0
0000 0000 0000 0000 0000 0000 0000 0000

S2:27/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:25 & S2:26 I/O Interrupt Pending
 1 2 3
0 0 0 0
0000 0000 0000 0000 0000 0000 0000 0000

S2:25/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

Chapter 12
Monitoring Controller Operations

12–8

Bit Data File (B3)

The display below shows the bit data file. Two elements are shown; B3:0
and B3:1. The cursor is located on bit B3/0. All bits are reset to zero.

ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

Address 15 data 0
B3:0 0000 0000 0000 0000
B3:1 0000 0000 0000 0000

B3/0 = 0 RUN

To display the next consecutive data file – the timer data file, press [F2],
NEXT_FL.

Timer Data File (T4)

The display below shows the timer data file. The cursor is on the enable bit
(EN) of timer T4:0. The control words EN, TT, and DN (bits 15, 14, and 13)
are all reset. The preset is currently 1000 and the accumulator is 0.

F1 F2 F3 F4 F5

NEXT_PG PREV_PGADDRESS NEXT_FL PREV_FL

Timer T4:0
EN TT DN

STATUS 0 0 0
PRESET 1000
ACCUM 0

STATUS=000 RUN

To display the next consecutive data file – the counter data file, press [F2],
NEXT_FL.

Counter Data File (C5)

The display below shows the counter data file. The cursor is on the count–up
enable bit CU (bit 15) of counter C5:0. The control word bits CU, CD, DN,
OV, UN, and UA (bits 15, 14, 13, 12, 11, and 10 respectively) are all reset.
The preset is currently 10 and the accumulator is 0.

F1 F2 F3 F4 F5

NEXT_PG PREV_PGADDRESS NEXT_FL PREV_FL

Counter C5:0
CU CD DN OV UN UA

STATUS 0 0 0 0 0 0
PRESET 10
ACCUM 0

STATUS=000000 RUN

To display the next consecutive data file – the control data file, press [F2],
NEXT_FL.

Monitoring Controller Operations
Chapter 12

12–9

Control Data File (R6)

The display below show the control data file. The cursor is on the enable bit
EN (bit 15) of control element R6:0. The control word bits EN, EU, DN,
EM, ER, UL, IN, and FD (bits 15, 14, 13, 12, 11, 10, 9, and 8 respectively)
are all reset. The length is 25 and the position is 0.

F1 F2 F3 F4 F5

NEXT_PG PREV_PGADDRESS NEXT_FL PREV_FL

Control R6:0
EN EU DN EM ER UL IN FD

STATUS 0 0 0 0 0 0 0 0
PRESET 25
ACCUM 0

STATUS=0000000 RUN

To display the next consecutive data file – the integer data file, press [F2],
NEXT_FL.

Integer Data File (N7)

The display below shows the integer data file. Four elements are shown:
N7:0 through N7:3. The cursor is on N7:0, which currently has a decimal
value of 1098.

F1 F2 F3 F4 F5

NEXT_PG PREV_PGADDRESS NEXT_FL PREV_FL

Address Data
N7:0 1098
N7:1 0
N7:2 2000
N7:3 5

N7:0=1098 RUN

To display the next consecutive data file, press [F2], NEXT_FL. If a data file
numbered 8 or higher has been used, the displays will change accordingly.
Otherwise, the HHT wraps around to the start of the data table and displays
the output data file.

This section illustrates how:

• to monitor counter operation
• to change counter preset and accumulator values
• counter enable, done, and overflow bits operate
• to reset a counter

The examples in this section are based on the count–up ladder diagram
shown on page 12–3. The count–up enable bit CU (bit 15), done bit DN
(bit 13), and overflow bit OV (bit 12) of the counter energize external
outputs 0, 1, and 2 respectively. External input 0 enables the counter;
external input 1 resets the counter.

Online Data Changes

Chapter 12
Monitoring Controller Operations

12–10

To change online data, begin by monitoring the program online while the
processor is in either the Run or Test Continuous Scan (CSN) mode.

] [

] [] [

2.0.0.0.1

F1 F2 F3 F4 F5

()
()

] [] [] [

MODE FORCE EDT_DAT SEARCH
RUN

] [
] [

()

XIC:I1:1.0/0 NO FORCE

(RES)

(CTU)

Observe the following:

• XIC instruction C5:0/15 (count–up bit) and rung 1 are true whenever rung
0 is true, and false whenever rung 0 is false.

• Each time rung 0 makes a false to true transition, the accumulator value
increments. Position the cursor on the CTU instruction and press [ZOOM]
to display the counter accumulator value.

• When the accumulator value equals the preset, 3, XIC instruction C5:0/13
(done bit) goes true, making rung 2 true. The instruction remains true as
long as the accumulator is greater than or equal to the preset value.

To change the counter preset or accumulator values or the status bits:
1. Press EDT_DAT from either the zoom display or the online monitor

display. A screen similar to the one below appears.

Counter C5:0
CU CD DN OV UN UA

STATUS 0 0 1 0 0 0
PRESET 3
ACCUM 16

STATUS=001000 RUN

F1 F2 F3 F4 F5

NEXT_PG PREV_PGADDRESS NEXT_FL PREV_FL

In this display, the accumulator (ACCUM) is 16 and the done bit DN (bit
13) is set. Reset the counter by making rung 4 true momentarily. The
accumulator value and the done bit are reset to zero.

2. Change the preset and accumulator values from the EDT_DAT screen.
Press the down arrow key to place the cursor on the preset. Type 32767
(maximum value) and press [ENTER]. Press the down arrow key to place
the cursor on the accumulator (ACCUM). Type 32767 (maximum value)
and press [ENTER]. The display appears as follows:

Counter C5:0
CU CD DN OV UN UA

STATUS 0 0 1 0 0 0
PRESET 32767
ACCUM 32766

STATUS=32766 RUN

F1 F2 F3 F4 F5

NEXT_PG PREV_PGADDRESS NEXT_FL PREV_FL

Monitoring Controller Operations
Chapter 12

12–11

3. Increment the counter by turning on I:1/0. The accumulator value equals
the preset value, the done bit DN (bit 13) is set, and rung 2 is true.

4. Increment the counter again. The is in an overflow condition, setting the
overflow bit OV (bit 12). Rung 3 in the ladder program is true. The
display changes as follows:

Counter C5:0
CU CD DN OV UN UA

STATUS 0 0 1 1 0 0
PRESET 32767
ACCUM –32768

STATUS=–32768 RUN

F1 F2 F3 F4 F5

NEXT_PG PREV_PGADDRESS NEXT_FL PREV_FL

The accumulator is on the 32768th count, shown as –32678. As the count
continues to increment, the accumulator shows negative numbers of
decreasing absolute value.

13Chapter

13–1

The Force Function

This chapter briefly describes the force function. Topics include:

• forcing I/O
• forcing an external input
• searching for forced I/O
• forcing an external output
• forces carried offline

The force function allows you to override the actual status of external input
circuits by forcing external input data file bits On or Off. You can also
override the processor logic and status of output data file bits by forcing
output circuits On or Off.

You can install and then enable or disable forces with the processor in any
mode while monitoring your file online.

To force an external input, the following program (the same program used in
the last chapter), is used throughout this chapter.

Operation: This program is used to achieve the maintained contact
action of an On–Off toggle switch using a momentary contact push
button. (Press for on; press again for off.)
The first time you press the push button (represented by address
I:0/1), instruction B3/11 is latched, energizing output O:0/0. The
second time you press the push button, instruction B3/12 unlatches
instruction B3/11, de–energizing output O:0/0. Instruction B3/10
prevents interaction between instructions B3/12 and B3/11.
Note: If you have not yet entered this program and downloaded, refer
to chapter 10. The controller configuration and I/O addresses
programmed in the HHT must match the controller you download to.
This program is written for a fixed controller.

]/[
B3

 10
0

] [
1

()
B3

11

()
B3

12

1

] [
B3

 11

]/[
B3

 12
]/[

B3

10

()
O:0.0

0

()
B3

10
] [

 1

] [
B3

 11

2

3

] [
B3

 11

] [
I:0.0

1

I:0.0

I:0.0

Forcing I/O

Chapter 13
The Force Function

13–2

Installing forces on input data file bits only affects the input force table.
However, enabling the installed forces affects the input force table, input data
file, and, thus, the program logic. The effects on the program logic of
installed and enabled forces can be seen in both the Run and Test modes.

In the following example, the HHT is online, monitoring the program in the
Run mode. The cursor is located on external input I:0/1. The display
indicates NO FORCE.

] [

 RUN

 MODE FORCE EDT DAT SEARCH

F1 F2 F3 F4 F5

XIC: I1:0.0/1 NO FORCE 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

To Close an External Input Circuit

To simulate the closing of the external input circuit, you must force the input
as follows:

1. Select the force function by pressing [F2], FORCE. The force functions
appear:

] [

 RUN

 ON OFF REM REM_ALL ENABLE

F1 F2 F3 F4 F5

XIC: I1:0.0/1 NO FORCE 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

Note: The HHT does not have access to the force table.

Forcing an External Input

Chapter 13
The Force Function

13–3

Function Key Description

[F1], ON

Enters a 1 in the input force table for the cursored external
input bit address. This installs a force. If the Enable
function is in effect and the processor is in the Run or Test
mode, the force is applied. The data file bit remains forced
until: 1) the disable function is in effect, or 2) the force is
removed.

[F2], OFF

Enters a 0 in the input force table for the cursored external
input bit address. This installs a force. If the Enable
function is in effect and the processor is in the Run or Test
mode, the force is applied. The data file bit remains forced
until: 1) the disable function is in effect, or 2) the force is
removed.

[F3], REM
Affects the cursored external input bit address. If
applicable, removes the installed force from the force table
and the data file. Other forces are unaffected.

[F4], REM_ALL

Affects all forced external input bit addresses and external
output circuits. Removes installed forces from all external
input bit addresses and output circuits. You must confirm
your choice.

[F5], ENABLE

Toggles between enable and disable all forces, both inputs
and outputs. You must confirm your choice. The disable
function is in effect when no forces are enabled. Note that
the processor must be in the Run or Test mode to see the
effects of the forced input data bits.

2. Force the input on. Press [F1], ON. FORCE ON is indicated.

 ON OFF REM REM_ALL ENABLE

] [

 F RUN

F1 F2 F3 F4 F5

XIC: I1:0.0/1 FORCE ON 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

The force is installed, but not yet enabled. This is indicated by the
flashing F appearing on the prompt line. This is also indicated by the
FORCED I/O LED on the controller, which is now flashing.

3. Enable the force by pressing [F5], ENABLE. The prompt ARE YOU
SURE? is indicated.

 YES NO

] [

 ARE YOU SURE? F RUN

F1 F2 F3 F4 F5

XIC: I1:0.0/1 FORCE ON 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

Chapter 13
The Force Function

13–4

4. To verify enabling of forces, press [F2]. The force is enabled. The letter
F on the prompt line is now on continuously. Also, the FORCED I/O
LED of the processor is on continuously.

 ON OFF REM REM_ALL DISABLE

] [

 F RUN

F1 F2 F3 F4 F5

XIC: I1:0.0/1 FORCE ON 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

Rungs 1, 2, and 3 have gone true, as indicated by highlighted (bold)
instructions in the display. Note that the output 0 LED of the controller is
on.

To Close and Open an External Circuit

To simulate closing, opening, closing, and opening of an external circuit (as
by pressing and releasing a push button twice), you must force the input off,
then on, then off:

1. Press [F2], OFF. Rungs 1 and 3 remain true.

 ON OFF REM REM_ALL DISABLE

] [

 F RUN

F1 F2 F3 F4 F5

XIC: I1:0.0/1 FORCE OFF 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

2. Press [F1], ON. Rungs 1 and 3 are now false and rung 2 is true. The
output 0 LED of the controller is no longer on.

 ON OFF REM REM_ALL DISABLE

] [

 F RUN

F1 F2 F3 F4 F5

XIC: I1:0.0/1 FORCE ON 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

Chapter 13
The Force Function

13–5

3. Press [F2], OFF. All rungs are false. Program operation is back to the
starting point. The display shows FORCE OFF, but the force is still
enabled.

 ON OFF REM REM_ALL DISABLE

] [

 F RUN

F1 F2 F3 F4 F5

XIC: I1:0.0/1 FORCE OFF 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

To disable and/or remove forces, you can select DISABLE, REM, or
REM ALL.

4. Remove the force by pressing [F3], REM. NO FORCE indicates the force is
removed and disabled. The F no longer appears to the left of RUN. The
FORCED I/O LED of the processor is off.

] [

 RUN

 ON OFF REM REM_ALL ENABLE

F1 F2 F3 F4 F5

XIC: I1:0.0/1 NO FORCE 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

5. Press [ESC] to exit the force function:

] [

 RUN

 MODE FORCE EDT DAT SEARCH

F1 F2 F3 F4 F5

XIC: I1:0.0/1 NO FORCE 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

Chapter 13
The Force Function

13–6

To search for forced I/O, you can have the cursor located anywhere in the
program at the beginning of the search. In the following display, the cursor
is located in rung 0, on a forced instruction. The force is enabled.

1. Set up these initial conditions (a repeat of what was done on page 13–2).

] [

 F RUN

 MODE FORCE EDT DAT SEARCH

F1 F2 F3 F4 F5

XIC: I1:0.0/1 FORCE ON 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

2. Select the search function by pressing [F4], SEARCH. The search
functions appear.

] [

 + F RUN

CUR–INS CUR–OPD NEW–INS UP FORCE

F1 F2 F3 F4 F5

XIC: I1:0.0/1 FORCE ON 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

3. Press [F5], FORCE.

] [
XIC: I1:0.0/1 FORCE ON 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

 ENTER TO FIND FORCE F RUN
 UP

F1 F2 F3 F4 F5

Searching for Forced I/O

Chapter 13
The Force Function

13–7

4. Press [ENTER]. As the display shows, the next occurrence of a forced
instruction is found in rung 1.

<END>
 ENTER TO FIND FORCE F RUN
 UP

] [

F1 F2 F3 F4 F5

XIC: I1:0.0/1 FORCE ON 2.0.0.0.1
()]/[] [

()
()

] [
] [

] [

5. Press [ENTER]. The display indicates the next occurrence of a forced
instruction, in rung 2.

<END>

 ENTER TO FIND FORCE F RUN
 UP

F1 F2 F3 F4 F5

XIC: I1:0.0/1 FORCE ON 2.0.0.0.1

()
()] [

] [

6. Press [ENTER]. The cursor has wrapped around to rung 0, the first
occurrence of a forced instruction.

 ENTER TO FIND FORCE F RUN
 UP

] [

F1 F2 F3 F4 F5

XIC: I1:0.0/1 FORCE ON 2.0.0.0.1

()
()

]/[] [
]/[] [

]/[

()
()

] [
] [

] [

Notes:

• The search locates all forced instructions, regardless of instruction type or
address.

• The search for forced instructions can be done online while monitoring,
or offline while editing a file.

Chapter 13
The Force Function

13–8

A forced external output circuit is independent of the internal logic of the
ladder program and the output data file. Installing forces on output circuits
only affects the output force table. Enabling installed forces does not affect
the output data file or the program logic. However, it does affect the output
circuit. The effects of installed and enabled forces can only be seen in the
Run mode. The Test mode does not energize output circuits.

The procedure for forcing an external output is the same as for forcing an
external input. However, the HHT always shows the logical state of the
instruction. For example, the following display shows output O:0/0 forced
off. The controller output LED is off, yet the rung and output data file show
the output to be logically true.

<END>
 F RUN
 ON OFF REM REM_ALL DISABLE

F1 F2 F3 F4 F5

OTE: O0:0.0/1 FORCE OFF 2.3.0.0.2
()]/[

()] [
] [

] [

()

] []/[

Function Key Description

[F1], ON

Enters a 1 in the input force table for the cursored external
input bit address. This installs a force. If the Enable
function is in effect and the processor is in the Run or Test
mode, the force is applied. The data file bit remains forced
until: 1) the disable function is in effect, or 2) the force is
removed.

[F2], OFF

Enters a 0 in the input force table for the cursored external
input bit address. This installs a force. If the Enable
function is in effect and the processor is in the Run or Test
mode, the force is applied. The data file bit remains forced
until: 1) the disable function is in effect, or 2) the force is
removed.

[F3], REM
Affects the cursored external input bit address. If
applicable, removes the installed force from the force table
and the data file. Other forces are unaffected.

[F4], REM_ALL

Affects all forced external input bit addresses and external
output circuits. Removes installed forces from all external
input bit addresses and output circuits. You must confirm
your choice.

[F5], DISABLE

Toggles between enable and disable all forces, both inputs
and outputs. You must confirm your choice. The disable
function is in effect when no forces are enabled. Note that
the processor must be in the Run or Test mode to see the
effects of the forced input data bits.

Forcing an External Output

Chapter 13
The Force Function

13–9

The following display shows output O:0/0 forced on. The controller output
LED is on, yet the rung and output data file show the output to be logically
false.

<END>
 F RUN
 ON OFF REM REM_ALL DISABLE

F1 F2 F3 F4 F5

OTE: O0:0.0/1 FORCE ON 2.3.0.0.2
()]/[

()] [
] [

] [

()

] []/[

When your program has forced I/O and you go offline, the FORCE ON and
FORCE OFF indications appear in the offline ladder diagram displays,
although the I/O data files do not change. If you subsequently remove the
forces online, then go offline, the FORCE ON and FORCE OFF indications
no longer appear in the offline ladder diagram displays.

Forces Carried Offline

14Chapter

14–1

Using EEPROMs and UVPROMs

This chapter describes:

• using an EEPROM memory module
• EEPROM burning options
• using a UVPROM memory module

You can transfer a program from the processor to an EEPROM and vice
versa. The procedures are similar.

• Make sure the EEPROM is installed in the processor. Disconnect
controller power and insert the EEPROM in the processor. (Access to the
EEPROM socket is gained by removing the front cover of the fixed I/O
controllers or by removing the processor module of modular controllers.)

!
ATTENTION: Ensure that the EEPROM is installed properly.
To avoid damage to the EEPROM and undesired CPU faults,
follow the installation procedure described in the controller
installation manual, 1747–NI001 (fixed controller) or
1747–NI002 (modular controller).

• Establish online communications with the processor.
• Make sure the processor is in the Program mode.
• Transfer the file to/from the EEPROM memory module.

Transferring a Program to an EEPROM Memory Module

1. Establish online communication with the processor. Refer to chapter 9.

2. Change the processor mode to Program. Refer to chapter 11.

3. Download the program from the HHT to processor RAM. Refer to
chapter 10.

4. Begin at the following display:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

OFFLINE UPLOAD DWNLOAD MODE
PRG

CLR_PRC>

Using an EEPROM Memory
Module

Chapter 14
Using EEPROMs and UVPROMs

14–2

5. Press [ENTER] to view the remaining menu selections:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

PASSWRD XFERMEM EDT_DAT
PRG

MONITOR>

6. Press [F3], XFERMEM.

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

MEM_PRC PRC_MEM
PRG

Choices are memory to processor (MEM_PRC) and processor to memory
(PRC_MEM).

7. To transfer the processor program to the EEPROM, press [F4],
PRC_MEM.

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

YES NO
PRGXFER PROC TO MEMORY MODULE?

The prompt line asks you to verify your choice.

8. Press [F2]. The prompt line indicates XFERRING PROC TO MEMORY
MODULE momentarily, then returns to this display:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

PASSWRD XFERMEM EDT_DAT
PRG

MONITOR>

A copy of the program has been transferred to the EEPROM.

Chapter 14
Using EEPROMs and UVPROMs

14–3

Transferring a Program from an EEPROM Memory Module

1. Establish online communication with the processor. Refer to chapter 9.

2. Change the processor mode to Program. Refer to chapter 11.

3. If the DEFAULT file is in the processor, continue to step 4.

If the processor and HHT programs do not match, upload or download to
make the programs match. (Refer to chapter 10.) Proceed to step 7.

4. With the DEFAULT file in the processor, begin at the following display:

Program Directory
Programmer Processor

Prog: 1000 Prog: DEFAULT
File: 222 File:
Exec Files: 4 Exec Files: 3
Data Files: 9 Data Files: 3
DEFAULT FILE IN PROCESSOR

F1 F2 F3 F4 F5

OFFLINE DWNLOAD CLR_PRC
PRG

MEM_PRC

5. Press [F4], MEM_PRC.

Program Directory
Programmer Processor

Prog: 1000 Prog: DEFAULT
File: 222 File:
Exec Files: 4 Exec Files: 3
Data Files: 9 Data Files: 3
XFER MEMORY MODULE TO PROC?

F1 F2 F3 F4 F5

YES
PRG

NO

The prompt line asks you to verify your choice.

6. Press [F2], YES. The prompt line indicates XFERRING MEMORY MODULE
TO PROC momentarily, then returns to this display:

Program Directory
Programmer Processor

Prog: 1000 Prog: 1066
File: 222 File:
Exec Files: 4 Exec Files: 3
Data Files: 9 Data Files: 9
PROGRAM FILES DIFFER

F1 F2 F3 F4 F5

OFFLINE UPLOAD DWNLOAD
PRG

MODE CLR_PRC

A copy of the processor program has been transferred to the EEPROM.

Chapter 14
Using EEPROMs and UVPROMs

14–4

7. To transfer a program from an EEPROM with matching programs in the
HHT and the processor, begin at the following display:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

OFFLINE UPLOAD DWNLOAD MODE
PRG

CLR_PRC>

To view the remaining menu selections, press [ENTER].

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

PASSWRD XFERMEM EDT_DAT
PRG

MONITOR>

8. Press [F3], XFERMEM:

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1

F1 F2 F3 F4 F5

MEM_PRC PRC_MEM
PRG

Your choices are memory module to processor RAM (MEM_PRC) and
processor RAM to memory module (PRC_MEM).

9. To transfer the program from the memory module to the processor RAM,
press [F2], MEM_PRC.

File Name: 222 Prog Name:1000
File Name Type Size(Instr)
0 System 77
1 Reserved 0
2 222 Ladder 13
3 Ladder 1
XFER MEMORY MODULE TO PROC?

F1 F2 F3 F4 F5

PRG
YES NO

The prompt line asks you to verify your choice.

Chapter 14
Using EEPROMs and UVPROMs

14–5

10.Press [F2]. The prompt line indicates XFERRING MEMORY MODULE TO PROC
momentarily, then returns to this display:

Program Directory
Programmer Processor

Prog: 1000 Prog: 1066
File: 222 File:
Exec Files: 4 Exec Files: 3
Data Files: 9 Data Files: 9
PROGRAM FILES DIFFER

F1 F2 F3 F4 F5

OFFLINE UPLOAD DWNLOAD
PRG

MODE CLR_PRC

A copy of the EEPROM program has been transferred to the processor.

You can burn a program into an EEPROM memory module using a processor
that is different from the one used to run the program. The following
conditions describe how to accomplish this.

Burning EEPROMs for a SLC 5/01 Processor or Fixed Controller

As long as the program does not exceed the memory size of the processor
that burns the EEPROM, you can use one SLC 5/01 processor or fixed
controller to burn the EEPROM program and another SLC 5/01 processor or
fixed controller to actually run it. The I/O and rack configurations of the
processors do not have to match, however, the processor and I/O
configuration must match the EEPROM program in order to enter the Run
mode. If you do, a major fault will occur.

You cannot use a SLC 5/02 processor to burn a program configured for a
SLC 5/01 processor or fixed controller. A program configured for a SLC
5/01 processor or fixed controller can only be downloaded to a SLC 5/01
processor or fixed controller.

Burning EEPROMs for a SLC 5/02 Processor

You can use one SLC 5/02 processor to burn the EEPROM program, and
another SLC 5/02 processor to actually run it. The I/O and rack
configurations of the two processors do not have to match, however, the
processor and I/O configuration must match the EEPROM program in order
to enter the Run mode. If you do, a major fault will occur.

You cannot use a SLC 5/01 processor or fixed controller to burn a program
configured for a SLC 5/02 processor. A program configured for a SLC 5/02
processor can only be downloaded to a SLC 5/02 processor.

EEPROM Burning Options

Chapter 14
Using EEPROMs and UVPROMs

14–6

Burning EEPROMS for SLC Configurations

If you have a SLC 5/02 processor or SLC 5/01 4k processor, you can burn
EEPROMs for any fixed, SLC 5/01, or SLC 5/02 program.

You may choose to use UVPROM modules. These modules are protected
against electrical erasure. You can transfer a program from the UVPROM to
the processor, but you cannot transfer a program to the UVPROM.
To transfer a program from a UVPROM memory module to the processor
RAM, follow the “Transferring A Program from an EEPROM” procedures
earlier in this chapter.

Program loading is done with a commercially available PROM programmer,
and a:

• 1747–M5 adapter
• 1747–M3 or 1747–M4 UVPROM
• either a 1747–M1 or 1747–M2 complementary EEPROM containing the

program to be transferred to the 1747–M3 or 1747–M4 UVPROM
• or a copy of the program in an INT INTELLEC 8/MDS Hex file format

as created by the Advanced Programming Software PROM Translator
Utility. Refer to the APS User Manual.

The 1747–M1 or 1747–M2 EEPROM would contain the program to be
transferred to the 1747–M3 or 1747–M4 UVPROM.

UVPROM Memory Modules

A–B 15Chapter

15–1

Instruction Set Overview

This chapter:

• takes a brief look at the instruction set
• lists the name, mnemonic, and function of each instruction
• points out the instructions that can be used only with SLC 5/02 processors

Important: To avoid misapplication, do not apply any of the instructions
until you have read the detailed descriptions in chapters 16
through 26.

On page 15–9 you will find an Instruction Locator. This is a list of the
instruction mnemonics, in alphabetical order, with page references.

The instruction set is divided into the classifications named in chapters 16
through 26. A brief description of the individual instructions in each
classification follows.

Bit Instructions – Chapter 16

Instruction Name
 and Mnemonic

5/02
Only

•
Function – Conditional (Input) or Output

Instructions as Noted

Examine if Closed XIC Conditional instruction. True when bit is on (1).

Examine if Open XIO Conditional instruction. True when bit is off (0).

One–Shot Rising OSR Conditional instruction. Makes rung true for one scan
upon each false-to-true transition of conditions
preceding it in the rung.

Output Energize OTE Output instruction. True (1) when conditions preceding
it are true. Goes false when conditions preceding it go
false.

Output Latch OTL Output instruction. Addressed bit goes true (1) when
conditions preceding the OTL instruction are true.
When conditions go false, OTL remains true until rung
containing OTU instruction with same address goes
true.

Output Unlatch OTU Output instruction. Addressed bit goes false (0) when
conditions preceding the OTU instruction are true.
Remains false until rung containing OTL instruction with
same address goes true.

Instruction Classifications

Chapter 15
Instruction Set Overview

15–2

Timer and Counter Instructions – Chapter 17

Instruction Name
and Mnemonic

5/02
Only

•
Function – Output Instructions

Timer On-Delay TON Counts time intervals when conditions preceding it in
the rung are true. Produces an output when
accumulated value (count) reaches preset value.
Resets when rung is false (non–retentive).

Timer Off-Delay TOF Counts time intervals when conditions preceding it in
the rung are false. Produces an output when
accumulated value (count) reaches preset value.
Resets when rung is true (non–retentive).

Retentive Timer RTO This is an On-Delay timer that retains its accumulated
value when:
– rung conditions go false;
– the mode changes to program from run or test;
– the processor loses power;
– a fault occurs.

Count Up CTU Counts up for each false–to–true transition of conditions
preceding it in the rung. Produces an output when
accumulated value (count) reaches preset value.

Count Down CTD Counts down for each false–to–true transition of
conditions preceding it in the rung. Produces an output
when accumulated value (count) reaches preset value.

High–speed
Counter

HSC Applies to 24 VDC fixed I/O controllers only. Counts
high–speed pulses from a high–speed input. Maximum
pulse rate of 8kHz.

Reset RES Used with timers and counters. When conditions
preceding it in the rung are true, the RES instruction
resets the accumulated value and control bits of the
timer or counter. It is also used to reset position value
and control bits of a sequencer.

Chapter 15
Instruction Set Overview

15–3

I/O Message and Communications Instructions – Chapter 18

Instruction Name
and Mnemonic

5/02
Only

•
Function – Output Instructions

Immediate Input
with Mask

IIM When conditions preceding it in the rung are true, the
IIM instruction is enabled and interrupts the program
scan to read the status of a word of external inputs and
transfer it through a mask to the input data file.

Immediate Output
with Mask

IOM When conditions preceding it in the rung are true, the
IOM instruction is enabled and interrupts the program
scan to read a word of data from the output data file
and transfer the data through a mask to the
corresponding external outputs.

Message
Read/Write

MSG • This instruction transfers data from one node to another
on the DH–485 network. When the instruction is
enabled, message transfer is pending. Actual data
transfer takes place at the end of the scan, during the
communications portion of the operating cycle.

Service
Communications

SVC • When conditions preceding it in the rung are true, the
SVC instruction interrupts the program scan to execute
the communications portion of the operating cycle. The
program scan time then resumes from where it left off.

I/O Interrupt Enable
I/O Interrupt Disable
Reset Pending
I/O Interrupt

IIE
IID
RPI

•
•
•

The IIE, IID, and RPI instructions are used with
specialty I/O modules capable of generating an
interrupt. See chapter 31 for functional details.

I/O Refresh REF • When conditions preceding it in the rung are true, the
REF instruction interrupts the program scan to execute
the I/O scan (write outputs-service comms-read inputs).
The program scan then resumes from where it left off.

Chapter 15
Instruction Set Overview

15–4

Comparison Instructions – Chapter 19

Instruction Name
and Mnemonic

5/02
Only

•
Function – Conditional Input Instructions

Equal EQU Instruction is true when source A = source B.

Not Equal NEQ Instruction is true when source A source B.�

Less Than LES Instruction is true when source A < source B.

Less Than or Equal LEQ Instruction is true when source A < source B.

Greater Than GRT Instruction is true when source A > source B.

Greater Than or
Equal

GEQ Instruction is true when source A > source B.

Masked
Comparison for
Equal

MEQ Compares 16-bit data of a source address to 16-bit
data at a reference address through a mask. If the
values match the instruction is true.

Limit Test LIM • True/false status of the instruction depends on how a
test value compares to specified low and high limits.

Chapter 15
Instruction Set Overview

15–5

Math Instructions – Chapter 20

Instruction Name
and Mnemonic

5/02
Only

•
Function – Output Instructions

Add ADD When rung conditions are true, the ADD instruction
adds source A to source B and stores the result in the
destination.

Subtract SUB When rung conditions are true, the SUB instruction
subtracts source B from source A and stores the result
in the destination.

Multiply MUL When rung conditions are true, the MUL instruction
multiplies source A by source B and stores the result in
the destination.

Divide DIV When rung conditions are true, the DIV instruction
divides source A by source B and stores the result in
the destination and the math register.

Double Divide DDV When rung conditions are true, the DDV instruction
divides the contents of the math register by the source
and stores the result in the destination and the math
register.

Negate NEG When rung conditions are true, the NEG instruction
subtracts the source from zero and stores the result in
the destination.

Clear CLR When rung conditions are true, the CLR instruction
clears the destination to zero.

Convert to BCD TOD When rung conditions are true, the TOD instruction
converts the source value to BCD and stores it in the
math register or the destination file of the SLC 5/02.

Convert from BCD FRD When rung conditions are true, the FRD instruction
converts a BCD value in the math register or the source
file of the SLC 5/02 to an integer, and stores it in the
destination.

Decode DCD When rung conditions are true, the DCD instruction
decodes 4-bit value (0 to 16), turning on the
corresponding bit in 16-bit destination.

Square Root SQR • When rung conditions are true, the SQR instruction
calculates the square root of the source and places the
rounded result in the destination.

Scale SCL • When rung conditions are true, the SCL instruction
multiplies the source by a specified rate. The result is
added to an offset value and placed in the destination.

Chapter 15
Instruction Set Overview

15–6

Move and Logical Instructions – Chapter 21

Instruction Name
and Mnemonic

5/02
Only

•
Function – Output Instructions

Move MOV When rung conditions are true, the MOV instruction
moves a copy of the source to the destination.

Masked Move MVM When rung conditions are true, the MVM instruction
moves a copy of the source through a mask to the
destination.

And AND When rung conditions are true, sources A and B of the
AND instruction are ANDed bit by bit and stored in the
destination.

Inclusive Or OR When rung conditions are true, sources A and B of the
OR instruction are ORed bit by bit and stored in the
destination.

Exclusive Or XOR When rung conditions are true, sources A and B of the
XOR instruction are Exclusive ORed bit by bit and
stored in the destination.

Not NOT When rung conditions are true, the source of the NOT
instruction is inverted (0→1, 1→0) bit by bit and stored
in the destination.

File Copy and File Fill Instructions – Chapter 22

Instruction Name
and Mnemonic

5/02
Only

•
Function – Output Instructions

File Copy COP When rung conditions are true, the COP instruction
copies a user-defined source file to the destination file.

File Fill FLL When rung conditions are true, the FLL instruction
loads a source value into a specified number of
elements in a user-defined file.

Chapter 15
Instruction Set Overview

15–7

Bit Shift, FIFO, and LIFO Instructions – Chapter 23

Instruction Name
and Mnemonic

5/02
Only

•
Function – Output Instructions

Bit Shift Left
Bit Shift Right

BSL
BSR

On each false–to–true transition, these instructions
load a bit of data into a bit array, shift the pattern of
data through the array, and unload the end bit of data.
The BSL shifts data to the left and the BSR shifts
data to the right.

First In First Out (FIFO)
Load (FFL)
Unload (FFU)

FFL
FFU

•
•

The FFL instruction loads a word into an FIFO stack
on successive false–to–true transitions. The FFU
unloads a word from the stack on successive
false–to–true transitions. The first word loaded is the
first to be unloaded.

Last In First Out (LIFO)
Load (LFL)
Unload (LFU)

LFL
LFU

•
•

The LFL instruction loads a word into an LIFO stack
on successive false–to–true transitions. The LFU
unloads a word from the stack on successive
false–to–true transitions. The last word loaded is the
first to be unloaded.

Sequencer Instructions – Chapter 24

Instruction Name
and Mnemonic

5/02
Only

•
Function – Output Instructions

Sequencer Output SQO On successive false–to–true transitions, the SQO
transfers a word of data from a programmed
sequencer file through a mask to a destination word.

Sequencer Compare SQC On successive false–to–true transitions, the SQC
compares a source word or file through a mask to a
word of data in a programmed sequencer file for
equality.

Sequencer Load SQL • On successive false–to–true transitions, the SQL
loads a word of source data into the current element
of a sequencer file.

Chapter 15
Instruction Set Overview

15–8

Control Instructions – Chapter 25

Instruction Name
and Mnemonic

5/02
Only

•

Function – Conditional Input or Output
Instructions

as Noted

Jump to Label JMP Output instruction. When rung conditions are true,
the JMP instruction causes the program scan to
jump forward or backward to the corresponding
LBL instruction.

Label LBL Conditional instruction. This is the target of the
correspondingly numbered JMP instruction.

Jump to Subroutine JSR Output instruction. When rung conditions are true,
the JSR instruction causes the processor to jump
to the targeted subroutine file.

Subroutine SBR Conditional instruction. Placed as the first
instruction in a subroutine file. Identifies the
subroutine as a non–interrupt file.

Return from Subroutine RET Output instruction, placed in subroutine. When
rung conditions are true, the RET instruction
causes the processor to resume program
execution in the main program file or the previous
subroutine file.

Master Control Reset MCR Output instruction. Used in pairs to inhibit/enable a
zone within a ladder program.

Temporary End TND Output instruction. When rung conditions are true,
the TND instruction stops the program scan,
updates I/O and communications, then resumes
scanning at rung 0 of the main program file.

Suspend SUS Output instruction, used for troubleshooting. When
rung conditions are true, the SUS instruction
places the controller in the Suspend Idle mode.
The suspend ID number is placed in word S:7 and
the program file number is placed in S:8.

Selectable Timed Disable
Selectable Timed Enable
Selectable Timed Start

STD
STE
STS

•
•
•

Output instructions, associated with the Selectable
Timed Interrupt (STI) function. STD and STE are
used to prevent an STI from occurring during a
portion of the program; STS initiates an STI.

Interrupt Subroutine INT • Conditional instruction. Placed as the first
instruction in a Selectable Timed Interrupt
subroutine file or an I/O Event–Driven Interrupt
subroutine file. Identifies the subroutine as an
interrupt file.

Chapter 15
Instruction Set Overview

15–9

Proportional Integral Derivative Instruction – Chapter 26

Instruction Name
and Mnemonic

5/02
Only

•
Function – Output Instruction

Proportional
Integral Derivative

PID • This instruction is used to control physical properties
such as temperature, pressure, liquid level, or flow rate
of process loops.

The table below lists instructions by mnemonic, in alphabetical order. Page
references are included.

PagePage Instruction Mnemonic and Name

MOV Move 21–2
MSG Message • 18–1
MUL Multiply 20–7
MVM Masked Move 21–3

NEG Negate 20–10
NEQ Not Equal 19–3
NOT Not 21–8

OR Or 21–6
OSR One Shot Rising 16–6
OTE Output Energize 16–4
OTL Output Latch 16–5
OTU Output Unlatch 16–5

PID Proportional Integral Derivative • 26–1

REF I/O Refresh • 18–19
RES Reset 17–13
RET Return from Subroutine 25–6
RPI Reset Pending I/O Interrupt • 18–16
RTO Retentive Timer On–Delay 17–5

SBR Subroutine 25–6
SCL Scale Data • 20–21
SQC Sequencer Compare 24–2
SQL Sequencer Load • 24–8
SQO Sequencer Output 24–2
SQR Square Root • 20–20
STD STI Disable • 25–10
STE STI Enable • 25–10
STS STI Start Immediately • 25–10
SUB Subtract 20–4
SUS Suspend 25–9
SVC Service Communications • 18–14

TND Temporary End 25–8
TOD Convert to BCD 20–12
TOF Timer Off–Delay 17–4
TON Timer On–Delay 17–3

XIC Examine if Closed 16–2
XIO Examine if Open 16–3
XOR Exclusive Or 21–7

Instruction Mnemonic and Name

ADD Add 20–3
AND And 21–5

BSL Bit Shift Left 23–2
BSR Bit Shift Right 23–2

CLR Clear 20–11
COP File Copy 22–2
CTD Count Down 17–6
CTU Count Up 17–6

DCD Decode 4 to 1 of 16 20–19
DDV Double Divide 20–9
DIV Divide 20–8

EQU Equal 19–2

FFL FIFO Load • 23–5
FFU FIFO Unload • 23–5
FLL File Fill 22–4
FRD Convert from BCD 20–15

GEQ Greater Than or Equal 19–7
GRT Greater Than 19–6

HSC High–speed Counter 17–9

IID I/O Interrupt Disable • 18–17
IIE I/O Interrupt Enable • 18–17
IIM Immediate Input with Mask 18–15
INT Interrupt Subroutine • 25–11
IOM Immediate Output with Mask 18–16

JMP Jump to Label 25–2
JSR Jump to Subroutine 25–4

LBL Label 25–3
LES Less Than 19–4
LEQ Less Than or Equal 19–5
LFL LIFO Load • 23–8
LFU LIFO Unload • 23–8
LIM Limit Test • 19–9

MCR Master Control Reset 25–7
MEQ Masked Comparison for Equal 19–8

5/02
Only

•

5/02
Only

•

Instruction Locator

A–B 16Chapter

16–1

Bit Instructions

This chapter covers the bit instructions with fixed, SLC 5/01, and SLC 5/02
processors:

• Examine if Closed (XIC)
• Examine if Open (XIO)
• Output Energize (OTE)
• Output Latch (OTL)
• Output Unlatch (OTU)
• One–Shot Rising (OSR)

Bit instructions operate on a single bit of data. During operation, the
processor may set or reset the bit, based on logical continuity of ladder rungs.
You can address a bit as many times as your program requires.

The following data files use bit instructions:

• output and input data files. The instructions represent external outputs
and inputs.

• the status data file
• the bit data file. Use these instructions for the internal relay logic of your

program.
• timer, counter, and control data files. The instructions use various control

bits.
• the integer data file. The instructions are used (on the bit level) as your

program requires.

Bit Instructions Overview

Chapter 16
Bit Instructions

16–2

XIC Instruction

False

True

Bit Address State

0

1

Examine if Closed XIC Input Instruction

] [

F1 F2 F3 F4 F5

ZOOM on XIC –] [– 2.0.0.0.1
NAME: EXAMINE IF CLOSED
BIT ADDR: I1:1.0/0 ***************0

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

] [
I:1.0

 0

Logic States:

Specific operation of an XIC instruction having an input data file
address: When an external input device completes its circuit, an on state is
indicated at the input terminal wired to the device. This status of the
terminal is reflected in the input data file at a particular addressed bit. With
the terminal on, the processor finds this bit set (1) during an I/O scan,
causing the XIC instruction to be true. When the input device no longer
completes its circuit, the input terminal is Off; the processor then finds the bit
reset (0) during an I/O scan, causing the XIC instruction to be false.

Examine if Closed (XIC)

Chapter 16
Bit Instructions

16–3

Examine if Open XIO Input Instruction

Bit Address State

0

1

XIO Instruction

True

False

]/[

F1 F2 F3 F4 F5

ZOOM on XIO –]/[– 2.3.0.0.1
NAME: EXAMINE IF OPEN
BIT ADDR: I1:1.0/0 ***************0

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:]/[
I:1.0

 0

Logic States:

(online monitor mode)

Specific operation of an XIO instruction having an input data file
address: When an external input device does not complete its circuit, an Off
state is indicated at the input terminal wired to the device. This status of the
terminal is reflected in the input data file at a particular addressed bit. With
the terminal off, the processor finds this bit in the reset condition (0) during
an I/O scan, causing the XIO instruction to be true. When the input device
completes its circuit, the input terminal will be On; the processor then finds
the bit set (1) during an I/O scan, causing the XIO instruction to be false.

Examine if Open (XIO)

Chapter 16
Bit Instructions

16–4

()

Output Energize OTE Output Instruction

F1 F2 F3 F4 F5

ZOOM on OTE –()– 2.3.0.0.2
NAME: OUTPUT ENERGIZE
BIT ADDR: O0:2.0/7 ********0*******

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays: ()
O:2.0

7

(online monitor mode)

Specific operation of an OTE instruction having an input data file
address: The status of an output terminal is reflected in the output data file
at a particular bit address. When the processor finds a true logic path in the
rung containing the OTE instruction, it sets this bit (1); this turns the output
terminal On and energizes the output device wired to the terminal during an
I/O scan. When a true logic path no longer exists, the processor resets the bit
(0), turning the terminal Off and de-energizing the output device during an
I/O scan.

The OTE instruction is non-retentive. OTE instructions are reset when:

• You enter or return to the Run or Test mode or power is restored.
• A CPU fault occurs.
• The OTE is programmed within an inactive or false MCR zone.
Important: A bit that is set within a subroutine using an OTE instruction

remains set until the subroutine is scanned again.

Avoid duplicate OTE addresses within the same program file: When you
want two or more different conditions or sets of conditions to control an
output, avoid programming two or more OTE instructions with the same
address. This can cause unwanted results. Use input branching and a single
OTE instruction instead, as shown in the example below.

Output B3/3 is energized when
B3/1, or B3/2, or both are true.

] [
B3

1

] [
B3

2

()
B3

3

] [
B3

2

()
B3

3

()
B3

3
] [

B3

1

If B3/1 is true and B3/2 is false, the OTE instruction will not
be energized. This is because the processor controls the
OTE based on the status of the last rung it solved that
contains the OTE address.

AVOID Duplicate OTE Addresses Use Input Branching and a
Single OTE Instead

Output Energize (OTE)

Chapter 16
Bit Instructions

16–5

(L)

Output Latch, Output Unlatch OTL, OTU Output Instruction

(U)

(L)
B3

6
(U)

B3

6

F1 F2 F3 F4 F5

ZOOM on OTL –(L)– 2.3.0.0.2
NAME: OUTPUT LATCH
BIT ADDR: B3/6 *********0******

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

F1 F2 F3 F4 F5

ZOOM on OTU –(U)– 2.4.0.0.2
NAME: OUTPUT UNLATCH
BIT ADDR: B3/6 *********0******

 EDT_DAT

(online monitor mode)

Logic States: Rung New

1
1
1
0
0
1
0
0

True
False
True
False
True
False
True
False

1

0

1

0

StateCondition
Previous

State
Instruction

OTL

OTU

These are retentive output instructions that can be used in a pair for the data
table bit they control. Possible logic states are indicated in the table above.
OTL and OTU instructions can also be used to initialize data values at the bit
level.

When you assign an address to the OTL instruction that corresponds to the
address of an external output terminal, the output device wired to this
terminal is energized when the bit in memory is set (1). An OTU instruction
with the same address as the OTL instruction resets (0) the bit in memory.

Output Latch (OTL), Output
Unlatch (OTU)

Chapter 16
Bit Instructions

16–6

When the processor changes from the Run to the Program mode or when
power is lost (provided there is battery backup or the capacitor retains
memory), the last true output latch or output unlatch instruction in the ladder
program continues to control the bit in memory. The latched output device is
energized even though the rung conditions controlling the output latch
instruction may have gone false.

!
ATTENTION: Physical outputs are turned off under processor
fault conditions. However, when error conditions are fixed, the
controller will resume operation using the data table value stored
at the instruction address.

Your program can examine a bit controlled by OTL and OTU instructions as
often as necessary.

Chapter 16
Bit Instructions

16–7

One–Shot Rising OSR Input Instruction

[OSR]
B3

0

OSR

F1 F2 F3 F4 F5

ZOOM on OSR –|OSR|– 2.3.0.0.2
NAME: ONE SHOT RISING
BIT ADDR: B3/0 ***************0

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The OSR instruction is a retentive input instruction that triggers an event to
occur one time. Use the OSR instruction when an event must start based on
the change of state of the rung from false–to–true, not on the resulting status.
Applications include starting events triggered by a pushbutton switch. An
example is freezing rapidly displayed LED values.

This instruction makes a rung true for one program scan upon every
false-to-true transition of the conditions preceding it in the rung. The output
instructions on the rung are executed for only one program scan, even if the
rung goes true and remains true.

Instruction Parameters

Use a bit address from either the bit or integer data file. The addressed bit is
set (1) as long as rung conditions preceding the OSR instruction are true; the
bit is reset (0) when rung conditions preceding the OSR instruction are false.

The address assigned to the OSR instruction is not the one–shot address to be
referenced by your program. The address allows the OSR instruction to
“remember” its previous rung state. The output instruction(s) that follow the
OSR instruction can be referenced by your program.

The bit address you use for this instruction must be unique. Do not use it
elsewhere in the program.

We recommend that you do not use an input or output address to program the
address parameter of the OSR instruction.

The following rungs illustrate the use of the OSR instruction.

One-Shot Rising (OSR)

Chapter 16
Bit Instructions

16–8

()
O:3.0

0
]/[

B3

1

TOD
TO BCD
Source T4:0.ACC

Dest O:3

When the input instruction goes from false–to–true, the OSR instruction conditions the
rung so that the output goes true for one program scan. The output goes false and
remains false for successive scans until the input makes another false–to–true transition.

] [
I:1.0

0
[OSR]
B3

0
()

O:3.0

0

[OSR]
B3

3
()

O:3.0

1
] [

B3

2

] [
I:1.0

0
[OSR]
B3

0

] [
I:1.0

0
[OSR]
B3

0

SLC 5/02 Processors Only

This example is the same as the one above, except that a MOV instruction is not required.
The accumulated value of a timer is converted to BCD and moved to an output word
where an LED display is connected. When the timer is running, the accumulated value is
changing rapidly. This value can be frozen and displayed for each false–to–true transition
of the input condition of the rung.

Using the OSR instruction in output branching such as in this example is permitted when
using the SLC 5/02 processor. In this case, when I:1/0 is on, output O:3/0 will be on for
one scan only if B3/1 in not on, and output O:3/1 will be on for one scan only if B3/2 is on.

Fixed, SLC 5/01, SLC 5/02 Processors

TOD
TO BCD
Source T4:0.ACC

Dest S:13

] [
I:1.0

0
[OSR]
B3

0

MOV
MOVE
Source S:13

Dest O:3

In this case, the accumulated value of a timer is converted to BCD and moved to an
output word where an LED display is connected. When the timer is running, the
accumulated value is changing rapidly. This value can be frozen and displayed for each
false–to–true transition of the input condition of the rung.

The SLC 5/02 processor allows you to use one OSR instruction per output in
a rung. The SLC 5/01 processor allows you to use one OSR instruction per
rung. Do not place input conditions after the OSR instruction in a rung.
Unexpected operation may occur.

A–B 17Chapter

17–1

Timer and Counter Instructions

This chapter covers the following timer and counter instructions for use with
all processors except where noted:

• Timer On-Delay (TON)
• Timer Off-Delay (TOF)
• Retentive Timer On-Delay (RTO)
• Count Up (CTU)
• Count Down (CTD)
• High–Speed Counter (HSC) – fixed controller only
• Counter or Timer Reset (RES)

Timers and counters are output instructions. They include:

• Timer On-Delay (TON). It counts timebase intervals when the rung is
true and resets when the rung is false (non–retentive). The timebase is
selectable as 0.01 sec or 1.0 sec for SLC 5/02 processors, and set at 0.01
sec for fixed controllers and SLC 5/01 processors. See page 17–3.

• Timer Off-Delay (TOF). It counts timebase intervals when the rung is
false and resets when the rung is true (non–retentive). The timebase is
selectable as 0.01 sec or 1.0 sec for SLC 5/02 processors, and set at 0.01
sec for fixed controllers and SLC 5/01 processors. See page 17–4.

• Retentive Timer On-Delay (RTO). An on-delay timer which retains its
accumulated value when the rung goes false. See page 17–5.

• Count Up (CTU). The count increments at each false-true transition of
the rung. See page 17–7.

• Count Down (CTD). The count decrements at each false-true transition
of the rung. See page 17–7.

• High–Speed Counter (HSC). A special CTU counter for use with fixed
controllers having 24 VDC inputs. See page 17–9.

• Counter or Timer Reset (RES). This instruction resets the accumulated
value and status bits of a counter or timer. It cannot be used with TOF
timers. See page 17–13.

Timer and counter instructions have 3-word data file elements, illustrated on
pages 17–2 and 17–7. Word 0 is the control word, containing the status bits
of the instruction. Word 1 is the preset value. Word 2 is the accumulated
value.

The accumulated value is the current number of timebase intervals that have
been measured for a timer instruction; for a counter instruction, it is the
number of false-to–true transitions that have occurred. The preset value is
the set point that you enter in the timer or counter instruction.

When the accumulated value becomes equal to or greater than the preset
value, the done status bit is set. You can use this bit to control an output
device.

Timer and Counter
Instructions Overview

Chapter 17
Timer and Counter Instructions

17–2

Preset and accumulated values for timers range from 0 to +32,767. If a timer
preset or accumulated value is a negative number, a runtime error occurs and
places the processor in a fault condition.

Preset and accumulated values for counters range from –32,768 to +32,767.

Indexed Word Addresses

With SLC 5/02 processors, you have the option of referencing timer and
counter preset and accumulated values in other areas of your program with
indexed addressing. The purpose of using indexed addressing is to change
the presets of several timers or counters or to reset several timers or counters.
Before you do so, refer to the discussion of indexed addressing in 3–word
elements, page 4–13.

Data File Elements
Control word data for timer instructions includes three timer status bits, as
indicated below. These are the only bits accessible in the control word.

EN TT DN Internal Use

15 14 13

Preset Value

Accumulated Value

EN = Timer Enable Bit
TT = Timer Timing Bit
DN = Timer Done Bit

Timebase

The timebase is a measure of the interval counted by a timer. Selectable as
0.01 sec or 1.0 sec for SLC 5/02 processors. Fixed at 0.01 sec for fixed
controllers and SLC 5/01 processors.

Accuracy

Timing accuracy is minus 0.01 to plus 0 seconds, with a program scan of up
to 2.5 seconds.

Timing accuracy described here refers only to the length of time between the
moment a timer instruction is enabled and the moment the timed interval is
complete. Inaccuracy caused by the program scan can be greater than the
timer time base. You must also consider the time required to energize the
output device.

Timing could be inaccurate if a Jump (JMP) or Jump to Subroutine (JSR)
instruction is executed and skips over a rung containing the timer instruction
while the timer is timing. If the skip duration is within 2.5 seconds, no time
will be lost; if the skip duration exceeds 2.5 seconds, an undetectable timing
error will occur.

Timer Data File Elements,
Timebase, and Accuracy

Chapter 17
Timer and Counter Instructions

17–3

Timer On–Delay TON Output Instruction

(TON)

(EN)

(DN)

TON
TIMER ON DELAY
Timer T4:0
Time Base 0.01
Preset 120
Accum 0

F1 F2 F3 F4 F5

ZOOM on TON –(TON)– 2.0.0.0.2
NAME: TIMER ON DELAY
TIMER: T4:0 TIME BASE .01 SEC
PRESET: 120
ACCUM: 0
 EN TT DN
 0 0 0
 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

Operation: The TON instruction begins to count timebase intervals when
rung conditions become true. As long as rung conditions remain true, the
timer adjusts its accumulated value (ACC) each scan until it reaches the
preset value (PRE). The accumulated value is reset when rung conditions go
false, regardless of whether the timer has timed out.

Status Bits

The done bit (DN) is set when the accumulated value is equal to the preset
value. It is reset when rung conditions become false.

The timer timing bit (TT) is set when rung conditions are true and the
accumulated value is less than the preset value. It is reset when the rung
conditions go false or when the done bit is set.

The enable bit (EN) is set when rung conditions are true; it is reset when
rung conditions become false.

Effects of processor mode changes: When the processor changes from the
Run or Test mode to the Program mode or user power is lost while the
instruction is timing but has not reached its preset value, the following
occurs:

• Timer enable and timing bits remain set.
• Accumulated value remains the same.

Upon return to the Run or Test mode, the following can happen:

• If the rung is true, the accumulated value is reset, and the timing and
enable bits remain set.

• If the rung is false, the accumulated value is reset and the control bits are
reset.

Timer On-Delay (TON)

Chapter 17
Timer and Counter Instructions

17–4

Timer Off–Delay TOF Output Instruction

(TOF)

(EN)

(DN)

TOF
TIMER OFF DELAY
Timer T4:1
Time Base 0.01
Preset 120
Accum 0

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

F1 F2 F3 F4 F5

ZOOM on TOF –(TOF)– 2.0.0.0.2
NAME: TIMER OFF DELAY
TIMER: T4:1 TIME BASE .01 SEC
PRESET: 120
ACCUM: 0
 EN TT DN
 0 0 0
 EDT_DAT

(online monitor mode)

Operation: The TOF instruction begins to count timebase intervals when
the rung makes a true-false transition. As long as rung conditions remain
false, the timer increments its accumulated value (ACC) each scan until it
reaches the preset value (PRE). The accumulated value is reset when rung
conditions go true regardless of whether the timer has timed out.

Status Bits

The done bit (DN) is reset when the accumulated value is equal to the preset
value. It is set when rung conditions become true.

The timing bit (TT) is set when rung conditions are false and the
accumulated value is less than the preset value. It is reset when the rung
conditions go true or when the done bit is reset.

The enable bit (EN) is set when rung conditions are true; it is reset when
rung conditions become false.

Effects of processor mode changes: When processor operation changes
from the Run or Test mode to the Program mode or user power is lost while a
timer off-delay instruction is timing but has not reached its preset value, the
following occurs:

• Timer enable bit remains reset.
• Timing and done bits remain set.
• The accumulated value remains the same.

Timer Off-Delay (TOF)

Chapter 17
Timer and Counter Instructions

17–5

When you go back to the Run or Test mode, the following can happen:

• If the rung is true, the accumulated value is reset, the timing bit is reset,
the enable bit is set, and the done bit remains set.

• If the rung is false, the accumulated value is set equal to the preset value
and the control bits are reset.

The counter/timer RES instruction cannot be used with the TOF instruction.

Retentive Timer RTO Output Instruction

(RTO)

(EN)

(DN)

RTO
RETENTIVE TIMER ON
Timer T4:2
Time Base 0.01
Preset 120
Accum 0

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

F1 F2 F3 F4 F5

ZOOM on RTO –(RTO)– 2.0.0.0.2
NAME: RETENTIVE TIMER ON
TIMER: T4:2 TIME BASE .01 SEC
PRESET: 120
ACCUM: 0
 EN TT DN
 0 0 0
 EDT_DAT

(online monitor mode)

Operation: The RTO instruction begins to count timebase intervals when
rung conditions become true. As long as rung conditions remain true, the
timer increments its accumulated value (ACC) each scan until it reaches the
preset value (PRE). The accumulated value is retained when any of the
following occurs:

• Rung conditions become false.
• You change processor operation from the Run or Test mode to the

Program mode.
• The processor loses power (provided that battery backup is maintained).
• A fault occurs.

When you return the processor to the Run or Test mode and/or rung
conditions go true, timing continues from the retained accumulated value.
By retaining its accumulated value, retentive timers measure the cumulative
period during which rung conditions are true. You can use this instruction to
turn an output on or off depending on your ladder logic.

Retentive Timer (RTO)

Chapter 17
Timer and Counter Instructions

17–6

Status Bits

• The done bit (DN) is set when the accumulated value is equal to the
preset value. However, it is not reset when rung conditions become false;
it is reset only when the appropriate RES instruction is enabled.

• The timing bit (TT) is set when rung conditions are true and the
accumulated value is less than the preset value. It is reset when the rung
conditions go false or when the done bit is set.

• The enable bit (EN) is set when rung conditions are true; it is reset when
rung conditions become false.

The accumulated value must be reset by the RES instruction. When the RES
instruction having the same address as the RTO is enabled, the accumulated
value and the control bits are reset.

Effects of processor mode changes: When the processor changes from the
Run or Test mode to the Program or Fault mode, or user power is lost while
the timer is timing but not yet at the preset value, the following occurs:

• The timer enable and timing bits remain set.
• The accumulated value remains the same.

When you return to the Run or Test mode or power is restored, the following
can happen:

• If the rung is true, the accumulated value remains the same and continues
incrementing from where it stopped. The enable and timing bits remain
set.

• If the rung is false, the accumulated value remains the same, the timing
and enable bits are reset, and the done bit remains in its last state.

Chapter 17
Timer and Counter Instructions

17–7

Count Up, Count Down CTU, CTD Output Instructions

(CTU) (CTD)

(CU)

(DN)

CTU
COUNT UP
Counter C5:0
Preset 120
Accum 0

(CU)

(DN)

CTD
COUNT DOWN
Counter C5:1
Preset 120
Accum 0

HHT Ladder Displays:

HHT Zoom Displays:

Ladder Diagrams and APS Displays:

F1 F2 F3 F4 F5

ZOOM on CTU –(CTU)– 2.3.0.0.2
NAME: COUNT UP
COUNTER: C5:0
PRESET: 120
ACCUM: 0
 CU CD DN OV UN
 0 0 0 0 0
 EDT_DAT

F1 F2 F3 F4 F5

ZOOM on CTD –(CTD)– 2.4.0.0.2
NAME: COUNT DOWN
COUNTER: C5:1
PRESET: 120
ACCUM: 0
 CU CD DN OV UN
 0 0 0 0 0
 EDT_DAT

(online monitor mode)

CTU and CTD instructions are retentive. Count up and count down
instructions count false-to-true rung transitions. These rung transitions could
be caused by events occurring in the program such as parts traveling past a
detector or actuating a limit switch.

Each count is retained when the rung conditions again become false. The
count is retained until an RES instruction having the same address as the
counter instruction is enabled.

Each counter instruction has a preset and accumulated value and a control
word associated with it. The accumulated value is retained after the CTU or
CTD instruction goes false, and when power is removed from and then
restored to the processor. Also, the on or off status of counter done,
overflow, and underflow bits is retentive.

Count Up (CTU) and Count
Down (CTD)

Chapter 17
Timer and Counter Instructions

17–8

Status Bits

The control word for counter instructions includes six status bits, indicated in
the figure below.

CU CD DN OV UN UA Not Used

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Preset Value

Accumulated Value

CU = Counter up enable bit
CD = Counter down enable bit
DN = Done bit
OV = Overflow bit
UN = Underflow bit
UA = Update accumulator (HSC only)

Counter preset and accumulated values are stored as signed integers.
Negative values are stored in two’s complementary form.

When rung conditions for a CTU instruction have a false-to-true transition,
the accumulated value increments by one count, provided that an evaluation
occurs between these transitions. When this occurs successively so that the
accumulated value becomes equal to the preset value, the counter done (DN)
bit is set and remains set if the accumulator exceeds the preset.

Bit 15 of the counter control word is the count up enable (CU) bit. It is set
when rung conditions of the CTU instruction are true. The bit is reset when
either rung conditions go false or an RES instruction having the same address
as the CTU instruction is enabled.

CTU instructions can count beyond their preset value. When counting
continues past the preset value and reaches (32,767 + 1), an overflow
condition results. This is indicated when bit 12, the overflow (OV) bit, is set.
You can reset the overflow bit by enabling a RES instruction having the same
address as the CTU instruction. You can also reset the overflow bit by
decrementing the count less than or equal to 32,767 with a CTD instruction.

When the OV bit is set, the accumulated value wraps around to – 32,768 and
continues counting up from there.

Chapter 17
Timer and Counter Instructions

17–9

CTD instructions also count false-to-true rung transitions. The counter
accumulated value is decremented one count for each false-to-true transition.
When a sufficient number of counts has occurred and the accumulated value
becomes less than the preset value, the counter done bit (bit 13) is reset.

Bit 14 of the counter control word is the count down enable (CD) bit. It is
set when rung conditions of the CTD instruction are true. It is reset when
either rung conditions go false (count down instruction disabled) or the
appropriate reset instruction is enabled.

When a CTD instruction counts beyond its preset value and reaches a count
of (–32,768 – 1), the underflow bit (UN) is set. You can reset it by
energizing the appropriate RES instruction. You can also reset the underflow
bit by incrementing the count greater than or equal to –32,768 with a CTU
instruction having the same address as the CTD instruction.

When the UN bit is set, the accumulated value wraps around to +32,767 and
continues counting down from there.

Fixed Controllers Only

High–Speed Counter HSC Output Instruction

(HSC)

(CU)

(DN)

HSC
HIGH–SPEED COUNTER
Counter C5:0
Preset 800
Accum 0

F1 F2 F3 F4 F5

ZOOM on HSC –(HSC)– 2.0.0.0.2
NAME: HIGH–SPEED COUNTER
COUNTER: C5:0
PRESET: 800
ACCUM: 0
 CU CD DN OV UN UA
 0 0 0 0 0 0
 EDT_DAT

HHT Ladder Displays:

HHT Zoom Displays:

Ladder Diagrams and APS Displays:

(online monitor mode)

The High–Speed Counter is a variation of the CTU counter. The HSC
instruction is enabled when the rung logic is true and disabled when the rung
logic is false.

High–Speed Counter (HSC)

Chapter 17
Timer and Counter Instructions

17–10

Important: This instruction provides high–speed counting on fixed
controllers with 24 VDC inputs. One HSC instruction
allowed per controller. To use the instruction, you must clip a
jumper as described in the installation manual, catalog number
1747–NI002. Input I:0/0 then operates in the high–speed mode.
The address of the high–speed counter enable bit is C5:0/CU.
When rung conditions are true, C5:0/CU is set and transitions
occurring at input I:0/0 are counted. The maximum pulse rate is
8 kHz.

Do not program an XIC instruction with the I:0/0 address and
the HSC instruction as the output. This will enable and disable
the high–speed counter –missing counts. Instead, use an
unconditional rung with the HSC instruction, or use a condition
that only prevents the HSC instruction from counting.

To begin high–speed counting, load a preset value into C5:0.PRE and enable
the counter rung. To load a preset value, do one of the following:

• Change to the Run or Test mode from another mode.
• Power up the processor in the Run mode.
• Reset the HSC using the RES instruction.
Automatic reloading occurs when the HSC itself sets the DN bit on interrupt.

Each input transition that occurs at input I:0/0 will cause the accumulator of
the HSC to increment. When the accumulator value equals the preset value,
the done bit (C5:0/DN) will be set, the accumulator will be cleared, and the
preset value (C5:0.PRE) will be loaded into the HSC in preparation for the
next high–speed transition at input I:0/0. The ladder program polls the done
bit (C5:0/DN) to determine the state of the HSC. Once the done bit has been
detected as set, the ladder program should clear bit C5:0/DN (use the unlatch
OTU instruction) before the HSC accumulator again reaches the preset value,
or the overflow bit (C5:0/OV) will be set.

It is important to note that the HSC differs from the CTU and CTD counters
in that the HSC is a hardware counter as opposed to a software counter and
that the HSC operates asynchronously to the ladder program scan. The HSC
accumulator value (C5:0.ACC) is normally updated each time the HSC rung
is evaluated in the ladder program (this means that the HSC hardware
accumulator value is transferred to the HSC software accumulator). Many
HSC counts could occur between HSC evaluations which would make
C5:0.ACC inaccurate when used throughout a ladder program. To allow for
an accurate HSC accumulator value, the update accumulator bit (C5:0/UA)
will cause C5:0.ACC to be immediately updated to the state of the hardware
accumulator when set. (Use the OTE instruction only to reset the UA bit.)
Note: The HSC instruction will immediately clear bit C5:0/UA following the
accumulator update.

The high–speed counter can be reset using the RES instruction at address
C5:0. A reset will clear the HSC status bits, clear the accumulator, and load
the preset value into the counter.

Chapter 17
Timer and Counter Instructions

17–11

The HSC’s status bits and accumulator are non-retentive. At power-up or
Run mode entry, the HSC instruction will clear the status bits, clear the
accumulator, and load the preset value.

Instruction Parameters

Address C5:0 is the HSC counter 3-word element.

CU CD DN OV UN UA Not Used

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Preset Value

Accumulated Value

CU = Indicates enable/disable status of the HSC
CD = Does not apply to HSC
DN = Done bit
OV = Overflow bit
UN = Does not apply to HSC
UA = Update accumulator

• Word 0 contains the status bits of the HSC instruction:
– Bit 10 (UA) updates the accumulator word of the HSC to reflect the

immediate state of the HSC when true.
– Bit 12 (OV) indicates if a HSC overflow has occurred.
– Bit 13 (DN) indicates if the HSC preset value has been reached.
– Bit 15 (CU) shows the enable/disable state of the HSC.

• Word 1 contains the preset value that is loaded into the HSC when the
RES instruction is executed, when the done bit is set, or when powerup
takes place. The valid range is 1 – 32767.

• Word 2 contains the HSC accumulated value. This word is updated each
time the HSC instruction is evaluated and when the update accumulator
bit is set using an OTE instruction. This accumulator is read only. Any
value written to the accumulator is overwritten by the actual high–speed
counter on instruction evaluation, reset, or Run mode entry.

Application Example

In the figure that follows, rungs 6, 16, and 31 of the main program file each
consist of an XIC instruction addressed to the HSC done bit and a JSR
instruction. These rungs poll the status of the HSC done bit. When the DN
bit is set at any of these poll points, program execution moves to subroutine
file 3, executing the HSC logic. After the HSC logic is executed, the DN bit
is reset by an unlatch instruction, and program execution returns to the main
program file.

Chapter 17
Timer and Counter Instructions

17–12

JSR
JUMP TO SUBROUTINE
SBR file number 3

SBR
SUBROUTINE

RET
RETURN

]/[

] [
C5:0

DN

()

JSR
JUMP TO SUBROUTINE
SBR file number 3

JSR
JUMP TO SUBROUTINE
SBR file number 3

] [
C5:0

DN

] [
C5:0

DN

] [()] [

(U)
C5:0

DN

0

1

20

21

] [

6

16

31

Program File 3 – Execute HSC Logic

Program File 2 – Poll for DN Bit in Main Program File

Rung

Rung

Unlatch
DN Bit

]/[] [()] [

]/[] [()] [

]/[] [()] [

]/[] [()] [

HSC
Application
Logic

Chapter 17
Timer and Counter Instructions

17–13

Reset RES Output Instruction

(RES)HHT Ladder Displays:

HHT Zoom Displays:

Ladder Diagrams and APS Displays:

F1 F2 F3 F4 F5

ZOOM on RES –(RES)– 2.3.0.0.2
NAME: RESET
COUNTER: C5:0

 EDT_DAT

(RES)
C5:0

(online monitor mode)

You use a reset instruction to reset timing and counting instructions. The
RES instruction can also be used to reset the position value and status bits
(except FD) of a control file (R6:0) used in sequencers, shift registers, etc.

Using the RES instruction with timers and counters: When the RES
instruction is enabled, it resets the retentive on-delay timer, count up, or
count down instruction having the same address as the RES instruction.

• With timers, the RES instruction resets the accumulated value, done bit,
timing bit, and enable bit.

• With counters, the RES instruction resets the accumulated value, overflow
or underflow bit, done bit, and enable bits.

If the counter rung is enabled, the CU or CD bit will be reset as long as the
RES instruction is enabled.

If the counter preset value is negative, the RES instruction sets the
accumulated value to zero. This in turn causes the done bit to be set by a
count down or count up instruction.

!
ATTENTION: Because the RES instruction resets the
accumulated value, and the done, timing, and enabled bits, do not
use the RES instruction to reset a TOF instruction. Unpredictable
machine operation or injury to personnel may occur.

Reset (RES)

A–B 18Chapter

18–1

I/O Message and Communication Instructions

This chapter discusses the following output instructions.

• Instructions for use with fixed, SLC 5/01, and SLC 5/02 processors:
– Immediate Input with Mask (IIM)
– Immediate Output with Mask (IOM)

• Instructions for use with SLC 5/02 processors only:
– Message Read/Write (MSG)
– Service Communications (SVC)
– I/O Interrupt Enable (IIE)
– I/O Interrupt Disable (IID)
– Reset Pending I/O Interrupt (RPI)
– I/O Refresh (REF)

IIE, IID, and RPI instructions apply to I/O event-driven interrupts, discussed
in chapter 31, Understanding I/O Interrupts – SLC 5/02 processor only.

All application examples shown are in the HHT zoom display.

SLC 5/02 Processors Only

Message Read/Write MSG Output Instruction

(MSG)

(EN)

(DN)

(ER)

MSG
READ/WRITE MESSAGE
Read/write WRITE
Target Device 500CPU
Control Block N7:0
Control Block Length 7

F1 F2 F3 F4 F5

ZOOM on MSG –(MSG)– 2.0.0.0.1
NAME: MESSAGE READ/WRITE
MSG TYPE: WRITE LD/LS ADDR:N7:40
TARGET: 500 CPU TARG NODE: 5
CTRL BLK: N7:0 TARG OS/AD:N7:6
EN ST DN ER NR TO MSG LEN: 2
 0 0 0 0 0 0
 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

Message Instruction (MSG)

Instructions

Chapter 18
I/O Message and Communication

18–2

This is an output instruction that allows you to transfer data from one node to
another on the DH–485 network. The instruction can be programmed as a
write message or read message. The target device can be another SLC 500
processor on the network, or a non-SLC 500 device, using the common
interface file (data file 9 in SLC 500 processors).

When the target device is SLC 500, communication can take place between
two SLC 5/02 processors or between a SLC 5/02 processor and a fixed or
SLC 5/01 processor. The instruction cannot be programmed in the fixed or
SLC 5/01 processor.

The data associated with a message write instruction is not sent when you
enable the instruction. Rather, it is sent at the end of the scan during service
communications of the operating cycle or at the time an SVC or REF
instruction in your ladder program is enabled. In some instances, this means
that you must buffer data in your application.

The processor can service only one message instruction at any given time,
although the processor may hold several messages “enabled and waiting.”
Waiting messages are serviced one at a time in sequential order (first in first
out).

Related Status File Bits

Two status bit files are related to the MSG instruction:

• Bit S:2/6, DH–485 Message Reply Pending – Read only. This bit
becomes set when another node on the DH–485 network has supplied the
information or performed the action that you have requested in the MSG
instruction of your processor. This bit is cleared when the processor
stores the information and updates your MSG instruction status bits.
Use this bit as a condition of an SVC instruction to enhance the
communications capability of your processor.

• Bit S:2/7, DH–485 Outgoing Message Command Pending – Read only.
This bit is set when one or more messages in your program are enabled
and waiting, but no message is being transmitted at the time. As soon as
transmission of a message begins, the bit is cleared. After transmission,
the bit is set again if there are further messages waiting, or it remains
cleared if there are no further messages waiting.
Use this bit as a condition of an SVC instruction to enhance the
communications capability of your processor.

You may also be concerned with the function of status file bit S:2/15,
DH–485 Communications Servicing Selection Bit. Refer to chapter 27.

Instructions

Chapter 18
I/O Message and Communication

18–3

Available Configuration Options

The following configuration options are available with a SLC 5/02 processor:

• Peer–to–Peer Write on a local network to another SLC 500 processor
• Peer–to–Peer Read on a local network to another SLC 500 processor
• Peer–to–Peer Write on a local network to a 485CIF (PLC2 emulation)
• Peer–to–Peer Read on a local network to a 485CIF (PLC2 emulation)

Entering Parameters

After you select the MSG instruction on the HHT, the data entry display
appears. You enter seven parameters in the following order.

1. Select Message Type –

F1 F2 F3 F4 F5

ZOOM on MSG –(MSG)– 2.0.0.0.*
NAME: MESSAGE READ/WRITE
MSG TYPE: READ LD/LS ADDR:
TARGET: 500 CPU TARG NODE: 0
CTRL BLK: TARG OS/AD:
CTRL BLK 7 WORDS MSG LEN: 0
SELECT MESSAGE TYPE:
 READ WRITE

Choices are READ, WRITE. Read indicates that the local processor
(processor in which the instruction is located) is receiving data; write
indicates that it is sending data.

After you make a selection [F2] or [F4], the display changes to the
following:

2. Select Target Device –

F1 F2 F3 F4 F5

ZOOM on MSG –(MSG)– 2.0.0.0.*
NAME: MESSAGE READ/WRITE
MSG TYPE: WRITE LD/LS ADDR:
TARGET: 500 CPU TARG NODE: 0
CTRL BLK: TARG OS/AD:
CTRL BLK 7 WORDS MSG LEN: 0
SELECT TARGET DEVICE.
 500 CPU 485 CIF

Choices are 500 CPU, 485 CIF. The target device can be a fixed
controller, SLC 5/01, SLC 5/02 processor (500 CPU) or a non–SLC 500
device (485 CIF). For read message instructions, the target device sends
data. For write message instructions, the target device receives data.

Instructions

Chapter 18
I/O Message and Communication

18–4

After you make a selection [F2] or [F4], the display changes to the
following:

3. Enter Control Block –

F1 F2 F3 F4 F5

ZOOM on MSG –(MSG)– 2.0.0.0.*
NAME: MESSAGE READ/WRITE
MSG TYPE: WRITE LD/LS ADDR:
TARGET: 500 CPU TARG NODE: 0
CTRL BLK: TARG OS/AD:
CTRL BLK 7 WORDS MSG LEN: 0
ENTER CONTROL BLK:

This is an integer file address that you select. It is a 7–element file,
containing the status bits, target file address, and other data associated
with the message instruction.

After you enter an address, the display changes to the following.

4. Local Destination/Source File Address–

F1 F2 F3 F4 F5

ZOOM on MSG –(MSG)– 2.0.0.0.*
NAME: MESSAGE READ/WRITE
MSG TYPE: WRITE LD/LS ADDR:
TARGET: 500 CPU TARG NODE: 0
CTRL BLK: N7:0 TARG OS/AD:
CTRL BLK 7 WORDS MSG LEN: 0
LOCAL SOURCE FILE ADDR:

LD – Local Destination
LS – Local Source

If this is a read message instruction, this parameter is the local destination
file address, the address in the local processor which is to store data that is
read from the target node. If this is a write message instruction, this
parameter is the local source file address, the address in the local
processor which stores data that is written to the target node. Valid file
types are S, B, T, C, R, N.

Instructions

Chapter 18
I/O Message and Communication

18–5

After you enter an address, the display changes to the following.

5. Target Node –

F1 F2 F3 F4 F5

ZOOM on MSG –(MSG)– 2.0.0.0.*
NAME: MESSAGE READ/WRITE
MSG TYPE: WRITE LD/LS ADDR:N7:40
TARGET: 500 CPU TARG NODE: 0
CTRL BLK: N7:0 TARG OS/AD:
CTRL BLK 7 WORDS MSG LEN: 0
TARGET NODE:0

This is the node number of the device that the local processor is reading
or writing to.

After you enter a node number, the display changes to the following.

6. Target File Address/Offset –

F1 F2 F3 F4 F5

ZOOM on MSG –(MSG)– 2.0.0.0.*
NAME: MESSAGE READ/WRITE
MSG TYPE: WRITE LD/LS ADDR:N7:40
TARGET: 500 CPU TARG NODE: 5
CTRL BLK: N7:0 TARG OS/AD:
CTRL BLK 7 WORDS MSG LEN: 0
TARGET FILE ADDR:

OS – Offset
AD – Address

If the target device is a 500 CPU, this is the source or destination file
address in the target processor. Valid file types are S, B, T, C, R, N. If
the target device is 485 CIF, this is the offset value in the common
interface file.

Instructions

Chapter 18
I/O Message and Communication

18–6

After you enter an address, the display changes to the following.

7. Enter Message Length –

F1 F2 F3 F4 F5

ZOOM on MSG –(MSG)– 2.0.0.0.*
NAME: MESSAGE READ/WRITE
MSG TYPE: WRITE LD/LS ADDR:N7:40
TARGET: 500 CPU TARG NODE: 5
CTRL BLK: N7:0 TARG OS/AD:N7:6
CTRL BLK 7 WORDS MSG LEN: 0
ENTER MESSAGE LENGTH:0

This is the length of the message in elements. The 1–word elements are
limited to a maximum length of 41. The 3–word elements (T,C,R) are
limited to a maximum length of 13.

The destination file type determines the number of words that are
transferred. Examples: A MSG read instruction specifying a target file
type C (counter), a destination file type N (integer), and a length value of
1 will transfer 1 word of information. A MSG read instruction specifying
a target file type N, a destination file type C, and a length value of 1 will
transfer 3 words.

The message length is the final parameter. After you enter it, the display
changes to the following.

F1 F2 F3 F4 F5

ZOOM on MSG –(MSG)– 2.0.0.0.*
NAME: MESSAGE READ/WRITE
MSG TYPE: WRITE LD/LS ADDR:N7:40
TARGET: 500 CPU TARG NODE: 5
CTRL BLK: N7:0 TARG OS/AD:N7:6
CTRL BLK 7 WORDS MSG LEN: 2
SELECT MESSAGE TYPE.
 READ WRITE ACCEPT

Pressing [F5], ACCEPT, completes the entry of parameters. If you must
change any of the parameters, you can run through the entry of
parameters again before you press ACCEPT.

Instructions

Chapter 18
I/O Message and Communication

18–7

Control Block Layout

The control block layout if you select 500 CPU as the target device:

EN ST DN ER EW NR TO Error Code

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Target Device Node Number

Reserved for message length in words

Control Block Layout – 500 CPU
Word

0

1

2

Target Address File Number

Target File Type (S, B, T, C, R, N) Code

Target Address Element Number

Reserved

3

4

5

6

The control block layout if you select 485 CIF as the target device:

EN ST DN ER EW NR TO Error Code

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Target Device Node Number

Reserved for message length in words

Control Block Layout – 485 CIF
Word

0

1

2

Target Device Offset

Not used

Not used

Not used

3

4

5

6

MSG Instruction Status Bits

The upper byte of the first word in the control block contains the MSG
instruction status bits.

• Bit 15, EN – Enable bit. This bit is set when rung conditions go true and
the instruction is being executed. It remains set until message
transmission is completed and the rung goes false.

• Bit 14, ST – Start bit. This bit is set when the processor receives
acknowledgement from the target device. The ST bit is reset when the
DN bit or ER bit is set.

• Bit 13, DN – Done bit. This bit is set when the message is transmitted
successfully and is replied to by the target device. The DN bit is reset the
next time the associated rung goes from false–to–true.

• Bit 12, ER – Error bit. This bit is set when message transmission has
failed. The ER bit is reset the next time the associated rung goes from
false–to–true.

• Bit 10, EW – Enabled and waiting. This bit is set after the enable bit is
set and the message is waiting to be sent.

• Bit 09, NR – No response bit. This bit is set if the target processor does
not acknowledge the message request. The NR bit is reset when the ER
bit or DN bit is set.

• Bit 08, TO – Time out bit. You can set this bit in your application to
remove an active message instruction from processor control. Your
application must supply its own timeout value. An example appears on
page 18–13.

Instructions

Chapter 18
I/O Message and Communication

18–8

When you are online, you can locate the cursor on the MSG instruction,
press the Zoom key, and observe the current status of some of these bits:

F1 F2 F3 F4 F5

ZOOM on MSG –(MSG)– 2.0.0.0.2
NAME: MESSAGE READ/WRITE
MSG TYPE: WRITE LD/LS ADDR:N7:40
TARGET: 500 CPU TARG NODE: 5
CTRL BLK: N7:0 TARG OS/AD:N7:6
EN ST DN ER NR TO MSG LEN: 2
 0 0 0 0 0 0
 EDT_DAT

Successful MSG Instruction Timing Diagram

Rung goes True.
Target node
receives packet.

Target node processes packet
successfully and returns data
(read) or writes data (success).

EN

EW

ST

1
0

1
0

1
0

DN

ER

1
0
1
0

Instructions

Chapter 18
I/O Message and Communication

18–9

MSG Instruction Error Codes

When an error condition occurs, the error bit ER is set. The lower byte of
the first word in the control block indicates the type of error:

Error Code
(decimal)

Error Code
(binary)

Error Code
(hex) Description of Error Condition

2 0000 0010 02H Target node is busy. The MSG instruction will automatically
reload. If other messages are waiting, the message is placed at
the bottom of the stack.

3 0000 0011 03H Target node cannot respond because message is too large.

4 0000 0100 04H Target node cannot respond because it does not understand the
command parameters.

5 0000 0101 05H Local processor is offline.

6 0000 0110 06H Target node cannot respond because requested function is not
available.

7 0000 0111 07H Target node does not respond.

16 0001 0000 10H Target node cannot respond because of incorrect command
parameters or unsupported command.

55 0011 0111 37H Message timed out in local processor.

80 0101 0000 50H Target node is out of memory.

96 0110 0000 60H Target node cannot respond because file is protected.

241 1111 0001 F1H Local processor detects illegal target file type.

231 1110 0111 E7H Target node cannot respond because length requested is too
large.

235 1110 1011 EBH Target node cannot respond because target node denies access.

236 1110 1100 ECH Target node cannot respond because requested function is
currently unavailable.

250 1111 1010 FAH Target node cannot respond because another node is file owner
(has sole file access).

251 1111 1011 FBH Target node cannot respond because another node is program
owner (has sole access to all files).

Instructions

Chapter 18
I/O Message and Communication

18–10

To view a MSG instruction error code when troubleshooting, add a MVM
instruction to the program as shown in the example below. This example
assumes the control block is an integer file.

MVM
Source N7:0
Dest 0OFF
Mask B3:0

Application Examples

1. Application example 1 is shown below. It indicates how you can
implement continuous operation of a message instruction.

2. Application example 2 begins on page 18–11 through 18–12. It involves
a SLC 5/02 processor and a SLC 5/01 processor communicating on a
DH–485 link. Interlocking is provided to verify data transfer and to shut
down both processors if communications fails.

Operation: A temperature-sensing device, connected as an input to the
SLC 5/02 processor, controls the on-off operation of a cooling fan,
connected as an output to the SLC 5/01 processor. The SLC 5/02 and
SLC 5/01 ladder programs are explained in the figure on page 18–11.

3. Application example 3 appears on page 18–13. It shows how you can use
the timeout bit TO to disable an active message instruction. In this
example, an output is energized after five unsuccessful attempts (two
seconds duration) to transmit a message.

Example 1

Operation Notes

Bit B3/1 enables the MSG instruction. When the MSG instruction done bit
is set, it unlatches the MSG enable bit so that the MSG instruction will be
enabled in the next scan. This provides continuous operation.

The MSG error bit will also unlatch the enable bit. This provides
continuous operation regardless of errors.

] [
B3

1

(U)
N7:0

15*

(EN)

(DN)

(ER)

MSG
READ/WRITE MESSAGE
Read/write WRITE
Target Device 500CPU
Control Block N7:0
Control Block Length 7

END

] [
N7:0

13*

] [
N7:0

12*

0

1

2

* MSG instruction
 status bits:
 12 = ER
 13 = DN
 15 = EN

Instructions

Chapter 18
I/O Message and Communication

18–11

Example 2 – Program File 2 of SLC 5/02 Processor

(U)
 B3

0

(EN)

(DN)

(ER)

MSG
READ/WRITE MESSAGE
Read/write WRITE
Target Device 500CPU
Control Block N10:0
Control Block Length 7

END

0

2

* MSG instruction
 status bits:
 13 = DN
 15 = EN

]/[
N7:0

0

(L)
 B3

0

()
N7:0

1

(RES)
T4:0

(EN)

(DN)

TON
TIMER ON DELAY
Timer T4:0
Time Base 0.01
Preset 400
Accum 0

Temperature–sensing
Input Device

] [
S:1

15

] [
S:4

6

3

] [
B3

0

(L)
N7:0

0

] [
S:1

15

] [
I:1.0

5

(EN)

(DN)

(ER)

MSG
READ/WRITE MESSAGE
Read/write READ
Target Device 500CPU
Control Block N11:0
Control Block Length 7

] [
N10:0

13*

] [
T4:0

DN

] [
N11:0

13*

(U)
 B3

0

(RES)
T4:0

(L)
N7:0

0

(U)
N11:0

15*

(U)
N10:0

15*

Operation notes appear on the following page.

4

5

6

7

Bit 1 of the message
word. Used for fan
control.

Bit 0 of the message
word. This is the
interlock bit.

4–second Timer

Write message instruction.
The source and target file
addresses are N7:0
Target node: 3
Message length: 1 word.

Read message instruction.
The destination and target
file addresses are N7:0
Target node: 3
Message length: 1 word.

Latch – This alarm
instruction notifies the
application if the interlock
bit N7:0/0 remains set for
more than 4 seconds.

First Pass Bit

First Pass Bit

1280 ms Clock Bit

Message Write Done
Bit

Message Read Done
Bit

1

(L)
B3

10

Instructions

Chapter 18
I/O Message and Communication

18–12

Example 2 – Program File 2 of SLC 5/01 Processor at Node 3

Operation Notes, SLC 5/02 and SLC 5/01 Programs

SLC 5/02 processor: N7:0/0 is latched; timer T4:0 is reset; B3/0 is
unlatched (rung 1), then latched (rung 3). SLC 5/01 processor: N7:0/0
is unlatched; timer T4:0 is reset.

Message instruction operation: The message write instruction in the
SLC 5/02 processor is initiated every 1280 ms by clock bit S:4/6. The
done bit of the message write instruction initiates the message read
instruction.

B3/0 latches the message write instruction. B3/0 is unlatched when the
message read instruction done bit is set, provided that the interlock bit
N7:0/0 is reset.

Communication failure: In the SLC 5/02, bit B3/10 becomes set if
interlock bit N7:0/0 remains set (1) for more than 4 seconds. In the SLC
5/01, bit B3/10 becomes set if interlock bit N7:0/0 remains reset (0) for
more than 4 seconds. Your application can detect this event, take
appropriate action, then unlatch bit B3/10.

(U)
 N7:0

0

END

0

2

()
B3

1

(RES)
T4:0

(EN)

(DN)

TON
TIMER ON DELAY
Timer T4:0
Time Base 0.01
Preset 400
Accum 0

] [
N7:0

0

] [
S:1

15
First Pass Bit

[OSR]
B3

 0

] [
T4:0

DN

] [
B3

1
(U)

 N7:0

 0

(RES)
T4:0

()
O:1.0

0
] [

N7:0

1

1

3

4

5

6

Bit 0 of the message
word. This is the interlock
bit.

4–second Timer

Latch Instruction – This alarm
notifies the application if the
interlock bit N7:0/0 is not set
after 4 seconds.

O:1/0 energizes cooling
fan.

Bit 1 of the message
word. Used for fan
control.

Message instruction parameters: N7:0 is the message word. It is the
target file address (SLC 5/01 processor) and the local source and
destination addresses (SLC 5/02 processor) in the message
instructions.

N7:0/0 of the message word is the interlock bit; it is written to the SLC
5/01 processor as a 1 (set) and read from the SLC 5/01 processor as a
0 (reset).

N7:0/1 of the message word controls cooling fan operation; it is written
to the SLC 5/01 processor as a 1 (set) if cooling is required or as a 0
(reset) if cooling is not required. It is read from the SLC 5/01 processor
as either 1 or 0.

Word N7:0 should have a value of 1 or 3 during the message write
execution. N7:0 should have a value of 0 or 2 during the message
read execution.

Program initialization: The first pass bit S:1/15 initializes the ladder
programs on Run mode entry.

(L)
B3

10

Instructions

Chapter 18
I/O Message and Communication

18–13

Example 3

Operation Notes

The timeout bit is latched (rung 4) after a period of 2 seconds. This
clears the message instruction from processor control on the next
scan. The message instruction is then re-enabled for a second attempt
at transmission. After 5 attempts, O:1/0 is latched.
A successful attempt at transmission resets the counter, unlatches O:1/0,
and unlatches B3/1.

END

0 [LBL]
 1

(EN)
(DN)
(ER)

MSG
READ/WRITE MESSAGE
Read/write WRITE
Target Device 500CPU
Control Block N7:0
Control Block Length 7

]/[
T4:0

DN
(EN)
(DN)

TON
TIMER ON DELAY
Timer T4:0
Time Base 0.01
Preset 200
Accum 0

] [
B3

1

(CU)

(DN)

CTU
COUNT UP
Counter C5:0
Preset 5
Accum 0

(JMP)
 1

 N7:0

8

(RES)
C5:0

(L)
N7:0

(U)
 O:1.0

0

(U)
 B3

1

(L)
O:1.0

0

] [
B3

1

] [
T4:0

DN

] [
C5:0

DN

] [
N7:0

13*

1

2

3

5

6

7

* MSG instruction
 status bits:
 8 = TO
 13 = DN
 15 = EN

2–second timer. Each
attempt at transmission has a
2–second duration.

Counter allows 5 attempts.

N7:0/8 is the message
instruction timeout bit.

Clear the control word and
jump back to rung 0 for
another attempt.

The fifth attempt latches
O:1/0.

B3/1 is latched to initiate
the message instruction.

] [
T4:0

DN

4

] [

8

CLR
CLEAR
DEST N7:0

0

Instructions

Chapter 18
I/O Message and Communication

18–14

SLC 5/02 Processors Only

Service Communications SVC Output Instruction

(SVC)

(SVC)

F1 F2 F3 F4 F5

ZOOM on SVC –(SVC)– 2.0.0.0.1
NAME: SERVICE COMMUNICATIONS

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(monitor mode)

The SVC instruction has no programming parameters. When it is evaluated
as true, the program scan is interrupted to execute the service
communications part of the operating cycle. The scan then resumes at the
instruction following the SVC instruction.

An explanation of the processor operating cycle appears in appendix D.

One status file bit is related to the SVC instruction:

• Bit S:2/5 DH–485 Incoming Command Pending – Read only. This bit
becomes set when the processor determines that another node on the
DH–485 network has requested information or supplied a command to it.
This bit can become set at any time. This bit is cleared when the
processor services the request (or command).
Use this bit as a condition of an SVC instruction to enhance the
communications capability of your processor.

You are not allowed to place an SVC instruction in an STI interrupt, I/O
interrupt, or user fault subroutine.

Application example: The SVC instruction is used when you want to
execute a communications function, such as transmitting a message, prior to
the normal service communications portion of the operating scan:

] [
S:2

7
(SVC)

Outgoing Message
Command Pending Bit

You can place this rung after a message instruction. S:2/7 will be set when
the message instruction is enabled and waiting (provided no message is
currently being transmitted). When S:2/7 is set, the SVC instruction is
evaluated as true and the program scan is interrupted to execute the service
communications portion of the operating scan. The scan then resumes at the
instruction following the SVC instruction.

Service Communications
(SVC)

Instructions

Chapter 18
I/O Message and Communication

18–15

This example assumes that the Comms Servicing Selection bit S:2/15 is clear
and that this is the only active MSG instruction.

Important: You may program the SVC instruction unconditionally.

Immediate Input with Mask IIM Output Instruction

(IIM)

IIM
IMMEDIATE IN w MASK
Slot I:4.0
Mask 00FF

F1 F2 F3 F4 F5

ZOOM on IIM –(IIM)– 2.0.0.0.1
NAME: IMMEDIATE INPUT w/ MASK
SLOT: I1:4.0 0000 0000 0000 0000
MASK: 00FF 00FF

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

This instruction updates input data before the normal input scan. When the
IIM instruction is enabled, the program scan is interrupted. Data from a
specified I/O slot is transferred through a mask to the input data file, making
the data available to instructions following the IIM instruction in the ladder
program.

This instruction operates on the inputs assigned to a particular word of a slot
(16 bits maximum). For the mask, a 1 in an input’s bit position passes data
from the physical input slot to the input data file. A 0 inhibits data from
passing from the source to the destination.

Entering Parameters

SLOT: Specify the slot number and the word number pertaining to the slot.
A slot can have up to 8 words for fixed and SLC 5/01 and 32 words for SLC
5/02.

I:0.0 Inputs of slot 0, word 0 (fixed I/O controller)

I:0.1 Inputs of slot 0, word 1 (fixed I/O controller)

I:1.0 Inputs of slot 1, word 0

Immediate Input with Mask
(IIM)

Instructions

Chapter 18
I/O Message and Communication

18–16

MASK: Specify a Hex constant or register address. Refer to appendix B for
information regarding masks and hexadecimal numbering.

Immediate Output with Mask IOM Output Instruction

(IOM)

IOM
IMMEDIATE OUT w MASK
Slot O:3.0
Mask FF00

F1 F2 F3 F4 F5

ZOOM on IOM –(IOM)– 2.0.0.0.1
NAME: IMMEDIATE OUTPUT w/ MASK
SLOT: O0:3.0 0000 0000 0000 0000
MASK: FF00 FF00

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

This instruction updates outputs before the normal output scan. When the
IOM instruction is enabled, the program scan is interrupted to transfer data to
a specified I/O slot through a mask. The program scan then resumes with the
instruction following the IOM instruction.

This instruction operates on the physical outputs assigned to a particular
word of a slot (16 bits maximum). For the mask, a 1 in the output bit
position passes data from the output data file to the physical output slot. A 0
inhibits the data from passing from the source to the destination.

Entering Parameters

SLOT: Specify the slot number and the word number pertaining to the slot.
A slot can have up to 8 words for fixed and SLC 5/01 and 32 words for SLC
5/02.

O:0.0 Outputs of slot 0, word 0 (fixed I/O controller)

O:1.0 Outputs of slot 1, word 0

O:2.0 Outputs of slot 2, word 1

Specification of slot/word numbers for the modular controller is similar
(except that slot 0 is not applicable).

Immediate Output with
Mask (IOM)

Instructions

Chapter 18
I/O Message and Communication

18–17

MASK: Specify a Hex constant or register address. Refer to appendix B for
information regarding masks and hexadecimal numbering.

SLC 5/02 Processors Only

I/O Interrupt Disable IID Output Instruction
I/O Interrupt Enable IIE Output Instruction
Reset Pending I/O Interrupt RPI Output Instruction

(IID) (IIE) (RPI)

F1 F2 F3 F4 F5

ZOOM on IID –(IID)– 2.4.0.0.1
NAME: I/O INTERRUPT DISABLE
 1 2 3
0 0 0 0
0100 1111 1111 1111 1111 1111 1111 1111

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:
(monitor mode)

F1 F2 F3 F4 F5

ZOOM on IIE –(IIE)– 2.0.0.0.1
NAME: I/O INTERRUPT ENABLE
 1 2 3
0 0 0 0
0011 0000 0000 0000 0000 0000 0000 0001

 EDT_DAT

F1 F2 F3 F4 F5

ZOOM on RPI –(RPI)– 2.0.0.0.1
NAME: RESET PENDING INTERRUPT
 1 2 3
0 0 0 0
0000 0000 0000 0000 0000 0000 0000 0001

 EDT_DAT

IID
I/O INTERRUPT DISABLE
Slots: 2,3

IIE
I/O INTERRUPT ENABLE
Slots: 2,3

RPI
RESET PENDING INTERRUPT
Slots: 1–30

Ladder Diagrams and APS Displays:

I/O Event-Driven Interrupts

Instructions

Chapter 18
I/O Message and Communication

18–18

The I/O Event-Driven Interrupt function is used with specialty I/O modules
capable of generating an interrupt. You specify a subroutine to be executed
upon receipt of such an interrupt.

Important: Refer to chapter 31, Understanding I/O Interrupts – SLC 5/02
Processor Only, before you use these instructions in your
program.

Programming an I/O event interrupt is done through locations in the status
file.

I/O Interrupt Disable and Enable (IID, IIE)

These instructions are generally used in pairs to prevent I/O interrupts from
occurring during time-critical or sequence-critical portions of your main
program or subroutine. These are also optional and are used to disable an
I/O interrupt.

Reset Pending I/O Interrupt (RPI)

This instruction resets the pending status of the specified slots and informs
the corresponding I/O modules that you have aborted their interrupt requests.
This is also optional and is used to disable an I/O interrupt.

Entering Parameters

IID instruction – Enter a 0 (reset) in a slot position to indicate a disabled I/O
interrupt.

IIE instruction – Enter a 1 (set) in a slot position to indicate an enabled I/O
interrupt.

RPI instruction – Enter a 0 (reset) in a slot position to indicate the pending
status of an I/O interrupt is reset (aborted).

Instructions

Chapter 18
I/O Message and Communication

18–19

SLC 5/02 Processors Only

I/O Refresh REF Output Instruction

(REF)

(REF)

F1 F2 F3 F4 F5

ZOOM on REF –(REF)– 2.0.0.0.1
NAME: REFRESH I/O

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(monitor mode)

The REF instruction has no programming parameters. When it is evaluated
as true, the program scan is interrupted to execute the I/O scan, which
includes the service communications portion of the operating cycle (write
outputs, service comms, read inputs). The scan then resumes in the program
scan at the instruction following the REF instruction.

You are not allowed to place an REF instruction in an STI interrupt, I/O
interrupt, or user fault subroutine.

ATTENTION: The watchdog and scan timers are reset when
executing the REF instruction. You must insure that an REF
instruction is not placed inside of a non-terminating program
loop.

Do not place an REF instruction inside of a program loop
unless the program is thoroughly analyzed.

!

I/O Refresh (REF)

A–B 19Chapter

19–1

Comparison Instructions

This chapter covers input instructions that allow you to compare values of
data.

Instructions for use with fixed, SLC 5/01, and SLC 5/02 processors:

• Equal (EQU)
• Not Equal (NEQ)
• Less Than (LES)
• Less Than or Equal (LEQ)
• Greater Than (GRT)
• Greater Than or Equal (GEQ)
• Masked Comparison for Equal (MEQ)

Instruction for use with SLC 5/02 processors only

• Limit (LIM)

The following general information applies to comparison instructions.

Indexed Word Addresses

With SLC 5/02 processors, you have the option of using indexed word
addresses for instruction parameters specifying word addresses. Indexed
addressing is discussed in chapter 4.

Comparison Instructions
Overview

Chapter 19
Comparison Instructions

19–2

Equal EQU Input Instruction

EQU

EQU
EQUAL
Source A N7:1

0
Source B 612

F1 F2 F3 F4 F5

ZOOM on EQU –|EQU|– 2.3.0.0.1
NAME: EQUAL
SOURCE A: N7:1 0
SOURCE B: 612 612

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

When the values at source A and source B are equal, the instruction is
logically true. If these values are not equal, the instruction is logically false.

Entering Parameters

You must enter a word address for source A. You can enter a program
constant or a word address for source B. Signed integers are stored in two’s
complementary form.

Equal (EQU)

Chapter 19
Comparison Instructions

19–3

Not Equal NEQ Input Instruction

NEQ

NEQ
NOT EQUAL
Source A N7:1

0
Source B 612

F1 F2 F3 F4 F5

ZOOM on NEQ –|NEQ|– 2.3.0.0.1
NAME: NOT EQUAL
SOURCE A: N7:1 0
SOURCE B: 612 612

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

When the values at source A and source B are not equal, the instruction is
logically true. If the two values are equal, this instruction is logically false.

Entering Parameters

You must enter a word address for source A. You can enter a program
constant or a word address for source B. Signed integers are stored in two’s
complementary form.

Not Equal (NEQ)

Chapter 19
Comparison Instructions

19–4

Less Than LES Input Instruction

LES

LES
LESS THAN
Source A N7:1

0
Source B 612

F1 F2 F3 F4 F5

ZOOM on LES –|LES|– 2.3.0.0.1
NAME: LESS THAN
SOURCE A: N7:1 0
SOURCE B: 612 612

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

When the value at source A is less than the value at source B, this instruction
is logically true. If the value at source A is greater than or equal to the value
at source B, this instruction is logically false.

Entering Parameters

You must enter a word address for source A. You can enter a program
constant or a word address for source B. Signed integers are stored in two’s
complementary form.

Less Than (LES)

Chapter 19
Comparison Instructions

19–5

Less Than or Equal LEQ Input Instruction

LEQ

LEQ
LESS THAN OR EQUAL
Source A N7:1

0
Source B 612

F1 F2 F3 F4 F5

ZOOM on LEQ –|LEQ|– 2.3.0.0.1
NAME: LESS THAN OR EQUAL
SOURCE A: N7:1 0
SOURCE B: 612 612

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

When the value at source A is less than or equal to the value at source B, this
instruction is logically true. If the value at source A is greater than the value
at source B, this instruction is logically false.

Entering Parameters

You must enter a word address for source A. You can enter a program
constant or a word address for source B. Signed integers are stored in two’s
complementary form.

Less Than or Equal (LEQ)

Chapter 19
Comparison Instructions

19–6

Greater Than GRT Input Instruction

GRT

GRT
GREATER THAN
Source A N7:1

0
Source B 612

F1 F2 F3 F4 F5

ZOOM on GRT –|GRT|– 2.3.0.0.1
NAME: GREATER THAN
SOURCE A: N7:1 0
SOURCE B: 612 612

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

When the value at source A is greater than the value at source B, this
instruction is logically true. If the value at source A is less than or equal to
the value at source B, this instruction is logically false.

Entering Parameters

You must enter a word address for source A. You can enter a program
constant or a word address for source B. Signed integers are stored in two’s
complementary form.

Greater Than (GRT)

Chapter 19
Comparison Instructions

19–7

Greater Than or Equal GEQ Input Instruction

GEQ

GEQ
GRTR THAN OR EQUAL
Source A N7:1

0
Source B 612

F1 F2 F3 F4 F5

ZOOM on GEQ –|GEQ|– 2.3.0.0.1
NAME: GREATER THAN OR EQUAL
SOURCE A: N7:1 0
SOURCE B: 612 612

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

When the value at source A is greater than or equal to the value at source B,
this instruction is logically true. If the value at source A is less than the
value at source B, this instruction is logically false.

Entering Parameters

You must enter a word address for source A. You can enter a program
constant or a word address for source B. Signed integers are stored in two’s
complementary form.

Greater Than or Equal
(GEQ)

Chapter 19
Comparison Instructions

19–8

MASKED EQUAL
Source B3:10

0100011100000000
Mask 00FF

Compare B3:11
0000000001110101

Masked Comparison for Equal MEQ Input Instruction

MEQ

MEQ

F1 F2 F3 F4 F5

ZOOM on MEQ –|MEQ|– 2.3.0.0.1
NAME: MASKED EQUAL
SOURCE A: B3:10 0100 0110 0000 0000
MASK: 00FF 00FF
COMPARE: B3:11 0000 0000 0111 0101

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

This input instruction compares data at a source address with data at a
reference address and allows portions of the data to be masked by a separate
word.

Entering Parameters

• Source – the address of the value you want to compare.
• Mask – a hex value or the address of the mask through which the

instruction moves data. Refer to appendix B for more information
regarding masks and hexadecimal numbering.

• Compare – an integer value or the address of the reference.

If the 16 bits of data at the source address are equal to the 16 bits of data at
the compare address (less masked bits), the instruction is true. The
instruction becomes false as soon as it detects a mismatch. Bits in the mask
word mask data when reset, they pass data when set.

Masked Comparison for
Equal (MEQ)

Chapter 19
Comparison Instructions

19–9

SLC 5/02 Processors Only

Limit Test LIM Input Instruction

LIM

LIM
LIMIT TEST
Low Lim N7:0

14
Test 50

High Lim N7:1
70

F1 F2 F3 F4 F5

ZOOM on LIM –|LIM|– 2.3.0.0.1
NAME: LIMIT TEST
LOW LIM: N7:0 14
TEST: 50 50
HIGH LIM: N7:1 70

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

This input instruction tests for values within or outside a specified range,
depending on how you set the limits.

Entering Parameters

Low Limit, Test, and High Limit values you program can be word addresses
or decimal values, restricted to the following combinations:

• If the Test parameter is a program constant, both the Low Limit and High
Limit parameters must be word addresses.

• If the Test parameter is a word address, the Low Limit and High Limit
parameters can be be either a program constant or a word address.

Limit Test (LIM)

Chapter 19
Comparison Instructions

19–10

True/False Status of the Instruction

If the Low Limit has a value equal to or less than the High Limit, the
instruction is true when the Test value is between the limits or is equal to
either limit. If the Test value is outside the limits, the instruction is false.
This is illustrated in the figure below.

Example, low limit less than high limit:

Low
Limit

High
Limit

Instruction is true
when Test value is

Instruction is false
when Test value is

5 8 5 thru 8 –32,768 thru 4 and 9 thru 32,767

False True False

–32,768
Low Limit High Limit

+ 32,767

If the Low Limit has a value greater than the High Limit, the instruction is
false when the Test value is between the limits. If the Test value is equal to
either limit or outside the limits, the instruction is true. This is illustrated in
the figure below.

8 5 –32,768 thru 5 and 8 thru 32,767 6 thru 7

Example, low limit greater than high limit:

Low
Limit

High
Limit

Instruction is true
when Test value is

Instruction is false
when Test value is

True False True

–32,768
High Limit Low Limit

+ 32,767

A–B 20Chapter

20–1

Math Instructions

This chapter covers output instructions that allow you to perform
computation and math operations on individual words.

Instructions for use with fixed, SLC 5/01, and SLC 5/02 processors:

• Add (ADD)
• Subtract (SUB)
• Multiply (MUL)
• Divide (DIV)
• Double Divide (DDV)
• Negate (NEG)
• Clear (CLR)
• Convert to BCD (TOD)

• Convert from BCD (FRD)
• Decode (DCD)

Instructions for use with SLC 5/02 processors only:

• Square Root (SQR)
• Scale (SCL)

Application techniques possible with Series C and later SLC 5/02 processors:

• 32-bit addition and subtraction

All application examples shown are in the HHT zoom display.

The following general information applies to math instructions.

Entering Parameters

• Source – address(es) of the value(s) on which the mathematical, logical,
or move operation is to be performed; can be word addresses or program
constants. An instruction that has two source operands will not accept
program constants in both operands.

• Destination – the address (destination) of the result of the operation.

Signed integers are stored in two’s complementary form. Refer to appendix
B for more information regarding two’s complement form.

Math Instructions Overview

Chapter 20
Math Instructions

20–2

Using Arithmetic Status Bits

After an instruction is executed, the arithmetic status bits in the status file are
updated:

• Carry (C), S:0/0 – Set if a carry is generated; otherwise cleared.
• Overflow (V), S:0/1 – Indicates that the actual result of a math

instruction does not fit in the designated destination.
• Zero (Z), S:0/2 – Indicates a 0 value after a math, move, or logic

instruction.
• Sign (S), S:0/3 – Indicates a negative (less than 0) value after a math,

move, or logic instruction.

Overflow Trap Bit, S:5/0

The minor error bit is set upon detection of a mathematical overflow or
division by 0. If this bit is still set upon execution of the END statement, a
TND instruction, or an REF instruction, a recoverable major error will be
declared.

In applications where a math overflow or a division by 0 will occur, you can
avoid a major error from occurring by resetting S:5/0 with an unlatch (OTU)
instruction in your program. The rung containing the OTU instruction must
be between the overflow point and the END statement, or TND instruction,
or REF instruction.

Math Register, S:14 and S:13

Status word S:13 contains the least significant word of the 32-bit values of
MUL and DDV instructions. It contains the remainder for DIV and DDV
instructions. It also contains the first four BCD digits for the FRD and TOD
instructions.

Status word S:14 contains the most significant word of the 32-bit values of
MUL and DDV instructions. It contains the unrounded quotient for DIV and
DDV instructions. It also contains the most significant digit (digit 5) for
TOD and FRD instructions.

Indexed Word Addresses

With SLC 5/02 processors, you have the option of using indexed word
addresses for instruction parameters specifying word addresses. Indexed
addressing is discussed in chapter 4.

Chapter 20
Math Instructions

20–3

Add ADD Output Instruction

ADD
ADD
Source A N7:0

879
Source B N7:1

2150
Dest N7:2

3029

(ADD)

F1 F2 F3 F4 F5

ZOOM on ADD –(ADD)– 2.3.0.0.2
NAME: ADD
SOURCE A: N7:0 879
SOURCE B: N7:1 2150
DEST: N7:2 3029

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The value at source A is added to the value at source B and then stored in the
destination.

Using Arithmetic Status Bits

C set if carry is generated; otherwise reset

V set if overflow is detected at destination; otherwise reset. On overflow,
the minor error flag (S:5/0) is also set. The value – 32,768 or 32,767 is
placed in the destination. Exception: If you are using a Series C or later
SLC 5/02 processor and have the Math Overflow Selection Bit S:2/14 set,
then the unsigned, truncated overflow remains in the destination.

Z set if the result is zero; otherwise reset

S set if the result is negative; otherwise reset

Math Register

Contents unchanged.

Add (ADD)

Chapter 20
Math Instructions

20–4

Subtract SUB Output Instruction

(SUB)

SUB
SUBTRACT
Source A N7:0

879
Source B N7:1

2150
Dest N7:2

–1271

F1 F2 F3 F4 F5

ZOOM on SUB –(SUB)– 2.3.0.0.2
NAME: SUBTRACT
SOURCE A: N7:0 879
SOURCE B: N7:1 2150
DEST: N7:2 –1271

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The value at source B is subtracted from the value at source A and then
stored in the destination.

Using Arithmetic Status Bits

C set if borrow is generated; otherwise reset

V set if underflow; otherwise reset. On underflow, the minor error flag
(S:5/0) is also set, and the value-32,768 or 32,767 will be placed in the
destination. Exception: If you are using a Series C or later SLC 5/02
processor and have the Math Overflow Selection Bit S:2/14 set, then the
unsigned, truncated overflow remains in the destination.

Z set if the result is zero; otherwise reset

S set if the result is negative; otherwise reset

Math Register

Contents unchanged.

Subtract (SUB)

Chapter 20
Math Instructions

20–5

With the Series C SLC 5/02 processor, you have the option of performing
16-bit signed integer addition and subtraction (same as Series B SLC 5/02
processors) or 32-bit signed integer addition and subtraction. This is
facilitated by status file bit S:2/14, the Math Overflow Selection Bit.

Bit S:2/14 Math Overflow Selection

Set this bit when you intend to use 32-bit addition and subtraction. When
S:2/14 is set, and the result of an ADD, SUB, MUL, or DIV instruction
cannot be represented in the destination address (due to a math underflow or
overflow):

• The overflow bit S:0/1 is set.
• The overflow trap bit S:5/0 is set.
• The destination address contains the unsigned truncated least significant

16 bits of the result. When combined with the operation of the carry bit,
the unsigned truncated value in the destination allows you to retain the
true value of the result.

The default condition of S:2/14 is reset (0). This provides the same operation
as that of the Series B SLC 5/02 processor. When S:2/14 is reset, and the
result of an ADD, SUB, MUL, or DIV instruction cannot be represented in
the destination address (underflow or overflow):

• The overflow bit S:0/1 is set.
• The overflow trap bit S:5/0 is set.
• The destination address contains 32767 if the result is positive or –32768

if the result is negative.
Note that the status of bit S:2/14 has no effect on the DDV instruction. Also,
it has no effect on the math register content when using MUL and DIV
instructions.

Example of 32-Bit Addition

The following example shows how a 16-bit signed integer is added to a
32-bit signed integer. Remember that S:2/14 must be set for 32-bit addition.

Note that in this program, the value of the most significant 16 bits (B3:3) of
the 32-bit number is increased by 1 if the carry bit S:0/0 is set and it is
decreased by 1 if the number being added (B3:1) is negative.

To avoid a major error from occurring at the end of the scan, you must
unlatch overflow trap bit S:5/0 as shown.

32-Bit Addition and
Subtraction–Series C and
Later SLC 5/02 Processors

Chapter 20
Math Instructions

20–6

(U)
 S:5

0
END

] [
B3

 0
[OSR]
B3

 1

When rung goes true for a
single scan, B3:1 is added
to B3:2. The result is
placed in B3:2.

SUB
SUBTRACT
Source A B3:3

0000000000000011
Source B 1

Dest B3:3
0000000000000011

ADD
ADD
Source A B3:1

0101010110101000
Source B B3:2

0001100101000000
Dest B3:2

0001100101000000

ADD
ADD
Source A 1

Source B B3:3
0000000000000011

Dest B3:3
0000000000000011

] [
S:0

 0

] [
B3

31

Add 16–bit value B3:1 to 32–bit value B3:3 B3:2

Add operation Binary Hex Decimal

B3:3 B3:2
B3:1

B3:3 B3:2

0000 0000 0000 0011 0001 1001 0100 0000
0101 0101 1010 1000

0000 0000 0000 0011 0110 1110 1110 1000

0003 1940
55A8

0003 6EE8

203,072
21,928

225,000

Addend
Addend

Sum

If a carry is generated (S:0/0
set), 1 is added to B3:3.

If B3:1 is negative (B3/31
set), 1 is subtracted from
B3:3.

Overflow trap bit S:5/0 is
unlatched to prevent a major
error from occurring at the
end of the scan.

Application Note: You could use the rung above with a DDV instruction and a
counter to find the average value of B3:1

➀

➀ The programming device displays 16–bit decimal values only. The decimal value of a 32–bit integer is derived from
the displayed binary or hex value. For example, 0003 1940 Hex is 164x3 + 163x1 + 162x9 + 161x4 + 160x0 = 203,072.

Chapter 20
Math Instructions

20–7

Multiply MUL Output Instruction

(MUL)

MUL
MULTIPLY
Source A N7:0

8
Source B N7:1

2150
Dest N7:2

17200

F1 F2 F3 F4 F5

ZOOM on MUL –(MUL)– 2.3.0.0.2
NAME: MULTIPLY
SOURCE A: N7:0 8
SOURCE B: N7:1 2150
DEST: N7:2 17200

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The value at source A is multiplied by the value at source B and then stored
in the destination.

Using Arithmetic Status Bits

C always reset

V set if overflow is detected at the destination; otherwise reset. On
overflow, the minor error flag is also set. The value 32,767 or –32,768 is
placed in the destination. Exception: If you are using a Series C or later
SLC 5/02 processor and have the Math Overflow Selection Bit S:2/14 set,
then the unsigned, truncated overflow remains in the destination.

Z set if the result is zero; otherwise reset

S set if the result is negative; otherwise reset

Math Register

Contains the 32–bit signed integer result of the multiply operation. This
result is valid at overflow.

Multiply (MUL)

Chapter 20
Math Instructions

20–8

Divide DIV Output Instruction

(DIV)

DIV
DIVIDE
Source A N7:0

6214
Source B N7:1

19
Dest N7:2

327

F1 F2 F3 F4 F5

ZOOM on DIV –(DIV)– 2.3.0.0.2
NAME: DIVIDE
SOURCE A: N7:0 6214
SOURCE B: N7:1 19
DEST: N7:2 327

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The value at source A is divided by the value at source B with the rounded
quotient being stored in the destination. If the remainder is 0.5 or greater,
round up occurs in the destination. The unrounded quotient is stored in the
most significant word of the math register. The remainder is placed in the
least significant word of the math register.

Using Arithmetic Status Bits

C always reset

V set if division by zero or overflow; otherwise reset. On overflow, the
minor error flag is also set. The value 32,767 is placed in the destination.
Exception: If you are using a Series C or later SLC 5/02 processor and
have the Math Overflow Selection Bit S:2/14 set, then the unsigned,
truncated overflow remains in the destination.

Z set if the result is zero; otherwise reset; undefined if overflow is set

S set if the result is negative; otherwise reset; undefined if overflow is set

Math Register

The unrounded quotient is placed in the most significant word, the remainder
is placed in the least significant word.

Divide (DIV)

Chapter 20
Math Instructions

20–9

DDV
DOUBLE DIVIDE
Source N7:0

9
Dest N7:1

5000

Double Divide DDV Output Instruction

(DDV)

F1 F2 F3 F4 F5

ZOOM on DDV –(DDV)– 2.3.0.0.2
NAME: DOUBLE DIVIDE
SOURCE: N7:0 9
DEST: N7:1 5000

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The contents of the math register are divided by the source value. The
rounded quotient is placed in the destination. If the remainder is 0.5 or
greater, round up occurs in the destination. The unrounded quotient is placed
in the most significant word of the math register. The remainder is placed in
the least significant word of the math register.

Using Arithmetic Status Bits

C always reset

V set if division by zero or if the result is greater than 32,767 or less than
–32,768; otherwise reset. On overflow, the minor error flag is also set.
The value 32,767 is placed in the destination.

Z set if the result is zero; otherwise reset

S set if the result is negative; otherwise reset; undefined if overflow is set

Math Register

Initially contains the dividend of the DDV operation. Upon instruction
execution the unrounded quotient is placed in the most significant word of
the math register. The remainder is placed in the least significant word of the
math register.

Double Divide (DDV)

Chapter 20
Math Instructions

20–10

NEG
NEGATE
Source N7:0

98
Dest N7:1

–98

Negate NEG Output Instruction

(NEG)

F1 F2 F3 F4 F5

ZOOM on NEG –(NEG)– 2.3.0.0.2
NAME: NEGATE
SOURCE: N7:0 98
DEST: N7:1 –98

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The source value is subtracted from 0 and then stored in the destination.
(The destination contains the 2’s complement of the source.)

Using Arithmetic Status Bits

C cleared if 0 or overflow, otherwise set.

V set if overflow, otherwise reset. On overflow, the minor error flag is also
set. The value 32,767 is placed in the destination. Exception: If you are
using a Series C or later SLC 5/02 processor and have the Math Overflow
Selection Bit S:2/14 set, then the unsigned, truncated overflow remains in
the destination.

Z set if the result is zero; otherwise reset.

S set if the result is negative; otherwise reset.

Math Register

Unchanged.

Negate (NEG)

Chapter 20
Math Instructions

20–11

Clear CLR Output Instruction

(CLR)

CLR
CLEAR
Dest N7:1

0

F1 F2 F3 F4 F5

ZOOM on CLR –(CLR)– 2.3.0.0.2
NAME: CLEAR
DEST: N7:1 0

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The destination value is cleared to zero.

Using Arithmetic Status Bits

C always reset

V always reset

Z always set

S always reset

Math Register

Unchanged.

Clear (CLR)

Chapter 20
Math Instructions

20–12

Convert to BCD TOD Output Instruction

(TOD)

TOD
TO BCD
Source N7:0

557
Dest N7:1

0557

TOD
TO BCD
Source N7:0

557
Dest S:13

00000557

F1 F2 F3 F4 F5

ZOOM on TOD –(TOD)– 2.3.0.0.2
NAME: TO BCD
SOURCE: N7:0 557
DEST: S:13 1367 (decimal)

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

F1 F2 F3 F4 F5

ZOOM on TOD –(TOD)– 2.3.0.0.2
NAME: TO BCD
SOURCE: N7:0 557
DEST: N7:1 1367 (decimal)

 EDT_DAT

(online monitor mode)

BCD BCD

SLC 5/02 Processors

SLC 5/02 ProcessorsFixed, SLC 5/01 Processors

Fixed, SLC 5/01 Processors

Use this conversion instruction when you want to display or transfer BCD
values external to the processor.

Entering Parameters

• Source – the address of the value to be converted to BCD. If the integer
value you enter is negative, the sign is ignored and the conversion occurs
as if the number were positive. The absolute value of the number is used
for conversion.

• Destination – the address of the location to hold the result of the
conversion. With SLC 5/02 processors, the destination parameter can be
a word address in any data file, or it can be the math register, S:13 and
S:14. With fixed and SLC 5/01 processors, the destination can only be
the math register.
If the math register is the destination, 32,767 is the maximum value. If a
word address is used, 9999 is the maximum value.

Convert to BCD (TOD)

Chapter 20
Math Instructions

20–13

Using Arithmetic Status Bits

C always reset

V set if the BCD result is larger than 9999. Overflow results in a minor
error.

Z set if the destination value is zero

S set if the source word is negative; otherwise reset

Math Register (When Used)

Contains the 5–digit BCD result of the conversion. This result is valid at
overflow.

Example 1 (SLC 5/02 Processors Only)

The integer value 9760 stored at N7:3 is converted to BCD and the BCD
equivalent is stored in N10:0. The maximum BCD value possible is 9999.

Destination is displayed as
–26784, decimal
(equivalent to 9760 BCD).

9 7 6 0

9 7 6 0

N7:3 Decimal 0010 0110 0010 0000

N10:0 4–digit BCD 1001 0111 0110 0000

F1 F2 F3 F4 F5

ZOOM on TOD –(TOD)– 2.3.0.0.2
NAME: TO BCD
SOURCE: N7:3 9760
DEST: N10:0 –26784

 EDT_DAT

9 7 6 0

Chapter 20
Math Instructions

20–14

Example 2 (Fixed, SLC 5/01, and SLC 5/02 Processors)

In the following example, the integer value 32760 stored at N7:3 is converted
to BCD. The 5-digit BCD value is stored in the math register. The lower 4
digits of the BCD value is moved to output word O:2 and the remaining digit
is moved thru a mask to output word O:3.

When using the math register as the destination parameter in the TOD
instruction, the maximum BCD value possible is 32767. However, for BCD
values above 9999, the overflow bit is set, resulting in minor error bit S:5/0
also being set. Your ladder program can unlatch S:5/0 before the end of the
scan to avoid major error 0020, as done in this example.

TOD
TO BCD
Source N7:3

32760
Dest S:13

00032760

(U)
 S:5

0
] [

S:0

 1

APS displays S:13 and S:14
in BCD.

MOV
MOVE
Source S:13

10080
Dest O:2.0

10080

MVM
MASKED MOVE
Source S:14

3
Mask 000F

Dest O:3.0
3

] [

0 0 0 3 2 7 6 0

3 2 7 6 0

0 01515

N7:3 Decimal

S:13 & S:14 5–digit BCD

S:14 S:13

This example will output the absolute value (0–32767) contained in N7:3 as 5 BCD digits in output slots 2 and 3.

Minor Error Bit

0010 0111 0110 0000

0000 0000 0000 0011

Overflow bit

2 7 6 0

3

F1 F2 F3 F4 F5

ZOOM on TOD –(TOD)– 2.3.0.0.2
NAME: TO BCD
SOURCE: N7:3 32760
DEST: S:13 10080

 EDT_DAT

Destination is displayed as
10080, decimal
(equivalent to 2760 BCD).

Chapter 20
Math Instructions

20–15

Convert from BCD FRD Output Instruction

(FRD)

Fixed, SLC 5/01 Processors

FRD
FROM BCD
Source N7:0

2620
Dest N7:1

2620

FRD
FROM BCD
Source S:13

00000557
Dest N7:1

557

F1 F2 F3 F4 F5

ZOOM on FRD –(FRD)– 2.3.0.0.2
NAME: FROM BCD
DEST: N7:1 557
SOURCE: S:13 1367 (decimal)

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

F1 F2 F3 F4 F5

ZOOM on FRD –(FRD)– 2.3.0.0.2
NAME: FROM BCD
SOURCE: N7:0 9760 (decimal)
DEST: N7:1 2620

 EDT_DAT

(online monitor mode)

BCD BCD

Fixed, SLC 5/01 Processors

SLC 5/02 Processors

SLC 5/02 Processors

Use this instruction when you want to convert BCD values to integer or
decimal values.

Entering Parameters

• Source – word address of the value in BCD to be converted to
integer/decimal. With SLC 5/02 processors, the source parameter can be
a word address in any data file, or it can be the math register, S:13. With
fixed and SLC 5/01 processors, the source can only be the math register.
If the math register is the source, 32,767 is the maximum value. If a word
address is used, 9999 is the maximum value.

• Destination – word address to contain the converted decimal/integer
value.

Convert from BCD (FRD)

Chapter 20
Math Instructions

20–16

Using Arithmetic Status Bits

C always reset

V set if a non-BCD value is contained at the source or the value to be
converted is greater than 32,767; otherwise reset. Overflow results in a
minor error.

Z set when destination value is zero

S always reset

Math Register (When Used)

Used as the source for converting the entire number range of a register.

Ladder Logic Filtering of BCD Input Devices

We recommend that you always provide ladder logic filtering of all BCD
input devices prior to executing the FRD instruction. The slightest difference
in point–to–point input filter delay can cause the FRD instruction to fault due
to conversion of a non–BCD digit. An example of filtering is shown below.

The above rungs cause the processor to verify that the value at slot 2 (I:2)
remains the same for two consecutive scans before the FRD instruction is
executed. This prevents the FRD instruction from converting a non–BCD
value during an input value change.

FRD
FROM BCD
Source I:2

Dest N7:2

MOV
MOVE
Source I:2

Dest N7:1

]/[
S:1

15

EQU
EQUAL
Source A N7:1

Source B I:2

Chapter 20
Math Instructions

20–17

Example 1 (SLC 5/02 Processors Only)

The BCD value 9760 at source N7:3 is converted from BCD and stored in
N10:0. The maximum source value is 9999, BCD.

9 7 6 0

9 7 6 0 N7:3 4–digit BCD 1001 0111 0110 0000

N10:0 Decimal 0010 0110 0010 0000

F1 F2 F3 F4 F5

ZOOM on FRD –(FRD)– 2.3.0.0.2
NAME: FROM BCD
SOURCE: N7:3 –26784
DEST: N10:0 9760

 EDT_DAT

Source is displayed as
–26784, decimal (equivalent
to 9760 BCD).

9 7 6 0

Example 2 (Fixed, SLC 5/01, and SLC 5/02 Processors)

The BCD value 32760 in the math register is converted and stored in N10:0.
The maximum source value is 32767, BCD.

0 0 0 3 2 7 6 0

3 2 7 6 0

0 01515 5–digit BCDS:14 S:13
0000 0000 0000 0011 0010 0111 0110 0000

N10:0 Decimal 0111 1111 1111 1000

F1 F2 F3 F4 F5

ZOOM on FRD –(FRD)– 2.3.0.0.2
NAME: FROM BCD
DEST: N10:0 32760
SOURCE: S:13 10080

 EDT_DAT

Source is displayed as
10080, decimal (equivalent to
32760 BCD).

You should convert BCD values to integer before you manipulate them in
your ladder program. If you do not convert the values, the processor
manipulates them as integer and their value is lost.

Important: If the math register (S:13 and S:14) is used as the source for the
FRD instruction and the BCD value does not exceed 4 digits, be
sure to clear word S:14 before executing the FRD instruction.
If S:14 is not cleared and a value is contained in this word from
another math instruction located elsewhere in the program, an
incorrect decimal value will be placed in the destination word.

Chapter 20
Math Instructions

20–18

An example of clearing S:14 before executing the FRD instruction is shown
below.

When the input condition is set (1), a BCD value (from a 4-digit thumbwheel switch for example) is
moved from word N7:2 into the math register. Status word S:14 is then cleared to make certain
that unwanted data is not present when the FRD instruction is executed.

CLR
CLEAR
Dest S:14

0

FRD
FROM BCD
Source S:13

00001234
Dest N7:0

1234

APS displays S:13 and
S:14 in BCD.

MOV
MOVE
Source N7:2

4660
Dest S:13

4660

] [
I:1.0

 0 0001 0010 0011 0100

0000 0100 1101 0010

Chapter 20
Math Instructions

20–19

Decode 4 to 1 of 16 DCD Output Instruction

(DCD)

DCD
DECODE 4 to 1 of 16
Source N7:0

11A7
Dest N7:1

0000000010000000

F1 F2 F3 F4 F5

ZOOM on DCD –(DCD)– 2.3.0.0.2
NAME: DECODE 4 TO 1 OF 16
SOURCE: N7:0 4519 (decimal)
DEST: N7:1 128 (decimal)

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

Hex

Binary

When the rung is true, this output instruction turns on one bit of the
destination word. The particular bit that is turned on depends on the value of
the first four bits of the source word. See the table below. This instruction
can be used to multiplex data. It could be used for applications such as
rotary switches, keypads, bank switching, etc.

 Source Destination

Bit 15–04 03 02 01 00 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 x 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 x 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
 x 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
 x 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
 x 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 x 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
 x 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 x 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
 x 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
 x 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 x 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 x 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 x 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 x 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Decode 4 to 1 of 16 (DCD)

Chapter 20
Math Instructions

20–20

Entering Parameters

• Source – the address that contains the bit decode information. Only the
first four bits (0–3) are used by the DCD instruction. The remaining bits
may be used for other application specific needs. Change the value of the
first four bits of this word to select one bit of the destination word.

• Destination – the address of the word to be decoded. Only one bit of this
word is turned on at any one time, depending on the value of the source
word.

Using Arithmetic Status Bits

Unaffected.

SLC 5/02 Processors Only

Square Root SQR Output Instruction

(SQR)

SQR
SQUARE ROOT
Source N7:0

21583
Dest N7:1

147

F1 F2 F3 F4 F5

ZOOM on SQR –(SQR)– 2.3.0.0.2
NAME: SQUARE ROOT
SOURCE: N7:0 21583
DEST: N7:1 147

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

When this instruction is evaluated as true, the square root of the absolute
value of the source is calculated and the rounded result is placed in the
destination.

The instruction will calculate the square root of a negative number without
overflow or faults. In applications where the source value may be negative,
use a comparison instruction to evaluate the source value to determine if the
destination may be invalid.

Square Root (SQR)

Chapter 20
Math Instructions

20–21

Using Arithmetic Status Bits

C reserved

V always reset

Z set when destination value is zero

S always reset

Math Register

Contents unchanged.

SLC 5/02 Processors Only

SCL
SCALE
Source N7:0

9760
Rate [/10000] 25000

Offset 127

Dest N7:1
24527

Scale Data SCL Output Instruction

(SCL)

F1 F2 F3 F4 F5

ZOOM on SCL –(SCL)– 2.3.0.0.2
NAME: SCALE
SOURCE: N7:0 9760
RATE: 25000 25000
OFFSET: 127 127
DEST: N7:1 24527

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

Scale Data (SCL)

Chapter 20
Math Instructions

20–22

This instruction can be used to solve linear equations of the form

Dest = (Rate/10000) x Source + Offset

“Rate” is sometimes referred to as Slope.

When the SCL instruction is true, the value at the source address is
multiplied by the rate value. The rounded result is added to the offset value
and placed in the destination.

Example

SCL
SCALE
Source N7:0

100
Rate [/10000] 25000

Offset 127

Dest N7:1
377

The source 100 is multiplied by
25000/10000 and added to 127.
The result 377 is placed in
the destination.

Important: In some cases, a mathematical overflow can occur before the
offset is added. The overflow sets minor error bit S:5/0. If this
bit is not reset in your ladder program before the end of the
scan, a major error will be declared.

Entering Parameters

The range of values for the following parameters is –32,768 to 32,767.

• Source – This can be a program constant (decimal) or a word address.
• Rate – This is the positive or negative value you enter divided by 10,000.

It can be a program constant (decimal) or a word address. The rate
parameter is limited to a range of –3.2768 to 3.2767.

• Offset – This can be a program constant (decimal) or a word address.
• Destination – This is a word address containing the linear calulation

(Rate/10000) x Source + Offset.

Using Arithmetic Status Bits

C reserved

V presence of an overflow at the destination is checked before and after the
offset value is applied. This bit is set if an overflow is detected; otherwise
reset. On overflow, minor error bit S:5/0 is also set and the value –32,768
or 32,767 is placed in the destination.

Z set when destination value is zero.

S set if the destination value is negative; otherwise reset.

Chapter 20
Math Instructions

20–23

Math Register

Contents unchanged.

Typical Application – Converting Degrees Celsius to Degrees Fahrenheit

Convert degrees Celsius to degrees Fahrenheit. The conversion equation is
F = (9/5)C + 32, or F = (1.8)C + 32.

Example: 25 degrees C = 77 degrees F.

F = (1.8)25 + 32 = 77. Graphically,

25 100

32

77

100

C

F

To implement the conversion equation

F = (1.8)25 + 32 = 77

in the SCL instruction:

1. Place the degrees C value (25 in this case) in the source parameter.

2. The multiplier is 1.8, so place a program constant value of 18000 in the
rate parameter.

3. 32 must be added. Place this program constant in the offset parameter.

When the SCL instruction goes true, the result will appear in the word
address entered in the destination parameter.

SCL
SCALE
Source N7:0

25
Rate [/10000] 18000

Offset 32

Dest N7:1
77

The source 25 is multiplied by
18000/10000 and added to 32. The
result 77 is placed in the destination.

A–B 21Chapter

21–1

Move and Logical Instructions

This chapter covers output instructions that allow you to perform move and
logical operations on individual words. Use these instructions with fixed,
SLC 5/01 and SLC 5/02 processors:

• Move (MOV)
• Masked Move (MVM)
• And (AND)
• Inclusive Or (OR)
• Exclusive Or (XOR)

• Not (NOT)

All application examples shown are in the HHT zoom display.

The following general information applies to move and logical instructions.

Entering Parameters

• Source – This is the address of the value on which the logical or move
operation is to be performed. It can be a word address or a program
constant. If the instruction has two source operands, it will not accept
program constants in both operands.

• Destination – This is the address of the result of the move or logical
operation. It must be a word address.

Indexed Word Addresses

With SLC 5/02 processors, you have the option of using indexed word
addresses for instruction parameters specifying word addresses. Indexed
addressing is discussed in chapter 4.

Using Arithmetic Status Bits

After an instruction is executed, the arithmetic status bits in the status file are
updated:

• Carry (C), S:0/0 – Set if a carry is generated; otherwise cleared.
• Overflow (V), S:0/1 – Indicates that the actual result of a math instruction

does not fit in the designated destination.
• Zero (Z), S:0/2 – Indicates a 0 value after a math, move or logic

instruction.
• Sign (S), S:0/3 – Indicates a negative (less than 0) value after a math,

move or logic instruction.

Move and Logical Instructions
Overview

Chapter 21
Move and Logical Instructions

21–2

Overflow Trap Bit, S:5/0

Minor error bit set upon detection of a mathematical overflow or division by
0. If this bit is set upon execution of the END statement or a TND
instruction, a major error will be declared.

Math Register, S:13 and S:14

Move and logical instructions do not affect the math register.

Move MOV Output Instruction

(MOV)

MOV
MOVE
Source N7:0

9760
Dest N7:1

9760

F1 F2 F3 F4 F5

ZOOM on MOV –(MOV)– 2.3.0.0.2
NAME: MOVE
SOURCE: N7:0 9760
DEST: N7:1 9760

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The processor moves a copy of the source value to the destination location.

Entering Parameters

• Source – a program constant or the address of the data you want to move.
• Destination – the address where the instruction moves the data.

Move (MOV)

Chapter 21
Move and Logical Instructions

21–3

Using Arithmetic Status Bits

C always reset

V always reset

Z set if the result is zero; otherwise reset

S set if the result is negative (most significant bit is set); otherwise reset

Application note: If you wish to move 1 word of data without affecting the
math flags, use a copy (COP) instruction with a length of 1 word instead of
using the MOV instruction. The COP instruction is discussed in chapter 22.

Masked Move MVM Output Instruction

(MVM)

MVM
MASKED MOVE
Source B3:6

1111010011110101
Mask 00E0

Dest B3:7
0000000011100000

F1 F2 F3 F4 F5

ZOOM on MVM –(MVM)– 2.3.0.0.2
NAME: MASKED MOVE
SOURCE: B3:6 1111 0100 1111 0101
MASK: 00E0 00E0
DEST: B3:7 0000 0000 1110 0000

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The masked move instruction is a word instruction that moves a copy of the
data from a source location to a destination, and allows portions of the
destination data to be masked by a separate word.

Masked Move (MVM)

Chapter 21
Move and Logical Instructions

21–4

Entering Parameters

• Source – the address of the data you want to move.
• Mask – the address of the mask word through which the instruction

moves data. You can also enter a hex value (constant). Refer to appendix
B for more information regarding masks and hexadecimal numbering.

• Destination – the address where the instruction moves the data.

Using Arithmetic Status Bits

C always reset

V always reset

Z set if the result is zero; otherwise reset

S set if the result is negative; otherwise reset

Operation

When the rung containing this instruction is true, data at the source address
passes through the mask to the destination address.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B3:2 before move

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

source B3:0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

Mask F0F0

0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1

B3:2 after move

MVM
MASKED MOVE
Source B3:0

0101010101010101
Mask F0F0

Dest B3:2
1111111111111111

unaltered unaltered

Mask (do not pass) data by resetting bits in the mask; pass data by setting
bits in the mask. The instruction does not operate unless you set mask bits to
pass data you want to use. The bits of the mask can be fixed by a constant
value, or you can vary them by assigning the mask a direct address. Bits in
the destination that correspond to 0s in the mask are not altered.

Chapter 21
Move and Logical Instructions

21–5

And AND Output Instruction

(AND)

AND
BITWISE AND
Source A B3:6

0001000111010111
Source B B3:7

0000100100100100
Dest B3:8

0000000100000100

F1 F2 F3 F4 F5

ZOOM on AND –(AND)– 2.3.0.0.2
NAME: BITWISE AND
SOURCE A: B3:6 0001 0001 1101 0111
SOURCE B: B3:7 0000 1001 0010 0100
DEST: B3:8 0000 0001 0000 0100

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The value at source A is ANDed bit by bit with the value at source B and
then stored in the destination.

Truth Table: R = A AND B

A B R

0 0 0
1 0 0
0 1 0
1 1 1

A: Source A bit
B: Source B bit
R: Destination bit

Using Arithmetic Status Bits

C always reset

V always reset

Z set if the result is zero; otherwise reset

S set if the most significant bit is set; otherwise reset

And (AND)

Chapter 21
Move and Logical Instructions

21–6

Or OR Output Instruction

OR
BITWISE INCLUS OR
Source A B3:0
0001010110100001

Source B B3:1
0010000000100101

Dest B3:2
0011010110100101

(OR)

F1 F2 F3 F4 F5

ZOOM on OR –(OR)– 2.3.0.0.2
NAME: BITWISE INCLUSIVE OR
SOURCE A: B3:0 0001 0101 1010 0001
SOURCE B: B3:1 0010 0000 0010 0101
DEST: B3:2 0011 0101 1010 0101

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The value at source A is ORed bit by bit with the value at source B and then
stored in the destination.

Truth Table: R = A OR B

A B R

0 0 0
1 0 1
0 1 1
1 1 1

A: Source A bit
B: Source B bit
R: Destination bit

Using Arithmetic Status Bits

C always reset

V always reset

Z set if the result is zero; otherwise reset

S set if the result is negative (most significant bit is set); otherwise reset

Or (OR)

Chapter 21
Move and Logical Instructions

21–7

Exclusive Or XOR Output Instruction

(XOR)

XOR
BITWISE EXCLUS OR
Source A B3:0
0001010110100001

Source B B3:1
0010000000100101

Dest B3:2
0011010110000100

F1 F2 F3 F4 F5

ZOOM on XOR –(XOR)– 2.3.0.0.2
NAME: BITWISE EXCLUSIVE OR
SOURCE A: B3:0 0001 0101 1010 0001
SOURCE B: B3:1 0010 0000 0010 0101
DEST: B3:2 0011 0101 1000 0100

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The value at source A is Exclusive ORed bit by bit with the value at source B
and then stored in the destination.

Truth Table: R = A XOR B

A B R

0 0 0
1 0 1
0 1 1
1 1 0

A: Source A bit
B: Source B bit
R: Destination bit

Using Arithmetic Status Bits

C always reset

V always reset

Z set if the result is zero; otherwise reset

S set if the result is negative (most significant bit is set); otherwise reset

Exclusive Or (XOR)

Chapter 21
Move and Logical Instructions

21–8

Not NOT Output Instruction

(NOT)

F1 F2 F3 F4 F5

ZOOM on NOT –(NOT)– 2.3.0.0.2
NAME: NOT
SOURCE: B3:0 1010 0110 1110 1100
DEST: B3:1 0101 1001 0001 0011

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:
NOT
NOT
Source B3:0

1010011011101100
Dest B3:1

0101100100010011

(online monitor mode)

The source value is NOTed (inverted) bit by bit and then stored in the
destination.

Truth Table: R = NOT A

A R

0 1
1 0

A: Source bit
R: Destination bit

Using Arithmetic Status Bits

C always reset

V always reset

Z set if the result is zero; otherwise reset

S set if the result is negative (most significant bit is set); otherwise reset

Not (NOT)

22Chapter

22–1

File Copy and File Fill Instructions

This chapter covers the following instructions for use with the fixed, SLC
5/01, and SLC 5/02 processors:

• File Copy (COP)
• File Fill (FLL)

These instructions move data from a source file or element to a destination
file. They are similar to a Move (MOV) instruction, but they enable you to
move more than one word at a time. This is facilitated by the use of the file
indicator # in the parameter addresses. The # symbol indicates a file or
group of words, not just one word.

The following general information applies to file copy and file fill
instructions.

Effect on Index Register in SLC 5/02 Processors

After a COP or FLL instruction is executed, index register S:24 is cleared to
zero.

File Copy and Fill Instructions
Overview

Chapter 22
File Copy and File Fill Instructions

22–2

File Copy COP Output Instruction

(COP)

COP
COPY FILE
Source #N7:5
Dest #N10:0
Length 10

F1 F2 F3 F4 F5

ZOOM on COP –(COP)– 2.3.0.0.2
NAME: FILE COPY
LENGTH: 10 10
SOURCE: #N7:5 0
DEST: #N10:0 0

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

This instruction copies data from one location into another. It uses no status
bits. If you need an enable bit, you can program a parallel (branched) output
using a storage address.

The COP instruction moves data from one file to another, as illustrated
below.

Source: File Destination: File

Entering Parameters

• Source – The address of the first word of the file you want to copy. You
must use the file indicator # in the address.

• Destination – The address of the first word of the file where the copy of
the source file will be stored. You must use the file indicator # in the
address.

• Length – The number of elements in the file you want to copy. If the
destination file type is 3 words per element (file types T, C, R), you can
specify a maximum length of 42. If the destination file type is 1 word per
element (file types I, O, S, B, N), you can specify a maximum length of
128.

File Copy (COP)

Chapter 22
File Copy and File Fill Instructions

22–3

All elements are copied from the specified source file into the specified
destination file each scan the rung is true. Elements are copied in ascending
order with no transformation of data. They are copied up to the specified
number (length) or until the last element of the destination file is reached,
whichever occurs first.

The destination file type determines the number of words that the instruction
transfers. For example, if the destination file type is counter and the source
file type is integer, three integer words are transferred for each element in the
counter-type file.

If your destination is a timer, counter, or control file, be sure that the source
words corresponding to the status words of your destination file contains
zeros.

Be sure that you accurately specify the starting address and length of the data
block you are copying. The instruction will not read or write over a file
boundary (such as between files N16 and N17) at the destination.

Note that an error is declared if a write is attempted over a file boundary.

You can perform file shifts by specifying a source element address one or
more elements greater than the destination element address within the same
file. This shifts data to lower element addresses. Shifts to higher element
addresses will not work.

File Fill FLL Output Instruction

FLL
FILL FILE
Source N7:10
Dest #N10:20
Length 10

(FLL)HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

F1 F2 F3 F4 F5

ZOOM on FLL –(FLL)– 2.3.0.0.2
NAME: FILE FILL
LENGTH: 10 10
SOURCE: N7:10 0
DEST: #N10:20 0

 EDT_DAT

File Fill (FLL)

Chapter 22
File Copy and File Fill Instructions

22–4

The FLL instruction loads either an element of data or a program constant
from the source to a destination file, as illustrated below.

Source: Element Destination: File

Typically, the FLL instruction might be used to reset or clear several integer
values all at once.

Entering Parameters

• Source – The program constant (decimal) or element address. (The file
indicator # is not required for an element address.)

• Destination – The address of the first word of the file you want to fill.
You must use the file indicator # in the address.

• Length – The number of elements in the file you want filled. If the
destination file type is 3 words per element, you can specify a maximum
length of 42. If the destination file type is 1 word per element, you can
specify a maximum length of 128.

All elements are filled from the source value (typically a program constant)
into the specified destination file each scan the rung is true. Elements are
filled in ascending order until the number of elements (length that you
entered) is reached.

The instruction will not write over a file boundary (such as between files
N16 and N17) at the destination.

Note that an error is declared if a write is attempted over a file boundary.

A–B 23Chapter

23–1

Bit Shift, FIFO, and LIFO Instructions

This chapter covers instructions for use with fixed, SLC 5/01, and SLC 5/02
processors:

• Bit Shift Left (BSL)
• Bit Shift Right (BSR)

These are output instructions that load data into a bit array one bit at a time.
The data is shifted through the array, then unloaded one bit at a time.

Bit shift instructions are useful in conveyor applications and product
evaluation (pass/fail) applications.

Instructions for use with SLC 5/02 processors only:

• FIFO Load and Unload (FFL, FFU)
• LIFO Load and Unload (LFL, LFU)

FIFO instructions provide a method of loading words into a file and
unloading them in the same order as they were loaded. First word in is the
first word out.

LIFO instructions provide a method of loading words into a file and
unloading them in the opposite order as they were loaded. Last word in is
the first word out.

FIFO and LIFO instruction applications include assembly/transfer lines,
inventory control, and system diagnostics.

All application examples shown are in the HHT zoom display.

The following general information applies to bit shift, FIFO, and LIFO
instructions.

Effect on Index Register in SLC 5/02 Processors

All of the instructions in this chapter alter the contents of the index register,
S:24. Details appear with the specific instructions.

Bit Shift, FIFO, and LIFO
Instructions Overview

Instructions

Chapter 23
Bit Shift, FIFO, and LIFO

23–2

Bit Shift Left, Bit Shift Right BSL, BSR Output Instructions

(BSL) (BSR)

(EN)

(DN)

BSL
BIT SHIFT LEFT
File #B3:1
Control R6:0
Bit Address I:1.0/0
Length 50

F1 F2 F3 F4 F5

ZOOM on BSL –(BSL)– 2.3.0.0.1
NAME: BIT SHIFT LEFT
FILE: #B3:1 LENGTH: 50
CONTROL: R6:0
BIT ADDR: I1:1.0/0
 EN DN ER UL
 0 0 0 0
 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

F1 F2 F3 F4 F5

ZOOM on BSR –(BSR)– 2.3.0.0.1
NAME: BIT SHIFT RIGHT
FILE: #B3:1 LENGTH: 50
CONTROL: R6:0
BIT ADDR: I1:1.0/0
 EN DN ER UL
 0 0 0 0
 EDT_DAT

(EN)

(DN)

BSR
BIT SHIFT RIGHT
File #B3:1
Control R6:0
Bit Address I:1.0/0
Length 50

Bit Shift Left (BSL), Bit
Shift Right (BSR)

Instructions

Chapter 23
Bit Shift, FIFO, and LIFO

23–3

Entering Parameters

• File – The address of the bit array you want to manipulate. You must use
the file indicator # in the bit array address. The address must start on an
element boundary (for example, B3:0/0, not B3:0/4).

• Control – The instruction’s address and control (R data file) element that
stores the status byte of the instruction, the length of the array (in number
of bits), and the bit pointer (currently not used). Note: The control
address cannot be used for any other instruction.
The control element is shown below.

EN DN ER UL Not used

15 13 11 10 00

Length of bit array (number of bits)

Bit Pointer (currently not used)

Status bits of the control element:

EN (bit 15) – The enable bit is set on a false-to-true transition of the rung
and indicates the instruction is enabled.

DN (bit 13) – The done bit, when set, indicates the bit array has shifted
one position.

ER (bit 11) – The error bit, when set, indicates the instruction detected an
error such as entering a negative number for the length or position. Avoid
using the unload bit when this bit is set.

UL (bit 10) – The unload bit stores the status of the bit exited from the
array each time the instruction is enabled.

When the register shifts and input conditions go false, the enable, done,
and error bits are reset.

• Bit Address – This is the address of the source bit that the instruction
inserts in the first bit location of the BSL array, or the last bit location of
the BSR array.

• Length (size of bit array) (word 1) – This is the number of bits in the bit
array, up to 2048 bits. A length value of 0 causes the input bit to be
transferred to the UL bit.
A length value that points past the end of the programmed file causes a
runtime major error to occur. If you alter a length value with your ladder
program, make certain that the altered value is valid. Do not use any of
the bits beyond the last bit in the array up to the next word boundary.
They are invalid.

Effect on Index Register in SLC 5/02 Processors

The shift operation clears the index register S:24 to zero.

Instructions

Chapter 23
Bit Shift, FIFO, and LIFO

23–4

Operation – Bit Shift Left

When the rung goes from false–to–true, the enable bit (EN bit 15) is set and
the data block is shifted to the left (to a higher bit number) one bit position.
The specified bit at the Bit Address (source) is shifted into the first bit
position. The last bit is shifted out of the array and stored in the unload bit
(UL bit 10) in the status byte of the control element. The shift is completed
in one scan.

For wraparound operation, set the Bit Address equal to the address of the last
bit of the array or to the UL bit, whichever applies.

The figure below illustrates how the Bit Shift Left instruction functions.

(EN)

(DN)

BSL
BIT SHIFT LEFT
File #B3:1
Control R6:53
Bit Address I:22/12
Length 58 19 18 17 16

35 34 33

51 50 49 48

67 66 65 64

32

23 22 21 20

39 38 37

55 54 53 52

71 70 69 68

36

27 26 25 24

43 42 41

59 58 57 56

73 72

40

31 30 29 28

47 46 45

63 62 61 60

44

DO NOT USE

58
bit
array
#B3:1

Bit Address
(source) I:22/12

Unload Bit R6:53/10

Data block is shifted one bit at
a time from bit 16 to bit 73.

Operation – Bit Shift Right

When the rung goes from false–to–true, the enable bit (EN bit 15) is set and
the data block is shifted to the right (to a lower bit number) one bit position.
The specified bit at the Bit Address (source) is shifted into the last bit
position. The first bit is shifted out of the array and stored in the unload bit
(UL bit 10) in the status byte of the control element. The shift is completed
in one scan.

For wraparound operation, set the Bit Address equal to the address of the
first bit of the array or to the UL bit, whichever applies.

The figure below illustrates how the Bit Shift Right instruction functions.

(EN)

(DN)

BSR
BIT SHIFT RIGHT
File #B3:2
Control R6:54
Bit Address I:23/06
Length 38

35 34 33

51 50 49 48

67 66 65 64

3239 38 37

55 54 53 52

69 68

3643 42 41

59 58 57 56

4047 46 45

63 62 61 60

44

DO NOT USE

38
bit
array
#B3:2

Bit Address
(source) I:23/06

Unload Bit R6:54/10

Data block is shifted one bit at
a time from bit 69 to bit 32.

Instructions

Chapter 23
Bit Shift, FIFO, and LIFO

23–5

If you wish to shift more than one bit per scan, you must create a loop using
jump (JMP) and label (LBL) instructions.

SLC 5/02 Processors Only

FIFO Load, FIFO Unload FFL, FFU Output Instructions

(FFL) (FFU)

(EN)

(DN)

(EM)

FFL
FIFO LOAD
Source N7:10
FIFO #N7:12
Control R6:0
Length 34
Position 0

(EU)

(DN)

(EM)

FFU
FIFO UNLOAD
FIFO #N7:12
Dest N7:11
Control R6:0
Length 34
Position 0

F1 F2 F3 F4 F5

ZOOM on FFL –(FFL)– 2.3.0.0.2
NAME: FIFO LOAD
SOURCE: N7:10 LENGTH: 34
FIFO: #N7:12 POSITION:0
CONTROL: R6:0
 EN EU DN EM
 0 0 0 0
 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

F1 F2 F3 F4 F5

ZOOM on FFU –(FFU)– 2.4.0.0.2
NAME: FIFO UNLOAD
FIFO: #N7:12 LENGTH: 34
DEST: N7:11 POSITION:0
CONTROL: R6:0
 EN EU DN EM
 0 0 0 0
 EDT_DAT

FFL and FFU instructions are used in pairs. The FFL instruction loads words
into a user-created file called a FIFO stack. The FFU instruction unloads
words from the FIFO stack, in the same order as they were entered.

FIFO and LIFO instruction applications include assembly/transfer lines,
inventory control, and system diagnostics.

FIFO Load (FFL), FIFO
Unload (FFU)

Instructions

Chapter 23
Bit Shift, FIFO, and LIFO

23–6

Entering Parameters

Enter the following parameters when programming these instructions:

• Source – This word address stores the value to be entered next into the
FIFO stack. The FFL instruction places this value into the next available
element in the FIFO stack. SOURCE can be a word address or a program
constant (–32768 to 32767). For I/O addresses, the HHT requires you to
specify the slot and word number, for example I:3.0.

• Destination (Dest) – This word address stores the value that exits from
the FIFO stack. The FFU instruction unloads this value from the stack
and places it in this word address. For I/O addresses, the HHT requires
you to specify the slot and word number, for example O:3.0.

• FIFO – This is the address of the stack. It must be an indexed word
address in the input, output, status, bit, or integer file. The same address
is programmed for the FFL and FFU instructions.

• Control – This is a control file (R data file) address. The status bits, the
stack length, and the position value are stored in this element. The same
address is programmed for the FFL and FFU instructions. Do not use the
control file address for any other instruction.
The 3-word control element:

EN EU DN EM

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Length

Position

Status Bits

• EN (bit 15) – FFL instruction enable bit. The bit is set on a false-to-true
transition of the FFL rung and is reset on a true-to-false transition.

• EU (bit 14) – FFU instruction enable bit. The bit is set on a false-to-true
transition of the FFU rung and is reset on a true-to-false transition.

• DN (bit 13) – Done bit. It is set by the FFL instruction to indicate the
stack is full. This inhibits loading the stack.

• EM (bit 12) – Empty bit. It is set by the FFU instruction to indicate the
stack is empty.

• Length (word 1) – This is the length of the stack, the maximum number
of elements in the stack, up to a maximum of 128 words. The same
number is programmed for the FFL and FFU instructions.

• Position (word 2) – The next available location where the instruction
loads data into the stack. This value changes after each load or unload
operation. The same number is used for the FFL and FFU instructions.

Instructions

Chapter 23
Bit Shift, FIFO, and LIFO

23–7

Operation

Instruction parameters have been programmed in the FFL – FFU instruction
pair shown below.

(EN)

(DN)

(EM)

FFL
FIFO LOAD
Source N7:10
FIFO #N7:12
Control R6:0
Length 34
Position 9

(EU)

(DN)

(EM)

FFU
FIFO UNLOAD
FIFO #N7:12
Dest N7:11
Control R6:0
Length 34
Position 9

FFU instruction unloads
data from stack #N7:12 at
position 0, N7:12.

N7:12 0
N7:13 1
N7:14 2

3
4
5
6
7
8
9

N7:45 33

34 words are
allocated for FIFO
stack starting at
N7:12, ending at
N7:45.

FFL–FFU Instruction Pair

Loading and Unloading of Stack #N7:12

N7:10

N7:11

Position

Destination

Source

FFL instruction loads data
into stack #N7:12 at the
next available position, 9 in
this case.

FFL instruction operation – When rung conditions change from false–to–true,
the FFL enable bit (EN) is set. This loads the contents of the Source, N7:10,
into the stack element indicated by the Position number, 9. The position
value then increments.

The FFL instruction loads an element at each false–to–true transition of the
rung, until the stack is filled (34 elements). The done bit (DN) is then set,
which inhibits further loading.

FFU instruction operation – When rung conditions change from false–to–true,
the FFU enable bit (EU) is set. This unloads the contents of the element at
stack position 0 into the Destination, N7:11. All data in the stack is shifted
one element toward position zero, and the highest numbered element is
zeroed. The position value then decrements.

The FFU instruction unloads an element at each false–to–true transition of
the rung, until the stack is empty. The empty bit (EM) is then set.

Effects on Index Register S:24

The value present in S:24 is overwritten with the position value when a
false–to–true transition of the FFL or FFU rung occurs. For the FFL, the
position value determined at instruction entry is placed in S:24. For the FFU,
the position value determined at instruction exit is placed in S:24.

When the DN bit is set, a false–to–true transition of the FFL rung does not
change the position value or the index register value. When the EM bit is
set, a false–to–true transition of the FFU rung does not change the position
value or the index register value.

Instructions

Chapter 23
Bit Shift, FIFO, and LIFO

23–8

SLC 5/02 Processors Only

LIFO Load, LIFO Unload LFL, LFU Output Instructions

(LFL) (LFU)

(EN)

(DN)

(EM)

LFL
LIFO LOAD
Source N7:10
LIFO #N7:12
Control R6:0
Length 34
Position 0

(EU)

(DN)

(EM)

LFU
LIFO UNLOAD
LIFO #N7:12
Dest N7:11
Control R6:0
Length 34
Position 0

F1 F2 F3 F4 F5

ZOOM on LFL –(LFL)– 2.3.0.0.2
NAME: LIFO LOAD
SOURCE: N7:10 LENGTH: 34
LIFO: #N7:12 POSITION:0
CONTROL: R6:0
 EN EU DN EM
 0 0 0 0
 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

F1 F2 F3 F4 F5

ZOOM on LFU –(LFU)– 2.4.0.0.2
NAME: LIFO UNLOAD
LIFO: #N7:12 LENGTH: 34
DEST: N7:11 POSITION:0
CONTROL: R6:0
 EN EU DN EM
 0 0 0 0
 EDT_DAT

(monitor mode)

These instructions are the same as the FIFO load and unload instructions
except that the last data loaded is the first data to be unloaded.

FIFO and LIFO instruction applications include assembly/transfer lines,
inventory control, and system diagnostics.

Entering Parameters

The instruction parameter information on page 23–6 applies. Substitute
instruction mnemonics LIFO for FIFO, LFL for FFL, and LFU for FFU.

LIFO Load (LFL), LIFO
Unload (LFU)

Instructions

Chapter 23
Bit Shift, FIFO, and LIFO

23–9

Operation

Instruction parameters have been programmed in the LFL – LFU instruction
pair shown below. For purposes of comparison, the same parameters are
used here as in the FFL – FFU example on page 23–7.

(EN)

(DN)

(EM)

LFL
LIFO LOAD
Source N7:10
LIFO #N7:12
Control R6:0
Length 34
Position 9

(EU)

(DN)

(EM)

LFU
LIFO UNLOAD
LIFO #N7:12
Dest N7:11
Control R6:0
Length 34
Position 9

LFU instruction unloads
data from stack #N7:12 at
position 8.

N7:12 0
N7:13 1
N7:14 2

3
4
5
6
7
8
9

N7:45 33

34 words are
allocated for LIFO
stack starting at
N7:12, ending at
N7:45.

Loading and Unloading of stack #N7:12

N7:10

N7:11

Position

Destination

Source

LFL instruction loads data
into stack #N7:12 at the
next available position, 9 in
this case.

LFL–LFU Instruction Pair

LFL instruction operation – When rung conditions change from
false–to–true, the LFL enable bit (EN) is set. This loads the contents of the
Source, N7:10, into the stack element indicated by the Position number, 9.
The position value then increments.

The LFL instruction loads an element at each false–to–true transition of the
rung, until the stack is filled (34 elements). The done bit (DN) is then set,
which inhibits further loading.

LFU instruction operation – When rung conditions change from
false–to–true, the LFU enable bit (EU) is set. This unloads data from the last
element loaded into the stack (at the position value minus 1), placing it in the
Destination, N7:11. The position value then decrements.

The LFU instruction unloads one element at each false–to–true transition of
the rung, until the stack is empty. The empty bit (EM) is then set.

Effects on Index Register S:24

The value present in S:24 is overwritten with the position value when a
false–to-true transition of the LFL or LFU rung occurs. For the LFL, the
position value determined at instruction entry is placed in S:24. For the
LFU, the position value determined at instruction exit is placed in S:24.

When the DN bit is set, a false-to–true transition of the LFL rung does not
change the position value or the index register value. When the EM bit is
set, a false-to–true transition of the LFU rung does not change the position
value or the index register value.

A–B 24Chapter

24–1

Sequencer Instructions

This chapter covers sequencer instructions including Sequencer Output,
Sequencer Compare, and Sequencer Load. These instructions are generally
used in machine control.

Instructions for use with fixed, SLC 5/01, and SLC 5/02 processors:

• Sequencer Output (SQO). It transfers 16-bit data to word addresses for
the control of sequential machine operations.

• Sequencer Compare (SQC). It compares 16-bit data with stored data to
monitor machine operating conditions or for diagnostic purposes.

Instruction for use with the SLC 5/02 processor only:

• Sequencer Load (SQL). It loads 16-bit data into a file at each step of
sequencer operation.

All application examples shown are in the HHT zoom display.

The following general information applies to sequencer instructions.

Applications Requiring More than 16 Bits

When your application requires more than 16 bits, parallel (branch) multiple
sequencer instructions.

Effect on Index Register in SLC 5/02 Processors

Sequencer instructions alter the contents of the index register, S:24. Details
appear with the specific instructions.

Sequencer Instructions
Overview

Chapter 24
Sequencer Instructions

24–2

Sequencer Output SQO
Sequencer Compare SQC Output Instructions

(SQC)(SQO)

SQO
SEQUENCER OUTPUT
File #B10:1
Mask 0F0F
Dest O:2.0
Control R6:20
Length 4
Position 0

(EN)

(DN)

SQC
SEQUENCER COMPARE
File #B10:11
Mask FFF0
Source I:1.0
Control R6:21
Length 4
Position 0

(FD)

(EN)

(DN)

F1 F2 F3 F4 F5

ZOOM on SQO –(SQO)– 2.3.0.0.2
NAME: SEQUENCER OUTPUT
FILE: #B10:1 CONTROL: R6:20
MASK: 0F0F LENGTH: 4
DEST: O0:2.0 POSITION:0
 EN DN ER
 0 0 0
 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

F1 F2 F3 F4 F5

ZOOM on SQC –(SQC)– 2.3.0.0.2
NAME: SEQUENCER COMPARE
FILE: #B10:11 CONTROL: R6:21
MASK: FFF0 LENGTH: 4
SOURCE: I1:1.0 POSITION:0
 EN DN ER FD
 0 0 0 0
 EDT_DAT

Sequencer Output (SQO),
Sequencer Compare (SQC)

Chapter 24
Sequencer Instructions

24–3

Entering Parameters

• File (SQO, SQC) – This is the address of the sequencer file. You must
use the file indicator # for this address.
Sequencer file data is used as follows:

Instruction

SQO
SQC

Sequencer File Stores

Data for controlling outputs
Reference data for monitoring inputs

• Mask (SQO, SQC) – This is a hex code or the address of the mask word
or file through which the instruction moves data. Set mask bits to pass
data, reset mask bits to mask data. Use a mask word or file if you want to
change the mask according to application requirements.
If the mask is a file, its length will be equal to the length of the sequencer
file. The two files track automatically.

• Source (SQC) – This is the address of the input word or file from which
the instruction obtains data for comparison to its sequencer file. For input
data file addresses, the HHT requires that you enter the slot and word
number. For example, I:3.0.

• Destination (SQO) – This is the address of the output word or file to
which the instruction moves data from its sequencer file. For output data
file addresses, the HHT requires that you enter the slot and word number.
For example, O:4.0.

Important: You can address the mask, source, or destination of a sequencer
instruction as a word or file. If you address it as a file (using
file indicator #), the instruction automatically tracks through the
source, mask, or destination file as the instruction tracks
step-by-step through its sequencer file.

• Control (SQO, SQC) – This is the instruction’s address and control
element (R6 data file) that stores the status byte of the instruction, the
length of the sequencer file, and the instantaneous position in the file.

EN DN ER FD

15 13 11 08 00

Length of sequencer file

Position

Note: You cannot use the control address for any other instruction.

Chapter 24
Sequencer Instructions

24–4

Status Bits of the Control Element

EN (bit 15) – The enable bit is set by a false-to-true rung transition and
indicates the SQO or SQC instruction is enabled. It follows the rung
condition.

DN (bit 13) – The done bit is set by the SQO or SQC instruction after it has
operated on the last word in the sequencer file. It is reset on the next
false-to-true rung transition after the rung goes false.

ER (bit 11) – The error bit is set when the processor detects a negative
position value, or a negative or zero length value. This results in a major
error if not cleared before the END or TND instruction is executed.

FD (bit 08) – SQC only. The found bit indicates that a match has been found
between a compare of a word or file of input data, through a mask, to a word
or file of reference data for equality. When the status of all non-masked bits
in an input word match those of the corresponding reference word, the found
bit is set. The found bit is set when a match exists, otherwise it is cleared.
This bit is assessed each time the SQC instruction is evaluated while the rung
is true.

• Length (word 1) – This is the number of words of the sequencer file
starting at position 1. Position 0 is the startup position. The instruction
resets (wraps) to position 1 at each cycle completion.
The address assigned for a sequencer file is step zero. Sequencer
instructions use length + 1 words of data table for each file referenced in
the instruction. This applies to the source, mask, and/or destination if
addressed as files.

A length value that points past the end of the programmed file causes a
runtime major error to occur. If you alter a length value with your ladder
program, make certain that the altered value is valid.

• Position (word 2) – This is the word location or step in the sequencer file
from which the instruction moves data in a SQO instruction or to which
the instruction compares data in an SQC instruction.
A position value that points past the end of the programmed file causes a
runtime major error to occur. If you alter a position value with your
ladder program, make certain that the altered value is valid.

Application note: You may use the reset (RES) instruction to reset a
sequencer. All control bits (except FD) will be reset to zero. The Position
will also be set to zero. The RES instruction should be addressed to the
control register (R data file) you are using.

Operation – Sequencer Output

This output instruction steps through the sequencer file whose bits have been
set to control various output devices.

Chapter 24
Sequencer Instructions

24–5

When the rung goes from false–to–true, the instruction increments to the next
step (word) in the sequencer file. Data stored there is transferred through a
mask to the destination address specified in the instruction. Current data is
written to the corresponding destination word every scan that the rung
remains true.

The done bit is set when the last word of the sequencer file is transferred.
Upon the next false-to-true rung transition, the instruction resets the position
to step one, that is, automatically cycles.

At startup, if the position is = 0 when you switch the processor from the
program mode to the Run mode, instruction operation depends on whether
the rung is true or false on the first scan:

• If true, the instruction transfers the value in step 0.
• If false, the instruction waits for the first rung transition from

false–to–true and transfers the value in step 1.

Mask data by resetting bits in the mask word. The bits mask data when reset,
pass data when set. Unless you set mask bits, the instruction will not change
the value in the destination word. The mask can be fixed by entering a hex
code. The mask can be a variable by entering an element address or a file
address for changing the mask with each step. The following figure indicates
how the SQO instruction functions:

SQO
SEQUENCER OUTPUT
File #B10:1
Mask 0F0F
Dest O:14.0
Control R6:20
Length 4
Position 2

(EN)

(DN) 0000 0101 0000 1010

 07 815

0000 1111 0000 1111

 07 815

0000 0000 0000 0000

1010 0010 1111 0101

1111 0101 0100 1010

0101 0101 0101 0101

0000 1111 0000 1111

0
1
2
3
4

Step
B10:1

2
3
4
5

Word

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

ON

ON

ON

ON

External Outputs
associated with O:14

Destination O:14.0

Mask Value 0F0F

Sequencer Output File #B10:1

Current Step

Effect on Index Register in SLC 5/02 Processors

The value present in the index register S:24 is overwritten when the
sequencer output instruction is true. The index register value will equal the
position value of the instruction.

Chapter 24
Sequencer Instructions

24–6

Operation – Sequencer Compare

The SQC instruction compares a word or file of input data, through a mask,
to a word or file of reference data for equality. When the status of all
non-masked bits in an input word match those of the corresponding reference
word, the instruction sets the found bit (FD) in the respective control word.
Otherwise, when the input word does not match, the found bit (FD) is
cleared.

Mask data by resetting bits in the mask word. The bits mask data when reset,
pass data when set. Unless you set mask bits, the instruction will not
compare bits in the reference file against the input value. The mask can be
fixed by entering a hex code. The mask can be a variable by entering an
element address or a file address for changing the mask at each step.

When the rung goes from false–to–true, the instruction increments to the next
step (word) in the sequencer file. Data stored there is transferred through a
mask and compared against the source data for equality. If the source data
equals the reference data, the FD bit is set in the SQC’s control file or word
(R6:x/FD). Current data is compared against the source every scan that the
rung evaluates as true.

Applications of the SQC instruction include machine diagnostics. The
following figure explains how the SQC instruction functions:

0010 0100 1001 1101

1111 1111 1111 0000

0010 0100 1001 1010

0
1
2
3
4

Step
B10:11

12
13
14
15

Word

Input Word I:3.0

Mask Value FFF0

Sequencer Compare File #B10:11

(EN)

(DN)

SQC
SEQUENCER COMPARE
File #B10:11
Mask FFF0
Source I:3.0
Control R6:21
Length 4
Position 2

(FD)

The FD bit R6:21/FD is set in this example, since the input word matches the sequencer reference
value using the mask value.

Effect on Index Register in SLC 5/02 Processors

The value present in the index register S:24 is overwritten when the
sequencer compare instruction is true. The index register value will equal
the position value of the instruction.

Chapter 24
Sequencer Instructions

24–7

SLC 5/02 Processors Only

Sequencer Load SQL Output Instruction

(SQL)

(EN)

(DN)

SQL
SEQUENCER LOAD
File #N7:30
Source I:1.0
Control R6:4
Length 4
Position 0

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

ZOOM on SQL –(SQL)– 2.3.0.0.2
NAME: SEQUENCER LOAD
FILE: #N7:30 LENGTH: 4
SOURCE: I1:1.0 POSITION:0
CONTROL: R6:4
 EN EU DN EM
 0 0 0 0
 EDT_DAT

F1 F2 F3 F4 F5

This instruction loads data into a sequencer load file. The source of this data
can be an I/O or storage word address, a file address, or a program constant.

Entering Parameters

• File – This is the address of the sequencer file where the source data is
loaded into. You must use the file indicator # for this address.

• Source – This can be a word address, file address, or a program constant
(–32768 to 32767) indicating the value or location whose contents are
loaded into the sequencer file. For input addresses, the HHT requires that
you enter the slot and word number. For example, I:3.0.
If the source is a file address, its file length will be equal to the length of
the sequencer load file (LENGTH). The two files will track
automatically, per the position value.

• Control – This is a control file address. The status bits, length value, and
position value are stored in this element. Do not use the control file
address for any other instruction.
The 3-word control element:

EN DN ER

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Length

Position

Sequencer Load (SQL)

Chapter 24
Sequencer Instructions

24–8

Status Bits

• EN (bit 15) – The enable bit. This bit is set on a false-to-true transition
of the SQL rung and reset on a true-to-false transition.

• DN (bit 13) – The done bit. This bit is set after the instruction has
operated on the last word in the sequencer load file. It is reset on the next
false-to-true rung transition after the rung goes false.

• ER (bit 11) – The error bit. This bit is set when the processor detects a
negative position value, or a negative or zero length value. This results in
a major error if not cleared before the END or TND instruction is
executed. Use an OTU with address S:5/2 to avoid a CPU fault.

• Length (word 1) – This is the number of steps of the sequencer load file
(and also of the source if the source is a file address), starting at position
1. Position 0 is the startup position. The instruction automatically resets
(wraps) to position 1 at each cycle completion.
The position address assigned for a sequencer file is step zero. Sequencer
instructions use length plus 1 word of data for each file referenced in the
instruction. This applies to the source if addressed as a file.

A length value that points past the end of the programmed file causes a
runtime major error to occur. If you alter a length value with your ladder
program, make certain that the altered value is valid.

• Position (word 2) – This is the word location or step in the sequencer file
to which data is moved.
A position value that points past the end of the programmed file causes a
runtime major error to occur. If you alter a position value with your
ladder program, make certain that the altered value is valid.

Chapter 24
Sequencer Instructions

24–9

Operation

Instruction parameters have been programmed in the SQL instruction shown
below. Input word I:1.0 is the source. Data in this word is loaded into
integer file #N7:30 by the sequencer load instruction.

(EN)

(DN)

SQL
SEQUENCER LOAD
File #N7:30
Source I:1.0
Control R6:4
Length 4
Position 2

0000 0101 0000 1010

 07 815

0000 0000 0000 0000

1010 0010 1111 0101

0000 0101 0000 1010

0000 0000 0000 0000

0000 0000 0000 0000

0
1
2
3
4

Step
N7:30

31
32
33
34

Word

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

ON

ON

ON

ON

External inputs associated
with I:1.0

Source I:1.0

Sequencer Load File #N7:30

Current Step

When rung conditions change from false–to–true, the SQL enable bit (EN) is
set. The control element R6:4 increments to the next position in the
sequencer file, and loads the contents of source I:1.0 into this location. The
SQL instruction continues to load the current data into this location each scan
that the rung remains true. When the rung goes false, the enable bit (EN) is
reset.

The instruction loads data into a new file element at each false–to–true
transition of the rung. When step 4 is completed, the done bit (DN) is set.
Operation cycles to position 1 at the next false-to–true transition of the rung
after position 4.

If the source were a file address such as #N7:40, files #N7:40 and #N7:30
would both have a length of 5 (0–4) and would track through the steps
together per the position value. The SQL LENGTH parameter is still 4.

Effect on Index Registers in SLC 5/02 Processors

The value present in the index register S:24 is overwritten when the
sequencer load instruction is true. The index register value will equal the
position value of the instruction.

A–B 25Chapter

25–1

Control Instructions

This chapter covers the following control instructions.

Instructions for Use with fixed, SLC 5/01, and SLC 5/02 processors:

• Jump to Label (JMP) and Label (LBL)
• Jump to Subroutine (JSR) and Subroutine (SBR)
• Return from Subroutine (RET)
• Master Control Reset (MCR)
• Temporary End (TND)
• Suspend (SUS)

Instructions for use with SLC 5/02 processors only:
The following instructions apply to the Selectable Timed Interrupt (STI)
function, discussed in chapter 30.

• Selectable Timed Disable (STD)
• Selectable Timed Start (STS)
• Selectable Timed Enable (STE)

The following instruction applies to Selectable Timed interrupts and I/O
Event–Driven interrupts, discussed in chapters 30 and 31.

• Interrupt Subroutine (INT)

The following general information applies to control instructions.

Control instructions allow you to change the order that the processor
scans/solves your ladder diagram rungs. Normally, the processor solves from
left to right on each rung, and from top to bottom of the ladder diagram (rung
0 to the END statement). With control instructions, you can tell the
processor to skip certain rungs (JMP), scan certain groups of rungs (SBR),
end the scan (TND, SUS), or stop/interrupt the scan to do something else
(STI interrupts, Interrupt Subroutine interrupts). Typically, control
instructions are used to minimize scan time, create a more efficient program,
and/or troubleshoot a problem in a program.

Control Instructions Overview

Chapter 25
Control Instructions

25–2

Jump to Label JMP Output Instruction

(JMP)

(JMP)
1

F1 F2 F3 F4 F5

ZOOM on JMP –(JMP)– 2.3.0.0.2
NAME: JUMP TO LABEL
LABEL: 1

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

When the rung condition for this output instruction is true, the processor
jumps forward or backward to the corresponding label instruction (LBL) and
resumes program execution at the label. More than one JMP instruction can
jump to the same label. The Jump (JMP) and its corresponding Label (LBL)
must be in the same program file.

When rungs of logic are “jumped over” or skipped, the processor does not
scan/evaluate them, meaning that outputs, timers, etc. are left in their last
state. The outputs are not de–energized (turned off).

Important: Be careful when using the JMP instruction to move backward or
loop through your program. If you loop too many times, you
may cause the watchdog timer to time out and fault the
processor. Use a counter, timer, or the “program scan” register
(system status register, word S:3, bits 0–7) to limit the amount
of time you spend looping inside of JMP/LBL instructions.

Entering Parameters

Enter a decimal label number from 0 to 999. You can place up to 1000 labels
in your program or subroutine file.

Jump to Label (JMP)

Chapter 25
Control Instructions

25–3

Label LBL Input Instruction

[LBL]
1

LBL

F1 F2 F3 F4 F5

ZOOM on LBL –|LBL|– 2.3.0.0.1
NAME: LABEL
LABEL: 1

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

This input instruction is the target of the JMP instruction having the same
label number. You must program this instruction as the first instruction of a
rung. The Jump (JMP) and its corresponding Label (LBL) must be in the
same program file. This instruction has no control bits. It is always
evaluated as true or logic 1.

You can program multiple jumps to the same label by assigning the same
label number to multiple JMP instructions, but assigning the same label
number to two or more labels causes a compiler error.

Important: Do not jump (JMP) into an MCR zone. Instructions that are
programmed within the MCR zone starting at the LBL
instruction and ending at the “End MCR” instruction will
always be evaluated as though the MCR zone is true, regardless
of the true state of the “Start MCR” instruction.

Entering Parameters

Enter a decimal label number from 0 to 999. You can place up to 1000 labels
in your program or subroutine file.

Label (LBL)

Chapter 25
Control Instructions

25–4

JUMP TO SUBROUTINE
SBR file number 3

Jump to Subroutine JSR Output Instruction

(JSR)

JSR

F1 F2 F3 F4 F5

ZOOM on JSR –(JSR)– 2.3.0.0.2
NAME: JUMP TO SUBROUTINE
FILE: 3

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The Jump to Subroutine (JSR), Subroutine (SUB), and Return (RET) are
used in conjunction, as shown on the following page.

When rung conditions for a JSR instruction are true, the processor jumps to
the subroutine instruction (SBR) at the beginning of the target subroutine file
and resumes execution at that point (you cannot jump into any part of a
subroutine except the first instruction in that file).

When the processor does not jump to the subroutine (JSR rung false), the
SBR rungs are not scanned or evaluated, meaning outputs, timers, etc. are
left in their last state (if an OTE is on, it stays on). They are not
de–energized. Your main program should account for this and turn
off/reset/de–energize output instructions as required.

You must program each subroutine in its own program file by assigning a
unique file number (3–255).

Nesting Subroutine Files

Nesting subroutines allow you to direct program flow from the main program
to one subroutine and then on to another subroutine. The following rules
apply when nesting subroutines:

• With fixed and SLC 5/01 processors, you can nest subroutines up to 4
levels.

• With SLC 5/02 processors, you can nest subroutines up to 8 levels. If you
are using an STI subroutine, I/O event–driven interrupt subroutine, or
user fault routine, you can nest subroutines up to 3 levels from each.

Jump to Subroutine (JSR)

Chapter 25
Control Instructions

25–5

The example below illustrates jumping to successive subroutines, then
returning in reverse order.

JSR

90

JSR

91

SBR

RET

SBR SBR

JSR

92

RET RET

Example of Nesting Subroutine to Level 3

Program
Main

Subroutine File 90
Level 1

Subroutine File 91
Level 2

Subroutine File 92
Level 3

Note: Runtime errors (error codes 0025, 0026, 0027, and 0030) occur if
more than the allowable levels of subroutines are called (subroutine stack
overflow) or if more returns are executed than there are call levels
(subroutine stack underflow). Also, do not execute a JSR to a subroutine that
is already active in the subroutine stack.

Update critical I/O in subroutines using immediate input (IIM) and/or
immediate output (IOM) instructions, especially if your application calls for
nested or relatively long subroutines. Otherwise, the processor does not
update I/O until it reaches the end of the main program after executing
subroutines.

Entering Parameters

File – This is the SBR (subroutine) file number. Assign a decimal number
from 3 to 255.

Chapter 25
Control Instructions

25–6

Subroutine SBR Input Instruction

SBR
SUBROUTINE

SBR

F1 F2 F3 F4 F5

ZOOM on SBR –|SBR|– 2.3.0.0.1
NAME: SUBROUTINE

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

This instruction serves as a label or identifier of a program file as a regular
subroutine file (SBR label) versus an interrupt subroutine (INT label).

The target subroutine is identified by the file number that you entered in the
JSR instruction.

This instruction has no control bits. It is always evaluated as true. The
instruction must be programmed as the first instruction of the first rung of a
subroutine.

Return from Subroutine RET Output Instruction

(RET)

RET
RETURN

F1 F2 F3 F4 F5

ZOOM on RET –(RET)– 2.3.0.0.2
NAME: RETURN

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

Subroutine (SBR)

Return from Subroutine
(RET)

Chapter 25
Control Instructions

25–7

This output instruction marks the end of subroutine execution or the end of
the subroutine file. It causes the processor to resume execution in the main
program file at the instruction following the JSR instruction where it exited
the program. If a sequence of nested subroutines is involved, the instruction
causes the processor to return program execution to the previous subroutine.

The rung containing the RET instruction may be conditional if this rung
precedes the end of the subroutine. In this way, the processor omits the
balance of a subroutine only if its rung condition is true.

Without an RET instruction, the END statement (always present in the
subroutine) automatically returns program execution to the JSR instruction in
your calling ladder program.

SLC 5/02 processors: Use the RET instruction to terminate execution of the
STI subroutine (chapter 30), I/O event-driven interrupt subroutine (chapter
31), and the user fault routine (chapter 29).

Master Control Reset MCR Output Instruction

(MCR)

(MCR)

F1 F2 F3 F4 F5

ZOOM on MCR –(MCR)– 2.3.0.0.2
NAME: MASTER CONTROL RESET

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

The master control reset instruction is an output instruction, used in pairs. It
lets the processor enable or inhibit a zone of a ladder program according to
your application logic. Instruction parameters do not exist for the MCR.

You start the zone with a conditioned MCR instruction. When the MCR rung
is false, all non–retentive outputs in the zone are disabled. The processor
scans all output instructions within the zone as if they were false. When the
MCR rung is true, outputs act according to their rung logic as if the zone did
not exist. You end the zone with an unconditioned MCR instruction. You
cannot nest MCR zones.

Important: Do not jump (JMP) into an MCR zone. Instructions that are
programmed within the MCR zone starting at the LBL
instruction and ending at the “End MCR” instruction will
always be evaluated as though the MCR zone is true, regardless
of the true state of the “Start MCR” instruction.

Master Control Reset
(MCR)

Chapter 25
Control Instructions

25–8

ATTENTION: If you start instructions such as timers or
counters in an MCR zone, instruction operation ceases when
the zone is disabled. Reprogram critical operations outside
the zone if necessary.

The TOF timer will activate when placed inside of a false
MCR zone.

The MCR instruction is not a substitute for a hard-wired
master control relay. We recommend that your
programmable controller system include a hard-wired master
control relay and emergency stop switches to provide
emergency I/O power shut down. Emergency stop switches
can be monitored but should not be controlled by the ladder
program. Wire these devices as described in the installation
manual.

!

Temporary End TND Output Instruction

(TND)

(TND)

F1 F2 F3 F4 F5

ZOOM on TND –(TND)– 2.3.0.0.2
NAME: TEMPORARY END

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

This instruction, when its rung is true, stops the processor from scanning the
rest of the program file, updates the I/O, services communications, and
resumes scanning at rung 0 of the main program (file 2). If this instruction’s
rung is false, the processor continues the scan until the next TND instruction
or the END statement. You can use this instruction to progressively debug a
program, or conditionally omit the balance of your current program file or
subroutines.

When used in a subroutine, this instruction does not function the same as an
END or RET (which causes the processor to resume operation in the
previous file). The processor stops where it is, updates I/O, services
communications, and goes to the beginning of the main program.

Temporary End (TND)

Chapter 25
Control Instructions

25–9

Important: Use of this instruction inside a nested subroutine or interrupt
subroutine terminates execution of all nested subroutines.

Suspend SUS Output Instruction

(SUS)

SUS
SUSPEND
Suspend ID 1

F1 F2 F3 F4 F5

ZOOM on SUS –(SUS)– 2.3.0.0.2
NAME: SUSPEND
SUS ID: 1

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

This instruction, when the rung is true, places the controller in the Suspend
Idle mode. The suspend ID is placed in word 7 (S:7) of the status file. The
suspend file (program or subroutine number identifying where the executed
SUS instruction resides) is placed in word 8 (S:8) of the status file. All
outputs are de-energized.

This instruction can be used to trap and identify specific conditions for
program debugging and system troubleshooting.

Entering Parameters

SUSPEND ID – an integer in the range of –32,768 to 32,767 that is entered
when the instruction is programmed.

When the SUS instruction is executed, the programmed ID as well as the
program file ID from which the SUS instruction executed is placed in the
system status file.

Suspend (SUS)

Chapter 25
Control Instructions

25–10

SLC 5/02 Processors Only

Selectable Timed Disable STD Output Instruction
Selectable Timed Enable STE Output Instruction
Selectable Timed Start STS Output Instruction

(STD)

STD
SELECTABLE TIMED DISABLE

STE
SELECTABLE TIMED ENABLE

STS
SELECTABLE TIMED START
File 2
Time (x10 ms) 30

(STE) (STS)HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

F1 F2 F3 F4 F5

ZOOM on STD –(STD)– 2.6.0.0.1
NAME: SELECTABLE TIMED DISABLE

 EDT_DAT

F1 F2 F3 F4 F5

ZOOM on STE –(STE)– 2.3.0.0.2
NAME: SELECTABLE TIMED ENABLE

 EDT_DAT

F1 F2 F3 F4 F5

ZOOM on STS –(STS)– 2.9.0.0.1
NAME: SELECTABLE TIMED START
FILE: 2 2
TIME: 30 30

 EDT_DAT

(online monitor mode)

The Selectable Timed Interrupt function allows you to interrupt the scan of
the main program file automatically, on a periodic basis, in order to scan a
specified subroutine file.

Selectable Timed
Interrupt (STI)

Chapter 25
Control Instructions

25–11

Important: The information here is for reference only and is optional.
Program these instructions using the information appearing in
chapter 30.

Selectable Timed Interrupt Disable and Enable (STD, STE)

These instructions are generally used in pairs. The purpose is to prevent the
STI from occurring during a portion of the ladder program.

Selectable Timed Interrupt Start (STS)

The Selectable Timed Start (STS) function is used to initiate or restart the
STI function. Instruction parameters are the STI file number and the STI
setpoint.

SLC 5/02 Processors Only

Interrupt Subroutine INT Input Instruction

INT

F1 F2 F3 F4 F5

ZOOM on INT –|INT|– 2.3.0.0.1
NAME: I/O INTERRUPT

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

INT
INTERRUPT SUBROUTINE

This instruction serves as a label or identifier of a program file as an interrupt
subroutine (INT label) versus a regular subroutine (SBR label). It can be
used to identify Selectable Timed interrupts or I/O event–driven interrupts.

This instruction has no control bits and is always evaluated as true. The
instruction must be programmed as the first instruction of the first rung of the
subroutine.

Interrupt Subroutine (INT)

A–B 26Chapter

26–1

PID Instruction

This chapter applies to the SLC 5/02 processor only. It explains the PID
instruction.

All application examples shown are in the HHT zoom display.

SLC 5/02 Processors Only

It is an output instruction that controls physical properties such as
temperature, pressure, liquid level, or flow rate of process loops.

Proportional, Integral,
Derivative (PID)

Chapter 26
PID Instruction

26–2

Proportional Integral Derivative PID Output Instruction

(PID)

PID
PID
Control Block N7:2
Process Variable N7:0
Control Variable N7:1
Control Block Length 23

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 1/2 2.3.0.0.2
NAME: PROP INT DERIV MODE: AUTO
GAIN: 255 [/10] OUT LIM: 5% ,95%
RESET: 10 [/10 M/R] DEADBND: 5
RATE: 5 [/100 MIN] OUTPUT: 0%
SETPOINT: 500 PROCESS: 14
ENTER GAIN: 255 PRG
NEXT PG MANUAL

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(monitor mode)

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 2/2 2.3.0.0.2
NAME: PROP INT DERIV MODE: AUTO
LOOP UPDATE: 50 [x10ms]
SET PT RANGE: –100 1000
EN DN PV SP LL UL DB TF SC OL CM AM TM
0 0 0 0 0 0 0 0 0 1 0 0 1
 PRG
 PREV PG

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 1/2 2.3.0.0.2
NAME: PROP INT DERIV MODE: MANUAL
PROCESS: 14 SETPOINT: 500
OUTPUT: 0%
MIN OUT: 5% MAX OUT: 95%

ENTER OUTPUT PCT: 0 PRG
NEXT PG AUTO

auto

manual

Chapter 26
PID Instruction

26–3

The PID instruction normally controls a closed loop using inputs from an
analog input module and providing an output to an analog output module.
For temperature control, you can convert the analog output to a time
proportioning on/off output for driving a heater or cooling unit. An example
appears on pages 26–20 and 26–22.

The PID instruction can be operated in the timed mode or the STI mode. In
the timed mode, the instruction updates its output periodically at the rate you
set. In the STI mode, the instruction should be placed in an STI interrupt
subroutine. It will then update its output every time the STI subroutine is
scanned. The STI time interval and the PID loop update rate must be the
same in order for the equation to execute properly.

PID closed loop control holds a process variable at a desired set point. A
flow rate/fluid level example is shown below.

∑ ∑PID
Equation

FFWD
or Bias

Control
Output

Level
Detector

Process
Variable

ErrorSet Point

Flow Rate

Control Valve

The PID equation controls the process by sending an output signal to the
control valve. The greater the error between the setpoint and process
variable input, the greater the output signal, and vice versa. An additional
value (feedforward or bias) can be added to the control output as an offset.
The result of PID calculation (control variable) will drive the process
variable you are controlling toward the set point.

The PID Concept

Chapter 26
PID Instruction

26–4

The PID instruction uses the following equation:

Output � KC [(E) � 1�TI �(E)dt � TD · D(PV)�dt] � bias

Standard Gains constants:

Term Range (Low to High) Reference

Controller Gain KC 0.1 to 25.5 (dimensionless) Proportional

Reset Term 1/TI 25.5 to 0.1 (minutes per repeat) Integral

Rate Term TD 0.01 to 2.55 (minutes) Derivative

The derivative term (rate) provides smoothing by means of a low pass filter.
The cutoff frequency of the filter is 16 times greater than the corner
frequency of the derivative term.

Normally, you place the PID instruction on a rung without conditional logic.
The output remains at its last value and the integral sum (words 17 and 18) is
cleared when the rung is false.

The PID instruction is located under CPT/MTH in the HHT instruction set
menu. After you select PID, the following display appears:

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 1/3 2.0.0.0.*
NAME: PROP INTEGRAL DERIVATIVE
CONT BLK:
PROCESS:
OUTPUT:
CONTROL BLOCK SIZE 23 WORDS
ENTER CONTROL BLK:

This is the first of three data entry displays. The prompt line asks you to
enter Control Block, then Process, and then Output.

• Control Block – This is a file that stores the data required to operate the
instruction. The file length is fixed at 23 words and should be entered as
an integer file address. For example, an entry of N7:2 will allocate
elements N7:2 through N7:24. The control block layout is shown on page
26–8.
Do not write to control block addresses with other instructions in your
program except as described later in this chapter. If you are re-using a
block of data which was previously allocated for some other use, it is
good practice to first zero the data.

The PID Equation

Entering Parameters

Chapter 26
PID Instruction

26–5

• Process (also called the Process Variable, PV) – This is an element
address that stores the process input value. This address can be the
location of the analog input word where the value of the input A/D is
stored. This value could also be an integer value if you choose to
pre-scale your input value to the range 0–16383.

• Output (also called Control Variable, CV) – This is an element address
that stores the output of the PID instruction. The output value ranges
from 0 to 16383, with 16383 corresponding to a control output percent of
100. This is normally an integer value, so that you can scale the PID
output range to the particular analog range your application requires.

The display below shows typical values entered for these parameters:

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 1/3 2.0.0.0.*
NAME: PROP INTEGRAL DERIVATIVE
CONT BLK: N7:2
PROCESS: N7:0
OUTPUT: N7:1
CONTROL BLOCK SIZE 23 WORDS
ENTER CONTROL BLK: N7:2
NEXT PG

Pressing [F1], NEXT_PG brings up the second display:

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 2/3 2.0.0.0.*
NAME: PROP INTEGRAL DERIVATIVE
GAIN: 0 [/10] MIN OUT: 0%
RESET: 0 [/10 M/R] MAX OUT: 0%
RATE: 0 [/100 MIN] AUTO/MAN: AUTO
SETPOINT: 0 DEADBAND: 0
ENTER GAIN: 0

You enter the following parameters at this display:

• Gain (control block word 3) – This is the Proportional gain (kc), ranging
from 0.1 to 25.5. A rule of thumb is to set this gain to one half the value
needed to cause the output to oscillate when the reset and rate terms
(below) are set to zero. Entered range: 1–255.

• Reset (control block word 4) – This is the Integral gain (1/TI), ranging
from 0.1 to 25.5 minutes per repeat. A rule of thumb is to set the reset
time equal to the natural period measured in the above gain calibration.
Entered range: 1–255. Note: the value 255 will add the minimum integral
term possible into the PID equation.

• Rate (control block word 5) – This is the derivative term (TD). The
adjustment range is 0.01 to 2.55 minutes. A rule of thumb is to set this
value to 1/8 of the integral time above. Entered range: 1–255.

• Setpoint (SP) (control block word 2) – This is the desired control point
of the process variable. Type in the desired value and press ENTER. You
can change this value with instructions in your ladder program. Write the
value to the third word in the control block (for example write the value
to N7:4 if your control block is N7:2). Without scaling, the range of this
value is 0–16383. Otherwise, the range is scaled setpoint min (Smin)
(word 8) to scaled setpoint max (Smax) (word 7).

Chapter 26
PID Instruction

26–6

• Minimum output (control block word 12) – If you want to use output
limiting or alarms, enter a value. If the output limit bit is also set, this
value is the minimum control output percent (word 16) that the control
variable (CV) obtains or outputs.

• Maximum output (control block word 11) – If the output limit bit is
also set, the value you enter is the maximum control output percent (word
16) that the control variable (CV) obtains or outputs.

• Auto/manual (control block word 0, bit 1) – The default condition is
AUTO. This indicates that the PID is controlling the output. MANUAL
indicates that the user is setting the output value. When tuning, we
recommend that changes be made in the MANUAL mode, followed by a
return to AUTO. Output limiting is applied in the MANUAL mode.

• Deadband (control block word 9) – Enter a non-negative value. The
deadband extends above and below the setpoint by the value you enter.
The deadband is entered at the zero crossing of the process variable PV
and the setpoint SP. This means that the deadband is in effect only after
the process variable PV enters the deadband and passes through the
setpoint SP. Range: 0-scaled max, or 0–16383 when no scaling exists.

The display below shows typical values entered for these parameters:

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 2/3 2.0.0.0.*
NAME: PROP INTEGRAL DERIVATIVE
GAIN: 25 [/10] MIN OUT: 5%
RESET: 10 [/10 M/R] MAX OUT: 95%
RATE: 1 [/100 MIN] AUTO/MAN: AUTO
SETPOINT: 500 DEADBAND: 5
ENTER GAIN: 255
NEXT PG

Pressing [F1], NEXT_PG brings up the third display:

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 3/3 2.0.0.0.*
NAME: PROP INTEGRAL DERIVATIVE
LOOP UPDATE: 0 [X10ms]
SET PT MIN: 0 SET PT MAX: 0
MODE: STI OUT LIMIT: NO
CONTROL: REVERSE
ENTER LOOP UPDATE: 0

You enter the following parameters at this display:

• Loop update (control block word 13) (Dt) – This is the time interval
between PID calculations. The entry is in 0.01 second intervals. A rule
of thumb is to enter a loop update time five to ten times faster than the
natural period of the load (determined by setting the reset and rate
parameters to zero and then increasing the gain until the output begins to
oscillate). When in the STI mode, this value must equal the STI time
interval value S:30. Entered range: 1–255. In timed mode, the PID loop
is only calculated upon time–out of the loop update and not every scan.

Chapter 26
PID Instruction

26–7

• Scaled setpoint minimum (Smin) (control block word 8) – If the
setpoint is to read in engineering units, then this parameter corresponds to
the value of the setpoint in engineering units when the control input is
zero. Range: –16383 to +16383.

• Scaled setpoint maximum (Smax) (control block word 7) – If the
setpoint is to read in engineering units, then this parameter corresponds to
the value of the setpoint in engineering units when the control input is
16383. Range: –16383 to +16383.
Note: Smin – Smax scaling allows you to enter the setpoint in
engineering units. The deadband plus error will also be displayed in
engineering units. The process variable PV will still be expected to be
within the range 0 –16383. That is, Smin – Smax scaling provides a full
resolution PID calculation.

• Mode (control block word 0, bit 0) – STI is the default condition.
TIMED indicates that the PID updates its output at the rate specified in
the loop update parameter (word 13); STI indicates that the PID updates
its output every time it is scanned. When you select STI, the PID
instruction should be programmed in an STI interrupt subroutine, and the
STI routine should have a time interval (STI period S:30) equal to the
setting of the PID “loop update” parameter (word 13). For example, if
the loop update time contains the value 10 (for 100 ms), then the STI time
interval must also equal 10.

• Output limit (control block word 0, bit 3) – Select YES if you want to
limit the output to minimum and maximum values:

Output YES
Output Limiting Selected

NO
Output Limiting Deselected

min The value you enter will be the minimum
output percent that the control variable
CV will obtain.

If CV drops below this minimum value,
the following will occur:

• CV will be set to the value you
entered, and

• the output alarm, lower limit LL bit
will be set.

The value you enter will determine when
the output alarm, lower limit bit is set.
If CV drops below this minimum value,
the output alarm, lower limit LL bit will be
set.

max The value you enter will be the maximum
output percent that the control variable
CV will obtain.
If CV exceeds this maximum value, the
following will occur:

• CV will be set to the value you
entered, and

• the output alarm, upper limit UL bit
will be set.

The value you enter will determine when
the output alarm, upper limit bit is set.

If CV exceeds this maximum value, the
output alarm, upper limit UL bit will be
set.

Chapter 26
PID Instruction

26–8

• Control (control block word 0, bit 2) – Reverse, the default condition,
corresponds to E=SP–PV. Forward corresponds to E=PV–SP. Direct
acting (E=PV–SP) will cause the output CV to increase when the input
PV is larger than the setpoint SP (for example, a cooling application).
Reverse acting (E=SP–PV) will cause the output CV to increase when the
input PV is smaller than the setpoint SP (for example, a heating
application).

The following display shows typical values entered for these parameters:

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 3/3 2.0.0.0.*
NAME: PROP INTEGRAL DERIVATIVE
LOOP UPDATE: 50 [X10ms]
SET PT MIN: –100 SET PT MAX: 1000
MODE: TIMED OUT LIMIT: YES
CONTROL: REVERSE
ENTER LOOP UPDATE: 50
NEXT PG PREV PG ACCEPT

Press [F5], ACCEPT, to complete the entry of parameters. If you must
change any of the parameters, you can run through the entry sequence again
before you press ACCEPT.

The control block length is fixed at 23 words and should be programmed as
an integer file. PID instruction flags (word 0) and other parameters are
located as shown on the following page.

Control Block Layout

Chapter 26
PID Instruction

26–9

EN DN PV SP LL UL DB TF SC OL CM AM TM

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PID Sub Error Code (MSbyte)

Setpoint SP

Control Block Layout

Word

0

1

2

Gain KC

Reset Ti

Rate Td

Feed Forward Bias

3

4

5

6

*

*

*

*

*

*

7

8

9

10

11

12

Setpoint Max (Smax)

Setpoint Min (Smin)

Deadband

INTERNAL USE DO NOT CHANGE

Output Max %

Output Min %

*

*

*

*

*

13

14

15

16

Loop Update

Scaled Process Variable

Scaled Error SE

Control Output Percent CO (0–100%)

*

17

18

19

20

21

22

INTERNAL USE
DO NOT CHANGE

* You may alter the state of these values with your ladder program.

OL, CM,
AM, TM *

LSW Integral Sum

MSW Integral Sum

ATTENTION: Do not alter the state of any PID control
block value unless you fully understand its function and
related effect on your process.!

Instruction flags are in the first word of the control block. They include:

• Time mode bit TM (word 0, bit 0) – This bit specifies the PID mode. It
is set when the TIMED mode is in effect. It is cleared when the STI
mode is in effect. This bit can be set or cleared by instructions in your
ladder program.

• Auto/manual bit AM (word 0, bit 1) – This bit specifies automatic
operation when it is cleared and manual operation when it is set. This bit
can be set or cleared by instructions in your ladder program.

• Control mode bit CM (word 0, bit 2) – This bit is cleared if the control
is E=SP–PV (reverse). It is set if the control is E=PV–SP (forward). This
bit can be set or cleared by instructions in your ladder program.

PID Instruction Flags

Chapter 26
PID Instruction

26–10

• Output limiting enabled bit OL (word 0, bit 3) – This bit is set when
you have selected to limit the control variable. This bit can be set or
cleared by instructions in your ladder program.

• Scale setpoint flag SC (word 0, bit 5) – This bit is cleared when setpoint
scaling values have been specified.

• Loop update time too fast TF (word 0, bit 6) – This bit is set by the PID
algorithm if the loop update time you have specified cannot be achieved
by the given program (because of scan time limitations).

If this bit is set, try to correct the problem by updating your PID loop at a
slower rate or move the PID instruction to an STI interrupt routine. Reset
and rate gains will be in error if the instruction operates with this bit set.

• deadband range DB (word 0, bit 8) – This bit is set when the process
variable or error is within the deadband range.

• Output alarm, upper limit UL (word 0, bit 9) – This bit is set when the
calculated control output CV exceeds the upper CV limit.

• Output alarm, lower limit LL (word 0, bit 10) – This bit is set when the
calculated control output CV is less than the lower CV limit.

• Setpoint out of range SP (word 0, bit 11) – This bit is set when the
setpoint exceeds the maximum scaled value or is less than the minimum
scaled value.

• Process var out of range PV (word 0, bit 12) – This bit is set when the
unscaled (or raw) process variable exceeds 16383 or is less than zero.

• PID done DN (word 0, bit 13) – This bit is set on scans where the PID
algorithm is computed. (It is computed at the loop update rate.)

• PID enabled EN (word 0, bit 15) – This bit is set while the rung of the
PID instruction is enabled.

Chapter 26
PID Instruction

26–11

Error code 0036 appears in the status file (S:6) when a PID instruction
runtime error occurs. Code 0036 covers the following PID error conditions,
each of which has been assigned a unique single byte code value that appears
in the MSbyte (most significant byte or upper 8 bits) of the second word
(word 1) of the PID control block.

Error
Code

(Decimal)

Error
Code
(Hex)

Description of Error Condition or Conditions Corrective Action

4352 11H 1) Loop update time Dt > 255, or
2) Loop update time Dt = 0

Change loop update time Dt to
0 < Dt < 255

4608 12H 1) Proportional gain Kc > 255, or
2) Proportional gain Kc = 0

Change proportional gain Kc to
0 < Kc < 255

4864 13H Integral gain (reset) Ti > 255 Change integral gain (rate) Ti to
0 < Ti < 255

5120 14H Derivative gain (rate) Td > 255 Change derivative gain (rate) Td to
0 < Td < 255

8448 21H 1) Scaled setpoint max Smax > 16383, or
2) Scaled setpoint max Smax < –16383

Change scaled setpoint max Smax to
–16383 < Smax < 16383

8704 22H 1) Scaled setpoint min Smin > 16383, or
2) Scaled setpoint min Smin < –16383

Change scaled setpoint min Smin to
–16383 < Smin < Smax < 16383

8960 23H Scaled setpoint min Smin > Scaled setpoint max Smax Change scaled setpoint min Smin to
–16383 < Smin < Smax < 16383

12544 31H If you are using setpoint scaling and Smin >
setpoint SP > Smax, or

If you are not using setpoint scaling and 0 >
setpoint SP > 16383,

then during the initial execution of the PID loop, this error occurs
and bit 11 of word 0 of the control block is set. However, during
subsequent execution of the PID loop if an invalid loop setpoint
is entered, the PID loop continues to execute using the old
setpoint, and bit 11 of word 0 of the control block is set.

If you are using setpoint scaling, then change the
setpoint SP to Smin < SP < Smax, or

If you are not using setpoint scaling, then change
the setpoint SP to 0 < SP < 16383.

16640 41H Scaling Selected Scaling Deselected

1) Deadband < 0, or 1) Deadband < 0, or
2) Deadband > 2) Deadband > 16383
 (Smax - Smin), or
3) Deadband > 16383

Scaling Selected Scaling Deselected

Change deadband to Change deadband to
0 < deadband < 0 < deadband <
(Smax – Smin) < 16383
16383

20736 51H 1) Output high limit < 0, or
2) Output high limit > 100

Change output high limit to
0 < output high limit < 100

20992 52H 1) Output low limit < 0, or
2) Output low limit > 100

Change output low limit to
0 < output low limit < output high limit < 100

21248 53H Output low limit > output high limit Change output low limit to
0 < output low limit < output high limit < 100

24576 60H PID is being entered for the second time. (PID loop was inter-
rupted by an I/O interrupt, which is then interrupted by the PID STI
interrupt.)

You have at least three PID loops in your program: One in the
main program or subroutine file, one in an I/O interrupt file, and
one in the STI subroutine file. You must alter your ladder program
and eliminate the potential nesting of PID loops.

Runtime Errors

Chapter 26
PID Instruction

26–12

For the SLC 500 PID instruction, the numerical scale for both the process
variable (PV) and the control variable (CV) is 0 to 16383. To use
engineering units, such as PSI or degrees, you must first scale your analog
I/O ranges within the above numerical scale. To do this, use the Scale (SCL)
instruction and follow the steps described below. Refer to the Analog I/O
Modules User Manual, catalog number 1746–NM003 for more information.

Scale your analog input by calculating the slope (or rate) of the analog input
range to the PV range (0 to 16383.) For example, an analog input with a
range of 4 to 20mA has a decimal range of 3277 to 16384. The decimal
range must be scaled across the range of 0 to 16383 for use as PV.

Scale the CV to span evenly across your analog output range. For example,
an analog output which is scaled at 4 to 20mA has a decimal range of 6242 to
31208. In this case, 0 to 16383 must be scaled across the range of 6242 to
31208.

Once you have scaled your analog I/O ranges to/from the PID instruction,
you can enter the minimum and maximum engineering units that apply to
your application. For example, if the 4 to 20mA analog input range
represents 0 to 300 PSI, you can enter 0 and 300 as the minimum (Smin) and
maximum (Smax) parameters respectively. The Process Variable, Error,
Setpoint, and Deadband will be displayed in engineering units in the PID
Data Monitor screen. Setpoint and Deadband can be entered into the PID
instruction using engineering units.

The following equations show the linear relationship between the input value
and the resulting scaled value.

Scaled value = (input value x slope) + offset

Slope = (scaled max. – scaled min.) / (input max. – input min)

Offset = scaled min. – (input min. x slope)

Use the following values in an SCL instruction to scale common analog input
ranges to PID process variables.

Parameter 4 to 20mA 0 to 5V 0 to 10V

Rate/10,000 12,499 10,000 5,000

Offset –4096 0 0

Use the following values in an SCL instruction to scale control variables to
common analog outputs.

Parameter 4 to 20mA 0 to 5V 0 to 10V

Rate/10,000 15,239 10,000 19,999

Offset 6242 0 0

PID and Analog I/O Scaling

Chapter 26
PID Instruction

26–13

The following ladder diagram shows a typical PID loop that is programmed
in the STI mode. This example (in APS format) is provided primarily to
show the proper scaling techniques. It shows a 4 to 20mA analog input and a
4 to 20mA analog output.

SCL
SCALE
Source I:1.0

0
Rate [/10000] 12499

Offset –4096

Dest N10:28
0

LES
LESS THAN
Source A I:1.0

0
Source B 3277

GRT
GREATER THAN
Source A I:1.0

0
Source B 16384

MOV
MOVE
Source 3277

Dest I:1.0
0

IIM
IMMEDIATE IN w MASK
Slot I:1.0
Mask FFFF

(L)
B3

0

This rung immediately updates the analog input used for PV.

Rung 3:0

Rung 3:1

Rung 3:2

Rung 3:3

Rung 3:4

These two rungs ensure the analog input value to be scaled remains within the limits of 3277 to 16384. This is necessary to
prevent “out of range” conversion errors in both the SCL and PID instructions. The latch bits can be used elsewhere in your
program to identify the particular out of range condition that occurred. Under range

MOV
MOVE
Source 16384

Dest I:1.0
0

(L)
B3

1

Over range

The source to be scaled is the input I:1 and its destination is the process variable of the PID instruction. These values are
calculated knowing that the input range is 3277 to 16384, while the scaled range (PV) is 0 to 16383.

PID
PID
Control Block N10:0
Process Variable N10:28
Control Variable N10:29
Control Block Length 23

Chapter 26
PID Instruction

26–14

IOM
IMMEDIATE OUT w MASK
Slot O:1.0
Mask FFFF

END

Rung 3:6

Rung 3:5

SCL
SCALE
Source N10:29

0
Rate [/10000] 15239

Offset 6242

Dest O:1.0
0

The PID control variable is the input for the scale instruction. The PID instruction guarantees that the CV remains within
the range of 0 to 16383. This value is to be scaled to the range of 6242 to 31208, which represents the numeric range
that is needed to produce 4 to 20mA analog output signal.

This rung immediately updates the analog output card that is driven by the PID control variable value.

You can monitor PID parameters and status bits when you are online under
the monitor function. You can also change data in any processor mode.

The following displays appear when you press the Zoom key with the cursor
on the PID instruction while monitoring online. Note that in the first display
you can change the mode from auto to manual and vice versa.

In the auto mode, you can also change the gain parameter:

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 1/2 2.0.0.0.1
NAME: PROP INT DERIV MODE: AUTO
GAIN: 25 [/10] OUT LIM: 5% ,95%
RESET: 10 [/10 M/R] DEADBND: 5
RATE: 1 [/100 MIN] OUTPUT: 0%
SETPOINT: 500 PROCESS: 0
ENTER GAIN: 25 PRG
NEXT PG MANUAL

In the manual mode, you can change the maximum output percent:

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 1/2 2.0.0.0.1
NAME: PROP INT DERIV MODE: MANUAL
PROCESS: 0 SETPOINT: 500
OUTPUT: 95%
MIN OUT: 5% MAX OUT: 95%

ENTER OUTPUT PCT: 95 PRG
NEXT PG AUTO

Online Data Changes

Chapter 26
PID Instruction

26–15

The second display shows the status bits discussed in the last section:

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 2/2 2.0.0.0.1
NAME: PROP INT DERIV MODE: MANUAL
LOOP UPDATE: 50 [x10ms]
SET PT RANGE: –100 1000
EN DN PV SP LL UL DB TF SC OL CM AM TM
0 0 0 0 0 0 0 0 0 1 1 1 1
 PRG
 PREV PG

Using Scaled Values

If you are using scaled values with the PID instruction, note that the HHT
Zoom display in the monitor mode indicates the unscaled value of the
Process Variable PV (PROCESS in the figures above). To display the
process variable in its scaled form, view the control block of the PID
instruction (shown on page 26–8). Word 14 contains the scaled value of the
Process Variable PV. To view the scaled error, view the control block of the
PID instruction. Word 15 contains the scaled error.

Changing Values in the Manual Mode

In the manual mode the Zoom display allows you to change only the
OUTPUT % value:

F1 F2 F3 F4 F5

ZOOM on PID –(PID)– 1/2 2.0.0.0.1
NAME: PROP INT DERIV MODE: MANUAL
PROCESS: 0 SETPOINT: 500
OUTPUT: 95%
MIN OUT: 5% MAX OUT: 95%

ENTER OUTPUT PCT: 95 PRG
NEXT PG AUTO

Only the Output %
can be changed at

this display.

You can change the Setpoint, Deadband, Gain, Reset, Rate, Output min %,
and Output max % parameters by writing to the appropriate word within the
control block of the PID. The control block is shown on page 26–9.

Chapter 26
PID Instruction

26–16

Normally, when the (CV) Output % is changed, the scaled value in the
“Output” location is changed. This value is a number from 0 to 16383
corresponding to the (CV) Output % of 0 to 100. Although the (CV) Output
% is displayed in the control block (word 16), modifying this word in the
manual mode has no effect on the “Output” value. When you are in the
manual mode, the scaled value in the “Output” location can be changed in
either of two ways:

• Use the Zoom display to change the (CV) Output % in the Run mode, or
• Write a ladder program that will convert the (CV) Output % to an analog

value and place it into the “Output” (or “Control Variable”) location. An
example of this is shown on page 26–20.

The following paragraphs discuss:

• Input/Output Ranges
• Scaling to Engineering Units
• Zero-crossing Deadband
• Output Alarms
• Output Limiting with Anti-reset Windup
• The Manual Mode
• Feed Forward
• Time Proportioning Outputs

Input/Output Ranges

The input module measuring the process variable (PV) must have a full scale
binary range of 0 to 16383. If this value is less than 0 (bit 15 set), then a
value of zero will be used for PV and the “Process var out of range” bit will
be set (bit 12 of word 0 in the control block). If the process variable is >
16383 (bit 14 set), then a value of 16383 is used for PV and the “Process var
out of range” bit is set.

The Control Variable, calculated by the PID instruction, has the same range
of 0 to 16383. The Control Output (word 16 of the control block) has the
range of 0 to 100%. You can set lower and upper limits for the instruction’s
calculated output values (where an upper limit of 100% corresponds to a
Control Variable limit of 16383).

Scaling to Engineering Units

Scaling lets you enter the setpoint and zero-crossing deadband values in
engineering units, and to display the process variable and error values in the
same engineering units. Remember, the process variable PV must still be
within the range 0 to 16383.

Application Notes

Chapter 26
PID Instruction

26–17

Select scaling as follows:
1. Enter the maximum and minimum scaling values Smax and Smin in the

PID control block. Refer to the control block of the PID instruction on
page 26–9. The Smin value corresponds to an analog value of zero for
the lowest reading of the process variable, and Smax corresponds to an
analog value of 16383 for the highest reading. These values reflect the
process limits. Setpoint scaling is selected by entering a non-zero value
for one or both parameters. If you enter the same value for both
parameters, setpoint scaling is disabled.

For example, if measuring a full scale temperature range of – 73 (PV=0)
to +1156° C (PV=16383), enter a value of –73 for Smin and 1156 for
Smax. Remember that inputs to the PID instruction must be 0 to 16383.
Signal conversions could be as follows:

Process limit –73 to +1156o C
Transmitter output (if used) +4 to +20 mA
Output of analog input module 0 to 16383mA
PID instruction, Smin to Smax –73 to +1156o C

2. Enter the setpoint (word 2) and deadband (word 9) in the same scaled
engineering units. Read the scaled process variable and scaled error in
the control block as well. The control output (word 16) is displayed as a
percentage of the 0 to 16383 range. The output transferred to the output
modules is always unscaled.

When you select scaling, the instruction scales the setpoint, deadband,
process variable, and error. You must consider the effect on all these
variables when you change scaling.

Zero-crossing Deadband DB

The adjustable deadband lets you select an error range above and below the
setpoint where the output does not change as long as the error remains within
this range. This lets you control how closely the process variable matches
the setpoint without changing the output.

+DB

SP

–DB

Error Range

Time

Zero-crossing is deadband control that lets the instruction use the error for
computational purposes as the process variable crosses into the deadband
until it crosses the setpoint. Once it crosses the setpoint (error crosses zero
and changes sign) and as long as it remains in the deadband, the instruction
considers the error value zero for computational purposes.

Select deadband by entering a value in the deadband storage word (word 9)
in the control block. The deadband extends above and below the setpoint by
the value you enter. A value of zero inhibits this feature. The deadband has
the same scaled units as the setpoint if you choose scaling.

Chapter 26
PID Instruction

26–18

Output Alarms

You may set an output alarm on the control output (CO) at a selected value
above and/or below a selected output percent. When the instruction detects
that the output (CO) has exceeded either value, it sets an alarm bit (bit 10 for
lower limit, bit 9 for upper limit) in word 0 of the PID control block. Alarm
bits are reset by the instruction when the output (CO) comes back inside the
limits. The instruction does not prevent the output (CO) from exceeding the
alarm values unless you select output limiting.

Select upper and lower output alarms by entering a value for the upper alarm
(word 11) and lower alarm (word 12). Alarm values are specified as a
percentage of the output. If you do not want alarms, enter zero and 100%
respectively for lower and upper alarm values and ignore the alarm bits.

Output Limiting with Anti-reset Windup

You may set an output limit (percent of output) on the control output. When
the instruction detects that the output (CO) has exceeded a limit, it sets an
alarm bit (bit 10 for lower limit, bit 9 for upper limit) in word 0 of the PID
control block, and prevents the output (CO) from exceeding either limit
value. The instruction limits the output (CO) to 0 and 100% if you choose
not to limit.

Select upper and lower output limits by setting the limit enable bit (bit 3 of
control word 0), and entering an upper limit (word 11) and lower limit (word
12). Limit values are a percentage (0 to 100%) of the control output (CO).

The difference between selecting output alarms and output limits is that you
must select output limiting to enable limiting. Limit and alarm values are
stored in the same words. Entering these values enables the alarms, but not
limiting. Entering these values and setting the limit enable bit enables
limiting and alarms.

Anti-reset windup is a feature that prevents the integral term from becoming
excessive when the output (CO) reaches a limit. When the sum of the PID
and bias terms in the output (CO) reaches the limit, the instruction stops
calculating the integral output term until the output (CO) comes back in
range.

Chapter 26
PID Instruction

26–19

The Manual Mode

In the manual mode, the PID algorithm does not compute the value of the
control variable. Rather, it uses the value as an input to adjust the integral
sum (words 17 and 18) so that a bumpless transfer takes place upon
re-entering the AUTO mode.

In the manual mode, the HHT allows you to enter a new CO value from 0 to
100%. This value is converted into a number from 0 to 16383 and written to
the Control Variable address. If you are using an analog output module for
this address, you must save (compile) the program with the File Protection
option set to None. This allows writing to the output data table. If you do
not perform this save operation, you will not be able to set the output level in
the manual mode. If your ladder program sets the manual output level,
design your ladder program to write to the CV address when in the manual
mode. Note that this number is in the range of 0 to 16383, not 0 to 100.
Writing to the CO percent (word 16) with your ladder program has no effect
in the manual mode.

The following is an example that can be used to control the output (CV) with
your ladder program.

Chapter 26
PID Instruction

26–20

Notes on Operation
A 3-digit BCD thumbwheel is wired to an input
module at I1:1.0 (range 0–100).

A pushbutton wired to I1:2.0/0 accepts the
thumbwheel value.

A selector switch for auto/manual mode is wired
to I1:2.0/1 (auto) and I1:2.0/2 (manual).

N7:0 stores the value entered on the
thumbwheel switch.

N7:2 stores an intermediate calculation.

N7:8 is the PID control variable address.

N7:10 is the control block address of the PID
instruction.

N7:26 Percent output is updated automatically
by the PID instruction.

] [
N7:10

 1
[OSR]
B3

 0

()
B3

 3

MUL
MULTIPLY
Source A N7:0

Source B 16384

Dest N7:2

LIM
LIMIT TEST
Low Lim 0

Test N7:0

High Lim 100

FRD
FROM BCD
Source I1:1.0

Dest N7:0

DDV
DOUBLE DIVIDE
Source 100

Dest N7:8

] [
I:2.0

 0

(U)
S:5

 0

] [
I:2.0

 1

Accept CV

Error – Out of Range

Auto

] [
I:2.0

 2

Manual

(L)
N7:10

 1

(U)
N7:10

 1

A/M Bit

A/M Bit

A/M Bit

LIM
LIMIT TEST
Low Lim 101

Test N7:0

High Lim –1

Example – To Manually Control the CV Output

Chapter 26
PID Instruction

26–21

Feed Forward

Applications involving transport lags may require that a bias be added to the
CV output in anticipation of a disturbance. This bias can be accomplished in
the SLC 5/02 processor by writing a value to the Feed Forward Bias element,
the seventh element (word 6) in the control block file (see page 26–7). The
value you write will be added to the output, allowing a feed forward action to
take place. You may add a bias by writing a value between 0 and 16383 to
word 6 with your HHT or ladder program.

Time Proportioning Outputs

For heating or cooling applications, the Control Variable analog output is
typically converted to a time-proportioning output. While this cannot be
done directly in the SLC 5/02 processor, you can use the program on the
following page to convert the Control Variable to a time proportioning
output. In this program, cycle time is the preset of timer T4:0. Cycle time
relates to % on-time as follows:

T4:0.PRE is the cycle time

100% output on–time

% on–time

Chapter 26
PID Instruction

26–22

(L)
O:1.0

 0

(U)
O:1.0

 0

(RES)
T4:0

(EN)

(DN)

TON
TIMER ON DELAY
Timer T4:0
Time Base 0.01
Preset 1000
Accum 0

NEQ
NOT EQUAL
Source A N7:25

0
Source B 0

GRT
GREATER THAN
Source A T4:0.ACC

0
Source B N7:25

0

MUL
MULTIPLY
Source A N7:1

0
Source B T4:0.PRE

1000
Dest N7:25

0

DDV
DOUBLE DIVIDE
Source 16383

Dest N7:25
0

CLR
CLEAR
Dest S:5

0

PID
PID
Control Block N7:2
Process Variable N7:0
Control Variable N7:1
Control Block Length 23

END

] [
T4:0

DN

] [
N7:2

13

Cycle Time of the Output

Time Proportioning

Control Variable

Clears Minor Error Flag

PID Instruction

Output Contact

Done Bit

Output as a Fraction
of Cycle Time

Example – Time Proportioning Outputs

Chapter 26
PID Instruction

26–23

PID Tuning

PID tuning requires a knowledge of process control. If you are
inexperienced, it will be helpful if you obtain training on the process control
theory and methods used by your company.

There are a number of techniques that can be used to tune a PID loop. The
following PID tuning method is general, and is limited in terms of handling
load disturbances.

When tuning, changes should be made in the manual mode, followed by a
return to auto. Output limiting is applied in the manual mode.

Important: This method requires that the PID instruction controls a
non-critical application in terms of personal safety and
equipment damage.

The method requires only a few simple calculations.

Procedure

1. Create your ladder program. Make certain that you have properly scaled
your analog input to the range of the process variable PV and that you
have properly scaled your control variable CV to your analog output.

2. Connect your process control equipment to your analog modules.
Download your program to the processor. Leave the processor in the
program mode.

Important: Ensure that all possibilities of machine motion have been
considered with respect to personal safety and equipment
damage. It is possible that your output CV may swing between
0 and 100% while tuning.

3. Enter the following values: The initial setpoint SP value, a reset Ti of 0, a
rate Td of 0, a gain Kc of 1, and a loop update of 5.

Set the PID mode to STI or Timed, per your ladder diagram. If STI is
selected, ensure that the loop update time equals the STI time interval.

Enter the optional settings that apply (output limiting, output alarm, Smax
– Smin scaling, feedforward).

4. Get prepared to chart the CV, PV, analog input, or analog output as it
varies with time with respect to the setpoint SP value.

5. Place the PID instruction in the MANUAL mode, then place the
processor in the Run mode.

6. While monitoring the PID display, adjust the process manually by writing
to the CO percent value.

7. When you feel that you have the process under control manually, place
the PID instruction in the AUTO mode.

Chapter 26
PID Instruction

26–24

8. Adjust the gain while observing the relationship of the output to the
setpoint over time.

Note that gain adjustments disrupt the process when you change values.
To avoid this disruption, switch to the MANUAL mode prior to making
your gain change, then switch back to the AUTO mode.

9. When you notice that the process is oscillating above and below the
setpoint in an even manner, record the time of 1 cycle. That is, obtain the
natural period of the process. Record the gain value. Return to the
MANUAL mode (stop the process if necessary).

10. Set the loop update time (and STI time interval if applicable) to a value of
5 to 10 times faster than the natural period.

If the cycle time is 20 seconds for example, and you choose to set the
loop update time to 10 times faster than the natural rate, set the loop
update time to 200, which would result in a 2-second rate.

11. Set the gain Kc value to 1/2 the gain needed to obtain the natural period of
the process. For example, if the gain value recorded in step 9 was 80, set
the gain to 40.

12. Set the reset term Ti to approximate the natural period. If the natural
period is 20 seconds, as in our example, you would set the reset term to 3
(0.3 minutes per repeat approximates 20 seconds).

13. Now set the rate Td equal to a value 1/8 that of the reset term. For our
example, the value 4 will be used to provide a rate term of 0.04 minutes
per repeat.

14. Place the process in the AUTO mode. If you have an ideal process, the
PID tuning will be complete.

15. To make adjustments from this point, place the PID instruction in the
MANUAL mode, enter the adjustment, then place the PID instruction
back in the AUTO mode.

This technique of going to MANUAL, then back to AUTO ensures that
all “integral buildup” and “gain error” is removed at the time each
adjustment is made. This allows you to see the effects of each adjustment
immediately.

27Chapter

27–1

The Status File

This chapter discusses the status file functions of the:

• fixed
• SLC 5/01
• SLC 5/02 processors

All application examples shown are in the HHT zoom display.

The SLC 5/02 processor has the functions of the fixed and SLC 5/01
processors plus the functions listed in the right-hand column of the figure
below.

The status file gives you information concerning the various instructions you
use in your program, and other information such as EEPROM functionality.
The status file indicates minor faults, diagnostic information on major faults,
processor modes, scan time, baud rate, system node addresses, and various
other data.

Important: Do not write to status file data unless the word or bit is listed as
read/write in the descriptions that follow. If you intend writing
to status file data, it is imperative that you first understand the
function fully.

The status file S: consists of the following words:

Word Function

S:0 Arithmetic Flags Words 16 through 32 are functional for the SLC 5/02 only:

S:1L, S:1H Processor Mode Status/Control Word Function

S:2L, S:2H STI Bits/DH–485 Communications S:16, S:17 Test Single Step – Start Step On – Rung/File

S:3L Current Scan Time S:18, S:19 Test Single Step – End Step Before – Rung/File

S:3H Watchdog Scan Time S:20, S:21 Test – Fault/Powerdown – Rung/File

S:4 Free Running Clock S:22 Maximum Observed Scan Time

S:5 Minor Error Bits S:23 Average Scan Time

S:6 Major Error Code S:24 Index Register

S:7, S:8 Suspend Code/Suspend File S:25, S:26 I/O Interrupt Pending

S:9, S:10 Active Nodes S:27, S28 I/O Interrupt Enabled

S:11, S;12 I/O Slot Enables S:29 User Fault Routine File Number

S:13, S:14 Math Register S:30 Selectable Timed Interrupt Setpoint

S:15L Node Address S:31 Selectable Timed Interrupt File Number

S:15H Baud Rate S:32 I/O Interrupt Executing

Status File Functions

Chapter 27
The Status File

27–2

The following tables describe the status file functions, beginning at address
S:0 and ending at address S:32. If a bullet (•) is present in the columns
headed SLC 5/02 and SLC 5/01, Fixed, the function applies to the indicated
processor(s).

Address Description 5/02 5/01,
Fixed

S:0 Arithmetic Flags
Read/write. The arithmetic flags are assessed by the processor
following the execution of any math, logical, or move instruction. The
state of these bits remains in effect until the next math, logical, or
move instruction in the program is executed.

• •

S:0/0 Carry Bit
This bit is set by the processor if a mathematical carry or borrow is
generated. Otherwise the bit remains cleared. This bit is assessed
as if a function of unsigned math.

• •

When an STI, I/O Slot, or Fault Routine interrupts normal execution of
your program, the original value of S:0/0 is restored when execution
resumes.

•

S:0/1 Overflow Bit
This bit is set by the processor when the result of a mathematical
operation does not fit in its destination. Otherwise the bit remains
cleared. Whenever this bit is set, the overflow trap bit S:5/0 is also
set (refer to S:5/0).

• •

When an STI, I/O Slot or Fault Routine interrupts normal execution of
your program, the original value of S:0/1 is restored when execution
resumes.

•

S:0/2 Zero Bit
This bit is set by the processor when the result of a math, logical, or
move instruction is zero. Otherwise the bit remains cleared.

• •

When an STI, I/O Slot, or Fault Routine interrupts normal execution of
your program, the original value of S:0/2 is restored when execution
resumes.

•

S:0/3
Sign Bit

This bit is set by the processor when the result of a math, logical, or
move instruction is negative. Otherwise the bit remains cleared.

• •

When an STI, I/O Slot, or Fault Routine interrupts normal execution of
your program, the original value of S:0/3 is restored when execution
resumes.

•

S:0/4 to
S:0/15

Reserved • •

Chapter 27
The Status File

27–3

Address Description 5/02 5/01,
Fixed

S:1/0
thru
S:1/4

Processor Mode/Status
Read only. Bits 0 – 4 function as follows:

0 0000 = (0) Download in process
0 0001 = (1) Program mode (the fault mode exists when bit

S:1/13 is set along with mode 0 0001)
0 0011 = (3) Suspend Idle (operation halted by SUS instruction

execution)
0 0110 = (6) Run mode
0 0111 = (7) Test continuous mode
0 1000 = (8) Test single scan mode

• •

0 1001 = (9) Test single step (step until)

All other values for bits 0–4 are reserved or unallocated.

•

S:1/5 Forces Enabled Bit
Read only. This bit is set by the processor if you have enabled forces
in a ladder program. Otherwise the bit remains cleared. The
processor “Forced I/O” LED is on continuously when forces are
enabled.

• •

S:1/6 Forces Installed Bit
Read only. This bit is set by the processor if you have installed forces
in a ladder program. The forces may or may not be enabled.
Otherwise the bit remains cleared. The processor “Forced I/O” LED
flashes when forces are installed but not enabled.

• •

S:1/7 Communications Active Bit
Read only. This bit is set by the processor when at least one other
node is present on the DH–485 link. Otherwise the bit remains
cleared. When a device is active, it is a recognized participant in a
DH–485 token-passing network.

• •

S:1/8 Fault Override at Powerup Bit
Read/write. When you set this bit, it causes the processor to clear the
Major Error Halted bit S:1/13 and Minor error bits S:5/0 to S:5/7 on
powerup, if the processor had previously been in the Run mode and
had faulted. The processor then attempts to enter the Run mode.
When this bit remains cleared (default value), the processor remains
in a major fault state at power up. To program this feature, set this bit
using the EDT_DAT function.

• •

Chapter 27
The Status File

27–4

Address Description 5/02 5/01,
Fixed

S:1/9 Startup Protection Fault Bit
Read/write. When this bit is set and power is cycled while the
processor is in the Run mode, the processor will execute your fault
routine prior to the execution of the first scan of your program. You
then have the option of clearing the Major Error Halted bit S:1/13 to
resume operation in the Run mode. If your fault routine does not
reset bit S:1/13, the fault mode will result.

To program this feature, set this bit using the EDT_DAT function, then
program your fault routine logic accordingly. When executing the
startup protection fault routine, S:6 (major error fault code) will contain
the value 0016H.

•

S:1/10 Load Memory Module on Memory Error Bit
Read/ write. You can use this bit to transfer a memory module
program to the processor in the event that a processor memory error
is detected at power up. (A memory error means the processor
cannot run the program in the RAM memory because the program
has been corrupted, as detected by a parity or checksum error. This
type of error is caused by battery or capacitor drain, noise, a power
problem, etc.)

You must set S:1/10 in the status file of the program in the memory
module. When a memory module is installed that has bit S:1/10 set,
a processor memory error detected at power up will cause the
memory module program to be transferred to the processor, and the
Run mode to be entered.

When S:1/10 is cleared in the memory module, the processor
remains in a major fault condition if a memory error is detected on
power up, regardless of memory module presence.

When S:1/10 is also set in the status file of the user program in RAM
memory, the memory module must be installed at all times to enter
the Run or Test modes. Otherwise, the processor faults and S:6
contains error code 0013H.

To program this feature, set this bit using the EDT_DAT function.
Then store the program in the memory module.

• •

S:1/11 Load Memory Module Always Bit
– Not applicable to series A fixed and SLC 5/01 processors

Read/write. When this bit is set, you can overwrite a processor
program with a memory module program by cycling processor power,
with no need for a programming device. The processor mode after
powerup will be as follows:

Mode before Powerdown
Test/Program

Run
Fault after Test/Program

Fault after Run

After Powerup
Program

Run
Program

Run

Continued on next page

• •

Chapter 27
The Status File

27–5

Address Description 5/02 5/01,
Fixed

S:1/11 Continued from previous page:

You must set S:1/11 in the status file of the program in the memory
module. Loading will take place if the master password and/or
password in the processor and memory module match. Loading will
also take place if the processor has neither a password nor master
password.

When S:1/11 is also set in the status file of the user program in RAM
memory, the memory module must be installed at all times to enter
the Run or Test modes. Otherwise, the processor faults and S:6
contains error code 0013H.

To program this feature, set this bit using the EDT_DAT function.
Then store the program in the memory module.

ATTENTION: The overwriting process, including data
tables, is repeated each time you cycle power.!

• •

S:1/12 Load Memory Module and Run Bit
– Not applicable to series A fixed and SLC 5/01 processors

Read/write. With this bit, a user can overwrite a processor program
with a memory module program by cycling processor power, with no
need for a programming device. The processor will attempt to enter
the Run mode, regardless of what mode was in effect before cycling
power:

Mode before Powerdown

Test/Program/Run/Fault

After Powerup

Run

The memory module you install in the processor must have status
file bit S:1/12 set. Loading will take place if the master password
and/or password in the processor and memory module match.
Loading will also take place if the processor has neither a password
nor master password.

When S:1/12 is set in the status file of the user program in RAM
memory, it does not require the presence of the memory module to
enter the Run or Test modes.

Application note: Set both S:1/11 and S:1/12 to 1) autoload and run
every power cycle and 2) require the presence of the memory
module to enter the Run or Test mode.

To program this feature, set this bit using the EDT_DAT function.
Then store the program in the memory module. This feature is
particularly useful when you are troubleshooting hardware failures
with “spares” (replacement modules). This feature can also be used
to facilitate application logic upgrades in the field without the need of
a programming device.

ATTENTION: If you leave the memory module installed,
the overwriting process, including data tables, is repeated
each time you cycle power. The mode is changed to Run
each and every power cycle.

!

•

Chapter 27
The Status File

27–6

Address Description 5/02 5/01,
Fixed

S:1/13 Major Error Halted Bit
Read/write. This bit is set by the processor any time a major error is
encountered. The processor then enters a fault condition. Word S:6
Fault Code will contain a code which can be used to diagnose the
fault condition. Any time bit S:1/13 is set, the processor either:

1) places all outputs in a safe state and indicates the program mode
(00001) in bits S:1/0 – S:1/4, or

• •

2) enters the user fault routine with outputs active, allowing the fault
routine ladder logic to attempt recovery from the fault condition. If
your fault routine determines that recovery is in order, clear S:1/13
using ladder logic prior to exiting the fault routine. If the fault routine
ladder logic does not understand the fault code, or if the routine
determines that it is not desirable to continue operation, exit the fault
routine with bit S:1/13 set. The outputs will then be placed in a safe
state and indicate the program mode (0 0001) in bits S:1/0–S:1/4.

•

When you clear bit S:1/13 using a programming device, the processor
mode changes from fault to program, allowing you to re-enter the run
or test modes. You can set this bit in your ladder program to generate
an application-specific Major Error.

Important: Once a major fault state exists, you must correct the
condition causing the fault, and you must also clear this
bit in order for the processor to accept a mode change
attempt (into program, run, or test). Also, clear S:6 (error
code) to avoid the confusion of having an error code but
no fault condition.

Note that if a faulted program is uploaded into the HHT
the fault (S:1/13 set) goes with it. If the program is then
edited offline, you must clear the major fault bit in order
to download and run the program again.

• •

Chapter 27
The Status File

27–7

Address Description 5/02 5/01,
Fixed

S:1/14 Access Denied Bit
Read/write. You can allow or deny future access to a processor file.
If you deny access, the processor sets this bit, indicating that a
programming device must have a matching copy of the processor file
in its memory in order to monitor the ladder program. A programming
device that does not have a matching copy of the processor file is
denied access.

To program this feature, select “Future Access Disallow” (SLC 5/02)
or “Future Access No” (SLC 5/01) when saving your program. To
provide protection from inadvertent data monitor alteration of your
selection, program an unconditional OTL instruction at address
S:1/14 to deny future access, or an unconditional OTU instruction at
address S:1/14 to allow future access.

When this bit is cleared, it indicates that any compatible programming
device can access the ladder program (provided that password
conditions are satisfied).

When access is denied, the programming device (APS, HHT) may
not display the ladder diagram or allow access to the EDT_DAT
function unless the device contains a matching copy of the processor
file. Functions such as change mode, clear memory, restore
program, and transfer memory module are allowed regardless of this
selection. A device such as the DTAM is not affected by this function.

• •

S:1/15 First Pass Bit
Read/write. You can use this bit to initialize your program as the
application requires. When this bit is set by the processor, it indicates
that the first scan of the user program is in progress (following power
up in the Run mode or entry into a run or test mode). The processor
clears this bit following the first scan.

When this bit is cleared, it indicates that the program is not in the first
scan of a test or Run mode.

• •

This bit will be set during execution of the startup protection fault
routine. See S:1/9.

•

S:2/0 STI (Selectable Timed Interrupt) Pending Bit
Read only. When set, this bit indicates that the STI timer has timed
out and the STI routine is waiting to be executed. This bit is cleared
upon starting of the STI routine, powerup, Run mode exit, or
execution of a true STS instruction.

•

S:2/1 STI (Selectable Timed Interrupt) Enabled Bit
Read only. This bit is set in its default condition, or when set by the
STE or STS instruction. If set, it allows execution of the STI if the STI
file (word 31) and STI rate (word 30) are non–zero. If clear when the
interrupt occurs, the STI subroutine does not execute and the STI
pending bit is set. The STI Timer continues to run when disabled.
The STI instruction clears this bit.

•

Chapter 27
The Status File

27–8

Address Description 5/02 5/01,
Fixed

S:2/2 STI (Selectable Timed Interrupt) Executing Bit
Read only. This bit, when set, indicates that the STI timer has timed
out and the STI subroutine is currently being executed. Application
example: You could examine this bit in your fault routine to determine
if your STI was executing when the fault occurred. This bit is cleared
upon completion of the STI routine, powerup, or Run mode entry.

•

S:2/3 Index Addressing File Range Bit
Read only. Selected by the user at the time the user program is
saved. When clear, the index register can index only within the same
data file of the specified base address. When set, the index register
can index anywhere from data file B3:0 to the end of the last declared
data file.

•

S:2/4 Saved with Single Step Test Enabled Bit
Read only. This bit is selected by the user prior to saving the user
program. When clear, the Single Step Test mode function is not
available. Clear also indicates that debug registers S:16 through
S:21 are inoperative. When set, the program can operate in the
Single Step Test mode. See descriptions of S:16 through S:21.
When set, your program will also require 0.375 instruction words (3
bytes) per rung of additional memory.

Note: The HHT can save a SLC 5/02 program that has this option
enabled, but the Test Single Step mode is not available with the HHT.

•

S:2/5 DH–485 Incoming Command Pending Bit
Read only. This bit becomes set when the processor determines that
another node on the DH–485 network has requested information or
supplied a command to it. This bit can become set at any time. This
bit is cleared when the processor services the request (or command).

You can use this bit as a condition of an SVC instruction to enhance
the communications capability of your processor.

•

S:2/6 DH–485 Message Reply Pending Bit
Read only. This bit becomes set when another node on the DH–485
network has supplied the information that you have requested in the
MSG instruction of your processor. This bit is cleared when the
processor stores the information and updates your MSG instruction.

You can use this bit as a condition of an SVC instruction to enhance
the communications capability of your processor.

•

Chapter 27
The Status File

27–9

Address Description 5/02 5/01,
Fixed

S:2/7 DH–485 Outgoing Message Command Pending Bit
Read only. This bit is set when one or more messages in your
program are enabled and waiting, but no message is being
transmitted at the time. As soon as transmission of a message
begins, the bit is cleared. After transmission, the bit is set again if
there are further messages waiting, or it remains cleared if there are
no further messages waiting.

You can use this bit as a condition of an SVC instruction to enhance
the communication capability of your processor.

•

S:2/8 CIF (Common Interface File) Addressing Mode
Applies to Series C and later SLC 5/02 processors only.

Read/write. This bit controls the mode used by the SLC 5/02
processor to address elements in the CIF file (data file 9) when
processing a communications request.

Word address mode – in effect when the bit is clear (0): This is the
default setting, compatible with other SLC 500 devices on the
DH–485 network.

Byte address mode – in effect when the bit is set (1): This mode is
used when a SLC 5/02 processor is receiving a message from a
device on the network, possibly through a bridge or gateway. This
setting is compatible with Allen-Bradley PLC inter-processor
communication.

•

S:2/9
thru
S:2/13

Reserved • •

Chapter 27
The Status File

27–10

Address Description 5/02 5/01,
Fixed

S:2/14 Math Overflow Selection Bit
Applies to Series C and later SLC 5/02 processors only.

Set this bit when you intend to use 32-bit addition and subtraction.
When S:2/14 is set, and the result of an ADD, SUB, MUL, or DIV
instruction cannot be represented in the destination address
(underflow or overflow),
• the overflow bit S:0/1 is set,
• the overflow trap bit S:5/0 is set, and
• the destination address contains the unsigned truncated

least significant 16 bits of the result.

The default condition of S:2/14 is reset (0). This provides the same
operation as that of the Series B SLC 5/02 processor. When S:2/14
is reset, and the result of an ADD, SUB, MUL, or DIV instruction
cannot be represented in the destination address (underflow or
overflow),
• the overflow bit S:0/1 is set,
• the overflow trap bit S:5/0 is set, and
• the destination address contains 32767 if the result is

positive or – 32768 if the result is negative.

Note that the status of bit S:2/14 has no effect on the DDV instruction.
Also, it has no effect on the math register content when using MUL
and DIV instructions.

To program this feature, use the EDT_DAT function to set/clear this
bit. To provide protection from inadvertent data monitor alteration of
your selection, program an unconditional OTL instruction at address
S:2/14 to ensure the new math overflow operation, or program an
unconditional OTU instruction at address S:2/14 to ensure the original
math overflow operation.

See chapter 20 for an application example of 32-bit signed math.

•

Chapter 27
The Status File

27–11

Address Description 5/02 5/01,
Fixed

S:2/15 DH–485 Communications Servicing Selection Bit
Read/write. When set, only one communication request/command
will be serviced per END, TND, REF, or SVC. When clear, all
serviceable incoming or outgoing communication requests
/commands will be serviced per END, TND, REF, or SVC. When
clear, your communications throughput will increase. However, your
scan time will increase if several communication commands/requests
are received in the same scan.

One communication request/command consists of either a DH–485
incoming command, DH–485 message reply, or DH–485 outgoing
message command. See S:2/5, S:2/6, S:2/7.

To program this feature, use the EDT_DAT function to set/clear this
bit. To provide protection from inadvertent data monitor alteration of
your selection, program an unconditional OTL instruction at address
S:2/15 to ensure one request/command operation, or program an
unconditional OTU instruction at address S:2/15 to ensure multiple
request/command operation. Alternately, your program may change
the state of this bit using ladder logic if your application requires
dynamic selection of this function.

Application example: Suppose you have a system consisting of a
SLC 5/02 processor, an APS programmer, and a DTAM. The
program scan time for your user program is extremely long. Because
of this, the programming device or DTAM takes an unusually long
time to update its screen. You can improve this update time by
clearing S:2/15.

In a case such as this, the additional time spent by the processor to
service all communications at the end of the scan is insignificant
compared to the time it takes to complete one scan. You could
increase communication throughput even further by using an SVC
instruction. See chapter 18.

•

Chapter 27
The Status File

27–12

Address Description 5/02 5/01,
Fixed

S:3L Current/Last 10 ms Scan Time Byte
Read/write. The value of this byte tells you how much time elapses
in a program cycle. A program cycle includes the ladder program
scan, I/O scan, and servicing the communication port. The byte
value is zeroed by the processor each scan, immediately preceding
the execution of rung 0 of program file 2 (main program file) or on
return from the REF instruction. The byte is incremented every 10
milliseconds thereafter, and indicates, in 10 ms increments, the
amount of time elapsed in each program cycle. If this value ever
equals the value in S:3H Watchdog, a user watchdog major error will
be declared (code 0022).

Resolution of the scan time value: The resolution of this value is +0
to – 10 milliseconds. Example: The value 9 indicates that 80–90 ms
has elapsed since the start of the program cycle.

Application example: Your application requires that each and every
program scan execute in the same length of time. You measure the
maximum and minimum scan times and find them to be 40 ms and
20 ms.

You can make every scan equal to precisely 50 ms by programming
the following rungs as the last rungs of your program.

This example assumes that your I/O scan and communications
servicing takes less than 10 ms. If it were to exceed 10 ms, the
resolution of +0 to –1 tick (10 ms) would have to be added to the
scan time.

]LBL[
 1

(JMP)
 1LES

LESS THAN
Source A N7:0

Source B 5

MOV
MOVE
Source S:3

Dest N7:0

AND
BITWISE AND
Source A 255

Source B N7:0

Dest N7:0

• •

Chapter 27
The Status File

27–13

Address Description 5/02 5/01,
Fixed

S:3H Watchdog Scan Time Byte
Read/write. This byte value contains the number of 10 ms ticks
allowed to occur during a program cycle. The default value is 10 (100
ms) but you can increase this to 250 (2.5 seconds) or decrease it to 2,
as your application requires. If the program scan S:3L value equals
the watchdog value, a watchdog major error will be declared (code
0022).

• •

S:4 Free Running Clock
Discussion applies to SLC 5/01 and fixed processors only.

Read only. Only the first 8 bits (byte value) of this word are assessed
by the processor. This value is zeroed at powerup in the Run mode.
With the Series B SLC 5/01 processor, this value is also zeroed at
each entry into the run or test mode. It is incremented every 10 ms
thereafter.

You can use any individual bit of this byte in your user program as a
50% duty cycle clock bit. Clock rates for S:4/0 to S:4/7 are:

20, 40, 80, 160, 320, 640, 1280, and 2560 milliseconds.

The application using the bit must be evaluated at a rate more than
two times faster than the clock rate of the bit. This is illustrated in the
example below for SLC 5/02 processors.

•

Free Running Clock
Discussion applies to SLC 5/02 processors only.

Read/write. All 16 bits of this word are assessed by the processor.
The value of this word is zeroed upon power up in the Run mode or
entry into the run or test mode. It is incremented every 10 ms
thereafter.

Application note: You can write any value to S:4. It will begin
incrementing from this value.

You can use any individual bit of this word in your user program as a
50% duty cycle clock bit. Clock rates for S:4/0 to S:4/15 are:

20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480,
40960, 81920, 163840, 327680, and 655360 milliseconds.

The application using the bit must be evaluated at a rate more than
two times faster than the clock rate of the bit. In the example below,
bit S:4/3 toggles every 80 ms, producing a 160 ms clock rate. To
maintain accuracy of this bit in your application, the instruction using
bit S:4/3 (O:1/0 in this case) must be evaluated at least once every
79.999 ms.

160 ms

S:4/3 cycles in 160 ms
Both S:4/3 and Output O:1/0 toggle
every 80 ms. O:1/0 must be evaluated
at least once every 79.999 ms.

] [
S:4

 3
()

O:1

 0

•

Chapter 27
The Status File

27–14

Address Description 5/02 5/01,
Fixed

S:5 Minor Error Bits
The bits of this word are set by the processor to indicate that a minor
error has occurred in your ladder program. Minor errors, bits 0–7,
revert to major error 0020H if any bit is detected as being set at the
end of the scan. If the processor faults for error code 0020H, you
must clear minor error bits S:5/0–7 along with S:1/13 to attempt error
recovery.

• •

S:5/0 Overflow Trap Bit
Read/write. When this bit is set by the processor, it indicates that a
mathematical overflow has occurred in the ladder program (see
S:0/1).

If this bit is ever set upon execution of the END, TND, or REF
instruction, a major error (0020) will be declared. To avoid this type of
major error from occurring, examine the state of this bit following a
math instruction (ADD, SUB, MUL, DIV, DDV, NEG, SCL, TOD, or
FRD), take appropriate action, and then clear bit S:5/0 using an OTU
instruction with S:5/0 or a CLR instruction with S:5.0.

• •

S:5/1 Reserved • •

S:5/2 Control Register Error Bit
Read/write. The LFU, LFL, FFU, FFL, BSL, BSR, SQO, SQC, and
SQL instructions are capable of generating this error. When bit S:5/2
is set, it indicates that the error bit ER of the control instruction has
been set.

If this bit is ever set upon execution of the END, TND, or REF
instruction, a major error (0020) will be declared. To avoid this type of
major error from occurring, examine the state of this bit following a
control register instruction, take appropriate action, and then clear bit
S:5/2 using an OTU instruction with S:5/2 or a CLR instruction with
S:5.0.

• •

Chapter 27
The Status File

27–15

Address Description 5/02 5/01,
Fixed

S:5/3 Major Error Detected while Executing User Fault Routine Bit
Read/write. When set, the major error code (S:6) will then represent
the major error that occurred while processing the fault routine due to
another major error.

If this bit is ever set upon execution of the END, TND, or REF
instruction, a major error (0020) will be declared. To avoid this type of
major error from occurring, examine the state of this bit inside your
fault routine, take appropriate action, and then clear bit S:5/3 using an
OTU instruction with S:5/3 or a CLR instruction with S:5.0.

Application example: Suppose you are executing your fault routine
for fault code 0016H Startup Protection. At rung 3 inside this fault
routine, a TON containing a negative preset is executed. When rung
4 is executed, fault code 0016H will be overwritten to indicate code
0034H, and S:5/3 will be set.

If your fault routine did not determine that S:5/3 was set, major error
0020H would be declared at the end of the first scan. To avoid this
problem, examine S:5/3, followed by S:6, prior to returning from your
fault routine. If S:5/3 is set, take appropriate action to remedy the
fault, then clear S:5/3.

•

S:5/4 M0–M1 Referenced on Disabled Slot Bit
Read/write. This bit is set whenever any instruction references an M0
or M1 module file element for a slot that is disabled (via its I/O slot
enable bit). When set, the bit indicates that an instruction could not
execute properly due to the unavailability of the addressed M0 or M1
data.

If this bit is ever set upon execution of the END, TND, or REF
instruction, a major error (0020) will be declared. To avoid this type of
major error from occurring, examine the state of this bit following a
M0–M1 referenced instruction, take appropriate action, and then clear
bit S:5/4 using an OTU instruction with S:5/4 or a CLR instruction with
S:5.0.

•

S:5/5,
S:5/6,
S:5/7

Reserved
Read/write. Reserved for minor errors that revert to major errors at
the end of the scan.

• •

Chapter 27
The Status File

27–16

Address Description 5/02 5/01,
Fixed

S:5/8 Memory Module Boot Bit
Read/write. When this bit is set by the processor, it indicates that a
memory module program has been transferred to the processor. This
bit is not cleared by the processor.

Your program can examine the state of this bit every Run mode entry
to determine if the memory module content has been transferred.
S:1/15 will be set to indicate Run mode entry. This information is
useful when you have an application that contains retentive data and
a memory module that has only bit S:1/10 set (load memory module
on NVRAM error). You can use this bit to indicate that retentive data
has been lost. This bit is also helpful when using bits S:1/11 (load
memory module always) or S:1/12 (load memory module always and
run) to distinguish a powerup Run mode entry from a program (or
test) mode to Run mode entry.

• •

S:5/9 Memory Module Password Mismatch Bit
Read/write. This bit is set at Run mode entry, whenever loading from
the memory module is specified (word 1, bits 11 or 12) and the
processor user program is password protected, and the memory
module program does not match that password.

You can use this bit to inform your application program that an
autoloading memory module is installed but did not load due to a
password mismatch.

• •

S:5/10 STI (Selectable Timed Interrupt) Overflow Bit
Read/ write. This bit is set whenever the STI timer expires while the
STI routine is either executing or disabled and the pending bit is
already set.

•

S:5/11 Battery Low Bit
Read only. This bit is set whenever the Battery Low LED is on; the bit
is cleared when the Battery Low LED is off. It is updated only in the
run or test modes.

•

S:5/12
thru
S:5/15

Reserved • •

Chapter 27
The Status File

27–17

Address Description 5/02 5/01,
Fixed

S:6 Major Error Fault Code
Read/write. A hex code will be entered in this word by the processor
when a major error is declared (refer to S:1/13). The code defines
the type of fault, as indicated on the following pages. This word is not
cleared by the processor.

Error codes are presented, stored, and displayed in hexadecimal.
(appendix B explains hex numbering system.)

• •

If you enter a fault code as a parameter in an instruction in your
ladder program, you must convert the code to decimal. For example,
if you program an EQU instruction to go true when the error 0016
occurs, enter S:6 as source A and 22, the decimal equivalent of
0016H, as source B:

Application note: You can declare your own application–specific
major fault by writing your own unique value to S:6 and then setting
bit S:1/13.

SLC 5/02 processor users: Interrogate the value of S:6 in your fault
routine to determine the type of fault that occurred. If your program
was saved with the test single step enabled, you can also interrogate
S:20 and S:21 to pinpoint the exact rung that was being executed
when the fault occurred.

Fault Classifications: Faults are classified as Non-User,
Non-Recoverable, and Recoverable, defined below.

Recoverable
User Fault

The fault routine
may clear the
fault by clearing
bit S:1/13.

Non-Recoverable
User Fault

The fault routine executes for 1
pass. (You may initiate a MSG
instruction to another node to
identify the fault condition of
the processor.)

Non-User
Fault

The fault
routine does
not execute.

EQU
EQUAL
Source A S:6

Source B 22

•

Error code descriptions and classifications are listed on pages 27–18
through 27–22. Categories:

• powerup errors
• going to run errors
• runtime errors
• user program instruction errors
• I/O errors

See chapter 28 for cause/recovery information on faults.

• •

Chapter 27
The Status File

27–18

Fault Classification Processor

Description User

Address
Error
Code
(Hex)

Powerup Errors Non-User Non-Recov Recov 5/02 5/01,
Fixed

S:6 0001 NVRAM error. X • •

0002 Unexpected hardware watchdog timeout. X • •

0003 Memory module memory error. X •

0004 Memory integrity check failed (runtime). X •

Fault Classification Processor

Description User

Address
Error
Code
(Hex)

Going to Run Errors Non-User Non-Recov Recov 5/02 5/01,
Fixed

S:6 0010 Processor does not meet proper revision level. X • •

0011 The executable file number 2 is absent. X • •

0012 The ladder program has a memory error. X • •

0013 The required memory module is absent or either S:1/10 or
S:1/11 is not set (and the program requires it).

X • •

0014 Internal file error. X • •

0015 Configuration file error. X • •

0016 Startup protection after power loss. Error condition exists at
powerup when bit S:1/9 is set and powerdown occurred while
running.

X •

Chapter 27
The Status File

27–19

Fault Classification Processor

Description User

Address
Error
Code
(Hex)

Runtime Errors Non-User Non-Recov Recov 5/02 5/01,
Fixed

S:6 0020 A minor error bit is set at the end of the scan. (See S:5 minor
error bits.)

X • •

0021 Remote power failure of an expansion I/O rack occurred.

Note: A modular system that encounters an overvoltage or
overcurrent condition in any of its power supplies can
produce any of the I/O error codes listed on pages 27–21 and
27–22 (instead of code 0021). The overvoltage or
overcurrent condition is indicated by the power supply LED
being off.

ATTENTION: Fixed and FRN 1 to 4 SLC 5/01
processors – If the remote power failure occurred while
the processor was in the Run mode, error 0021 will
cause the major error halted bit (S:1/13) to be cleared
at the next powerup of the local rack.
SLC 5/02 processors and FRN 5 SLC 5/01 processors
– Power to the local rack does not need to be cycled to
resume the Run mode. Once the remote rack is
re-powered, the CPU will restart the system.

!

X • •

0022 User watchdog scan time exceeded. X • •

0023 Invalid or non-existent STI interrupt file. X •

0024 Invalid STI interrupt interval (greater than 2550 ms or
negative).

X •

0025 Excessive stack depth/JSR calls for STI routine. X •

0026 Excessive stack depth/JSR calls for I/O interrupt routine. X •

0027 Excessive stack depth/JSR calls for user fault routine. X •

0028 Invalid or non-existent “startup protection” fault routine file
value.

X •

0029 Indexed address reference outside of entire data file space
(range of B3:0 through the last file).

X •

002A Indexed address reference beyond specific referenced data
file.

X •

Chapter 27
The Status File

27–20

Fault Classification Processor

Description User

Address
Error
Code
(Hex)

User Program Instruction Errors Non-User Non-Recov Recov 5/02 5/01,
Fixed

S:6 0030 Attempt was made to jump to one too many nested
subroutine files. Can also mean that a program has
potentially recursive routines.

X • •

0031 Unsupported instruction reference was detected. X • •

0032 Sequencer length/position points past end of data file. X • •

0033 Length of LFU, LFL, FFU, FFL, BSL, or BSR points past end
of data file.

X • •

0034 A negative value for a timer accumulator or preset value was
detected.

X • •

Fixed processors with 24 VDC inputs only: A negative or
zero HSC preset was detected in an HSC instruction.

X •

0035 TND, SVC, or REF instruction is called within an interrupting
or user fault routine.

X •

0036 Invalid value for a PID parameter. This code is discussed in
chapter 26.

X •

0038 A RET instruction was detected in a non-subroutine file. X • •

Chapter 27
The Status File

27–21

ERROR CODES: The characters xx in the following codes
represent the slot number, in hex. If the exact slot cannot be
determined, the characters xx become 1F.

RECOVERABLE I/O FAULTS (SLC 5/02 processors only):
Many I/O faults are recoverable. To recover, you must
disable the specified slot, xx, in the user fault routine. If you
do not disable slot xx, the processor will fault at the end of
the scan.

Slot xx

0 00
1 01
2 02
3 03
4 04
5 05
6 06
7 07

Slot xx

8 08
9 09
10 0A
11 0B
12 0C
13 0D
14 0E
15 0F

Slot xx

16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17

Slot xx

24 18
25 19
26 1A
27 1B
28 1C
29 1D
30 1E

SLOT NUMBERS (xx) IN HEXADECIMAL

Fault Classification Processor

Description User

Address
Error
Code
(Hex)

I/O Errors Non-User Non-Recov Recov 5/02 5/01,
Fixed

S:6 xx50 A rack data error is detected. X • •

xx51 A “stuck” runtime error is detected on an I/O module. X • •

xx52 A module required for the user program is detected as
missing or removed.

X • •

xx53
At going-to-run, a user program declares a slot as unused,
and that slot is detected as having an I/O module inserted.
Can also mean that an I/O module has reset itself.

X • •

xx54 A module required for the user program is detected as being
the wrong type.

X • •

xx55 A module required for the user program is detected as having
the wrong I/O count or wrong I/O driver.

X • •

xx56 The rack configuration specified in the user program is
detected as being incorrect.

X • •

xx57 A specialty I/O module has not responded to a lock shared
memory command within the required time limit.

X • •

xx58 A specialty I/O module has generated a generic fault. The
module fault bit is set to 1 in the status byte of the module.

X • •

xx59 A specialty I/O module has not responded to a command as
being completed within the required time limit.

X • •

xx5A Hardware interrupt problem (“stuck”). X •

xx5B G file configuration error – user program G file size exceeds
capacity of the module.

X •

Chapter 27
The Status File

27–22

Fault Classification Processor

Description User

Address
Error
Code
(Hex)

I/O Errors Non-User Non-Recov Recov 5/02 5/01,
Fixed

S:6 xx5C M0–M1 file configuration error – user program M0–M1 file
size exceeds capacity of the module.

X •

xx5D Interrupt service requested is not supported by the processor. X •

xx5E Processor I/O driver (software) error. X •

xx60 thru
xx6F

Identifies an I/O module specific recoverable major error.
Refer to the user manual supplied with the specialty module.

X •

xx70 thru
xx7F

Identifies an I/O module specific non-recoverable major error.
Refer to the user manual supplied with the specialty module.

X •

xx90 Interrupt problem on disabled slot. X •

xx91 A disabled slot has faulted. X •

xx92 Invalid or non-existent module interrupt subroutine file. X •

xx93 Unsupported I/O module specific major error. X •

xx94
In the run or test mode, a module has been detected as
being inserted under power. Can also mean that an I/O
module has reset itself.

X •

Chapter 27
The Status File

27–23

Address Description 5/02 5/01,
Fixed

S:7
and
S:8

Suspend Code/Suspend File
Read/write. When a non-zero value appears in S:7, it indicates that
the SUS instruction identified by this value has been evaluated as
true, and the Suspend Idle mode is in effect. This pinpoints the
conditions in the application that caused the Suspend Idle mode.
This value is not cleared by the processor.

Word S:8 contains the program file number in which a true SUS
instruction is located. This value is not cleared by the processor.

Application Note: Use the SUS instruction with startup
troubleshooting, or as runtime diagnostics for detection of system
errors.

Example: You believe that limit switches connected to I:1/0 and I:1/1
cannot be energized at the same time, yet your application program
acts as if they can be. To determine if you have a limit switch
problem or a ladder logic problem, add the following rung to your
program:

If your program enters the SUS idle mode for code 1 when you run
the program, you have a limit switch control problem; if the SUS idle
mode for code 1 does not occur, you have a ladder logic problem.

SUS
SUSPEND
Suspend ID 1

] [
I:1.0

 0
] [

I:1.0

 1

• •

S:9
 and
S:10

Active Nodes
Read only. These two words are bit mapped to represent the 32
possible nodes on a DH–485 link. S:9/0 through S:10/15 represent
node addresses 0–31. These bits are set by the processor when a
node exists on the DH–485 link that your processor is connected to.
The bits are cleared when a node is not present on the link .

• •

Chapter 27
The Status File

27–24

Address Description 5/02 5/01,
Fixed

S:11
and
S:12

I/O Slot Enables
Read/write. These two words are bit mapped to represent the 30
possible I/O slots in an SLC 500 system. S:11/0 represents I/O slot 0
for fixed I/O systems (slot 0 is used for the CPU in modular systems);
S:11/1 through S:12/14 represent I/O slots 1–30. S:12/15 is unused.

When a bit is set (default condition), it allows the I/O module
contained in the referenced slot to be updated in the I/O scan of the
processor operating cycle.

When you clear a bit, it causes the I/O module in the referenced slot
to be ignored. That is, an I/O slot enable value of 0 causes the input
image data of an input module to freeze at its last value. Also, the
outputs of an output module will freeze at their last values, regardless
of values contained in the output image. Outputs remain frozen until

• either power is removed,

• the Run mode is exited,

• or a major fault occurs.

At that time the outputs will be zeroed, until the slot is again enabled
(set).

Disabled slots do not have to match the user program configuration.

ATTENTION: Make certain that you have thoroughly
examined the effects of disabling (clearing) a slot enable
bit before doing so in your application.

!

• •

Note: The SLC 5/02 processor informs each specialty I/O module
that has been disabled/enabled. Some I/O modules may perform
other actions or inactions when disabled or re-enabled. Refer to the
user information supplied with the specialty I/O module for possible
differences from the above descriptions.

•

Chapter 27
The Status File

27–25

Address Description 5/02 5/01,
Fixed

S:13
and
S:14

Math Register
Read/write. Use this double register to produce 32 bit signed divide
and multiply operations, precision divide or double divide operations,
and 5 digit BCD conversions.

These two words are used in conjunction with the MUL, DIV, DDV,
FRD, and TOD math instructions. The math register value is
assessed upon execution of the instruction and remains valid until the
next MUL, DIV, DDV, FRD, or TOD instruction is executed in the user
program.

An explanation of how the math register functions is included with the
instruction definitions.

If you store 32-bit signed data values (example on page 20–6), you
must manage this data type without the aid of an assigned 32-bit data
type. For example, combine B10:0 and B10:1 to create a 32-bit
signed data value. We recommend that you keep all 32-bit signed
data in a unique data file and that you start all 32-bit values on an
even or odd word boundary for ease of application and viewing. Also,
we recommend that you design, document, and view the contents of
32-bit signed data in either the hexadecimal or binary radix.

• •

When an STI, I/O Slot, or Fault Routine interrupts normal execution of
your program, the original value of the math register is restored when
execution resumes.

•

S:15L Node Address
Read/write. This byte value contains the node address of your
processor on the DH–485 link. Each device on the DH–485 link must
have a unique address between the decimal values 0 and 31. To
change a processor node address, write a value in the range of 1–31
using either the EDT_DAT or NODE_CFG functions of your HHT, then
cycle power to the processor.

The default node address of a processor is 1. The default node
address of APS or the HHT programmer is 0. To provide runtime
protection from inadvertent EDT_DAT alteration of your selection,
program this value using a MOV and MVM instruction in an
unconditional rung as shown below. Example, showing runtime
protection of node address 3:

MVM
MASKED MOVE
Source N7:0

Mask 00FF

Dest S:15

MOV
MOVE
Source 3

Dest N7:0

• •

Chapter 27
The Status File

27–26

Address Description 5/02 5/01,
Fixed

S:15H Baud Rate
Read/write. This byte value contains a code used to select the baud
rate of the processor on the DH–485 link.

SLC 5/02 processors provide a baud rate of 19200, 9600, 2400, or
1200. SLC 5/01 and fixed processors provide a baud rate of 19200
or 9600 only.

To change the baud rate from the default value of 19200, use either
the EDT_DAT or NODE_CFG functions of your HHT. The processor
uses code 1 for 1200 baud, code 2 for 2400 baud, code 3 for 9600
baud, and code 4 for 19200 baud.

Example showing runtime protection of baud rate 19200
(code 4):

S:15H equal to 4 and S:15L equal to 3

= 1027 decimal = 0403 hex = 0000 0100 0000 0011 binary

S:15H equal to 4

= 1024 decimal = 0400 hex = 0000 0100 0000 0000 binary

Example showing runtime protection for both baud rate 19200 (code
4) and node address 3:

MOV
MOVE
Source 1027

Dest S:15

MVM
MASKED MOVE
Source N7:100

Mask FF00

Dest S:15

MOV
MOVE
Source 1024

Dest N7:100

• •

Chapter 27
The Status File

27–27

Address Description 5/02 5/01,
Fixed

S:16
 and
S:17

Test Single Step – Start Step On – Rung/File
Read only. These registers indicate the executable rung (word S:16)
and file (word S:17) number that the processor will execute next when
operating in the Test Single Step mode. To enable this feature, you
must select the Test Single Step option at the time you save your
program.

These values are updated upon completion of every rung (see S:2/4).
Your programming device interrogates this value when providing
“start step on file x, rung y” status line information. There is no known
use for this feature when addressed by your ladder program.

Note: The HHT can save a SLC 5/02 program that has this option
enabled, but the Test Single Step mode is not available with the HHT.

•

S:18
 and
S:19

Test Single Step – End Step Before – Rung/File
Read only. These registers indicate the executable rung (word S:18)
and file (word S:19) number that the processor should stop in front of
when executing in the Test Single Step mode. To enable this feature,
you must select the Test Single Step option at the time you save your
program.

If both the rung and file number are 0, the processor will step to the
next rung only; otherwise the processor will continue until it finds a
rung/file equaling the S:18/S:19 value.

The processor stops, then clears S:18 and S:19 when it finds a
match, while remaining in the test single step mode. The processor
will operate indefinitely if it cannot find the end rung/file that you have
entered; it operates until it finds a match, receives a mode change, or
powers down. See S:2/4.

Your programming device interrogates this value when providing “end
step before file x, rung y” status line information. Your programming
device also writes this value when prompting you for “set end rung.”
There is no known use for this feature when addressed by your
ladder program.

Note: The HHT can save a SLC 5/02 program that has this option
enabled, but the Test Single Step mode is not available with the HHT.

•

Chapter 27
The Status File

27–28

Address Description 5/02 5/01,
Fixed

S:20
 and
S:21

Test – Fault/Powerdown – Rung/File
Read/write. These registers indicate the executable rung (word S:20)
and file (word S:21) number that the processor last executed before a
major error or powerdown occurred. To enable this feature, you must
select the Test Single Step option at the time you save your program.
You can use these registers to pinpoint the execution point of the
processor at the last powerdown or fault routine entry. This function
is also active in the Run mode. See S:2/4.

Application example: Your program contains several TON
instructions. TON T4:6 in file 2, rung 25 occasionally obtains a
negative preset. Recovery from the negative preset fault is possible
by placing the preset at 100 and resetting the timer.

Place the following rung in your fault routine to accomplish this. Bit
B3/0 is latched as evidence that an application recovery has been
initiated.

Note: The HHT can save a SLC 5/02 program that has this option
enabled, but the Test Single Step mode is not available with the HHT.

•

MOV
MOVE
Source 100

Dest T4:6.PRE

EQU
EQUAL
Source A S:6

Source B 52

(RET)

(RES)
T4:6

(L)
B3

 0

(U)
S:1

13

File NumberThe value 52 equals 0034 Hex. This is
the error code for a negative timer
preset.

EQU
EQUAL
Source A S:20

Source B 25

EQU
EQUAL
Source A S:21

Source B 2

Rung Number

Chapter 27
The Status File

27–29

Address Description 5/02 5/01,
Fixed

S:22 Maximum Observed Scan Time
Read/write. This word indicates the maximum observed interval
between consecutive scans.

Consecutive scans are defined as: Intervals between file 2/rung 0
and the END instruction, TND instruction, or the REF instruction. This
value indicates, in 10 ms increments, the time elapsed in the longest
program cycle of the processor. The processor compares each last
scan value to the value contained in S:22. If the processor
determines that the last scan value is larger than the value stored at
S:22, the last scan value is written to S:22.

Resolution of the maximum observed scan time value is +0 to –10
milliseconds. For example, the value 9 indicates that 80–90 ms was
observed as the longest program cycle.

Interrogate this value using a programming device data monitor
function if you need to determine or verify the longest scan time of
your program.

The I/O scan, processor overhead, and communication servicing are
not included in this measurement.

•

S:23 Average Scan Time
Read/write. This word indicates a weighted running average time.
The value indicates, in 10 ms increments, the time elapsed in the
average program cycle of the processor. For every Scan t,

Ave = (Ave * 7) + Scant
 8

Resolution of the average scan time value is +0 to –10 milliseconds.
For example, the value 2 indicates that 10–20 milliseconds was
calculated as the average program cycle.

The I/O scan, processor overhead, and communication servicing are
not included in this measurement.

•

S:24 Index Register
Read/write. This word indicates the element offset used in indexed
addressing.

When an STI, I/O Slot, or Fault Routine interrupts normal execution of
your program, the original value of this register is restored when
execution resumes.

•

Chapter 27
The Status File

27–30

Address Description 5/02 5/01,
Fixed

S:25
and
S:26

I/O Interrupt Pending
Read only. These two words are bit-mapped to the 30 I/O slots. Bit
S:25/1 through S:26/14 refer to slots 1–30. Bits S:25/0 and S:26/15
are reserved.

The pending bit associated with an interrupting slot is set when the
corresponding I/O slot interrupt enable bit is clear at the time of an
interrupt request. It is cleared when the corresponding I/O event
interrupt enable bit is set, or when an associated RPI instruction is
executed.

The pending bit for an executing I/O interrupt subroutine remains
clear when the ISR is interrupted by an STI or fault routine. Likewise,
the pending bit remains clear if interrupt service is requested at the
time that a higher or equal priority interrupt is executing (fault routine,
STI, or other ISR).

I/O interrupts are discussed in chapter 31.

•

S:27
and
S:28

I/O Interrupt Enabled
Read/write. These two words are bit-mapped to the 30 I/O slots. Bit
S:27/1 through S:28/14 refer to slots 1–30. Bits S:27/0 and S:28/15
are reserved.

The default value of each bit is 1 (set). The enable bit associated
with an interrupting slot must be set when the interrupt occurs to allow
the corresponding ISR to execute. Otherwise, the ISR will not
execute and the associated I/O slot interrupt pending bit will become
set.

Changes made to these bits using the data monitor function or ladder
instructions other than IID or IIE of a programming terminal take affect
at the next end of scan.

I/O interrupts are discussed in chapter 31.

•

S:29 User Fault Routine File Number
Read/write. You enter a program file number (3–255) to be used in all
recoverable and non-recoverable major errors. Program the ladder
logic of your fault routine in the file you have specified. Write a 0
value to disable the fault subroutine.

To provide protection from inadvertent EDT_DAT alteration of your
selection, program an unconditional MOV instruction containing the
program file number of your fault routine to S:29, or program a CLR
instruction at S:29 to prevent fault routine operation.

The user fault routine is discussed in chapter 29.

•

Chapter 27
The Status File

27–31

Address Description 5/02 5/01,
Fixed

S:30 Selectable Timed Interrupt – Setpoint
Read/Write. You enter the time base, in tens of milliseconds, to be
used in the selectable timed interrupt. Your STI routine will execute
per the value you enter. Write a 0 value to disable the STI.

To provide protection from inadvertent EDT_DAT alteration of your
selection, program an unconditional MOV instruction containing the
setpoint value of your STI to S:30, or program a CLR instruction at
S:30 to prevent STI operation.

If the STI is initiated while in the Run mode by loading the status
registers, the interrupt starts timing from the end of the program scan
in which the status registers were loaded.

Selectable timed interrupts are discussed in chapter 30.

•

S:31 Selectable Timed Interrupt – File Number
Read/write. You enter a program file number (3–255) to be used as
the selectable timed interrupt subroutine. Write a 0 value to disable
the STI.

To provide protection from inadvertent EDT_DAT alteration of your
selection, program an unconditional MOV instruction containing the
file number value of your STI to S:31, or program a CLR instruction at
S:31 to prevent STI operation.

Selectable timed interrupts are discussed in chapter 30.

•

S:32 I/O Interrupt Executing
Read only. This word indicates the slot number of the specialty I/O
module that generated the currently executing ISR. This value is
cleared upon completion of the ISR, Run mode entry, or upon
powerup.

You can interrogate this word inside of your STI subroutine or fault
routine if you wish to know if these higher priority interrupts have
interrupted an executing ISR. You may also use this value to discern
interrupt slot identity when multiplexing two or more specialty I/O
module interrupts to the same ISR.

I/O interrupts are discussed in chapter 31.

•

Chapter 27
The Status File

27–32

The status file displays that apply to SLC 5/02 processors are shown below.
The displays are accessible offline and online under the EDT DAT function.
To move between data files: Press NEXT FL or PREV FL. To move
between displays: Press NEXT PG or PREV PG. To move the cursor from
any data file address to any other data file address: Press ADDRESS, enter
the address, then press ENTER.

F1 F2 F3 F4 F5

 Status File
Arithmetic Flags S:0 Z:0 V:0 C:0
S2:0 Proc Status 0000 0000 0000 0000
S2:1 Proc Status 0000 0000 1000 0001
S2:2 Proc Status 1000 0000 0000 0010

S2:0/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:5 Minor Fault 0000 0000 0000 0000
S2:6 Fault Code 0000H
Desc: No Error
S2:29 Err File: 0 Indx Cross File: No
S2:24 Index Reg: 0 Single Step: No
S2:5/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:7 Suspend Code 0
S2:8 Suspend File 0
S2:4 Running Clock 0000 0000 0000 0000
S2:13&14 Math Register 00000000H

S2:7 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:15H Communication KBaud Rate 19.2
S2:15L Processor Address 1
Note:
 Enter 1 for 1200 Enter 3 for 9600
 Enter 2 for 2400 Enter 4 for 19200
S2:15H = 4 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:9 & S2:10 Active Node List
 1 2 3
0 0 0 0
0111 1000 0000 0000 0000 0000 0000 0000
Node = 0
S2:9/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:11 & S2:12 I/O Slot Enables
 1 2 3
0 0 0 0
1111 1111 1111 1111 1111 1111 1111 1111
Slot = 0
S2:11/0 = 1 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:3H Watchdog [x10mS] 10

S2:3L Last Scan [x10mS] 0
S2:23 Avg. Scan [x10mS] 0
S2:22 Max. Scan [x10mS] 2
S2:3H = 10 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
 Selectable Timed Interrupt
S2:31 Subroutine File: 0
S2:30 Frequency [x10mS]: 0
 Enabled: 0 Executing: 0 Pending: 0

S2:31 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
 Debug Single Step
 File Rung
S2:16&17 Single Step 0 0
S2:18&19 Breakpoint 0 0
S2:20&21 Fault/Powerdown 1 2
S2:16 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:27 & S2:28 I/O Interrupt Enables
 1 2 3
0 0 0 0
0000 0000 0000 0000 0000 0000 0000 0000

S2:27/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:25 & S2:26 I/O Interrupt Pending
 1 2 3
0 0 0 0
0000 0000 0000 0000 0000 0000 0000 0000

S2:25/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

Status File Display –SLC
5/02 Processors

Chapter 27
The Status File

27–33

The figures below are the status file displays that apply to the SLC 5/01 and
fixed processors. The displays are accessible offline and online under the
EDT DAT function. To move between data files: Press NEXT FL or
PREV FL. To move between displays: Press NEXT PG or PREV PG. To
move the cursor from any data file address to any other data file address:
Press ADDRESS, enter the address, then press ENTER.

F1 F2 F3 F4 F5

 Status File
Arithmetic Flags S:0 Z:0 V:0 C:0
S2:0 Proc Status 0000 0000 0000 0000
S2:1 Proc Status 0000 0000 1000 0001
S2:2 Proc Status 1000 0000 0000 0010

S2:0/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:5 Minor Fault 0000 0000 0000 0000
S2:6 Fault Code 0000H
Desc: No Error
S2:3L Program Scan [x10mS] last: 0
S2:3H Watchdog [x10mS] 10
S2:5/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:7 Suspend Code 0
S2:8 Suspend File 0
S2:4 Running Clock 0000 0000 0000 0000
S2:13&14 Math Register 00000000H

S2:7 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:15H Communication KBaud Rate 19.2
S2:15L Processor Address 1
Note:
 Enter 3 for 9600
 Enter 4 for 19200
S2:15H = 4 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:9 & S2:10 Active Node List
 1 2 3
0 0 0 0
0111 1000 0000 0000 0000 0000 0000 0000
Node = 0
S2:9/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:11 & S2:12 I/O Slot Enables
 1 2 3
0 0 0 0
1111 1111 1111 1111 1111 1111 1111 1111
Slot = 0
S2:11/0 = 1 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

Status File Display – SLC
5/01 and Fixed Processors

28Chapter

28–1

Troubleshooting Faults

This chapter:

• lists the major error fault codes
• indicates the probable causes of faults
• recommends corrective action

Chapter 27 also lists the error codes, under word S:6.

The following general information applies to troubleshooting.

User Fault Routine Not in Effect

You can clear a fault by one of the following methods:

• Manually clear minor fault bits S:5/0 – S:5/7 and the major fault bit
S:1/13 in the status file, using a programming device or DTAM. The
processor then enters the Program mode. Correct the condition causing
the fault, then return the processor to the Run or Test mode.

• Set the Fault Override at Powerup Bit S:1/8 in the status file to clear the
fault when power is cycled, assuming the user program is not corrupt.

• Set one of the autoload bits S:1/10, S:1/11, or S:1/12 in the status file of
the program in an EEPROM to automatically transfer a new non-faulted
program from the memory module to RAM when power is cycled.
Refer to chapter 27 for more information on status bits S:1/13, S:1/8,
S:1/10, S:1/11, and S:1/12.

Application Note: You can declare your own application-specific major
fault by writing your own unique value to S:6 and then setting S:1/13.

User Fault Routine in Effect – SLC 5/02 Processors Only

When you designate a subroutine file for your user fault routine, the
occurrence of recoverable or non-recoverable user faults will cause the
designated subroutine to be executed for one scan. If the fault is recoverable,
the subroutine can be used to correct the problem and clear the fault bit
S:1/13. The processor will then continue in the Run mode. If the fault is
non-recoverable, the subroutine can be used to send a message via the
Message instruction to another DH–485 node with error code information
and/or do an orderly shutdown of the process.

The subroutine does not execute for non-user faults. The user fault routine is
discussed in chapter 29.

Troubleshooting Overview

Chapter 28
Troubleshooting Faults

28–2

The status file displays applying to major and minor faults are shown below.
The displays are accessible offline and online under the EDT DAT function.
Press NEXT__FL until you get to the status file. Move between displays by
pressing NEXT__PG or PREV__PG.

D

C

B

A

F1 F2 F3 F4 F5

 Status File
S2:5 Minor Fault 0000 0000 0000 0000
S2:6 Fault Code 0000H
Desc: No Error
S2:29 Err File: 0 Indx Cross File: No
S2:24 Index Reg: 0 Single Step: No
S2:5/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
Arithmetic Flags S:0 Z:0 V:0 C:0
S2:0 Proc Status 0000 0000 0000 0000
S2:1 Proc Status 0000 0000 1000 0001
S2:2 Proc Status 1000 0000 0000 0010

S2:0/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:5 Minor Fault 0000 0000 0000 0000
S2:6 Fault Code 0000H
Desc: No Error
S2:3L Program Scan [x10mS] last: 0
S2:3H Watchdog [x10mS] 10
S2:5/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
Arithmetic Flags S:0 Z:0 V:0 C:0
S2:0 Proc Status 0000 0000 0000 0000
S2:1 Proc Status 0000 0000 1000 0001
S2:2 Proc Status 1000 0000 0000 0010

S2:0/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

SLC 5/02 Processors Fixed and SLC 5/01 Processors

D

C

B

A

A, B, C, and D in the figure above indicate the location of fault information:

A –Word S2:1. Bit S2:1/13 in this word is the major fault bit. Clear the fault
bit at this display by setting S2:1/13 to 0. Press the [F1], ADDRESS, type
S:1/13, press [ENTER], type 0, press [ENTER].

B –Word S2:5. Minor fault bits. Clear the fault at this display by setting the
bits to 0. Press the [F1], ADDRESS, type in the address of the minor fault
bit, press [ENTER], type 0, press [ENTER].

C –Word S2:6. Fault code. Clear the code at this display by setting S2:6 to
0. Press the [F1], ADDRESS, type in the address of the fault code, press
[ENTER], type 0, press [ENTER].

D – Fault description. A textual description of the fault code. Clear at this
display by setting word S2:6 to 0.

The following tables list error types as:

• Powerup
• Going-to-Run
• Runtime
• User Program Instruction
• I/O

Each table lists the error code description, the probable cause, and the
recommended corrective action.

Status File Fault Display

Error Code Description,
Cause, and
Recommended Action

Chapter 28
Troubleshooting Faults

28–3

Error Code
(Hex) Description Probable Cause Recommended Action

0001 NVRAM error. • Either Noise,
• lightning,
• improper grounding,
• lack of surge suppression on outputs

with inductive loads, or
• poor power source.
• Loss of battery or capacitor backup.

Correct the problem, reload the program,
and run. You can use the autoload feature
with a memory module to automatically
reload the program and enter the Run
mode.

0002 Unexpected hardware watchdog timeout. • Either Noise,
• lightning,
• improper grounding,
• lack of surge suppression on outputs

with inductive loads, or
• poor power source.

Correct the problem, reload the program,
and run. You can use the autoload feature
with a memory module to automatically
reload the program and enter the Run
mode.

0003 Memory module memory error. Memory module memory is corrupted. Re-program the memory module. If the
error persists, replace the memory module.

Error Code
(Hex) Description Probable Cause Recommended Action

0010 The processor does not meet the required
revision level.

The revision level of the processor is not
compatible with the revision level for which
the program was developed.

Consult your local A-B representative to
purchase an upgrade kit for your
processor.

0011 The executable program file number 2 is
absent.

Incompatible or corrupt program is present. Reload the program or reprogram with A-B
approved programming device.

0012 The ladder program has a memory error. • Either Noise,
• lightning,
• improper grounding,
• lack of surge suppression on outputs

with inductive loads, or
• poor power source.

Correct the problem, reload the program,
and run. If the error persists, be sure to
use A-B approved programming device to
develop and load the program.

0013 • The required memory module is absent,
or

• S:1/10 or S:1/11 is not set as required
by the program.

• Either one of the status bits is set in the
program but the required memory
module is absent, or

• status bit S:1/10 or S:1/11 is not set in
the program stored in the memory
module, but it is set in the program in
the processor memory.

• Either install a memory module in the
processor, or

• upload the program from the processor
to the memory module.

Powerup Errors

Going–to–Run Errors

Chapter 28
Troubleshooting Faults

28–4

Error Code
(Hex) Description Probable Cause Recommended Action

0014 Internal file error. • Either noise,
• lightning,
• improper grounding,
• lack of surge suppression on outputs

with inductive loads, or
• poor power source.

Correct the problem, reload the program,
and run. If the error persists, be sure to
use A-B approved programming device to
develop and load the program.

0015 Configuration file error. • Either noise,
• lightning,
• improper grounding,
• lack of surge suppression on

outputs with inductive loads, or
• poor power source.

Correct the problem, reload the program,
and run. If the error persists, be sure to
use A-B approved programming device to
develop and load the program.

0016 Startup protection after power loss. Error
condition exists at powerup when bit S:1/9
is set and powerdown occurred while
running.

Status bit S:1/9 has been set by the user
program. Refer to chapter 31 for details on
the operation of status bit S:1/9.

• Either reset bit S:1/9 if this is consistent
with the application requirements, and
change the mode back to run, or

• clear S:1/13, the major fault bit, before
the end of the first program scan is
reached.

Error Code
(Hex) Description Probable Cause Recommended Action

0004 Memory error occurred during the Run
mode.

• Either noise,
• lightning,
• improper grounding,
• lack of surge suppression on outputs

with inductive loads, or
• poor power source.

Correct the problem, reload the program,
and run. You can use the autoload feature
with a memory module to automatically
reload the program and enter the Run
mode.

0020 A minor error bit is set at the end of the
scan.

• Either math or FRD instruction overflow
has occurred,

• sequencer or shift register instruction
error was detected,

• a major error was detected while
executing a user fault routine, or

• M0–M1 file addresses were referenced
in the user program for a disabled slot.

Correct the programming problem, reload
the program and enter the Run mode. See
also minor error bits S:5 in chapter 27.

Runtime Errors

Chapter 28
Troubleshooting Faults

28–5

Error Code
(Hex) Description Probable Cause Recommended Action

0021 A remote power failure of an expansion I/O
rack has occurred.

Note: A modular system that encounters
an overvoltage or overcurrent condition in
any of its power supplies can produce any
of the I/O error codes listed on pages 28–8
to 28–10 (instead of code 0021). The
overvoltage or overcurrent condition is
indicated by the power supply LED being
off.

ATTENTION: Fixed and FRN 1 to 4
SLC 5/01 processors – If the
remote power failure occurred
while the processor was in the Run
mode, error 0021 will cause the
major error halted bit (S:1/13) to be
cleared at the next powerup of the
local rack.

SLC 5/02 processors and FRN 5
SLC 5/01 processors – Power to
the local rack does not need to be
cycled to resume the Run mode.
Once the remote rack is
re-powered, the CPU will restart
the system.

!

Fixed and FRN 1 to 4 SLC 5/01
processors: Power was removed or the
power dipped below specification for an
expansion rack.

SLC 5/02 processors and FRN 5 and
higher SLC 5/01 processors: This error
code is present only while power is not
applied to an expansion rack. This is the
only self-clearing error code. When power
is re-applied to the expansion rack, the
fault will be cleared.

Fixed and FRN 1 to 4 SLC 5/01
processors: Cycle power on the local
rack.

SLC 5/02 processors and FRN 5 and
higher SLC 5/01 processors: Re-apply
power to the expansion rack.

0022 The user watchdog scan time has been
exceeded.

• Either Watchdog time is set too low for
the user program, or

• user program caught in a loop.

• Either increase the watchdog timeout in
the status file (S:3H), or

• correct the user program problem.

0023 Invalid or non-existent STI interrupt file. • Either an STI interrupt file number was
assigned in the status file, but the
subroutine file was not created, or

• the STI interrupt file number assigned
was 0, 1, or 2.

• Either disable the STI interrupt setpoint
(S:30) and file number (S:31) in the
status file, or

• create an STI interrupt subroutine file
for the file number assigned in the
status file (S:31). The file number must
not be 0, 1, or 2.

0024 Invalid STI interrupt interval. The STI setpoint is out of range (greater
than 2550 ms, or negative).

• Either disable the STI interrupt setpoint
(S:30) and file number (S:31) in the
status file, or

• create an STI interrupt routine for the
file number referenced in the status file
(S:31). The file number must not be 0,
1, or 2.

0025 Excessive stack depth/JSR calls for the
STI routine.

A JSR instruction is calling for a file
number assigned to an STI routine.

Correct the user program to meet the
requirements and restrictions for the JSR
instruction, then reload the program and
run.

Chapter 28
Troubleshooting Faults

28–6

Error Code
(Hex) Description Probable Cause Recommended Action

0026 Excessive stack depth/JSR calls for an I/O
interrupt routine.

A JSR instruction is calling for a file
number assigned to an I/O interrupt
routine.

Correct the user program to meet the
requirements and restrictions for the JSR
instruction, then reload the program and
run.

0027 Excessive stack depth/JSR calls for the
user fault routine.

A JSR instruction is calling for a file
number assigned to the user fault routine.

Correct the user program to meet the
requirements and restrictions for the JSR
instruction, then reload the program and
run.

0028 Invalid or non-existent “startup protection”
fault routine file value.

• Either a fault routine file number was
created in the status file, but the fault
routine file was not physically created,
or

• the file number created was 0, 1, or 2.

• Either disable the fault routine file
number (S:29) in the status file, or

• create a fault routine for the file number
referenced in the status file (S:29). The
file number must not be 0, 1, or 2.

0029 Indexed address reference is outside of
the entire data file space.

The program is referencing through
indexed addressing an element beyond
the allowed range. The range is from B3:0
to the last element of the last data file
created by the user.

Correct and reload the user program. This
problem cannot be corrected by writing to
the index register word S:24.

002A Indexed address reference is beyond the
specific referenced data file.

The program is referencing through
indexed addressing an element beyond a
file boundary.

Correct the user program, allocate more
data space using the memory map, or
re-save the program allowing crossing of
file boundaries. Reload the user program.
This problem cannot be corrected by
writing to the index register word S:24.

Error Code
(Hex) Description Probable Cause Recommended Action

0030 An attempt was made to jump to one too
many nested subroutine files. This code
can also mean that a program has
potential recursive routines.

• Either more than the maximum of 4 (8 if
you are using a SLC 5/02 processor)
levels of nested subroutines are called
for in the user program, or

• nested subroutine(s) are calling for
subroutine(s) of a previous level.

Correct the user program to meet the
requirements and restrictions for the JSR
instruction, then reload the program and
run.

0031 An unsupported instruction reference was
detected.

The type or series level of the processor
does not support an instruction residing in
the user program.

• Either replace the processor with one
that supports the user program, or

• modify the user program so that all
instructions are supported by the
processor, then reload the program and
run.

User Program Instruction
Errors

Chapter 28
Troubleshooting Faults

28–7

Error Code
(Hex) Description Probable Cause Recommended Action

0032 A sequencer instruction length/position
parameter points past the end of a data
file.

The program is referencing an element
beyond a file boundary set up by the
sequencer instruction.

Correct the user program or allocate more
data file space using the memory map,
then reload and run.

0033 The length parameter of an LFU, LFL,
FFU, FFL, BSL, or BSR instruction points
past the end of a data file.

The program is referencing an element
beyond a file boundary set up by the
instruction.

Correct the user program or allocate more
data file space using the memory map,
then reload and run.

0034 A negative value for a timer accumulator or
preset value was entered.

The accumulated or preset value of a timer
in the user program was detected as being
negative.

If the user program is moving values to the
accumulated or preset word of a timer,
make certain these values cannot be
negative. Correct the user program,
reload, and run.

0034
(related to

HSC
instruction)

A negative or zero HSC preset was
detected in an HSC instruction.

The preset value for the HSC instruction is
out of the valid range. Valid range is
1–32767.

If the user program is moving values to the
preset word of the HSC instruction, make
certain the values are within the valid
range. Correct the user program, reload,
and run.

0035 A TND, SVC, or REF instruction is called
within an interrupt or user fault routine.

A TND, SVC, or REF instruction is being
used in an interrupt or user fault routine.
This is illegal.

Correct the user program, reload, and run.

0036 An invalid value is being used for a PID
instruction parameter.

An invalid value was loaded into a PID
instruction by the user program or by the
user via the data monitor function for this
instruction.

Code 0036 is discussed in chapter 26.

0038 An RET instruction was detected in a
non-subroutine file.

An RET instruction resides in the main
program.

Correct the user program, reload, and run.

Chapter 28
Troubleshooting Faults

28–8

ERROR CODES: The characters xx in the following
codes represent the slot number, in hex. The characters
xx become 1F if the exact slot cannot be determined.

RECOVERABLE I/O FAULTS (SLC 5/02 processors
only): Many I/O faults are recoverable. To recover, you
must disable the specified slot, xx, in the user fault
routine. If you do not disable slot xx, the processor will
fault at the end of the scan.

Slot xx

0 00
1 01
2 02
3 03
4 04
5 05
6 06
7 07

Slot xx

8 08
9 09
10 0A
11 0B
12 0C
13 0D
14 0E
15 0F

Slot xx

16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17

Slot xx

24 18
25 19
26 1A
27 1B
28 1C
29 1D
30 1E

SLOT NUMBERS (xx) IN HEXADECIMAL

Error Code
(Hex) Description Probable Cause Recommended Action

xx50 A rack data error is detected. • Either noise,
• lightning,
• improper grounding,
• lack of surge suppression on outputs

with inductive loads, or
• poor power source.

Correct the problem, clear the fault, and
re-enter Run mode.

xx51 A “stuck” runtime error is detected on an
I/O module.

If this is a discrete I/O module, this is a
noise problem. If this is a specialty I/O
module, refer to the applicable user
manual for the probable cause.

Cycle power to the system. If this does not
correct the problem, replace the module.

xx52 A module required for the user program is
detected as missing or removed.

An I/O module configured for a particular
slot is missing or has been removed.

• Either disable the slot in the status file
(S:11 and S:12), or

• Insert the required module in the slot.

xx53 At going-to-run, a user program declares a
slot as unused, and that slot is detected as
having an I/O module inserted.

This code can also mean that an I/O
module has reset itself.

• Either the I/O slot is not configured for a
module, but a module is present, or

• the I/O module has reset itself.

• Either disable the slot in the status file
(S:11 and S:12), clear the fault and run,

• Remove the module, clear the fault and
run, or

• modify the I/O configuration to include
the module, then reload the program
and run.

• If you suspect that the module has reset
itself, clear the major fault and run.

xx54 A module required for the user program is
detected as being the wrong type.

An I/O module in a particular slot is a
different type than was configured for that
slot by the user.

• Either replace the module with the
correct module, clear the fault, and run,
or

• change the I/O configuration for the slot,
reload the program and run.

I/O Errors

Chapter 28
Troubleshooting Faults

28–9

Error Code
(Hex) Description Probable Cause Recommended Action

xx55 A discrete I/O module required for the user
program is detected as having the wrong
I/O count.

This code can also mean that a specialty
card driver is incorrect.

• If this is a discrete I/O module, the I/O
count is different from that selected in
the I/O configuration.

• If this is a specialty I/O module, the card
driver is incorrect.

• If this is a discrete I/O module, replace it
with a module having the I/O count
selected in the I/O configuration. Then,
clear the fault and run, or

• change the I/O configuration to match
the existing module, then reload the
program and run.

• If this is a specialty I/O module, refer to
the user manual for that module.

xx56 The rack configuration is incorrect. The rack configuration specified by the
user does not match the hardware.

Correct the rack configuration, reload the
program and run.

xx57 A specialty I/O module has not responded
to a Lock Shared Memory command within
the required time limit.

The specialty I/O module is not responding
to the processor in the time allowed.

Cycle rack power. If this does not correct
the problem, refer to the user manual for
the specialty I/O module. You may have to
replace the module.

xx58 A specialty I/O module has generated a
generic fault. The card fault bit is set (1) in
the module’s status byte.

Refer to the user manual for the specialty
I/O module.

Cycle rack power. If this does not correct
the problem, refer to the user manual for
the specialty I/O module. You may have to
replace the module.

xx59 A specialty I/O module has not responded
to a command as being completed within
the required time limit.

A specialty I/O module did not complete a
command from the processor in the time
allowed.

Refer to the user manual for the specialty
I/O module. You may have to replace the
module.

xx5A Hardware interrupt problem (“stuck”). If this is a discrete I/O module, this is a
noise problem. If this is a specialty I/O
module, refer to the user manual for the
module.

Cycle rack power. Check for a noise
problem and be sure proper grounding
practices are used. If this is a specialty I/O
module, refer to the user manual for the
module. You may have to replace the
module.

xx5B G file configuration error – user program G
file size exceeds the capacity of the
module.

G file is incorrect for the module in this slot. Refer to the user manual for the specialty
I/O module. Reconfigure the G file as
directed in the manual, then reload and
run.

xx5C M0–M1 file configuration error – user
program M0–M1 file size exceeds capacity
of the module.

M0–M1 files are incorrect for the module in
this slot.

Refer to the user manual for the specialty
I/O module. Reconfigure the M0–M1 files
as directed in the manual, then reload and
run.

xx5D Interrupt service requested is not
supported by the processor.

The specialty I/O module has requested
service and the processor does not
support it.

Refer to the user manual for the specialty
I/O module to determine which processors
support use of the module. Change
processor to one that supports the module.

xx5E Processor I/O driver (software) error. Corrupt processor I/O driver software. Reload program using A-B approved
programming device.

Chapter 28
Troubleshooting Faults

28–10

Error Code
(Hex) Description Probable Cause Recommended Action

xx60
through

xx6F

Identifies an I/O module specific
recoverable major error. Refer to the
user manual for the specialty module for
further details.

– –

xx70
through

xx7F

Identifies an I/O module specific
non-recoverable major error. Refer to
the user manual for the specialty module
for further details.

– –

xx90 Interrupt problem on a disabled slot. A specialty I/O module requested service
while a slot was disabled.

Refer to the user manual for the
specialty I/O module. You may have to
replace the module.

xx91 A disabled slot has faulted. A specialty I/O module in a disabled slot
has faulted.

Cycle rack power. If this does not
correct the problem, refer to the user
manual for the specialty I/O module.
You may have to replace the module.

xx92 Invalid or non-existent module interrupt
subroutine (ISR) file.

The I/O configuration/ISR file information
for a specialty I/O module is incorrect.

Correct the I/O configuration/ISR file
information for the specialty I/O module.
Refer to the user manual for the module
for the correct ISR file information. Then
reload the program and run.

xx93 Unsupported I/O module specific major
error.

The processor does not recognize the
error code from a specialty I/O module.

Refer to the user manual for the
specialty I/O module.

xx94 A module has been detected as being
inserted under power in the run or test
mode.

This code also can mean that an I/O
module has reset itself.

The module has been inserted in the
rack under power, or the module has
reset itself.

No module should ever be inserted in a
rack under power. If this occurs and the
module is not damaged,
• Either remove the module, clear the

fault and run, or
• add the module to the I/O

configuration, reference the module in
the user program where required,
reload the program and run.

29Chapter

29–1

Understanding the User Fault Routine – SLC
5/02 Processor Only

This chapter applies to the SLC 5/02 processor only. It covers the following
topics:

• recoverable and non–recoverable user faults
• application examples of user fault subroutines

The SLC 5/02 processor allows you to designate a subroutine file as a User
Fault Routine. This file will be executed when any recoverable or
non-recoverable user fault occurs. The file is not executed for non-user
faults.

The User Fault Routine gives you the option of preventing a processor
shutdown upon the occurrence of a specific user fault. You do this via the
designated subroutine by entering a ladder program which will prevent the
fault from occurring. You can handle a number of user faults in this way, as
the example on page 29–6 shows.

All application examples shown are in the HHT zoom display.

Status File Data Saved

Data in the following words is saved on entry to the designated subroutine
and re-written upon exiting the subroutine.

• S:0 Arithmetic flags

• S:13 and S:14 Math register

• S:24 Index register

Faults are classified as recoverable and non-recoverable user faults, and
non-user faults. A complete list appears in chapter 27, “Status File.”
Definitions:

Non-User Fault Non-Recoverable User Fault Recoverable User Fault

The user fault routine
does not execute.

The user fault routine executes for 1 pass.
(Hint: You may initiate a MSG instruction
to another node to identify the fault
condition of the processor.)

The user fault routine
may clear the fault by
clearing bit S:1/13.

Recoverable and non-recoverable user faults are listed on the following
pages. Refer to chapters 27 and 28 for additional information.

Overview of the User Fault
Routine

Recoverable and
Non–Recoverable User Faults

5/02 Processor Only

Chapter 29
Understanding the User Fault Routine –

29–2

Recoverable User Faults

GOING TO RUN ERRORS

0013 The required memory module is absent or either S:1/10 or S:1/11 is not set
(and the program requires it).

0016 Startup protection after power loss. Error condition exists at powerup when
bit S:1/9 is set and powerdown occurred while running.

RUNTIME ERRORS

0020 A minor error bit is set at the end of the scan.

0029 Indexed address reference outside of entire data file space (range of B3:0
through the last file).

INSTRUCTION ERRORS

0032 Sequencer length/position points past end of data file.

0033 Length of LFU, LFL, FFU, FFL, BSL, or BSR points past end of data file.

0034 A negative value for a timer accumulator or preset value was detected.

0036 Invalid value for a PID parameter. Code 0036 is discussed further in
chapter 26.

5/02 Processor Only

Chapter 29
Understanding the User Fault Routine

29–3

I/O ERRORS
 Recoverable only if you disable slot xx in the

user fault routine

xx50 A rack data error is detected.

xx52 A module required for the user program is detected as missing or removed.

xx53
At going-to-run, a user program declares a slot as unused, and that slot is
detected as having an I/O module inserted. Can also mean that the I/O
module has reset itself.

xx54 A module required for the user program is detected as being the wrong
type.

xx55 A module required for the user program is detected as having the wrong
I/O count or wrong I/O driver.

xx57 A specialty I/O module has not responded to a lock shared memory
command within the required time limit.

xx59 A specialty I/O module has not responded to a command as being
completed within the required time limit.

xx5A Hardware interrupt problem.

xx5B G file configuration error – User program G file size exceeds capacity of the
module.

xx5C M0–M1 file configuration error – User program M0–M1 file size exceeds
capacity of the module.

xx5D Interrupt service requested is not supported by the processor.

xx5E Processor I/O driver (software) error.

xx60
thru
xx6F

Identifies an I/O module specific recoverable major error. Refer to the user
manual supplied with the module.

5/02 Processor Only

Chapter 29
Understanding the User Fault Routine –

29–4

Non-Recoverable User Faults

An example of using a non-recoverable user fault in a user fault routine
would be to initiate a MSG instruction to inform another node of the fault
condition. Non-recoverable user faults:

RUNTIME ERRORS

0022 User watchdog scan time exceeded.

0023 Invalid or non-existent STI interrupt file.

0024 Invalid STI interrupt interval (greater than 2559ms or negative).

0025 Excessive stack depth/JSR calls for STI routine.

0026 Excessive stack depth/JSR calls for I/O interrupt routine.

0027 Excessive stack depth/JSR calls for user fault routine.

002A Indexed address reference beyond specific referenced data file.

INSTRUCTION ERRORS

0030 Attempt was made to jump to one too many nested subroutine files. Can
also mean that a program has potentially recursive routines.

0031 Unsupported instruction reference was detected.

0035 TND, SVC, or REF instruction is called within an interrupting or user fault
routine.

I/O ERRORS

xx51 A “stuck” runtime error is detected on an I/O module.

xx58 A specialty I/O module has generated a generic fault. The module fault bit
is set to 1 in the status byte of the module.

xx70 thru
xx7F

Identifies an I/O module specific non-recoverable major error. Refer to the
user manual supplied with the module.

xx90 Interrupt problem on a disabled slot.

xx91 A disabled slot has faulted.

xx92 Invalid or non-existent module interrupt subroutine file.

xx93 Unsupported I/O module specific major error.

xx94 In the run or test mode, a module has been detected as being inserted
under power. Can also mean that an I/O module has reset itself.

5/02 Processor Only

Chapter 29
Understanding the User Fault Routine

29–5

To utilize the user fault routine, create a subroutine file (3–255), then enter
this file number in word S:29 of the status file. In the status file display
below, subroutine file 3 is designated as “Err File,” the user fault routine:

Word S:29

F1 F2 F3 F4 F5

 Status File
S2:5 Minor Fault 0000 0000 0000 0000
S2:6 Fault Code 0000H
Desc: No Error
S2:29 Err File: 3 Indx Cross File: No
S2:24 Index Reg: 0 Single Step: No
S2:5/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

Suppose you have a program in which you want to control major errors 0020
(MINOR ERROR AT END OF SCAN) and 0034 (NEGATIVE VALUE IN
TIMER PRE OR ACC) in the following manner:

• Prevent a processor shutdown if the overflow trap bit S:5/0 is set. Permit
a processor shutdown when S:5/0 is set more than five times.

• Prevent a processor shutdown if the accumulator value of timer T4:0
becomes negative. Reset the negative accumulator value to zero.
Energize an output to indicate that the accumulator has gone negative one
or more times.

• Allow a processor shutdown for all other user faults.

A possible method of accomplishing this is indicated in the following
figures. Subroutines 3, 4, and 5 are created. The user fault routine is
designated as subroutine file 3.

When a recoverable or non-recoverable user error occurs, the processor scans
file 3. The processor jumps to file 4 if the error code is 0020 and it jumps to
file 5 if the error code is 0034. For all other recoverable and non-recoverable
errors, the processor exits the user fault routine and halts operation in the
fault mode.

Creating a User Fault
Subroutine

Application Example

5/02 Processor Only

Chapter 29
Understanding the User Fault Routine –

29–6

User Fault Routine – Subroutine File 3

When the processor detects a recoverable or non-recoverable user fault, this
file is executed. The fault code appears as Source A in the EQU instructions in
this file.

The processor will enter the fault mode and shut down for all user faults except
two:

0020 MINOR ERROR AT END OF SCAN
0034 NEGATIVE VALUE IN TIMER PRE OR ACC

If the fault code (S:6) is 0020H, subroutine file 4 is executed. If the fault code
is 0034H, subroutine file 5 is executed.

END

EQU
EQUAL
Source A S:6

0
Source B 32 Fault code 0020H

 = 0000 0000 0010 0000 binary
 = 32 decimal

JSR
JUMP TO SUBROUTINE
SBR file number 4

JSR
JUMP TO SUBROUTINE
SBR file number 5

EQU
EQUAL
Source A S:6

0
Source B 52 Fault code 0034H

= 0000 0000 0011 0100 binary
= 52 decimal

Word S:6 is the fault code
(in decimal).

5/02 Processor Only

Chapter 29
Understanding the User Fault Routine

29–7

Subroutine File 4 – Executed for error 0020

MINOR ERROR AT END OF SCAN

If the overflow trap bit S:5/0 is set, counter C5:0 will increment.

If the count of C5:0 is 5 or less, the overflow trap S:5/0 will be cleared, the
major error halted bit S:1/13 will be cleared, and the processor will remain in
the Run mode. Fault code 0020 will be indicated in the status file display. If
the count is greater than 5, the processor will set S:5/0 and S:1/13 and enter
the fault mode.

This subroutine file is also executed if the control register error bit S:5/2 is set.
In this case, the processor is placed in the fault mode.

Fault code and description are indicated.

S:1/13 Cleared S:5/0 Cleared

Status File Display – At 1st through 5th overflow (S:5/0) occurrences

END

SBR
SUBROUTINE

RET
RETURN

GRT
GREATER THAN
Source A C5:0.ACC

0
Source B 5

(CU)

(DN)

CTU
COUNT UP
Counter C5:0
Preset 120
Accum 0

(U)
S:5

 0

] [
S:5

 0
(U)

C5:0

CU

(U)
S:1

13

RET
RETURN

] [
S:5

 0

F1 F2 F3 F4 F5

 Status File
S2:5 Minor Fault 0000 0000 0000 0000
S2:6 Fault Code 0020H
Desc: Minor Error At End Of Scan
S2:29 Err File: 0 Indx Cross File: No
S2:24 Index Reg: 0 Single Step: No
S2:5/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
Arithmetic Flags S:0 Z:0 V:0 C:0
S2:0 Proc Status 0000 0000 0000 0000
S2:1 Proc Status 0000 0000 1000 0001
S2:2 Proc Status 1000 0000 0000 0010

S2:0/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

5/02 Processor Only

Chapter 29
Understanding the User Fault Routine –

29–8

Subroutine File 5 – Executed for error 0034

NEGATIVE VALUE IN TIMER PRE OR ACC

If the accumulator value of timer T4:0 is negative, the major error halted bit,
S:1/13 is unlatched, preventing the processor from entering the fault mode. At
the same time, the accumulator value T4:0.ACC is cleared to zero and output
O:3.0/3 is energized. Fault code 0034 will be indicated in the status file
display.

If the preset of timer T4:0 is negative, S:1/13 will remain set and the processor
will enter the fault mode (O:3.0/3 will be reset if previously set). Also, if either
the preset or accumulator value of any other timer in the program is negative,
S:1/13 will be set and the processor will enter the fault mode (O:3.0/3 will be
reset if previously set).

Status File Display – T4:0.ACC is negative.

END

(U)
S:1

 13

RET
RETURN

SBR
SUBROUTINE

LES
LESS THAN
Source A T4:0.ACC

0
Source B 0

CLR
CLEAR
Dest T4:0.ACC

0

()
O:3.0

 3

Fault code and description are indicated.S:1/13 Cleared

F1 F2 F3 F4 F5

 Status File
S2:5 Minor Fault 0000 0000 0000 0000
S2:6 Fault Code 0034H
Desc: Negative Value in Time PRE or ACC
S2:29 Err File: 0 Indx Cross File: No
S2:24 Index Reg: 0 Single Step: No
S2:5/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
Arithmetic Flags S:0 Z:0 V:0 C:0
S2:0 Proc Status 0000 0000 0000 0000
S2:1 Proc Status 0000 0000 1000 0001
S2:2 Proc Status 1000 0000 0000 0010

S2:0/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

A–B 30Chapter

30–1

Understanding Selectable Timed Interrupts –
SLC 5/02 Processor Only

This chapter applies to the SLC 5/02 processor only. It covers the following
topics:

• STI operation
• STI parameters
• STD and STE instructions
• STS instruction
• INT instruction

The STI (selectable timed interrupt) function can be used with the SLC 5/02
processor only. This function allows you to interrupt the scan of the main
program file automatically, on a periodic basis, in order to scan a specified
subroutine file.

Basic Programming Procedure for the STI Function

To use the STI function with your main program file:

• Create a subroutine file (range is from 3 to 255) and enter the desired
ladder rungs. This is your STI subroutine file.
Creating a subroutine file is discussed in chapter 7.

• Enter the STI subroutine file number in word S:31 of the status file. (See
page 30–4.) A file number of zero disables the STI function.

• Enter the setpoint (the time between successive interrupts) in word S:30
of the status file (see page 30–4). The range is 10 to 2550 milliseconds
(entered in 10ms increments). A setpoint of zero disables the STI
function.

Important: The setpoint value must be a longer time than the execution
time of the STI subroutine file, or a minor error (overrun bit
S:5/10) will occur.

After you download your program and enter the Run mode, the STI begins
operation as follows:

• The STI timer begins timing.
• At timeout, the main program scan is interrupted and the specified STI

subroutine file is scanned; simultaneously, the STI timer is reset.
• When the STI subroutine scan is completed, scanning of the main

program file resumes at the point where it left off.
• The cycle repeats.

STI Overview

Operation

Interrupts – 5/02 Processor Only

Chapter 30
Understanding Selectable Timed

30–2

STI Subroutine Content

For identification of your STI subroutine, include an INT instruction as the
first instruction. This identifies the subroutine as an interrupt subroutine
versus a normal subroutine.

The STI subroutine will contain the rungs of your application logic. You can
program any instruction inside the STI subroutine except a TND, REF, or
SVC instruction. IIM or IOM instructions are needed in an STI subroutine if
your application requires immediate update of input or output points. End
the STI subroutine with an RET instruction.

JSR stack depth is limited to 3. That is, you may call other subroutines to a
level 3 deep from an STI subroutine.

Interrupt Occurrences

STI interrupts can occur at any point in your program, but not necessarily at
the same point on successive interrupts. Interrupts can only occur between
instructions in your program, inside the I/O scan (between slots), or between
the servicing of communications packets. STI execution time adds directly
to the overall scan time.

Processor Overhead

Communication

Output Scan

Program Scan

Input Scan Between slot updates

Between instruction executions

Between slot updates

Between communication packets

Events in the processor operating cycle

STI interrupts can occur:

Interrupt Latency

The interrupt latency (interval between the STI timeout and the start of the
interrupt subroutine) is 3.7 milliseconds max. for the SLC 5/02 series B
processor, and 2.4 milliseconds max. for the SLC 5/02 series C and later.
During the latency period, the processor is performing operations that cannot
be disturbed by the STI interrupt function.

Interrupts – 5/02 Processor Only

Chapter 30
Understanding Selectable Timed

30–3

Interrupt Priorities

Interrupt priorities are as follows:
1. Fault routine

2. STI subroutine

3. I/O interrupt subroutine (ISR)

An executing interrupt can only be interrupted by an interrupt having higher
priority.

Status File Data Saved

Data in the following words is saved on entry to the STI subroutine and
re-written upon exiting the STI subroutine.

• S:0 Arithmetic flags
• S:13 and S:14 Math register
• S:24 Index register

Interrupts – 5/02 Processor Only

Chapter 30
Understanding Selectable Timed

30–4

The following parameters are associated with the STI function. These
parameters have status file addresses. They are described here and also in
chapter 27.

Word S:31 STI file number – This can be any number from 3 to
255. A value of zero disables the STI function. An invalid number
will generate fault 0023.

Word S:30 Setpoint – This is the time between the starting point of
successive scans of the STI file. It can be any value from 10 to 2550
milliseconds. (You enter a value of 1– 255, which results in a
10–2550 ms setpoint.) A value of zero disables the STI function. An
invalid time will generate fault 0024.

Bit S:2/0 Pending bit – Read only. This bit is set when the STI
timer has timed out while the STI file is either being scanned or is
disabled.

This bit will not be set if the STI timer expires while executing the
user fault routine.

This bit is reset upon the start of the STI routine, execution of an STS
instruction, powerup, and exit from the Run mode.

Bit S:2/1 Enable bit – The default value is 1 (set). When a file
number between 3 and 255 is present in word S:31 and a setpoint
value between 1 and 255 is present in word S:30, a set enable bit
allows scanning of the STI file. If the bit is reset by an STD
instruction, scanning of the STI file no longer occurs. If the bit is set
by an STE or STS instruction, scanning is again allowed.

The enable bit only enables/disables the scanning of the STI
subroutine. It does not affect the STI timer. The STS instruction
affects both the enable bit and the STI timer. The default state is
enabled. If this bit is set/reset using the STE, STD, or STS
instruction, enable/disable takes effect immediately.

If this bit is set or reset by the user program or communications, it
will not take effect until the next end of scan.

Bit S:2/2 Executing bit – Read only. This bit is set when the STI
file is being scanned and cleared when the scan is completed. The bit
is also cleared on powerup and entry into the Run mode.

Bit S:5/10 Overrun bit – Read/write. This minor error bit is set
whenever the STI timer expires while the STI routine is executing or
disabled while the pending bit is set. When this occurs, the STI timer
continues to operate at the rate present in word S:30.

If the overrun bit becomes set, take the corrective action your
application dictates, then clear the bit.

STI Parameters

Interrupts – 5/02 Processor Only

Chapter 30
Understanding Selectable Timed

30–5

Enter and monitor STI parameters at the status file displays under
EDT_DAT. Parameters are pointed out in the displays that follow.

F1 F2 F3 F4 F5

 Status File
S2:5 Minor Fault 0000 0000 0000 0000
S2:6 Fault Code 0000H
Desc: No Error
S2:29 Err File: 0 Indx Cross File: No
S2:24 Index Reg: 0 Single Step: No
S2:5/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
Arithmetic Flags S:0 Z:0 V:0 C:0
S2:0 Proc Status 0000 0000 0000 0000
S2:1 Proc Status 0000 0000 0000 0001
S2:2 Proc Status 0000 0000 0000 0010

S2:0/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
 Selectable Timed Interrupt
S2:31 Subroutine File: 0
S2:30 Frequency [x10mS]: 0
 Enabled: 1 Executing: 0 Pending: 0

S2:31 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

A

B
C
D

E
F

G, H, I

A – Word S:2. Bits 0, 1, and 2 are the STI pending, enabled, and executing
bits respectively. These bits also appear in the “Selectable Timed Interrupt”
display. See G, H, I.

B – Word S:5. Bit S:5/10 is the STI overrun bit.

C – Fault code. STI and other fault codes appear here.

D – Fault description. A textual description of the fault code.

E – Word S:31, the STI subroutine file number.

F – Word S:30, the STI setpoint or frequency.

G – STI enabled bit S:2/1. Also appears in the first status file display.
See A.

H – STI executing bit S:2/2. Also appears in the first status file display.
See A.

I – STI pending bit S:2/0. Also appears in the first status file display. See A.

Interrupts – 5/02 Processor Only

Chapter 30
Understanding Selectable Timed

30–6

The STD and STE instructions are used to create zones in which STI
interrupts cannot occur. These instructions are not required to configure a
basic STI interrupt application.

Selectable Timed Disable STD Output Instruction
Selectable Timed Enable STE Output Instruction

(STD)

STD
SELECTABLE TIMED DISABLE

STE
SELECTABLE TIMED ENABLE

(STE)HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(monitor mode)

F1 F2 F3 F4 F5

ZOOM on STD –(STD)– 2.6.0.0.1
NAME: SELECTABLE TIMED DISABLE

 EDT_DAT

F1 F2 F3 F4 F5

ZOOM on STE –(STE)– 2.3.0.0.2
NAME: SELECTABLE TIMED ENABLE

 EDT_DAT

STD Selectable Timed Disable – This instruction, when true, will reset the
STI enable bit and prevent the STI subroutine from executing. When the
rung goes false, the STI enable bit remains reset until a true STS or STE
instruction is executed. The STI timer continues to operate while the enable
bit is reset.

STE Selectable Timed Enable – This instruction, upon a false-true
transition of the rung, will set the STI enable bit and allow execution of the
STI subroutine. When the rung goes false, the STI enable bit remains set
until a true STD instruction is executed. This instruction has no effect on the
operation of the STI timer or setpoint. When the enable bit is set, the first
execution of the STI subroutine can occur at any fraction of the timing cycle
up to a full timing cycle later.

STD and STE Instructions

Interrupts – 5/02 Processor Only

Chapter 30
Understanding Selectable Timed

30–7

STD/STE Zone Example

In the program below, the STI function is in effect. The STD and STE
instructions in rungs 6 and 12 are included in the ladder program to avoid
having STI subroutine execution at any point in rungs 7 thru 11.

The STD instruction (rung 6) resets the STI enable bit and the STE
instruction (rung 12) sets the enable bit again. The STI timer increments and
may time out in the STD zone, setting the pending bit S:2/0 and overrun bit
S:5/10.

The first pass bit S:1/15 and the STE instruction in rung 0 are included to
insure that the STI function is initialized following a power cycle. You
should include this rung any time your program contains an STD/STE zone
or an STD instruction.

] [
S:1

15

()

STI interrupt
execution will

not occur
between STD

and STE.

END

0

STD
SELECTABLE TIMED DISABLE

STE
SELECTABLE TIMED ENABLE

] [] [

()] [] [

()] [] [

STE
SELECTABLE TIMED ENABLE

()] [] [

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Program File 2

Interrupts – 5/02 Processor Only

Chapter 30
Understanding Selectable Timed

30–8

The STS instruction can be used to condition the start of the STI timer upon
entering the Run mode – rather than starting automatically. It can also be
used to set up or change the file number or setpoint/frequency of the STI
routine that will be executed when the STI timer expires.

This instruction is not required to configure a basic STI interrupt application.

Selectable Timed Start STS Output Instruction

STS
SELECTABLE TIMED START
File 3
Time (x10 ms) 30

(STS)HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(monitor mode)

F1 F2 F3 F4 F5

ZOOM on STS –(STS)– 2.9.0.0.1
NAME: SELECTABLE TIMED START
FILE: 3 3
TIME: 30 30

 EDT_DAT

STS Selectable Timed Start Immediately – The STS instruction requires
you to enter two parameters, the STI file number and the STI setpoint. Upon
a true execution of the rung, this instruction will enter the file number and
setpoint/frequency in the status file (S:31, S:30), overwriting the existing
data. At the same time, the STI timer is reset and begins timing; at timeout,
the STI subroutine execution occurs. When the rung goes false, the STI
function remains enabled at the setpoint and file number you’ve entered in
the STS instruction.

STS Instruction

Interrupts – 5/02 Processor Only

Chapter 30
Understanding Selectable Timed

30–9

The Interrupt Subroutine (INT) instruction is used in selectable timed
interrupt subroutines and I/O event–driven interrupt subroutines to
distinguish the subroutine as an interrupt subroutine versus a regular
subroutine. Use of the instruction is optional.

Interrupt Subroutine INT

INT

F1 F2 F3 F4 F5

ZOOM on INT –|INT|– 2.3.0.0.1
NAME: I/O INTERRUPT

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

Ladder Diagrams and APS Displays:

(online monitor mode)

INT
INTERRUPT SUBROUTINE

Interrupt Subroutine – This instruction has no control bits and is always
evaluated as true. When used, the INT should be programmed as the first
instruction of the first rung of the interrupt subroutine.

INT Instruction

A–B 31Chapter

31–1

Understanding I/O Interrupts – SLC 5/02
Processor Only

This chapter applies to the SLC 5/02 processor only. It covers the following
topics:

• I/O interrupt operation
• I/O interrupt parameters
• IID and IIE instructions
• RPI instruction
• INT instruction

The I/O event-driven interrupt function can be used with the SLC 5/02
processor only. This function allows a specialty I/O module to interrupt the
normal processor operating cycle in order to scan a specified subroutine file.
Interrupt operation for a specific module is described in the user’s manual for
the module.

I/O event-driven interrupts cannot be accomplished using standard discrete
I/O modules.

Basic Programming Procedure for the I/O Interrupt Function

• Specialty I/O modules which create interrupts should be configured in the
lowest numbered I/O slots. When you are configuring the specialty I/O
module slot with the HHT, select the ADV_SET and INT_SBR function
keys and program the “ISR” (interrupt subroutine) program file number
(range 3–255) that you want the I/O module to execute.
Configuring I/O is discussed in chapter 6.

• Create the subroutine file that you have specified in the I/O module slot
configuration.

Creating a subroutine file is discussed in chapter 4.

I/O Overview

5/02 Processor Only

Chapter 31
Understanding I/O Interrupts –

31–2

When you download your program and enter the Run mode, the I/O interrupt
begins operation as follows:

• The specialty I/O module determines that it needs servicing and generates
an interrupt request to the SLC processor.

• The processor is interrupted from what it is doing, and the specified
interrupt subroutine file (ISR) is scanned.

• When the ISR scan is completed, the specialty I/O module is notified.
This informs the specialty I/O module that it is allowed to generate a new
interrupt.

• The processor resumes normal operation from where it left off.

Interrupt Subroutine (ISR) Content

Include an Interrupt Subroutine (INT) instruction as the first instruction in
your ISR. This identifies the subroutine file as an interrupt subroutine versus
a regular subroutine.

The ISR will contain the rungs of your application logic. You can program
any instruction inside an ISR except a TND, REF, or SVC instruction. IIM
or IOM instructions are needed in an ISR if your application requires
immediate update of input or output points. Terminate the ISR with an RET
(return) instruction.

JSR stack depth is limited to 3. That is, you may call other subroutines to a
level 3 deep from an ISR.

Interrupt Occurrences

I/O interrupts can occur at any point in your program, but not necessarily at
the same point on successive interrupts. Interrupts can only occur between
instructions in your program, inside the I/O scan (between slots), or between
the servicing of communications packets. ISR execution time adds directly
to the overall scan time.

Processor Overhead

Communication

Output Scan

Program Scan

Input Scan Between slot updates

Between instruction executions

Between slot updates

Between communication packets

Events in the processor operating cycle

I/O interrupts can occur:

Operation

5/02 Processor Only

Chapter 31
Understanding I/O Interrupts –

31–3

Interrupt Latency

The interrupt latency (interval between the detection of an interrupt request
from the specialty I/O module and the start of the interrupt subroutine) is 3.7
milliseconds max. for the SLC 5/02 series B processor, and 2.4 milliseconds
max. for the SLC 5/02 series C and later. During the latency period, the
processor is performing operations that cannot be disturbed by the I/O
interrupt function.

Interrupt Priorities

Interrupt priorities are as follows:
1. Fault routine

2. STI subroutine

3. I/O interrupt subroutine (ISR)

An executing interrupt can only be interrupted by an interrupt having higher
priority.

The I/O interrupt cannot interrupt an executing fault routine, an executing
STI subroutine, or another executing I/O interrupt subroutine. If an I/O
interrupt occurs while the fault routine or STI subroutine is executing, the
processor will wait until the higher priority interrupts are scanned to
completion. Then the I/O interrupt subroutine will be scanned.

Note: It is important to understand that the I/O Pending bit associated with
the interrupting slot remains clear during the time that the processor is
waiting for the fault routine or STI subroutine to finish.

If a major fault occurs while executing the I/O interrupt subroutine,
execution will immediately switch to the fault routine. If the fault was
recovered by the fault routine, execution will resume at the point that it left
off in the I/O interrupt subroutine. Otherwise, the fault mode will be entered.

If the STI timer expires while executing the I/O interrupt subroutine,
execution will immediately switch to the STI subroutine. When the STI
subroutine is scanned to completion, execution will resume at the point that it
left off in the I/O interrupt subroutine.

If two or more I/O interrupt requests are detected by the processor at the
same instant, or while waiting for a higher or equal priority interrupt
subroutine to finish, the interrupt subroutine associated with the specialty I/O
module in the lowest slot number will be scanned first. For example, if slot 2
(ISR 20) and slot 3 (ISR 11) request interrupt service at the same instant, the
processor will first scan ISR 20 to completion, then ISR 11 to completion.

5/02 Processor Only

Chapter 31
Understanding I/O Interrupts –

31–4

Status File Data Saved

Data in the following words is saved on entry to the I/O interrupt subroutine
and re-written upon exiting the I/O interrupt subroutine.

• S:0 Arithmetic flags
• S:13 and S:14 Math register
• S:24 Index register

The I/O interrupt parameters below have status file addresses. They are
described here and also in chapter 27.

S:11 and S:12 I/O Slot Enables – Read/Write. These words are bit
mapped to the 30 I/O slots. Bits S:11/1 through S:12/14 refer to slots
1 through 30. Bits S:11/0 and S:12/15 are reserved. The enable bit
associated with an interrupting slot must be set when an interrupt
occurs. Otherwise a major fault will occur. See chapter 27 for more
details. Changes made to these bits using the EDT_DAT function
take effect at the next end of scan.

S:27 and S:28 I/O Interrupt Enables – Read/Write. These words
are bit mapped to the 30 I/O slots. Bits S:27/1 through S:28/14 refer
to slots 1 through 30. Bits S:27/0 and S:28/15 are reserved. The
enable bit associated with an interrupting slot must be set when the
interrupt occurs to allow the corresponding ISR to execute.
Otherwise the ISR will not execute and the associated I/O slot
interrupt pending bit will be set. Changes made to these bits using
the EDT_DAT function take effect at the next end of scan.

S:25 and S:26 I/O Interrupt Pending Bits – Read only. These
words are bit mapped to the 30 I/O slots. Bits S:25/1 through
S:26/14 refer to slots 1 through 30. Bits S:25/0 and S:26/15 are
reserved. The pending bit associated with an interrupting slot is set
when the corresponding I/O slot interrupt enable bit is clear at the
time of an interrupt request. It is cleared when the corresponding I/O
event interrupt enable bit is set, or when an associated RPI
instruction is executed. The pending bit for an executing I/O
interrupt subroutine remains clear when the ISR is interrupted by an
STI or fault routine. Likewise, the pending bit remains clear if
interrupt service is requested at the time that a higher or equal
priority interrupt is executing (fault routine, STI, or other ISR).

I/O Interrupt Parameters

5/02 Processor Only

Chapter 31
Understanding I/O Interrupts –

31–5

You can enter and monitor parameters at the status file displays, under
EDT_DAT. Parameters are pointed out in the displays below.

F1 F2 F3 F4 F5

 Status File
S2:11 & S2:12 I/O Slot Enables
 1 2 3
0 0 0 0
1111 1111 1111 1111 1111 1111 1111 1111
Slot = 0
S2:11/0 = 1 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:27 & S2:28 I/O Interrupt Enables
 1 2 3
0 0 0 0
0000 0000 0000 0000 0000 0000 0000 0000

S2:27/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

F1 F2 F3 F4 F5

 Status File
S2:25 & S2:26 I/O Interrupt Pending
 1 2 3
0 0 0 0
0000 0000 0000 0000 0000 0000 0000 0000

S2:25/0 = 0 PRG
ADDRESS NEXT FL PREV FL NEXT PG PREV PG

A

B

C

A – Words S:11 and S:12. I/O slot enable bits.

B – Words S:27 and S:28. I/O interrupt enable bits.

C – Words S:25 and S:26. I/O interrupt pending bits.

5/02 Processor Only

Chapter 31
Understanding I/O Interrupts –

31–6

The IID and IIE instructions are used to create zones in which I/O interrupts
cannot occur. These instructions are not required to configure a basic I/O
interrupt application.

(IID) (IIE)

F1 F2 F3 F4 F5

ZOOM on IID –(IID)– 2.4.0.0.1
NAME: I/O INTERRUPT DISABLE
 1 2 3
0 0 0 0
0100 1111 1111 1111 1111 1111 1111 1111

 EDT_DAT

HHT Ladder Display:

HHT Zoom Display:

F1 F2 F3 F4 F5

ZOOM on IIE –(IIE)– 2.0.0.0.1
NAME: I/O INTERRUPT ENABLE
 1 2 3
0 0 0 0
0011 0000 0000 0000 0000 0000 0000 0001

 EDT_DAT

IID
I/O INTERRUPT DISABLE
Slots: 2,3

IIE
I/O INTERRUPT ENABLE
Slots: 2,3

Ladder Diagrams and APS Displays:

I/O Interrupt Disable IID Output Instruction
I/O Interrupt Enable IIE Output Instruction

(online monitor mode)

IID and IIE Instructions

5/02 Processor Only

Chapter 31
Understanding I/O Interrupts –

31–7

IID I/O Interrupt Disable – When true, this instruction clears the I/O
interrupt enable bits (S:27/1 through S:28/14) corresponding to the slots
parameter of the instruction (slots 1, 2, 7 in the following example).
Interrupt subroutines of the affected slots will not be able to execute when
an interrupt request is made. Instead, the corresponding I/O pending bits
(S:25/1 through S:26/14) will be set. The ISR will not be executed until an
IIE instruction with the same slot parameter is executed, or until the end of
the scan during which you use a programming device to set the
corresponding status file bit.

Use this instruction together with an IIE instruction to create a zone in your
main ladder program file or subroutine file in which I/O interrupts cannot
occur. The IID instruction takes effect immediately upon execution.
Setting/clearing the I/O interrupt enable bits (S:27 and S:28) with a
programming device or standard instruction such as MVM takes effect at
the END of the scan only.

Parameter – Enter a 0 (reset) in a slot position to indicate a disabled I/O
interrupt.

IIE I/O Interrupt Enable – When true, this instruction sets the I/O
interrupt enable bits (S:27/1 through S:28/14) corresponding to the slots
parameter of the instruction (slots 1, 2, 7 in the following example).
Interrupt subroutines of the affected slots will regain the ability to execute
when an interrupt request is made. If an interrupt was pending (S:25/1
through S:26/14) and the pending slot corresponds to the IIE slots
parameter, the ISR associated with that slot will execute immediately.

Use this instruction together with the IID instruction to create a zone in
your main ladder program file or subroutine file in which I/O interrupts
cannot occur. The IIE instruction takes effect immediately upon execution.
Setting/clearing the I/O interrupt enable bits (S:27 and S:28) with a
programming device or standard instruction such as MVM takes effect at
the END of the scan only.

Parameter – Enter a 1 (set) in a slot position to indicate an enabled I/O
interrupt.

5/02 Processor Only

Chapter 31
Understanding I/O Interrupts –

31–8

IID/IIE Zone Example

In the program below, slots 1, 2, and 7 are capable of generating I/O
interrupts. The IID and IIE instructions in rungs 6 and 12 are included to
avoid having I/O interrupt ISRs execute as a result of interrupt requests from
slots 1, 2, or 7. This allows rungs 7 through 11 to execute without
interruption.

] [
S:1

15

()

ISR execution
will not occur
between IID

and IIE
instructions

END

0

] [] [

()] [] [

()] [] [

()] [] [

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Program File 2

IID
I/O INTERRUPT DISABLE
Slots: 1,2,7

IIE
I/O INTERRUPT ENABLE
Slots: 1,2,7

IIE
I/O INTERRUPT ENABLE
Slots: 1,2,7

The first pass bit S:1/15 and the IIE instruction in rung 0 are
included to insure that the I/O interrupt function is initialized
following a power cycle. You should include a rung such as this
any time your program contains an IID/IIE zone or an IID
instruction.

The IID instruction in rung 6 clears the I/O interrupt enable bits
associated with slots 1, 2, and 7 (S:27/1, S:27/2, and S:27/7).
The IIE instruction in rung 12 sets these same bits. If an I/O
interrupt is detected by the processor while the processor is
executing rungs 7–11, the interrupt will be marked as pending
(S:25/1, S:25/2, and/or S:25/7 will be set). All interrupts marked
as pending will be serviced upon execution of rung 12 (the
lowest numbered slot is serviced first when multiple pending bits
are set).

] [

 RUN
 MODE FORCE EDT DAT SEARCH

F1 F2 F3 F4 F5

IIE:0110 0001... 2.0.0.0.2
(IIE)
()

 RUN
 MODE FORCE EDT DAT SEARCH

F1 F2 F3 F4 F5

IID:0001 1110... 2.6.0.0.1

(IID)
()

When the cursor is on the IIE instruction,
the enabled slots are indicated here by 1s.

When the cursor is on the IID instruction, the
disabled slots are indicated here by 0s.

HHT Ladder Display:

5/02 Processor Only

Chapter 31
Understanding I/O Interrupts –

31–9

The RPI instruction is used to purge unwanted I/O interrupt requests. This
instruction is not required to configure a basic I/O interrupt application.

RPI Reset Pending Interrupt – When true, this instruction clears the I/O
pending bits (S:25/1 through S:26/14) corresponding to the slots parameter
of the instruction. In addition, the processor notifies the specialty I/O
modules in those slots that their interrupt request was aborted. Following
this notice, the slot may once again request interrupt service. This
instruction does not affect the I/O slot interrupt enable bits (S:27/1 through
S:28/14).

Parameter: Enter a 0 (reset) in a slot position to indicate that the pending
status of an I/O interrupt is reset (aborted).

Reset Pending Interrupt RPI Output Instruction

(RPI)HHT Ladder Display:

HHT Zoom Display:

F1 F2 F3 F4 F5

ZOOM on RPI –(RPI)– 2.0.0.0.1
NAME: RESET PENDING INTERRUPT
 1 2 3
0 0 0 0
0000 0000 0000 0000 0000 0000 0000 0001

 EDT_DAT

RPI
RESET PENDING INTERRUPT
Slots: 1–30

Ladder Diagrams and APS Displays:

] [

 RUN

 MODE FORCE EDT DAT SEARCH

F1 F2 F3 F4 F5

RPI:0000 0000... 2.0.0.0.2
(RPI)
()

When the cursor is on the RPI instruction, the
slots having reset Pending I/O Interrupt bits are
indicated here by 0s.

HHT Ladder Display:

(online monitor mode)

RPI Instruction

AAppendix

A–1

HHT Messages and Error Definitions

This appendix provides details about the messages that appear on the prompt
line of the HHT display. These messages prompt you regarding
programming procedures, restrictions, and limitations. They also bring your
attention to errors such as incorrect procedures, incorrect data entry, failure
of selftest functions, and hardware/software incompatibility.

The messages in this chapter refer specifically to HHT operations. They are
listed in alphabetical order. For a list of SLC 500 family processor error
codes, refer to chapter 27.

Message: Appears when: Respond by:

5/02
INSTRUCTION,
FILE X, RUNG Y

This processor type is incompatible with your present ladder
program. There are references to inputs and outputs in your
program which do not exist in this processor type.

Choosing a different processor type or modifying your ladder
program.

BATTERY TEST
FAILED

The HHT battery is not present or has lost power.
Important: If a ladder program is stored in the HHT, it may be
lost.

Connecting or replacing the battery or connecting the battery
jumper.

BRANCH LEVEL
LIMIT EXCEEDED

You have reached the limit of extend up or extend down
branching instructions.

Using storage bits and programming a separate rung for the
additional branches.

BRANCH WILL
EXCEED NEST
LIMIT

You are attempting to begin a branch within an existing branch
for 500 or 5/01. Or, you are attempting to exceed the nest
level for a 5/02.

Referring to page 5–7 in this manual.

The processor is in a fault condition and try to enter the Run
mode. Correcting the fault.

CANNOT
GENERATE

You are trying to enable forces where none exist. Installing the desired force.
GENERATE
CONDITION You are trying to copy a processor RAM ladder program to a

memory module (EEPROM) that is not installed in the
processor.

Installing the memory module.

CHANGE
PROCESSOR TO
PROGRAM
MODE

The function you are attempting cannot be done while the
processor is in the run or Test mode.

Using the [MODE] function to change the processor to the
Program mode.

CHANGE
PROGRAM NAME
FROM DEFAULT

You are trying to access the edit file function for a program that
does not exist.

Changing the program name from DEFAULT.

CONTINUE AND
GO OFFLINE?

You want to exit online communications. Answering YES to go offline. Answering NO to continue online
monitoring.

CONTINUE AND
SAVE WITH
ERRORS?

The HHT program compiler cannot successfully compile your
program.

Answering YES to save your program in a state that allows
future edits to be made. Answering NO abandons the save
operation.
Important: You can SAVE the program with errors (to correct
at a later time), but you cannot download the program to the
processor.

Appendix A
HHT Messages and Error Definitions

A–2

Message: Respond by:Appears when:

DATA FORCES IN
LAST STATE,

The instruction or rung you are attempting to delete may
contain the only reference to a data location.

Answering YES if you want to continue the deletion.
Answering NO if you wish to abort the deletion.

LAST STATE,
DELETE? Forces are present on the instruction or in the rung you are

attempting to delete.
Answering YES if you want to continue the deletion.
Answering NO if you wish to abort the deletion.

DATA INTEGRITY
TEST FAILED

The ladder program file stored in the HHT RAM is lost. The
HHT battery may be missing or the voltage is low.

Connecting or replacing the battery.

DEFAULT FILE IN
PROCESSOR

The processor contains a default ladder program. Downloading a non–default ladder program.

DELETED RUNG
BUFFER EMPTY

You undelete a rung and the rung buffer is empty. No response.

DESTRUCTIVE
RAM TEST
FAILED

The battery–backed RAM chip of the HHT is corrupted. Contacting your A–B service representative.

DIRECTORY FILE
CORRUPTED

The ladder program file directory of the processor is
inaccurate.

No response. The HHT is unable to read or monitor this
program.

DOWNLOAD
DENIED,
COMPILER
ERRORS

The ladder program has been saved with errors (possibly I/O
configuration errors). Using the ladder program editor to correct your program.

DUPLICATE
‘(HIGH SPEED
COUNTER)’
INSTRUCTION

You attempt to program multiple HSC instructions. Your ladder
program is allowed to contain only one HSC instruction
(processor must be DC type).

Removing duplicate HSC instructions.

ERROR
EXPANDING THE
DATA TABLE

The length parameter of an instruction is trying to create a
data file larger than 256 elements.

Entering a smaller length.

ERROR: INVALID
FORCE

The cursored instruction is not an input or output instruction. Choosing the correct type of instruction or abandoning this
attempt.

ERROR:
UNDEFINED I/O
ADDRESS

A mismatch exists between the I/O addresses used in the
ladder program and the configured I/O modules.

Either editing the program and changing the address to agree
with the configured I/O modules, or re–configuring the I/O to
match the entered address. For the latter, refer to chapter 4
for more help. Important: You can SAVE the program with
errors (to correct at a later time), but you cannot download the
program to the processor.

FILE CANNOT BE
CREATED

You are creating a ladder program file where the number
entered is illegal or the file already exists.

Choosing a different file number.

FILE CANNOT BE
DELETED

The entered program or data file number does not exist or is
incorrect.
Important: Data File numbers 0, 1, and 2 and program files 0
and 1 cannot be deleted.

Choosing a different file or aborting the procedure.

FILE
OVERWRITE
ERROR

A file overwrite has occurred. SQO, SQC, BSL, BSR, FLL, or
COP instruction operation has crossed file boundaries.

Correcting the file length in the appropriate instruction.

HSC ALREADY
EXISTS

You attempt to program multiple HSC instructions. Your ladder
program is allowed to contain only one HSC instruction
(processor must be DC type).

Remove duplicate HSC instructions.

Appendix A
HHT Messages and Error Definitions

A–3

Message: Respond by:Appears when:

HSC
INSTRUCTION,
FILE X, RUNG Y

This processor type does not allow HSC instructions. Removing any HSC instructions in your ladder program.

ILLEGAL
ADDRESS

The processor is requested to read/write data to a
non–existent ladder program file address or non–existent data
table.

Creating the ladder program file address or aborting the
procedure.

ILLEGAL

The processor does not understand the command received
from the HHT. Communications may have been interrupted.

Checking power and communications connections to the HHT
and processor and retry the procedure.ILLEGAL

COMMAND
The HHT attempts to attach to an SLC 5/03 processor. Aborting the procedure. The HHT is not compatible with the

5/03 processor.

ILLEGAL ENTRY
TO PROG
ATTEMPTED

You have tried to enter an incorrect password or master
password three times for offline monitoring/editing.

Entering a valid password for the specified program file.

ILLEGAL
NETWORK

There are duplicate nodes or the nodes are operating at
different baud rates.

Use the offline WHO display to set node numbers and baud
rates.

ILLEGAL The address entered is not in the correct format. Entering the valid format.ILLEGAL
OPERAND The address entered is not a valid data file operand. Entering a valid address.

ILLEGAL OSR
LOCATION

An OSR instruction is placed within a branch and is not
immediately adjacent to an output instruction.

Inserting the OSR instruction at a permissible location within
the rung.

ILLEGAL SIZE The processor does not understand the command received
from the HHT due to invalid size of advanced I/O setup.

Checking power and communication connections to the HHT
and processor and retry the procedure.

INCOMPATIBLE
The HHT is attempting to communicate with an invalid
processor type. Aborting the procedure or changing the configuration.

PROCESSOR
TYPE The processor that you have configured in your program does

not match the processor your HHT is communicating with.
Going offline and changing the processor type in the
Processor Configuration.

INCORRECT
PASSWORD

You have tried to enter an incorrect password or master
password three times for online monitoring of a processor.

Entering a valid password for that processor program file.

INITIALIZING HHT A new memory pak is installed. Uploading a valid ladder program to the HHT.INITIALIZING HHT
MEMORY TO
DEFAULT

The ladder program data stored in the HHT has become
corrupt and it is necessary to replace it with a default program. Uploading a valid ladder program to the HHT.

INSIDE A
BRANCH

You are attempting to begin a branch within an existing branch
for 500 or 5/01.

Referring to page 5–7 in this manual.

INVALID
ADDRESS

The data file address entered does not correspond to a valid
address in this ladder program. Entering a valid address.

INVALID DATA

You are attempting to create or monitor a data file and the
address entered is not in the correct format, the file type is
invalid, or it already exists as a different type.

Entering a valid address or file type.

FILE
The data file address entered does not correspond to a valid
address in this ladder program. Entering a valid address.

INVALID ERROR
CODE

The HHT has encountered an unknown error. This should not
occur in a properly functioning HHT.

Cycling power to the HHT. If that does not work contact your
A–B service representative.

INVALID FILE
TYPE

This data file type is not allowed in this instruction. Entering a valid data file type.

INVALID ID When you are configuring I/O and the HHT is unable to find a
slot configuration which matches this ID number.

Entering a valid ID number.

Appendix A
HHT Messages and Error Definitions

A–4

Message: Respond by:Appears when:

INVALID
OPERAND

The address entered is not a valid data file operand. Entering a valid address.

INVALID
PROCESSOR
TYPE

This processor type is incompatible with your present ladder
program. There are references to inputs and outputs in your
program which do not exist in this processor type.

Choosing a different processor type or modifying your ladder
program.

INVALID
PROCESSOR
TYPE, HSC
PRESENT

This processor type does not allow HSC instructions. Removing any HSC instructions in your ladder program.

KEYPAD TEST
FAILED

The internal test of the keypad has determined that there are
one or more inoperable keys.

Contacting your A–B service representative.

LABEL (LBL)
DOES NOT EXIST
FOR JUMP (JMP)

The JMP instruction does not have a valid LBL destination. Correcting the ladder program.

LABEL (LBL)
VALUE IS NOT
UNIQUE

The LBL number is assigned elsewhere in the ladder program. Choosing a different LBL number.

LENGTH IS TOO
LARGE

The operand of the instruction is larger than what is defined as
valid.

Entering a smaller length.

MASTER
CONTROL
RESETS (MCR)
NOT MATCHED

A beginning MCR instruction is missing an end MCR
instruction. Programming the required end MCR instruction.

MCR IS NOT
ONLY
INSTRUCTION
ON RUNG

An end MCR instruction is not the only instruction in the rung. Removing the other instructions in that rung.

MISSING
DESTINATION

There is an internal compiler error. Contacting your A–B service representative.

MODULE ID
CODE NOT
SUPPORTED

When you are configuring I/O and the HHT is unable to find a
slot configuration which matches this ID number.

Entering a valid ID number.

MULTIPLE OSR
INSTRUCTIONS

When you attempt to enter multiple OSR instructions in a rung.
Only one OSR instruction per rung is allowed for a 500 or 5/01.

Aborting the entry.

MUST SELECT
AN
INSTRUCTION

You attempt to accept a rung without instructions. A ladder
rung must contain at least one output instruction to be
accepted.

Entering output instructions or aborting the rung edit.

NO MEMORY
MODULE

You are trying to copy a processor RAM ladder program to a
memory module (EEPROM) that is not installed in the
processor.

Installing the memory module.

NO RESPONSE
FROM
PROCESSOR

The processor is not answering requests from the HHT to
communicate.

Checking power and communication connections to the HHT
and processor. Also check online configuration such as baud
rate and the number of devices on the network.

NO SLOTS
AVAILABLE

You are attempting to define more slots than are physically
available in this rack.

Aborting the procedure.

NO SUCH
SUBROUTINE
FILE

The subroutine number in the JSR instruction does not exist. Creating the subroutine or changing the number in the JSR
instruction.

NOT A BIT The address entered does not specify a legal bit in a data file. Entering a valid bit address.

Appendix A
HHT Messages and Error Definitions

A–5

Message: Respond by:Appears when:

You are trying to attach the HHT to either itself or a
non–processor device while in the WHO utility.

Using the [↓] or [↑] keys to change the order of the
nodes listed on the WHO screen. Put the processor at the top
of the list and try to attach.

NOT A
PROCESSOR

You are trying to attach the HHT to a non–existent device, or
no devices are shown on the WHO screen.

Changing the communication parameters of the HHT in the
node configuration menu. From the WHO screen, press
[F4], NODE_CFG. Try changing the baud rate by pressing
[F3], BAUD; the node address by pressing [F1],
CHG_ADR; or the maximum node address by pressing [F2],
MAX_ADR. Try different combinations. (The processor
defaults to node address 1 and baud rate 19200.)

NOT A
SUBELEMENT

The address entered does not specify a valid subelement in a
data file.

Entering a valid address (may require a decimal point and
word value in address).

NOT A
SUBROUTINE
FILE

You attempted to enter an SBR instruction in the main program
file.

Entering a valid address.

NOT AN
ELEMENT

The address entered does not specify a valid element in a
data file.

Entering a valid address.

NOT DIRECT You have entered the [#] symbol for indirect addressing
where it is not allowed.

Entering a valid address (remove # symbol).

NOT FILE
OWNER

The processor files have been configured to be accessed only
by another programming device.

Pressing [F5], CLR_OWNR from the WHO display to clear
the previous owner.

NOT FOUND During a search, the entered instruction, address, or force is
not present in the ladder program.

Aborting the search or entering the correct information.

NOT IMMEDIATE Data file addresses are not allowed. Entering an immediate value.

NOT IN A
BRANCH

You are attempting to extend or close a branch without first
beginning the branch.

Beginning a branch.

NOT INDEXED The address entered is not an indexed address. Beginning the address with the [#] symbol.

NOT ON THE
FIRST RUNG

An SBR instruction is not located on the first rung of the
subroutine program.

Placing the instruction on the first rung of the subroutine file.

NOT PROGRAM
OWNER

The processor program has been configured to be accessed
only by another programming device.

Pressing [F5], CLR_OWNR from the WHO display to clear
the previous owner.

NOT THE FIRST
INSTRUCTION

An SBR instruction is not located as the first instruction in the
subroutine program.

Inserting this instruction as the first instruction of the
subroutine file.

ONLY ONE
IMMEDIATE
ALLOWED

You are attempting to enter more than one immediate value in
an instruction.

Entering a valid data file address for this parameter.

OPCODE NOT
RECOGNIZED

An invalid instruction has been entered. Correcting the instruction.

OUT OF
MEMORY

The HHT does not have enough memory to store this ladder
file or program.

Decreasing the size of the program.

OUT OF
MEMORY IN
PROCESSOR
IMAGE

The user program and data files are too large for the
processor type.

Aborting the procedure or changing to a processor with
additional memory.

OUTPUT FILE
CANNOT BE
EDITED

You are attempting to change output file data while the
processor is in the Run mode.

Aborting the procedure or changing the Program mode.

Appendix A
HHT Messages and Error Definitions

A–6

Message: Respond by:Appears when:

PASSWORD NOT
CHANGED

The password or master password currently protecting the
ladder program or processor has not been entered correctly.
You must enter the old password before changing it.

Entering the current password correctly.

POSITION IS
TOO LARGE

The position parameter entered is larger than the data file
indicated.

Correcting the position value.

PROCESSOR
FILES
CORRUPTED

The HHT is unable to read or monitor the ladder program
stored in the processor.

Downloading an uncorrupted ladder program to the processor
then uploading that program to the HHT.

PROCESSOR
PROGRAM
INCOMPATIBLE

The processor ladder program was either programmed by a
non–HHT compatible programmer or contains non–HHT
compatible instructions for branching.

Aborting the procedure.

PROC PROGRAM
IS LOCKED

The future access bit in the processor ladder program is set.
This denies monitoring the program.

Aborting the procedure, downloading an unprotected program,
or clearing memory.

PROGRAM FILES
DIFFER

The ladder program in the processor does not match the
program in the HHT.

Uploading or downloading the appropriate ladder program.
Important: The program which is overwritten will be lost.

RACK CANNOT
BE MODIFIED

The slot size of this rack cannot be modified because a higher
numbered rack exists.

Aborting the procedure or deleting higher numbered racks,
modifying this rack, then re–configuring the higher numbered
racks.

RACK MUST
CONTAIN A SLOT

A rack that must have one slot configured for the processor in
slot 0 is not configured correctly.

Configuring the slot.

RESET (RST)
USED ON A
TIMER
OFF–DELAY
(TOF)

A reset (RST) instruction has been used to reset a Timer Off
Delay instruction (TOF). You cannot use a RST to reset a
TOF.

Remove the RST instruction.

ROM TEST
FAILED – FATAL
ERROR

The memory pak of the HHT has failed. The HHT is
inoperable.

Replacing the memory pak.

RUNG HAS NO
OUTPUT
INSTRUCTION

You attempt to accept a rung without instructions. A ladder
rung must contain at least one output instruction to be
accepted.

Entering output instructions or aborting the rung edit.

RUNG HAS NO
OUTPUT
INSTRUCTION

The rung you are editing does not contain an output
instruction. Each rung must contain at least one output
instruction.

Entering an output instruction.

RUNG HAS
SHORTED
OUTPUT

The rung you are editing contains a branch around an output
that does not contain its own output instruction. Any branch
around an output must contain at least one output instruction.

Entering an output instruction within the branch.

RUNG TOO
LARGE

You have reached the limit of instructions and/or branches
allowed on one rung. There are 127 instructions allowed per
rung.

Using storage bits and programming a separate rung for the
additional instructions and/or branches.

SERIAL LINK
DOWN

The communication link between the HHT and the processor
is not functioning.

Checking power and communication connections to the HHT
and processor.

SUBROUTINE
(SBR) OR LABEL
(LBL) ALREADY
EXISTS

A subroutine or label instruction having this number already
exists in this ladder program. Choosing a different label or subroutine number.

SUBROUTINE
FILE IS INVALID
TYPE

The file accessed in a subroutine (SBR) instruction is not a
ladder file.

Changing the number in the SBR instruction.

Appendix A
HHT Messages and Error Definitions

A–7

Message: Respond by:Appears when:

The syntax of the current rung is incorrect. Correcting the rung.
SYNTAX ERROR

The syntax of the current rung is incorrect. Correcting the rung.

TOO MANY
INSTRUCTIONS
ON RUNG

The rung contains more than 127 instructions. Changing the rung to contain fewer instructions.

TOO MANY
INSTRUCTIONS
ON RUNG

The rung contains more than 127 instructions. Changing the rung to contain fewer instructions.

UNABLE TO
BEGIN BRANCH

A branch cannot be inserted at the cursor location. Aborting the procedure or moving the cursor.

UNABLE TO
DELETE
INSTRUCTION

Removing this instruction results in an illegal rung structure. Aborting the procedure.

UNABLE TO EDIT The file number entered does not exist in this program. Entering a valid file number.UNABLE TO EDIT
FILE The file number entered does not exist in this ladder program. Choosing the correct file number.

UNABLE TO
INSERT
INSTRUCTION

Inserting this instruction results in an illegal rung structure. Aborting the procedure.

UNABLE TO
MONITOR FILE

The file number entered either does not exist in the processor
ladder program or it is a file type not capable of being
monitored.

Choosing a different file number or downloading the program
with the program file number.

UNABLE TO
REPLACE
INSTRUCTION

Replacing this instruction results in an illegal rung structure. Aborting the procedure.

UNKNOWN FILE

The file type returned by the data base is unknown to the
compiler. Using only S2, O0, I1, Bx, Rx, Cx, and Nx file types.

UNKNOWN FILE
TYPE The file type returned by the data base is unknown to the

compiler. Using only S2, O0, I1, Bx, Rx, Cx, and Nx file types.

UNKNOWN There is an internal compiler error. Contacting your A–B service representative.UNKNOWN
OPERATOR There is an internal compiler error. Contacting your A–B service representative.

Appendix A
HHT Messages and Error Definitions

A–8

Message: Respond by:Appears when:

UPDATE
ACCUMULATOR
(UA) IN OUTPUT
ENERGIZE/

You have programmed an update accumulator (UA) bit without
first programming a high–speed counter (HSC). Programming the high–speed counter (HSC) instruction.

ENERGIZE/
OUTPUT LATCH
(OTE/OTL) AND
NO HIGH SPEED
COUNTER (HSC)

You have programmed an update accumulator (UA) bit without
first programming a high–speed counter (HSC). Programming the high–speed counter (HSC) instruction.

UPLOAD
DENIED,
DECOMPILER
ERRORS

The ladder program stored in the processor contains errors.
The HHT cannot load this program into its memory. If the HHT
is unable to recover its existing program, it initializes to a
default program.

Downloading an error free ladder program to the processor
then uploading that program to the HHT.

UPLOAD
The HHT does not have enough memory to store this ladder
file or program.

Decreasing the size of the program.

DENIED, OUT OF
MEMORY The programming device does not have enough memory to

compile the current user program.
Aborting the procedure or shortening the current user
program.

UPLOAD
PROGRAM TO
SAVE DATA
EDITS

The program data changes you have entered are stored only
in the processor program. If you wish to save the data
changes in the HHT, you must upload the program.

Uploading the ladder program to the HHT.

WARNING:
PRG
REFERNCES
UNDEFINED

You are attempting to delete a rack or reduce the slot size of a
rack where the ladder program indicates there are input or
output instructions referencing slots in this rack.

Removing or changing the addresses in your ladder program
or aborting the procedure.

You are attempting to accept an instruction where the I/O
address has not been configured in your program. Configuring the I/O slot for that address.

WARNING:
UNDEFINED I/O
REFERENCED

A mismatch exists between the I/O addresses used in the
ladder program and the configured I/O modules.

Either editing the program and changing the address to agree
with the configured I/O modules, or re–configuring the I/O to
match the entered address. For the latter, refer to chapter 4
for more help. Important: You can SAVE the program with
errors (to correct at a later time), but you cannot download the
program to the processor.

The address you entered while editing does not match the I/O
configuration.

Either changing the address to agree with the configured I/O
modules or exiting the edit mode and re–configuring the I/O to
match the entered address.

BAppendix

B–1

Number Systems, Hex Mask

This appendix:

• describes the different number systems you need to understand for use of
the HHT with SLC 500 family controllers

• covers binary, Binary Coded Decimal (BCD), and hexadecimal.
• explains the use of a Hex mask used to filter data in certain programming

instructions

The processor memory stores 16-bit binary numbers. As indicated in the
figure below, each position in the number has a decimal value, beginning at
the right with 20 and ending at the left with 215.

Each position can be 0 or 1 in the processor memory. A 0 indicates a value of
0 at that position; a 1 indicates the decimal value of the position. The
equivalent decimal value of the binary number is the sum of the position
values.

Positive Decimal Values

The far left position is always 0 for positive values. As indicated in the figure
below, this limits the maximum positive decimal value to 32767. All
positions are 1 except the far left position.

1x214 = 16384
1x213 = 8192

1x212 = 4096
1x211 = 2048

1x210 = 1024
1x29 = 512

1x28 = 256
1x27 = 128

1x26 = 64
1x25 = 32

1x24 = 16
1x23 = 8

1x22 = 4
1x21 = 2

1x20 = 1

10 1 1 11 1 1 11 1 1 11 1 1

16384
8192
4096
2048
1024

512
256
128

64
32
16
8
4
2
1

32767

0x215 = 0 This position is always zero for positive numbers.

+

The binary number may also be converted to decimal as follows:
16 bit pattern = 01111111111111112

= 214 + 213 + 212 + 211 + 210 + 29 + 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20

= 16384 +8192 +4096 + 2048 +1024 +512 +256 +128 + 64 + 32 + 16 + 8 + 4 + 2 + 0
= 32767

Binary Numbers

Appendix B
Number Systems, Hex Mask

B–2

Other examples:
16 bit pattern = 0000 1001 0000 11102

= 211 + 28 + 23 + 22 + 21

= 2048 + 256 + 8 + 4 + 2
= 2318

16 bit pattern = 0010 0011 0010 10002

= 213 + 29 + 28 + 25 + 23

= 8192 + 512 + 256 + 32 + 8
= 9000

Negative Decimal Values

The 2s complement notation is used. The far left position is always 1 for
negative values. The equivalent decimal value of the binary number is
obtained by subtracting the value of the far left position, 32768, from the
sum of the values of the other positions. In the figure below all positions are
1, and the value is 32767 – 32768 = –1.

1x214 = 16384
1x213 = 8192

1x212 = 4096
1x211 = 2048

1x210 = 1024
1x29 = 512

1x28 = 256
1x27 = 128

1x26 = 64
1x25 = 32

1x24 = 16
1x23 = 8

1x22 = 4
1x21 = 2

1x20 = 1

11 1 1 11 1 1 11 1 1 11 1 1

16384
8192
4096
2048
1024

512
256
128

64
32
16
8
4
2
1

32767

1x215 = 32768 This position is always 1 for negative numbers.

+

The negative binary number may be converted to decimal as follows:
16 bit pattern = 11111111111111112

= (214 + 213 + 212 + 211 + 210 + 29 + 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20) – 215

= (16384 +8192 +4096 + 2048 +1024 +512 + 256 +128 + 64 + 32 + 16 + 8 + 4 + 2 + 0) – 32768
= 32767 – 32768
= –1

Appendix B
Number Systems, Hex Mask

B–3

Another example:

16–bit pattern = 1111 1000 0010 00112

= (214 + 213 + 212 + 211 + 25 + 21 + 20) – 215

= (16384 +8192 +4096 + 2048 + 32 + 2 + 1) – 32768
= 30755 – 32768
= –2013

An easier way to calculate a negative value is to locate the last “1” in the
string of 1s beginning at the left, then subtract its value from the total value
of positions to the right of that position.

For example:
16–bit pattern = 1111 1111 0001 10102

= (24 + 23 + 21) – 28

= (16 + 8 + 2) – 256
= –230

Binary Coded Decimal numbers use a 4–bit binary code to represent decimal
values ranging from 0 to 9 as shown below:

BCD
Value

0
1
2
3
4
5
6
7
8
9

Binary
Value

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

Thumbwheels and LED displays are two types of I/O devices that use BCD
numbers.

The position values of BCD numbers are powers of 2, as in binary, beginning
with 20 at the right:

23 22 21 20

8 4 2 1 Position Decimal Value

BCD Numbers

Appendix B
Number Systems, Hex Mask

B–4

Example: BCD bit pattern 01112, for one digit, has a decimal equivalent
value of 7:

10 1 1

1x20 = 1
1x21 = 2

1x22 = 4
0x23 = 0

1
2
4
0

7
+

To form multiple digit numbers, BCD uses a 16–bit pattern similar to binary.
This allows up to 4 digits, using the above 4–bit binary code. BCD numbers
have a range of 0 to 32,767 in the SLC 500 family processors.

The following figure shows the BCD representation for the decimal number
9862:

Position Values

01 0 1 01 0 0 10 1 0 00 1 0

9 8 6 2

Binary Pattern

Thousands Hundreds Tens Ones

8 4 2 18 4 2 18 4 2 18 4 2 1

Decimal value

Hexadecimal numbers use single characters 0 to 9 and A to F, to represent
decimal values ranging from 0 to 15:

10 2 3 54 6 7 98 A B DC E F

10 2 3 54 6 7 98 10 11 1312 14 15

HEX

Decimal

The position values of hexadecimal numbers are powers of 16, beginning
with 160 at the right:

163 162 161 160

Example: Hexadecimal number 218A has a decimal equivalent value of
8586:

12 8 A

10x160 = 10
8x161 = 128

1x162 = 256
2x163 = 8192

10
128
256

8192

8586

Hexadecimal Numbers

Appendix B
Number Systems, Hex Mask

B–5

Hexadecimal and binary numbers have the following equivalence:

12 8 A

00 1 0 00 0 1 01 0 0 01 1 0

8192
1x213

256
1x28

128
1x27

10
1x23+1x21

Binary = 8586

Hexadecimal = 8586

Example: Decimal number –8586 in equivalent binary and hexadecimal
forms:

11 0 1 11 1 0 10 1 1 10 1 0Binary = –8586

ED 7 6Hexadecimal = 56950
(negative number, –8586)

Hex number DE76 = 13x163+14x162+7x161+6x160 = 56950. This is a
negative number because it exceeds the maximum positive value of 32767.
To calculate its value, subtract 164 (the next higher power of 16) from 56950:
56950 – 65536 = –8586.

This is a 4-character code, entered as a parameter in SQO, SQC, and other
instructions to exclude selected bits of a word from being operated on by the
instruction. The hex values are used in their binary equivalent form, as
indicated in the figure below. The figure also shows an example of a hex
code and the corresponding mask word.

00 F F

00 0 0 00 0 0 11 1 1 11 1 1

Hex Code

Mask Word

Hex
Value

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Binary
Value

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hex Mask

Appendix B
Number Systems, Hex Mask

B–6

Bits of the mask word that are set (1) pass data from a source to a
destination. Reset bits (0) do not. In the example below, data in bits 0–7 of
the source word is passed to the destination word. Data in bits 8–15 of the
source word is not passed to the destination word. Destination bits 8–15 are
not affected (they are left in their last state).

11 1 0 01 0 1 11 0 0 01 1 0Source Word

00 0 0 00 0 0 11 1 1 11 1 1Mask Word

00 0 0 00 0 0 11 0 0 01 1 0Destination Word
(all bits 0 initially)

A–B C
Appendix

C–1

Memory Usage, Instruction Execution Times

This appendix covers the following topics:

• memory usage
• instruction execution times for the fixed and SLC 5/01 processors
• instruction execution times for the SLC 5/02 processor series A and B
• instruction execution times for the SLC 5/02 processor series C and later

SLC 500 controllers have the following user memory capacities:

Type of Processor Type of Controller User Memory Capacity

Fixed I/O Controllers
Fixed and SLC 5/01

Modular Controllers 1747–L511
1024 instruction words

SLC 5/02 Modular Controllers 1747–L524 4096 instruction words

Definition: 1 instruction word = 4 data words = 8 bytes.

The number of instruction words used by the individual instructions is
indicated in the following table. Since the program is compiled by the
programmer, it is only possible to establish estimates for the instruction
words used by individual instructions. The calculated memory usage is
normally greater than the actual memory usage, due to compiler
optimization.

Memory Usage

Instruction Execution Times

Appendix C
Memory Usage,

C–2

Instruction Words for the Fixed and SLC 5/01 Processors

Instruction
Instruction

Words
(approx)

ADD 1.5
AND 1.5

BSL 2
BSR 2

CLR 1
COP 1.5
CTD 1
CTU 1

DCD 1.5
DDV 1
DIV 1.5

EQU 1.5

FLL 1.5
FRD 1

GEQ 1.5
GRT 1.5

HSC 1

IIM 1.5
IOM 1.5

JMP 1
JSR 1

LBL 0.5
LEQ 1.5
LES 1.5

Instruction
Instruction

Words
(approx)

MCR 0.5
MEQ 1.5
MOV 1.5
MUL 1.5
MVM 1.5

NEG 1.5
NEQ 1.5
NOT 1

OR 1.5
OSR 1
OTE 0.75
OTL 0.75
OTU 0.75

RES 1
RET 0.5
RTO 1

SBR 0.5
SQC 2
SQO 2
SUB 1.5
SUS 1.5

TND 0.5
TOD 1
TOF 1
TON 1

XIC 1
XIO 1
XOR 1.5

Fixed and SLC 5/01
Processors

Instruction Execution Times

Appendix C
Memory Usage,

C–3

Estimating Total Memory Usage of Your System Using a Fixed or
SLC 5/01 Processor

1. Calculate the total instruction words used by the instructions in your
program and enter the result. Refer to the table on page C–2.

2. Multiply the total number of rungs by .375 and enter the result.

3. Multiply the total number of data words (excluding the
status file and I/O data words) by .25 and enter the result.

4. Add 1 word for each data table file and enter the result.

5. Multiply the highest numbered program file used by 2 and enter
the result.

6. Multiply the total number of I/O data words by .75 and enter the
result.

7. Multiply the total number of I/O slots, used or unused, by .75 and
enter the result.

8. To account for processor overhead, enter 65 if you are using a fixed
controller; enter 67 if you are using a 1747–L511 or 1747–L514.

9. Total steps 1 through 8. This is the estimated total memory usage of
your application system. Remember, this is an estimate, actual
compiled programs may differ by ±12%.

Total:

10. If you wish to determine the estimated amount of memory remaining
in the processor you have selected, do the following:

If you are using a fixed controller or 1747–L511, subtract the total
from 1024. If you are using a 1747–L514, subtract the total from
4096.

The result of this calculation will be the estimated total memory
remaining in your selected processor.

Important: The calculated memory usage may vary from the
actual compiled program by ±12%.

Instruction Execution Times

Appendix C
Memory Usage,

C–4

Example: L20B Fixed I/O Controller

42 XIC and XIO 42 x 1.00 = 42.00
10 OTE instructions 10 x 0.75 = 7.50
10 TON instructions 10 x 1.00 = 10.00
1 CTU instruction 1 x 1.00 = 1.00
1 RES instruction 1 x 1.00 = 1.00

Instruction Usage 61.50

21 rungs 21 x.375 = 7.87
37 data words 37 x.250 = 9.25

User Program Total 78.62

2 I/O data words 2 x 0.75 = 1.50
1 slot 1 x 0.75 = 0.75
Overhead 65.00

I/O Configuration Total 67.25

Estimated total memory usage: 145.87
(round to 146)

1024 – 146 = 878 instruction words remaining
in the processor

Example: 1747-L514 processor, 30-slot configuration, (15) 1746-IA16,
(10) 1746-OA8, (1) 1747-DCM full configuration, (1) 1746-NI4, (1) 1746-NIO4I

50 XIC and XIO 50 x 1.00 = 50.00
15 OTE instructions 15 x 0.75 = 11.25
 5 TON instructions 5 x 1.00 = 5.00
 3 GRT instructions 3 x 1.50 = 4.50
 1 SCL instruction 1 x 1.75 = 1.75
 1 TOD instruction 1 x 1.00 = 1.00
 3 MOV instructions 3 x 1.50 = 4.50
10 CTU instructions 10 x 1.00 = 10.00
10 RES instructions 10 x 1.00 = 10.00

Instruction Usage 98.00

30 rungs 30 x 0.375 = 11.25
100 data words 100 x 0.25 = 25.00
10 is highest data table file number

10 x 1 = 10.00
4 is highest program file number

4 x 2 = 8.00
User Program Total 163.50

49 I/O data words 49 x 0.75 = 36.75
30 slot 30 x 0.75 = 22.50
Overhead 67.00

I/O Configuration Total 126.25

Estimated total memory usage: 289.75
(round to 290)

4096 – 290 = 3806 instruction words remaining
in processor

Instruction Execution Times

Appendix C
Memory Usage,

C–5

Instruction Execution Times for the Fixed and SLC 5/01 Processors

➀

Execution Time
in Microseconds

(approx.)

False True

Instruction

ADD 12 122
AND 12 87

BSL 12 144 + 24 per word
BSR 12 134 + 24 per word

CLR 12 40
COP 12 45 + 21 per word
CTD 12 111
CTU 12 111

DCD 12 80
DDV 12 650
DIV 12 400

EQU➀ 12 60

FLL 12 37 +14 per word
FRD 12 223

GEQ➀ 12 60
GRT➀ 12 60

HSC 12 60

IIM 12 372
IOM 12 475

JMP 12 38
JSR 12 46

LBL 2 2
LEQ➀ 12 60
LES➀ 12 60

Execution Time
in Microseconds

(approx.)

False True

Instruction

MCR 10 10
MEQ➀ 12 75
MOV 12 20
MUL 12 230
MVM 12 115

NEG 12 110
NEQ➀ 12 60
NOT 12 66

OR 12 87
OSR 12 34
OTE 18 18
OTL 19 19
OTU 19 19

RES 12 40
RET 12 34
RTO 12 140

SBR 2 2
SQC 12 225
SQO 12 225
SUB 12 125
SUS 12 12

TND 12 32
TOD 12 200
TOF 12 140
TON 12 135

XIC➀ 4 4
XIO➀ 4 4
XOR 12 87

For the rung example at the right:
1) If instruction 1 is false, instructions 2, 3,

4, 5, 6, 7 take zero execution time.
Execution time =
4 + 18 = 22 microseconds.

2) If instruction 1 is true, 2 is true, and 6 is
true, then instructions 3, 4, 5, 7 take
zero execution time. Execution time =
4 + 4 + 4 + 18 = 30 microseconds.

] [
 1

()
 8

] [
 2

] [
 6

] [
 3

] [
 4

] [
 5

] [
 7

These instructions take zero execution time if
they are preceded by conditions that guarantee
the state of the rung. Rung logic is solved left
to right. Branches are solved top to bottom.

Instruction Execution Times

Appendix C
Memory Usage,

C–6

The number of instruction words used by an instruction is indicated in the
following table. Since the program is compiled by the programmer, it is only
possible to establish estimates for the instruction words used by individual
instructions. The calculated memory usage will normally be greater than the
actual memory usage, due to compiler optimization.

Instruction Words for the SLC 5/02 Processor

Instruction
Instruction

Words
(approx)

ADD 1.5
AND 1.5

BSL 2
BSR 2

CLR 1
COP 1.5
CTD 1
CTU 1

DCD 1.5
DDV 1
DIV 1.5

EQU 1.5

FFL 1.5
FFU 1.5
FLL 1.5
FRD 1

GEQ 1.5
GRT 1.5

HSC 1

IID 1.25
IIE 1.25
IIM 1.5
INT 0.5
IOM 1.5

Instruction
Instruction

Words
(approx)

JMP 1
JSR 1

LBL 0.5
LEQ 1.5
LES 1.5
LFL 1.5
LFU 1.5
LIM 1.5

MCR 0.5
MEQ 1.5
MOV 1.5
MSG 34.75
MUL 1.5
MVM 1.5

NEG 1.5
NEQ 1.5
NOT 1

OR 1.5
OSR 1
OTE 0.75
OTL 0.75
OTU 0.75

PID 23.25

Instruction
Instruction

Words
(approx)

REF 0.5
RES 1
RET 0.5
RPI 1.25
RTO 1

SBR 0.5
SCL 1.75
SQC 2
SQL 2
SQO 2
SQR 1.25

STD 0.5
STE 0.5
STS 1.25
SUB 1.5
SUS 1.5
SVC 0.5

TND 0.5
TOD 1
TOF 1
TON 1

XIC 1
XIO 1
XOR 1.5

SLC 5/02 Processor

Instruction Execution Times

Appendix C
Memory Usage,

C–7

Estimating Total Memory Usage of Your System Using a SLC 5/02
Processor

1. Calculate the total instruction words used by the instructions in your
program and enter the result. Refer to the table on page C–6.

2. Multiply the total number of rungs by .375 and enter the result.

3. If you are using a 1747–L524 and have enabled the Single Step
Test mode, multiply the total number of rungs by .375 and enter
the result.

4. Multiply the total number of data words (excluding the
status file and I/O data words) by .25 and enter the result.

5. Add 1 word for each data table file used and enter the result.

Instruction Execution Times

Appendix C
Memory Usage,

C–8

Instruction Execution Times for the SLC 5/02 Processor Series A or B

Instruction
(Series A or B

SLC 5/02)

MSG 80 300➁

MUL 12 234
MVM 12 119

NEG 12 114
NEQ➀ 12 64
NOT 12 70

OR 12 91
OSR 12 34
OTE 18 18
OTL 19 19
OTU 19 19

PID 150 6000

REF 6 400 +
300 per word

RES 12 44
RET 12 34
RPI 12 400
RTO 12 144

SBR 2 6
SCL 12 800
SQC 12 229
SQL 60 225
SQO 12 229
SQR 12 270

STD 6 15
STE 6 15
STS 12 120
SUB 12 129
SUS 12 12
SVC 6 400

TND 12 36
TOD 12 204
TOF 12 144
TON 12 139

XIC➀ 4 4
XIO➀ 4 4
XOR 12 91

For the rung example below:
1) If instruction 1 is false, instructions 2, 3, 4, 5, 6, 7

take zero execution time.
Execution time = 4 + 18 = 22 microseconds.

2) If instruction 1 is true, 2 is true, and 6 is true, then
instructions 3, 4, 5, 7 take zero execution time.
Execution time = 4 + 4 + 4 + 18 = 30
microseconds.

Execution Time
in Microseconds

(approx.)

False True

ADD 12 126
AND 12 91

BSL 12 148 + 24 per word
BSR 12 138 + 24 per word

CLR 12 44
COP 12 49 + 21 per word
CTD 12 115
CTU 12 115

DCD 12 84
DDV 12 654
DIV 12 404

EQU➀ 12 64

FFL 85 250
FFU 85 250 +

18 x position value
FLL 12 41 + 14 per word
FRD 12 227

GEQ➀ 12 64
GRT➀ 12 64

IID 12 65
IIE 12 70
IIM 12 552
INT 0 0
IOM 12 767

JMP 12 38
JSR 12 46

LBL 2 6
LEQ➀ 12 64
LES➀ 12 64
LFL 85 250
LFU 85 300
LIM 12 75

MCR 10 10
MEQ➀ 12 79
MOV 12 24

Execution Time
in microseconds

(approx.)

False True

Instruction
(Series A or B

SLC 5/02)

➁ This only includes the amount of time needed
to “set up” the operation requested. It does not
include the time it takes to service the actual
communications.

] [
 1

()
 8

] [
 2

] [
 6

] [
 3

] [
 4

] [
 5

] [
 7

➀ These instructions take zero execution time if
they are preceded by conditions that guarantee
the state of the rung. Rung logic is solved left
to right. Branches are solved top to bottom.

Instruction Execution Times

Appendix C
Memory Usage,

C–9

Instructions Having Indexed Addresses

For each operand having an indexed address, add 50 microseconds to the
execution time for a true instruction. For example, if a MOV instruction has
an indexed address for both the source and destination, the execution time
when the instruction is true is 24 + 50 + 50 = 124 microseconds.

Instructions Having M0 or M1 Data File Addresses

For each bit or word instruction, add 1928 microseconds to the execution
time. For each multiple-word instruction, add 1583 microseconds plus 667
microseconds per word.

]/[
M1:3.1

 1
] [

M0:2.1

 1
()

M0:2.1

10

MOV
MOVE
Source M1:10.7

Dest N7:10

Example
COP
COPY FILE
Source #B3:0
Dest #M0:1.0
Length 34

For the multi–word instruction above, add 1583 microseconds plus 667
microseconds per word. In this example, 34 words are copied from #B3:0 to
M0:1.0. Add 1583 + (667 x 34) = 24261 microseconds to the execution time
listed on page C–8. This comes to 763 (calculated from page C–8 table) plus
24261 = 25024 microseconds total, or 25.0 milliseconds.

Instruction Execution Times

Appendix C
Memory Usage,

C–10

Instruction Execution Times for the SLC 5/02 Processor Series C
and Later

The SLC 5/02 series C processor performance is on the average 40% faster
than that of the SLC 5/02 series B processor. The table below lists the
instruction execution times for the SLC 5/02 series C processor.

MSG 48 180➁

MUL 7 140
MVM 7 71

NEG 7 68
NEQ➀ 38 38
NOT 7 42

OR 7 55
OSR 7 20
OTE 11 11
OTL 11 11
OTU 11 11

PID 90 3600

REF 4 240 +
180 per word

RES 7 26
RET 7 20
RPI 7 240
RTO 30 86

SBR 1 4
SCL 7 480
SQC 36 137
SQL 36 135
SQO 36 137
SQR 7 162

STD 4 9
STE 4 9
STS 7 72
SUB 7 77
SUS 7 7
SVC 4 240

TND 7 22
TOD 7 122
TOF 36 86
TON 36 83

XIC➀ 2.4 2.4
XIO➀ 2.4 2.4
XOR 7 55

Execution Time
in Microseconds

(approx.)

False True

Instruction
(Series C
SLC 5/02)

ADD 7 76
AND 7 55

BSL 36 89 + 14 per word
BSR 36 83 + 14 per word

CLR 7 26
COP 7 29 + 13 per word
CTD 7 69
CTU 7 69

DCD 7 50
DDV 7 392
DIV 7 242

EQU➀ 38 38

FFL 51 150
FFU 51 150 +

11 x position value
FLL 7 25 + 8 per word
FRD 7 136

GEQ➀ 38 38
GRT➀ 38 38

IID 7 39
IIE 7 42
IIM 7 340
INT 0 0
IOM 7 465

JMP 7 23
JSR 7 28

LBL 1 4
LEQ➀ 38 38
LES➀ 38 38
LFL 51 150
LFU 51 180
LIM 7 45

MCR 6 6
MEQ➀ 7 47
MOV 7 14

Execution Time
in Microseconds

(approx.)

False True

Instruction
(Series C
SLC 5/02)

For the rung example below:
1) If instruction 1 is false, instructions 2, 3, 4, 5, 6, 7

take zero execution time.
Execution time = 2.4 + 11 = 13.4 microseconds.

2) If instruction 1 is true, 2 is true, and 6 is true, then
instructions 3, 4, 5, 7 take zero execution time.
Execution time = 2.4 + 2.4 + 2.4 + 11 = 18.2
microseconds.

] [
 1

()
 8

] [
 2

] [
 6

] [
 3

] [
 4

] [
 5

] [
 7

➀ These instructions take zero execution time if
they are preceded by conditions that guarantee
the state of the rung. Rung logic is solved left
to right. Branches are solved top to bottom.

➁ This only includes the amount of time needed to
“set up” the operation requested. It does not
include the time it takes to service the actual
communications.

Instruction Execution Times

Appendix C
Memory Usage,

C–11

Example: 1747-L524 series C processor, 30-slot configuration, (15) 1746-IA16,
(10) 1746-OA8, (1) 1747-DCM full configuration, (1) 1746-NI4, (1) 1746-NIO4I

50 XIC and XIO 50 x 1.00 = 50.00
15 OTE instructions 15 x 0.75 = 11.25
 5 TON instructions 5 x 1.00 = 5.00
 3 GRT instructions 3 x 1.50 = 4.50
 1 SCL instruction 1 x 1.75 = 1.75
 1 TOD instruction 1 x 1.00 = 1.00
 3 MOV instructions 3 x 1.50 = 4.50
10 CTU instructions 10 x 1.00 = 10.00
10 RES instructions 10 x 1.00 = 10.00

Instruction Usage 98.00

30 rungs 30 x 0.375 = 11.25
100 data words 100 x 0.25 = 25.00
10 is highest data table file number

10 x 1 = 10.00
4 is highest program file number

4 x 2 = 8.00
User Program Total 163.50

49 I/O data words 49 x 0.75 = 36.75
30 slot 30 x 0.75 = 22.50
Overhead 204.00

I/O Configuration Total 263.25

Estimated total memory usage: 426.75
(round to 427)

4096 – 427 = 3669 instruction words remaining
in processor

Instruction Execution Times

Appendix C
Memory Usage,

C–12

Instructions Having Indexed Addresses

For each operand having an indexed address, add 30 microseconds to the
execution time for a true instruction. For example, if a MOV instruction has
an indexed address for both the source and destination, the execution time
when the instruction is true is 14 + 30 + 30 = 74 microseconds.

Instructions Having M0 and M1 Data File Addresses

For each bit or word instruction, add 1157 microseconds to the execution
time. For each multiple-word instruction, add 950 microseconds plus 400
microseconds per word.

]/[
M1:3.1

 1
] [

M0:2.1

 1
()

M0:2.1

10

MOV
MOVE
Source M1:10.7

Dest N7:10

Example
COP
COPY FILE
Source #B3:0
Dest #M0:1.0
Length 34

For the multi–word instruction above, add 950 microseconds plus 400
microseconds per word. In this example, 34 words are copied from #B:3.0 to
M0:1.0. Add 950 + (400 x 34) = 14550 microseconds to the execution time
listed on page C–10. This comes to 471 (calculated from page C–10 table)
plus 14550 = 15021 microseconds total, or 15.0 milliseconds.

A–B D
Appendix

D–1

Estimating Scan Time

This appendix:

• contains worksheets that allow you to estimate the scan time for your
particular controller configuration and program

• includes scan time calculation for an example controller and program

Use the instruction execution times listed in appendix C.

The diagram and table below breaks down the processor operating cycle into
events. Directions for calculating the scan time of these events appear in the
worksheets.

Processor Overhead

Communication

Output Scan

Program Scan

Input Scan

Events in the processor operating cycle

Event Description

Input Scan The status of input modules is read and the input image in
the processor is updated with this information.

Program Scan

The ladder program is executed. The input image table is
evaluated, ladder rungs are solved, and the output image is
updated. The information is not yet transferred to the
output modules.

Output Scan The output image information is transferred to the output
modules.

Communications Communication with programmers and other network
devices takes place.

Processor Overhead
Processor internal housekeeping takes place. Actions
include performing program pre–scan and updating the
internal timebase and the Status file.

Events in the Operating Cycle

Appendix D
Estimating Scan Time

D–2

Worksheets A, B, and C on the following pages are for use with SLC 500
systems as follows:

• Worksheet A – Fixed controllers
• Worksheet B – 1747-L511 or 1747-L514 processor
• Worksheet C – 1747-L524 processor

These worksheets are intended to assist you in estimating scan time for your
application. Refer to appendix C for instruction execution times. Refer to
the SLC 500 System Overview, publication 1747–2.30, for I/O module part
numbers and sizes.

An example scan time calculation appears on page D–6.

Defining Worksheet Terminology

When you work through the worksheets, you will come across the following
terms:
Background Communications – Occurs when your processor is attached to
an active DH–485 network. During this event the processor accepts
characters from the network and places them into a packet buffer.

Foreground Communications – Occurs only when another node is
attached, or when another processor sends an MSG instruction to your
processor. During this event the processor performs the communication
commands contained in completed packets built during background
communications.

Forced Input Overhead – This value is included in your scan time
whenever input forces are Enabled in your program.

Forced Output Overhead – This value is included in your scan time
whenever output forces are Enabled in your program.

Single Step – When using this function with a 5/02 processor, you can
execute your program one rung or section at a time. This function is used for
debugging purposes.

Multi–Word Module – Example of multi–word modules are DCM, analog,
and DSN.

Scan Time Worksheets

Appendix D
Estimating Scan Time

D–3

Worksheet A — Estimating the Scan Time of Your Fixed Controller

Procedure Min Scan Time Max ScanTime

1. Estimate your input scan time (µs).
A. Determine the type of controller that you have.

If you have a 20 I/O processor, write 313 on line (a).
If you have a 30 or 40 I/O processor, write 429 on line (a). a.)________

B. Calculate the processor input scan of your discrete input modules.
Number of 8 point modules ________ x 197 = b.)________
Number of 16 point modules ________ x 313 = c.)________
Number of 32 point modules ________ x 545 = d.)________

C. Calculate the processor input scan of your specialty I/O modules.
Number of 1/4 DCM or analog combo ________ x 652 = e.)________
Number of 1/2 DCM, analog input, or 1746–HS ________ x 1126 = f.) ________
Number of 3/4 DCM ________ x 1600 = g.)________
Number of full DCM, BASIC, or 1747–DSN ________ x 2076 = h.)________
Number of 1747–KE ________ x 443 = i.) ________

D. Add lines a through i. Place this value on line (j).
Add 101 to the value on line (j). This sum is your minimum input scan time. j.)________ + 101 =

E. Calculate your maximum input scan time:
Maximum input scan time = Minimum scan time + (Number of specialty I/O modules x 50)

F. Calculate the Forced Input Overhead: Forced Input Overhead =
(Number of input modules x 180) + 140 per additional word for multi–word modules (e.g. DCM, analog, DSN)

2. Estimate your output scan time (µs).
A. Determine the type of controller that you have.

If you have a 20 I/O processor, write 173 on line (a).
If you have a 30 or 40 I/O processor, write 272 on line (a). a.)________

B. Calculate the processor output scan of your discrete output modules.
Number of 8 point modules ________ x 173 = b.)________
Number of 16 point modules ________ x 272 = c.)________
Number of 32 point modules ________ x 470 = d.)________

C. Calculate the processor output scan of your specialty I/O modules.
Number of 1/4 DCM or analog combo ________ x 620 = e.)________
Number of 1/2 DCM, analog output, or 1746–HS ________ x 1028 = f.) ________
Number of 3/4 DCM ________ x 1436 = g.)________
Number of full DCM, BASIC, or 1747–DSN ________ x 1844 = h.)________

D. Add lines a through h. Place this value on line (i).
Add 129 to the value on line (i). This sum is your minimum output scan time. i.)________ + 129 =

E. Calculate your maximum output scan time:
Maximum output scan time = Minimum scan time + (Number of specialty I/O modules x 50)

F. Calculate the Forced Output Overhead: Forced Output Overhead =
(Number of output modules x 172) + 140 per additional word for multi–word modules (e.g. DCM, analog, DSN)

3. Estimate your program scan time. This estimate assumes operation of all instructions once per operating scan.
A. Count the number of rungs in your APS program. Place value on line (a).
B. Multiply value on line (a) by 1. a.)________ x 1 =
C. Calculate your program execution time when all instructions are true. (See appendix A to do this.)

4. Add the values in the minimum and maximum scan time columns.

___________ subtotal

_________ subtotal

5. Add processor overhead time (178 for min. scan time; 278 for max. scan time) to the subtotals estimated in step 4.
Use these new subtotals to calculate communication overhead in step 6.

+ 178
__________ subtotal

+ 278
_________ subtotal

6. Estimate your communication overhead:
A. Calculate the background communication overhead: multiply the subtotal for minimum scan time (estimated in

step 5) by 1; multiply the subtotal for maximum scan time by 1.140 (max. value accounts for active DH–485 link).
B. Calculate the foreground communication overhead: for minimum scan time add 0; for maximum scan time

 add 2310. (Maximum scan time accounts for programmer being attached to processor.)
C. Convert µsecs. to msecs., divide by 1000.

x 1.000
__________ µsecs.

+ 0
__________ µsecs.

/ 1000

x 1.140
_________ µsecs.

+ 2310
_________ µsecs.

/ 1000

Estimated minimum and maximum scan times for your fixed controller application: msecs. msecs.

Appendix D
Estimating Scan Time

D–4

Worksheet B — Estimating the Scan Time of Your 1747–L511 or 1747–L514 Processor

Procedure Min Scan Time Max ScanTime

1. Estimate your input scan time (µs).
A. Calculate the processor input scan of your discrete input modules.

Number of 8 point modules ________ x 197 = a.)________
Number of 16 point modules ________ x 313 = b.)________
Number of 32 point modules ________ x 545 = c.)________

B. Calculate the processor input scan of your specialty I/O modules.
Number of 1/4 DCM or analog combo ________ x 652 = d.)________
Number of 1/2 DCM, analog input, 1746–HS ________ x 1126 = e.)________
Number of 3/4 DCM ________ x 1600 = f.)________
Number of full DCM, BASIC, or 1747–DSN ________ x 2076 = g.)________
Number of 1747–KE ________ x 443 = h.)________

C. Add lines a through h. Place this value on line (i)
Add 101 to the value on line (i). This sum is your minimum input scan time. i.)________ + 101 =

D. Calculate your maximum input scan time:
Maximum input scan time = Minimum scan time + (Number of specialty I/O modules x 50)

E. Calculate the Forced Input Overhead: Forced Input Overhead =
(Number of input modules x 180) + 140 per additional word for multi–word modules (e.g. DCM, analog, DSN)

2. Estimate your output scan time (µs).
A. Calculate the processor output scan of your discrete output modules.

Number of 8 point modules ________ x 173 = a.)________
Number of 16 point modules ________ x 272 = b.)________
Number of 32 point modules ________ x 470 = c.)________

B. Calculate the processor output scan of your specialty I/O modules.
Number of 1/4 DCM or analog combo ________ x 620 = d.)________
Number of 1/2 DCM, analog output, or 1746–HS ________ x 1028 = e.)________
Number of 3/4 DCM ________ x 1436 = f.) ________
Number of full DCM, BASIC, or 1747–DSN ________ x 1844 = g.)________

C. Add lines a through g. Place this value on line (h).
Add 129 to the value on line (h). This sum is your minimum output scan time. h.)________ + 129 =

D. Calculate your maximum output scan time:
Maximum output scan time = Minimum scan time + (Number of specialty I/O modules x 50)

E. Calculate the Forced Output Overhead: Forced Output Overhead =
(Number of output modules x 172) + 140 per additional word for multi–word modules (e.g. DCM, analog, DSN)

3. Estimate your program scan time. This estimate assumes operation of all instructions once per operating scan.
A. Count the number of rungs in your APS program. Place value on line (a).
B. Multiply value on line (a) by 1. a.)________ x 1 =
C. Calculate your program execution time when all instructions are true. (See appendix A to do this.)

4. Add the values in the minimum and maximum scan time columns.

___________ subtotal

_________ subtotal

5. Add processor overhead time (178 for min scan time; 278 for max. scan time) to the subtotals estimated in
step 4. Use these new subtotals to calculate communications overhead in step 6.

+ 178
__________subtotal

+ 278
_________ subtotal

6. Estimate your communication overhead:
A. Calculate the background communication overhead: multiply the subtotal for minimum scan time (estimated in

step 5) by 1; multiply the subtotal for maximum scan time by 1.140 (max. value accounts for active DH–485 link).
B. Calculate the foreground communication overhead: for minimum scan time add 0; for maximum scan time

 add 2310. (Maximum scan time accounts for programmer being attached to processor.)
C. Convert µsecs. to msecs., divide by 1000.

x 1.000
__________ µsecs.

+ 0
__________ µsecs.

/ 1000

x 1.140
_________ µsecs.

+ 2310
_________ µsecs.

/ 1000

Estimated minimum and maximum scan times for your 1747–L511 or 1747–L514 application: msecs. msecs.

Appendix D
Estimating Scan Time

D–5

Worksheet C — Estimating the Scan Time of Your 1747–L524 Processor
Procedure Min Scan Time Max ScanTime

1. Estimate your input scan time (µs).
A. Calculate the processor input scan of your discrete input modules.

Number of 8 point modules ________ x 126 = a.)________
Number of 16 point modules ________ x 195 = b.)________
Number of 32 point modules ________ x 335 = c.)________

B. Calculate the processor input scan of your specialty I/O modules.
Number of 1/4 DCM or analog combo ________ x 375 = d.)________
Number of 1/2 DCM, analog input, 1746–HS ________ x 659 = e.)________
Number of 3/4 DCM ________ x 944 = f.)________
No. of full DCM, BASIC small config., or 7–block DSN ________ x 1228 = g.)________
Number of 1747–KE ________ x 250 = h.)________

C. Calculate the processor input scan of your specialty I/O modules.
Number of BASIC Lg. config., 1746–HSCE ________ x 1557 = i.)________
Number of RI/O Scanner or 30–block DSN ________ x 4970 = j.)________

D. Add lines a through j. Place this value on line (k).
Add 121 to the value on line (k). This sum is your minimum input scan time. k.)________ + 121 =

E. Calculate the maximum input scan time:
Minimum scan time + (Number of specialty I/O modules in part B x 30) + (Number of specialty I/O modules in part C x 120)

F. Calculate Forced Input Overhead = (No. of input modules x 108) + 140 per additional word for multi–word modules

2. Estimate your output scan time (µs).
A. Calculate the processor output scan of your discrete output modules.

Number of 8 point modules ________ x 104 = a.)________
Number of 16 point modules ________ x 164 = b.)________
Number of 32 point modules ________ x 282 = c.)________

B. Calculate the processor output scan of your specialty I/O modules.
Number of 1/4 DCM or analog combo ________ x 372 = d.)________
Number of 1/2 DCM, analog output, 1746–HS ________ x 617 = e.) ________
Number of 3/4 DCM ________ x 862 = f.)________
No. of full DCM, BASIC small config., or 7–block DSN ________ x 1047 = g.)________

C. Calculate the processor output scan of your specialty I/O modules.
Number of BASIC Lg. config., 1746–HSCE ________ x 1399 = h.)________
Number of RI/O Scanner or 30–block DSN ________ x 4367 = i.)________

D. Add lines a through i. Place this value on line (j).
Add 138 to the value on line (j). This sum is your minimum output scan time. j.)________ + 138 =

E. Calculate your maximum output scan time =
Minimum scan time + (Number of specialty I/O modules in part B x 30) + (Number of specialty I/O modules in part C x 120)

F. Calculate the Forced Output Overhead = (No. of output modules x 104) + 140 per additional word for multi–word modules

3. Estimate your program scan time. This estimate assumes operation of all instructions once per operating scan.
A. Count the number of rungs in your APS program. Place value on line (a).
B. Multiply value on line (a) by 6. (If you saved your program with Single–Step Enabled, then multiply the value on line (a)

by 66.) a.)________ x 6 =
C. Calculate your program execution time when all instructions are true. (See appendix A to do this.)

4. Add the values in the minimum and maximum scan time columns.

__________ subtotal

_________ subtotal

5. Add processor overhead time (180 for min. scan time; 280 for max. scan time) to the subtotals estimated in step 4.
Use these new subtotals to calculate communication overhead in step 6.

+ 180
________subtotal

+ 280
_________ subtotal

6. Estimate your communication overhead:
A. Calculate the background communication overhead: multiply the subtotal for minimum scan time (estimated in

step 5) by 1.040; multiply the subtotal for maximum scan time by 1.140 (max. value accounts for active DH–485 link).
B. Calculate the foreground communications overhead: for minimum scan time add 0; for maximum scan time

add 2286. (Maximum scan time accounts for programmer being attached to processor.)
C. Convert µsecs. to msecs., divide by 1000.

x 1.040
_________ µsecs.

+ 0
__________ µsecs.

/ 1000

x 1.140
_________ µsecs.

+ 2286
_________ µsecs.

/ 1000

Estimated minimum and maximum scan times for your 1747–L524 series C application: msecs. msecs.

7. Estimate the scan time for your 1747–L524 series B application; multiply the values for series C application by 0.60.
Estimated minimum and maximum scan times for your 1747–L524 series B application:

x 0.60
 msecs.

x 0.60
 msecs.

Appendix D
Estimating Scan Time

D–6

Suppose you have a system consisting of the following components:

System Configuration

Catalog Number Quantity
Description

1747–L514
1746–IA8
1746–IB16
1746–OA16
1746–OB8
1746–NIO4V

1
2
1
3
1
1

4K Processor
8 point 120VAC Input Module
16 point 24VDC Sinking Input Module
16 point 120VAC Relay Output Module
16 point 24VDC Sourcing Output Module
4 Channel Analog Combination Module

Since you are using the 1747-L514 processor, worksheet B must be filled
out. This is shown on page D–7.

The ladder program below is used in this application. The execution times
for the instructions (true state) are from appendix C. The total execution
time, 465 microseconds, is entered in the worksheet on page D–7.

The worksheet indicates that the total estimated scan time is 3.85
milliseconds minimum and 8.9 milliseconds maximum.

END

]/[
B3

1
()

O:1.0

0

(EN)

(DN)

TON
TIMER ON DELAY
Timer T4:0
Time Base 0.01
Preset 6000
Accum

] [
B3

0
]/[

T4:0

DN
] [

B3

45

]/[
T4:0

DN

] [
B3

9

]/[
B3

1
] [

T4:0

DN

GRT
GREATER THAN
Source A T4:0.ACC

Source B 5999

TOD
TO BCD
Source T4:0.ACC

Dest S:13

MOV
MOVE
Source S:13

Dest O:1.0

Execution Times:

139 microseconds

38 microseconds

288 microseconds

Total: 465 microseconds

Example Scan Time
Calculation

Appendix D
Estimating Scan Time

D–7

Example: Worksheet B – Estimating the Scan Time of a 1747–L514 Processor Application

Procedure: Min Scan Time: Max ScanTime:

1. Estimate your input scan time (µs).
A. Calculate the processor input scan of your discrete input modules.

Number of 8 point modules 2 x 197 = a.) 394
Number of 16 point modules 1 x 313 = b.) 313
Number of 32 point modules 0 x 545 = c.) 0

B. Calculate the processor input scan of your specialty I/O modules.
Number of 1/4 DCM or analog combo 1 x 652 = d.) 652
Number of 1/2 DCM, analog input, or 1746–HS 0 x 1126 = e.) 0
Number of 3/4 DCM 0 x 1600= f.) 0
Number of full DCM, BASIC, or 1747–DSN 0 x 2076= g.) 0
Number of 1747–KE 0 x 443 = h.) 0

C. Add lines a through h. Place this value on line (i).
Add 101 to the value on line (i). This sum is your minimum input scan time. i.) 1359 + 101 =

D. Calculate your maximum input scan time:
Maximum input scan time = Minimum scan time + (Number of specialty I/O modules x 50)

E. Calculate the Forced Input Overhead: Forced Input Overhead =
(Number of input modules x 180) + 140 per additional word for multi–word modules (e.g. DCM, analog, DSN)

 1460

 1510

 860
2. Estimate your output scan time (µs).

A. Calculate the processor output scan of your discrete output modules.
Number of 8 point modules 1 x 173 = a.) 173
Number of 16 point modules 0 x 272 = b.) 816
Number of 32 point modules 0 x 470 = c.) 0

B. Calculate the processor output scan of your specialty I/O modules.
Number of 1/4 DCM or analog combo 1 x 620 = d.) 620
Number of 1/2 DCM, analog output, or 1746–HS 0 x 1028 = e.) 0
Number of 3/4 DCM 0 x 1436 = f.) 0
Number of full DCM, BASIC, or 1747–DSN 0 x 1844 = g.) 0

C. Add lines a through g. Place this value on line (h).
Add 138 to the value on line (h). This sum is your minimum output scan time. h.) 1609 + 138 =

D. Calculate your maximum output scan time:
Maximum output scan time = Minimum scan time + (Number of specialty I/O modules x 50)

E. Calculate the Forced Output Overhead: Forced Output Overhead =
(Number of output modules x 172) + 140 per additional word for multi–word modules (e.g. DCM, analog, DSN)

 1747

 1788

 1000

3. Estimate your program scan time. This estimate assumes operation of all instructions once per operating scan.
A. Count the number of rungs in your APS program. Place value on line (a).
B. Multiply value on line (a) by 1. a.) 3 x 1 =
C. Calculate your program execution time when all instructions are true. (See appendix A to do this.)

4. Add the values in the minimum and maximum scan time columns.

 3
 465
 3675 subtotal

 3
 465
 5626 subtotal

5. Add processor overhead time (178 for min scan time; 278 for max. scan time) to the subtotals estimated in
step 4. Use these new subtotals to calculate communication overhead in step 6.

+ 178
 3853 subtotal

+ 278
 5804 subtotal

6. Estimate your communication overhead:
A. Calculate the background communication overhead: multiply the subtotal for minimum scan time (estimated in

step 5) by 1; multiply the subtotal for maximum scan time by 1.140 (max. value accounts for active DH–485 link).
B. Calculate the foreground communication overhead: for minimum scan time add 0; for maximum scan time

add 2310. (Maximum scan time accounts for programmer being attached to processor.)
C. Convert µsecs. to msecs., divide by 1000.

x 1.000
 3853 µsecs.

+ 0
 3853 µsecs.

/ 1000

x 1.140
 6617 µsecs.

 + 2310
 8927 µsecs.

/ 1000

Estimated minimum and maximum scan times for your 1747–L511 or 1747–L514 application: 3.85 msecs. 8.9 msecs.

Hand–Held Terminal
Index

User Manual

I–1

Symbols

#, addressing user–created files with, 4–16

Numbers

1–rung ladder program, 5–2

1747–AIC, link coupler, 1–6

1747–BA
battery installation, 1–5
memory retention, 1–1

1747–C10, communication cable, 1–6

1747–NP1, –NP2, remote programming with,
1–1

1747–PTA1E, memory pak installation, 1–3

4–rung ladder program, 5–8

5/01 processor
instruction words, C–2
status file displays, 27–33

5/02 processor
controller memory usage, C–1
instruction words, C–6
status file, 27–1
status file displays, 27–32
understanding I/O interrupts, 31–1
understanding selectable timed interrupts,

30–1
understanding the user fault routine, 29–1

A

abandoning edits, 7–34

add (ADD)
math instruction, 15–5, 20–3
mnemonic listing, 2–14
series C or later 5/02 processor, 20–5

adding a rung, 7–9

adding an instruction to a rung, 7–14

Allen–Bradley, P–5
contacting for assistance, P–5

and (AND)
mnemonic listing, 2–14
move and logical instructions, 15–6, 21–5

appending a branch, 7–24

auto shift, 1–9

B

battery
installing, 1–3
specifications, 1–1

BCD
convert from (FRD), 15–5, 20–15
convert to (TOD), 15–5, 20–12
ladder logic filtering of, 20–16
mnemonic for converting from, 2–14
number systems, B–3

bit data file display, 12–8

bit instructions, 15–1, 16–1
examine if closed (XIC), 15–1, 16–2
examine if open (XIO), 15–1, 16–3
one–shot rising (OSR), 15–1, 16–7
output energize (OTE), 15–1, 16–4
output latch (OTL), 15–1, 16–5
output unlatch (OTU), 15–1, 16–5

bit shift left (BSL)
bit shift instruction, 15–7, 23–2
mnemonic listing, 2–14

bit shift right (BSR)
bit shift instruction, 15–7, 23–2
mnemonic listing, 2–14

bit shift, FIFO, and LIFO instructions, 15–7,
23–1

bit shift left (BSL), 15–7, 23–2
bit shift right (BSR), 15–7, 23–2
FIFO load (FFL), 15–7, 23–5
FIFO unload (FFU), 15–7, 23–5
LIFO load (LFL), 15–7, 23–8
LIFO unload (LFU), 15–7, 23–8

C

cable, communication, installing, 1–3

changing an instruction type, 7–18

changing modes, 11–2

changing online data, 12–9
counter preset and accumulator values,

12–9
monitor counter operation, 12–9
reset a counter, 12–9

changing the address of an instruction, 7–16

User Manual
Hand–Held Terminal
Index

I–2

clear (CLR)
math instruction, 15–5, 20–11
mnemonic listing, 2–14

clearing the memory of the HHT, 6–1

communication cable, installing, 1–3

comparison instructions, 15–4, 19–1
equal (EQU), 15–4, 19–2
greater than (GRT), 15–4, 19–6
greater than or equal (GEQ), 15–4, 19–7
less than (LES), 15–4, 19–4
less than or equal (LEQ), 15–4, 19–5
limit test (LIM), 15–4, 19–9
masked comparison for equal (MEQ),

15–4, 19–8
not equal (NEQ), 15–4, 19–3

configure your HHT for online
communication, 9–1

exceptions, 9–3

configuring the controller, 6–2
configuring the I/O, 6–3
configuring the processor, 6–2
configuring the specialty I/O modules, 6–5

contacting Allen–Bradley for assistance, P–5

contents of this manual, P–2

control data file display, 12–9

control instructions, 15–8, 25–1
interrupt subroutine (INT), 15–8, 25–11
jump to label (JMP), 15–8, 25–2
jump to subroutine (JSR), 15–8, 25–4
label (LBL), 15–8, 25–3
master control reset (MCR), 15–8, 25–7
return from subroutine (RET), 15–8, 25–6
selectable timed interrupt (STI), 15–8,

25–10
subroutine (SBR), 15–8, 25–6
suspend (SUS), 15–8, 25–9
temporary end (TND), 15–8, 25–8

controller memory usage, C–1
5/02 processor, C–1
fixed and 5/01 processors, C–1

convert from BCD (FRD)
5/02 processor example, 20–17
fixed, 5/01, and 5/02 processor example,

20–17
math instruction, 15–5, 20–15
mnemonic listing, 2–14

convert to BCD (TOD)
5/02 processor example, 20–13
fixed, 5/01, and 5/02 processor example,

20–14
math instruction, 15–5, 20–12
mnemonic listing, 2–15

COP, file copy and file fill instruction, 22–2

copying an instruction, 7–30

count down (CTD)
mnemonic listing, 2–14
timer and counter instructions, 15–2, 17–7

count up (CTU)
mnemonic listing, 2–14
timer and counter instructions, 15–2, 17–7

counter data file display, 12–8

creating a program file with the HHT, 6–9
creating and deleting program files, 7–1
naming your program file, 6–9

creating a program with the HHT, 6–1
clearing the HHT memory, 6–1
configuring the controller, 6–2
naming the ladder program, 6–8

creating a subroutine program file using a
non–consecutive file number, 7–2

creating a subroutine program file using the
next consecutive file number, 7–1

creating and deleting programs, 7–1
creating a subroutine program file using a

non–consecutive file number, 7–2
creating a subroutine program file using

the next consecutive file number, 7–1
deleting a subroutine program file, 7–3

creating data, 4–19
for indexed addresses, 4–19
offline, 4–19

cursor keys, 1–10

D

data entry keys, 1–9

data file 2 – status, 4–3

data file 3 – bit, 4–8

data file 4 – timers, 4–9

data file 5 – counters, 4–10

data file 6 – control, 4–11

data file 7 – integer, 4–12

data file displays
bit files, 12–8
control files, 12–9
counter files, 12–8
examples of, 12–5
input files, 12–5
integer files, 12–9
output files, 12–5
status files, 12–6

Hand–Held Terminal
Index

User Manual

I–3

timer files, 12–8

data file G, 4–27
editing data, 4–28

data file protection, 12–3

data file types
file 2 – status, 4–3
file 3 – bit, 4–8
file 4 – timers, 4–9
file 5 – counters, 4–10
file 6 – control, 4–11
file 7 – integer, 4–12
file G, 4–27
file M0, 4–21
file M1, 4–21
files 0 and 1 – outputs and inputs, 4–4
influence on address formatting, 4–3

data files, 3–3
addressing, 4–2
default types, 3–3, 4–2
monitoring, 12–2
organization of, 4–1
protection of, 12–3
residing in specialty I/O, 4–21, 4–27

data files 0 and 1 – outputs and inputs, 4–4

data files M0 and M1, 4–21
access time, 4–24
capturing data, 4–26
minimizing scan time, 4–25
monitoring bit instructions having M0 or

M1 addresses, 4–22
transferring data between processor files

and M0 and M1 files, 4–23

data table, 12–3
accessing, 12–3

decode (DCD)
math instruction, 15–5, 20–19
mnemonic listing, 2–14

delete and undelete commands, 7–26
copying an instruction, 7–30
deleting a branch, 7–26
deleting an instruction, 7–29
deleting and copying rungs, 7–31

deleting a branch, 7–26

deleting a subroutine program file, 7–3

deleting an instruction, 7–29

deleting and copying rungs, 7–31

deleting data, 4–20

dimensions, 1–1

display area, example of, 1–2, 1–8

divide (DIV)
math instruction, 15–5, 20–8
mnemonic listing, 2–14

double divide (DDV)
math instruction, 15–5, 20–9
mnemonic listing, 2–14

downloading a program from the HHT to a
processor, 10–1

downloading program from HHT to
processor, 3–3

E

editing a program file, 7–4
abandoning edits, 7–34
adding a rung, 7–9
adding an instruction to a rung, 7–14
appending a branch, 7–24
changing an instruction type, 7–18
changing the address of an instruction,

7–16
copying an instruction, 7–30
delete and undelete commands, 7–26
deleting a branch, 7–26
deleting an instruction, 7–29
deleting and copying rungs, 7–31
entering a parallel branch, 7–11
entering a rung, 7–5
entering an examine if closed instruction,

7–6
entering an output energize instruction,

7–7
extending a branch down, 7–22
extending a branch up, 7–19
inserting an instruction within a branch,

7–12
ladder rung display, 7–4
modifying branches, 7–19
modifying instructions, 7–16
modifying rungs, 7–14

EEPROM burning options, 14–5

EEPROMs, 3–4
transferring to, 14–1

ENTER key, 2–2

entering a parallel branch, 7–11

entering a rung, 7–5

entering an examine if closed instruction,
7–6

entering an output energize instruction, 7–7

User Manual
Hand–Held Terminal
Index

I–4

equal (EQU)
comparison instruction, 15–4, 19–2
mnemonic listing, 2–14

error codes, 28–2
going to run, 28–3
I/O, 28–8
powerup, 28–3
recoverable I/O faults, 28–8
runtime, 28–4
user program instruction, 28–6

ESCAPE key, 2–2

estimating scan time for your controller and
program, D–1

example, D–6
worksheets, D–2

examine if closed (XIC)
bit instruction, 5–1, 15–1, 16–2
mnemonic listing, 2–15

examine if open (XIO)
bit instruction, 5–1, 15–1, 16–3
mnemonic listing, 2–15

exclusive or (XOR)
mnemonic listing, 2–15
move and logical instructions, 15–6, 21–7

execution times, C–5

extending a branch down, 7–22

extending a branch up, 7–19

F

fault recovery
error codes, 28–2
status file display, 5/01 and fixed, 27–33
status file display, 5/02, 27–32

faults
non–recoverable, user, 29–4
recoverable, user, 29–2

FIFO load (FFL)
5/02 processor, 23–5
FIFO instruction, 15–7, 23–5
mnemonic listing, 2–14

FIFO unload (FFU)
5/02 processor, 23–5
FIFO instruction, 15–7, 23–5
mnemonic listing, 2–14

file copy (COP)
file copy and file fill instruction, 15–6, 22–2
mnemonic listing, 2–14

file copy and file fill instructions, 15–6, 22–1
file copy (COP), 15–6, 22–2

file fill (FLL), 15–6, 22–4

file fill (FLL)
file copy and file fill instruction, 15–6, 22–4
mnemonic listing, 2–14

fixed processor
instruction words, C–2
status file displays, 27–33

FLL, file copy and file fill instruction, 22–4

force function
FORCED I/O LED, 13–3, 13–4, 13–5
forces carried offline, 13–9
forcing external input, 13–2
forcing external output, 13–8
forcing I/O, 13–1
searching for forced I/O, 13–6

forced I/O, 13–1
searching for, 13–6

forcing
external input, 13–2
external output, 13–8
I/O, 13–1

FRD, convert from BCD, math instruction,
20–15

G

greater than (GRT)
comparison instruction, 15–4, 19–6
mnemonic listing, 2–14

greater than or equal (GEQ)
comparison instruction, 15–4, 19–7
mnemonic listing, 2–14

H

HHT, 1–1
dimensions, 1–1
display, 1–8
function keys, 2–11
installing the memory pak, battery, and

communication cable, 1–3
instruction mnemonics, 2–14, 15–1
keyboard, 1–9
main menu, 2–3
menu tree, 2–4
powerup, 1–7
specifications, 1–1

HHT display, 1–8

HHT keyboard, 1–9
auto shift, 1–9

Hand–Held Terminal
Index

User Manual

I–5

cursor keys, 1–10
data entry keys, 1–9
ENTER key, 2–2
ESCAPE key, 2–2
menu function keys, 1–9
RUNG key, 1–12
ZOOM key, 1–12

HHT main menu functions, 2–3

HHT messages and error definitions
alphabetical listing, A–1
warning messages, A–8

HHT program, in relation to APS, 3–1

high–speed counter (HSC)
mnemonic listing, 2–14
timer and counter instructions, 15–2, 17–9

I

I/O event driven interrupts
I/O interrupt disable (IID), 15–3, 18–17
I/O interrupt enable (IIE), 15–3, 18–17
reset pending I/O interrupt (RPI), 15–3,

18–17

I/O interrupt disable (IID)
5/02 processor, 18–17
I/O message and communications

instructions, 15–3, 18–17
mnemonic listing, 2–14
understanding I/O interrupts, 31–6

I/O interrupt enable (IIE)
5/02 processor, 18–17
I/O message and communications

instructions, 15–3, 18–17
mnemonic listing, 2–14
understanding I/O interrupts, 31–6

I/O message and communications
instructions, 15–3, 18–1

I/O event driven interrupts, 15–3, 18–17
I/O refresh (REF), 15–3, 18–19
immediate input with mask (IIM), 15–3,

18–15
immediate output with mask (IOM), 15–3,

18–16
message (MSG), 15–3, 18–2
service communications (SVC), 15–3,

18–14

I/O refresh (REF)
5/02 processor, 18–19
I/O message and communications

instructions, 15–3, 18–19
mnemonic listing, 2–15

immediate input with mask (IIM)
I/O message and communications

instructions, 15–3, 18–15
mnemonic listing, 2–14

immediate output with mask (IOM)
I/O message and communications

instructions, 15–3, 18–16
mnemonic listing, 2–14

indexed addressing for 5/02 processors,
4–13

creating data, 4–14
crossing file boundaries, 4–14
effects of file instructions on, 4–15
monitoring, 4–15

input branching, 5–5

input data file display, 12–5

inserting an instruction within a branch, 7–12

installing the memory pak, battery, and
communication cable, 1–3

instruction types, 15–1
bit, 5–1, 15–1, 16–1
bit shift, FIFO, and LIFO, 15–7, 23–1
chapters found in, 15–1
comparison, 15–4, 19–1
control, 15–8, 25–1
file copy and file fill, 15–6, 22–1
I/O message and communications, 15–3,

18–1
math, 15–5, 20–1
move and logical, 15–6, 21–1
PID, 15–9
sequencer, 15–7, 24–1
timer and counter, 15–2, 17–1

instruction words
5/01 processor, C–2
5/02 processor, C–6
fixed processor, C–2

instructions for 5/02 processor
add (ADD), 20–5
FIFO load (FFL), 23–5
FIFO unload (FFU), 23–5
I/O interrupt disable (IID), 18–17
I/O interrupt enable (IIE), 18–17
I/O refresh (REF), 18–19
interrupt subroutine (INT), 25–11
limit test (LIM), 19–9
message (MSG), 18–2
proportional integral derivative (PID), 26–1
reset pending I/O interrupt (RPI), 18–17
scale data (SCL), 20–21
selectable timed disable (STD), 25–10

User Manual
Hand–Held Terminal
Index

I–6

selectable timed enable (STE), 25–10
selectable timed interrupt (STI), 25–10
selectable timed start (STS), 25–10
sequencer load (SQL), 24–7
service communications (SVC), 18–14
square root (SQR), 20–20
subtract (SUB), 20–5

integer data file display, 12–9

interrupt subroutine (INT)
5/02 processor, 2–14, 25–11
control instruction, 15–8, 25–11
understanding, 30–9

J

jump to label (JMP)
control instruction, 15–8, 25–2
mnemonic listing, 2–14

jump to subroutine (JSR)
control instruction, 15–8, 25–4
mnemonic listing, 2–14

K

keyboard, description of, 1–2, 1–9

L

label (LBL)
control instruction, 15–8, 25–3
mnemonic listing, 2–14

ladder programming, 5–1
1–rung ladder program, 5–2
4–rung ladder program, 5–8
bit instructions, 5–1
logical continuity, 5–3

ladder rung display, 7–4
adding a rung, 7–9
entering a parallel branch, 7–11
entering a rung, 7–5
entering an examine if closed instruction,

7–6
entering an output energize instruction,

7–7
inserting an instruction within a branch,

7–12

less than (LES)
comparison instruction, 15–4, 19–4
mnemonic listing, 2–14

less than or equal (LEQ)
comparison instruction, 15–4, 19–5
mnemonic listing, 2–14

LIFO load (LFL)
5/02 processor, 23–8
LIFO instruction, 15–7, 23–8
mnemonic listing, 2–14

LIFO unload (LFU)
5/02 processor, 23–8
LIFO instruction, 15–7, 23–8
mnemonic listing, 2–14

limit test (LIM)
5/02 processor, 19–9
comparison instruction, 15–4, 19–9
mnemonic listing, 2–14

logical continuity, 5–3

M

manuals, related, P–4

masked comparison for equal (MEQ)
comparison instruction, 15–4, 19–8
mnemonic listing, 2–14

masked move (MVM)
mnemonic listing, 2–14
move and logical instructions, 15–6, 21–3

master control reset (MCR)
control instruction, 15–8, 25–7
mnemonic listing, 2–14

master password, 6–10
entering, 6–12

math instructions, 15–5, 20–1
add (ADD), 15–5, 20–3
clear (CLR), 15–5, 20–11
convert from BCD (FRD), 15–5, 20–15
convert to BCD (TOD), 15–5, 20–12
decode (DCD), 15–5, 20–19
divide (DIV), 15–5, 20–8
double divide (DDV), 15–5, 20–9
multiply (MUL), 15–5, 20–7
negate (NEG), 15–5, 20–10
scale (SCL), 15–5, 20–21
square root (SQR), 15–5, 20–20
subtract (SUB), 15–5, 20–4

memory pak, installing, 1–3

menu function keys, 1–9

message (MSG)
5/02 processor, 18–2
application examples, 18–10
available configuration options, 18–3

entering parameters, 18–3
I/O message and communications

instructions, 15–3, 18–2
instruction error codes, 18–9

Hand–Held Terminal
Index

User Manual

I–7

instruction status bits, 18–7
mnemonic listing, 2–14

modifying branches, 7–19
appending a branch, 7–24
extending a branch down, 7–22
extending a branch up, 7–19

modifying instructions, 7–16
changing the address of an instruction,

7–16
changing the instruction type, 7–18

modifying rungs, 7–14
adding an instruction to a rung, 7–14

monitoring
application, 12–1
data files, 12–3
program files, 12–1

move (MOV)
mnemonic listing, 2–14
move and logical instructions, 15–6, 21–2

move and logical instructions, 15–6, 21–1
and (AND), 15–6, 21–5
exclusive or (XOR), 15–6, 21–7
masked move (MVM), 15–6, 21–3
move (MOV), 15–6, 21–2
not (NOT), 15–6, 21–8
or (OR), 15–6, 21–6

multiply (MUL)
math instruction, 15–5, 20–7
mnemonic listing, 2–14

N

naming the ladder program, 6–8

naming your program file, 6–9

negate (NEG)
math instruction, 15–5, 20–10
mnemonic listing, 2–15

nested branching, 5–6

node configuration, 9–8
changing the baud rate, 9–10
consequences of changing a processor

node address, 9–9
entering a maximum node address, 9–10

not (NOT)
mnemonic listing, 2–15
move and logical instructions, 15–6, 21–8

not equal (NEQ)
comparison instruction, 15–4, 19–3
mnemonic listing, 2–15

number systems, B–1
BCD, B–3
binary, B–1
hex mask, B–5
hexadecimal, B–4

O

one–shot rising (OSR)
bit instruction, 15–1, 16–7
mnemonic listing, 2–15

operating cycle, 5–11

or (OR)
mnemonic listing, 2–15
move and logical instructions, 15–6, 21–6

OSR, one–shot rising, bit instruction, 16–7

OTE, output energize, bit instruction, 16–4

OTL, output latch, bit instruction, 16–5

OTU, output unlatch, bit instruction, 16–5

output branching, 5–5

output data file display, 12–5

output energize (OTE)
bit instruction, 5–1, 15–1, 16–4
mnemonic listing, 2–15

output latch (OTL)
bit instruction, 15–1, 16–5
mnemonic listing, 2–15

output unlatch (OTU)
bit instruction, 15–1, 16–5
mnemonic listing, 2–15

P

parallel logic, 5–4
input branching, 5–5
nested branching, 5–6
output branching, 5–5

password, 6–10
entering, 6–11
master password, 6–10
removing and changing, 6–13

PID instruction, 15–9, 26–1
5/02 processor, 26–1
analog I/O scaling, 26–12
application notes, 26–16
control block layout, 26–8
entering parameters, 26–4
equation, 26–4

User Manual
Hand–Held Terminal
Index

I–8

explanation of, 26–3
instruction flags, 26–9
mnemonic listing, 2–15
online data changes, 26–14
runtime errors, 26–11

processor execution times, C–5
5/02, C–8
fixed and 5/01, C–5

processor modes, 11–1
program mode, 11–1
run mode, 11–1
test mode, 11–2

program, 3–2

program constants, 4–20

program files, 3–2
types, 3–2

program mode, 11–1

progressing through the menu displays, 2–1

publications, related, P–4

R

reset (RES)
mnemonic listing, 2–15
timer and counter instructions, 15–2,

17–13

reset pending I/O interrupt (RPI)
5/02 processor, 18–17
I/o message and communications

instructions, 15–3, 18–17, 31–9
mnemonic listing, 2–15

retentive timer (RTO)
mnemonic listing, 2–15
timer and counter instructions, 15–2, 17–5

return from subroutine (RET)
control instruction, 15–8, 25–6
mnemonic listing, 2–15

reversing the search direction, 7–41

run mode, 11–1

RUNG key, 1–12

S

saving a program, 8–1
available protection options, 8–3

scale data (SCL)
5/02 processor, 20–21
application example, 20–23
math instruction, 15–5, 20–21
mnemonic listing, 2–15

scan time worksheets, D–3
1747–L511 and –L514 processors, D–4
1747–L524 processor, D–5
fixed controller, D–3

search function, 7–35
reversing the search direction, 7–41
searching for an address, 7–38
searching for an instruction, 7–37
searching for an instruction within an

address, 7–40
searching for forced I/O, 7–42, 13–6
searching for rungs, 7–44

searching for an address, 7–38

searching for an address within an
instruction, 7–40

searching for an instruction, 7–37

searching for forced I/O, 7–42, 13–6

searching for rungs, 7–44

selectable timed disable (STD)
5/02 processor, 25–10
control instruction, 15–8, 25–10
mnemonic listing, 2–15
understanding, 30–6

selectable timed enable (STE)
5/02 processor, 25–10
control instruction, 15–8, 25–10
mnemonic listing, 2–15
understanding, 30–6

selectable timed interrupt (STI)
5/02 processor, 25–10
control instruction, 15–8, 25–10
selectable timed disable (STD), 15–8,

25–10
selectable timed enable (STE), 15–8,

25–10
selectable timed start (STS), 15–8, 25–10
understanding, 30–1

selectable timed start (STS)
5/02 processor, 25–10
control instruction, 15–8, 25–10
mnemonic listing, 2–15
understanding, 30–8

sequencer compare (SQC)
mnemonic listing, 2–15
sequencer instruction, 15–7, 24–2

sequencer instructions, 15–7, 24–1
sequencer compare (SQC), 15–7, 24–2
sequencer load (SQL), 15–7, 24–7
sequencer output (SQO), 15–7, 24–2

sequencer load (SQL)
5/02 processor, 24–7

Hand–Held Terminal
Index

User Manual

I–9

mnemonic listing, 2–15
sequencer instruction, 15–7, 24–7

sequencer output (SQO)
mnemonic listing, 2–15
sequencer instruction, 15–7, 24–2

series logic, 5–4

service communications (SVC)
5/02 processor, 18–14
I/O message and communications

instructions, 15–3, 18–14
mnemonic listing, 2–15

specifications
certification, 1–1
communications, 1–1
compatibility, 1–1
dimensions, 1–1
display, 1–1
environmental, 1–1
humidity rating, 1–1
keyboard, 1–1
memory retention, 1–1
operating power, 1–1

square root (SQR)
5/02 processor, 20–20
math instruction, 15–5, 20–20
mnemonic listing, 2–15

status data file display, 12–6

status file, 27–1
functions, 27–2

status file display, 27–32
5/01 and fixed processors, 27–33
5/02 processors, 27–32

subroutine (SBR)
control instruction, 15–8, 25–6
mnemonic listing, 2–15

subtract (SUB)
math instruction, 15–5, 20–4
mnemonic listing, 2–15
series C or later 5/02 processor, 20–5

suspend (SUS)
control instruction, 15–8, 25–9
mnemonic listing, 2–15

T

table to locate instruction types, 15–9

temperature
operating, 1–1
storage, 1–1

temporary end (TND)
control instruction, 15–8, 25–8
mnemonic listing, 2–15

test mode, 11–2
continuous scan, 11–2
single scan, 11–2

the file indicator #, 4–16

timer and counter instructions, 15–2, 17–1
count down (CTD), 15–2, 17–7
count up (CTU), 15–2, 17–7
high–speed counter (HSC), 15–2, 17–9
reset (RES), 15–2, 17–13
retentive timer (RTO), 15–2, 17–5
timer off–delay (TOF), 15–2, 17–4
timer on–delay (TON), 15–2, 17–3

timer data file display, 12–8

timer off–delay (TOF)
mnemonic listing, 2–15
timer and counter instructions, 15–2, 17–4

timer on–delay (TON)
mnemonic listing, 2–15
timer and counter instructions, 15–2, 17–3

TOD, convert to BCD, math instruction,
20–12

troubleshooting, contacting Allen–Bradley,
P–5

troubleshooting faults
error codes, 28–2
status file fault display, 28–2

U

understanding I/O interrupts for 5/02
processor, 31–1

IID and IIE instructions, 31–6
INT instruction, 30–9
interrupt parameters, 31–4
operation, 31–2
RPI instruction, 31–9

understanding selectable timed interrupts for
5/02 processor, 30–1

operation, 30–1
STD parameters, 30–6
STE parameters, 30–6
STI parameters, 30–4
STS parameters, 30–8

understanding the user fault routine for the
5/02 processor, 29–1

application example, 29–5

User Manual
Hand–Held Terminal
Index

I–10

creating a user fault subroutine, 29–5
non–recoverable faults, 29–1
recoverable faults, 29–1

uploading a program from a processor to the
HHT, 10–3

uploading program from processor to HHT,
3–4

using memory modules (EEPROM and
UVPROM), EEPROM burning options,
14–5

5/01 and fixed controller, 14–5
5/02 processor, 14–5

using the file indicator #, 4–16

UVPROMs, 3–4
program loading with, 14–6

V

viewing program memory layout, 8–5

W

WHO function, 9–4
attach, 9–7
diagnostics, 9–6
node configuration, 9–8
set and clear ownership, 9–10
when using DH–485 devices, 9–12

X

XIC, examine if closed, bit instruction, 16–2

XIO, examine if open, bit instruction, 16–3

Z

ZOOM key, 1–12

1747-NP002, Series A — June 1993 40063–124–01(A)
Supersedes Publication 1747–809 – July 1989 Copyright 1993 Allen-Bradley Company, Inc. Printed in USA

With major offices worldwide.
Algeria • Argentina • Australia • Austria • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech
Republic • Denmark • Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India •
Indonesia • Israel • Italy • Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • New Zealand • Norway • Oman • Pakistan • Peru • Philippines
• Poland • Portugal • Puerto Rico • Qatar • Romania • Russia–CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Switzerland •
Taiwan • Thailand • The Netherlands • Turkey • United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

World Headquarters, Allen-Bradley, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

Allen-Bradley has been helping its customers improve productivity and quality for 90 years.
A-B designs, manufactures and supports a broad range of control and automation products
worldwide. They include logic processors, power and motion control devices, man-machine
interfaces and sensors. Allen-Bradley is a subsidiary of Rockwell International, one of the
world’s leading technology companies.

	1747-NP002, Hand-Held Terminal User Manual
	Important User Information
	Summary of Changes
	New Information

	Table of Contents
	Preface
	Who Should Use this Manual
	Purpose of this Manual
	Contents of this Manual
	Related Documentation

	Common Techniques Used in this Manual
	Allen–Bradley Support
	Local Product Support
	Technical Product Assistance
	Your Questions or Comments on this Manual

	1 - Features, Installation, Powerup
	HHT Features
	Installing the Memory Pak, Battery, and Communication Cable
	HHT Powerup
	HHT Display Format
	The Keyboard
	Menu Function Keys (F1, F2, F3, F4, F5) A 7 B 8 C 9
	Data Entry Keys
	Auto Shift
	Cursor Keys
	ZOOM and RUNG Keys

	2 - The Menu Tree
	Using the HHT Menu
	Progressing through Menu Displays
	The ENTER Key
	The ESCAPE Key

	The Main Menu
	Main Menu Functions
	The Menu Tree
	Main Menu
	Main Menu – Program Maintenance [F3]
	Program Maintenance [F3] – Ladder Editing
	Main Menu – Utility [F5], Default Program in Processor (First Time)
	Main Menu – Utility [F5], Default Program in Processor (If Previously Attached to that Processor)
	Main Menu – Utility [F5], Processor Program Does Not Equal HHT Program (First Time)
	Main Menu – Utility [F5], Processor Program Does Not Equal HHT Program (If Previously Attached to that Processor)
	Main Menu – Utility [F5], Processor Program Equals HHT Program (First Time)
	Main Menu – Utility [F5], Processor Program Equals the HHT Program (If Previously Attached to that Processor)

	HHT Function Keys and Instruction Mnemonics
	Instruction Mnemonics

	3 - Understanding File Organization
	Program, Program Files, and Data Files
	Program
	Program Files
	Data Files
	Downloading Programs
	Uploading Programs
	Using EEPROM and UVPROM Memory Modules for Program Backup

	4 - Data File Organization and Addressing
	Data File Organization
	Data File Types

	Addressing Data Files
	Data File 2 – Status
	Data Files 0 and 1 – Outputs and Inputs
	Data File 3 – Bit
	Data File 4 – Timers
	Data File 5 – Counters
	Data File 6 – Control
	Data File 7 – Integer

	Indexed Addressing SLC 5/02 Processors Only
	Offset Value (S:24 Index Register)
	Creating Data for Indexed Addresses
	Crossing File Boundaries
	Monitoring Indexed Addresses
	Effects of File Instructions on Indexed Addressing
	Effects of Program Interrupts on Index Register S:24

	File Instructions – Using the File Indicator #
	Bit Shift Instructions
	Sequencer Instructions
	File Copy and File Fill Instructions

	Creating Data
	Creating Data for Indexed Addresses

	Deleting Data
	Program Constants
	M0 and M1 Data Files – Specialtyt I/O Modules
	Addressing M0–M1 Files
	Restrictions on Using M0-M1 Data File Addresses
	Monitoring Bit Instructions Having M0 or M1 Addresses
	Transferring Data Between Processor Files and M0 or M1 Files
	Access Time
	Minimizing the Scan Time
	Capturing M0–M1 File Data
	Specialty I/O Modules with Retentive Memory

	G Data Files – Specialty I/O Modules
	Editing G File Data

	5 - Ladder Program Basics
	Ladder Programming
	A 1–Rung Ladder Program
	Logical Continuity
	Series Logic
	Parallel Logic
	Input Branching
	Output Branching
	Nested Branching

	A 4–Rung Ladder Program
	Operating Cycle (Simplified)

	6 - Creating a Program
	Creating a Program Offline with the HHT
	Clearing the Memory of the HHT
	Configuring the Controller
	Naming the Ladder Program
	Naming Your Main Program File

	Passwords
	Entering Passwords
	Entering Master Passwords
	Removing and Changing Passwords

	7 - Creating and Editing Program Files
	Creating and Deleting Program Files
	Creating a Subroutine Program File using the Next Consecutive File Number
	Creating a Subroutine Program File using a Non–Consecutive File Number
	Deleting a Subroutine Program File

	Editing a Program File
	Ladder Rung Display
	Modifying Rungs
	Modifying Instructions
	Modifying Branches
	Delete and Undelete Commands
	Abandoning Edits

	The Search Function
	Creating and Deleting Program Files
	Creating Data Files
	Deleting Data Files

	8 - Saving and Compiling a Program
	Saving and Compiling Overview
	Saving a Program
	Available Compiler Options

	Viewing Program Memory Layout

	9 - Configuring Online Communication
	Online Configuration
	The Who Function
	Diagnostics
	Attach
	Node Configuration
	Set and Clear Ownership
	Recommendations When Using DH–485 Devices

	10 - Downloading/Uploading a Program
	Downloading a Program
	Uploading a Program

	11 - Processor Modes
	Processor Modes
	Run Mode
	Program Mode
	Test Mode

	Changing Modes

	12 - Monitoring Controller Operation
	Monitoring a Program File
	Monitoring Data Files
	Data Files
	Accessing Data Files
	Monitoring a Data File

	Data File Displays
	Output File (O0)
	Input File (I1)
	Status Data File (S2)
	Bit Data File (B3)
	Timer Data File (T4)
	Counter Data File (C5)
	Control Data File (R6)
	Integer Data File (N7)

	Online Data Changes

	13 - The Force Function
	Forcing I/O
	Forcing an External Input
	To Close an External Input Circuit
	To Close and Open an External Circuit

	Searching for Forced I/O
	Forcing an External Output
	Forces Carried Offline

	14 - Using EEPROMs and UVPROMs
	Using an EEPROM Memory Module
	Transferring a Program to an EEPROM Memory Module
	Transferring a Program from an EEPROM Memory Module

	EEPROM Burning Options
	Burning EEPROMs for a SLC 5/01 Processor or Fixed Controller
	Burning EEPROMs for a SLC 5/02 Processor
	Burning EEPROMS for SLC Configurations

	UVPROM Memory Modules

	15 - Instruction Set Overview
	Instruction Classifications
	Instruction Locator

	16 - Bit Instructions
	Bit Instructions Overview
	Examine if Closed (XIC)
	Examine if Open (XIO)
	Output Energize (OTE)
	Output Latch (OTL), Output Unlatch (OTU)
	One-Shot Rising (OSR)

	17 - Timer and Counter Instructions
	Timer and Counter Instructions Overview
	Timer Data File Elements, Timebase, and Accuracy
	Data File Elements

	Timer On-Delay (TON)
	Timer Off-Delay (TOF)
	Retentive Timer (RTO)
	Count Up (CTU) and Count Down (CTD)
	High–Speed Counter (HSC)
	Fixed Controllers Only

	Reset (RES)

	18 - I/O Message and Communication Instructions
	Message Instruction (MSG)
	SLC 5/02 Processors Only
	Available Configuration Options
	Control Block Layout

	Service Communications (SVC)
	SLC 5/02 Processors Only

	Immediate Input with Mask (IIM)
	Immediate Output with Mask (IOM)
	I/O Event-Driven Interrupts
	SLC 5/02 Processors Only

	I/O Refresh (REF)
	SLC 5/02 Processors Only

	19 - Comparison Instructions
	Comparison Instructions Overview
	Indexed Word Addresses

	Equal (EQU)
	Entering Parameters

	Not Equal (NEQ)
	Entering Parameters

	Less Than (LES)
	Entering Parameters

	Less Than or Equal (LEQ)
	Entering Parameters

	Greater Than (GRT)
	Entering Parameters

	Greater Than or Equal (GEQ)
	Entering Parameters

	Masked Comparison for Equal (MEQ)
	Entering Parameters

	Limit Test (LIM)
	SLC 5/02 Processors Only
	Entering Parameters
	True/False Status of the Instruction

	20 - Math Instructions
	Math Instructions Overview
	Entering Parameters
	Using Arithmetic Status Bits
	Overflow Trap Bit, S:5/0
	Math Register, S:14 and S:13
	Indexed Word Addresses

	Add (ADD)
	Using Arithmetic Status Bits

	Subtract (SUB)
	Using Arithmetic Status Bits

	32-Bit Addition and Subtraction-Series C and Later SLC 5/02 Processors
	Bit S:2/14 Math Overflow Selection
	Example of 32-Bit Addition

	Multiply (MUL)
	Using Arithmetic Status Bits

	Divide (DIV)
	Using Arithmetic Status Bits

	Double Divide (DDV)
	Using Arithmetic Status Bits

	Negate (NEG)
	Using Arithmetic Status Bits

	Clear (CLR)
	Using Arithmetic Status Bits

	Convert to BCD (TOD)
	Entering Parameters
	Using Arithmetic Status Bits

	Convert from BCD (FRD)
	Entering Parameters
	Using Arithmetic Status Bits
	Ladder Logic Filtering of BCD Input Devices

	Decode 4 to 1 of 16 (DCD)
	Entering Parameters
	Using Arithmetic Status Bits

	Square Root (SQR)
	SLC 5/02 Processors Only
	Using Arithmetic Status Bits

	Scale Data (SCL)
	SLC 5/02 Processors Only
	Entering Parameters
	Using Arithmetic Status Bits
	Math Register

	21 - Move and Logical Instructions
	Move and Logical Instructions Overview
	Entering Parameters
	Using Arithmetic Status Bits
	Overflow Trap Bit, S:5/0

	Move (MOV)
	Entering Parameters
	Using Arithmetic Status Bits

	Masked Move (MVM)
	Entering Parameters
	Using Arithmetic Status Bits

	And (AND)
	Using Arithmetic Status Bits

	Or (OR)
	Using Arithmetic Status Bits

	Exclusive Or (XOR)
	Using Arithmetic Status Bits

	Not (NOT)
	Using Arithmetic Status Bits

	22 - File Copy and File Fill Instructions
	File Copy and Fill Instructions Overview
	Effect on Index Register in SLC 5/02 Processors

	File Copy (COP)
	Entering Parameters

	File Fill (FLL)
	Entering Parameters

	23 - Bit Shift, FIFO, and LIFO Instructions
	Bit Shift, FIFO, and LIFO Instructions Overview
	Effect on Index Register in SLC 5/02 Processors

	Bit Shift Left (BSL), Bit Shift Right (BSR)
	Entering Parameters
	Effect on Index Register in SLC 5/02 Processors
	Operation – Bit Shift Left
	Operation – Bit Shift Right

	FIFO Load (FFL), FIFO Unload (FFU)
	SLC 5/02 Processors Only
	Entering Parameters
	Status Bits
	Operation
	Effects on Index Register S:24

	LIFO Load (LFL), LIFO Unload (LFU)
	SLC 5/02 Processors Only
	Entering Parameters
	Operation
	Effects on Index Register S:24

	24 - Sequencer Instructions
	Sequencer Instructions Overview
	Applications Requiring More than 16 Bits
	Effect on Index Register in SLC 5/02 Processors

	Sequencer Output (SQO), Sequencer Compare (SQC)
	Entering Parameters
	Status Bits of the Control Element
	Operation – Sequencer Output
	Effect on Index Register in SLC 5/02 Processors
	Operation – Sequencer Compare
	Effect on Index Register in SLC 5/02 Processors

	Sequencer Load (SQL)
	SLC 5/02 Processors Only
	Entering Parameters
	Status Bits
	Operation
	Effect on Index Registers in SLC 5/02 Processors

	25 - Control Instructions
	Control Instructions Overview
	Jump to Label (JMP)
	Entering Parameters

	Label (LBL)
	Entering Parameters

	Jump to Subroutine (JSR)
	Nesting Subroutine Files
	Entering Parameters

	Subroutine (SBR)
	Return from Subroutine (RET)
	Master Control Reset (MCR)
	Temporary End (TND)
	Suspend (SUS)
	Entering Parameters

	Selectable Timed Interrupt (STI)
	SLC 5/02 Processors Only
	Selectable Timed Interrupt Disable and Enable (STD, STE)
	Selectable Timed Interrupt Start (STS)

	Interrupt Subroutine (INT)
	SLC 5/02 Processors Only

	26 - PID Instruction
	Proportional, Integral, Derivative (PID)
	SLC 5/02 Processors Only

	The PID Concept
	The PID Equation
	Entering Parameters
	Control Block Layout
	PID Instruction Flags
	Runtime Errors
	PID and Analog I/O Scaling
	Online Data Changes
	Using Scaled Values
	Changing Values in the Manual Mode

	Application Notes
	Input/Output Ranges
	Scaling to Engineering Units
	Zero-crossing Deadband DB
	Output Alarms
	Output Limiting with Anti-reset Windup
	The Manual Mode
	Feed Forward
	Time Proportioning Outputs
	PID Tuning
	Procedure

	27 - The Status File
	Status File Functions
	Status File Display –SLC 5/02 Processors
	Status File Display – SLC 5/01 and Fixed Processors

	28 - Troubleshooting Faults
	Troubleshooting Overview
	User Fault Routine Not in Effect
	User Fault Routine in Effect – SLC 5/02 Processors Only

	Status File Fault Display
	Error Code Description, Cause, and Recommended Action
	Powerup Errors
	Going–to–Run Errors
	Runtime Errors
	User Program Instruction Errors
	I/O Errors

	29 - Understanding the User Fault Routine – SLC 5/02 Processor Only
	Overview of the User Fault Routine
	Status File Data Saved

	Recoverable and Non-Recoverable User Faults
	Recoverable User Faults
	Non-Recoverable User Faults

	Creating a User Fault Subroutine
	Application Example

	30 - Understanding Selectable Timed Interrupts – SLC 5/02 Processor Only
	STI Overview
	Basic Programming Procedure for the STI Function

	Operation
	STI Subroutine Content
	Interrupt Occurrences
	Interrupt Latency
	Interrupt Priorities
	Status File Data Saved

	STI Parameters
	STD and STE Instructions
	STD/STE Zone Example

	STS Instruction
	INT Instruction

	31 - Understanding I/O Interrupts – SLC 5/02 Processor Only
	I/O Overview
	Basic Programming Procedure for the I/O Interrupt Function

	Operation
	Interrupt Subroutine (ISR) Content
	Interrupt Occurrences
	Interrupt Latency
	Interrupt Priorities
	Status File Data Saved

	I/O Interrupt Parameters
	IID and IIE Instructions
	IID/IIE Zone Example

	RPI Instruction

	A - HHT Messages and Error Definitions
	B - Number Systems, Hex Mask
	Binary Numbers
	Positive Decimal Values
	Negative Decimal Values

	BCD Numbers
	Hexadecimal Numbers
	Hex Mask

	C - Memory Usage, Instruction Execution Times
	Memory Usage
	Fixed and SLC 5/01 Processors
	Instruction Words for the Fixed and SLC 5/01 Processors
	Estimating Total Memory Usage of Your System Using a Fixed or SLC 5/01 Processor
	Instruction Execution Times for the Fixed and SLC 5/01 Processors

	SLC 5/02 Processor
	Instruction Words for the SLC 5/02 Processor
	Estimating Total Memory Usage of Your System Using a SLC 5/02 Processor
	Instruction Execution Times for the SLC 5/02 Processor Series A or B
	Instructions Having Indexed Addresses
	Instructions Having M0 or M1 Data File Addresses
	Instruction Execution Times for the SLC 5/02 Processor Series C and Later
	Instructions Having Indexed Addresses
	Instructions Having M0 and M1 Data File Addresses

	D - Estimating Scan Time
	Events in the Operating Cycle
	Scan Time Worksheets
	Defining Worksheet Terminology

	Example Scan Time Calculation

	Index
	Back Cover

