

# CENTERLINE 400 A One-High Cabinet, Standard and Arc-Resistant Enclosure

Bulletin Numbers 1512A, 1512AT, 1512AP, 1512DM, 1512DO, 1512M, 1562E, 1591B, 1592BF, 1592BP



**Original Instructions** 

**User Manual** 

## **Important User Information**

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.



**WARNING:** Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.



**ATTENTION:** Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

**IMPORTANT** Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.



**SHOCK HAZARD:** Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.



**BURN HAZARD:** Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.



**ARC FLASH HAZARD:** Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).

## Preface

| Summary of Changes                           | 7 |
|----------------------------------------------|---|
| About This Publication                       | 7 |
| Download Firmware, AOP, EDS, and Other Files | 8 |
| Additional Resources                         | 8 |

## Chapter 1

| Starter Identification                     |
|--------------------------------------------|
| Recommended Torque Values 10               |
| Environmental Conditions 10                |
| High Altitude Application 11               |
| Door Opening Procedure 11                  |
| Opening the Low Voltage Doors 11           |
| Opening the Medium Voltage Doors 12        |
| Anchoring 13                               |
| Joining Sections 14                        |
| Access to the Power Bus 15                 |
| Rear Access 15                             |
| Side Access 16                             |
| Front Access – Top Incoming Line Cables 16 |
| Front Access – Bottom Incoming Cables 18   |
| Load Cable Connections 19                  |

## Chapter 2

| Door Opening Procedure 23                                    |
|--------------------------------------------------------------|
| Opening the Low Voltage Doors 23                             |
| Opening the Medium Voltage Door                              |
| Anchoring 25                                                 |
| Joining Sections 27                                          |
| Access to the Power Bus 28                                   |
| Rear Access                                                  |
| Side Access 28                                               |
| Front Access – Bottom Incoming Cables (Bottom Entry/Exit) 30 |
| Front Access – Top Incoming Cables (Top Entry/Exit) 32       |
| Load Cable Connections 33                                    |

## Chapter 3

| Bus Splicing                             |     |
|------------------------------------------|-----|
| Power Bus                                |     |
| Insulated Power Bus Splicing             |     |
| Ground Bus                               |     |
| Incoming Line Cable Connections          |     |
| Installation of Current Transformer Barr | ier |
| Hi-Pot and Insulation ResistanceTest     |     |
| Start-up Procedure                       |     |

### Installation – Standard Enclosure

## Installation - Arc Resistant Enclosure

**Common Installation** 

| Contactor Inspection        | 42 |
|-----------------------------|----|
| Preliminary Checks          |    |
| Testing Contactor Operation | 43 |

## Maintenance

**Spare Parts** 

Instructions

**ArcShield Unit Information** 

**ArcShield Plenum Installation** 

| <b>Chapter 4</b> | ŀ |
|------------------|---|
|------------------|---|

| Tool Requirements                                         |
|-----------------------------------------------------------|
| Recommended Torque Values 47                              |
| Door Interlock Circumvention                              |
| Power Lock-out Procedure                                  |
| Fuse Removal and Replacement53                            |
| Contactor Maintenance 55                                  |
| Remove the Contactor 55                                   |
| Contactor Interlock Rod Adjustment 57                     |
| To Reduce the Gap Distance 58                             |
| To Increase the Gap Distance                              |
| Isolation Switch Mechanism Inspection and Maintenance 60  |
| Isolation Blade Switch Adjustment 61                      |
| Isolation Switch Mechanism Grounding Adjustment 64        |
| Auxiliary Contacts Inspection and Replacement             |
| Auxiliary Contacts Adjustment                             |
| Emergency Circumvention Procedure for Power Cell Entry 68 |

## Chapter 5

| Spare Parts | List | ••••• |  | •••••• |  | 71 |
|-------------|------|-------|--|--------|--|----|
|-------------|------|-------|--|--------|--|----|

## Appendix A

| Overview                                  |    |
|-------------------------------------------|----|
| ArcShield Design                          | 73 |
| Exhaust Systems: Chimney or Plenum Option | 74 |

## Appendix B

| ArcShield Chimney Installation<br>Instructions | Appendix CRecommended Torque Values89General Plenum Layout for ArcShield Line-up90Cabinet Preparation91Chimney Placement on Structure92 |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                                | Appendix D                                                                                                                              |
| Integrated Protective                          | Overview                                                                                                                                |
| Maintenance Grounding Device                   | IPMG Operation94Operating Handle95IPMG Positioning Indicators97Key Interlocking98Auxiliary Switches98                                   |
|                                                | IPMG Specifications                                                                                                                     |
|                                                | Maintenance 100                                                                                                                         |
|                                                | Spare Parts 100                                                                                                                         |
|                                                | Appendix E                                                                                                                              |
| History of Changes                             |                                                                                                                                         |

## Notes:

## **Summary of Changes**

This publication contains the following new or updated information. This list includes substantive updates only and is not intended to reflect all changes.

| Торіс                                                                | Page |
|----------------------------------------------------------------------|------|
| Added 3000 A power bus graphic                                       | 38   |
| Added section on isolation switch maintenance                        | 60   |
| Corrected part number for Isolation Switch Refurbishment Kit         | 71   |
| Added attention statement around connecting arc-resistant equipment  | 73   |
| Added Appendix D, Integrated Protective Maintenance Grounding device | 93   |
| Added History of Changes                                             | 101  |

## **About This Publication**

This publication pertains to the Rockwell Automation Bulletin 1512A medium voltage controller. The Bulletin 1512A structure provides one complete medium voltage controller unit.

The installation section provides instructions for both the standard enclosure type and the Rockwell Automation arc resistant type (ArcShield™).

The product Bulletin numbers covered by this document are:

- 1512A: 200/400 A, FVNR controller
- 1512AT: 200/400 A, Transformer Feeder
- 1512AP: 200/400 A, Prepared Space

**IMPORTANT** This document is to be used for all Bulletin 1512A unit types, including arc resistant (ArcShield) units. Important information specifically for ArcShield units can be found in <u>Appendix A</u>, <u>Appendix B</u> and <u>Appendix C</u>.



**ATTENTION:** Users must refer to the information in <u>Appendix A</u>, <u>Appendix B</u> and <u>Appendix C</u> to correctly install and maintain ArcShield arc resistant units. Failure to do so may negate the arc resistant benefits provided by ArcShield, exposing personnel to risk of serious injury or death.

This document may also be used as a reference guide for the following Bulletin numbers:

- 1512DM: 200/400 A, VFD Input Contactor Units
- 1512DO: 200/400 A, VFD Output Contactor Units
- 1512M: 200/400 A, VFD Output Bypass Starter
- 1562F: 200/400 A, MV SMC-50 Solid-State (up to 4800V), Reduced Voltage Starter
- 1591B: Incoming Line Unit
- 1592BF: Fused Load Break Switch for Feeders
- 1592BP: Fused Load Break Switch for Feeders, prepared space

# Download Firmware, AOP, EDS, and Other Files

Download firmware, associated files (such as AOP, EDS, and DTM), and access product release notes from the Product Compatibility and Download Center at rok.auto/pcdc.

## **Additional Resources**

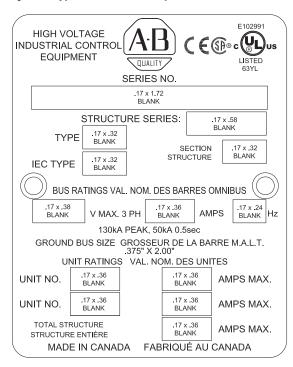
These documents contain additional information concerning related products from Rockwell Automation.

| Resource                                                                                                                     | Description                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Medium Voltage 450 A Contactor, Series G User Manual, publication <u>1502-UM060</u>                                          | Provides information on handling, installing, maintaining, and troubleshooting 450 A medium voltage contactors.                                                                                                                                                                 |
| EtherNet/IP Network Devices User Manual, <u>ENET-UM006</u>                                                                   | Describes how to configure and use EtherNet/IP devices to communicate on the EtherNet/IP network.                                                                                                                                                                               |
| Ethernet Reference Manual, <u>ENET-RM002</u>                                                                                 | Describes basic Ethernet concepts, infrastructure components, and infrastructure features.                                                                                                                                                                                      |
| System Security Design Guidelines Reference Manual, <u>SECURE-RM001</u>                                                      | Provides guidance on how to conduct security assessments, implement Rockwell<br>Automation products in a secure system, harden the control system, manage user access,<br>and dispose of equipment.                                                                             |
| Industrial Components Preventive Maintenance, Enclosures, and Contact<br>Ratings Specifications, publication <u>IC-TD002</u> | Provides a quick reference tool for Allen-Bradley industrial automation controls and assemblies.                                                                                                                                                                                |
| Safety Guidelines for the Application, Installation, and Maintenance of Solid-state Control, publication <u>SGI-1.1</u>      | Designed to harmonize with NEMA Standards Publication No. ICS 1.1-1987 and provides general guidelines for the application, installation, and maintenance of solid-state control in the form of individual devices or packaged assemblies incorporating solid-state components. |
| Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1                                                  | Provides general guidelines for installing a Rockwell Automation industrial system.                                                                                                                                                                                             |
| Product Certifications website, rok.auto/certifications.                                                                     | Provides declarations of conformity, certificates, and other certification details.                                                                                                                                                                                             |

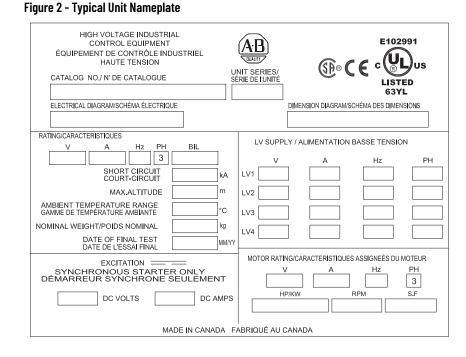
You can view or download publications at <u>rok.auto/literature</u>.

## **Installation - Standard Enclosure**

**IMPORTANT** For information on the installation site preparation, see publication <u>MV-0S050</u>.




**ATTENTION:** Use suitable personal protective equipment (PPE) per local codes or regulations. Failure to do so may result in severe burns, injury or death.


## **Starter Identification**

A nameplate is attached to the right-side flange of the structure (see <u>Figure 1</u>). Refer to the nameplate for information such as series number, section number, NEMA enclosure type, unit ratings, and bus ratings.

#### Figure 1 - Typical Structure Nameplate



A nameplate is also found in the low voltage compartment (see <u>Figure 2</u>) with specific unit motor application information.



Refer to these nameplates whenever you contact Rockwell Automation for assistance. Be prepared to provide such information as series number, structure series, unit series, diagram schematic and catalog number.

## Recommended Torque Values

When reinstalling components, or when reassembling the cabinet, tighten the following bolt sizes to the specified torque values:

#### **Table 1 - Torque Values for Hardware**

| 1/4 in. hardware  | 8 N•m (6 lb•ft)   |
|-------------------|-------------------|
| 5/16 in. hardware | 15 N•m (12 lb•ft) |
| 3/8 in. hardware  | 27 N•m (20 lb•ft) |
| 1/2 in. hardware  | 65 N•m (48 lb•ft) |

## **Environmental Conditions**

The controller must accept nominal plant power of 2400V, 3300V, 4200V, 4800V, 5500V, 6600V, 6900V (+5/-15%), or 7200 (+0/-15%), 3 phase 50/60 Hz (± 3%).

The standard controller must operate in an ambient temperature range of 0...40 °C (32...104 °F) with a relative humidity of up to 95% (non-condensing). Higher ambient temperature conditions are supported with factory assistance.

The equipment shall be capable of being stored in an environment with an ambient temperature range of -40...+85 °C (-40...+185 °F).

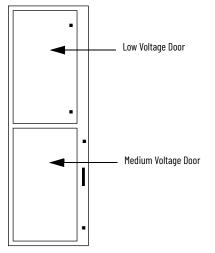
If storage temperature fluctuates or if humidity exceeds 85%, space heaters must be used to prevent condensation. The equipment must be stored in a heated building having adequate air circulation.



**WARNING:** The equipment should never be stored outside.

Rockwell Automation products are built using materials that comply with Class 1: Industrial Clean Air sulfur environments as defined in IEC Standard 60654-4 (Operating Conditions for Industrial-Process Measurement and Control Equipment), and G1 as defined in ISO-S71.04-1985 (Environmental Conditions for Process Measurement and Control Systems: Airborne Contaminants).

#### **High Altitude Application**


The equipment shall operate at altitudes from 0...1000 m (0...3300 ft) above sea level, without derating. For applications above 1000 m (3300 ft), the maximum current and basic impulse levels (BIL) of the controllers shall be derated, and vacuum contactors may be compensated for operation at the specified altitude (see publication <u>1500-SR020</u>).

#### Opening the Low Voltage Doors

Low voltage doors are identified as LV in Figure 3.

- 1. To access the low voltage compartment, use a flat-head screwdriver and turn both of the 1/4-turn fasteners, located on the low voltage door, 90° in a counterclockwise direction.
- 2. The door is now released and will swing open.
- 3. Reverse the procedure to secure the doors.

#### Figure 3 - Standard Cabinet



Refer to <u>Access to the Power Bus on page 15</u> for the procedure to open the swing-out low voltage panel behind the low voltage door.

# Door Opening Procedure



**ATTENTION:** Medium voltage components may be located behind the swing-out low voltage panel (standard cabinets only). Complete the power lockout procedure (see <u>Power Lock-out Procedure on page 49</u>) before attempting to open the swing-out low voltage panel. Failure to do so may result in severe burns, injury or death.



**ATTENTION:** Complete the Power Lockout procedure (see <u>Power Lockout Procedure on page 49</u>) before beginning any service procedures to the unit. Failure to do so may result in severe burns, injury or death.

#### **Opening the Medium Voltage Doors**

Medium voltage door is identified as MV in Figure 3.

**IMPORTANT** The medium voltage door has its own isolation switch handle and interlocking safeguards.

Refer to <u>Access to the Power Bus on page 15</u> for the procedure to open the swing-out low voltage panel behind the low voltage door (for standard cabinet only).

- 1. Electrically open the contactor by pressing the STOP button on the starter or at the remote control location.
- 2. Move the isolation switch handle to the OFF position.
- 3. Unscrew the locking 3/8-1.75 bolts for the medium voltage door.
- 4. The door is now released and will swing open.
- 5. Reverse the procedure to close the door

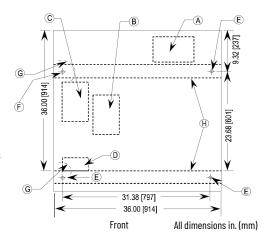
| IMPORTANT | Ensure that the swing-out low voltage panel is in its original position before attempting to close the MV door. When closing the medium voltage door, ensure all door locking bolts on the right side of the MV door are in place and tightened until the door is <u>flush with the flange</u> . <b>Do not overtighten the bolts</b> . If the door is not securely fastened, it will not be possible to move the isolation switch handle to the ON position. |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A.        | TENTION Complete the Deview Look out presedure (see                                                                                                                                                                                                                                                                                                                                                                                                          |



**ATTENTION:** Complete the Power Lock-out procedure (see <u>Power Lock-out Procedure on page 49</u>) before beginning any service procedures to the unit. Failure to do so may result in severe burns, injury or death.

### Anchoring

Place the controller in the desired installation location. The floor must be flat and level. Use four M12 (1/2 in.) floor mounting bolts to securely fasten the controller to the mounting surface. See Figure 4 as an example of the location of the mounting holes in the cabinet.




Refer to Dimension Drawing provided with order documentation for additional details related to cabinet floor plan.

IMPORTANT Pre-determined cabinets have been designed for Uniform Building Code (UBC) seismic zone 1, 2A, 2B, 3 and 4, and IBC (International Building Code) seismic activity without overturning or lateral movement, provided they are securely mounted according to UBC, IBC and local building codes. This can include concrete pad design, steel floor design and the sizing of cabinet anchors. Concrete floor cutouts must **not** be adjacent to floor anchor bolts and must be sized to seismic load. Consult factory if floor mounting must be reviewed by an accredited engineer. Many jurisdictions require an engineer from the local area to review the design. Seismic qualification does not indicate that the equipment will function properly after a seismic event.

#### Figure 4 - Cabinet Floor Plan

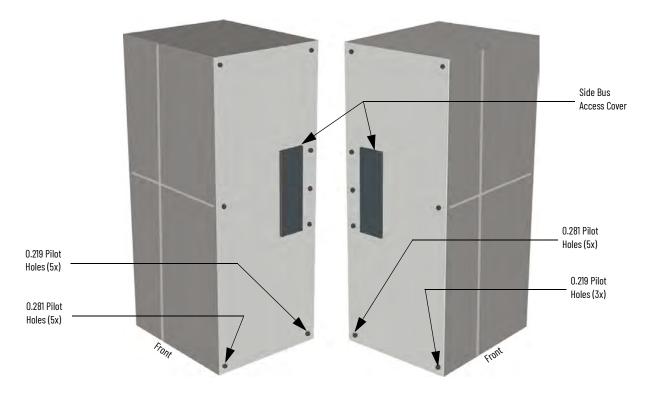
- (A) Line cable conduit opening.
- (B) Load cable conduit opening for bottom compartment.
- © Load cable conduit opening for top compartment.
- O Control wire conduit opening. Each opening provides access to top and bottom compartments.
- (E) Mounting holes for M12 (1/2 in.) anchor bolts.
- Mounting holes for M12 (1/2 in.) anchor bolts (required for seismic applications only).
- (G) Minimum distance to concrete floor cut out required for seismic applications.
- (H) 1.00 (25) x 3.00 (76) removable sill channels.



#### **Seismic Applications**

- For installations on concrete the minimum depth and radius of concrete supporting the cabinet anchors is dependent on seismic loads. Refer to important information above.
- For installations on a metal structure the metal plate depth and cabinet anchoring method is dependent on seismic loads.

## **Joining Sections**




Joining hardware can be found in a package mounted to the front of the shipping skid. Refer to publication <u>MV-0S050</u> for level floor surface requirements.

**IMPORTANT** For arc-resistant cabinets, see <u>Chapter 2 on page 23</u>.

- Position the left side section on a level surface and secure the section in place with M12 (1/2 in.) floor mounting bolts (refer to <u>Anchoring on</u> <u>page 13</u>).
- 2. When joining NEMA/EEMAC Type 12 sections, apply a continuous 3 mm (1/8 in.) wide bead of silicon sealer around the perimeter of one section.
- 3. Remove the side bus access covers if applicable.
- 4. Position the right section against the left section. Ensure that the surface is level.
- 5. Secure the sections together using the 1/4-20 self-tapping screws (12 lb•ft [15 N•m]). Thread the screw through the 7 mm (0.281 in.) clearance hole to the corresponding 6 mm (0.219 in.) pilot hole. To access the front clearance holes of the left-side cabinet, open the medium voltage doors. To access the rear clearance holes remove the rear covers of the starter. If rear access is not available, refer to Front Access Top Incoming Line Cables on page 16 or Front Access Bottom Incoming Cables on page 18.
- 6. Secure the right section to the floor using M12(1/2 in.) floor mounting bolts (refer to <u>Anchoring on page 13</u>).

Figure 5 - Joining Sections



#### Access to the Power Bus



**ATTENTION:** This procedure requires contact with medium voltage components. To avoid shock hazards, lock out incoming power before working on the equipment (see <u>Power Lock-out Procedure on page 49</u>). Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death.

#### **Rear Access**

- 1. Remove the hardware securing the center rear bus access cover (Figure 6).
- 2. Remove the center rear bus access cover.
- 3. Once the rear bus cover is removed you will see the three bus bars (Figure 7).



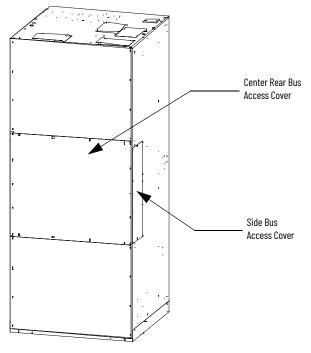



Figure 7 - Bus Bars from Back Access



#### **Side Access**

A side bus access cover is located on each side of the controller.

- 1. Remove the hardware from the appropriate side bus access cover.
- 2. Remove the side bus access cover.
- 3. Once the side bus access cover is removed, you will see the three bus bars. (Figure 8).

Figure 8 - Side Bus Access Cover Removed



#### Front Access - Top Incoming Line Cables

- 1. Complete the Power Lockout Procedure (see <u>Power Lock-out Procedure</u> <u>on page 49</u>) for both medium voltage power cells and the power bus.
- 2. Open the low voltage cell door (refer to <u>Opening the Low Voltage Doors</u> <u>on page 11</u>).
- 3. Open the medium voltage cell doors (refer to <u>Opening the Medium</u> <u>Voltage Doors on page 12</u>).
- 4. Remove the two 1/4-20 self-tapping screws from the low voltage panel if installed. (Installed for shipping purposes see <u>Figure 9</u>).
- 5. Use a flat head screwdriver and turn both of the 1/4-turn fasteners 180 degrees in a counterclockwise direction.

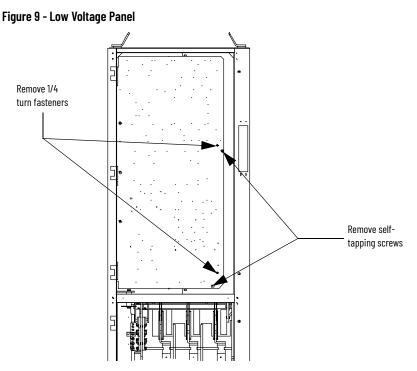
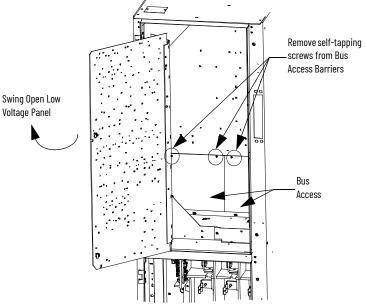
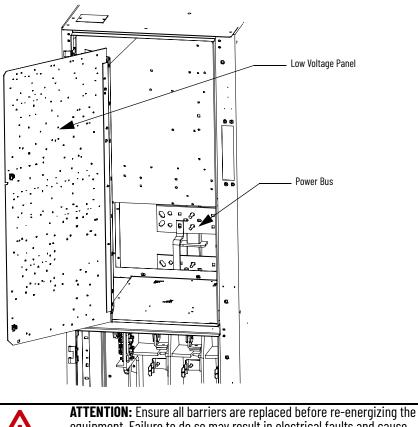




Figure 10 - Access to Power Bus with Low Voltage Panel Rotated




6. Pull on right-hand side of low voltage panel. Swing low voltage panel to the front and left of cabinet (see <u>Figure 10</u>).



The power cell door must be in a fully opened position prior to rotating the low voltage panel.

- 7. Locate the removable bus access barriers (2).
- 8. Remove the 1/4-20 retaining screws from removable bus access barriers to expose incoming cable connections to main bus (see <u>Figure 11</u>).
- 9. Install incoming line cables to power bus, torque to specifications (see <u>Recommended Torque Values on page 10</u>).
- 10. Reverse procedure after cables have been installed.



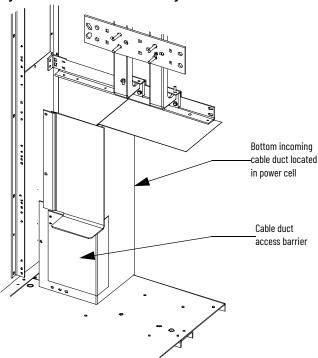


**ATTENTION:** Ensure all barriers are replaced before re-energizing the equipment. Failure to do so may result in electrical faults and cause damage to equipment or severe injury to personnel.

#### Front Access - Bottom Incoming Cables

If the incoming cables in your cabinet enter the section from the bottom, follow the same procedure as for <u>Front Access – Top Incoming Line Cables</u>.




Access to incoming cable duct in the power cell is also required.

1. Open the power cell door.

Figure 11 - Power Bus with Barrier Removed

- 2. Locate incoming cable duct at rear left-hand side of power cell (see <u>Figure 12</u>).
- 3. Remove the 1/4-20 self-tapping screws from the cable duct access barriers. Remove barriers.
- 4. Route and install incoming line cables to power bus. Torque to specifications (see <u>Recommended Torque Values on page 10</u>).
- 5. Reverse procedure after cables have been installed.







**ATTENTION:** Ensure all barriers are replaced before re-energizing the equipment. Failure to do so may result in electrical faults and cause damage to equipment or severe injury to personnel.

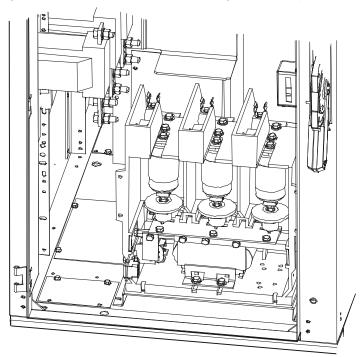
#### Load Cable Connections



**ATTENTION:** To avoid shock hazards, lock out incoming power (see <u>Power Lock-out Procedure on page 49</u>) before working on the equipment. Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death.

**IMPORTANT** The current transformers may be positioned for top or bottom cable exit. Follow the appropriate procedure described for your starter configuration.

**IMPORTANT** Cable size should not exceed 1-750 MCM or 2-500 MCM per phase. Stress cones should be internal non-skirted style only. The use of external style (skirted style) is not recommended due to space considerations.




Refer to Dimensional Drawings provided with order documentation for additional details related to cabinet floor plan.

- 1. Complete the Power Lockout procedure (see <u>Power Lock-out Procedure</u> <u>on page 49</u>).
- 2. Remove the appropriate cable conduit opening plate(s) from the cabinet (see <u>Figure 13</u> to <u>Figure 15</u>). The plate may be punched or cut to mount conduit.
- 3. Load cables for the power cell should be routed before control cables. Pull the cables into the cabinet through the appropriate opening (see <u>Figure 13</u> to <u>Figure 15</u>).

- 4. Remove terminal assembly barriers.
- 5. Connect the cables to the terminal assembly and tighten the 1/2-13 hardware to 61 N•m (45 lb•ft).
- 6. Connect cable shields (if present) to the ground lug.
- 7. Reinstall the current transformer barrier and reassemble the cabinet.

#### Figure 13 - Access to Load Cable Conduit Openings (Bottom Entry)

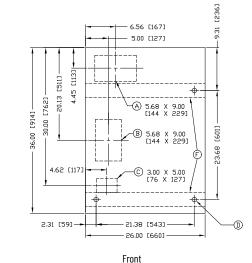


#### Figure 14 - Load Cable Conduit Openings, Bottom Exit

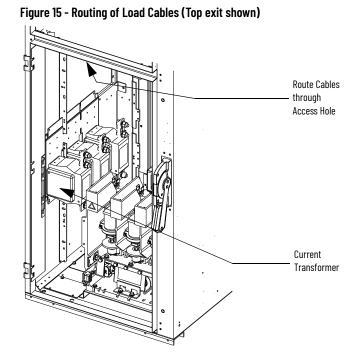
(A) Bottom line cable conduit opening.(B) Bottom load cable conduit opening.

D Mounting holes for 1/2 in. (12) dia. anchor bolts.

© 1.00 (25) x 3.00 (76) non removable sill channel.


 G Top line cable conduit opening (not present when bottom entry/exit is specified with order).
 (+) Top load cable conduit opening (not present

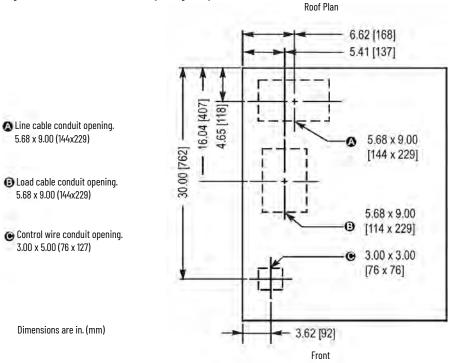
when bottom entry/exit is specified with order).


© Control wire conduit opening.

© Removable lifting angles (20).

Floor Plan




Dimensions = in. (mm)





**ATTENTION:** Ensure all barriers are replaced before re-energizing the equipment. Failure to do so may result in electrical faults and cause damage to equipment or serious injury to personnel.





## Notes:

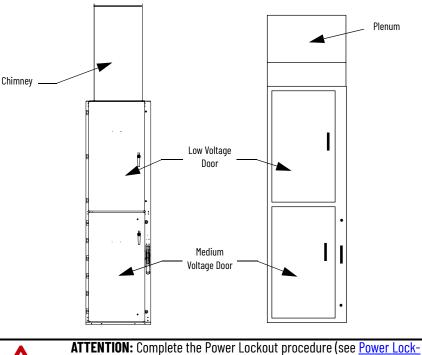
## Installation - Arc Resistant Enclosure

This installation section contains information related only to the Rockwell Automation ArcShield<sup>™</sup> arc resistant enclosures.

| IMPORTANT | For information on the installation site preparation, see ublication |
|-----------|----------------------------------------------------------------------|
|           | <u>MV-0\$050</u> .                                                   |



**ATTENTION:** Use suitable personal protective equipment (PPE) per local codes or regulations. Failure to do so may result in severe burns, injury or death.


## **Door Opening Procedure**

#### **Opening the Low Voltage Doors**

Low voltage doors are identified as LV in Figure 17.

- 1. To access the low voltage compartments for ArcShield cabinets, turn the release handle counter-clockwise.
- 2. The door is now released and will swing open.
- 3. Reverse the procedure to secure the low voltage doors.





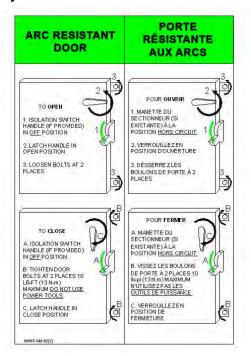


**ATTENTION:** Complete the Power Lockout procedure (see <u>Power Lockout Procedure on page 49</u>) before beginning any service procedures to the unit. Failure to do so may result in severe burns, injury or death.

#### **Opening the Medium Voltage Door**

**IMPORTANT** The medium voltage door has its own isolation switch handle and interlocking safeguards. The low voltage panel compartment and power cell are separated by an isolation barrier.

A medium voltage door is shown in <u>Figure 17</u>.


| IMPORTANT | Failure to follow the MV door opening procedure could damage or<br>jam the mechanical door interlocks. This could result in the<br>mechanical interlocks not operating as intended and could result in<br>the door becoming in the door door interlocks. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | the door becoming jammed in the closed position.                                                                                                                                                                                                         |

- 1. Electrically open the contactor by pressing the STOP button on the starter or at the remote control location.
- 2. Move the isolation switch handle to the OFF position.
- 3. Turn the black release handle counter clockwise 90 ° (Figure 18).
- 4. The door is now released and will swing open (the door is heavy and does take some force to swing open).
- 5. Reverse the procedure to close the door. This sequence must be followed. Door lock bolts must be adequately tightened (see <u>Recommended Torque</u> <u>Values on page 10</u>).



On all ArcShield starters, the sticker in <u>Figure 18</u> is attached to each door for your reference.

Figure 18 - Label on Arc Resistant Door



**IMPORTANT** The last step in closing the medium voltage door, ensure all door locking bolts on the right side of the MV door are in place and tightened until the door is <u>flush with the flange</u>. **Do not overtighten the bolts**. If the door is not securely fastened, it will not be possible to move the isolation switch handle to the ON position. Do not attempt to rotate the arc latching handle until the locking bolts are tightened (refer to Figure 18)



**ATTENTION:** Complete the Power Lock-out procedure (see <u>Power Lock-out Procedure on page 49</u>) before beginning any service procedures to the unit. Failure to do so may result in severe burns, injury or death.

## Anchoring

Place the controller in the desired installation location. Use M12 (1/2 in.) floor mounting bolts to securely fasten the controller to the mounting surface. See <u>Figure 19</u> and <u>Figure 20</u> as an example of the location of the mounting holes in the cabinet.



Refer to dimension drawing provided with order documentation for additional details related to cabinet floor plan.

**IMPORTANT** Predetermined cabinets have been designed for Uniform Building Code (UBC) seismic zone 1, 2A, 2B, 3 and 4, and IBC (International Building Code) seismic activity without overturning or lateral movement, provided they are securely mounted according to UBC, IBC and local building codes. This can include concrete pad design, steel floor design and the sizing of cabinet anchors. Concrete floor cutouts must **not** be adjacent to floor anchor bolts and must be sized to seismic load. Consult factory if floor mounting must be reviewed by an accredited engineer. Many jurisdictions require an engineer from the local area to review the design. Seismic qualification does not indicate that the equipment will function properly after a seismic event.

#### Figure 19 - Cabinet Floor Plan - Top Entry/Exit Units

Floor Plan (A) Line cable conduit opening. [237] 7.50 [191] B Load cable conduit opening. 9.32 5.25 [133] © Control wire conduit opening. Each opening provides 5.68 X 9.00 [144 X 229] access to top and bottom compartments. A [411] [124] (D) Plenum is removed and shipped separately. 16.17 Customer must install. 88 30.00 [762] 36.00 [914] © Mounting holes for 1/2 in. (12) dia. anchor bolts. 5.68 X 9.00 [144 X 229] [601] (F) Removable lifting angles (2). 23.68 (G) 1.00 (25) x 3.00 (76) non removable sill channels. 3.00 X 5.00 127 2.31 [59] 31.38 [797] 4.62 [117] 36.00 [914]

Front

E.

#### Figure 20 - Cabinet Floor Plan - Bottom Entry/Exit Units

- (A) Line cable conduit opening.
- (B) Load cable conduit opening.
- © Control wire conduit opening.
- D Plenum is removed and shipped separately. Customer must install.
- $\textcircled{\sc blue}$  Mounting holes for 1/2 in. (12) dia. anchor bolts.
- (F) Removable lifting angles (2).
- (G) 1.00 (25) x 3.00 (76) non-removable sill channels.



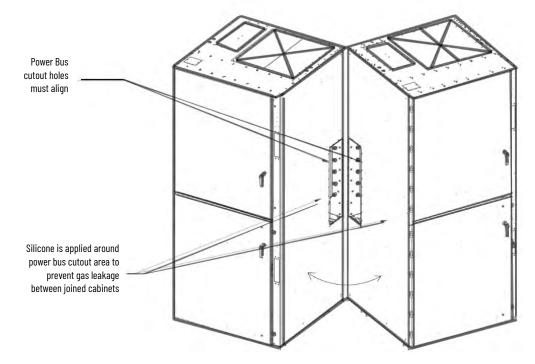
#### Seismic Applications

- For installations on concrete the minimum depth and radius of concrete supporting the cabinet anchors is dependent on seismic loads. Refer to important information above.
- For installations on a metal structure the metal plate depth and cabinet anchoring method is dependent on seismic loads.

## **Joining Sections**



Joining hardware can be found in a package mounted to the front of the shipping skid. Refer to publication <u>MV-0S050</u> for level floor surface requirements.


- 1. Remove the side bus access covers if applicable.
- 2. Position the left side section on a level surface and secure the section in place with M12 (1/2 in.) floor mounting bolts (refer to <u>Anchoring on page 25</u>).
- 3. When joining ArcShield sections, apply a continuous 3 mm (1/8 in.) wide bead of silicon sealer around the entire outer perimeter of one section AND around the cutout for the power bus.
- 4. Position the right section against the left section. Ensure that the surface is level.
- 5. Secure the sections together using the 1/4-20 self-tapping screws (12 lb-ft [15N•m]). Thread the screw through the 7 mm (0.281 in.) clearance hole to the corresponding 6 mm (0.219 in.) pilot hole. To access the rear clearance holes remove the rear covers of the starter. If rear access is not available, refer to Front Access Bottom Incoming Cables (Bottom Entry/Exit) on page 30 or Front Access Top Incoming Cables (Top Entry/Exit) on page 32.
- 6. Use the provided 1/4-20 thread fasteners (12 lb•ft [15N•m]) to secure the entire perimeter of the horizontal bus. Ensure there is a continuous bead of silicone seal around the bus bar opening on one cabinet.
- 7. Secure the right section to the floor using M12 (1/2 in.) floor mounting bolts (refer to <u>Anchoring on page 25</u>).

**IMPORTANT** To prevent arc gas from escaping, all mounting holes on the sides and floor of the enclosure must have hardware installed.



ArcShield units at the end of a line-up have a ground connection to the outside side bus access cover (see <u>Figure 24</u> and <u>Figure 25</u>). This connection must be maintained to ensure unit arc resistant performance.



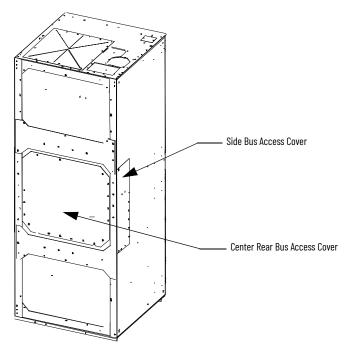


#### Access to the Power Bus



**ATTENTION:** This procedure requires contact with medium voltage components. To avoid shock hazards, lock out incoming power before working on the equipment (see <u>Power Lock-out Procedure on page 49</u>). Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death.

#### **Rear Access**


1. Remove the hardware securing the center rear bus access cover (Figure 22).



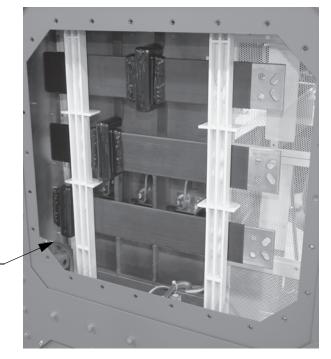
**ATTENTION:** The rear cover plates are made from 12 gauge metal and are mounted in board of the main structure. The covers will drop inside if care is not taken as you remove the mounting bolts.

- 2. Remove the center rear bus access cover.
- 3. Once the center rear bus cover is removed you will see the three bus bars (Figure 24).





#### **Side Access**


A side bus access cover is located on each side of the controller, when required.

- 1. Remove the hardware from the appropriate side bus access cover.
- 2. Remove the side bus access cover (Figure 22).
- 3. ArcShield units at the end of a line-up have a ground connection to the inner plate of the side bus access cover (see <u>Figure 24</u> and <u>Figure 25</u>). This connection must be maintained to ensure unit arc resistant performance.

Figure 23 - ArcShield Side Bus Access Cover Warning Label

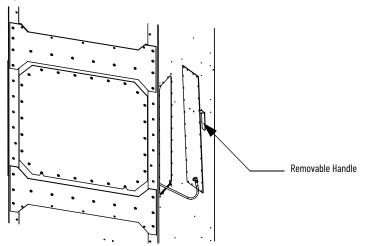
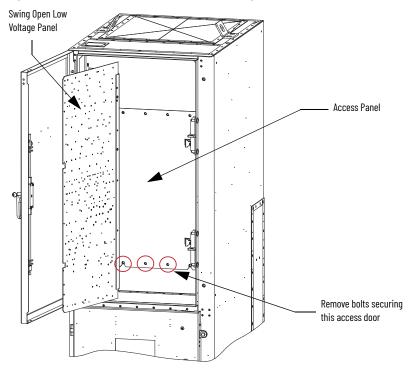



Figure 24 - Side Bus Access Cover Ground Connection (Rear Access Cover)






Side Bus Access Cover Ground Connection



#### Front Access - Bottom Incoming Cables (Bottom Entry/Exit)

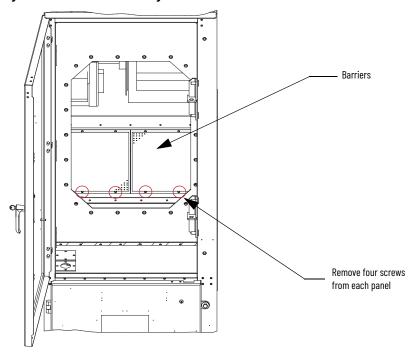
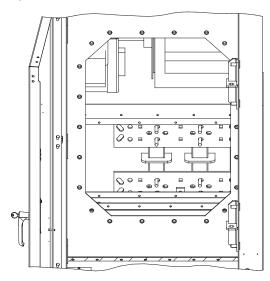

- 1. Complete the Power Lock-out Procedure (see <u>Power Lock-out Procedure</u> <u>on page 49</u>) for both the medium voltage power cell and the power bus.
- 2. Open the low voltage cell door (refer to <u>Opening the Low Voltage Doors</u> <u>on page 23</u>).
- 3. Open the medium voltage door (refer to <u>Opening the Medium Voltage</u> <u>Door on page 24</u>).
- 4. Remove the two 1/4-20 self-tapping screws (12 lb•ft [15N•m]) from the low voltage panel, and swing open the LV panel (see <u>Figure 26</u>).

Figure 26 - Removal of Access Panel with Low Voltage Panel Rotated



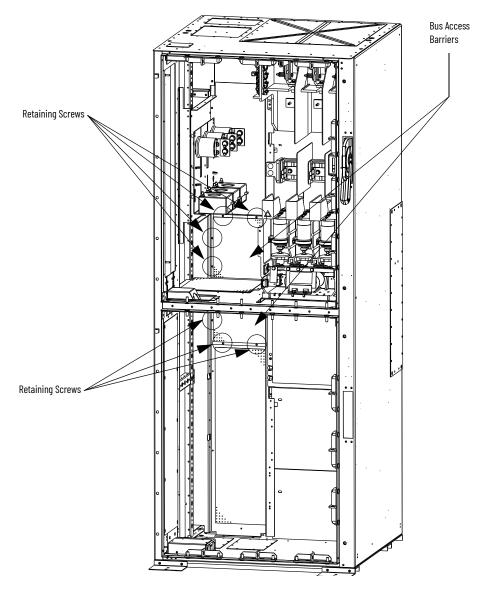

- 5. Remove the 1/4-20 self-tapping screws (12 lb•ft [15N•m]) that secure the access panel to the frame remove the panel (<u>Figure 26</u>).
- 6. Remove the two screens (Figure 27).





- 7. Install incoming line cables to power bus. Torque to specifications (see <u>Recommended Torque Values on page 10</u>) (Figure 28).
- 8. Reverse procedure after cables have been installed.

Figure 28 - Power Bus with Bottom Access Barrier Removed




#### Front Access - Top Incoming Cables (Top Entry/Exit)

Top entry one high ArcShield units are 0.9 m (36 in.) wide versus bottom entry units which are 0.7 m (26 in.) wide.

- 1. Complete the Power Lock-out Procedure (see <u>Power Lock-out Procedure</u> <u>on page 49</u>) for both the medium voltage and the power bus.
- 2. Open the top medium voltage cell door (refer to <u>Opening the Low Voltage</u> <u>Doors on page 23</u>).
- 3. Open the bottom empty cell door (refer to <u>Opening the Medium Voltage</u> <u>Door on page 24</u>).
- Remove 1/4-20 self-tapping screws (12 lb•ft [15N•m]) from removable bus access barriers to expose incoming cable connection to main bus (<u>Figure 29</u> and <u>Figure 30</u>).





- 5. Install incoming line cables to power bus. Torque to specifications (see <u>Recommended Torque Values on page 10</u>).
- 6. Reverse procedure after cables have been installed.

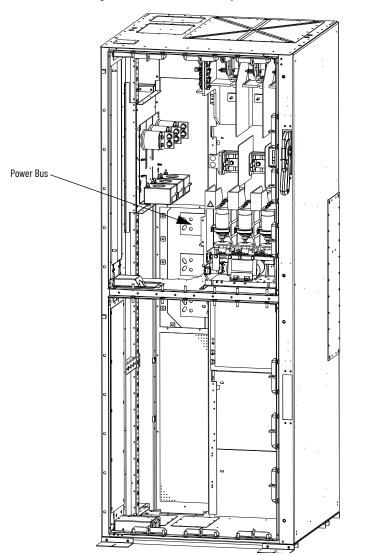



Figure 30 - Power Bus with Top Access Barrier Removed

## **Load Cable Connections**



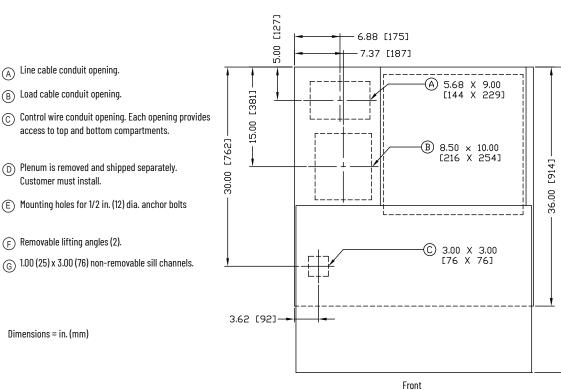
ATTENTION: To avoid shock hazards, lock out incoming power (see <u>Power Lock-out Procedure on page 49</u>) before working on the equipment. Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death. NT The current transformers may be positioned for top or bottom cable

|  | The current transformers may be positioned for top or bottom cable<br>exit. Follow the appropriate procedure described for your starter<br>configuration. |
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------|

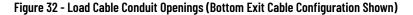
| IMPORTANT | Cable size should not exceed 1-500 MCM or 2-4/0 per phase. For<br>larger cables, an incoming line module must be used. Stress cones  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|
|           | should be internal non-skirted style only. The use of external style (skirted style) is not recommended due to space considerations. |

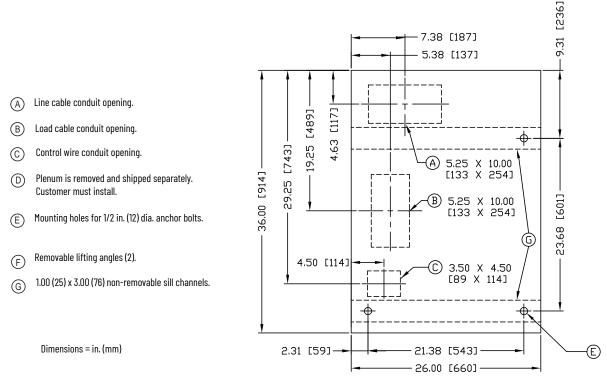
Refer to dimensional drawings provided with order Documentation for additional details related to cabinet Floor plan.

- 1. Complete the Power Lockout procedure (see <u>Power Lock-out Procedure</u> <u>on page 49</u>).
- 2. Remove the appropriate cable conduit opening plate(s) from the cabinet (see <u>Figure 31</u> and <u>Figure 32</u>). The plate may be punched or cut to mount conduit.
- 3. Load cables for the power cell should be routed before control cables. Pull the cables into the cabinet through the appropriate opening (see <u>Figure 31</u> and <u>Figure 32</u>).
- 4. Remove current transformer barriers.
- 5. Connect the cables to the current transformers and tighten the connections to 61 N•m (45 lb•ft).
- 6. Connect cable shields (if present) to the ground lug.
- 7. Reinstall the current transformer barrier and reassemble the cabinet.




**ATTENTION:** Ensure all barriers are replaced before reenergizing the equipment. Failure to do so will defeat the arc resistant capabilities of the structure and may result in electrical faults and cause damage to equipment or serious injury to personnel.


[1168]


46,00













## Notes:

# **Common Installation**

### **Bus Splicing**

#### **Power Bus**



**ATTENTION:** This procedure requires contact with medium voltage components. To avoid shock hazards, lock out incoming power before working on the equipment (see <u>Power Lock-out Procedure on page 49</u>). Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death.

1. The power and ground bus splice kit can be found in a package mounted to the front of the shipping skid.

**IMPORTANT** Verify that the structure series numbers on the splice kit package match the structure series number found on the cabinet nameplate (see <u>Starter Identification on page 9</u> for details regarding the nameplate).

- 2. Refer to <u>Access to the Power Bus on page 15</u> for Standard Enclosure and refer to <u>Access to the Power Bus on page 28</u> for ArcShield Enclosure.
- 3. For a **1200 A** power bus, assemble the splice bars as shown in <u>Figure 33</u>. Tighten the nuts to 61 N•m (45 lb•ft).

For a **2000 A** power bus, assemble the splice bars as shown in Figure 34. Tighten the nuts to 61 N•m (45 lb•ft).

For a **3000 A** power bus, assemble the splice bars as shown in <u>Figure 35</u>. Tighten the nuts to 61 N•m (45 lb•ft)

| IMPORTANT | Attach the bus links to the cabinet on the left side first - as viewed from the front of the unit.                                                                                             |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IMPORTANT | Always place the bus clamps on the rear side of each main horizontal bus or splice bar, as viewed from the front of the unit (see <u>Figure 33</u> , <u>Figure 34</u> , or <u>Figure 35</u> ). |

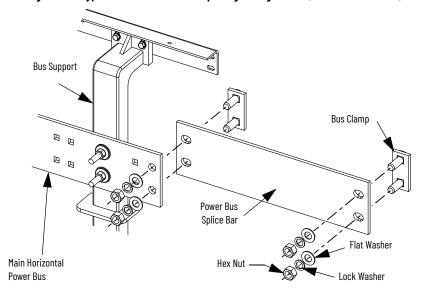



Figure 33 - Typical 1200 A Power Bus Splicing Configuration (Viewed from Front)

Figure 34 - Typical 2000 A Power Bus Splicing Configuration (Viewed from Front)

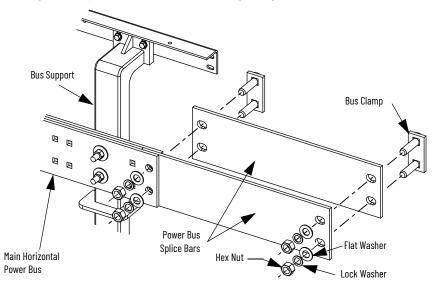
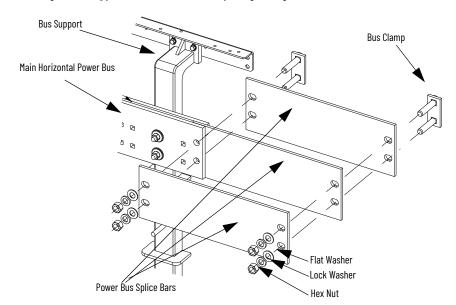
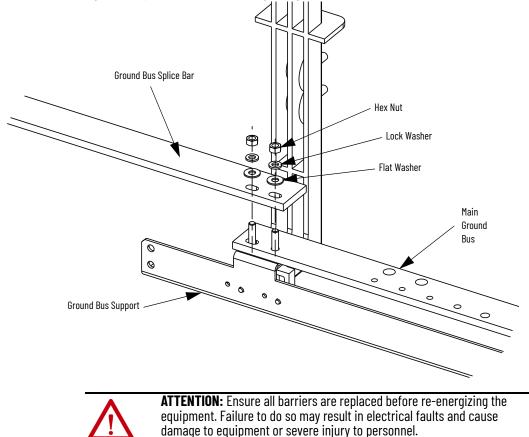




Figure 35 - Typical 3000 A Power Bus Splicing Configuration (Viewed from Front)





**ATTENTION:** Ensure all barriers are replaced before re-energizing the equipment. Failure to do so may result in electrical faults and cause damage to equipment or severe injury to personnel.


### **Insulated Power Bus Splicing**

If the starter is equipped with insulated power bus, then a splice kit with insulated links, insulating boots and tape will be provided. Refer to the kit for installation instructions.

#### **Ground Bus**

- 1. See <u>Figure 36</u> to determine the correct ground splice configuration and assemble as shown.
- 2. Torque the hardware to 14.5 N•m  $\pm$  1 N•m (11 lb•ft  $\pm$  1 lb•ft).
- 3. Check all hardware for correct tightness and replace all covers and plates.

#### Figure 36 - Typical Ground Bus Splicing Configuration (Front View)



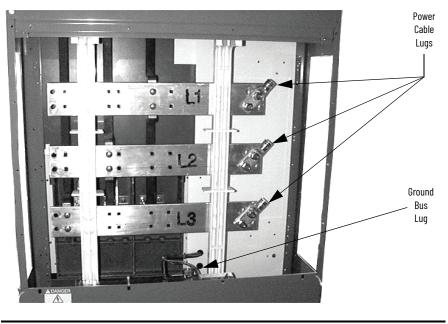
## Incoming Line Cable Connections

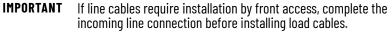


**ATTENTION:** To avoid shock hazards, lock out incoming power (see <u>Power Lock-out Procedure on page 49</u>) before working on the equipment. Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death.

Incoming cables are connected to the power bus in the last section on the left.

 IMPORTANT
 For Non-ArcShield units, cable size should not exceed 1-750 MCM or 2-500 MCM per phase.

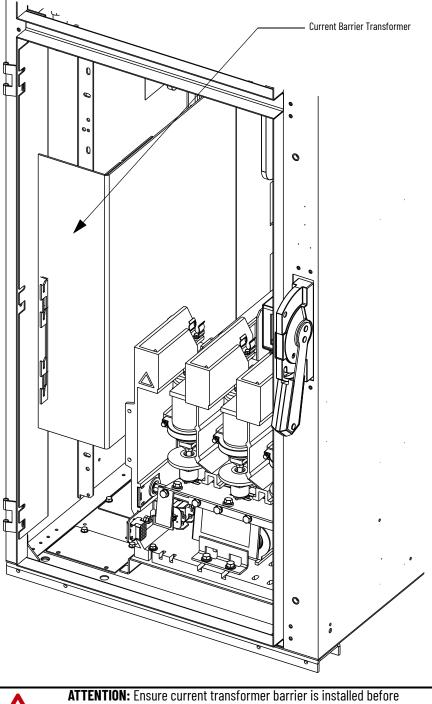

 For ArcShield units, cable size should not exceed 1-500 MCM or 2-4/0 per phase. For larger cables, an incoming line module must be used.


 Stress cones should be internal non-skirted style only. The use of outcome and due to exceed

external style (skirted style) is not recommended due to space considerations.

- 1. Remove the center-back plate or side plate to access the power bus. If access to the rear of the unit is not possible, refer to <u>Access to the Power</u> <u>Bus on page 15</u> for Standard or <u>Access to the Power Bus on page 28</u> for ArcShield enclosures.
- 2. Connect the incoming power lines to the power bus. Torque to specifications (see <u>Recommended Torque Values on page 10</u>) (see <u>Figure 37</u>).

#### Figure 37 - Incoming Line Cable Connections






- 3. Connect the ground wire to the ground bus lug.
- 4. Connect any external control wires to the control panel terminal blocks in the low voltage compartment. Refer to wiring diagram.

## Installation of Current Transformer Barrier

#### Figure 38 - Current Transformer Barrier





**ATTENTION:** Ensure current transformer barrier is installed before re-energizing the equipment. Failure to do so may result in electrical faults and cause damage to equipment or serious injury to personnel.

## Hi-Pot and Insulation ResistanceTest

Insulation integrity should be checked before energizing medium voltage electrical equipment. Use a high voltage AC insulation tester or an insulation resistance tester. (5000V type is recommended).



**ATTENTION:** Exercise caution when performing high voltage tests on the equipment. Failure to do so may result in electric shock causing severe burns, injury or death.



**ATTENTION:** Disconnect power factor correction capacitors (if so equipped) before performing the Hi-Pot test. Failure to do so may result in personal injury or damage to the equipment. See Power Lockout Procedure (see <u>Power Lock-out Procedure on page 49</u>) for information on dissipating any stored power in the capacitors.



**ATTENTION:** Remove all primary fuses for the control power transformer and/or the potential transformer. Failure to do so may cause damage to the equipment during the Hi-Pot test.

Insulation can be tested from phase to phase and from phase to ground. The recommended level for AC Hi-Pot testing is  $(2 \times V_{LL})$  volts, where  $V_{LL}$  is the rated line-to-line voltage of the power system. The leakage current must be less than 20 mA. Record the result for future comparison testing.

If an insulation resistance tester is used, it should indicate  $50,000 \text{ M}\Omega$  or greater if the unit is isolated from the line and the motor. If the unit is connected to a motor, the insulation resistance tester should indicate  $5000 \text{ M}\Omega$  or greater (phase to ground).

## **Start-up Procedure**

### **Contactor Inspection**

See publication <u>1502-UM060</u> for information on pre-energization inspection, vacuum bottle integrity test and insulation resistance test.

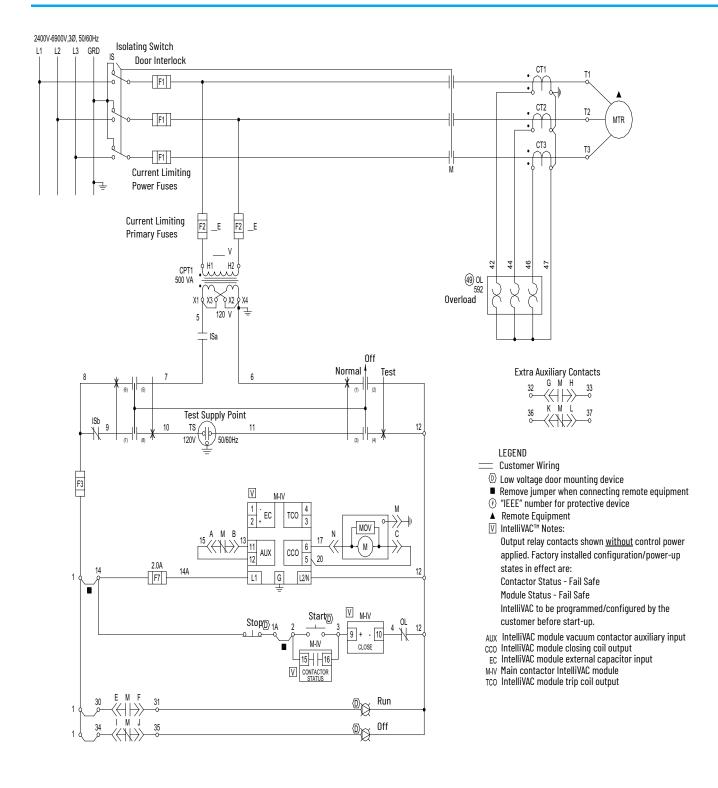
### **Preliminary Checks**

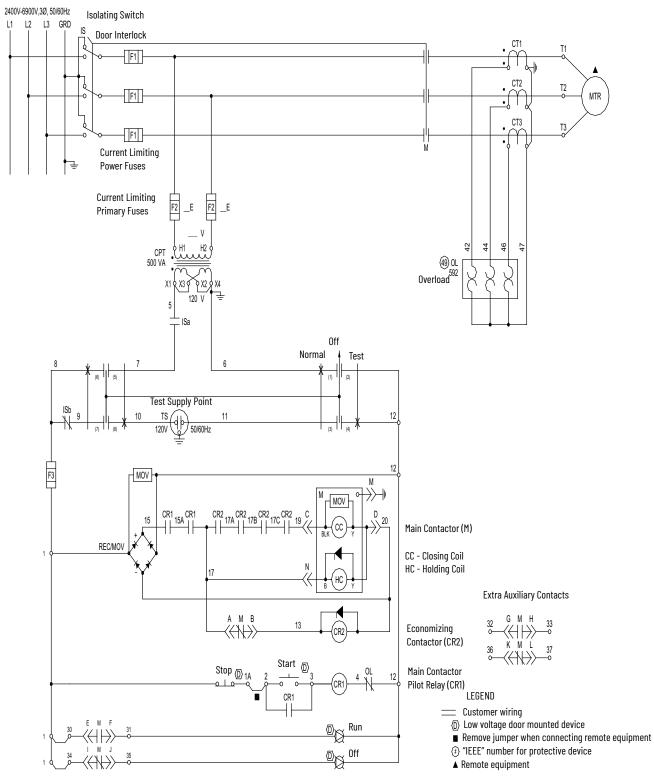
Verify the following:

- Contactor current and voltage ratings are correct for the attached load;
- Control voltage is correct;
- Settings for protective relays;
- Heater elements (if provided) in overload relay are secure and undamaged;
- Equipment grounding;
- External power and control connections match electrical diagrams;
- All hardware is correctly reinstalled and torqued to specifications (see <u>Recommended Torque Values on page 10</u>);
- All barriers are replaced to correct positions;
- All fuses are correct class, type and rating;
- Mechanical interlocks and isolation switch function properly;
- Ensure that any microprocessor-based protection relay is programmed;
- Interior of cabinet is free from dirt, loose bolts, tools or metal chips. Vacuum clean if necessary;

• All tools are accounted for. If you cannot locate a tool, do not energize the unit until it is found.

#### **Testing Contactor Operation**


1. Connect the appropriate external power supply (120 or 230V AC) to the test receptacle in the control panel. Turn the selector switch to the TEST position.




**ATTENTION:** Some control circuit configurations may require control jumpers to let the contactor close during the test procedure. Do not jumper any isolation switch contacts such as ISa or ISb (see Figure 60 on page 66 for the location of these contacts). Using jumpers for these contacts may result in equipment damage or injury to personnel.

- 2. Electrically operate the contactor several times. Inspect the armature plate to verify that it fully contacts the magnetic cores.
- 3. Turn the selector switch to the OFF position and unplug the test voltage.
- 4. Remove any metal filings or loose hardware from around the magnetic cores of the vacuum contactor. The debris is attracted to the coil once it is energized and could prevent the contactor from closing properly.

Figure 39 - Typical Wiring Diagram: Electrically Held Vacuum Contactor (with IntelliVAC Control)





#### Figure 40 - Typical Wiring Diagram: Electrically Held Vacuum Contactor (Relay Control)

## Notes:

# **Maintenance**



**ATTENTION:** Use suitable personal protective equipment (PPE) per local codes or regulations. Failure to do so may result in severe burns, injury or death.

**IMPORTANT** Establish a maintenance and inspection schedule for the equipment. Annual servicing, or every 20,000 operations (whichever comes sooner) is the minimum recommended. Extreme operating conditions may warrant additional attention.

### **Tool Requirements**

| IMPORTANT | Some components of this product incorporate Imperial hardware.<br>Rockwell Automation recommends the use of the appropriate tools to<br>successfully complete the maintenance procedures on these<br>components. If you cannot obtain such tools, contact your area Rockwell<br>Automation sales office for assistance. |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                                                                                                                                                                         |

- Torque wrench: 0...65 N•m (0...48 lb•ft)
- Sockets: 3/8 in., 7/16 in., 9/16 in.
- Ratchet handle and extension
- Wrenches: 7/16 in., 1/2 in., 9/16 in.
- Feeler gauges: 1.3 mm (0.050 in.), 2 mm (0.080 in.), 0.5 mm (0.020 in.)
- Flat-blade screwdriver
- Nyogel 759G/760G Lubricant, Rockwell Automation part no. 80158-357-51

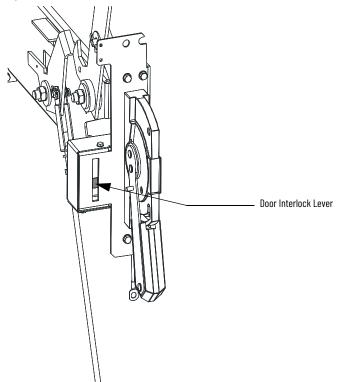
### Recommended Torque Values

When reinstalling components, or when reassembling the cabinet, tighten the following bolt sizes to the specified torque values:

#### Table 2 - Torque Values for Hardware

| 1/4 in. hardware  | 8 N•m (6 lb•ft)     |
|-------------------|---------------------|
| 5/16 in. hardware | 14.5 N•m (11 lb•ft) |
| 3/8 in. hardware  | 27 N•m (20 lb•ft)   |
| 1/2 in. hardware  | 65 N•m (48 lb•ft)   |

## Door Interlock Circumvention




**ATTENTION:** The door interlock mechanism is designed to prevent access to the medium voltage cell while the unit is energized. When the unit is in operation, do not circumvent this interlocking safety feature. Always disconnect and lock out incoming power (refer to <u>Power Lock-out Procedure on page 49</u>) before proceeding with any adjustments requiring the handle to be moved to the ON (closed) position. Failure to do so may result in electric shock causing severe burns, injury or death.

Some of the following sections may require moving the isolation switch handle to the ON position while the medium voltage door is open. The interlocking safeguards in the mechanism are designed to prevent the handle from moving to the ON position while the cabinet door is open.

- To circumvent this safety feature, use a screwdriver, or other tool, to depress the door interlock lever in the switch.
- Hold the lever down while moving the handle to the ON (closed) position.

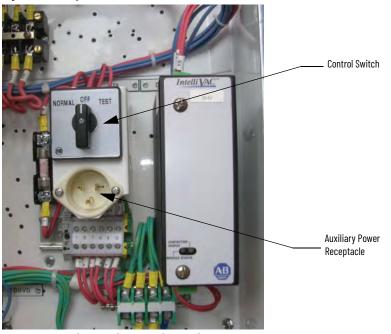
Figure 41 - Door Interlock Lever



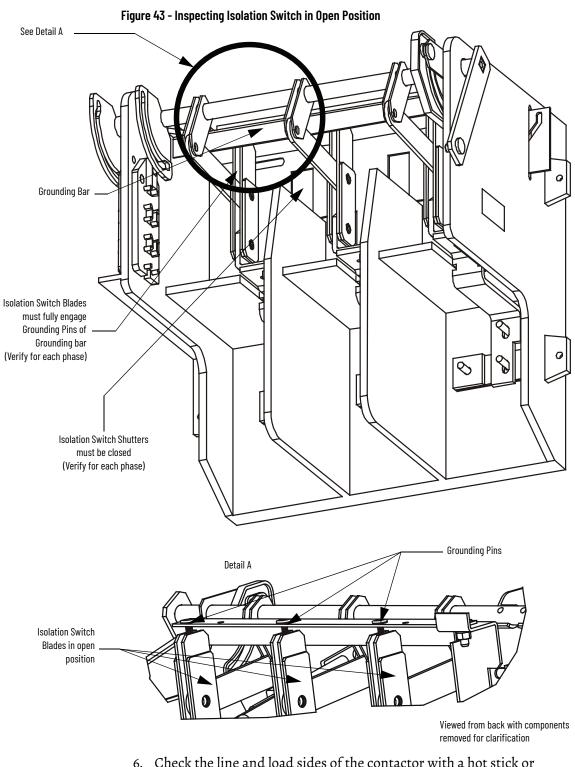
### **Power Lock-out Procedure**



**ATTENTION:** Use suitable personal protective equipment (PPE) per local codes or regulations. Failure to do so may result in severe burns, injury or death.

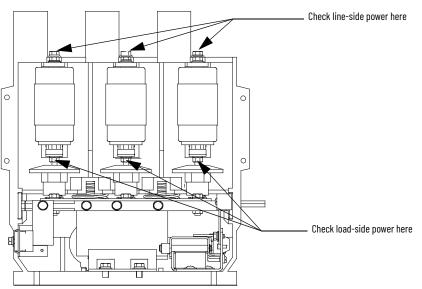



**ATTENTION:** Always perform the power lockout procedure before servicing the equipment. Failure to do so may result in severe burns, injury or death.


**ATTENTION:** The following procedure requires moving the isolation switch handle to the ON position. To avoid shock hazards, disconnect and lock out incoming power before proceeding with servicing the equipment. Failure to lock out incoming power will result in a live power cell once the isolation switch handle is in the ON position and may cause severe burns, injury or death. Rockwell Automation does not assume any responsibility for injuries to personnel who have not completed the following safety procedure prior to servicing the equipment.

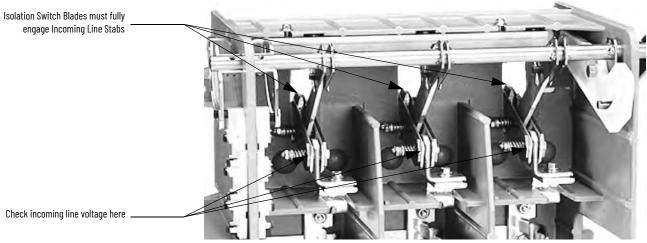
- 1. Disconnect and lock out all feeder power supplies to the starter.
- 2. Move the isolation switch handle to the OFF position.
- 3. If the unit is equipped with power factor correction capacitors, stored energy must be dissipated before entering the power cell. Wait at least five minutes before entering the power cell or dissipate the power using the following procedure:
  - a. Verify that the isolation switch handle is in the OFF position.
  - b. Open the low voltage door.
  - c. Plug the appropriate power supply (120 or 230V) into the auxiliary power receptacle on the control panel (see <u>Figure 42</u>).
  - d. Move the control switch to the TEST position.
  - e. Electrically operate the contactor by pushing the START button on the unit or at a remote location.
  - f. Disengage the contactor and move the control switch to the NORMAL position. Disconnect the external power supply.
  - g. Complete the Power Lockout procedure.






- 4. Open the medium voltage door.
- 5. Visually inspect that the isolation switch blades fully engage the grounding pins on the grounding bar. The isolation switch shutters should be closed (see Figure 43).




- 6. Check the line and load sides of the contactor with a hot stick or appropriate voltage measuring device to verify that they are voltage free (see Figure 44).
  - a. Check for line-side voltage at the top vacuum bottle terminals.
  - b. Check for load-side voltage at the bottom vacuum bottle terminals.

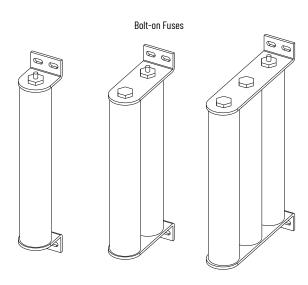
#### Figure 44 - Contactor Voltage Checkpoints



- 7. Use the Door Interlock Circumvention procedure (refer to <u>Door</u> <u>Interlock Circumvention on page 48</u>) to move the isolation switch handle to the ON position.
- 8. Check the isolation switch blades with a hot stick or appropriate voltage measuring device to verify that they are voltage free (see Figure 45).

#### Figure 45 - Isolation Switch Voltage Check Points




9. Once all power circuits are verified to be voltage free, move the isolation switch handle back to the OFF position. The unit is now safe to service.

## Fuse Removal and Replacement




**ATTENTION:** Only personnel who have been trained and understand the Bulletin 1500 product line are to work on this equipment. Suitable safety equipment and procedures are to be used at all times.

#### Figure 46 - Medium Voltage Power Fuses



Clip-on Fuse





**ATTENTION:** Servicing energized industrial control equipment can be hazardous. Severe injury or death can result from electrical shock, burn, or unintended actuation of control equipment. Hazardous voltages may exist in the cabinet even with the circuit breaker in the off position. Recommended practice is to disconnect or lock out control equipment from power sources, and confirm discharge of stored energy in capacitors. If it is necessary to work in the vicinity of energized equipment, the safety related work practices of <u>NFPA 70E, Electrical Safety requirements for Employee Work places</u>, must be followed.



**ATTENTION:** To prevent electrical shock, ensure the main power has been disconnected and equipment has been tagged and locked out. Verify that all circuits are voltage free using a hot stick or appropriate voltage-measuring device. Failure to do so may result in injury or death.

The main power fuse has a pop up indicator pin located at one end of the fuse. When a fuse has opened, the indicator will be in its extended position. The fuse should be oriented in the fuse clip assembly so that the indicator is at the top.



**ATTENTION:** The fuses may be hot for up to one hour after operating. Verify the temperature before handling and use insulated hand protection if needed. Failure to do so may result in burns.

#### **Bolt-On Fuse Removal/Installation**

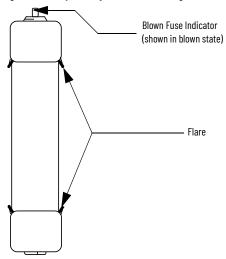
**Tools required:** 3/8 in. drive ratchet, 2 in. extension, 6 in. extension, 12 in. extension, 1/2 in. socket, 3/8 in. drive torque wrench.



The fuse configuration will determine what length of extension will be required to get at the mounting hardware. The fuse configuration will also determine what size of interphase barriers are installed, the lower barriers can be removed to provide better access to the fuse mounting nuts.

- 1. Remove the two lower mounting nuts, lock and flat washers from the mounting studs.
- 2. Remove the upper two mounting nuts, lock and flat washers from the mounting studs and remove the fuse from the fuse mounting studs.
- 3. Install the replacement fuse on the four mounting studs, hold the fuse in place and install the upper two flat washers, lock washers and nuts. Torque nuts to 14.5 N•m (11 lb•ft).
- 4. Install the lower two flat washers, lock washers and nuts. Torque nuts to 14.5 N•m (11 lb•ft).
- 5. If interphase barriers were previously removed ensure they are properly reinstalled.

### **Clip-On Fuse Removal/Installation**


**Recommended tool:** Fuse extractor part # 80144-491-02 (optional)



The interphase barriers located at the bottom of the fuse assembly can be removed to ease the removal and installation of the fuse.

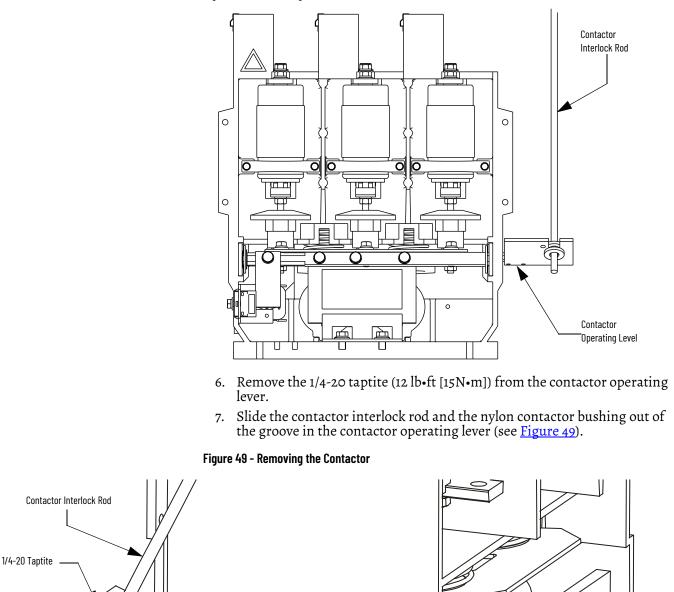
- 1. Place the cup section of the fuse extractor over the top of the fuse.
- 2. Pull back on fuse extractor with a quick motion to dislodge the upper portion of the fuse from top fuse clip.
- 3. Set fuse extractor aside.
- 4. Remove the lower portion of the fuse from fuse clip by pulling up and slightly rotating the fuse in one entire movement.
- 5. To install the replacement fuse, place the fuse between the fuse clips.
- 6. Ensure that the flares on the fuse ferrules are properly located with respect to the fuse clips.
- 7. Apply a rapid shove to the bottom portion of the fuse barrel to force the fuse into the clip.
- 8. Apply a rapid shove to the top portion of the fuse barrel to force the fuse into the clip.
- 9. Grip center of fuse barrel with both hands and apply slight back and forward force to ensure fuse has been properly seated in the fuse clips.
- 10. Again check and verify that the flares at the top and bottom of the fuse are not in the contact area of the fuse clip.
- 11. If interphase barriers were previously removed ensure they are properly reinstalled.

#### Figure 47 - Clip-on Style Medium Voltage Power Fuse



## **Contactor Maintenance**

Refer to publication <u>1502-UM060</u> for contactor maintenance instructions.


#### **Remove the Contactor**



**ATTENTION:** To avoid shock hazards, lock out incoming power (refer to <u>Power Lock-out Procedure on page 49</u>) before working on the equipment. Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death.

- 1. Complete the Power Lockout Procedure (refer to <u>Power Lock-out</u> <u>Procedure on page 49</u>).
- 2. Disconnect the control wiring harness from the wire plug at the lower left side of the contactor (see <u>Figure 48</u>).
- 3. Remove the control power transformer primary fuses from the top of the contactor.
- 4. Disconnect the control power transformer primary leads from the fuse terminals at the top of the contactor.
- 5. Use a 9/16 in. socket wrench to disconnect the power cables and bus bars from the rear of the contactor.

Figure 48 - Removing the Contactor



Rockwell Automation Publication 1512A-UM100H-EN-P - December 2021

10. Carefully remove the contactor from the cabinet.

front of the contactor.

9.

8. Remove the two 5/16 contactor mounting bolts (11 ft•lb [14.5 N•m]) at the

Slide the contactor forward slightly to disengage the retaining tabs at the rear of the contactor from the mounting bracket inside the cabinet.

Contactor Retaining Tabs

Nylon Contactor Bushing

Nyloc Nut

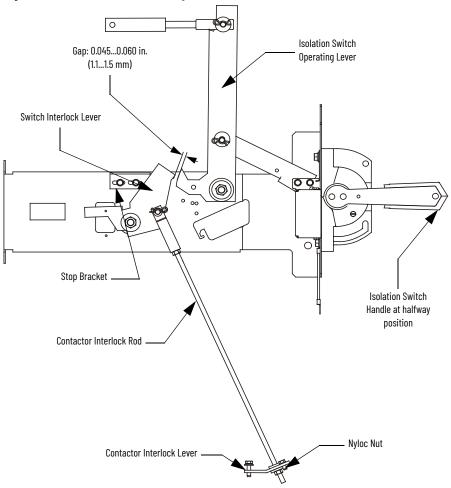
Contactor Operating Lever

11. If the contactor is being replaced with a new one, move the contactor interlock lever to the new contactor.



**ATTENTION:** The contactor weighs approximately 22 kg (50 lb) and assistance may be required to safely remove it from the cabinet and transport it. Failure to use caution when moving the contactor may result in equipment damage and/or personal injury.

- To reinstall the contactor, reverse the procedure. Make sure the mounting bolts (11 lb•ft [14.5 N•m]), power cable hardware (45 lb•ft [61 N•m]), and bus bar hardware (45 lb•ft [61 N•m]) is properly torqued.
- 13. Adjust the contactor interlock rod according to the Contactor Interlock Rod Adjustment procedure. Refer to <u>Contactor Interlock Rod</u> <u>Adjustment on page 57</u>.


## Contactor Interlock Rod Adjustment



**ATTENTION:** To avoid shock hazards, lock out incoming power (refer to <u>Power Lock-out Procedure on page 49</u>) before working on the equipment. Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death.

- 1. Complete the Power Lockout Procedure (refer to <u>Power Lock-out</u> <u>Procedure on page 49</u>).
- 2. Open the medium voltage door. Use the Door Interlock Circumvention procedure (refer to <u>Door Interlock Circumvention on page 48</u>) to move the isolation switch handle halfway between the OFF and ON position (see <u>Figure 50</u>). Keep the handle in this position until the adjustment procedure is completed.
- 3. With the contactor in the OFF position, insert a 1.5 mm (0.060 in.) feeler gauge in the gap between the interlock lever and the isolation switch operating lever. The gap must be between 1.0 mm to 2.0 mm (0.039 in. to 0.078 in.).
- 4. To reduce the gap distance, follow steps 5-7. To increase the gap distance, follow steps 8-10.

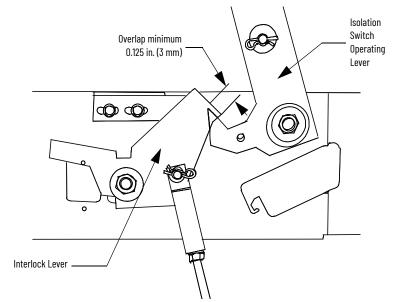
#### Figure 50 - Isolation Switch Handle Adjustments



#### To Reduce the Gap Distance

- 5. Loosen the two screws in the stop bracket and move the stop bracket up against the interlock lever.
- 6. With the feeler gauge positioned in the gap, move the interlock lever and the stop bracket closer to the isolation switch operating lever to reduce the gap space.
- 7. Tighten the 1/4-20 in. stop bracket screws (12 lb•ft [15 N•m]).
- 8. Tighten the nyloc nut until it is snug against the contactor operating lever. Do not overtighten the nyloc nut as it will move the operating lever and reduce the gap. Proceed to step 11.

#### To Increase the Gap Distance


- 9. Loosen the two screws in the stop bracket and move the stop bracket away from the interlock lever.
- 10. Loosen the nyloc nut until the gap reaches the desired size.
- 11. Move the stop bracket until it just touches the interlock lever and tighten the screws.
- 12. Apply Loctite 290 (or equivalent adhesive) to the 1/4-20 in. stop bracket screws and torque the screws to 12 lb•ft (15 N•m).
- 13. Move the isolation switch handle to the ON position.

14. Manually close the contactor by attaching locking pliers to the contactor operating lever and pushing down until the armature plate contacts the magnetic cores (see <u>Figure 51</u>). Verify that the interlock lever overlaps the isolation switch operating lever by at least 3 mm (0.125 in.) (see <u>Figure 52</u>).

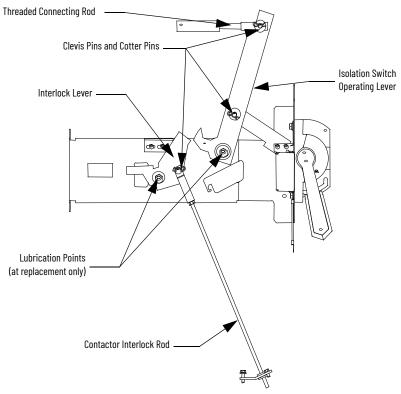
#### Figure 51 - Closing Contactor Manually (Some parts not shown)



Figure 52 - Isolation Switch Operating Lever Overlap



15. Open the contactor. Verify that the interlock lever and the rod move freely and that the return springs move the assembly back to the starting position.


## Isolation Switch Mechanism Inspection and Maintenance



**ATTENTION:** To avoid shock hazards, lock out incoming power (refer to <u>Power Lock-out Procedure on page 49</u>) before working on the equipment. Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death.

- 1. Complete the Power Lockout Procedure (refer to <u>Power Lock-out</u> <u>Procedure on page 49</u>).
- 2. Open the medium voltage door.
- 3. Inspect the condition of the clevis pin and cotter pins shown in <u>Figure 53</u>. Replace any worn parts.
- 4. If it is necessary to replace the isolation switch operating lever or the interlock lever, apply Dow Corning 55 O-ring lubricant (Rockwell Automation part no. RU-8216, or equivalent) to the pivot points before installing the new components (see Figure 53).

#### Figure 53 - Isolation Switch Handle Mechanism Lubrication Points



- 5. Inspect the mounting hardware on the isolation switch operating lever and contactor interlock rod (see <u>Figure 53</u>). Tighten any loose hardware.
- 6. If an infrared window is available, complete the following steps (during normal equipment run mode):
  - a. Using a thermal camera, measure the temperature of the isolation switch at least every 6 months.
  - a. Monitor every reading and record temperature variations.

Temperatures above 100 °C (212 °F) is cause for concern. See <u>Recommended Corrective Action on page 61</u>.

7. If an infrared window is not available, complete the following steps: a. Perform a visual inspection of the isolation switch.

Look for dried, dark-colored, hardened grease or pitting on the incoming line stabs.



A healthy isolation switch has a thin layer of clear lubricant.



ATTENTION: Do not add grease. Do not remove existing grease and apply a different lubricant.

b. Using a micro-ohmmeter, take resistance measurements as close as possible to the isolation switch and load connections (from the main power bus to the top of the power fuses).

Measurements greater than 150  $\mu\Omega$  will prompt hardware changes. See <u>Recommended Corrective Action on page 61</u>.

**Recommended Corrective Action** 

- 1. Replace all three movable blades.
  - 400/600 A isolation switch: torque to 11 ft•lb (14.9 N•m)
  - 800 A isolation switch: torque to 19 ft•lb (25.8 N•m)
- 2. If there is hardened, dark colored grease or pitting on the isolation switch terminals, replace the incoming line stabs.

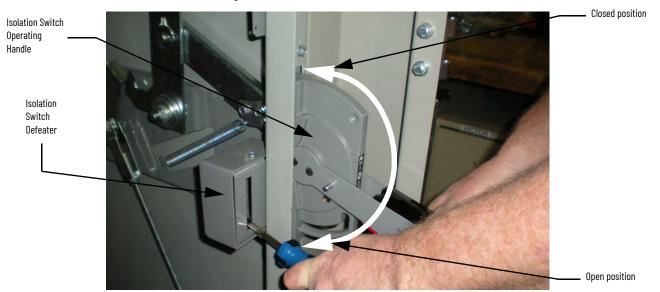
Pitting can indicate incorrect adjustment of the isolation switch auxiliary switches.

Contact technical support for assistance.

## Isolation Blade Switch Adjustment



**ATTENTION:** Complete the Power Lockout procedure of the main power bus before servicing equipment. Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury, or death.




**WARNING:** Use suitable personal protective equipment (PPE) per local codes or regulations. Failure to do so may result in severe burns, injury, or death.

- 1. Insert a screwdriver in the Isolation Switch Defeater, push down and hold at the bottom position.
- 2. Actuate the Isolation Switch Operating Handle from Open (black) to Closed (red) in a continuous movement.

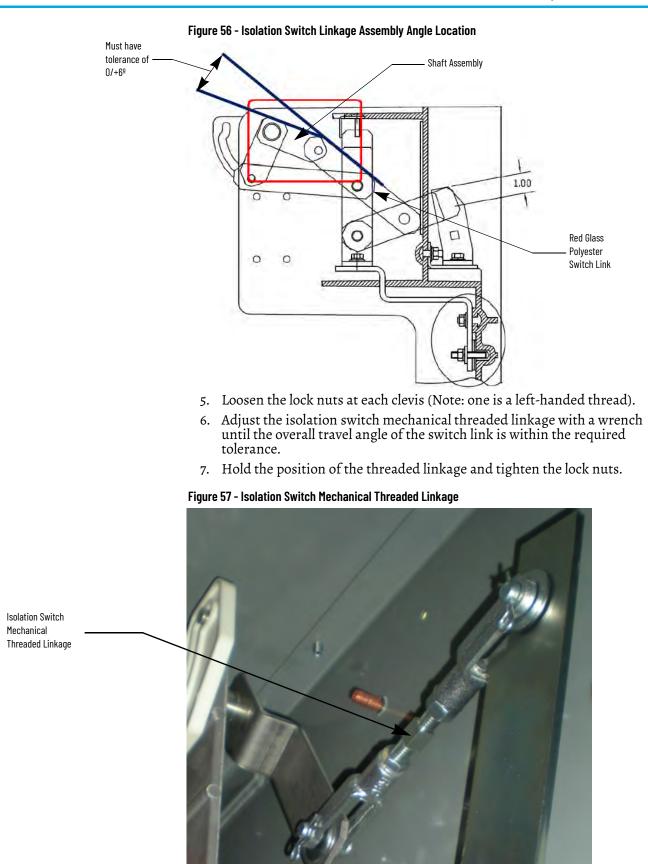
Do not use excessive force or speed in closing the switch. This will cause an incorrect test result.

#### Figure 54 - Isolation Switch Defeater



3. Phase 3 (far right linkage) must be measured for overall travel. All three phases share the same main actuating shaft but the Phase 3 is the easiest to measure.

Figure 55 - Isolation Switch Linkage Assembly Location




4. Rest the customer-supplied digital protractor on the bottom of the isolation switch linkage assembly.

The angle of the linkage must be  $180^{\circ}$  or slightly higher, with a tolerance of  $0/+6^{\circ}$ .



If a digital protractor is unavailable, lay a straight edge against the bottom of the steel lever on the operating shaft to check for parallel alignment of the red link.



8. Actuate the Isolation Switch handle to verify the travel angle.

Rockwell Automation Publication 1512A-UM100H-EN-P - December 2021

If the angle is incorrect, repeat steps 5 through 7 until desired travel angle is reached.



**ATTENTION:** All three isolation switch linkage assemblies must meet the angle tolerance requirements.

### Isolation Switch Mechanism Grounding Adjustment



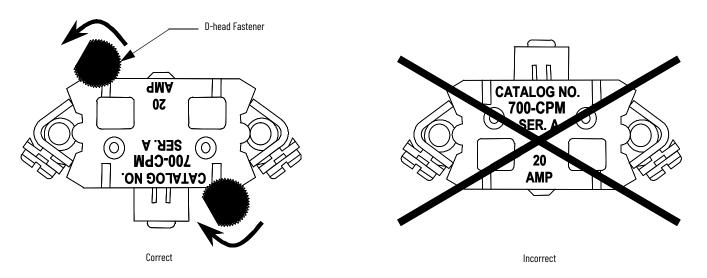
**ATTENTION:** To avoid shock hazards, lock out incoming power (refer to <u>Power Lock-out Procedure on page 49</u>) before working on the equipment. Verify with a hot stick or other appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death.

- 1. Complete the Power Lockout Procedure (refer to <u>Power Lock-out</u> <u>Procedure on page 49</u>).
- 2. Inspect the grounding of the isolation switch blades. When the isolation switch handle is in the OFF position, the isolation switch blades must fully engage the grounding pins and be within 1.5 mm (0.06 in.) of the ground bar (see <u>Figure 58</u>). When the isolation switch handle is in the ON position, the blades must fully engage the incoming line stabs.





- 3. To adjust the distance from the blades to the bar, disconnect the threaded connecting rod at the handle operating lever.
- 4. Turn the threaded connecting rod to lengthen or shorten it. This will adjust the position of the isolation switch blades in the ON and OFF position.

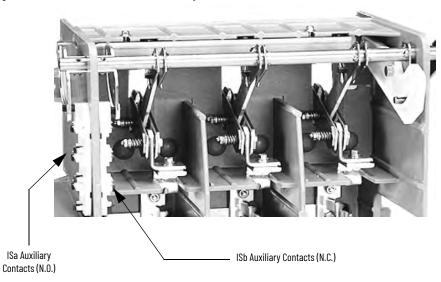

## Auxiliary Contacts Inspection and Replacement



**ATTENTION:** To avoid shock hazard, lock out incoming power (refer to <u>Power Lock-out Procedure on page 49</u>) before working on the equipment. Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death.

- 1. Complete the Power Lockout Procedure (refer to <u>Power Lock-out</u> <u>Procedure on page 49</u>).
- 2. Inspect the auxiliary contacts for wear, scorching or heat damage. Replace any damaged contacts. The contacts have a mean time between failure (MTBF) rating of 20 million operations if used within the operating specifications.
- 3. To remove the contact, turn both of the D-head fasteners until the flat sections are aligned with the edge of the contact (See <u>Figure 59</u>).
- 4. Remove the contact from the housing.
- 5. Disconnect the wires from the auxiliary contact.
- 6. Reverse the procedure to replace the auxiliary contact.
- 7. Ensure the contact is correctly positioned into the contact carrier (see <u>Figure 59</u>).

Figure 59 - Auxiliary Contact Orientation




## Auxiliary Contacts Adjustment

The auxiliary contacts are mounted on the left side of the isolation switch, slightly below the cams on the isolation switch shaft.

Normally open contacts (Isolation Switch a Contacts - ISa) are on the outside of the isolation switch housing, and normally closed contacts (Isolation Switch b Contacts - ISb) are on the inside of the housing.

#### Figure 60 - Location of ISa and ISb Auxiliary Contacts



ISa and ISb contacts are exactly the same (700 CPM). The cam controls the normally open or normally closed status of the contacts.

Refer to Figure 39 on page 43 and Figure 40 on page 45 for wiring diagrams.

| lation Switch Ground Adjustment procedure (refer<br>tion Switch Mechanism Grounding Adjustment on page 64) |
|------------------------------------------------------------------------------------------------------------|
| e completed before adjusting the auxiliary contacts to proper synchronization of the assembly.             |
|                                                                                                            |

### Adjusting the Normally Open (ISa) Contacts



**ATTENTION:** To avoid shock hazards, lock out incoming power (refer to <u>Power Lock-out Procedure on page 49</u>) before working on the equipment. Verify with a hot stick or appropriate voltage measuring device that all circuits are voltage free. Failure to do so may result in severe burns, injury or death.

- 1. Move the isolation switch handle to the OFF (open) position.
- 2. Loosen the bolt holding the outside cam to the shaft. Do not loosen the bolt entirely. The cam should not be able to rotate freely on the shaft.
- 3. Move the isolation switch handles to the ON (closed) position and check that nothing prevents cam from rotating with the shaft.
- 4. Insert a 6.35 mm (0.25 in.) diameter pin into the cam groove between the cam follower and the end of the cam groove.

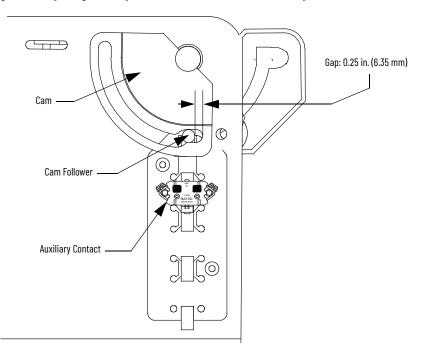



Figure 61 - Adjusting Auxiliary Contacts, left side view (ISa Auxiliary Contact Shown)

- 5. Adjust the cam on the shaft so that the gap from the cam follower to the end of the cam groove is the width of the pin 6.35 mm (0.25 in.).
- 6. Move the isolation switch handle to the OFF (open) position and check that nothing prevents the cam from rotating with the shaft.
- 7. Tighten the 1/4-20 bolt holding the cam to the shaft (6 lb•ft [8 N•m]). Move the isolation switch handle to the ON position and recheck the gap using the pin.
- 8. Verity that auxiliary contact ISa is open when the isolation switch is open. Verify that ISa contact is closed when isolation switch is closed.

#### Adjusting the Normally Closed (ISb) Contacts

- 1. Move the isolation switch handle to the OFF (open) position.
- 2. Loosen the bolt holding the inside cam to the shaft. Do not loosen the bolt entirely. The cam should not be able to rotate freely on the shaft.
- 3. Insert a 6.35 mm (0.25 in.) diameter pin into the cam groove between the cam follower and the end of the cam groove.
- 4. Adjust the cam on the shaft so that the gap from the cam follower to the end of the cam groove is the width of the pin 6.35 mm (0.25 in.).
- 5. Tighten the 1/4-20 bolt that holds the cam to the shaft (6 lb•ft [8 N•m]). Move the isolation switch handle to the OFF position and recheck the gap using the pin.
- 6. Operate the handle several times, then recheck the 6.35 mm (0.25 in.) clearance between the end of the cam groove and the follower pin for both cams.
- 7. Verify that auxiliary contact ISb is closed when isolation switch is open. Verify that ISb contact is open when isolation switch is closed.

### Adjusting the Change-of-State Point

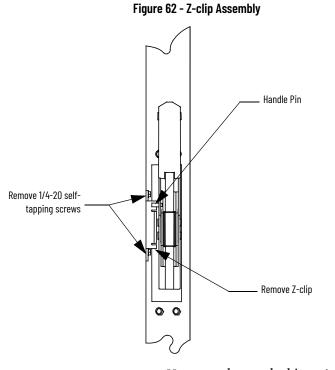
This procedure sets the secondary electrical interlock. When properly adjusted, the electrical interlock is designed to open the control power circuit before the isolation switch opens as the handle is moved to the OFF position.

- 1. Once the auxiliaries have been adjusted, move the isolation switch handle to the ON position.
- 2. Connect a device to indicate continuity across the closed auxiliary contacts.
- 3. Slowly move the isolation switch handle towards the OFF position and observe the point at which the movable isolation switch blades separate from the incoming line stabs.
- 4. If the auxiliaries do not change state before the isolation switch opens, repeat the auxiliary contacts adjustment procedure (refer to <u>Auxiliary</u> <u>Contacts Inspection and Replacement on page 65</u>).



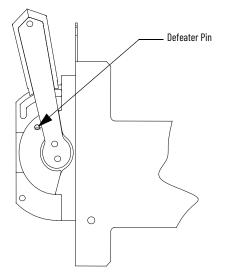
**ATTENTION:** The auxiliary contacts must change state from the closed to open position before the isolation switch blades lose contact with the incoming line stabs. This prevents the isolation switch from being opened while the unit is energized and under load conditions. Failure to correctly set the auxiliary contacts may result in serious damage to the controller and/or injury to personnel.

## Emergency Circumvention Procedure for Power Cell Entry


The interlocking mechanism of the medium voltage starter is designed to prohibit access to the power cell while the isolation switch handle is in the ON position and the isolation switch is closed.

**IMPORTANT** The following procedure is intended to be used only when the isolation switch cannot be opened as described in the Door Opening Procedure for either standard or ArcShield enclosures.




**ATTENTION:** This procedure may expose personnel to energized medium voltage components. Whenever possible, lock out incoming power before beginning this procedure. If you are unable to lock out incoming power, use the appropriate protective equipment and work practices to avoid shock hazards. Failure to do so may result in severe burns, injury or death.

1. Remove the two #10-32 self-tapping screws (2.7 lb•ft [3.6 N•m]) from the Z-clip and remove the Z-clip from the edge of the MV door.



- 2. Unscrew the two locking 3/8-1.75 bolts for the MV door.
- 3. Use a flat-headed screwdriver to turn the defeater pin on the right side of the isolation switch handle.

Figure 63 - Defeater Pin



4. Open the power cell door.

If it is possible to move the isolation switch handle to the OFF position for reassembly, follow steps 5-10.

If it is not possible to move the isolation switch handle to the OFF position for reassembly, follow steps 11-13.



**ATTENTION:** The Z-clip assembly must be reassembled to ensure the interlocking mechanism functions properly. Failure to do so will let personnel access live medium voltage parts and may cause severe burns, injury or death.

### Installing Z-clip with Isolation Switch Handle in the OFF Position

- 5. Reattach the Z-clip using the self-tapping screws, but do not completely tighten them.
- 6. Move the isolation switch handle to the OFF position.
- 7. Swing the door closed and inspect the position of the Z-clip with respect to the handle pin.
- 8. Set the Z-clip so that it is just above the handle pin. Do not set the Z-clip more than 3 mm (0.125 in.) above the pin. Open the door and tighten the screws.
- 9. Close the door and move the handle to the ON position. Verify that the handle pin overlaps the Z-clip and prevents the door from opening.
- 10. Move the handle to the OFF position and tighten the 3/8-1.75 in. door locking hex cap screws.

#### Installing Z-clip with Isolation Switch Handle in the ON Position

- 11. Close the door and tighten the 3/8-1.75 in. door locking bolts.
- 12. Position the Z-clip as shown in <u>Figure 62</u>. Ensure the handle pin overlaps the top portion of the Z-clip.
- 13. Using the #10-32 self-tapping screws, reattach the Z-clip (2.7 lb•ft [3.6 N•m]).
- 14. Complete steps 5...10 at the earliest opportunity to confirm that the Z-clip assembly is correctly installed.

# **Spare Parts**

### **Spare Parts List**

The following list of spare parts is valid for typical Bulletin 1512 and 1512BT units. Please contact your local Rockwell Automation office to ensure that the following part numbers are valid for your system.

#### Table 3 - Spare Parts List

| Part Number                     | Description                                                          | Recommended<br>Stocking Quantity |
|---------------------------------|----------------------------------------------------------------------|----------------------------------|
| 80154-991-59                    | LV Control Panel <sup>(2)(6)</sup> (Electrically Held)               | 1                                |
| 80154-991-61                    | LV Control Panel <sup>(2)(6)</sup> (Mechanical Latch)                | 1                                |
| 1503VC-BMC5                     | IntelliVAC (Electrically Held and Mechanical Latch) <sup>(3)</sup>   | 1                                |
| 80174-902-14-R                  | Internal IntelliVAC fuse - 6.3 A, 250V (Littlefuse 21506.3) $^{(3)}$ | 1                                |
| Engineering Data <sup>(1)</sup> | Power Fuses <sup>(4)</sup>                                           | 3                                |
| Engineering Data <sup>(1)</sup> | Primary Fuses (CPT/PT)                                               | 2                                |
| Engineering Data <sup>(1)</sup> | LV Control Circuit Fuses                                             | 2                                |
| Engineering Data <sup>(1)</sup> | Heater Elements (if used)                                            | 3                                |
| 40266-515-03                    | 20 A Isolation Switch Auxiliary Contact Cartridge (700 CPM)          | 2                                |
| PN-620485                       | Isolation Switch Refurbishment Kit 400A (Series R or higher)         | 1                                |
| 80158-357-51                    | Nyogel 7596/760G Lubricant                                           | 3                                |
| RU-8216                         | Dow Corning 55 O-ring Lubricant                                      | 1                                |
| 80144-491-02                    | Fuse Extractor (For clip-on fuses only)                              | 1                                |

(1) (2)

(3) (4)

Consult spare parts list in service manuals that are provided following delivery of equipment. The following is included with the LV Control Panel: CR1 relay, CR2 relay, rectifier, MOV assembly, test switch, test plug. **Note:** For mechanical latch assemblies, an additional CR1 relay is substituted for the CR2 relay. For starters with IntelliVAC control. Power fuses are R rated for motor loads or E rated for non-motor loads. Power fuses are sized to the motor or transformer load data provided at the time the starter is ordered. Refer to dimensional drawings for specific fuse type and size. Bolt-on or clip-on fuses are available for various load sizes. Contact Rockwell Automation for details.

(6) For starters with electro-mechanical control.

For 450 A contactor spare parts, refer to publication 1502-UM060.

## Notes:

# **ArcShield Unit Information**

## **Overview**

ArcShield<sup>™</sup> units have a robust arc resistant enclosure design that has been tested per IEEE C37.20.7 (2001). Each ArcShield structure was tested to withstand the effects of an arc flash at 40 kA or 50 kA for 0.5 seconds. ArcShield units provide an enhanced Type 2B Accessibility level.

## ArcShield Design

ArcShield units typically include a pressure relief vent on the roof of the structure (some incoming units may not have a pressure relief vent if top cable entry is required). Under arc flash conditions the pressure relief vent will open allowing hazardous flames and gases to exit the enclosure via plenum or chimney system. The low voltage panel area is sealed to prevent flames and gases from entering; however, suitable personal protective equipment (PPE) must be used whenever working on live circuits.



**ATTENTION:** Do not connect Bulletin 1500 ArcShield arc-resistant products to motor control centers that are not arc-resistant. Rockwell Automation has not tested or validated the mechanical or electrical interconnections between these two enclosures.

Connecting these two styles of equipment nullifies all arc-resistant ratings for the entire dissimilar equipment configuration. This type of configuration could pose electrical safety risks to site personnel and nullify some safety labeling already applied to the different styles of equipment.



**ATTENTION:** To ensure Arc resistant integrity, it is important to ensure that the following rules are followed:

- The pressure relief vent may not be tampered with, and it is not to be used as a step.
- No alterations can be made to the ArcShield structure.
- All covers, plates and hardware removed for installation or maintenance purposes must be re-installed and properly secured. Failure to do so voids the arc resistant integrity.
- Power cable entry points are to be treated as the boundary between a hazardous location and sealed accordingly. Failure to do so voids the arc resistant integrity.
- A plenum or chimney must be used to direct the arc flash energy to a suitable location. Failure to do so voids the arc resistant integrity. Refer to <u>Appendix B</u> for plenum installation instructions. Refer to <u>Appendix C</u> for chimney installation instructions.
- All wiring between the low voltage panel and the power cell must be routed through a suitable gland to ensure flames and gases are not transmitted into this area (as fitted from factory).
- The medium voltage power cell doors must be properly secured, using both the handle mechanism and the door bolts (refer to instruction label on the power cell door and <u>Figure 18 on page 24</u>). Failure to do so voids the arc resistance integrity.

# Exhaust Systems: Chimney or Plenum Option

## **Plenum Information**

A plenum can be provided for each unit, and is to be field-mounted on the top of the unit structure (some incoming units may not have a plenum if top cable entry is required). The purpose of the plenum is to direct the hazardous flames and gases away from the top of the arc resistant enclosure. Unit plenums are secured to the top of the unit structure and to adjacent plenums, creating a continuous conduit for release of the arc flash energy. Refer to <u>Appendix B</u> for plenum installation instructions.

Each plenum based, ArcShield line-up includes a plenum exhaust piece that extends beyond either the left or right ends of the line-up. The other end of the plenums is capped with an end cover. Extensions can be added to the plenum to allow the arc flash energy to be directed further away from the ArcShield line-up to an area where safe venting of the plasma gases can occur.

#### Figure 64 - Elements of ArcShield Plenum

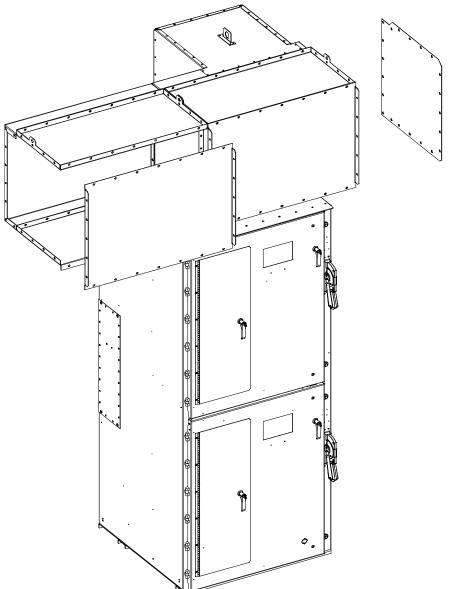
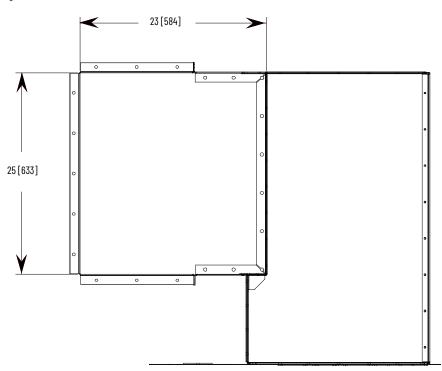




Figure 65 - Cross-section of Plenum Extension, dimensions in inches [mm]



## **Plenum Exhaust Considerations**

The following options for locating the plenum exhaust are presented:

- 1. Plenum ducted to an area of the control room where arc gases are permitted to escape, with plenum extensions (see <u>Figure 66</u>, <u>Figure 67</u> and <u>Figure 68</u>).
- 2. Plenum duct to outside of control room (see Figure 66 and Figure 67).

Plan the location where the plenum will exhaust. Ensure that:

- There is no access to personnel while equipment is energized.
- Area is free of flammable material or vapors.

Ensure that adequate space is provided around the plenum exhaust, as outlined in Figure 66 through Figure 68.

**IMPORTANT** Be aware that equipment in the area of the plenum exhaust point will be damaged or destroyed.

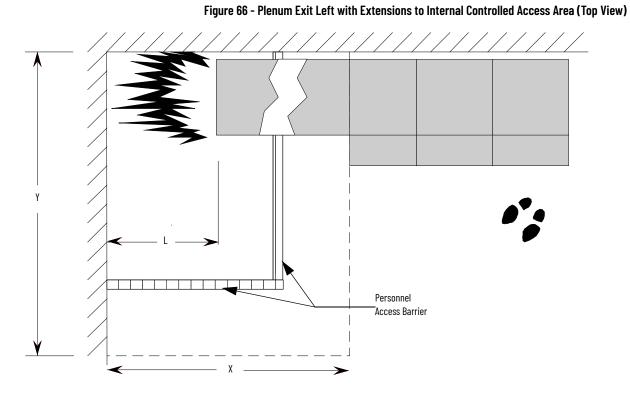
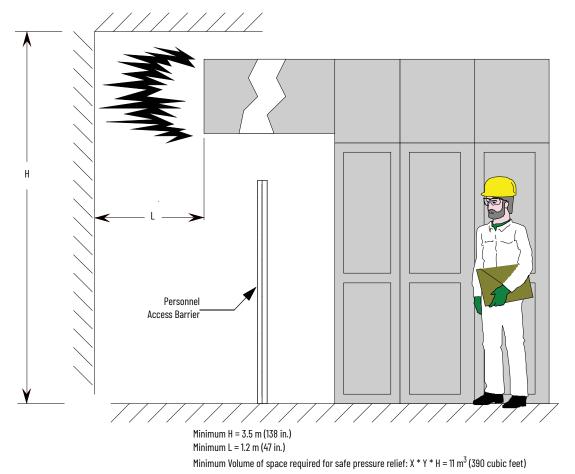
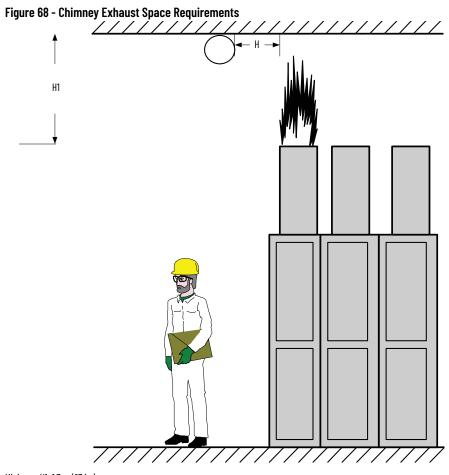





Figure 67 - Plenum Exit Left with Extension(s) to Internal Controlled Access Area (Front View)





Minimum H1: 1.7 m (67 in.) Minimum H: 1 m (39 in.)

## **Additional Notes**

- The walls of the plenum exit area must be capable of withstanding the pressure generated.
- Any painted surfaces which face direct contact with the arc products may ignite. Flame suppression is recommended.
- The exit point can also be outside the building. Ensure exit area can not be blocked by ice, snow, or vermin nests.
- Access barriers are recommended as a means of restricting access by personnel while the equipment is energized. Chain link fencing is a suitable barrier material.
- Equipment that consists of more than 4 vertical sections bolted together may require additional plenum exits. Rockwell Automation will provide guidance on requirements for additional plenum exits when required.

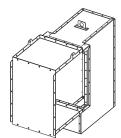
#### **Chimney Information**

Where adequate clean height (space) is available, chimney can be provided for each unit in place of the plenum system. It is to be field mounted on top of the unit structure. The purpose of the chimney is to direct the hazardous flames and gases away from the top of the resistant enclosure. The chimney is secured to the top of each unit structure. Refer to <u>Appendix C</u> for chimney installation instructions.

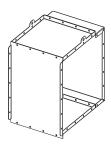
Each ArcShield line-up includes a chimney exhaust section that extends vertically directly above the enclosure.

#### **Chimney Exhaust Considerations**

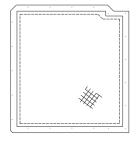
- 1. From the outlet of the chimney, there needs to be a minimum distance of 1.7 m (67 in.) from the top of the chimney to the ceiling, and 1 m (39 in.) on each side.
- 2. No obstructions (eg. piping) can be in the path of the exhaust within this 1.7 m (67 in.) height requirement.


Plan the location where the chimney will exhaust. Ensure that:

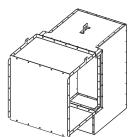
- There is no access to personnel while equipment is energized.
- Area is free of flammable material or vapors.
- Ensure that adequate space is provided around the chimney exhaust as outlined in <u>Figure 68</u>.


# **ArcShield Plenum Installation Instructions**

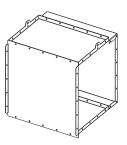
|                              | The following instructions are provided to ensure the proper installation and function of plenum components supplied with ArcShield enclosures. Refer to <u>Appendix A</u> for additional information related to ArcShield plenums before attempting to follow these instructions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Recommended Torque<br>Values | 1/4-20 Thread Fasteners – 15 N•m (12 lb•ft)<br>5/16-18 Thread Fasteners – 14.5 N•m (11 lb•ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 |  |
| Plenum Bracing               | <ul> <li>Bracing of the plenum must be able to withstand the dynamic forces of the arc fault as well as any other vibration or seismic effects associated with the installation. Most of this force will be in the direction opposite to where the relief vent exits. The amount of bracing will depend on how the plenum is supported at its exit as well as the distance from the end of the cabinets to the exit vent.</li> <li>A flange is available for installing hangers to support the plenum weight.</li> <li>The plenum extension has holes for mechanical support.</li> <li>Weight per unit length of Rockwell supplied plenum = 28 kg/m (19 lb/ft).</li> <li>Installer is responsible for ensuring that the plenum extension has sufficient support to resist the effect of vibrations and seismic effects.</li> </ul> <b>IMPORTANT</b> Plan the location where the plenum will exhaust (refer to Appendix A). Equipment in the area of the plenum exhaust will be damaged or destroyed. Mark the plenum exhaust area as a Hazardous Zone (Figure 69). |                                                                                                                                                 |  |
|                              | Figure 69 - Plenum Exhaust Label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                 |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                 |  |
|                              | ARC FLASH HAZARD<br>PRESSURE RELIEF EXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HAZARD D'ARC ÉLECTRIQUE<br>SORTIE DE L'ÉVENT                                                                                                    |  |
|                              | AREAS TO BE:<br>- INACCESSIBLE TO PERSONNEL<br>WHILE EQUIPMENT ENERGIZED.<br>- FREE OF OBSTRUCTIONS<br>(REFER TO USER MANUAL).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RÉGION ÊTRE:<br>- INACCESSIBLE AUX PERSONNEL<br>PENDANT QUE L'éQUIPEMENT<br>EST SOUS TENSION.<br>- DÉMUNI D'OBSTRUCTIONS<br>(RÉFÉRER AU MANUEL) |  |
|                              | SEVERE INJURY OR<br>DEATH MAY RESULT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RISQUE DE BLESSURES<br>CORPORELLES GRAVES                                                                                                       |  |


#### Figure 70 - Various Plenum Components Available




**18 in. wide Plenum** Fastened directly over the 0.5 m (18 in.) wide cabinet

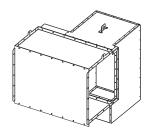



**18 in. long Extension** Connected to the last Plenum on the exhaust end of the "line-up"

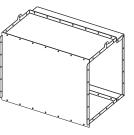


Screen Cover Plate Fastened at the opening of the last component on the exhaust end

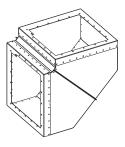



**26 in. wide Plenum** Fastened directly over the 0.7 m (26 in.) wide cabinet




**26 in. Extension** Connected to the last Plenum on the exhaust end of the "line-up"

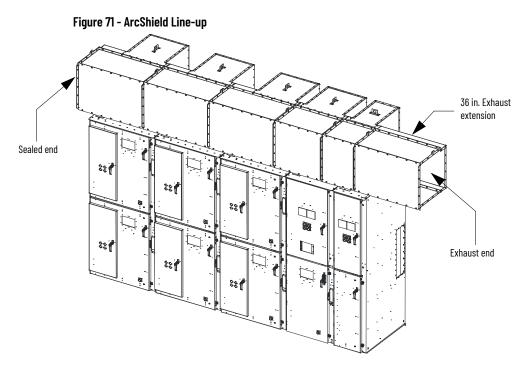



End Cover Plate Fastened at the opening of the last Plenum in the "line-up" opposite the exhaust end to seal Plenum end



**36 in. wide Plenum** Fastened directly over the 0.9 m (36 in.) wide cabinet




**36 in. long Extension** Connected to the last Plenum on the exhaust end of the "line-up"

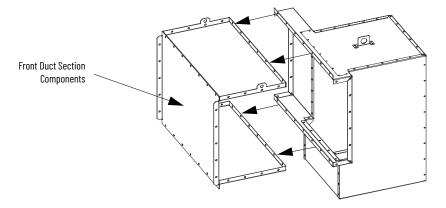


90° Elbow Section Connected at the exhaust end of the Plenum (or Extension)

# General Plenum Layout for ArcShield Line-up

An example of a general Plenum assembly configuration is shown in <u>Figure 71</u>. Plenums of varying widths are mounted directly over the MV enclosures of the corresponding width. A 0.9 m (36 in.) Exhaust extension assembly is shown mounted on the extreme right side Plenum of the equipment "Line-up" (can alternatively exhaust to the left). Engineered systems can be made site specific.




Plenum exhaust can be on the left or right hand end of the line up. Pictures and figures in this procedure are shown for a right hand exhaust exit direction. Also shown is an optional vertical (top) direction exhaust extension (see Figure 83).

| IMPORTANT | Plenum components not directly mounted to the tops of the MV<br>enclosures, must have additional mounting support. This includes<br>the Extension components and 90° Elbow Sections (refer to <u>STEP 7</u><br>– Additional Mounting Support on page 88). |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                                                                                                           |

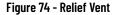
# STEP 1 – Mounting a Single Plenum

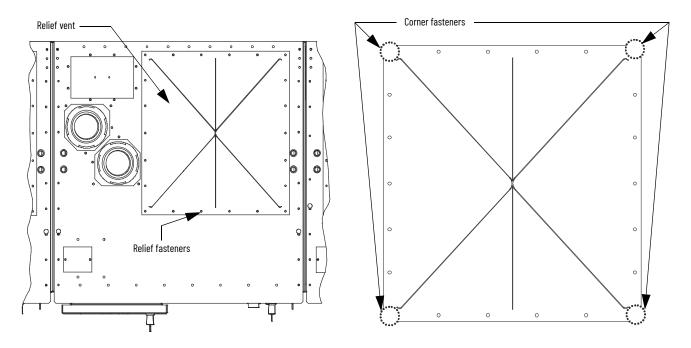
Before mounting a single Plenum over an MV enclosure, the front duct section must first be removed. This is shown in <u>Figure 72</u>.

#### Figure 72 - Removing Front Duct Section



#### **Cabinet Preparation**


In preparation to mount the plenum:

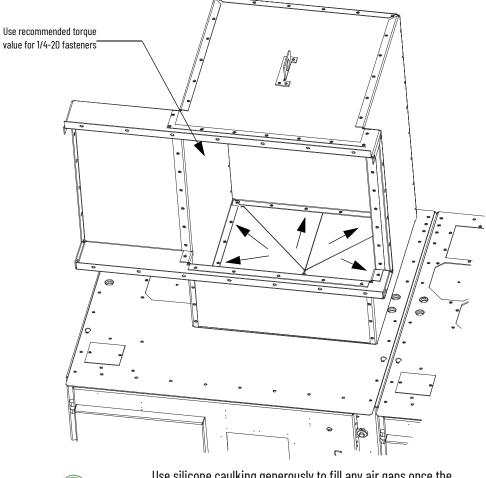

- 1. Remove the cabinet lifting means (slips of lifting angles).
- 2. Reinstall the 5/8-11 bolts retaining the lifting means in the holes from where they came (11 lb•ft [14.5 N•m]). Failure to install the bolts negates the cabinets ability to control any arc gases properly.
- 3. After the lifting angles or clips are removed, remove 1/4-20 fasteners from the relief vent on the top of the MV enclosure. Leave the (4) corner fasteners in place.

**ATTENTION:** Hardware used to retain the lifting provision hardware must be reinstalled in the same holes. Failure to replace this hardware will make the arc resistance of the cabinet ineffective and could subject personnel to the possibility of severe burns, injury, or death.

```
IMPORTANT Do not remove the four corner fasteners (Figure 74)
```

#### Figure 73 - Typical Relief Vent Fasteners (top view)





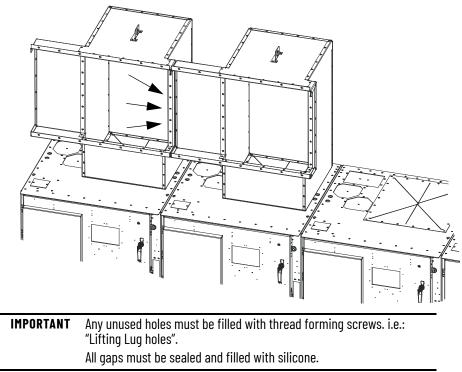

The Plenums are designed to fit over the fastener heads at the four corners of the Relief vent. The corner fasteners are required to secure the Relief vent during installation.

#### **Plenum Placement on Structure**

Once the plenum has been lifted in place directly over the relief vent (shown in Figure 75), all 1/4-20 fasteners (12 lb•ft [15N•m]), removed in <u>Cabinet</u> <u>Preparation</u> above, are replaced to attach the plenum to the top of the enclosure. Use hand tools only.

Figure 75 - Plenum Placement

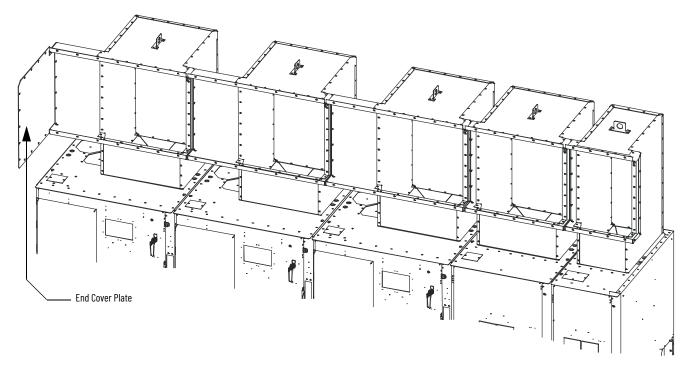





Use silicone caulking generously to fill any air gaps once the Plenum has been securely mounted in place.

# STEP 2 – Alignment of "Side-by-Side" Plenums

Plenums mounted side-by-side must be fastened together through the aligning holes using 5/16 in. supplied hardware (see <u>Figure 76</u>).


#### Figure 76 - Aligning "Side-by-Side" Plenums



# STEP 3 - Sequence of Final Assembly

All Plenums in a Line-up must be mounted to the top of each enclosure <u>and</u> to the Plenum directly beside it before the front duct sections are re-attached (see <u>Figure 72</u>).

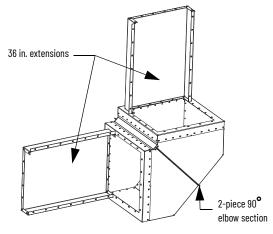
#### Figure 77 - Sequence of Final Assembly



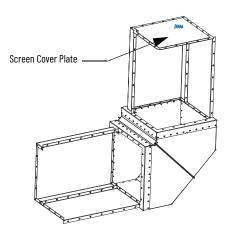
The end cover plate must be mounted on the closed end of the line-up at this time during the assembly using 5/16 in. hardware (see <u>Figure 77</u> left side).

# STEP 4 – Closing the Front of the Plenum Sections

After the first stage of the Plenum assemblies have been mounted, the Plenums can then be "closed-up" by replacing the front duct sections as shown in Figure 78.


#### Figure 78 - Plenum Sections

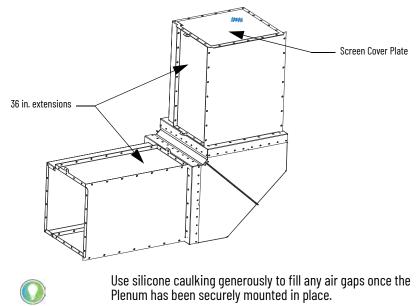
| Top Plate                                |                                                                                                                                                                                                                                                     | Bottom Plate                                                       | Front Closing Plate |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|
|                                          | <b>IMPORTANT</b> Do not re-install the front duct section of the <u>last</u> Plenum on the exhaust side of the Line-up at this time (refer to <u>STEP 6 – Mounting</u> <u>Extension/Elbow to Plenum "Line-up" on page 87</u> for more information). |                                                                    |                     |
|                                          |                                                                                                                                                                                                                                                     | Use silicone caulking generously<br>Plenum has been securely mount |                     |
| STEP 5 – Extension and<br>Elbow Assembly | The 36" Extension components and 90° Elbow Section are to be attached using 5/16-in. hardware in the following sequence:                                                                                                                            |                                                                    |                     |
|                                          | Step 5A – See <u>Figure 79</u>                                                                                                                                                                                                                      |                                                                    |                     |
|                                          | Step 5B – See <u>Figure 80</u>                                                                                                                                                                                                                      |                                                                    |                     |
|                                          | Step 5C – See <u>Figure 81</u>                                                                                                                                                                                                                      |                                                                    |                     |




The Screen Cover Plate is attached in Figure 80.

#### Figure 79 - 90° Elbow Section Assembly, Step 5A (Front View)

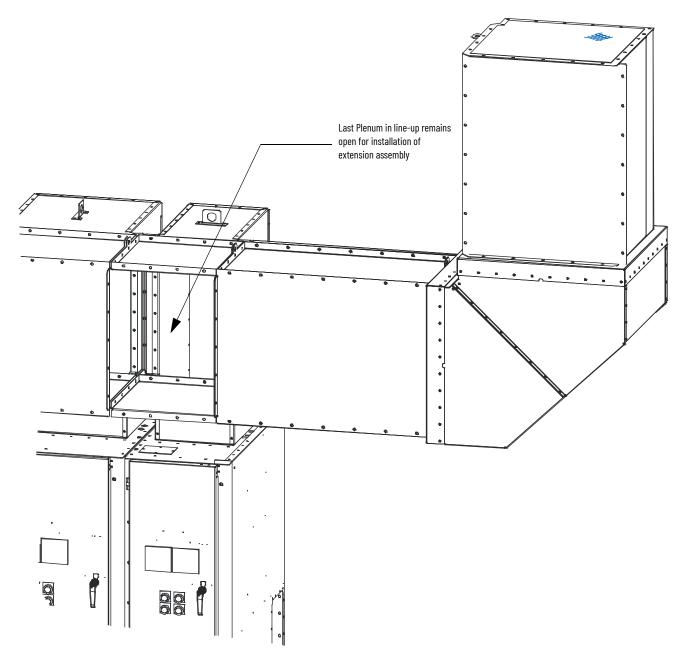









The Extension components are attached to the Elbow Section using 5/16-in. Hardware.


Eligure 81 illustrates what the Extension/ Elbow Assembly should resemble when finished.



# STEP 6 – Mounting Extension/Elbow to Plenum "Line-up"

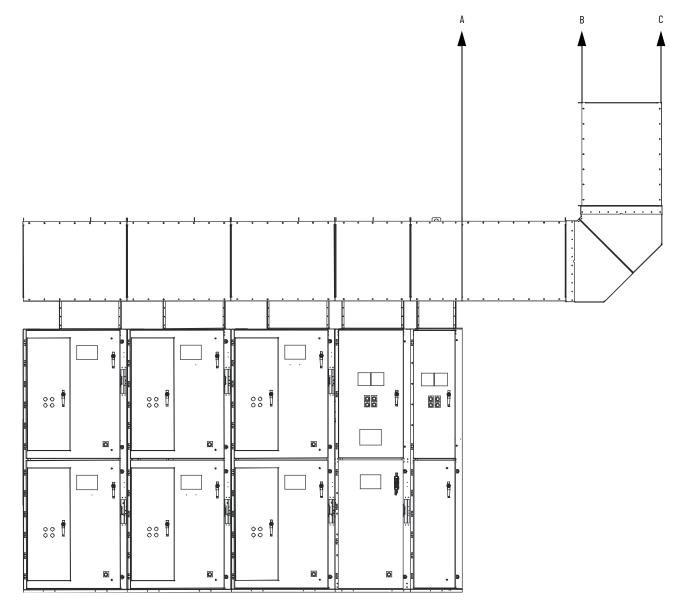
As referred to in <u>STEP 4 – Closing the Front of the Plenum Sections on page 85</u>, the last Plenum at the exhaust side of the line-up has the front duct section removed. This allows access to fastener holes in order to mount the Extension/ Elbow components (see Figure 82).

Figure 82 - Optional Extension/Elbow with Vertical Extension (Right side exit)



After the Extension/Elbow assembly is attached through the fastener holes on the inside flange of the Plenum, the front duct section can be replaced and fastened through the holes on the outside flanges.

# STEP 7 – Additional Mounting Support


The Extension/Elbow Assembly <u>must</u> have additional mounting support.

90° Elbow Section: Approximate weight 64 kg (142 lb)

36 in. Extension Assembly: Approximate weight 51 kg (112 lb)

<u>Figure 83</u> shows an example of how the Extension/Elbow Sections can be supported by suspension from a high ceiling. Points **A**, **B** & **C** show where chains or high tension cables may be connected.

Figure 83 - Completed Assembly for optional vertical exit Plenum (Right hand exit)

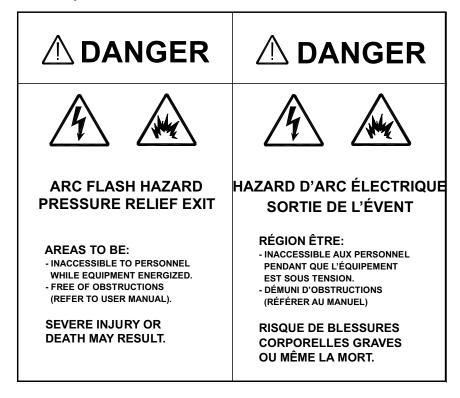




During an arc fault, the plenum will be subjected to a brief high pressure shock wave. The Extension/Elbow assembly may experience dynamic loading. It is important to account for dynamic loading when selecting supporting means and materials.

# **ArcShield Chimney Installation Instructions**

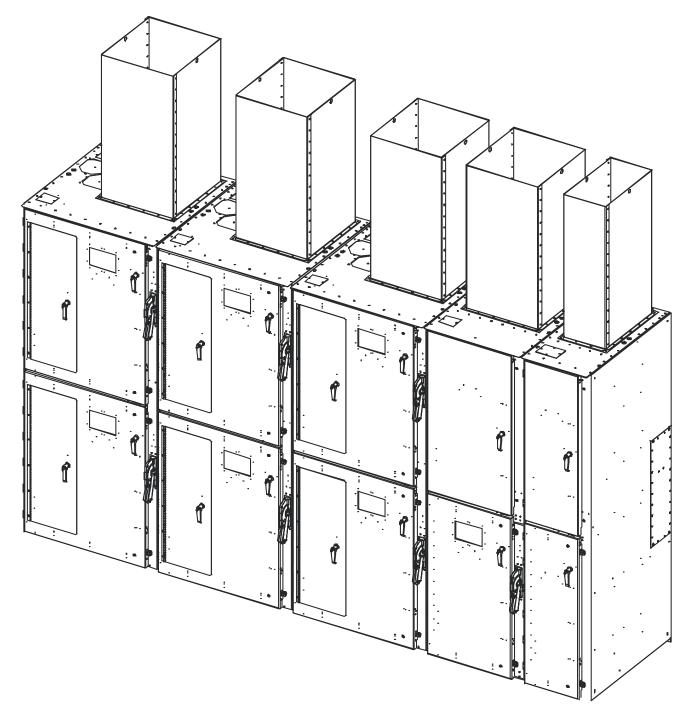
The following instructions are provided to ensure the proper installation and function of chimney supplied with ArcShield<sup>™</sup> enclosures. Refer to <u>Appendix A</u> for additional information related to ArcShield chimney before attempting to follow these instructions.


## Recommended Torque Values

1 /4 -20 Thread Fasteners — 15 N•m (12 lb•ft)

5 /16 -18 Thread Fasteners — 14.5 N•m (11 lb•ft)

**IMPORTANT** Plan the location where the plenum will exhaust (refer to <u>Appendix A</u>). The plenum exhaust area is to be marked as a Hazardous Zone, and labeled per <u>Figure 84</u>.


Figure 84 - Chimney Exhaust Label



# General Plenum Layout for ArcShield Line-up

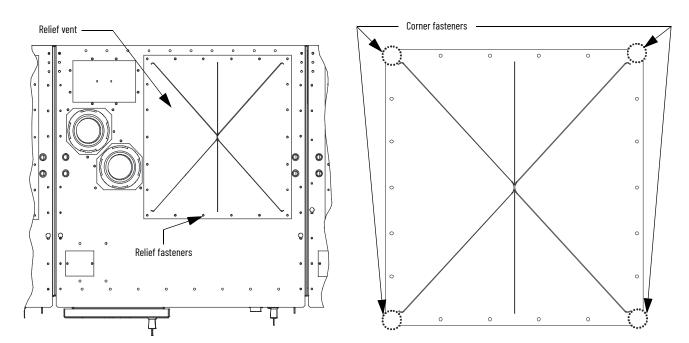
An example of a general chimney assembly configuration is shown in <u>Figure 85</u>. Chimneys of varying widths are mounted directly over the MV enclosures of the corresponding width.

#### Figure 85 - ArcShield Line-up with Chimney Arc Gas Ducting



## **Cabinet Preparation**

In preparation for mounting a chimney:


- 1. Remove the cabinet lifting means (slips of lifting angles).
- 2. Reinstall the 5/8-11 bolts retaining the lifting means in the holes from where they came (11 lb•ft [14.5 N•m]). Failure to reinstall the bolts negates the cabinets ability to control any arc gases properly.
- 3. After the lifting angles or clips are removed, remove 1/4-20 fasteners from the relief vent on the top of the MV enclosure (11 lb•ft [14.5 N•m]).



**ATTENTION:** Hardware used to retain the lifting provision hardware must be reinstalled in the same holes. Failure to replace this hardware will make the arc resistance of the cabinet ineffective and could subject personnel to the possibility of severe burns, injury, or death.

**IMPORTANT** Do not remove the four corner fasteners (Figure 87)

Figure 87 - Relief Vent



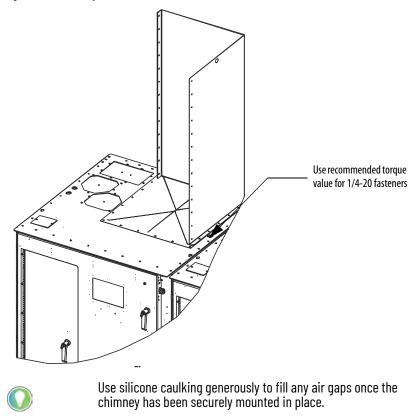
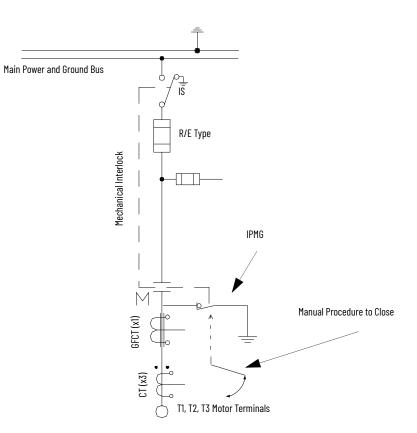

The chimneys are designed to fit over the fastener heads at the (4) corners of the Relief vent. The corner fasteners are required to secure the Relief vent during installation.

Figure 86 - Relief Vent Fasteners (top view)

## **Chimney Placement on Structure**

Once the Chimney has been lifted in place directly over the relief vent (shown in <u>Figure 88</u>), all 1/4-20 fasteners, removed in <u>Cabinet Preparation</u> above, are replaced to attach the chimney to the top of the enclosure (11 lb•ft [14.5 N•m]).

#### Figure 88 - Chimney Placement




# Integrated Protective Maintenance Grounding Device

## **Overview**

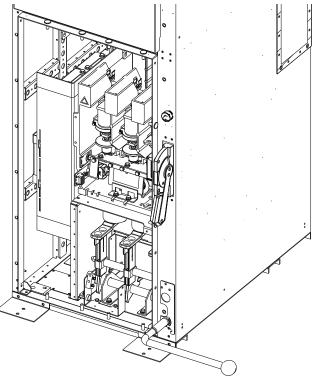
The Integrated Protective Maintenance Grounding device (IPMG) is an optional feature that provides an over-center, spring loaded, snap action device that provides a low impedance grounding path for all load connections on CENTERLINE<sup>™</sup> Bulletin 1500/1900 medium voltage motor controllers. The IPMG device can make and withstand short-circuit currents within its capabilities, from both feeding directions within the motor controller, without any latching mechanism. It is applied to safely ground/earth the load connections to three-phase motors, power transformers, and power capacitors ensuring that no harmful voltages are left or become present on the load connections before maintenance personnel enter the motor controller or service the equipment at the end of the load cable connections.

#### Figure 89 - Typical Controller Single Line showing the optional IPMG



The compact design of the IPMG device does not compromise its rugged construction and proven performance under industrial operating conditions. Requiring minimal maintenance, this manually operated device is controlled from the outside of the standard and arc-resistant (ArcShield™) medium voltage controllers. It is mechanically interlocked to both the main vacuum contactor and our non-load break isolation switch. These features, along with its high electrical and mechanical endurance capabilities, provide a long-life and dependable maintenance free operation.

To enhance your safety program requirements, a visual indication of the blade positions of the IPMG device (OPEN or CLOSED) is available through the standard viewing window on the medium voltage compartment door.


The IPMG device is mounted on the controller floor plate or on the top of the main medium voltage vacuum contactor (for 600/800 A controllers). It is connected to the three load phases within the main controller using copper bus bars. Redundant, flexible grounding conductors ensures the lowest impedance path to ground is maintained when the IPMG device is closed. Flexible grounding conductors provide low impedance back to the main ground bus to complete the grounding (earthing) process.

# **IPMG Operation**

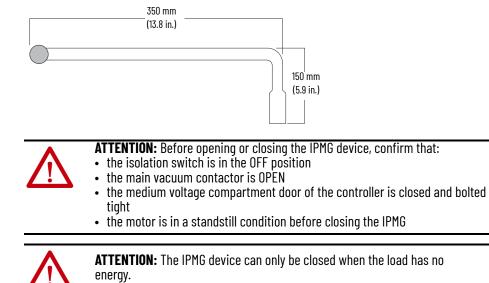
The IPMG device is a manually operated earthing device that is controlled by a direct drive system that is engaged from the exterior of the controller. A removable operating handle engages or disengages the IPMG device from an OPEN to CLOSED or CLOSED to OPEN position.

The rotational angle of the switch handle is approximately 180° to engage or disengage the grounding action of the IPMG device.

Figure 90 - 1512A Cabinet with 400 A IPMG Device Showing the Operating Handle Engaged in Drive Mechanism



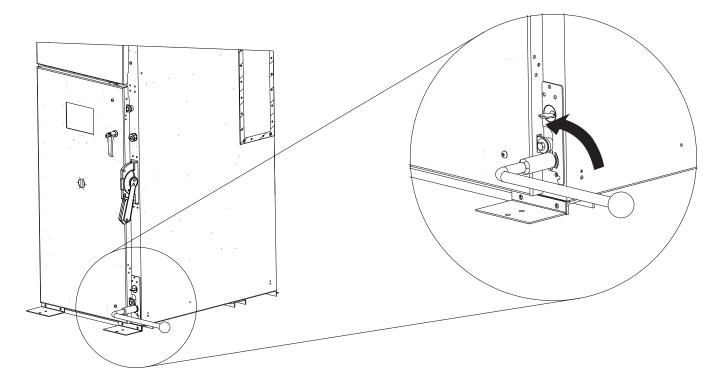
#### **Operating Handle**


**IMPORTANT** There must be a minimum clearance of 25.5 mm (12 in.) on the side of the cabinet where the operating handle is located.

The separate operating handle is suitable for use only for the hex splined interface shaft of the IPMG device. The handle includes an ergonomic insulated grip to aid in the operation of the IPMG device. Significant rotational force is required to engage or disengage the IPMG device.



A 17 mm hexagonal socket with a socket wrench of equal length can also be used to operation the switch,.


#### Figure 91 - IPMG Operating Handle (Removable)



#### Close the IPMG Device from an OPEN Position

- 1. Insert the operating handle and hex shaft, through the hole in the front of the structure. Place the handle to accommodate at least 180° of counterclockwise motion. The hexagon-shaped shaft must fully mate to the connection of the IPMG operating shaft.
- 2. Rotate the operating handle, in one motion, approximately 180° counterclockwise until the switch flips into its CLOSED position (there is a significant sound as the IPMG device engages).
- 3. Remove the handle.
- 4. Verify the CLOSED position of the IPMG device by viewing the blade positions through the standard viewing window.
- 5. Verify the position of the indication arrow (Figure 93) and adjust if necessary before operating the isolations switch handle.

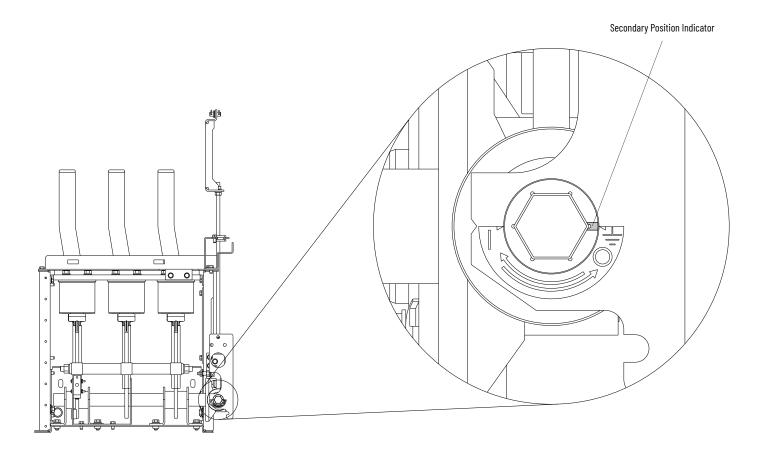
#### Figure 92 - Close the IPMG Device from an Open Position (1512A Cabinet with 400 A IPMG Device)



Opening the IPMG Device from a Closed Position

- 1. Insert the operating handle and hex shaft, through the hole in the front of the structure. Place the handle to accommodate at least 180° of clockwise motion. The hexagon-shaped shaft must mate with the connection of the IPMG operating shaft.
- 2. Rotate the operating handle, in one motion, approximately 180° clockwise until the switch flips into an OPEN position (there is a significant sound as the IPMG device disengages).
- 3. Remove the handle.
- 4. Verify the OPEN position of the IPMG device by viewing the blades position through the standard viewing window.
- 5. Verify the position of the indication arrow (Figure 93) and adjust if necessary before operating the isolations switch handle.

## **IPMG Positioning Indicators**


In compliance with many safety standards, such as NFPA 70E, the position of the IPMG device is seen through a standard viewing window. The Lexan viewing window is on the lower half of the main medium voltage power cell door. The switch is in the CLOSED or GROUNDED position when the blades are in a vertical position. If the blades are not readily visible and/or if they are in a more horizontal position, the IPMG device is in the OPEN position.

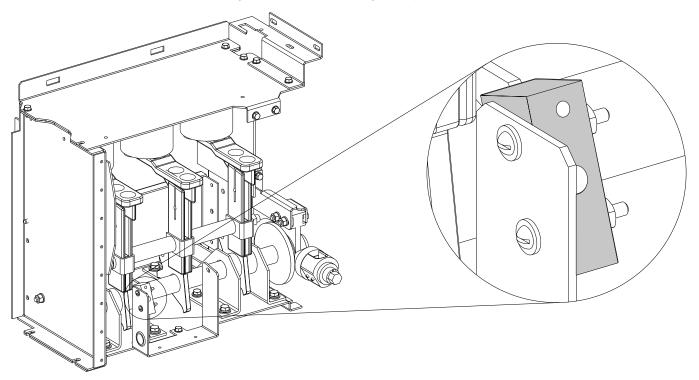
There is a secondary position indicator where the operating handle is used. The graphic below details the location of the indicator that shows you what position the IPMG device is in.



**ATTENTION:** After operating the IPMG device, verify the position indicator matches the label. Adjust if necessary before operating the isolation switch handle.

#### Figure 93 - Secondary Position Indicator




## **Key Interlocking**

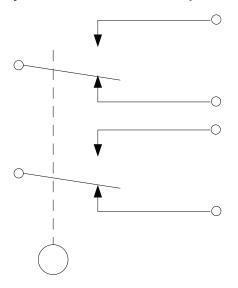
An optional mechanical key interlock is available to lock the IPMG device in the CLOSE or OPEN positions. Contact the factory for further details.

# **Auxiliary Switches**

The IPMG device comes standard with either 2-Form C auxiliary contacts or with an optional 4-Form C auxiliary contact configuration. These auxiliary contacts indicate the mechanical and electrical position of the IPMG device. OPEN (ungrounded load connections) or CLOSED (grounded load connections). These auxiliary switches can be incorporated into the controller's control circuit. Their electrical ratings are shown <u>Table 4 on</u> <u>page 98</u>.

#### Figure 94 - 400 A IPMG showing Auxiliary Contact




#### Table 4 - Auxiliary Switch Specifications

| Description                                                      |             | Value     |
|------------------------------------------------------------------|-------------|-----------|
| Rated voltage (V AC/V DC)                                        |             | 250       |
| Maximum continuous current (A)                                   |             | 10        |
| Contact configuration                                            |             | DPDT      |
| Contacts available (standard)                                    |             | 2-Form C  |
| Contacts available (optional)                                    |             | 4-Form C  |
| Breaking capacity >5000 electrical operations <sup>(1)</sup> (A) | 110/120V AC | 10        |
|                                                                  | 220/240V AC | 10        |
|                                                                  | 125V DC     | 0.3       |
|                                                                  | 250V DC     | 0.15      |
| UL code                                                          |             | L59       |
| Mechanical life (operations)                                     |             | 3,000,000 |

(1) When time constant is < 40 ms.

The auxiliary contacts are factory adjusted and should not require readjustment in the field. The electrical configuration of the auxiliary contacts is shown below.





# **IPMG Specifications**

#### **Specifications**

| Description                                               | Rating                    |
|-----------------------------------------------------------|---------------------------|
| Maximum operating voltage                                 | 7.2 kV (±5%)              |
| Operating frequency                                       | 50/60 Hz                  |
| Rate impulse voltage withstand (BIL) <sup>(1)</sup>       | 60 kV                     |
| Rate 1-second voltage withstand                           | 22 kV                     |
| Rate 1-minute voltage withstand                           | 20 kV                     |
| Rated short time withstand current                        | 31.5 kA rms               |
| Short time withstand duration                             | 4 s                       |
| Rate peak current                                         | 80 kA rms                 |
| Mechanical duration grade                                 | M1                        |
| Mechanical endurance (operations)                         | 2000                      |
| Torsional strength                                        | 1600 N                    |
| Mean time to failure (MTTF)                               | >20 years                 |
| Clearance between open contacts                           | >125 mm (4.9 in.)         |
| Contact pressure                                          | 400±30 N                  |
| Movable blade and ground electrode center-center distance | 116.5 mm (4.6 in.)        |
| Approximate handling close operation force (<1°)          | ≤250 N                    |
| Approximate handling open operation force (<1°)           | ≤250 N                    |
| Approximate handling close operation force (<15°)         | ≤450 N                    |
| Approximate handling open operation force (<15°)          | ≤450 N                    |
| Loop resistance                                           | ≤75 µΩ                    |
| Method of operation                                       | Rotational, snap action   |
| Rotational degrees for change of state                    | 90º ±5                    |
| Maximum difference between all three-phase closing        | ≤3 mm (0.12 in.)          |
| Quantity of mounting holes                                | 8                         |
| Mounting hole (slotted) diameter                          | 9 x 18 mm (0.4 x 0.7 in.) |

(1) The wave-shape must be 1.2/50  $\mu s$  similar to those as defined in IEC 60060-1 and UL 347.

## Maintenance

The IPMG device is virtually maintenance free. All contacts are lubricated in the factory at the time of shipment. General annual inspections should include that the main drive line operates smoothly and does not stick or bind due to possible misalignment that is caused by the mechanical interlocks and interfacing to the main contactor and isolation switch. The grounding (earthing) process is achieved through the movable blades and the fixed terminal points within the frame of the IPMG device. Verify that these connections are intact and that the flexible grounding conductors, are attached to the common shaft of the IPMG device, and are not broken, distressed, or frayed.

# **Spare Parts**

#### **Spare Parts**

| Part                                               | Part No.     |
|----------------------------------------------------|--------------|
| Replacement auxiliary switch (two form C contacts) | PN-125139    |
| Operating handle                                   | PN-612406    |
| Nyogel 759G/760G contact lubricant                 | 80158-357-51 |

# **History of Changes**

This appendix contains the new or updated information for each revision of this publication. These lists include substantive updates only and are not intended to reflect all changes. Translated versions are not always available for each revision.

| Publication 1512A-UM100G-EN-P - February 201 |
|----------------------------------------------|
|----------------------------------------------|

| Торіс                                                      |
|------------------------------------------------------------|
| Replaced Typical Structure and Typical Nameplate graphics  |
| Added Environmental Conditions                             |
| Transposed step 3 and 4                                    |
| Added Attention table                                      |
| Added step to procedure for Joining Sections               |
| Modified Attention table                                   |
| Replaced Typical Ground Bus Splicing Configuration graphic |
| Added Isolation Switch Kit and stocking quantity           |
| Added (Series R or higher) to 80158-707-53                 |
| Added 50 kA to Overview                                    |
| Added Attention table                                      |
| Added instructions to Cabinet Preparation                  |
| Added Attention table                                      |
| Added instructions to Cabinet Preparation                  |

# Notes:

# **Rockwell Automation Support**

| Technical Support Center                            | Find help with how-to videos, FAQs, chat, user forums, and product notification updates.           | rok.auto/support              |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------|
| Knowledgebase                                       | Access Knowledgebase articles.                                                                     | <u>rok.auto/knowledgebase</u> |
| Local Technical Support Phone Numbers               | Locate the telephone number for your country.                                                      | rok.auto/phonesupport         |
| Literature Library                                  | Find installation instructions, manuals, brochures, and technical data publications.               | <u>rok.auto/literature</u>    |
| Product Compatibility and Download Center<br>(PCDC) | Download firmware, associated files (such as AOP, EDS, and DTM), and access product release notes. | rok.auto/pcdc                 |

Use these resources to access support information.

# **Documentation Feedback**

Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form at <u>rok.auto/docfeedback</u>.

# Waste Electrical and Electronic Equipment (WEEE)



At the end of life, this equipment should be collected separately from any unsorted municipal waste.

Rockwell Automation maintains current product environmental information on its website at rok.auto/pec.

Allen-Bradley, ArcShield, CENTERLINE, IntelliVAC, expanding human possibility, and Rockwell Automation are trademarks of Rockwell Automation, Inc. EtherNet/IP is a trademark of ODVA, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş. Kar Plaza İş Merkezi E Blok Kat:6 34752, İçerenkÖy, İstanbul, Tel: +90 (216) 5698400 EEE YÖnetmeliğine Uygundur

Connect with us. 📑 🞯 in 💟

#### rockwellautomation.com

expanding human possibility"

AMERICAS: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204–2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 EUROPE/MIDDLE EAST/AFRICA: Rockwell Automation NV. Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 ASIA PACIFIC: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846