PowerFlex 755 AC Drives Floor Mount Frames 8 and Larger, Hardware Service Manual

Catalog Numbers 755, 20G, 21G
Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).
Summary of Changes

This manual revision contains the following new and updated information.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>All: Replaced spare parts link http://www.ab.com/support/abdrives/powerflex70/PF7ReleasedParts.pdf with PFLEX-SB002-EN-P</td>
<td></td>
</tr>
<tr>
<td>Chapter 2: Updated Recommended Preventive Maintenance: includes page number links to topics, consistent naming to topics, complete list of included items, and adjusted maintenance intervals were appropriate.</td>
<td>39</td>
</tr>
<tr>
<td>Chapter 3: Added Tip for Table 5 about IGBT readings.</td>
<td>52</td>
</tr>
<tr>
<td>Chapter 5: Added link to reference removal of Converter from the Inverter.</td>
<td>152</td>
</tr>
<tr>
<td>Chapter 6: Replaced image -- access panel has been removed.</td>
<td>222</td>
</tr>
<tr>
<td>Chapter 7: Added footnote to Table 13 about P6 connector access.</td>
<td>228</td>
</tr>
<tr>
<td>Chapter 7: Added IMPORTANT statement above Table 13 that IGBT replacement assemblies are not available.</td>
<td>228</td>
</tr>
<tr>
<td>Chapter 7: Removed Series A for the 20-750-I1B-xxxxxxxx and the 20-750-I2B-xxxxxxxx Invert Unit replacement kits in Table 13.</td>
<td>228</td>
</tr>
<tr>
<td>Chapter 7: Replaced image -- access panel has been removed.</td>
<td>239</td>
</tr>
<tr>
<td>Chapter 7: Added IMPORTANT statement to Rating Plug / Removal Installation.</td>
<td>255</td>
</tr>
<tr>
<td>Chapter 7: Updated IMPORTANT statement to Inverter Backplane Circuit Board Removal / Installation.</td>
<td>265</td>
</tr>
<tr>
<td>Chapter 7: Replaced image -- access panel has been removed.</td>
<td>298</td>
</tr>
<tr>
<td>Chapter 8: Added IP54, NEMA 12 Cabinet Blower Assembly and Exhaust Hood Removal/Installation.</td>
<td>307</td>
</tr>
<tr>
<td>Chapter 8: Added link to reference install and removal of IP54, NEMA/UL Type 12 Cabinet Blower Exhaust</td>
<td>314</td>
</tr>
</tbody>
</table>
Notes:
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>Who Should Use This Manual ... 21</td>
</tr>
<tr>
<td>Additional Resources ... 21</td>
</tr>
<tr>
<td>Chapter 1</td>
</tr>
<tr>
<td>Before You Begin Tests, Maintenance, or Repairs</td>
</tr>
<tr>
<td>General Precautions ... 24</td>
</tr>
<tr>
<td>Qualified Personnel ... 24</td>
</tr>
<tr>
<td>Personal Safety .. 24</td>
</tr>
<tr>
<td>Product Safety .. 24</td>
</tr>
<tr>
<td>Class 1 Status Indicator Products 24</td>
</tr>
<tr>
<td>Remove Power from the Drive .. 25</td>
</tr>
<tr>
<td>Common DC Input Drives .. 27</td>
</tr>
<tr>
<td>Drive Input Power Configurations 28</td>
</tr>
<tr>
<td>Drive Series Components Compatibility 30</td>
</tr>
<tr>
<td>Spare Part Compatibility with Series A and Series B Drives 30</td>
</tr>
<tr>
<td>Firmware Revision Compatibility with Series A and B Circuit Boards .. 31</td>
</tr>
<tr>
<td>Series A, B, and C Converter Components and Drive Input Power Compatibility .. 31</td>
</tr>
<tr>
<td>Commonly Used Tools ... 32</td>
</tr>
<tr>
<td>Service Tools ... 32</td>
</tr>
<tr>
<td>Software Tools ... 32</td>
</tr>
<tr>
<td>Fastener/Tool/Torque Information 33</td>
</tr>
<tr>
<td>Fastener Torque Sequences ... 34</td>
</tr>
<tr>
<td>Chapter 2</td>
</tr>
<tr>
<td>Periodic Maintenance</td>
</tr>
<tr>
<td>Recommended Preventive Maintenance 37</td>
</tr>
<tr>
<td>Schedule Codes Explanations .. 38</td>
</tr>
<tr>
<td>Maintenance of Industrial Control Equipment 39</td>
</tr>
<tr>
<td>Chapter 3</td>
</tr>
<tr>
<td>Component Inspection and Test Procedures</td>
</tr>
<tr>
<td>Component Inspection and Maintenance 48</td>
</tr>
<tr>
<td>Forward and Reverse Biased SCR/Diode Tests 49</td>
</tr>
<tr>
<td>Converter Fuse Tests .. 53</td>
</tr>
<tr>
<td>Converter Gate-lead Resistance Measurements 53</td>
</tr>
<tr>
<td>DC Precharge Assembly Fuse Tests 55</td>
</tr>
<tr>
<td>Chapter 4</td>
</tr>
<tr>
<td>Control Pod Component Replacement Procedures</td>
</tr>
<tr>
<td>Control Pod Components Identification 57</td>
</tr>
<tr>
<td>Control Pod Cover Removal/Installation 59</td>
</tr>
<tr>
<td>Remove the Control Pod Cover .. 59</td>
</tr>
<tr>
<td>Install the Control Pod Cover .. 59</td>
</tr>
</tbody>
</table>
Table of Contents

Control Pod Cables Removal/Installation .. 60
Remove the Control Pod Cables ... 60
Install the Control Pod Cables .. 60
Fiber-optic Cable Removal/Installation (Frame 8) 61
Remove the Fiber-optic Cable (Frame 8) ... 61
Install the Fiber-optic Cable (Frame 8) .. 64
Main Control Board Removal/Installation ... 65
Remove the Main Control Board (Control Pod in Drive Enclosure) 65
Install the Main Control Board ... 68
Control Pod Removal/Installation ... 68
Remove the Control Pod .. 68
Install the Control Pod .. 72
Fiber Interface Board Removal/Installation ... 73
Remove the Fiber Interface Board ... 73
Install the Fiber Interface Board ... 79

Chapter 5
Converter Component Replacement Procedures

Converter Components Identification ... 82
Converter Left Cover Removal/Installation ... 87
Remove the Converter Left Cover ... 87
Install the Converter Left Cover .. 87
Converter Right Cover (No Control Pod) Removal/Installation 88
Remove the Converter Right Cover (No Control Pod) 88
Install the Converter Right Cover (No Control Pod) 88
Control Pod Rotation .. 88
Rotate the Control Pod Forward ... 88
Return the Control Pod to the Service Position 91
Control Transformer Primary Fuses Removal/Installation 91
Remove the Control Transformer Primary Fuses (FU4 and FU5) 91
Install the Control Transformer Primary Fuse (FU4 and FU5) 91
Control Transformer Secondary Fuse Removal/Installation 92
Remove the Control Transformer Secondary Fuse (FU6) 92
Install the Control Transformer Secondary Fuse (FU6) 92
Converter EMC Filter Circuit Board Removal/Installation 93
Remove the Converter EMC Filter Circuit Board 93
Install the Converter EMC Filter Circuit Board 94
Converter Input Fuse Stirring Fan Removal/Installation 95
Remove the Converter Input Fuse Stirring Fan 95
Install the Converter Input Fuse Stirring Fan 95
AC Line Fuse Sense Wire Harness Removal/Installation 97
Remove the AC Line Fuse Sense Wire Harness 97
Install the AC Line Fuse Sense Wire Harness 98
AC Line Fuse Removal/Installation .. 99
Remove the AC Line Fuses (FU1, FU2, and FU3) 99
Install AC Line Fuse (FU1, FU2, and FU3) 101
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Bus Sense Wire Harness Removal/Installation</td>
<td>101</td>
</tr>
<tr>
<td>Remove the DC Bus Sense Wire Harness</td>
<td>101</td>
</tr>
<tr>
<td>Install the DC Bus Sense Wire Harness</td>
<td>103</td>
</tr>
<tr>
<td>Converter Current Sensor Wire Harness Removal/Installation</td>
<td>103</td>
</tr>
<tr>
<td>Remove the Converter Current Sensor Wire Harness</td>
<td>103</td>
</tr>
<tr>
<td>Install the Converter Current Sensor Wire Harness</td>
<td>104</td>
</tr>
<tr>
<td>Converter Current Sensors Removal/Installation</td>
<td>105</td>
</tr>
<tr>
<td>Remove the Converter Current Sensors</td>
<td>105</td>
</tr>
<tr>
<td>Install the Converter Current Sensors</td>
<td>109</td>
</tr>
<tr>
<td>Converter SCR Gate Wire Harness Removal/Installation</td>
<td>109</td>
</tr>
<tr>
<td>Remove the Converter SCR Gate Wire Harness</td>
<td>109</td>
</tr>
<tr>
<td>Install the Converter SCR Gate Wire Harness</td>
<td>110</td>
</tr>
<tr>
<td>Converter SCR Assembly Removal/Installation</td>
<td>111</td>
</tr>
<tr>
<td>Remove the Converter SCR Assembly</td>
<td>111</td>
</tr>
<tr>
<td>Install the Converter SCR Assembly</td>
<td>120</td>
</tr>
<tr>
<td>Converter Heat Sink Gasket Replacement</td>
<td>120</td>
</tr>
<tr>
<td>Remove the Converter Heat Sink Gasket</td>
<td>120</td>
</tr>
<tr>
<td>Install the Converter Heat Sink Gasket</td>
<td>121</td>
</tr>
<tr>
<td>Inverter Power-supply Wire Harness Removal/Installation</td>
<td>121</td>
</tr>
<tr>
<td>Remove the Inverter Power-supply Wire Harness</td>
<td>121</td>
</tr>
<tr>
<td>Install the Inverter Power-supply Wire Harness</td>
<td>122</td>
</tr>
<tr>
<td>AC Line Wire Harness Removal/Installation</td>
<td>123</td>
</tr>
<tr>
<td>Remove the AC Line Wire Harness</td>
<td>123</td>
</tr>
<tr>
<td>Install the AC Line Wire Harness</td>
<td>124</td>
</tr>
<tr>
<td>Surge-suppressor Sense Wire Harness Removal/Installation</td>
<td>125</td>
</tr>
<tr>
<td>Remove the Surge-suppressor Sense Wire Harness</td>
<td>125</td>
</tr>
<tr>
<td>Install the Surge-suppressor Sense Wire Harness</td>
<td>125</td>
</tr>
<tr>
<td>Surge Suppressor Removal/Installation</td>
<td>126</td>
</tr>
<tr>
<td>Remove the Surge Suppressor</td>
<td>126</td>
</tr>
<tr>
<td>Install the Surge Suppressor</td>
<td>127</td>
</tr>
<tr>
<td>Surge Suppressor Assembly Removal/Installation</td>
<td>127</td>
</tr>
<tr>
<td>Remove the Surge Suppressor Assembly</td>
<td>127</td>
</tr>
<tr>
<td>Install the Surge Suppressor Assembly</td>
<td>130</td>
</tr>
<tr>
<td>Converter Gate Board Stirring Fan Removal/Installation</td>
<td>131</td>
</tr>
<tr>
<td>Remove the Converter Gate Board Stirring Fan</td>
<td>131</td>
</tr>
<tr>
<td>Install the Converter Gate Board Stirring Fan</td>
<td>132</td>
</tr>
<tr>
<td>24V/240V Power Wire Harness Removal/Installation</td>
<td>132</td>
</tr>
<tr>
<td>Remove the 24V/240V Power Wire Harness</td>
<td>132</td>
</tr>
<tr>
<td>Install the 24V/240V Power Wire Harness</td>
<td>137</td>
</tr>
<tr>
<td>Control-transformer Primary Wire Harness Removal/Installation</td>
<td>138</td>
</tr>
<tr>
<td>Remove the Control-transformer Primary Wire Harness</td>
<td>138</td>
</tr>
<tr>
<td>Install the Control-transformer Primary Wire Harness</td>
<td>140</td>
</tr>
<tr>
<td>Control Transformer Removal/Installation</td>
<td>140</td>
</tr>
<tr>
<td>Remove the Control Transformer</td>
<td>140</td>
</tr>
<tr>
<td>Install the Control Transformer</td>
<td>142</td>
</tr>
</tbody>
</table>
Table of Contents

No DC Bus Fuse Wire Harness Removal/Installation
(Frame 8 Drives Only) ... 143
 Remove the No DC Bus Fuse Wire Harness 143
 Install the No DC Bus Fuse Wire Harness 143
DC Bus Fuse Wire Harness Removal/Installation
(Frame 9 and Larger Drives Only) 144
 Remove the DC Bus Fuse Wire Harness 144
 Install the DC Bus Fuse Wire Harness 145
Control Power Isolator Board 24V Wire Harness
Removal/Installation (600/690V AC Input Drives Only) 146
 Remove the Control Power Isolator Board 24V Wire Harness . 146
 Install the Control Power Isolator Board 24V Wire Harness ... 147
Control Power Isolator Board Removal/Installation
(600/690V AC Input Drives Only) 148
 Remove the Control Power Isolator Board 148
 Install the Control Power Isolator Board 149
Converter Gate Circuit Board Removal/Installation 149
 Remove the Converter Gate Circuit Board 149
 Install the Converter Gate Circuit Board 151
Converter Removal/Installation 152
 Remove the Converter from the Inverter Assembly 152
 Install the Converter on the Inverter Assembly 155
Converter Duct Gasket Replacement 155
 Remove the Converter Duct Gasket 155
 Install the Converter Duct Gasket 156

Chapter 6
DC Input with Precharge Assembly
Component Replacement Procedures
DC Input with Precharge Assembly Components Identification 158
DC Input with Precharge Assembly Left Cover, Top Guard, and
Left Guard Removal/Installation 163
 Remove the DC Input with Precharge Assembly Left Cover,
 Top Guard, and Left Guard 163
 Install the DC Input with Precharge Assembly Left Cover,
 Top Guard, and Left Guard 163
DC Input with Precharge Assembly Left Cover and
Interlock Assembly Replacement 164
 Remove the DC Input with Precharge Assembly Left Cover,
 Top Guard, and Left Guard and Disconnect Handle......... 164
 Install the New Disconnect Switch Interlock and
 Front Cover Assemblies 166
DC Input with Precharge Assembly Right Cover
(No Control Pod) Removal/Installation 172
 Remove the DC Input with Precharge Assembly Right Cover
 (No Control Pod) ... 172
 Install the DC Input with Precharge Assembly Right Cover
 (No Control Pod) ... 172
Table of Contents

- Control Transformer Secondary Fuses Removal/Installation 172
 - Remove the Control Transformer Secondary Fuses (FU5 and FU6) 172
 - Install the Control Transformer Secondary Fuses (FU5 and FU6) 173
- DC Bus Output/Sense Wire Harness Removal/Installation 174
 - Remove the DC Bus Output/Sense Wire Harness 174
 - Install the DC Bus Output/Sense Wire Harness 177
- Precharge Resistor Assembly Removal/Installation 178
 - Remove the Precharge Resistor Assembly 178
 - Install the Precharge Resistor Assembly 179
- Precharge Resistor Jumper Wires Removal/Installation 179
 - Remove the Precharge Resistor Jumper Wires 179
 - Install the Precharge Resistor Jumper Wires 179
- DC Line Fuses and Fuse Indicators Removal/Installation 180
 - Remove the DC Line Fuses (FU1 and FU2) and Fuse Indicators (SW3 and SW4) 180
 - Install the DC Line Fuses (FU1 and FU2) and Fuse Indicators (SW3 and SW4) 181
- Precharge Circuit Fuses Removal/Installation 182
 - Remove the Precharge Circuit Fuses (FU3 and FU4) 182
 - Install the Precharge Circuit Fuses (FU3 and FU4) 182
- DC Bus Input Wire Harness Removal/Installation 183
 - Remove the DC Bus Input Wire Harness 183
 - Install the DC Bus Input Wire Harness 184
- Left Wall Removal/Installation 184
 - Remove the Left Wall 184
 - Install the Left Wall 185
- Molded Case Switch Wire Terminal Support Removal/Installation 186
 - Remove the Molded Case Switch Wire Terminal Support 186
 - Install the Molded Case Switch Wire Terminal Support 186
- 24V Control Wire Harness Removal/Installation 187
 - Remove the 24V Control Wire Harness 187
 - Install 24V Control Wire Harness 189
- Molded-case Switch Control Wire Harness Removal/Installation 190
 - Remove the Molded-case Switch Control Wire Harness 190
 - Install the Molded-case Switch Control Wire Harness 192
- Transformer Primary Wire Harness Removal/Installation 193
 - Remove the Transformer Primary Wire Harness 193
 - Installing the Transformer Primary Wire Harness 194
- 24V/120V/240V Wire Harness Removal/Installation 195
 - Remove the 24V/120V/240V Wire Harness 195
 - Install the 24V/120V/240V Wire Harness 200
- Disconnect Switch Jumper Wires Removal/Installation 201
 - Remove the Disconnect Switch Jumper Wires 201
 - Install the Disconnect Switch Jumper Wires 202
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disconnect Switch (SW2), Auxiliary Contact, and Handle Shaft Removal/Installation</td>
<td>202</td>
</tr>
<tr>
<td>Remove the Disconnect Switch, Auxiliary Contact and Handle Shaft</td>
<td>202</td>
</tr>
<tr>
<td>Install the Disconnect Switch, Auxiliary Contact and Handle Shaft</td>
<td>203</td>
</tr>
<tr>
<td>Disconnect Switch Handle Removal/Installation</td>
<td>203</td>
</tr>
<tr>
<td>Remove the Disconnect Switch Handle</td>
<td>203</td>
</tr>
<tr>
<td>Install the Disconnect Switch Handle</td>
<td>203</td>
</tr>
<tr>
<td>Control Transformer Removal/Installation</td>
<td>204</td>
</tr>
<tr>
<td>Remove the Control Transformer</td>
<td>204</td>
</tr>
<tr>
<td>Install the Control Transformer</td>
<td>207</td>
</tr>
<tr>
<td>Control Power Isolator Board 24V Wire Harness</td>
<td>207</td>
</tr>
<tr>
<td>Remove the Control Power Isolator Board 24V Wire Harness</td>
<td>207</td>
</tr>
<tr>
<td>Install the Control Power Isolator Board 24V Wire Harness</td>
<td>208</td>
</tr>
<tr>
<td>Control Power Isolator Board Removal/Installation (810/932V DC Input Drives Only)</td>
<td>208</td>
</tr>
<tr>
<td>Remove the Control Power Isolator Board</td>
<td>208</td>
</tr>
<tr>
<td>Install the Control Power Isolator Board</td>
<td>209</td>
</tr>
<tr>
<td>Undervoltage Delay Bracket Removal/Installation</td>
<td>210</td>
</tr>
<tr>
<td>Remove the Undervoltage Delay Bracket</td>
<td>210</td>
</tr>
<tr>
<td>Install the Undervoltage Delay Bracket</td>
<td>210</td>
</tr>
<tr>
<td>Undervoltage Delay Wire Harness Removal/Installation</td>
<td>212</td>
</tr>
<tr>
<td>Remove the Undervoltage Delay Wire Harness</td>
<td>213</td>
</tr>
<tr>
<td>Install the Undervoltage Delay Wire Harness</td>
<td>213</td>
</tr>
<tr>
<td>Undervoltage Delay Removal/Installation</td>
<td>213</td>
</tr>
<tr>
<td>Remove the Undervoltage Delay</td>
<td>214</td>
</tr>
<tr>
<td>Install the Undervoltage Delay</td>
<td>214</td>
</tr>
<tr>
<td>DC Precharge Control Board Stirring Fan Removal/Installation</td>
<td>215</td>
</tr>
<tr>
<td>Remove the DC Precharge Control Board Stirring Fan</td>
<td>215</td>
</tr>
<tr>
<td>Install the DC Precharge Control Board Stirring Fan</td>
<td>216</td>
</tr>
<tr>
<td>Door-interlock Wire Harness Removal/Installation</td>
<td>216</td>
</tr>
<tr>
<td>Removing the Door Interlock Wire Harness</td>
<td>216</td>
</tr>
<tr>
<td>Install the Door Interlock Wire Harness</td>
<td>218</td>
</tr>
<tr>
<td>Digital I/O Wire Harness Removal/Installation</td>
<td>218</td>
</tr>
<tr>
<td>Remove the Digital I/O Wire Harness</td>
<td>218</td>
</tr>
<tr>
<td>Install the Digital I/O Wire Harness</td>
<td>219</td>
</tr>
<tr>
<td>DC Precharge Control Circuit Board Removal/Installation</td>
<td>220</td>
</tr>
<tr>
<td>Remove the DC Precharge Control Circuit Board</td>
<td>220</td>
</tr>
<tr>
<td>Install the DC Precharge Control Circuit Board</td>
<td>221</td>
</tr>
<tr>
<td>DC Input with Precharge Assembly Removal/Installation</td>
<td>222</td>
</tr>
<tr>
<td>Remove the DC Input with Precharge Assembly</td>
<td>222</td>
</tr>
<tr>
<td>Install the DC Input with Precharge Assembly</td>
<td>225</td>
</tr>
<tr>
<td>DC Input with Precharge Assembly Duct Gasket Replacement</td>
<td>225</td>
</tr>
<tr>
<td>Remove the DC Input with Precharge Assembly Duct Gasket</td>
<td>225</td>
</tr>
<tr>
<td>Install the DC Input with Precharge Assembly Duct Gasket</td>
<td>225</td>
</tr>
</tbody>
</table>
Inverter Component Replacement Procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Components Identification</td>
<td>228</td>
</tr>
<tr>
<td>Common-mode Core Assembly Removal/Installation</td>
<td>233</td>
</tr>
<tr>
<td>Remove the Common Mode Core Assembly</td>
<td>233</td>
</tr>
<tr>
<td>Install the Common Mode Core Assembly</td>
<td>233</td>
</tr>
<tr>
<td>Internal Stirring Fan Tray Removal/Installation</td>
<td>234</td>
</tr>
<tr>
<td>Remove the Internal Stirring Fan Tray</td>
<td>234</td>
</tr>
<tr>
<td>Install the Internal Stirring Fan Tray</td>
<td>234</td>
</tr>
<tr>
<td>Heatsink Fan Inlet Screen Removal/Installation</td>
<td>235</td>
</tr>
<tr>
<td>Remove the Heatsink Fan Inlet Screen</td>
<td>235</td>
</tr>
<tr>
<td>Install the Heatsink Fan Inlet Screen</td>
<td>235</td>
</tr>
<tr>
<td>Heatsink Fan Assembly Removal/Installation</td>
<td>236</td>
</tr>
<tr>
<td>Remove the Heatsink Fan Assembly</td>
<td>236</td>
</tr>
<tr>
<td>Install the Heatsink Fan Assembly</td>
<td>237</td>
</tr>
<tr>
<td>Inverter Circuit Board Connections Cover Removal/Installation</td>
<td>238</td>
</tr>
<tr>
<td>Remove the Inverter Circuit Board Connections Cover</td>
<td>238</td>
</tr>
<tr>
<td>Install the Inverter Circuit Board Connections Cover</td>
<td>238</td>
</tr>
<tr>
<td>Inverter Front Cover Removal/Installation</td>
<td>239</td>
</tr>
<tr>
<td>Remove the Inverter Front Cover</td>
<td>239</td>
</tr>
<tr>
<td>Install the Inverter Front Cover</td>
<td>240</td>
</tr>
<tr>
<td>Inverter Current Sensors Removal/Installation</td>
<td>240</td>
</tr>
<tr>
<td>Remove the Inverter Current Sensors</td>
<td>240</td>
</tr>
<tr>
<td>Install the Inverter Current Sensors</td>
<td>242</td>
</tr>
<tr>
<td>Inverter Current Sensor Wire Harness Removal/Installation</td>
<td>243</td>
</tr>
<tr>
<td>Remove the Inverter Current Sensor Wire Harness</td>
<td>243</td>
</tr>
<tr>
<td>Install the Inverter Current Sensor Wire Harness</td>
<td>245</td>
</tr>
<tr>
<td>Inverter Capacitor Bank Assembly Removal/Installation</td>
<td>246</td>
</tr>
<tr>
<td>Remove the Inverter Capacitor Bank</td>
<td>246</td>
</tr>
<tr>
<td>Install the Inverter Capacitor Bank</td>
<td>248</td>
</tr>
<tr>
<td>Capacitor Balance Resistor Assembly Removal/Installation</td>
<td>248</td>
</tr>
<tr>
<td>Remove the Capacitor Balance Resistor Assembly</td>
<td>248</td>
</tr>
<tr>
<td>Install the Capacitor Balance Resistors</td>
<td>249</td>
</tr>
<tr>
<td>IGBT Flexbus Bars Removal/Installation</td>
<td>250</td>
</tr>
<tr>
<td>Remove the IGBT Flexbus Bars</td>
<td>250</td>
</tr>
<tr>
<td>Install the IGBT Flexbus Bars</td>
<td>251</td>
</tr>
<tr>
<td>Inverter Gate Board Connection Ribbon Cables Removal/Installation</td>
<td>251</td>
</tr>
<tr>
<td>Remove the Inverter Gate Board Connection Ribbon Cables</td>
<td>251</td>
</tr>
<tr>
<td>Install the Inverter Gate Board Connection Ribbon Cables</td>
<td>253</td>
</tr>
<tr>
<td>Inverter Gate Circuit Board Removal/Installation</td>
<td>253</td>
</tr>
<tr>
<td>Remove the Inverter Gate Circuit Board</td>
<td>253</td>
</tr>
<tr>
<td>Install the Inverter Gate Circuit Board</td>
<td>254</td>
</tr>
<tr>
<td>Rating Plug Removal/Installation</td>
<td>255</td>
</tr>
<tr>
<td>Remove the Rating Plug</td>
<td>255</td>
</tr>
<tr>
<td>Install the Rating Plug</td>
<td>256</td>
</tr>
</tbody>
</table>
Table of Contents

Power Layer Interface Circuit Board Removal/Installation 256
 Remove the Power-layer Interface Circuit Board 256
 Install the Power-layer Interface Circuit Board 258
Power Supply Circuit Board Removal/Installation 258
 Remove the Power Supply Circuit Board 258
 Install the Power Supply Circuit Board 261
Power Control Circuit Board Removal/Installation 262
 Remove the Power Control Circuit Board 262
 Install the Power Control Circuit Board 264
Inverter Backplane Circuit Board Removal/Installation 265
 Remove the Inverter Backplane Circuit Board 265
 Install the Inverter Backplane Circuit Board 267
Inverter EMC Capacitor Removal/Installation (AC Input Drive Only) .. 268
 Remove the Inverter EMC Capacitors (AC Input Drive Only) 268
 Install the Inverter EMC Capacitors (AC Input Drive Only) 271
Inverter Side DC Bus Bar Removal/Installation (AC Input Drive Only) . 272
 Remove the Inverter Side DC Bus Bars (AC Input Drive Only) .. 272
 Install the Inverter Side DC Bus Bars (AC Input Drive Only) ... 279
Inverter Top DC Bus Bar Removal/Installation (Common DC Input Drive Only) 280
 Remove the Inverter Top DC Bus Bars (Common DC Input Drive Only) 280
 Install the Inverter Top DC Bus Bars (Common DC Input Drive Only) 284
DC Choke Removal/Installation (AC Input Drives Only) 285
 Remove the DC Choke (AC Input Drives Only) 285
 Install the DC Choke (AC Input Drives Only) 287
Inverter Wire Harness Removal/Installation 287
 Remove the Inverter Wire Harness 287
 Install the Inverter Wire Harness 290
Discharge Resistor Assembly Removal/Installation 291
 Remove the Discharge Resistor Assembly 291
 Install the Discharge Resistor Assembly 297
Inverter Heatsink Fan Inlet Bottom Cover Removal/Installation 298
 Remove the Inverter Heatsink Fan Inlet Bottom Cover 298
 Install the Inverter Heatsink Fan Inlet Bottom Cover 298
Inlet Bottom Cover Gasket Replacement 299
 Remove the Inlet Bottom Cover Gasket 299
 Install the Inlet Bottom Cover Gasket 299
Chapter 8

AC Input Drive Enclosure Component Replacement Procedures

AC Input Drive Enclosure Component Identification 302
IP20, NEMA/UL Type 1 Debris Screen Removal/Installation 303
 Remove the Debris Screen .. 303
 Install the Debris Screen 303
Exhaust Hood Removal/Installation 304
 Remove the Exhaust Hood .. 304
 Install the Exhaust Hood .. 304
Top Conduit Plate Removal/Installation 305
 Remove the Top Conduit Plate 305
 Install the Top Conduit Plate 305
IP20, NEMA/UL Type 1 Enclosure Door Fan Removal/Installation .. 306
 Remove the Enclosure Door Fan 306
IP54, NEMA 12 Cabinet Blower Assembly and Exhaust Hood Removal/Installation ... 307
 Install the Enclosure Door Fan 308
IP20, NEMA/UL Type 1 Enclosure Door Fan Harness Removal/Installation ... 309
 Remove the Enclosure Door Fan Wire Harness 309
 Install the Enclosure Door Fan Wire Harness 310
IP54, NEMA/UL Type 12 Cabinet Blower Wire Harness Removal/Installation .. 310
 Remove the Cabinet Blower Wire Harness 310
 Install the Cabinet Blower Wire Harness 311
IP54, NEMA/UL Type 12 Cabinet Blower Exhaust Filters Removal/Installation ... 312
 Remove the Cabinet Blower Exhaust Filters 312
 Install the Cabinet Blower Exhaust Filters 312
IP20, NEMA/UL Type 1 Door Filter Removal/Installation 313
 Remove the IP20 Door Filter 313
 Install the Door Filter ... 313
IP54, NEMA/UL Type 12 Cabinet Door Filters Removal/Installation ... 314
 Remove the Cabinet Door Filters 314
 Install the Cabinet Door Filters 315
IP54, NEMA/UL Type 12 Cabinet-door Filter Cassette Removal/Installation ... 316
 Remove the Cabinet Door Filter Cassette 316
 Install the Cabinet Door Filter Cassette 316
IP54, NEMA/UL Type 12 Cabinet Door Gasket Removal/Installation ... 317
 Remove the Cabinet Door Gasket 317
 Install the Cabinet Door Gasket 317
DC Bus Fuse Wire Harness Removal/Installation
(Frame 9 and Larger Drives Only) .. 318
 Remove the DC Bus Fuse Wire Harness 318
 Install the DC Bus Fuse Wire Harness 319
DC Bus Fuses and Fuse Indicators Removal/Installation
(Frame 9 and Larger Drives Only) .. 320
 Remove the DC Bus Fuses and Fuse Indicators 320
 Install the DC Bus Fuses and Fuse Indicators 322
Input Common-mode Core Removal/Installation
(Frame 9 and Larger, Common DC Input Drives Only) 323
 Remove the Input Common Mode Core 323
 Install the Input Common Mode Core 325
Cabinet L Bus Bars Removal/Installation 326
 Remove the Cabinet L Bus Bars ... 326
 Install the Cabinet L Bus Bars .. 327
Cabinet Door EMC Shield Removal/Installation
(Frame 10 Drives Only) .. 327
 Remove the Cabinet Door EMC Shield 327
 Install the Cabinet Door EMC Shield 329

Chapter 9

Common DC Input Drive Enclosure Components Identification .. 332
Enclosure Door Fan Removal/Installation 333
 Remove the Enclosure Door Fan .. 333
 Install the Enclosure Door Fan .. 334
Enclosure Door Fan Wire Harness Removal/Installation 334
 Remove the Enclosure Door Fan Wire Harness 334
 Install the Enclosure Door Fan Wire Harness 336
DC Back Bus Guards Removal/Installation 336
 Remove the DC Back Bus Guards 336
 Install the DC Back Bus Guards 337
120/240V Control Power Input Wire Harness
Removal/Installation .. 338
 Remove the 120/240V Control Power Input Wire Harness 338
 Install the 120/240V Control Power Input Wire Harness 339
120/240V Control Power Output Wire Harness
Removal/Installation .. 339
 Remove the 120/240V Control Power Output Wire Harness 339
 Install the 120/240V Control Power Output Wire Harness 340
120/240V Circuit Breaker Removal/Installation 340
 Remove the 120/240V Circuit Breaker 340
 Install the 120/240V Circuit Breaker 341
120V UPS Power Input Wire Harness Removal/Installation 342
 Remove the 120V UPS Power Input Wire Harness 342
 Install the 120V UPS Power Input Wire Harness 343
Option-bay Enclosure Component Replacement Procedures

Chapter 10

Option-bay Enclosure Components Identification .. 346
Frame 8 Circuit Breaker Disconnect Handle Panel
Removal/Installation .. 348
Remove the Frame 8 Circuit Breaker Disconnect Handle Panel 348
Install the Frame 8 Circuit Breaker Disconnect Handle Panel 350
IP20, NEMA/UL Type 1 Door Fan
Removal/Installation (Frame 8 Only) .. 351
Remove the IP20, NEMA/UL Type 1 Door Fan (Frame 8 Only) 351
Install the IP20, NEMA/UL Type 1 Door Fan (Frame 8 Only) 352
IP20, NEMA/UL Type 1 Door Fan Harness
Removal/Installation (Frame 8 Only) .. 353
Remove the IP20, NEMA/UL Type 1 Door Fan Harness (Frame 8) 353
Install the IP20, NEMA/UL Type 1 Door Fan Harness (Frame 8 Only) 354
IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Filter
Removal/Installation ... 355
Remove the IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Filter 355
Install the IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Filter 355
IP54, NEMA/UL Type 12 Cabinet Door-inlet Filters
Removal/Installation .. 355
IP54, NEMA/UL Type 12 Cabinet Door-inlet Filter Cassette
Removal/Installation .. 355
IP54, NEMA/UL Type 12 Cabinet Door Gasket
Removal/Installation .. 356
Frame 8 Option Bay Guard Removal/Installation .. 356
Remove the Frame 8 Option Bay Guard .. 356
Install the Frame 8 Option Bay Guard ... 356
Frame 9 Series B Option Bay Guards Removal/Installation 357
Remove the Frame 9 Series B Option Bay Guards ... 357
Install the Frame 9 Series B Option Bay Guards .. 358
Frame 9 Series C Option Bay Guards Removal/Installation 359
Remove the Frame 9 Series C Option Bay Guards ... 359
Install the Frame 9 Series C Option Bay Guards .. 360
Control Transformer Fuses Removal/Installation .. 361
Remove the Control Transformer Fuses .. 361
Install the Control Transformer Fuses ... 361

Input Common-mode Core Removal/Installation
(Co
mmon DC Input Drives) .. 343
Remove the Input Common Mode Core .. 343
Install the Input Common Mode Core ... 344
Table of Contents

Frame 8 IP54, NEMA/UL Type 12 Cabinet Blower Assembly
Removal/Installation .. 362
 Remove the Frame 8 IP54, NEMA/UL Type 12
 Cabinet Blower Assembly ... 362
 Install the Frame 8 IP54, NEMA/UL Type 12
 Cabinet Blower Assembly ... 362

Frame 8 IP54, NEMA/UL Type 12 Cabinet Blower Wire Harness
Removal/Installation .. 363
 Remove the Frame 8 IP54, NEMA/UL Type 12
 Cabinet Blower Wire Harness 363
 Install the Frame 8 IP54, NEMA/UL Type 12
 Cabinet Blower Wire Harness 364

Frame 8 Control Transformer Removal/Installation 364
 Remove the Frame 8 Control Transformer 364
 Install the Frame 8 Control Transformer 366

Frame 8 Control Transformer Wire Harness Removal/Installation .. 366
 Remove the Frame 8 Control Transformer Wire Harness 366
 Install the Frame 8 Control Transformer Wire Harness 370

Frame 8 Contactor Wire Harness Removal/Installation 371
 Remove the Frame 8 Contactor Wire Harness 371
 Install the Frame 8 Contactor Wire Harness 372

Frame 8 Thermostat and Wire Harness Removal/Installation 372
 Remove the Frame 8 Thermostat and Wire Harness 372
 Install the Frame 8 Thermostat and Wire Harness 373

Frame 9 Cabinet Blower Assembly Removal/Installation 374
 Remove the Frame 9 Cabinet Blower Assembly 374
 Install the Frame 9 Cabinet Blower Assembly 374

Frame 9 Cabinet Blower Wire Harness Removal/Installation 375
 Remove the Frame 9 Cabinet Blower Wire Harness 375
 Install the Frame 9 Cabinet Blower Wire Harness 376

Frame 9 Circuit Breaker Disconnect Handle Panel (Series A)
Removal/Installation .. 377
 Remove the Frame 9 Circuit Breaker Disconnect Handle Panel
 (Series A) ... 377
 Install the Frame 9 Circuit Breaker Disconnect Handle Panel
 (Series A) ... 378

Frame 9 Thermostat and Wire Harness Removal/Installation 378
 Remove the Frame 9 Thermostat and Wire Harness 378
 Install the Frame 9 Thermostat and Wire Harness 379

Frame 9 Control Transformer Removal/Installation 380
 Remove the Frame 9 Control Transformer 380
 Install the Frame 9 Control Transformer 381

Frame 9 Main Control-panel Wire Harness Removal/Installation . 381
 Remove the Frame 9 Main Control-panel Wire Harness 381
 Install the Frame 9 Main Control-panel Wire Harness 385
Table of Contents

Frame 9 Reactor Fan Tray Removal/Installation 386
Remove the Frame 9 Reactor Fan Tray 386
Install the Frame 9 Reactor Fan Tray 387
Frame 9 Reactor Fan Tray Wire Harness Removal/Installation 387
Remove the Frame 9 Reactor Fan Tray Wire Harness 387
Install the Frame 9 Reactor Fan Tray Wire Harness 388
Frame 9 Reactor Fans Wire Harness Removal/Installation 389
Remove the Frame 9 Reactor Fans Wire Harness 389
Install the Frame 9 Reactor Fans Wire Harness 391
Frame 9 Cabinet Blower Relay Removal/Installation 391
Remove the Frame 9 Cabinet Blower Relay 391
Install the Frame 9 Cabinet Blower Relay 391
Frame 9 Control Panel Thermostat Harness Removal/Installation ... 392
Remove the Frame 9 Control-panel Thermostat Wire Harness ... 392
Install the Frame 9 Control-panel Thermostat Wire Harness 393
Top Conduit Plate Removal/Installation 394
Remove the Top Conduit Plate .. 394
Install the Top Conduit Plate .. 394
Bottom Conduit Plate Removal/Installation 395
Remove the Bottom Conduit Plate 395
Install the Bottom Conduit Plate 395

Chapter 11

Enclosure Cable Components and Part Numbers 397
24V Wire Harness Removal/Installation
(Frame 9 and Larger Drives) ... 398
Removing the 24V Wire Harness (Frame 9 and Larger Drives) 398
Installing the 24V Wire Harness (Frame 9 and Larger Drives) 402
First Inverter (INV1) Fiber-optic Cable Removal/Installation ... 403
Removing the First Inverter (INV1) Fiber-optic Cable 403
Installing the First Inverter (INV1) Fiber-optic Cable 406
Second Inverter (INV2) Fiber-optic Cable Removal/Installation ... 407
Removing the Second Inverter (INV2) Fiber-optic Cable 407
Installing the Second Inverter (INV2) Fiber-optic Cable 411
Third Inverter (INV3) Fiber-optic Cable Removal/Installation 412
Removing the Third Inverter (INV3) Fiber-optic Cable 412
Installing the Third Inverter (INV3) Fiber-optic Cable 416
Fiber-optic Spool Removal/Installation 416
Removing the Fiber-optic Spool .. 416
Installing the Fiber-optic Spool ... 418

Chapter 12

Drive Startup after Repairs
Before You Apply Power to the Drive 419
Testing with the Motor without a Mechanical Load 421
Appendix A

Schematics

Frame 8 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes) 424
Frame 9 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes) 425
Frame 10 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes) 426
Frame 8 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes) 427
Frame 9 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes) 428
Frame 10 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes) 429
Frame 8 AC Input IP20 Option Bay without a Control Transformer Schematic Diagram 430
Frame 8 AC Input IP20 Option Bay with a Control Transformer Schematic Diagram 431
Frame 8 AC Input IP54 Option Bay Schematic Diagram 432
Frame 9 AC Input Option Bay Schematic Diagram 433
Control Pod Schematic Diagram 434
Converter Schematic Diagram (400VAC and 600VAC Classes AC Input Drive) 435
Frame 8 Control Power Isolator Board Wiring Diagrams (600V AC Class AC Input Drive, and 810V DC and 932V DC Classes Common DC Input Drive) 436
Frame 9 Control Power Isolator Board Wiring Diagrams (600V AC Class AC Input Drive, and 810V DC and 932V DC Classes Common DC Input Drive) 436
Frame 10 Control Power Isolator Board Wiring Diagrams (600V AC Class AC Input Drive, and 810V DC and 932V DC Classes Common DC Input Drive) 436
DC Input with Precharge Assembly Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes Common DC Input Drives) 437
DC Input with Precharge Devices Schematic Diagrams 439
Inverter Circuit Board Schematic Diagram (All Drive Configurations) 440
Inverter Power Layer Schematic Diagram (All Drive Configurations) 441
AC Input Drive Control Transformer Schematic Diagram 442
DC Input with Precharge Assembly Control Transformer Schematic Diagram 442
Inverter Main Blower and Capacitor Bank Cooling Fan Wire Harness Diagram 443
Cabinet Cooling Wiring Diagrams 443
Table of Contents

Appendix B
Circuit Board Interconnections
Inverter Board Interconnections Diagram 1 ... 446
Inverter Board Interconnections Diagram 2 ... 447
Control Board Interconnections Diagram 1 ... 448
Control Board Interconnections Diagram 2 ... 449

Appendix C
Drive-compatible Circuit Breakers, Molded Case Switches, Contactors, and Line Reactors
Replacement Part Catalog Numbers, Ratings, and Settings 451

Appendix D
History of Changes
750-TG001F-EN-P, December 2017 .. 465
750-TG001E-EN-P, July 2012 ... 465
750-TG001D-EN-P, April 2012 .. 466
750-TG001C-EN-P, January 2012 ... 467
750-TG001B-EN-P, October 2011 ... 467

Index
Index .. 469
Notes:
This manual provides a recommended preventive maintenance schedule, major component test and hardware replacement procedures, and schematic diagrams for floor mount frame 8 and larger PowerFlex® 750-Series AC drives. See Drive Input Power Configurations on page 28 for information on drive input power configurations and frame sizes.

It is highly recommended that you obtain a copy of the PowerFlex 750-Series AC Drives Programming Manual, publication 750-PM001. This publication contains fault, alarm, and programming information that can help you troubleshoot drive errors and determine if repairs are necessary.

Who Should Use This Manual

This manual is intended for qualified service personnel responsible for frame 8 and larger PowerFlex 750-Series AC drive repairs. You must have previous experience with, and an understanding of, electrical terminology, procedures, required equipment, equipment protection procedures and methods, and safety precautions. See safety-related practices that are contained in publication NFPA 70E, Standard for Electrical Safety in the Workplace.

Additional Resources

Additional drive services and software/firmware support information are available on the Allen-Bradley Drives Service and Support website: http://www.ab.com/support/abdrives/.

See PowerFlex Architecture Class Low Voltage Drives Spare Parts Options, publication PFLEX-SB002 for a complete list of spare parts for PowerFlex 755 floor mount frame 8 and larger drives.

The following table lists publications that provide general drive-related information.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives, publication DRIVES-IN001</td>
<td>Provides basic information that is required to properly wire and ground PWM AC drives.</td>
</tr>
<tr>
<td>Safety Guidelines for the Application, Installation, and Maintenance of Solid-State Control, publication SGD-1.1</td>
<td>Provides general guidelines for the application, installation, and maintenance of solid-state control.</td>
</tr>
<tr>
<td>Guarding Against Electrostatic Damage, publication 8000-4.5.2</td>
<td>Provides practices for guarding against Electrostatic damage (ESD)</td>
</tr>
<tr>
<td>Product Certifications that are provided on the Allen-Bradley website: http://ab.rockwellautomation.com/</td>
<td>Provides declarations of conformity, certificates, and other certification details.</td>
</tr>
</tbody>
</table>
The following table lists publications that provide information about PowerFlex 750-Series drives.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerFlex 750-Series AC Drives Programming Manual, publication 750-PM001</td>
<td>Provides information that is required to start-up, program, and troubleshoot PowerFlex 750-Series AC drives.</td>
</tr>
<tr>
<td>PowerFlex 755 Drive Embedded EtherNet/IP Adapter User Manual, publication 750COM-UM001</td>
<td>Provides information on how to install, configure, and troubleshoot the Embedded EtherNet/IP Adapter for PowerFlex 755 AC drives.</td>
</tr>
<tr>
<td>Safe Speed Monitor Option Module for PowerFlex 750-Series AC Drives Safety Reference Manual, publication 750-RM001</td>
<td>Describes how to use PowerFlex 750-Series AC drives in Safety Integrity Level (SIL) CL3, Performance Level (PL(e)), or Category (CAT) 4 applications. This manual provides information on how to install, configure, and troubleshoot the PowerFlex Safe Speed Monitor Option module.</td>
</tr>
<tr>
<td>PowerFlex 750-Series AC Drives Technical Data, publication 750-TD001</td>
<td>Provides information on product features and benefits, options, and technical specifications information.</td>
</tr>
<tr>
<td>PowerFlex 750-Series AC Drives Installation Instructions, publication 750-IN001</td>
<td>Explains the basic steps for mechanical installation, and provides instructions on how to connect incoming power, the motor, and basic I/O to the PowerFlex 750-Series Adjustable Frequency AC drive.</td>
</tr>
<tr>
<td>PowerFlex 755 IP00, NEMA/UL Open Type Drive Frames 8-10 Installation Instructions, publication 750-IN020</td>
<td>This document provides instructions for the installation of an IP00, Open Type PowerFlex 755 drive (Frames 8…10) in a user supplied enclosure. The information provided in this publication supplements the PowerFlex 750-Series AC Drives Installation Instructions, publication 750-IN001, and is intended for qualified drive service personnel only.</td>
</tr>
<tr>
<td>PowerFlex 750-Series AC Drives Hardware Service Manual – Frame 8 and Larger, publication 750-TG001</td>
<td>Provides a recommended preventative maintenance schedule, major component test and hardware replacement procedures, and schematic diagrams for floor mount frame 8 and larger PowerFlex 750-Series AC drives.</td>
</tr>
<tr>
<td>PowerFlex 750-Series Service Cart High-power Conversion Kit, publication 750-IN017</td>
<td>Provides instructions to convert the multi-drive 750-Series Service Cart to a high-power (frame 8…10) service cart.</td>
</tr>
<tr>
<td>PowerFlex 750-Series Spare Parts Installation Instructions, publication 750-IN013</td>
<td>Provides additional information to acquire spare parts for the PowerFlex 750-Series.</td>
</tr>
<tr>
<td>PowerFlex Architecture Class Low Voltage Drives Spare Parts Options, publication PFLEX-SB002</td>
<td>Includes spare part lists and part numbers for PowerFlex low voltage drives.</td>
</tr>
</tbody>
</table>

You can view or download publications at http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Rockwell Automation distributor or sales representative.
Before You Begin Tests, Maintenance, or Repairs

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Precautions</td>
<td>24</td>
</tr>
<tr>
<td>Remove Power from the Drive</td>
<td>25</td>
</tr>
<tr>
<td>Drive Input Power Configurations</td>
<td>28</td>
</tr>
<tr>
<td>Drive Series Components Compatibility</td>
<td>30</td>
</tr>
<tr>
<td>Commonly Used Tools</td>
<td>32</td>
</tr>
<tr>
<td>Fastener/Tool/Torque Information</td>
<td>33</td>
</tr>
<tr>
<td>Fastener Torque Sequences</td>
<td>34</td>
</tr>
</tbody>
</table>

Read the information in this chapter before you begin tests, maintenance, or repairs on drive components.
Chapter 1 Before You Begin Tests, Maintenance, or Repairs

General Precautions

Read the following precautions before you begin to test components, perform maintenance, or repair the drive.

Qualified Personnel

ATTENTION: Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to comply can result in personal injury and/or equipment damage.

Personal Safety

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged completely before servicing. Measure the DC bus voltage at the -DC and +DC TESTPOINT sockets on the front of the power module (see Remove Power from the Drive on page 25 for location).

ATTENTION: Potentially fatal voltages can result from improper usage of an oscilloscope and other test equipment. The oscilloscope chassis can be at a potentially fatal voltage if not properly grounded. If an oscilloscope is used to measure high-voltage waveforms, use only a dual channel oscilloscope in the differential mode with X 100 probes. It is recommended that the oscilloscope is used in the A minus B Quasi-differential mode with the chassis of the oscilloscope that is correctly grounded to an earth ground.

Product Safety

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing, or repairing this assembly. Component damage can result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference Guarding Against Electrostatic Damage, publication 8000-4.5.2 or any other applicable ESD protection handbook.

Class 1 Status Indicator Products

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into module ports or fiber-optic cable connectors.
Remove Power from the Drive

WARNING: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged completely before servicing. Measure the DC bus voltage at the -DC and +DC TESTPOINT sockets on the front of the power module.

Remove power before you remove or make cable connections. When you remove or insert a cable connector with power applied, an electric arc can occur. An electric arc can cause personal injury or property damage in these ways:

- An electric arc can send an erroneous signal to system field devices, which can cause unintended machine motion
- An electric arc can cause an explosion in a hazardous environment

Electric arcs cause excessive wear to contacts on both the module and its mating connector. Worn contacts can create electrical resistance.

1. Turn off and lockout all input power, including any external power sources (such as a regenerative power supply or other DC power source).

2. Wait 15 minutes and verify that there is no voltage at the drive input power terminals.

3. Measure the DC bus voltage at the -DC and +DC TESTPOINT sockets on the front of the power module.
4. For common DC input drives only, follow steps a…e to turn off and lockout additional input power sources.

 a. Turn off and lock the drive circuit breaker SW5 (if used).

 b. Turn off and lock the drive disconnect switch SW2.

ATTENTION: To avoid an electric shock hazard when servicing the drive, a means for lockout/tagout of the external power supply source must be. The single-phase 120/240V power source and, if present, the external 120V uninterruptible both apply.
Common DC Input Drives

c. For common DC input drives with a circuit breaker access door (DC input with precharge units 20-750-P6-xnnxnnn and later), loosen the two hexalobular screws that secure the circuit breaker access door to the door panel and lower the door.

d. Close and lock the hasp on the molded case switch SW1.

e. If you must remove the drive from the cabinet, close and secure the circuit breaker access door before removal.
Drive Input Power Configurations

The PowerFlex 750-Series drives discussed in this manual are available as floor-mount frame 8, 9, and 10 drives with either AC or common DC input. See Figure 1 and Figure 2 on page 29 to familiarize yourself with AC versus DC input drive configurations and the main drive sections each configuration contains.

Figure 1 - AC Input Drives

Frame 8
- Exhaust Vent
- Control Wireway
- Converter Section (left)
- Control Pod and/or Control Panel (right)
- Note: Only one Control Pod per Drive (can also be remotely mounted - see 750-Series POD Remote Mounting Kit, publication 750-IN015)

Inverter Section
- DC Choke and Main Cooling Fan Intake

Frame 9
- Bay 1
- Bay 2

Frame 10
- Bay 1
- Bay 2
- Bay 3

Note: Enclosure doors shown removed.

Note: The exhaust vent is optional. A minimum top clearance of 182 mm (7.2 in.) must be maintained to help ensure proper airflow.
Before You Begin Tests, Maintenance, or Repairs

Chapter 1

Figure 2 - Common DC Input Drives

Frame 8

Exhaust Vent
Control Wireway
DC Input with Precharge Section (left)
Control Pod and/or Control Panel (right)
Note: Only one Control Pod per Drive (can also be remotely mounted - see 750-Series POD Remote Mounting Kit, publication 750-IN015)
Inverter Section
Main Cooling Fan Intake

Frame 9

Bay 1
Bay 2

Frame 10

Bay 1
Bay 2
Bay 3

Note: Enclosure doors are shown removed.
Note: Exhaust hoods are optional.
The drive frame size, date of manufacture, and firmware revision determine if series A or B components are installed. The following tables identify the drive components that are series-specific and the catalog numbers that can be used based on frame size and firmware revision. To avoid improper drive operation, verify the frame size, component series, and firmware revision before you purchase and replace any of these components.

Drive Series Components Compatibility

Spare Part Compatibility with Series A and Series B Drives

Series A and series B power core components are not compatible with each other and cannot be combined.

TIP Safety cards are not allowed for use in Series A power core components.

- All frame 8 drives that are manufactured before August 31, 2011 contain series A components.
- All frame 8, 9, and 10 drives that are manufactured after August 31, 2011 contain series B and C components.

IMPORTANT Safety cards cannot be used on series A power core components.

<table>
<thead>
<tr>
<th>Series Specific Component</th>
<th>Frame 8 - Series A Drives</th>
<th>Frame 8...10 - Series B and C Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converter Unit, AC Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>770 A, 400V / 740 A, 480V</td>
<td>20-750-C1-C770D740</td>
<td>20-750-C6-C770D740</td>
</tr>
<tr>
<td>Converter Unit, AC Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510 A, 600V / 500 A, 690V</td>
<td>--</td>
<td>20-750-C6-E510FS00</td>
</tr>
<tr>
<td>Inverter Unit, AC Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>460 A, 400V / 430 A, 480V</td>
<td>20-750-I1-C460D430</td>
<td>20-750-I1B-C460-D430</td>
</tr>
<tr>
<td>Inverter Unit, AC Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>540 A, 400V / 485 A, 480V</td>
<td>20-750-I1-C540D485</td>
<td>20-750-I1B-C540D485</td>
</tr>
<tr>
<td>Inverter Unit, AC Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>567 A, 400V / 545 A, 480V</td>
<td>20-750-I1-C567D545</td>
<td>20-750-I1B-C567D545</td>
</tr>
<tr>
<td>Inverter Unit, AC Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>650 A, 400V / 617 A, 480V</td>
<td>20-750-I1-C650D617</td>
<td>20-750-I1B-C650D617</td>
</tr>
<tr>
<td>Inverter Unit, AC Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750 A, 400V / 710 A, 480V</td>
<td>20-750-I1-C750D710</td>
<td>20-750-I1B-C750D710</td>
</tr>
<tr>
<td>Inverter Unit, AC Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>770 A, 400V / 740 A, 480V</td>
<td>20-750-I1-C770D740</td>
<td>20-750-I1B-C770D740</td>
</tr>
<tr>
<td>Converter Gate Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400V/480V AC Input (1)</td>
<td>SK-R1-CGDB1-CD-F8</td>
<td>SK-R1-CGDB4-CD-F8</td>
</tr>
<tr>
<td>Converter Gate Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600V/690V AC Input (1)</td>
<td>--</td>
<td>SK-R1-CGDB4-EF-F8</td>
</tr>
<tr>
<td>Inverter Power Layer, Interface Board (2)</td>
<td>SK-R1-PINT1-F8</td>
<td>SK-R1-PINT2-F8</td>
</tr>
</tbody>
</table>

(1) This board is included with a replacement converter unit.

(2) This board is included with a replacement inverter unit.
Firmware Revision Compatibility with Series A and B Circuit Boards

<table>
<thead>
<tr>
<th>Firmware Revision</th>
<th>Drive Series</th>
<th>Frame Size</th>
<th>Converter Gate Board</th>
<th>Inverter Power Layer, Interface Board</th>
<th>Converter Gate Board</th>
<th>Inverter Power Layer, Interface Board</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SK-R1-CGDB1-CD-F8</td>
<td>SK-R1-PINT1-F8</td>
<td>SK-R1-CGDB2-CD-F8</td>
<td>SK-R1-PINT2-F8</td>
</tr>
<tr>
<td>2.xxx</td>
<td>A</td>
<td>8</td>
<td>Compatible</td>
<td>Compatible</td>
<td>NOT Compatible</td>
<td>NOT Compatible</td>
</tr>
<tr>
<td>3.xxx...5.xxx</td>
<td>B</td>
<td>8 and 9</td>
<td>NOT Compatible</td>
<td>NOT Compatible</td>
<td>Compatible</td>
<td>Compatible</td>
</tr>
<tr>
<td>6.xxx or later</td>
<td>B</td>
<td>10</td>
<td>NOT Compatible</td>
<td>NOT Compatible</td>
<td>Compatible</td>
<td>Compatible</td>
</tr>
</tbody>
</table>

Series A, B, and C Converter Components and Drive Input Power Compatibility

<table>
<thead>
<tr>
<th>Series Specific Component</th>
<th>Compatible with 400/480VAC Input Drives</th>
<th>Compatible with 600/690VAC Input Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converter EMC Filter Board SK-R1-EMCFLT1-F8 (Series A)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Converter EMC Filter Board SK-R1-EMCFLT2-F8 (Series B and C)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Converter Current Sensor SK-R1-CNWF1B1-F8 (Series A)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Converter Current Sensor SK-R1-CNWF1B2-F8 (Series B and C)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Commonly Used Tools

IMPORTANT Care must be taken to be sure that tools and/or hardware components do not fall into open drive assemblies. Do not energize the drive unless all loose tools and/or hardware components have been removed from the drive assemblies and enclosure.

This list includes the tools that are needed for test measurements, basic maintenance, and service repairs.

<table>
<thead>
<tr>
<th>Tool Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen socket wrench</td>
<td>4 mm, 5 mm (with long extension)</td>
</tr>
<tr>
<td>Allen socket wrench extension</td>
<td>254 mm (10 in.)</td>
</tr>
<tr>
<td>Box wrench</td>
<td>7 mm, 8 mm, 10 mm, 13 mm, 17 mm, 19 mm, 22 mm</td>
</tr>
<tr>
<td>Crimping tools</td>
<td>For cable terminals, crimp per the tool manufactures specifications.</td>
</tr>
<tr>
<td>Current clamp</td>
<td>1000 A (AC, rms), signal output</td>
</tr>
<tr>
<td>ESD-protected place of work</td>
<td>Work surface, Floor cover, seat, and ground connections</td>
</tr>
<tr>
<td>ESD-protective clothing</td>
<td>Wrist wrap, shoes, overall clothing (coat)</td>
</tr>
<tr>
<td>Flash light</td>
<td>—</td>
</tr>
<tr>
<td>Flat-nose screwdriver</td>
<td>3 mm (0.12 in.), 5 mm (0.19 in.), 6.4 mm (0.25 in.)</td>
</tr>
<tr>
<td>Fuse puller</td>
<td>—</td>
</tr>
<tr>
<td>Hexalobular screw driver/bit</td>
<td>#15, #20, #25, #30, #40, #45</td>
</tr>
<tr>
<td>Hexagonal socket wrench</td>
<td>2.5 mm, 7 mm, 8 mm, 10 mm, 12 mm, 13 mm, 17 mm, 18 mm</td>
</tr>
<tr>
<td>Insulation tester</td>
<td>1000V DC</td>
</tr>
<tr>
<td>Lifting strap</td>
<td>8 mm (5/16 in.) J-hook style, 609 mm (24 in.) long, 454 kg (1000 lb.) Minimum</td>
</tr>
<tr>
<td>Multi-meter</td>
<td>Digital multi-meter, capable of AC and DC voltage, continuity, resistance, capacitance measurements, and forward diode bias tests. Fluke model 87 III or equivalent.</td>
</tr>
<tr>
<td>Nose pliers</td>
<td>—</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>Portable, digitizing, dual channel scope, with isolation</td>
</tr>
<tr>
<td>Phillips screwdriver/bit</td>
<td>#1, #2</td>
</tr>
<tr>
<td>Roll-out cart</td>
<td>20-750-CART1-F8. Note: The roll-out cart is required to remove the drive assembly from the enclosure.</td>
</tr>
<tr>
<td>Torque wrench</td>
<td>1...12 N-m (8.8...106 lb-in)</td>
</tr>
<tr>
<td>Torque wrench</td>
<td>6...50 N-m (53...443 lb-in)</td>
</tr>
<tr>
<td>Wire cutter</td>
<td>—</td>
</tr>
</tbody>
</table>

Service Tools

Software Tools

Connected Components Workbench™ software and DriveTools™ SP software are applications that can be used to upload and download parameter configuration and monitor and trend system parameters. Connected Components Workbench version 1.02 and DriveTools SP version 5.3 are required for use with PowerFlex® 750-Series floor mount frame 8 and larger drives and option modules.
Fastener/Tool/Torque Information

The disassembly illustrations in the following chapters identify the type of fastener, tool, and torque that is used for disassembly/assembly of components in the drive.

<table>
<thead>
<tr>
<th>Fastener Type</th>
<th>Tool Type and Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat-head screw</td>
<td>F Flat-nose screwdriver</td>
</tr>
<tr>
<td>Hexagonal bolt</td>
<td>Px Phillips screwdriver/bit and size</td>
</tr>
<tr>
<td>Hexagonal nut or standoff</td>
<td>Pzx Pozidriv screwdriver/bit and size</td>
</tr>
<tr>
<td>Hexagonal screw</td>
<td>Txx Hexalobular screwdriver/bit and size</td>
</tr>
<tr>
<td>Hexalobular screw</td>
<td>xx mm Hexagonal socket wrench</td>
</tr>
</tbody>
</table>

Torque Requirement

- T20 or F - 6.4 mm (0.25 in.)
- 1.8 N-m (16 lb-in)
ATTENTION: When mounting components to a drive heat sink, component fastener torque sequences and tolerances are crucial to component-to-heat sink heat dissipation.

Components can be damaged if the initial tightening procedure is not performed to specification.

The following illustrates the initial and final tightening sequences for components that are fastened to a heat sink by using two, four, and six screws. Initial torque is $1/3$ (33%) of final torque, except six-point mountings, which require $0.7 \text{ N•m (6 lb•in)}$ initial torque. The numeric illustration labels are for your assistance. Drive components do not contain these labels.

Figure 3 - Two-point Mounting

![Two-point Mounting Diagram](image)

Figure 4 - Four-point Mounting

![Four-point Mounting Diagram](image)
Figure 5 - Six-point Mounting

Do not exceed 0.7 N·m (6 lb·in) on initial torque of all six screws.
Notes:
Chapter 2

Periodic Maintenance

This chapter provides information on how to perform preventive maintenance on drive and option bay components that can affect the life and operability of the drive.

Recommended Preventive Maintenance

Rockwell Automation recognizes that following a defined maintenance schedule delivers the maximum product availability. By strictly following the maintenance schedule that is provided, you can expect the highest possible uptime.

This annual preventive maintenance program includes the following primary tasks:

- A visual inspection of all drive components visible from the front of the unit
- Resistance checks on the power components
- Power-supply voltage level checks
- General cleaning and maintenance
- Tightness checks on all accessible power connections

See Chapter 3 - Component Inspection and Test Procedures on page 47 for additional information on how to perform these procedures and tests.

The recommended maintenance tasks and schedule for a drive are contained in Maintenance of Industrial Control Equipment on page 39. The recommended maintenance tasks and schedule for an option bay are contained in Table 4 on page 45. The Schedule Codes Explanations section on page 38 contains an explanation of the codes that are contained in the recommended maintenance tasks and schedule tables.

IMPORTANT Duty cycle, load profile, temperature, altitude, incoming line conditions, and other operating/environmental conditions greatly affect reliability of a drive.
Schedule Codes Explanations

The following codes are used to indicate the tasks that are associated with the components that are identified in the recommended tasks and maintenance schedule tables on pages 39...45.

ATTENTION: Servicing energized industrial control equipment can be hazardous. Severe injury or death can result from electrical shock, burn, or unintended actuation of controlled equipment. Recommended practice is to disconnect and lockout control equipment from power sources, and discharge stored energy in capacitors, if present. If it is necessary to work in the vicinity of energized equipment, only qualified personnel are permitted to perform such work. Adhere to all applicable safety practices and wear protective equipment.

IMPORTANT Review product manuals for detailed maintenance information relevant a particular model.

<table>
<thead>
<tr>
<th>Code</th>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Inspect</td>
<td>Inspect the component for signs of excessive accumulation of dust, dirt, or external damage. For example, inspect the filter capacitors for bulges in the case, inspect the filters/fan inlet screens for debris that can block the airflow path.</td>
</tr>
<tr>
<td>C</td>
<td>Clean</td>
<td>Clean the components that can be reused, specifically the door-mounted air filters and fan inlet screens.</td>
</tr>
<tr>
<td>M</td>
<td>Maintain</td>
<td>This type of maintenance task can include an inductance test of line reactors/DC links, or a full test of an isolation transformer, and so on.</td>
</tr>
<tr>
<td>R</td>
<td>Replace</td>
<td>This component has reached its mean operational life. Replace the component to decrease the chance of failure. It is likely that components can exceed the designed life in the drive, but component life is dependent on many factors such as usage and heat.</td>
</tr>
<tr>
<td>RFB/R</td>
<td>Refurbish/Replace</td>
<td>The parts can be refurbished, at lower cost, or replaced with new ones.</td>
</tr>
<tr>
<td>Rv</td>
<td>Review</td>
<td>A discussion with Rockwell Automation personnel is recommended to help determine whether any of the enhancements/changes made to the drive hardware and control could benefit the application.</td>
</tr>
</tbody>
</table>
Periodic Inspection — Industrial control equipment must be inspected periodically. Inspection intervals are based on environmental/operating conditions, and adjusted as indicated by experience. We recommend an initial inspection within 3...4 months after installation. We recommend an annual inspection after initial inspection on an ongoing basis.

Contamination — If inspection reveals that dust, dirt, moisture, or other contamination has reached the control equipment, the cause must be eliminated. This contamination can indicate an incorrect or ineffective enclosure, unsealed enclosure openings (conduit or other), or incorrect operating procedures. Dirty, wet, or contaminated parts must be replaced unless they can be cleaned effectively by vacuuming or wiping.

Cooling Devices — Inspect blowers and fans that are used for forced air cooling. Replace any that have bent, chipped, missing blades or if the shaft does not turn freely. Apply power momentarily to check operation. If unit does not operate, check and replace wiring, fuse, blower, or fan motor as appropriate. Clean or change air filters as recommended.

Inspect and clean the power section components (IGBTs, SCRs, and capacitors) as part of the annual clean and inspection cycle (as access allows). Do not remove the whole drive assembly to gain access to the components. The life expectancies of the power section components are designed to last for the life of the drive for wall-mounted drives. The actual life is dependent on ambient and environmental conditions, load, variation of load, power system configuration, output and carrier frequency configuration, cooling system, and other application-related factors.

The design life expectancy of the overall components normally exceeds 10 years (in some cases it can last 20 years or more) in normal operating environments.
Bus Capacitors — For drives that are in storage and do not have a voltage applied, maintenance of the capacitors in a drive product can also be required (see Figure 6). For drives that are stored under one year, there is no additional maintenance required. For storage greater than one year, see Table 1 for bus capacitor reforming requirements.

Table 1 - Drive Storage Duration and Reforming Recommendations(1)(2)

<table>
<thead>
<tr>
<th>Duration</th>
<th>Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 1 year</td>
<td>No reforming required.</td>
</tr>
<tr>
<td>1…2 years</td>
<td>Apply rated voltage, per the normal method, for 60 minutes under no load.</td>
</tr>
<tr>
<td>2…3 years</td>
<td>Using a DC power supply that is connected directly to the DC terminals of the product, ramp-up voltage from 0…100% of DC bus voltage (see Table 2) in steps of 25% Dwell at 25%, 50%, and 75% steps for 30 minutes each. At 100% voltage, dwell for 60 minutes, all under no load.</td>
</tr>
<tr>
<td>Over 3 years</td>
<td>Using DC power supply connect directly to the DC terminals of the product, ramp-up voltage from 0…100% of DC bus voltage (see Table 2) in steps of 25%. Dwell at each stem for 120 minutes.</td>
</tr>
</tbody>
</table>

(1) The forming voltage must be 1.35…1.45 times the rated AC system voltage.
(2) The power supply current draw must not exceed 50 mA.

Table 2 - DC Bus Voltage Ramp-up Values

<table>
<thead>
<tr>
<th>AC Input Voltage</th>
<th>Voltage Across the DC Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>230V</td>
<td>325V DC</td>
</tr>
<tr>
<td>400/480V</td>
<td>680V DC</td>
</tr>
<tr>
<td>600V</td>
<td>848V DC</td>
</tr>
<tr>
<td>600/690V</td>
<td>976V DC</td>
</tr>
</tbody>
</table>

Figure 6 - Bus Capacitor Reforming Guidelines
Operating Mechanisms — Check for proper functioning and freedom from sticking or binding. Replace any broken, deformed, or badly worn parts or assemblies according to individual product renewal parts lists. Check and securely retighten (if necessary) any loose fasteners. Lubricate (if specified) per individual product instructions.

Contacts — Check contacts for excessive wear and dirt accumulations. Discoloration and slight pitting are acceptable. Do not file contacts. Do not use contact spray cleaners as residues can cause sticking or interfere with electrical continuity. Replace the contacts only after the silver has become badly worn. Always replace contacts in complete sets to avoid misalignment and uneven contact pressure.

Terminals — Loose connections can cause overheating that can lead to equipment malfunction or failure. Check the tightness of all terminals and bus bar connections – securely tighten any loose connections. Replace any parts or wiring that is damaged by overheating. Also check ground connection integrity.

Coils — If a coil exhibits evidence of overheating (cracked, melted, or burned insulation), it must be replaced. In that event, check for and correct overvoltage or undervoltage conditions, which can cause coil failure. Be sure to clean any residues of melted coil insulation from other parts of the device or replace such parts.

Batteries — Replace batteries periodically as specified in product manual or if a battery shows signs of electrolyte leakage. Use tools to handle batteries that have leaked electrolyte; most electrolytes are corrosive and can cause burns. Dispose of the old battery in accordance with instructions that are supplied with the new battery or as specified in the manual for the product.

Pilot Lights — Replace any burned out lamps or damaged lenses.
Solid-state Devices — Solid-state devices require little more than a periodic visual inspection. Inspect the printed circuit boards to determine whether they are properly seated in the edge connectors. Board locking tabs must be in place. Necessary replacements must be made only at the personal computer board or plug-in component level. Do not use solvents on printed circuit boards. When blowers are used, air filters must be cleaned or changed periodically depending on the specific environmental conditions encountered.

ATTENTION: Use of other than factory recommended test equipment for solid-state controls can result in damage to the control or test equipment or unintended actuation of the controlled equipment.

High-Voltage Testing — Do not perform high-voltage insulation resistance (IR) and dielectric withstanding voltage (DWV) tests to check solid-state control equipment. When measuring IR or DWV of electrical equipment such as transformers or motors, a solid-state device that is used for control or monitoring must be disconnected before performing the test. Even though no damage is readily apparent after an IR or DWV test, the solid-state devices are degraded and repeated application of high voltage can lead to failure.

Locking and Interlocking Devices — Check these devices for proper working condition and capability of performing their intended functions.

Maintenance After a Fault Condition — An open short circuit protective device (such as a fuse or circuit breaker) in a properly coordinated motor branch circuit is an indication of a fault condition in excess of operating overload. Such conditions can damage control equipment. Before restoring power, the fault condition must be corrected and any necessary repairs or replacements must be made to restore the control equipment to good working order. Make sure that the parts are properly matched to the model, series, and revision level of the equipment.

Final Check Out — After maintenance or repair of industrial controls, always test the control system for proper functioning under controlled conditions that avoid hazards if a control malfunction occurs.

Keep Good Maintenance Records — This rule is most helpful to locate possible intermittent problems by pointing to a particular area of constant trouble within the overall system. Further, good maintenance records reduce major costly shutdowns by demanding the use of proper test equipment and an appropriate inventory of spare parts.

We recommend that a complete record of parameter settings be kept close to the drive for future reference. Some drives also incorporate an operator interface that can store a copy of the parameter setting.

IMPORTANT Duty cycle, load profile, temperature, altitude, incoming line conditions, and other operating/environmental conditions greatly affect reliability of a drive.
Table 3 - Recommended Drives Maintenance Tasks and Schedule

<table>
<thead>
<tr>
<th>Years ></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components and Activities</td>
<td></td>
</tr>
<tr>
<td>Air-cooling System</td>
<td></td>
</tr>
<tr>
<td>IP20 Door-mounted Air Filters (1)</td>
<td>C/R</td>
</tr>
<tr>
<td>IP54 Door-mounted Air Filters (1)</td>
<td>C/R</td>
</tr>
<tr>
<td>IP54 Roof-mounted Assembly Air Filters (1)</td>
<td>C/R</td>
</tr>
<tr>
<td>Main Heatsink Fan Assembly</td>
<td>C/R</td>
</tr>
<tr>
<td>IP20 Door-mounted Cooling Fans</td>
<td>C/R</td>
</tr>
<tr>
<td>IP54 Roof-mounted Cooling Fans</td>
<td>C/R</td>
</tr>
<tr>
<td>Converter Input Fuse Stirring Fan</td>
<td>C/R</td>
</tr>
<tr>
<td>Converter Gate Board Stirring Fan</td>
<td>C/R</td>
</tr>
<tr>
<td>DC Precharge Control Board Stirring Fan</td>
<td>C/R</td>
</tr>
<tr>
<td>Power Switching Components</td>
<td></td>
</tr>
<tr>
<td>Inverter Power Devices (IGBT)</td>
<td>C/R</td>
</tr>
<tr>
<td>Capacitor Balance Resistors</td>
<td>C/R</td>
</tr>
<tr>
<td>Power Supply Circuit Board</td>
<td>C/R</td>
</tr>
<tr>
<td>Precharge Resistors (Common DC Input Only)</td>
<td>C/R</td>
</tr>
<tr>
<td>Molded Case Switch (Common DC Input Only)</td>
<td>C/R</td>
</tr>
<tr>
<td>Undervoltage Delay Bracket (Common DC Input Only)</td>
<td>C/R</td>
</tr>
</tbody>
</table>
Chapter 2 Periodic Maintenance

Integral Magnetics/Power Filters	Line Reactor\(^2\)	—	I	I	I	I	M	I	I	I	I	I	I	M	I	I	I	I	M		
DC Link Common-Mode Choke (AC Input Only) pg. 285	—	I	I	I	I	M	I	I	I	I	I	M	I	I	I	M	I	I	I	M	
Control Pod Components	Converter Gate Circuit Board Removal/Installation pg. 149	—	I	I	I	I	RFB /R	I	I	I	I	I	RFB /R	I	I	I	I	I	I	I	RFB /R
Main Control Boards pg. 65	—	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	
Fiber Interface Control Boards pg. 73	—	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	
Batteries (DCBs and CIB)\(^3\) pg. 73	—	I	I	R	I	I	R	I	I	R	I	I	R	I	I	R	I	I	R		
Fiber-optic Cables\(^4\)(5)(6) pg. 57, 82, 158, 228	—	I	I	I	I	R	I	I	I	I	R	I	I	I	R	I	I	I	R		
Enhancements	Firmware —	—	-	-	Rv	-	-														
Hardware pg. 32-3	—	-	-	Rv	-	-															
Operational Conditions	Parameters pg. 32-3	—	I	I	Rv	I	I														
Variables\(^5\)	—	I	I	Rv	I	I															
Application Concerns\(^7\)	—	I	I	Rv	I	I															
Spare Parts	Spare Parts and Inventory/Needs\(^8\) —	—	I	I	Rv	I	I														

(1) Inspect and replace filters every 3 months or more frequently, depending on the environment.
(2) Associated devices that are integrated into drive modules cannot be replaced individually. It is recommended to replace the entire module at the specified interval.
(3) User installed CR1220 lithium coin cell battery provides power to the real-time clock (Optional, not supplied). Preserves the real-time clock setting in the event power to the drive is lost or cycled.
(4) Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into module ports or fiber-optic cable connectors.
(5) Evaluate, update, and verify compatibility when maintenance is performed.
(6) See the listed page numbers and reference the corresponding call out: pg. 57 (#5), 82 (#21), 158 (#28), 228 (#12).
(7) See Wiring and Grounding Guidelines for Pulse-width Modulated (PWM) AC Drives, publication DRIVES-IN001.
(8) See the associated chapter or section for the list of parts.

IMPORTANT Duty cycle, load profile, temperature, altitude, incoming line conditions, and other operating/environmental conditions greatly affect reliability of a drive.
Table 4 - Recommended Option Bay Maintenance Tasks and Schedule

Years	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Components and Activities																						
Air-cooling System																						
IPS4 Door-mounted Air Filters																						
Page	355	C/R																				
IPS4 Frame 8 Cabinet-mounted Cooling Fans																						
Page	362																					
IPS4 Frame 9 Cabinet-mounted Cooling Fans																						
Page	374																					
IP20 Door-mounted Cooling Fans																						
Page	381																					
Reactor Fan Tray																						
Page	386																					
Control Components																						
Frame 8 Control Transformer																						
Page	364																					
Frame 9 Control Transformer																						
Page	380																					
Frame 9 Fan Control Relay																						
Page	391																					
Spare Parts	Inventory/ Needs(2)																					

(1) Inspect and replace filters every 3 months or more frequently, depending on the environment.
(2) See the associated chapter or section for the list of parts.

IMPORTANT Duty cycle, load profile, temperature, altitude, incoming line conditions, and other operating/environmental conditions greatly affect reliability of a drive.
Notes:
Chapter 3

Component Inspection and Test Procedures

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Inspection and Maintenance</td>
<td>48</td>
</tr>
<tr>
<td>Forward and Reverse Biased SCR/Diode Tests</td>
<td>49</td>
</tr>
<tr>
<td>Converter Fuse Tests</td>
<td>53</td>
</tr>
<tr>
<td>Converter Gate-lead Resistance Measurements</td>
<td>53</td>
</tr>
<tr>
<td>DC Precharge Assembly Fuse Tests</td>
<td>55</td>
</tr>
</tbody>
</table>

This chapter provides details about how to inspect and test the major components of the drive and includes recommendations for repairs.
Chapter 3 Component Inspection and Test Procedures

Component Inspection and Maintenance

Visually inspect the door filters, heatsink fan inlet screen, and major components on the control pod, converter or DC input with precharge assembly, and inverter for dirt and damage. Dirt build-up on some components can lead to component damage or failure. By replacing components and/or circuit boards with burn marks, breakage, or foil delamination, you can help prevent damage to the drive. Use this procedure with the Recommended Preventive Maintenance on page 37.

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Inspect the door fans for blockage and verify free rotation. Clean or replace as necessary.
 - For AC input drives, see IP20, NEMA/UL Type 1 Enclosure Door Fan Removal/Installation on page 306.
 - For common DC input drives, see Enclosure Door Fan Removal/Installation on page 333.
 - For option bays, see IP20, NEMA/UL Type 1 Door Fan Removal/Installation (Frame 8 Only) on page 351.

4. Remove the filters from the enclosure doors and inspect for blockage. For IP54, NEMA/UL Type 12 enclosures, remove the filters from the cabinet blower, and inspect for blockage. Clean or replace all filters as necessary. See IP20, NEMA/UL Type 1 Door Filter Removal/Installation on page 313, and/or IP54, NEMA/UL Type 12 Cabinet Blower Exhaust Filters Removal/Installation on page 312 and IP54, NEMA/UL Type 12 Cabinet Door Filters Removal/Installation on page 314.

5. Open the enclosure door.

6. Inspect the heatsink fan inlet screen for blockage and clean it, if necessary.

7. Inspect the heatsink fan blower for dirt build-up and/or damage and verify free rotation. Clean or replace as necessary. See Heatsink Fan Assembly Removal/Installation on page 236.

8. Remove the protective covers from the control pod, converter or DC input with precharge assembly, and inverter assemblies. See Control Pod Cover Removal/Installation on page 59, Converter Left Cover Removal/Installation on page 87 or DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard Removal/Installation on page 163, and Inverter Front Cover Removal/Installation on page 239.

9. Check all visible major components on the control pod, converter or DC input with precharge assembly, and inverter assemblies. Replace any of these components without further testing if they show evidence of burn marks or breakage.
10. Check all visible circuit boards, wires, and connectors on the control pod, converter or DC input with precharge assembly, and inverter assemblies. Replace any of these circuit boards and/or wires without further testing if they show evidence of burn marks, breakage, or foil delamination.

11. If the inspections performed in steps 3–7 resulted in heavy build-up of dirt and or debris, inspect the cooling tunnels and heatsink fins on the converter and inverter assemblies. Clean the cooling tunnels and heatsink fins, if necessary. To inspect the cooling tunnels and heatsink fins, you must remove the drive from the enclosure and remove the converter. See the PowerFlex® 750-Series AC Drive Installation Instructions, publication number 750-IN001. For instructions on how to remove the converter, refer to Converter Removal/Installation on page 152.

Forward and Reverse Biased SCR/Diode Tests

This section contains procedures for performing both forward and reverse biased SCR/diode tests on the major power components of the drive. A failed test indicates damage to the components in the converter or inverter and requires replacement.

IMPORTANT The actual voltage readings can vary depending upon your equipment. If your readings are not near the indicated values in Table 5…Table 8, on pages 51…52, verify that the actual voltage that is measured is consistent for each phase of the converter and inverter.

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the drive enclosure door.

4. Remove the control transformer primary fuses (FU4 and FU5). See Remove the Control Transformer Primary Fuses (FU4 and FU5) on page 21.
5. Remove the connection bolts from the output power terminals (U, V, W) and set them aside.

6. Insert an appropriate insulation material between the terminals (U, V, W) on the drive power unit and the enclosure. To receive accurate readings for these tests, the terminals must not make contact.

Figure 7 - Power Terminal Connections

![Diagram of power terminal connections]

- **AC Input Terminals:** R/L1, S/L2, T/L3
- **DC Bus Terminals:** DC-, DC+
- **Output Power Terminals:** U, V, W
- **All Terminals:** M8 x 30 Machine Screws
- **Tolerant:** T45
- **22.6 N-m (200.0 lb-in)**
7. Complete the forward biased SCR/diode tests on the converter assembly as identified in Table 5.

Table 5 - Forward Biased SCR/Diode Tests on the Converter SCR Assembly

<table>
<thead>
<tr>
<th>Meter Leads</th>
<th>Nominal Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>– DC+</td>
<td>+ R/L1</td>
</tr>
<tr>
<td>DC+</td>
<td>S/L2</td>
</tr>
<tr>
<td>DC+</td>
<td>T/L3</td>
</tr>
<tr>
<td>R/L1</td>
<td>DC-</td>
</tr>
<tr>
<td>S/L2</td>
<td>DC-</td>
</tr>
<tr>
<td>T/L3</td>
<td>The value should gradually rise to between 0.20V and 0.75V. If the value is outside this range, contact Technical Support. (2)</td>
</tr>
</tbody>
</table>

(1) Residual voltage on the DC bus capacitors can affect this reading. If the capacitors are completely discharged (less than 1 volt), the meter initially shows a low voltage. This voltage reading is the residual bus voltage plus the drop through the low side diodes. The meter gradually charges the bus, and the voltage slowly increases, until eventually the meter switches to “OL”. This increase can take several minutes to occur.

(2) The actual voltage reading can vary depending upon your equipment.

8. If performing the Reverse Biased Diode Tests on the Converter SCR Assembly identified Table 6, remove the connection bolts from the DC bus terminals (DC-, DC+) between the converter and inverter assemblies, and set them aside. See Figure 7 on page 50 for terminal locations.

9. Insert an appropriate insulation material between the DC bus terminals (DC-, DC+) between the converter and inverter. To receive accurate readings for these tests, the terminals must not make contact.

10. Complete the reverse biased SCR/diode tests on the converter as identified in Table 6.

Table 6 - Reverse Biased Diode Tests on the Converter SCR Assembly

<table>
<thead>
<tr>
<th>Meter Leads</th>
<th>Nominal Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ DC-</td>
<td>– R/L1</td>
</tr>
<tr>
<td>R/L1</td>
<td>DC-</td>
</tr>
<tr>
<td>S/L2</td>
<td>DC-</td>
</tr>
<tr>
<td>T/L3</td>
<td>DC-</td>
</tr>
<tr>
<td>DC+</td>
<td>R/L1</td>
</tr>
<tr>
<td>DC+</td>
<td>S/L2</td>
</tr>
<tr>
<td>DC+</td>
<td>T/L3</td>
</tr>
</tbody>
</table>

(1) Residual voltage on the DC bus capacitors can affect this reading. If the capacitors are completely discharged (less than 1 volt), the meter initially shows a low voltage. This voltage reading is the residual bus voltage plus the drop through the low side diodes. The meter gradually charges the bus, and the voltage slowly increases, until eventually the meter switches to “OL”. This increase can take several minutes to occur.

11. Replace the converter section or converter SCR assembly if it fails these measurements. See Converter Removal/Installation on page 152, or Converter SCR Assembly Removal/Installation on page 111.

12. Install the control transformer primary fuses (FU4 and FU5). See Install the Control Transformer Primary Fuse (FU4 and FU5) on page 91.
13. Complete the forward and reverse biased diode tests on the inverter IGBT assembly as identified in Table 7 and Table 8.

TIP Reverse bias diode tests on the IGBT are for reference troubleshooting only and can result in readings other than 0.0V (or close to 0) or the OL. The readings can vary widely depending on the meter used, the amount of charge on the batteries in the meter, and the current temperature of the drive unit.

Table 7 - Forward Biased Diode Tests on the Inverter IGBT Assembly

<table>
<thead>
<tr>
<th>Meter Leads</th>
<th>Nominal Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC- U</td>
<td>The value should gradually rise to between 0.20V and 0.75V. If the value is outside this range, contact Technical Support. (1)</td>
</tr>
<tr>
<td>DC- V</td>
<td></td>
</tr>
<tr>
<td>DC- W</td>
<td></td>
</tr>
<tr>
<td>U DC+</td>
<td></td>
</tr>
<tr>
<td>V DC+</td>
<td></td>
</tr>
<tr>
<td>W DC+</td>
<td></td>
</tr>
</tbody>
</table>

(1) The actual voltage reading can vary depending upon your equipment.

Table 8 - Reverse Biased Diode Tests on the Inverter IGBT Assembly

<table>
<thead>
<tr>
<th>Meter Leads</th>
<th>Nominal Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>U DC-</td>
<td>“0L” (open circuit) (1)</td>
</tr>
<tr>
<td>V DC-</td>
<td></td>
</tr>
<tr>
<td>W DC-</td>
<td></td>
</tr>
<tr>
<td>DC+ U</td>
<td></td>
</tr>
<tr>
<td>DC+ V</td>
<td></td>
</tr>
<tr>
<td>DC+ W</td>
<td></td>
</tr>
</tbody>
</table>

(1) Residual voltage on the DC bus capacitors can affect this reading. If the capacitors are completely discharged (less than 1 volt), the meter initially shows a low voltage. This voltage reading is the residual bus voltage plus the drop through the low side diodes. The meter gradually charges the bus, and the voltage slowly increases, until eventually the meter switches to “OL”. This increase can take several minutes to occur.

14. Replace the inverter section if it fails these measurements. To remove the inverter, see the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001.

15. Complete the procedures in Chapter 12 Drive Startup after Repairs on page 419 before placing the drive back into service.
Converter Fuse Tests

Follow these steps to perform converter fuse tests.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Test the control transformer secondary fuse (FU6) by removing it from the fuse holder. Replace the fuse as necessary. See Control Transformer Secondary Fuse Removal/Installation on page 92.
5. Test the control transformer primary fuses (FU4 and FU5) by removing them from the fuse holder. See Remove the Control Transformer Primary Fuses (FU4 and FU5) on page 91.
6. Continuity test the AC line fuses (FU1, FU2, and FU3) in circuit. If fuses are blown, analyze to reveal the root cause. Replace a fuse as necessary. See AC Line Fuse Removal/Installation on page 99.
7. Replace the control transformer primary fuses (FU4 and FU5) as necessary. See Install the Control Transformer Primary Fuse (FU4 and FU5) on page 91.

Converter Gate-lead Resistance Measurements

Follow these steps to perform resistance measurements on the gate leads for the converter.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. To provide access to the converter gate board, open the control pod. See Rotate the Control Pod Forward on page 88.
5. Disconnect the SCR gate harness J11 from P11 on the converter gate board.

6. Complete the gate circuit measurements on the J11 harness as identified in Table 9.

Table 9 - Gate Circuit Measurements

<table>
<thead>
<tr>
<th>Meter Lead +</th>
<th>Meter Lead -</th>
<th>Nominal Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>J11-1, SCR Gate L1</td>
<td>J11-2, SCR Cathode L1</td>
<td>12…30 ohms</td>
</tr>
<tr>
<td>J11-3, SCR Gate L2</td>
<td>J11-4, SCR Cathode L2</td>
<td>12…30 ohms</td>
</tr>
<tr>
<td>J11-5, SCR Gate L3</td>
<td>J11-6, SCR Cathode L3</td>
<td>12…30 ohms</td>
</tr>
</tbody>
</table>

- An “OL” reading can indicate an open wire harness or a disconnected intermediate connector. Verify the harness integrity by making a continuity measurement. Replace a faulty harness if indicated by these measurements.
- A “shorted” meter reading can indicate a failed SCR. Replace the converter SCR assembly if it fails these measurements. See Converter SCR Assembly Removal/Installation on page 111.

7. Connect the SCR gate harness to P11 on the converter gate board.
8. Return the control pod to the service position. See Return the Control Pod to the Service Position on page 21.

DC Precharge Assembly Fuse Tests

Follow these steps to test the fuses on the DC precharge assembly.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Test the control transformer 240V secondary fuse (FU5) by removing it from the fuse holder. Replace the fuse as necessary. See Control Transformer Secondary Fuses Removal/Installation on page 172.
5. Test the control transformer 120V secondary fuse (FU6) by removing it from the fuse holder. Replace the fuse as necessary. See Control Transformer Secondary Fuses Removal/Installation on page 172.
6. Test the DC line fuses (FU1 and FU2) in circuit. Replace a fuse as necessary. See DC Line Fuses and Fuse Indicators Removal/Installation on page 180.
7. Test the DC precharge fuses (FU3 and FU4) in circuit. Replace a fuse as necessary. See Precharge Circuit Fuses Removal/Installation on page 182.
Notes:
Chapter 4

Control Pod Component Replacement Procedures

Table 10 contains the components that comprise the control pod and provides the following information for each component, if applicable:

- Kit catalog number or part number
- Quantity that is contained in the kit
- Illustration figure and page number and identification number

See PowerFlex Architecture Class Low Voltage Drives Spare Parts Options, publication PFLEX-SB002 for a complete list of spare parts for PowerFlex® 755 Frame 8...10 drives.

Control Pod Components Identification

Complete the procedures in Chapter 12 Drive Startup after Repairs that begin on page 419 before placing the drive back into service.

Table 10 - Control Pod Replacement Kits/Parts

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Quantity</th>
<th>Figure and Page</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Pod</td>
<td>20-750-POD1-F8</td>
<td>1</td>
<td>Figure 8 on page 58</td>
<td>–</td>
</tr>
<tr>
<td>Frame 8 Main Control Board</td>
<td>SK-R1-MCB1-F8</td>
<td>1</td>
<td>Figure 8 on page 58</td>
<td>1</td>
</tr>
<tr>
<td>Main Control Board Terminal Block</td>
<td>SK-R1-TB-PF755</td>
<td>1</td>
<td>Figure 8 on page 58</td>
<td>2</td>
</tr>
<tr>
<td>Backplane Board</td>
<td>SK-R1-BP1</td>
<td>1</td>
<td>Figure 8 on page 58</td>
<td>3</td>
</tr>
<tr>
<td>Control Pod HIM Bezel</td>
<td>SK-R1-BZ1</td>
<td>1</td>
<td>Figure 8 on page 58</td>
<td>4</td>
</tr>
<tr>
<td>Fiber Interface Board (Includes a fiber-optic transceiver)</td>
<td>SK-R1-FIB1-F8</td>
<td>1</td>
<td>Figure 8 on page 58</td>
<td>5</td>
</tr>
<tr>
<td>Control Pod Cover</td>
<td>SK-R1-CVRP1-F8</td>
<td>1</td>
<td>Figure 8 on page 58</td>
<td>6</td>
</tr>
<tr>
<td>Internal Cooling Fan</td>
<td>SK-R9-FAN2-F23</td>
<td>1</td>
<td>Figure 8 on page 58</td>
<td>7</td>
</tr>
<tr>
<td>Remote Mount Control Pod Kit</td>
<td>20-750-RPD1-F8</td>
<td>1</td>
<td>See publication 750-IN015</td>
<td>–</td>
</tr>
</tbody>
</table>

This chapter provides detailed procedures for how to remove and replace control pod components.
Figure 8 - Control Pod Components
Control Pod Cover Removal/Installation

Remove the Control Pod Cover

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Loosen, but do not remove, the bottom two M4 x 12 mm slotted hexalobular screws that secure the cover to the assembly.
5. Remove the top two M4 x 12 mm slotted hexalobular screws that secure the cover to the assembly and remove the cover.

Install the Control Pod Cover

Install the control pod cover in the reverse order of removal. See Control Pod Cover Removal/Installation on page 59.
Control Pod Cables Removal/Installation

Remove the Control Pod Cables

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the drive enclosure door.

4. Remove the control pod cover. See Control Pod Cover Removal/Installation on page 59.

5. Disconnect the drive internal 24V wire harness J14 connector from the fiber interface board P14 terminal.

6. If installed, disconnect the customer supplied 24V supply power wiring from the fiber interface board P13 terminal.

Install the Control Pod Cables

Install the control pod cable set in the reverse order of removal. See Remove the Control Pod Cables on page 60.
Fiber-optic Cable Removal/Installation (Frame 8)

Remove the Fiber-optic Cable (Frame 8)

Note: For instructions on how to remove the fiber-optic cables on frame 9 and larger drives, see Chapter 11 - Enclosure Cable Components Replacement Procedures (Frame 9 and Larger Drives) that begin on page 397.

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the drive enclosure door.

4. Remove the control pod cover. See Control Pod Cover Removal/Installation on page 59.

5. Remove the inverter circuit board connections cover from the inverter. See Inverter Circuit Board Connections Cover Removal/Installation on page 238.

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.
6. Disconnect the fiber-optic cable from INV1 on the fiber interface board and INV on the power layer interface board in the inverter card cage.

TIP

Listed are the different circuit board locations:
Chapter 4 *Figure 8 on page 58* call-out #5
Chapter 5 *Figure 10 on page 86* call-out #21
Chapter 6 *Figure 12 on page 162* call-out #28
Chapter 7 *Figure 14 on page 232* call-out #7
7. Disconnect the fiber-optic cable from CONV on the converter gate board and CONV on the power layer interface board in the inverter card cage.
Install the Fiber-optic Cable (Frame 8)

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

Install the fiber-optic cable set in the reverse order of removal. See Remove the Fiber-optic Cable (Frame 8) on page 61.

IMPORTANT Frame 8 fiber-optic cables that connect the fiber interface and converter gate boards to the power layer interface board must be the same length. Cables are 560 mm (22 in.) long to meet this requirement.

- Install the new fiber-optic cables from the converter gate board to the power layer interface board by using the two center cable supports provided, as shown in this illustration.
• Install the new fiber-optic cables from the fiber interface board to the power layer interface board by using the two, outer-most cable supports provided, as shown in this illustration.

Main Control Board Removal/Installation

Remove the Main Control Board (Control Pod in Drive Enclosure)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the control pod cover. See Control Pod Cover Removal/Installation on page 59.
5. Loosen the retention screw that secures the HIM cradle to the control pod frame and swing the cradle upward until the latch engages.
6. If installed, remove the option module in slot 7, by loosening the two captive thumb screws on the module and by pulling the board out of the control pod. The torque requirement for installation is the same as for the main control board.

7. Disconnect the plug-in terminal block (TB1) on the main control board.

8. Disconnect the HIM and stirring fan power wire connectors from the main control board.

9. Loosen the three captive thumb screws and remove the board.
Install the Main Control Board

Install the Main Control board in the reverse order of removal. See Remove the Main Control Board (Control Pod in Drive Enclosure) on page 65.

IMPORTANT Verify that the main control board seats properly into the connectors on the backplane and fiber interface boards when installing a new board.

Control Pod Removal/Installation

Remove the Control Pod

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the converter left cover. See Remove the Converter Left Cover on page 87.
5. Remove the control pod cover. See Control Pod Cover Removal/Installation on page 59.
6. Remove the inverter circuit board connections cover from the inverter. See Inverter Circuit Board Connections Cover Removal/Installation on page 238.
7. Disconnect the J14 connector from the fiber interface board P14 terminal.

8. If installed, disconnect the customer supplied 24V supply power wiring from the fiber interface board P13 terminal.
9. Disconnect the fiber-optic cable from INV on the power layer interface board in the inverter card cage. Place the cable ends on the bottom of the control pod and follow the minimum bend radius requirement.

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.
10. If installed, disconnect the plug-in terminal block (TB1) on the main control board.

11. Loosen the two M4 captive panel fasteners that secure the control pod to the converter control panel and rotate the assembly forward to the right.
12. Remove the four M4 x 12 mm screws that secure the control pod to the converter control panel, right-side wall and remove the control pod.

Install the Control Pod

Install the control pod in the reverse order of removal. See Remove the Control Pod on page 68.
Fiber Interface Board
Removal/Installation

Remove the Fiber Interface Board

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the control pod cover. See Control Pod Cover Removal/Installation on page 59.
5. Disconnect the J14 connector from the fiber interface board P14 terminal.
6. If installed, disconnect the customer supplied 24V supply power wiring from the fiber interface board P13 terminal.

7. Disconnect the inverter fiber-optic cable from INV1 on the fiber interface board, carefully coil the fiber-optic cable, and place it in the bottom of the control pod. Follow the minimum bend radius requirement.
8. From fiber-optic cage INV1 on the fiber interface board, remove the transceiver by pulling its wire latch. Set the transceiver aside and save for reinstallation.

9. Loosen the retention screw that secures the HIM cradle to the control pod frame and swing the cradle upward until the latch engages.

10. Disconnect all wiring to the main control-board terminal block (TB1).

11. If installed, disconnect all wiring to all option module terminal blocks.
12. If installed, remove the option module in slot 7, by loosening the two captive thumb screws on the module and by pulling the board out of the control pod. The torque requirement for installation is the same as for the main control board.

13. Disconnect the HIM and stirring fan power wire connectors from the main control board.

14. Loosen the three captive thumb screws and remove the board.
15. Press the two tabs on the sides of the fan housing inward, and remove the stirring fan assembly from the top of the control pod chassis.
16. Remove the four M4 x 12 mm screws that secure the control pod chassis to the standoffs on the control panel, then remove control pod chassis.

IMPORTANT The four M4 x 12 mm screws that secure the control pod chassis to the control panel are not retentive. Take steps to be sure that the screws do not fall into the drive below.

17. Remove all routed wiring and six anchors from the left sidewall of the control panel and move the wiring to the outside of the control panel.

18. Remove the M4 hex stand from the center of the fiber interface circuit board.
19. Remove the four M4 x 10 mm long screws that secure fiber interface board to the control pod.

20. Move the fiber interface board slightly upward toward top of the control pod, so that keyholes on board clear the mounting posts and lift off the board.

21. The right side of the board must clear the mounting tab in right sidewall of the control pod. Slowly rotate the left side of fiber interface board away from the control pod. Remove the board from the control pod.

22. Inspect the fiber interface board-insulator sheet and replace it if damaged.
Install the Fiber Interface Board

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

Install the fiber interface board in the reverse order of removal. See Remove the Fiber Interface Board on page 73.

IMPORTANT The insulator sheet must be installed behind the fiber interface board. When installing the fiber-optic cable, be sure that the wire latch is down.
Converter Component Replacement Procedures

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converter Components Identification</td>
<td>82</td>
</tr>
<tr>
<td>Converter Left Cover Removal/Installation</td>
<td>87</td>
</tr>
<tr>
<td>Converter Right Cover (No Control Pod) Removal/Installation</td>
<td>88</td>
</tr>
<tr>
<td>Control Pod Rotation</td>
<td>88</td>
</tr>
<tr>
<td>Control Transformer Primary Fuses Removal/Installation</td>
<td>91</td>
</tr>
<tr>
<td>Control Transformer Secondary Fuse Removal/Installation</td>
<td>92</td>
</tr>
<tr>
<td>Converter EMC Filter Circuit Board Removal/Installation</td>
<td>93</td>
</tr>
<tr>
<td>Converter Input Fuse Stirring Fan Removal/Installation</td>
<td>95</td>
</tr>
<tr>
<td>AC Line Fuse Sense Wire Harness Removal/Installation</td>
<td>97</td>
</tr>
<tr>
<td>AC Line Fuse Removal/Installation</td>
<td>99</td>
</tr>
<tr>
<td>DC Bus Sense Wire Harness Removal/Installation</td>
<td>101</td>
</tr>
<tr>
<td>Converter Current Sensor Wire Harness Removal/Installation</td>
<td>103</td>
</tr>
<tr>
<td>Converter Current Sensors Removal/Installation</td>
<td>105</td>
</tr>
<tr>
<td>Converter SCR Gate Wire Harness Removal/Installation</td>
<td>109</td>
</tr>
<tr>
<td>Converter SCR Assembly Removal/Installation</td>
<td>111</td>
</tr>
<tr>
<td>Converter Heat Sink Gasket Replacement</td>
<td>120</td>
</tr>
<tr>
<td>Inverter Power-supply Wire Harness Removal/Installation</td>
<td>121</td>
</tr>
<tr>
<td>AC Line Wire Harness Removal/Installation</td>
<td>123</td>
</tr>
<tr>
<td>Surge-suppressor Sense Wire Harness Removal/Installation</td>
<td>125</td>
</tr>
<tr>
<td>Surge Suppressor Removal/Installation</td>
<td>126</td>
</tr>
<tr>
<td>Surge Suppressor Assembly Removal/Installation</td>
<td>127</td>
</tr>
<tr>
<td>Converter Gate Board Stirring Fan Removal/Installation</td>
<td>131</td>
</tr>
<tr>
<td>24V/240V Power Wire Harness Removal/Installation</td>
<td>132</td>
</tr>
<tr>
<td>Control-transformer Primary Wire Harness Removal/Installation</td>
<td>138</td>
</tr>
<tr>
<td>Control Transformer Removal/Installation</td>
<td>140</td>
</tr>
<tr>
<td>No DC Bus Fuse Wire Harness Removal/Installation</td>
<td>143</td>
</tr>
<tr>
<td>DC Bus Fuse Wire Harness Removal/Installation</td>
<td>144</td>
</tr>
<tr>
<td>Control Power Isolator Board 24V Wire Harness Removal/Installation (600/690V AC Input Drives Only)</td>
<td>146</td>
</tr>
<tr>
<td>Control Power Isolator Board 24V Wire Harness Removal/Installation (600/690V AC Input Drives Only)</td>
<td>148</td>
</tr>
<tr>
<td>Converter Gate Circuit Board Removal/Installation</td>
<td>149</td>
</tr>
<tr>
<td>Converter Removal/Installation</td>
<td>152</td>
</tr>
<tr>
<td>Converter Duct Gasket Replacement</td>
<td>155</td>
</tr>
</tbody>
</table>
This chapter provides detailed procedures for how to remove and replace converter components.

TIP In some illustrations in this chapter, the converter and/or control pod are shown removed from the drive to clarify the instructions only. Only remove the converter and/or control pod from the drive if directed to do so.

IMPORTANT Complete the procedures in Chapter 12 Drive Startup after Repairs that begin on page 419 before placing the drive back into service.

Converter Components Identification

Table 11 contains the components that comprise the converter assembly and provides the following information for each component, if applicable:

- Kit catalog number or part number
- Quantity that is contained in the kit
- Illustration figure and page number and identification number

See PowerFlex Architecture Class Low Voltage Drives Spare Parts Options, publication PFLEX-SB002 for a complete list of spare parts for PowerFlex® 755 Frame 8…10 and larger drives.

Table 11 - Converter Replacement Kits/Parts

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Quantity</th>
<th>Figure and Page</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Drive Converter Unit, 400V, 770 A / 480V, 740 A</td>
<td>20-750-C1-C770D740 (Series A) 20-750-C6-C770D740 (Series B)</td>
<td>1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>AC Drive Converter Unit, 600V, 510 A / 690V, 500 A</td>
<td>20-750-C6-E510F500 (Series B)</td>
<td>1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Control Transformer Fuses for 400/480V AC Input Drives, with Converter Cat. No. 20-750-C1-C770D740 ... 20-750-C5-C770D740</td>
<td>SK-R1-FUSE2-CD-F8</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Fuse, 8 A, 600V, IEC Class gG/gl, 14 x 51 mm (FU4 / FU5)</td>
<td>2</td>
<td>Figure 9 on page 85</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fuse, 5 A, 600V, Class CC, Time-Delay (FU6)</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Control Transformer Fuses for 400/480V AC Input Drives, with Converter Cat. No. 20-750-C6-C770D740</td>
<td>SK-R1-FUSE4-CD-F8</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Fuse, 6 A, 600V, IEC Class gG/gl, 14 x 51 mm (FU4 / FU5)</td>
<td>2</td>
<td>Figure 9 on page 85</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fuse, 5 A, 600V, Class CC, Time-Delay (FU6)</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Control Transformer Fuses Kit for 600/690V AC Input Drives with Converter Cat. No. 20-750-C2-E510F500 ... 20-750-C5-E510F500</td>
<td>SK-R1-FUSE2-EF-F8</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Fuse, 6 A, 690V, IEC Class gG/gl, 14 x 51 mm (FU4 / FU5)</td>
<td>2</td>
<td>Figure 9 on page 85</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fuse, 5 A, 600V, Class CC, Time-Delay (FU6)</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Control Transformer Fuses Kit for 600/690V AC Input Drives with Converter Cat. No. 20-750-C6-E510F500</td>
<td>SK-R1-FUSE4-EF-F8</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Fuse, 8 A, 690V, IEC Class gG/gl, 14 x 51 mm (FU4 / FU5)</td>
<td>2</td>
<td>Figure 9 on page 85</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fuse, 5 A, 600V, Class CC, Time-Delay (FU6)</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table 11 - Converter Replacement Kits/Parts (continued)

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Quantity</th>
<th>Figure and Page</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Line Fuse Kit 1100 A, 400/480V AC Input Drives</td>
<td>SK-R1-FUSE1-CD-F8</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>3</td>
</tr>
<tr>
<td>Fuse, 690/700V, 1100 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuse Indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Line Fuse Kit 900 A, 600/690V AC Input Drives</td>
<td>SK-R1-FUSE1-EF-F8</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>4</td>
</tr>
<tr>
<td>Fuse, 690/700V, 900 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuse Indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Converter EMC Filter Board, 400/480V and 600/690V AC Input Drives</td>
<td>SK-R1-EMCFLT2-F8 (Series B)</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>5</td>
</tr>
<tr>
<td>Figur 9 on page 85</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Converter SCR Gate Wire Harness</td>
<td>SK-R1-SCR1-CD-F8</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>17</td>
</tr>
<tr>
<td>Converter SCR Gate Wire Harness, 600/690V AC Input Drives</td>
<td>SK-R1-SCR1-EF-F8</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>17</td>
</tr>
<tr>
<td>Converter Current Sensor Wire Harness</td>
<td>SK-R1-CNVI1FB2-F8 (Series B)</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>18</td>
</tr>
<tr>
<td>Control Transformer Primary Wire Harness</td>
<td>SK-R1-XFMR1-F8</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>19</td>
</tr>
<tr>
<td>DC Bus Sense Wire Harness</td>
<td>SK-R1-MOV1-CD-F8</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>20</td>
</tr>
<tr>
<td>No DC Bus Fuse Wire Harness</td>
<td>SK-R1-MOV1-EF-F8</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>20</td>
</tr>
<tr>
<td>Surge Suppressor Sense Wire Harness</td>
<td>SK-R1-CGDB1-CD-F8 (Series A) SK-R1-CGDB4-CD-F8 (Series B)</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>21</td>
</tr>
<tr>
<td>Inverter Power Supply Wire Harness</td>
<td>SK-R1-CGDB4-EF-F8</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>21</td>
</tr>
<tr>
<td>Assembly, External NTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Converter SCR Assembly, 400/480V AC Input Drives</td>
<td>SK-R1-SCR1-CD-F8</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>17</td>
</tr>
<tr>
<td>Converter SCR Assembly, 600/690V AC Input Drives</td>
<td>SK-R1-SCR1-EF-F8</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>17</td>
</tr>
<tr>
<td>Converter Current Sensor, 400/480V and 600/690V AC Input Drives</td>
<td>SK-R1-CNVI2FB2-F8 (Series B)</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>18</td>
</tr>
<tr>
<td>Control Transformer</td>
<td>SK-R1-XFMR1-F8</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>19</td>
</tr>
<tr>
<td>Converter Surge Suppressor, 400/480V AC Input Drives</td>
<td>SK-R1-MOV1-CD-F8</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>20</td>
</tr>
<tr>
<td>Converter Surge Suppressor, 600/690V AC Input Drives</td>
<td>SK-R1-MOV1-EF-F8</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>20</td>
</tr>
<tr>
<td>Converter Gate Board, 400/480V AC Input Drives (Includes a fiber-optic transceiver)</td>
<td>SK-R1-CCVR1-F8</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>24</td>
</tr>
<tr>
<td>Converter Gate Board, 600/690V AC Input Drives (Includes a fiber-optic transceiver)</td>
<td>SK-R1-CCVR4-CD-F8 (Series B)</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>24</td>
</tr>
<tr>
<td>Fiber-optic Cable, 560 mm (22 in.) Long Kit (Frame 8 Drives)</td>
<td>20-750-FCBL1-F8</td>
<td>2</td>
<td>Figure 10 on page 86</td>
<td>22</td>
</tr>
<tr>
<td>Fiber-optic Cable, 560 mm (22 in.) Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable Labels (CONV and INV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber-optic Cable, 2.8 m (110 in.) Long Kit (1)</td>
<td>20-750-FCBL1-F10</td>
<td>1</td>
<td>(See page 397 for more information)</td>
<td>22</td>
</tr>
<tr>
<td>Fiber-optic Cable, 2.8 m (110 in) Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable Labels (INV1, INV2, INV3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber-optic Transceiver</td>
<td>SK-R1-FTR1-F8</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>23</td>
</tr>
<tr>
<td>Converter Left Front Cover with Side Shield</td>
<td>SK-R1-CCVR1-F8</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>24</td>
</tr>
</tbody>
</table>
Chapter 5 Converter Component Replacement Procedures

Table 11 - Converter Replacement Kits/Parts (continued)

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Quantity</th>
<th>Figure and Page</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converter Right Front Cover (No Control Pod) Kit</td>
<td>SK-R1-CCVR2-F8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Front Cover</td>
<td></td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>25</td>
</tr>
<tr>
<td>Bracket Cover, 82 mm (3.2 in.) Long</td>
<td></td>
<td>2</td>
<td>Figure 9 on page 85</td>
<td>26</td>
</tr>
<tr>
<td>One Bay 24V Wire Harness Kit (Frame 8)</td>
<td>20-750-PH1-F8</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>27</td>
</tr>
<tr>
<td>Two Bay 24V Wire Harness Kit (Frame 9)</td>
<td>20-750-PH2-F9</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>27</td>
</tr>
<tr>
<td>Three Bay 24V Wire Harness Kit (Frame 10)</td>
<td>20-750-PH3-F10</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>27</td>
</tr>
<tr>
<td>Frame 8 Gasket Kit</td>
<td>20-750-G1-F8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasket, Converter, Heatsink</td>
<td></td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>28</td>
</tr>
<tr>
<td>Gasket, Converter/DC Input with Precharge Assembly, Duct</td>
<td></td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>29</td>
</tr>
<tr>
<td>Gasket, Inverter, Heatsink</td>
<td></td>
<td>1</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>Gasket, Inverter, Door Interface</td>
<td></td>
<td>1</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Gasket, Inverter, Exhaust Interface</td>
<td></td>
<td>1</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Gasket, Inverter, Inlet Ring</td>
<td></td>
<td>1</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Gasket, Inverter, No Choke</td>
<td></td>
<td>1</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Gasket, Inverter, Blower Box Bottom</td>
<td></td>
<td>1</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Gasket, Inverter, Choke</td>
<td></td>
<td>1</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>DC Bus Fuse Wire Harness Kit (Frame 9 AC Input Drives Only)</td>
<td>SK-R1-DCBUSH1-F9</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>30</td>
</tr>
<tr>
<td>Control Power Isolator Board Kit, 600/690V AC Input Drives</td>
<td>SK-R1-CPIB1-F8</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>31</td>
</tr>
<tr>
<td>Control Power Isolator 24V Wire Harness Kit, 600/690V AC Input Drives</td>
<td>SK-R1-CPIH1-F8</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>32</td>
</tr>
<tr>
<td>Converter Gate Board Stirring Fan</td>
<td>20-750-CFANKIT-F8</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>33</td>
</tr>
<tr>
<td>Converter Input Fuse Stirring Fan</td>
<td>SK-R1-FUSEFAN-F8</td>
<td>1</td>
<td>Figure 9 on page 85</td>
<td>34</td>
</tr>
<tr>
<td>Chassis mounting screw (4 captive screw sets, 4 long bolts)</td>
<td>SK-R1-PCSCREWS</td>
<td>1</td>
<td>Figure 10 on page 86</td>
<td>35</td>
</tr>
</tbody>
</table>

(1) Order 2 kits for frame 9 drives. Order 3 kits for frame 10 drives.

(2) This gasket is included in the Frame 8 Gasket Kit (20-750-G1-F8), but is identified in Chapter 7 - Inverter Component Replacement Procedures on page 83.
Figure 9 - Converter Assembly Components Diagram 1

Note: Covers shown at smaller scale than other components.
Figure 10 - Converter Assembly Components Diagram 2

600/800 V AC Drives Only

Frame 8 Drives Only

600/690 V AC Drives Only

Frame 9 AC Input Drives Only

400/480 V AC Drives Only

Frame 8 AC Input Drives Only
Converter Left Cover
Removal/Installation

Remove the Converter Left Cover

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the four M5 x 14 mm screws that secure the cover to the assembly and remove the cover.

Install the Converter Left Cover

Install the converter cover in the reverse order of removal. See Remove the Converter Left Cover.

TIP
See Fastener/Tool/Torque Information on page 33 for descriptions of the fasteners, tools, and torque figures that are used in the disassembly/assembly procedures in this chapter.
Converter Right Cover (No Control Pod) Removal/Installation

Remove the Converter Right Cover (No Control Pod)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the four M5 x 14 mm screws that secure the cover to the assembly and remove the cover.

Install the Converter Right Cover (No Control Pod)

Install the converter cover (no control pod) in the reverse order of removal. See Remove the Converter Right Cover (No Control Pod).

Control Pod Rotation

Rotate the Control Pod Forward

Use this procedure to move the control pod, when it is installed on the converter assembly, to access other components behind it.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the converter left cover or DC input with precharge assembly left cover, top guard, and left guard. See Remove the Converter Left Cover on page 87 or Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.

5. Remove the control pod cover. See Remove the Control Pod Cover on page 59.

6. Disconnect the drive internal 24V wire harness J14 connector from the fiber interface board (in the control pod) P14 terminal.

7. If installed, disconnect the customer supplied 24V supply power wiring from the fiber interface board P13 terminal.

8. Remove the inverter circuit board connections cover from the inverter. See Inverter Circuit Board Connections Cover Removal/Installation on page 238.
9. Disconnect the inverter fiber-optic cable from INV and the converter fiber-optic cable from CONV on the inverter power-layer interface board in the inverter card cage assembly. Place the cables on the bottom of the control pod and follow the minimum bend radius requirement. Verify that cable damage does not occur when moving the control pod.

10. Loosen the two M4 captive panel fasteners that secure the control pod to the converter control panel and rotate the control pod forward.

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.
Return the Control Pod to the Service Position

Return the control pod to the service position in the reverse order. See Rotate the Control Pod Forward on page 88.

Control Transformer Primary Fuses Removal/Installation

Remove the Control Transformer Primary Fuses (FU4 and FU5)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the converter left cover. See Remove the Converter Left Cover.
5. Remove the fuse from the two-position fuse holder by using a fuse puller.

Install the Control Transformer Primary Fuse (FU4 and FU5)

Install the control transformer primary fuse (FU4 and FU5) in the reverse order of removal. See Remove the Control Transformer Primary Fuses (FU4 and FU5).
Control Transformer Secondary Fuse Removal/Installation

Remove the Control Transformer Secondary Fuse (FU6)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

 If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.
5. Remove the fuse from the one-position fuse holder by using a fuse puller.

Install the Control Transformer Secondary Fuse (FU6)

Install the control transformer secondary fuse (FU6) in the reverse order of removal. See Remove the Control Transformer Secondary Fuse (FU6) on page 92.
Converter EMC Filter Circuit Board Removal/Installation

Remove the Converter EMC Filter Circuit Board

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left converter cover. See Remove the Converter Left Cover on page 87.

IMPORTANT Before you disconnect the J2/J3 connector from the EMC filter board, note the J2/J3 location. The P3 (PE-A2) terminal is grounded. The P2 terminal is not grounded.

The jumper settings are provided in the PowerFlex 750-Series Power Jumpers Installation Instructions, publication 750-IN011, available at http://www.rockwellautomation.com/literature/.

5. Remove the J2/J3 connector from the P2 or P3 connector on the EMC filter board.
6. Remove the AC line wire harness J1 connector from the P1 connector on the EMC filter board P1 terminal.

Note: Board shown rotated 90° from actual installation position.
7. Remove the three M4 x 8 mm screws that secure the EMC filter board to the AC line bus bar.

8. Release the three board mounting clips along the right edge of the EMC filter board and remove the board.

Install the Converter EMC Filter Circuit Board

Install the EMC filter board in the reverse order of removal. See Remove the Converter EMC Filter Circuit Board on page 93.

IMPORTANT Be sure that the J2/J3 connector is reassembled in the correct location (P2 or P3) on the EMC filter board.
Remove the Converter Input Fuse Stirring Fan

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.

4. Remove the left converter cover. See Remove the Converter Left Cover on page 87.

5. For frame 8 drives, continue with step 6 on page 96. For frame 9 and larger drives only, complete these steps.
 a. Disconnect the cabinet-side, three-position DC bus fuse wire harness connector from terminal block TB6 on the lower left side of the converter.
 b. Remove the two M3 x 12 mm screws that secure the harness terminal block TB6 to the cover support bracket.
 c. Disengage the three cable tie push mounts that secure the harness to the cover support bracket, and remove the harness.

Note: Support bracket shown removed and from rear side only to clarify instructions.

<table>
<thead>
<tr>
<th>T15 or F - 4.8 mm (0.19 in.)</th>
<th>0.61 N·m (5.5 lb·in)</th>
</tr>
</thead>
</table>

Converter Input Fuse Stirring Fan Removal/Installation
6. Disengage the two cable tie push mounts that secure the fan harness to the bracket.

7. Disconnect the Fan (+) and Fan (-) power wires from the fan terminals and pull the terminal wires through the hole in the bracket.

8. Remove the three M6 x 14 mm screws that secure the label bracket and stirring fan to the rail support and remove the bracket.
9. Remove the four M4 x 12 mm hexalobular screws that secure the stirring fan to the support bracket and remove the stirring fan.

![Converter Component Replacement Procedures](image)

Install the Converter Input Fuse Stirring Fan

Install the stirring fan in the reverse order of removal. See Remove the Converter Input Fuse Stirring Fan on page 95.

AC Line Fuse Sense Wire Harness Removal/Installation

Remove the AC Line Fuse Sense Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left converter cover. See Remove the Converter Left Cover on page 87.
5. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.
6. Disconnect the AC line fuse sense wire harness J7 connector from the converter gate board P7 terminal.

7. Release the AC line fuse sense wire harness from the cable support on the left side of the bus bar support rail.

8. Disconnect the AC line fuse sense wire harness from the six AC line fuse indicator terminals and remove the AC line fuse sense wire harness.

Note: The label bracket and fan are not shown, for instructional clarity.

Install the AC Line Fuse Sense Wire Harness

Install the AC line fuse sense harness in the reverse order of removal. See Remove the AC Line Fuse Sense Wire Harness on page 97.
Remove the AC Line Fuses (FU1, FU2, and FU3)

IMPORTANT It is recommended that you replace all three AC line fuses.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left converter cover. See Remove the Converter Left Cover on page 87.
5. If replacing FU3, remove the three M6 x 14 mm screws that secure the label bracket and input fuse stirring fan to the rail support and remove the bracket.

T30 or F - 6.4 mm (0.25 in.)
5.1 N·m (45 lb-in)
6. Remove the AC line fuse sense wire harness leads from the fuse indicator terminals for the fuse being replaced. See Remove the AC Line Fuse Sense Wire Harness on page 97.

IMPORTANT Note the orientation of the fuse indicator terminals before removal. Replace each fuse with the terminals in same orientation.

7. Remove the two M10 x 35 mm screws and two flat washers for the fuse being replaced and remove the AC line fuse. Remove the fuse indicator from the AC line fuse, if necessary.

Important: Note the orientation of the fuse indicator terminals before removal. Replace each fuse with the terminals in same orientation.

6 FU1 and FU2 indicator terminals point downward.
FU3 indicator terminals point upward.
Install AC Line Fuse (FU1, FU2, and FU3)

Install the AC line fuse in the reverse order of removal. See Install AC Line Fuse (FU1, FU2, and FU3) on page 101.

DC Bus Sense Wire Harness Removal/Installation

Remove the DC Bus Sense Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left converter cover. See Remove the Converter Left Cover on page 87.
5. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

 If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.

6. To gain access to the DC bus sense wire harness connections at the top of the –DC and +DC bus bars, remove the AC line fuse FU1 (from Phase R/L1). See Remove the AC Line Fuses (FU1, FU2, and FU3) on page 99.
7. Loosen, but do not remove, the two M4 hex nuts that secure the wire harness to the top of the –DC and +DC bus bars. Slide the wire harness fork terminals off the bus bars.

8. Release the cable supports that secure the DC bus sense wire harness to the converter SCR assembly and support bracket.

9. Disconnect the DC bus sense wire harness J10 connector from the converter gate board P10 terminal and remove the wire harness.

Note: Some components are not shown only to clarify instructions.
Install the DC Bus Sense Wire Harness

Install the DC bus sense wire harness in the reverse order of removal. See Remove the DC Bus Sense Wire Harness on page 101.

Converter Current Sensor Wire Harness Removal/Installation

Remove the Converter Current Sensor Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.
5. Disconnect the converter current-sensor wire harness CT1, CT2, and CT3 connectors from the three converter current sensor connectors.

6. Release the cable supports from the right side of the bus bar support rail.

7. Disconnect the converter current-sensor wire harness J6 connector from the converter gate board P6 terminal and remove the converter current-sensor wire harness.

Install the Converter Current Sensor Wire Harness

Install the converter current-sensor wire harness in the reverse order of removal. See Remove the Converter Current Sensor Wire Harness on page 103.
Converter Current Sensors

Removal/Installation

Remove the Converter Current Sensors

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left converter cover. See Remove the Converter Left Cover on page 87.
5. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.

IMPORTANT Before you disconnect the control-transformer primary wire harness, note the terminal connections. The control transformer has multiple input phase terminals. See the AC Input Drive Control Transformer Schematic Diagram on page 442 for more information.

6. Disconnect the control-transformer primary wire harness lead wires H1 and Hx from the control transformer input terminals. Release the cable support securing the harness to the EMC filter plastic support.

Rear Side of Rotated Control Pod

P2
1.8 N-m (16.0 lb-in)
7. Remove the AC line fuse sense wire harness. See Remove the AC Line Fuse Sense Wire Harness on page 97.

8. Remove the three AC line fuses with fuse indicators. See Remove the AC Line Fuses (FU1, FU2, and FU3) on page 99.

9. Disconnect the converter current-sensor wire harness J6 connector from the converter gate board P6 terminal.

10. Remove the EMC filter board. See Remove the Converter EMC Filter Circuit Board on page 93.
11. Remove the right (DC+) bus bar rail:
 a. Remove the three M10 x 30 mm screws that secure the AC input bus bars to the SCR.
 b. Remove the two M6 x 14 mm screws that secure the right bus bar rail to the rail support. Remove the right bus bar rail with three AC input bus bars, three current sensors, current sensor wire harness, and EMC filter board plastic support attached.
12. For the phase being replaced, remove the two M6 x 25 mm screws that connect the AC bus bar to the right bus bar rail.

13. Cut the three cable ties that connect the current sensor to the plastic support and remove the current sensor.

Note: The EMC filter board plastic mounting support is not shown only to clarify the instructions.
Install the Converter Current Sensors

Install the current sensors in the reverse order of removal. See Remove the Converter Current Sensors on page 105.

IMPORTANT Verify that the control-transformer primary wire harness lead wires H1 and Hx are connected to the correct input terminals. The control transformer has multiple input phase terminals. See the AC Input Drive Control Transformer Schematic Diagram on page 442 for more information. If the wires are connected to the wrong terminals, drive damage can occur.

Converter SCR Gate Wire Harness Removal/Installation

Remove the Converter SCR Gate Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left converter cover. See Remove the Converter Left Cover on page 87.
5. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.
6. Remove the three M4 x 12 mm screws that secure the shield to the converter heatsink and remove the shield.

7. Disconnect the SCR gate wire harness J11 connector from the converter gate board P11 terminal.

8. Disengage the cable tie from the cable tie mount on the wire harness ladder.

9. Release the wire harness from the two cable supports securing the harness to the converter heatsink.

10. Remove the three SCR gate connectors from the SCR modules and remove the SCR gate wire harness from the drive.

Install the Converter SCR Gate Wire Harness

Install the converter SCR gate wire harness in the reverse order of removal. See Remove the Converter SCR Gate Wire Harness on page 109.
Remove the Converter SCR Assembly

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left converter cover. See Remove the Converter Left Cover on page 87.
5. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.

IMPORTANT Before you disconnect the control-transformer primary wire harness, note the terminal connections. The control transformer has multiple input phase terminals. See the AC Input Drive Control Transformer Schematic Diagram on page 442 for more information.

6. Disconnect the control-transformer primary wire harness lead wires H1 and Hx from the control transformer input terminals. Release the cable support securing the harness to the EMC filter plastic support.
7. Remove the J2/J3 connector from connector P2 or P3 on the EMC filter board.

IMPORTANT Before you disconnect the control-transformer primary wire harness J2/J3 connector from the EMC filter board, note the J2/J3 location. The P3 (PE-A2) terminal is grounded. The P2 terminal is not grounded.

Note: Board shown rotated 90° from actual installation position.
8. Remove the three M6 x 14 mm screws that secure the fuse bracket to the left and right rail supports. Remove the fuse bracket with the control-transformer primary wire harness attached.

9. Remove the three M6 x 14 mm screws that secure the label bracket to the rail support and remove the label bracket.

10. Remove the AC line fuse sense wire harness. See Remove the AC Line Fuse Sense Wire Harness on page 97.

11. Remove the three AC line fuses with fuse indicators. See Remove the AC Line Fuses (FU1, FU2, and FU3) on page 99.
12. Remove the two M6 x 14 mm screws that secure the left bus bar rail to the left rail supports. Remove the left rail with the three AC input bus bars attached.

13. Remove the EMC filter board. See Remove the Converter EMC Filter Circuit Board on page 93.
14. For the right bus bar rail:
 a. Disconnect the current sensor wire harness J6 connector from the converter gate board P6 terminal.
b. Remove the three M10 x 30 mm screws and flat washers that secure the AC input bus bars to the SCRs.

c. Remove the two M6 x 14 mm screws that secure the right bus bar rail to the right rail supports. Remove the right bus bar rail with three AC input bus bars, three current sensors, current sensor wire harness, and EMC filter board plastic support attached.

15. Remove the DC bus wire harness. See Remove the DC Bus Sense Wire Harness on page 101.
16. Remove the three M10 x 30 mm screws that secure the -DC bus bars (A) to the SCRs and remove the -DC bus bars.

17. Remove the three M10 x 30 mm screws that secure the +DC bus bars with insulation sheet attached (B) to the SCRs and remove the +DC bus bars and insulation sheet.
18. Disconnect the SCR wire harness J11 connector from the converter gate board P11 terminal.

19. Disconnect the NTC wire harness connector from the converter gate board P2 terminal.
20. Secure equipment and hardware capable of lifting 17 kg (37 lb) to the lifting holes identified on the SCR assembly.

21. Remove the 12 M5 x 20 mm screws that secure the assembly to the converter duct.

22. Remove the converter SCR assembly.

IMPORTANT Do NOT remove the SCRs from the assembly.
Install the Converter SCR Assembly

1. Inspect the converter heat sink gasket on the converter duct for damage and replace it if necessary. See Converter Heat Sink Gasket Replacement on page 120.

2. Install the converter SCR assembly in the reverse order of removal.

IMPORTANT Verify that the J2/J3 connector is reassembled in the appropriate location (P2 or P3) on the EMC filter board.

IMPORTANT Verify that the control-transformer primary wire harness lead wires H1 and Hx are connected to the correct input terminals. The control transformer has multiple input phase terminals. See the AC Input Drive Control Transformer Schematic Diagram on page 442 for more information. If the wires are connected to the wrong terminals, drive damage can occur.

IMPORTANT If you replace the external NTC, you must apply thermal grease to the bottom of the NTC before securing it to the SCR assembly heatsink.

Converter Heat Sink Gasket Replacement

Remove the Converter Heat Sink Gasket

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.

4. Remove the converter SCR assembly. Remove the Converter SCR Assembly on page 111.

5. Carefully remove the gasket and any gasket material that can be stuck to the sealing surface.

6. Clean the converter duct surface with a 50% isopropyl alcohol / 50% water mixture.
Install the Converter Heat Sink Gasket

Note: One side of the heat sink gasket is coated with an adhesive. Take care to align the gasket properly before fully removing the paper liner and exposing the adhesive.

1. Begin removing the paper liner as you align the replacement gasket with the duct edges and cutouts as shown here and press the gasket into place on the duct.

2. Install the converter SCR assembly in the reverse order of removal. See Install the Converter SCR Assembly on page 120.

Inverter Power-supply Wire Harness Removal/Installation

Remove the Inverter Power-supply Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.

5. Remove the inverter circuit board connections cover from the inverter. See Inverter Circuit Board Connections Cover Removal/Installation on page 238.

6. Disconnect the inverter power-supply wire harness from the inverter power supply board P6 terminal and converter terminal block TB1.

7. Remove the inverter power supply harness.

Install the Inverter Power-supply Wire Harness

Install the inverter power-supply wire harness in the reverse order of removal. See Remove the Inverter Power-supply Wire Harness.
AC Line Wire Harness
Removal/Installation

Remove the AC Line Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.
 If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.
5. Disconnect the J9 connector from P9 on the converter gate board.
6. Disconnect the J1 connector from P1 on the EMC filter board.
7. Loosen the Phillips head screws that secure the wires to the surge suppressor L1, L2, L3, and G terminals and remove the wires.
Chapter 5 Converter Component Replacement Procedures

8. Loosen the screw that secures the jumper wire to the PE-A1 or GND terminal and remove the wire.

9. Remove the AC line wire harness.

IMPORTANT Before you disconnect the jumper wire of the AC line wire harness, note the wire location (PE-A1 or GND terminal) on the surge suppressor mounting plate.

Install the AC Line Wire Harness

Install the AC line wire harness in the reverse order of removal. See Remove the AC Line Wire Harness on page 123.

IMPORTANT Be sure that the jumper wire is reassembled in the appropriate location (PE-A1 or GND terminal) on the surge suppressor mounting plate.
Surge-suppressor Sense Wire Harness Removal/Installation

Remove the Surge-suppressor Sense Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.

5. Disconnect the J13 connector from P13 on the converter gate board.
6. Remove the four three-position surge suppressor sense wire terminal blocks from the surge suppressor.
7. Disconnect the connector from the shunt trip ST terminal.
8. Release the cable support on the surge suppressor mounting plate and remove the surge-suppressor sense wire harness.

Install the Surge-suppressor Sense Wire Harness

1. Remove the four three-position plug terminals from the original wire harness and install them on the replacement wire harness.
2. Install the surge-suppressor sense wire harness in the reverse order of removal. See Remove the Surge-suppressor Sense Wire Harness on page 125.
Surge Suppressor Removal/Installation

Remove the Surge Suppressor

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.

4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

 If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.

5. Loosen the Phillips head screws that secure the wires to the surge suppressor L1, L2, L3, and G terminals and remove the wires.
6. Remove the four, three-position surge suppressor sense wire terminal blocks from the surge suppressor.

7. Release the surge suppressor from the DIN rail and remove the surge suppressor.

Install the Surge Suppressor

Install the surge suppressor in the reverse order of removal. See Remove the Surge Suppressor on page 126.

Surge Suppressor Assembly
Removal/Installation

Remove the Surge Suppressor Assembly

Note: This procedure is used only to gain access to the converter gate board.

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.

4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.
5. For 600/690V AC input drives only, disconnect the 24V wire harness two-position connector from the bottom of the control power isolator board.

6. For 600/690V AC input drives only, disconnect the upper 24V wire harness two-position connector from the top of the control power isolator board. Disengage the harness from the two side entry cable supports.
7. Disconnect the J1 connector from the P1 terminal on the EMC filter board.

8. Disconnect the J9 connector from the P9 terminal on the converter gate board.

9. Disconnect the J13 connector from the P13 terminal on the converter gate board.

10. Disconnect the connector from the ST connector on the 24V/240V wire harness.
11. Loosen the four, captive M4 panel fasteners on the surge suppressor mounting plate and remove the surge suppressor assembly.

Install the Surge Suppressor Assembly

Install the surge suppressor assembly in the reverse order of removal. See Remove the Surge Suppressor Assembly on page 127.
Converter Gate Board Stirring Fan Removal/Installation

Remove the Converter Gate Board Stirring Fan

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.
 If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.
5. Remove the surge suppressor assembly. See Remove the Surge Suppressor Assembly on page 127.
6. Disconnect the two-position fan connector from the stirring fan to the 24V/240V wire harness.
7. Remove two M4 x 35 mm long screws that secure the stirring fan to the control panel and remove the stirring fan.
Install the Converter Gate Board Stirring Fan

Install the stirring fan in the reverse order of removal. See Remove the Converter Gate Board Stirring Fan on page 131.

24V/240V Power Wire Harness Removal/Installation

Remove the 24V/240V Power Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Disconnect the enclosure fan harness and enclosure shunt trip harness from TB2.
5. Remove the two M3 screws from TB2.
6. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.

7. Disconnect the connector from the shunt trip ST terminal.
8. Remove the M4 screw that secures the ground wire lug to the converter control panel and remove the ground wire lug.

9. Loosen the M4 screws that secure the four X1 and X2 lead wires to the control transformer and remove the leads.

10. Loosen the captive screws that secure the two X2 lead wires from the FU6 fuse block and remove the leads.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T20 or F - 6.4 mm (0.25 in)</td>
<td>1.8 N·m (16.0 lb-in)</td>
</tr>
<tr>
<td>P2</td>
<td>1.8 N·m (16.0 lb-in)</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>2.3 N·m (20.0 lb-in)</td>
</tr>
</tbody>
</table>
11. Disconnect the five-position inverter power supply wire harness connector from TB1.

12. Disconnect the three-position 24V wire harness connector from TB1.
13. Disconnect the enclosure fan six-position connector from converter gate board P1.

14. Disconnect the system 24V three-position connector from converter gate board P12.
15. Disconnect the two-position connector from the stirring fan.

16. Loosen the four cable tie mounts along the outside right surface of the converter control panel by using the pliers.

17. Release terminal block TB1 from the DIN rail and remove the 24V/240V power wire harness from the converter control panel.

Install the 24V/240V Power Wire Harness

Install the 24V/240V power wire harness in reverse order of removal. See Remove the 24V/240V Power Wire Harness on page 132.
Control-transformer Primary Wire Harness Removal/Installation

Remove the Control-transformer Primary Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.

5. Disconnect the wire harness FU4-1, FU4-2, FU5-1, and FU5-2 connectors from the FU4/FU5 fuse block.
6. Disconnect the ground wire from the fuse bracket by loosening the screw.
7. Release the two cable tie supports from the fuse bracket.

IMPORTANT Before you disconnect the control-transformer primary wire harness J2/J3 connector from the EMC filter board, note the J2/J3 location. The P3 (PE-A2) terminal is grounded. The P2 terminal is not grounded.

The jumper settings are provided in the PowerFlex 750-Series Power Jumper Installation Instructions, publication 750-IN011, available at http://www.rockwellautomation.com/literature/.

8. Remove the J2/J3 connector from the P2 or P3 connector on the EMC filter board.
9. Disconnect the control-transformer primary wire harness lead wires H1 and Hx from the control transformer input terminals. Release the cable support securing the harness to the EMC filter plastic support.

IMPORTANT Before you disconnect the control-transformer primary wire harness, note the terminal connections. The control transformer has multiple input phase terminals. See the AC Input Drive Control Transformer Schematic Diagram on page 442 for more information.

10. Slide one end of the wire harness through the fuse bracket and remove the control-transformer primary wire harness.
Install the Control-transformer Primary Wire Harness

Install the control-transformer primary wire harness in the reverse order of removal. See Remove the Control-transformer Primary Wire Harness on page 138.

IMPORTANT Verify that the PE-A2 connector is reassembled in the appropriate location (P2 or P3) on the EMC filter board.

IMPORTANT Verify that the control-transformer primary wire harness lead wires H1 and Hx are connected to the correct input terminals. The control transformer has multiple input phase terminals. See the AC Input Drive Control Transformer Schematic Diagram on page 442 for more information. If the wire are connected to the wrong terminals, drive damage can occur.

Control Transformer Removal/Installation

Remove the Control Transformer

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.
5. Loosen the M4 screws that secure the four X1 and X2 lead wires to the control transformer and remove the leads.

IMPORTANT Before you disconnect the control-transformer primary wire harness, note the terminal connections. The control transformer has multiple input phase terminals. See the AC Input Drive Control Transformer Schematic Diagram on page 442 for more information.

6. Disconnect the control-transformer primary wire harness lead wires H1 and Hx from the control transformer input terminals. Release the cable support securing the harness to the EMC filter plastic support.
7. Remove four M6 hex nuts that secure the control transformer to the chassis and slide the control transformer forward off the control panel mounting studs.

Install the Control Transformer

Install the control transformer in the reverse order of removal. See Remove the Control Transformer. See AC Input Drive Control Transformer Schematic Diagram on page 442 for more information.

IMPORTANT Verify that the control-transformer primary wire harness lead wires H1 and Hx are connected to the correct input terminals. The control transformer has multiple input phase terminals. See the AC Input Drive Control Transformer Schematic Diagram on page 442 for more information. If the wires are connected to the wrong terminals, drive damage can occur.
No DC Bus Fuse Wire Harness Removal/Installation (Frame 8 Drives Only)

Remove the No DC Bus Fuse Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.
5. Remove the no DC bus fuse wire harness from the converter gate board P8 terminal.

Install the No DC Bus Fuse Wire Harness

Install the No DC bus fuse wire harness in the reverse order of removal. See Remove the No DC Bus Fuse Wire Harness on page 143.
DC Bus Fuse Wire Harness Removal/Installation (Frame 9 and Larger Drives Only)

Remove the DC Bus Fuse Wire Harness

Note: This procedure is applicable to frame 9 and larger drives only.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.
5. Disconnect the four-position DC bus fuse wire harness connector J8 from P8 on the converter gate board.
6. Unlatch the two twist-lock cable supports on the AC line filter board support.
7. Disconnect the cabinet-side, three-position DC bus fuse wire harness connector from terminal block TB6 on the lower left side of the converter.

8. Remove the two M3 x 12 mm screws that secure the harness terminal block TB6 to the cover support bracket.

9. Disengage the three cable tie push mounts that secure the harness to the cover support bracket, and remove the harness.

Install the DC Bus Fuse Wire Harness

Install the DC bus fuse wire harness in the reverse order of removal. See Remove the DC Bus Fuse Wire Harness on page 144.
Control Power Isolator Board 24V Wire Harness Removal/Installation (600/690V AC Input Drives Only)

Remove the Control Power Isolator Board 24V Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the door of the enclosure that contains the control pod.
4. To gain access to the converter control panel, rotate the control pod. See Rotate the Control Pod Forward on page 88.
5. If necessary, disconnect the 24V wire harness two-position connector from P14 on the fiber interface board in the control pod.
6. Disconnect the 24V wire harness two-position connector from the terminal block on the bottom of the control power isolator board.

7. Open the twist-lock cable support that secures the wire harness to the bottom of the control frame and remove the wire harness.

Install the Control Power Isolator Board 24V Wire Harness

Install the control power isolator board 24V wire harness in the reverse order of removal. See Remove the Control Power Isolator Board 24V Wire Harness on page 146.
Control Power Isolator Board
Removal/Installation (600/690V AC Input Drives Only)

Remove the Control Power Isolator Board

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the door of the enclosure that contains the control pod.

4. To gain access to the converter control panel, rotate the control pod. See Rotate the Control Pod Forward on page 88.

5. Disconnect the 24V wire harness two-position connector from the bottom of the control power isolator board.

6. Disconnect the upper one, two, or three bay 24V wire harness two-position connector from the top of the control power isolator board. Disengage the harness from the two side-entry cable supports.
7. Loosen the two M4 captive screws that secure the control-power isolator board mounting bracket to the MOV mounting plate and remove the bracket with the board attached.

8. Remove the two M4 x 12 mm screws that secure the control power isolator board to the mounting bracket. Pull the board out to disengage it from two non-threaded standoffs and remove the board.

Install the Control Power Isolator Board

Install the control power isolator board in the reverse order of removal. See Remove the Control Power Isolator Board on page 148.

Converter Gate Circuit Board Removal/Installation

Remove the Converter Gate Circuit Board

IMPORTANT Determine if the existing converter gate board is series A or series B, and verify that you have ordered/received a compatible board before replacement. See Drive Series Components Compatibility on page 30 for details.

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the converter control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the converter right cover. See Remove the Converter Right Cover (No Control Pod) on page 88.

5. Remove the surge suppressor assembly. See Remove the Surge Suppressor Assembly on page 127.

6. Disconnect all wire harnesses from the converter gate board.

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

7. Disconnect the fiber-optic cable from the port in the lower left corner of the gate board.

8. From the fiber-optic cage in the lower left corner of the converter gate board, remove the fiber-optic transceiver by pulling its wire latch. Set the transceiver aside and save for reinstallation.

IMPORTANT When installing the fiber-optic cable, be sure that the wire latch is down.
9. Remove the two M4 x 40 mm hex standoffs.

10. Remove the four M4 x 6 mm screws that secure the converter gate board to the converter control panel. Slide the converter gate board up to disengage its four keyhole slots and remove the board.

IMPORTANT Do not remove the insulation sheet that is attached to the converter duct.

Install the Converter Gate Circuit Board

1. Verify that the insulation sheet is attached to the converter duct.

2. Install the converter gate board in the reverse order of removal. See Remove the Converter Gate Circuit Board on page 149.
Converter Removal/Installation

ATTENTION: Only perform a field replacement of the converter section of the power core (the converter is attached to the inverter) as part of the drive assembly removal procedure. Otherwise, equipment damage can result.

Remove the Converter from the Inverter Assembly

IMPORTANT Determine if the existing converter is series A or series B, and verify that you have ordered/received a compatible unit before replacement. See Drive Series Components Compatibility on page 30 for details.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the drive assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
4. Remove the inverter circuit board connections cover from the inverter. See Inverter Circuit Board Connections Cover Removal/Installation on page 238.
5. Disconnect the inverter power-supply wire harness connector from terminal P6 on the inverter power control board.

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

6. Disconnect the converter fiber-optic cable from CONV on the inverter power-layer interface board and secure it to the converter. Do not remove the fiber-optic transceiver.

7. If the control pod is assembled on the converter, disconnect the inverter fiber-optic cable from INV on the inverter power-layer interface board and secure it to the control pod. Do not remove the fiber-optic transceiver.

8. Remove the four M8 x 30 mm machine screws that secure the inverter DC bus bars to the converter DC bus bars.

IMPORTANT A load capacity of 80 kg (175 lb) minimum is required for all lifting equipment and hardware that is used for this procedure. Verify that the angle of attachment of the lifting hardware is no more than 45° from vertical.

9. Connect the lifting hardware to the two lifting holes on the lifting bar at the top of the converter section.

10. Loosen the two M8 screws that secure the converter duct to the inverter duct.
11. Lift and slide the converter away from the inverter assembly.
Install the Converter on the Inverter Assembly

1. Inspect the gasket at the top of the converter duct for damage and replace it if necessary. See Converter Duct Gasket Replacement on page 155.

2. Inspect the gasket at the top of the inverter duct for damage and replace it if necessary.

3. Install the converter on the inverter assembly in the reverse order of removal. See Remove the Converter from the Inverter Assembly on page 152.

Remove the Converter Duct Gasket

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Remove the drive assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.

4. Remove the converter. Remove the Converter from the Inverter Assembly on page 152.

5. Carefully remove the gasket and any gasket material that can be stuck to the sealing surface.

6. Clean the duct surface with a 50% isopropyl alcohol/50% water mixture.

Converter Duct Gasket Replacement
Install the Converter Duct Gasket

Note: One side of the duct gasket is coated with an adhesive. Take care to align the gasket properly before fully removing the paper liner and exposing the adhesive.

1. Begin removing the paper liner as you align the replacement gasket with the duct edges as shown here and press the gasket into place on the duct.

2. Install the converter on the inverter assembly in the reverse order of removal. See Remove the Converter from the Inverter Assembly on page 152.
Chapter 6

DC Input with Precharge Assembly Component Replacement Procedures

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Input with Precharge Assembly Components Identification</td>
<td>158</td>
</tr>
<tr>
<td>DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard Removal/Installation</td>
<td>163</td>
</tr>
<tr>
<td>DC Input with Precharge Assembly Left Cover and Interlock Assembly Replacement</td>
<td>164</td>
</tr>
<tr>
<td>DC Input with Precharge Assembly Right Cover (No Control Pod) Removal/Installation</td>
<td>172</td>
</tr>
<tr>
<td>Control Transformer Secondary Fuses Removal/Installation</td>
<td>172</td>
</tr>
<tr>
<td>DC Bus Output/Sense Wire Harness Removal/Installation</td>
<td>174</td>
</tr>
<tr>
<td>Precharge Resistor Assembly Removal/Installation</td>
<td>178</td>
</tr>
<tr>
<td>Precharge Resistor Jumper Wires Removal/Installation</td>
<td>179</td>
</tr>
<tr>
<td>DC Line Fuses and Fuse Indicators Removal/Installation</td>
<td>180</td>
</tr>
<tr>
<td>Precharge Circuit Fuses Removal/Installation</td>
<td>182</td>
</tr>
<tr>
<td>DC Bus Input Wire Harness Removal/Installation</td>
<td>183</td>
</tr>
<tr>
<td>Left Wall Removal/Installation</td>
<td>184</td>
</tr>
<tr>
<td>24V Control Wire Harness Removal/Installation</td>
<td>187</td>
</tr>
<tr>
<td>Molded-case Switch Control Wire Harness Removal/Installation</td>
<td>190</td>
</tr>
<tr>
<td>Transformer Primary Wire Harness Removal/Installation</td>
<td>193</td>
</tr>
<tr>
<td>24V/120V/240V Wire Harness Removal/Installation</td>
<td>195</td>
</tr>
<tr>
<td>Disconnect Switch Jumper Wires Removal/Installation</td>
<td>201</td>
</tr>
<tr>
<td>Disconnect Switch (SW2), Auxiliary Contact, and Handle Shaft Removal/Installation</td>
<td>202</td>
</tr>
<tr>
<td>Disconnect Switch Handle Removal/Installation</td>
<td>203</td>
</tr>
<tr>
<td>Control Transformer Removal/Installation</td>
<td>204</td>
</tr>
<tr>
<td>Control Power Isolator Board 24V Wire Harness Removal/Installation (810/932V DC Input Drives Only)</td>
<td>207</td>
</tr>
<tr>
<td>Control Power Isolator Board Removal/Installation (810/932V DC Input Drives Only)</td>
<td>208</td>
</tr>
<tr>
<td>Undervoltage Delay Bracket Removal/Installation</td>
<td>210</td>
</tr>
<tr>
<td>Undervoltage Delay Wire Harness Removal/Installation</td>
<td>213</td>
</tr>
<tr>
<td>Undervoltage Delay Removal/Installation</td>
<td>214</td>
</tr>
<tr>
<td>DC Precharge Control Board Stirring Fan Removal/Installation</td>
<td>215</td>
</tr>
<tr>
<td>Door-interlock Wire Harness Removal/Installation</td>
<td>216</td>
</tr>
<tr>
<td>Digital I/O Wire Harness Removal/Installation</td>
<td>218</td>
</tr>
<tr>
<td>DC Precharge Control Circuit Board Removal/Installation</td>
<td>220</td>
</tr>
<tr>
<td>DC Input with Precharge Assembly Removal/Installation</td>
<td>222</td>
</tr>
<tr>
<td>DC Input with Precharge Assembly Duct Gasket Replacement</td>
<td>225</td>
</tr>
</tbody>
</table>
This chapter provides detailed procedures for how to remove and replace DC input with precharge assembly components.

Note: In some illustrations in this chapter, the DC input with precharge assembly and/or control pod is shown removed from the drive for clarity only. Only remove the DC input with precharge assembly and/or control pod from the drive if directed to do so.

IMPORTANT Complete the procedures in Chapter 12 Drive Startup after Repairs that begin on page 419 before placing the drive back into service.

DC Input with Precharge Assembly Components Identification

Table 12 contains the components that comprise the DC input with precharge assembly and provides the following information for each component, if applicable:

- Kit catalog number or part number
- Quantity that is contained in the kit
- Illustration figure and page number and identification number

See PowerFlex Architecture Class Low Voltage Drives Spare Parts Options, publication PFLEX-SB002 for a complete list of spare parts for PowerFlex® 755 Frame 8...10 and larger drives.

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Quantity</th>
<th>Figure and Page</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Input with Precharge Unit for 540V, 770 A / 650V, 740 A DC Input Drives</td>
<td>20-750-P6-C770D740</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Input with Precharge Unit for 810V, 510 A / 932V, 500 A DC Input Drives</td>
<td>20-750-P6-E510F500</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Line Fuse Kit, 1600 A, 540/650V DC Input Drives</td>
<td>SK-R1-CBP FUSE1-F8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuse, 690/700V, 1600 A (FU1 and FU2)</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>1</td>
</tr>
<tr>
<td>Fuse Indicator</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>2</td>
</tr>
<tr>
<td>DC Line Fuse Kit, 1000 A, 810/932V DC Input Drives</td>
<td>SK-R1-CBP FUSE3-F8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuse, 1250/1300V, 1000 A (FU1 and FU2)</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>1</td>
</tr>
<tr>
<td>Fuse Indicator</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>2</td>
</tr>
<tr>
<td>Precharge and Control Transformer Fuse Kit, 540/932V DC Input Drives</td>
<td>SK-R1-CBP FUSE2-F8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuse, 5 A, 600V, Class CC, Time Delay (FU5)</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>3</td>
</tr>
<tr>
<td>Fuse, 1 A, 600V, Class CC, Time Delay (FU6)</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>4</td>
</tr>
<tr>
<td>Fuse, Ferrule, Special Purpose, 1000V DC, 20 A (FU3 and FU4)</td>
<td></td>
<td>2</td>
<td>Figure 11 on page 161</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 12 - DC Input with Precharge Assembly Replacement Kits/Parts (continued)

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Quantity</th>
<th>Figure and Page</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame 8 DC Input with Precharge Wire Harness Kit</td>
<td>SK-R1-CBPH1-F8</td>
<td>—</td>
<td>—</td>
<td>6</td>
</tr>
<tr>
<td>Wire Harness, 24V/120V/240V</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>7</td>
</tr>
<tr>
<td>Wire Harness, Digital I/O</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>8</td>
</tr>
<tr>
<td>Wire Harness, Door Lock</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>9</td>
</tr>
<tr>
<td>Wire Harness, 120V/240V</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>10</td>
</tr>
<tr>
<td>Wire Harness, DC Bus Output/Sense</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>11</td>
</tr>
<tr>
<td>Wire Harness, Undervoltage</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>12</td>
</tr>
<tr>
<td>Wire Harness, 24V Control</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>13</td>
</tr>
<tr>
<td>Wire Harness, Molded Case Switch Control</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>14</td>
</tr>
<tr>
<td>Wire Harness, DC Bus Input</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>15</td>
</tr>
<tr>
<td>Wire Harness, Disconnect Switch Jumper</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>16</td>
</tr>
<tr>
<td>Wire Harness, Resistor Jumper</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>17</td>
</tr>
<tr>
<td>Wire Harness, Inverter Power Supply</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>18</td>
</tr>
<tr>
<td>Precharge Resistor Assembly Kit, 540/650V DC Input Drives</td>
<td>SK-R1-CBPRES-F8</td>
<td>—</td>
<td>—</td>
<td>19</td>
</tr>
<tr>
<td>Bracket, Resistor</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>20</td>
</tr>
<tr>
<td>Resistor, 10 Ohm, Metal Case, Ceramic Collar</td>
<td></td>
<td>4</td>
<td>Figure 11 on page 161</td>
<td>21</td>
</tr>
<tr>
<td>Screw, M4 x 12 mm, Pan Head Sems</td>
<td></td>
<td>8</td>
<td>Figure 11 on page 161</td>
<td>22</td>
</tr>
<tr>
<td>Precharge Resistor Assembly Kit, 810/932V DC Input Drives</td>
<td>SK-R1-CBPRES2-F8</td>
<td>—</td>
<td>—</td>
<td>23</td>
</tr>
<tr>
<td>Bracket, Resistor</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>24</td>
</tr>
<tr>
<td>Resistor, 20 Ohm, Metal Case, Ceramic Collar</td>
<td></td>
<td>4</td>
<td>Figure 11 on page 161</td>
<td>25</td>
</tr>
<tr>
<td>Screw, M4 x 12 mm, Pan Head Sems</td>
<td></td>
<td>8</td>
<td>Figure 11 on page 161</td>
<td>26</td>
</tr>
<tr>
<td>Precharge Disconnect Assembly Kit, 540/932V DC Input Drives</td>
<td>SK-R1-CBPSW-F8</td>
<td>—</td>
<td>—</td>
<td>27</td>
</tr>
<tr>
<td>Switch, 8-Pole, 32 A, 750V</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>28</td>
</tr>
<tr>
<td>Shaft, Extended, 6 mm Dia., 70 mm Long</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>29</td>
</tr>
<tr>
<td>Handle, Pistol Type, Pad-lockable, 6 mm Shaft, Indication I-O; On-Off</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>30</td>
</tr>
<tr>
<td>Auxiliary Contact Block, IP20, Normally Open, Right Side Mountable</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>31</td>
</tr>
<tr>
<td>Control Transformer, 120/240VAC In, 120/240VAC Out, 1000VA @240VAC</td>
<td>SK-R1-CBPFMR1-F8</td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>32</td>
</tr>
<tr>
<td>Undervoltage Delay</td>
<td>SK-R1-CBPDELAY-F8</td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>33</td>
</tr>
<tr>
<td>Frame 8 Gasket Kit</td>
<td>20-750-G1-F8</td>
<td>—</td>
<td>—</td>
<td>34</td>
</tr>
<tr>
<td>Gasket, Converter, Heatsink</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>35</td>
</tr>
<tr>
<td>Gasket, Converter/DC Input with Precharge Assembly, Duct</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>36</td>
</tr>
<tr>
<td>Gasket, Inverter, Heatsink</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>37</td>
</tr>
<tr>
<td>Gasket, Inverter, Door Interface</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>38</td>
</tr>
<tr>
<td>Gasket, Inverter, Exhaust Interface</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>39</td>
</tr>
<tr>
<td>Gasket, Inverter, Inlet Ring</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>40</td>
</tr>
<tr>
<td>Gasket, Inverter, No Choke</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>41</td>
</tr>
<tr>
<td>Gasket, Inverter, Blower Box Bottom</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>42</td>
</tr>
<tr>
<td>Gasket, Inverter, Choke</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>43</td>
</tr>
</tbody>
</table>
Table 12 - DC Input with Precharge Assembly Replacement Kits/Parts (continued)

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Quantity</th>
<th>Figure and Page</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Input Control Board Kit, 540/650V DC Input Drives</td>
<td>SK-R1-CBPCTRL-F8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Precharge Control Board, 540/650V</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>28</td>
</tr>
<tr>
<td>Fiber-optic Transceiver</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>29</td>
</tr>
<tr>
<td>DC Input Control Board Kit, 810/932V DC Input Drives</td>
<td>SK-R1-CBPCTRL2-F8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Precharge Control Board, 810/932V</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>28</td>
</tr>
<tr>
<td>Fiber-optic Transceiver</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>29</td>
</tr>
<tr>
<td>One-Bay fiber-optic Cable Kit</td>
<td>20-750-FCBL1-F8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONV Fiber-optic Cable, 560 mm Long</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>30</td>
</tr>
<tr>
<td>INV Fiber-optic Cable, 560 mm Long</td>
<td></td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>30</td>
</tr>
<tr>
<td>Fiber-optic Transceiver</td>
<td>SK-R1-FTR1-F8</td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>32</td>
</tr>
<tr>
<td>One Bay 24V Wire Harness Kit (Frame 8)</td>
<td>20-750-PH1-F8</td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>33</td>
</tr>
<tr>
<td>Two Bay 24V Wire Harness Kit (Frame 9)</td>
<td>20-750-PH2-F9</td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>33</td>
</tr>
<tr>
<td>Three Bay 24V Wire Harness Kit (Frame 10)</td>
<td>20-750-PH3-F10</td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>33</td>
</tr>
<tr>
<td>Left Front Cover with Shields Kit</td>
<td>SK-R1-CBP-CVR1-F8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left Front Cover</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>34</td>
</tr>
<tr>
<td>Top Guard</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>35</td>
</tr>
<tr>
<td>Left Guard</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>36</td>
</tr>
<tr>
<td>Left Front Cover and Interlock Assembly Retrofit Kit</td>
<td>20-750-CBPPANEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left Front Cover with Access Panel</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>34</td>
</tr>
<tr>
<td>DC Bus Guard</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interlock Assembly</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-bracket and Screws</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Front Cover (No Control POD) Kit</td>
<td>SK-R1-CCVR2-F8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Front Cover</td>
<td></td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>37</td>
</tr>
<tr>
<td>Bracket, Cover, 59 mm (2.3 in.) Long</td>
<td></td>
<td>2</td>
<td>Figure 12 on page 162</td>
<td>38</td>
</tr>
<tr>
<td>Control Power Isolator Board Kit, 600/690V AC and 810/932V DC Input Drives</td>
<td>SK-R1-CPIB1-F8</td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>39</td>
</tr>
<tr>
<td>Control Power Isolator 24V Wire Harness Kit, 600/690V AC and 810/932V DC Input Drives</td>
<td>SK-R1-CPHI1-F8</td>
<td>1</td>
<td>Figure 11 on page 161</td>
<td>40</td>
</tr>
<tr>
<td>DC Precharge Control Board Stirring Fan</td>
<td>20-750-CFANIKIT-F8</td>
<td>1</td>
<td>Figure 12 on page 162</td>
<td>41</td>
</tr>
</tbody>
</table>

(1) This gasket is included in the Frame 8 Gasket Kit (20-750-G1-F8), but is identified in the table in Converter Components Identification on page 82.
(2) This gasket is included in the Frame 8 Gasket Kit (20-750-G1-F8), but is identified in the table in Inverter Components Identification on page 228.
Figure 11 - DC Input with Precharge Assembly Components Diagram 1
Figure 12 - DC Input with Precharge Assembly Components Diagram 2

540/650V DC Drives Only

810/932V DC Drives Only
DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard Removal/Installation

Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove only the four M5 x 14 mm screws that secure the cover to the assembly and remove the cover with the top and left guards attached.
5. If necessary, remove the four M5 x 14 mm screws that secure the top and left guards to the cover; and remove the guards.

Install the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard

Install the left cover, top guard, and left guard in the reverse order of removal. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard.

TIP
See Fastener/Tool/Torque Information on page 33 for descriptions of the fasteners, tools, and torque figures that are used in the disassembly/assembly procedures in this chapter.
This retrofit kit (cat. no. 20-750-CBPPANEL) can be used to improve the access to the molded case switch (SW1) on common DC input drives for lockout/tagout procedures. Install this kit only on DC input with precharge modules with catalog numbers 20-750-P5-C770D740 and 20-750-P5-E510F500.

Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard and Disconnect Handle

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove only the four M5 x 14 mm screws that secure the cover to the assembly and remove the cover with the top and left guards attached.
5. Remove the four M5 x 14 mm screws that secure the top and left guards to the cover, and remove the guards. Retain the guards and screws for reuse.
6. Remove the two M4 x 12 mm hexalobular screws and washers that secure the rotary disconnect on/off handle to the front cover and remove the handle. Retain the handle, screws, and washers for reuse.

7. Loosen the hexagonal screw that secures the disconnect handle shaft to the disconnect switch and remove the handle.
Install the New Disconnect Switch Interlock and Front Cover Assemblies

1. Complete steps a….d to install the interlock assembly on the disconnect handle shaft.
 a. Position the interlock rod (A) under the clamp assembly (as shown in the illustration).
 b. Position the set screw (B) to the right of the clamp assembly.
 c. Position the pins (C) on the disconnect handle shaft vertically and slide the base of the shaft through the square opening in the clamp assembly.
d. Position the back of the interlock clamp assembly 34 mm (1.33 in.) from the base of the shaft and tighten the M3 x 1.5 mm set screw.

2. With the interlock rod (D) positioned below the handle shaft, fully insert the handle shaft (E) into the receptacle on the disconnect switch.

3. Secure the handle shaft in place by using the set screw on the disconnect switch. Torque requirement is 0.6 N·m (5.4 lb·in).
4. By using the pliers, remove the four cable tie mounts, which secure the resistor wires, from the back of the existing DC bus guard.

5. Loosen the two M4 x 12 mm hexalobular screws that secure the clear, plastic shield to the front of the DC bus guard and remove the plastic panel. Retain this panel for reuse.

6. Loosen the two M4 x 12 mm hexalobular screws that secure the sheet metal DC bus guard to the resistor assembly and remove and discard the guard.
Chapter 6

7. Place the new sheet metal DC bus guard on the resistor assembly and secure the guard by tightening the two existing screws.

8. Place the clear, plastic shield on the new DC bus guard and secure the shield by tightening the existing screws.

9. Fully insert the four cable tie mounts, which secure the resistor wires, into the holes on the new DC bus guard.

10. Secure the existing rotary on/off disconnect handle to the new DC precharge assembly left front cover by using the two M4 x 8 mm long screws and washers. Torque requirement is 1.8 N•m (16 lb•in).

11. Secure the two clear plastic guards to the new DC precharge assembly left front cover by using the four existing M5 x 14 mm screws. Torque requirement is 2.8 N•m (25 lb•in).
12. Set the rotary on/off handle and the disconnect handle shaft to the “off” position.

The disconnect handle shaft is in the “off” position when the pins on the end of the shaft are oriented horizontally.

13. Align the rotary disconnect handle and shaft and place the new front cover on the DC precharge unit.

14. Secure the front cover by using the existing screws. Torque requirement is 2.8 N•m (25 lb•in).

15. Loosen the two hexalobular screws that secure the circuit-breaker access door to the left front cover and lower the door.
16. Position the L-bracket with the square opening on top and the screw holes to the front and flush with the back of the cover.

IMPORTANT The interlock rod behind the cover must fit into the square opening on the top of the L-bracket (as shown in the illustration).

17. Secure the L-bracket by using the two M5 x 14 mm hexalobular screws that are provided in the kit.

18. Close and secure the circuit-breaker access door.

19. Move the disconnect handle to the “ON” position.

20. Verify that the circuit-breaker access door cannot be opened.

21. Secure the circuit-breaker access door by tightening the two hexalobular screws.
DC Input with Precharge Assembly Right Cover (No Control Pod) Removal/Installation

Remove the DC Input with Precharge Assembly Right Cover (No Control Pod)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the four M5 x 14 mm screws that secure the cover to the assembly and remove the cover.

Install the DC Input with Precharge Assembly Right Cover (No Control Pod)

Install the right cover in the reverse order of removal. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod).

Control Transformer Secondary Fuses Removal/Installation

Remove the Control Transformer Secondary Fuses (FU5 and FU6)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.

5. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.

6. Remove the fuse from the one-position fuse holder by using a fuse puller. The fuses are on the right wall of the control panel next to the control transformer.

Install the Control Transformer Secondary Fuses (FU5 and FU6)

Install the control transformer secondary fuses (FU5 and FU6) in the reverse order of removal. See Remove the Control Transformer Secondary Fuses (FU5 and FU6) on page 172.
DC Bus Output/Sense Wire Harness Removal/Installation

Remove the DC Bus Output/Sense Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.
6. Remove the two cable ties that secure the wire harness to the center wall.
7. Disconnect the connector from P1 on the DC input control board.

Note: The cooling fan, undervoltage delay, and control transformer are not shown only to clarify the instructions.
8. Remove the two cable ties that secure the wire harness to the disconnect bracket and the 24/120/240V wire harness.

9. Loosen the screws that secure the +DC and -DC wires to the fuseholder terminals and remove the wires.

10. Remove the M4 hex nuts that secure the +DC and -DC wires to the +DC and -DC output bus bars and remove the wires.
11. Disconnect the connectors from the R1, R2, R3 and, R4 precharge resistor terminals.

12. Loosen, but do not remove, the two M4 x 12 mm hexalobular screws that secure the wire harness support to the bottom of the precharge resistor assembly and remove the harness.

Install the DC Bus Output/Sense Wire Harness

Install the DC bus output/sense wire harness in the reverse order of removal. See Remove the DC Bus Output/Sense Wire Harness on page 174.
Precharge Resistor Assembly Removal/Installation

Remove the Precharge Resistor Assembly

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. Loosen but do not remove the two M4 x 12 mm long hexalobular screws that secure the DC bus output/sense harness wire support to the resistor assembly.
6. Remove the four wire connectors of the DC bus output/sense harness from the R1, R2, R3, and R4 precharge resistor terminals.
7. Loosen but do not remove the two M5 nuts that secure the resistor assembly to the mounting bracket.
8. Remove the resistor assembly by completing the following steps.
 a. Disengage the bottom bracket slot by rotating the bottom of the assembly to the right.
 b. Slide the assembly down to disengage the top bracket slot.
9. Remove the resistor jumper harness from the top four terminals.

Install the Precharge Resistor Assembly

Install the precharge resistor assembly in the reverse order of removal. See Remove the Precharge Resistor Assembly on page 178.

Precharge Resistor Jumper Wires Removal/Installation

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. Remove the precharge resistor assembly. See Remove the Precharge Resistor Assembly on page 178.

Install the Precharge Resistor Jumper Wires

Install the precharge resistor jumper wires in the reverse order of removal. See Remove the Precharge Resistor Jumper Wires.
DC Line Fuses and Fuse Indicators Removal/Installation

Remove the DC Line Fuses (FU1 and FU2) and Fuse Indicators (SW3 and SW4)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. Remove the 24V control wire harness leads from the fuse indicator (SW3 or SW4) terminals for the fuse being replaced (FU1 or FU2).

IMPORTANT Note the orientation of the fuse indicator terminals before removal. Replace each fuse with the terminals in the same orientation as shown here.

Note: Fuses shown removed in this illustration only to clarify the instructions.
6. Remove the M10 x 35 mm hexalobular screw and flat washer for the fuse being replaced and remove the DC line fuse. Remove the fuse indicator from the DC line fuse for reuse, if necessary.

Install the DC Line Fuses (FU1 and FU2) and Fuse Indicators (SW3 and SW4)

Install the DC line fuses and fuse indicators in the reverse order of removal. See Remove the DC Line Fuses (FU1 and FU2) and Fuse Indicators (SW3 and SW4) on page 180.
Precharge Circuit Fuses
Removal/Installation

Remove the Precharge Circuit Fuses (FU3 and FU4)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. Pull-down on the tabs at the top of the fuse holder and remove the fuse.

Install the Precharge Circuit Fuses (FU3 and FU4)

Install the precharge circuit fuses in the reverse order of removal. See Remove the Precharge Circuit Fuses (FU3 and FU4) on page 182.
DC Bus Input Wire Harness
Removal/Installation

Remove the DC Bus Input Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. Disconnect the +DC and -DC wires from the +DC and -DC bus bars, respectively.
6. Loosen the screw that secures the +DC wire to terminal SW2-5 on the disconnect switch, and remove the wire.
7. Loosen the screw that secures the -DC wire to terminal SW2-1 on the disconnect switch and remove the wire.
8. Remove the -DC wire from the two supports on the disconnect bracket and remove the wire harness.

\[P1 \quad 0.8 \text{ N-m (7 lb-in)} \]
Install the DC Bus Input Wire Harness

Install the DC bus input wire harness in the reverse order of removal. See Remove the DC Bus Input Wire Harness on page 183.

Left Wall Removal/Installation

Remove the Left Wall

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the drive assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the DC line fuses and fuse indicators. See Remove the DC Line Fuses (FU1 and FU2) and Fuse Indicators (SW3 and SW4) on page 180.
6. Disconnect the +DC wire (of the DC bus input wire harness) from the +DC bus bar.
7. Disconnect the -DC wire (of the DC bus input wire harness) from the -DC bus bar.
8. Loosen the two captive M4 panel fasteners that secure the disconnect bracket to the left wall.
9. Remove the six M6 x 12 mm flat head screws that secure the left wall to the drive.
10. Slide the left wall (with input bus bar assembly) off the two mounting pins and remove the left wall.

Install the Left Wall

Install the left wall in the reverse order of removal. See Remove the Left Wall on page 184.
Remove the Molded Case Switch Wire Terminal Support

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left wall. See Remove the Left Wall on page 184.
5. Remove the two M3 x 45 mm Phillips head screws that secure the wire terminal support to the molded case switch and remove the support.

Install the Molded Case Switch Wire Terminal Support

Install the molded-case switch wire terminal support in the reverse order of removal. See Remove the Molded Case Switch Wire Terminal Support.
24V Control Wire Harness Removal/Installation

Remove the 24V Control Wire Harness

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.

4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.

5. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

 If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.

6. Remove the 24V control wire harness leads from the fuse indicators SW3 (on FU1) and SW4 (on FU2).

 IMPORTANT Note the orientation of the fuse indicator terminals before removal. Replace each fuse with the terminals in the same orientation as shown here.

 FU1 Indicator Terminals Point Upward to Right

 FU2 Indicator Terminals Point Downward to Left

 Note: Fuses shown removed in this illustration only to clarify the instructions.

7. Remove the molded-case switch wire terminal support. See Remove the Molded Case Switch Wire Terminal Support on page 186.
8. Disconnect the 24V wire harness connector from terminals 31/21 and 32/34 on the molded case switch by using a flat nose screwdriver (as shown in the illustration).

9. Loosen the Phillips head screws that secure the 24V wire harness wires to terminals 13 and 14 on the disconnect switch auxiliary contact and remove the wires.

10. Release the 24V wire harness from the cable support on the top, front of the disconnect switch.
11. Release, but do not remove, the two releasable cable ties from the top rungs of two cable support ladders on the control panel.

12. Disconnect the 24V control wire harness connector from terminal P3 on the DC precharge control board. Pull the 24V wire harness to the right through the gap in the center wall and remove the wire harness.

Install 24V Control Wire Harness

Install the 24V control wire harness in the reverse order of removal. See Install 24V Control Wire Harness on page 189.
Molded-case Switch Control Wire Harness Removal/Installation

Remove the Molded-case Switch Control Wire Harness

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.

4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.

5. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.

6. Remove the 24V control wire harness leads from the fuse indicators SW3 (on FU1) and SW4 (on FU2).

IMPORTANT

Note the orientation of the fuse indicator terminals before removal. Replace each fuse with the terminals in the same orientation as shown here.

Note: Fuses shown removed in this illustration only to clarify the instructions.

7. Remove the molded-case switch wire terminal support. See Remove the Molded Case Switch Wire Terminal Support on page 186.
8. Disconnect the molded-case switch (MCS) control wire harness connector from terminals U1/U2, D1/D2, C1/C2, and C12/C11 on the molded case switch by using a flat nose screwdriver (as shown in the illustration).

9. Release the harness from two supports on the top, rear of the disconnect switch.
10. Release, but do not remove, the cable tie from the second rung of the left cable support ladder on the control panel.

11. Disconnect the MCS control wire harness from the UV connector for the undervoltage delay.

12. Disconnect the MCS control wire harness connector from terminal P2 on the DC precharge control board.

13. Pull the MCS control wire harness to the right and remove the wire harness.

Install the Molded-case Switch Control Wire Harness

Install the molded-case switch control wire harness in the reverse order of removal. See Remove the Molded-case Switch Control Wire Harness on page 190.
Remove the Transformer Primary Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.

6. Loosen, but do not remove, the captive screws that secure the control-transformer primary lead wires to terminals H1 and HX and remove the wires.

Note: Transformer wiring for 120V AC input shown.

Note: Center wall shown removed only to clarify the instructions.
7. Loosen the screws that secure the three wires to terminals SW2-6, SW2-7, and SW2-8 on the disconnect switch and remove the wires.

8. Loosen the captive screw that secures the wire to TB5-1 on right side of control panel, and remove the wire.

9. Loosen the two cable tie mounts on the center wall and the cable tie mount on the top of the control panel and remove the harness by using the pliers.

Installing the Transformer Primary Wire Harness

Install the transformer primary wire harness in the reverse order of removal. See Remove the Transformer Primary Wire Harness on page 193.
Remove the 24V/120V/240V Wire Harness

Removal/Installation

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

 If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.

6. Loosen the screw that secures the transformer primary wire harness to terminal 1 on terminal block TB5, and remove the wire.
7. Remove the M4 x 12 mm screw and grounding washer that secure the ground wire lug to the control panel; and remove the ground wire lug.
8. Loosen, but do not remove, the M4 screws that secure the secondary lead wires to terminals X1, X2, and X3 on the control transformer; and remove the leads.
9. Loosen, but do not remove, the captive screws that secure the four leads wires to FU5 and FU6 fuse blocks; and remove the leads.
10. Loosen the screws that secure the 120V control power output wiring (if used) to terminals 7 and 8 on terminal block TB5, and remove the wires.

11. Remove the two M3 x 12 mm screws that secure terminal block TB5 to the control panel and remove the terminal block.

12. Remove the plug-in terminal block for the enclosure fan harness, 120/240V control power input harness, and 120V UPS harness from terminal block TB2.

13. Remove the two M3 x 12 mm screws that secure terminal block TB2 to the control panel and remove the terminal block.

14. Disconnect the five-position inverter power supply harness connector from terminal block TB1 (see following illustration).

15. Disconnect the three-position 24V wire harness connector from terminal block TB1 (see following illustration).

16. Disconnect the enclosure fan six-position connector from P9 on the DC precharge control board (see following illustration).
17. Disconnect the system 24V three-position connector from P10 on the DC precharge control board.

18. Disconnect the two-position connector from the stirring fan.

19. Loosen and remove the seven cable tie mounts along the right surface of the control panel by using the pliers.

Note: The undervoltage delay is not shown only to clarify the instructions.
20. Loosen the screws that secure the input wires to terminals SW2-6, SW2-7, and SW2-8 on the disconnect switch and remove the wires.
21. Cut four cable ties between the disconnect switch and terminal block TB1. Pull the three disconnect switch wires SW2-6, SW2-7, and SW2-8 through the opening in the bottom, center wall of the control panel.

22. Release terminal block TB1 from the DIN rail and remove the 24V/120V/240V wire harness from the control panel.

Install the 24V/120V/240V Wire Harness

Install the 24V/120V/240V wire harness in the reverse order of removal. See Remove the 24V/120V/240V Wire Harness on page 195.
Disconnect Switch Jumper Wires Removal/Installation

Remove the Disconnect Switch Jumper Wires

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. Disconnect the +DC jumper wire from terminals SW2-5 and SW2-4 on the bottom of the disconnect switch.
6. Disconnect the +DC jumper wire from terminals SW2-4 and SW2-3 on the top of the disconnect switch.
7. Disconnect the +DC jumper wire from terminal SW2-3 on the bottom of the disconnect switch and the top of fuse block FU3.
8. Disconnect the -DC jumper wire from terminals SW2-1 and SW2-2 on the top of the disconnect switch.
9. Disconnect the -DC jumper wire from terminal SW2-2 on the bottom of the disconnect switch and the top of fuse block FU4.
Install the Disconnect Switch Jumper Wires

Install the disconnect switch jumper wires in the reverse order of removal. See Remove the Disconnect Switch Jumper Wires on page 201.

Remove the Disconnect Switch, Auxiliary Contact and Handle Shaft Removal/Installation

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. Remove the DC bus input harness +DC wire from the disconnect switch terminal SW2-5 and the DC bus input harness -DC wire from the disconnect switch terminal SW2-1. See Remove the DC Bus Input Wire Harness on page 183.
6. Remove the 24V control harness wires from terminals 13 and 14 on the disconnect switch auxiliary contact. See Remove the 24V Control Wire Harness on page 187.
7. Remove the transformer primary wire harness from the disconnect switch terminals SW2-6, SW2-7, and SW2-8. See Remove the Transformer Primary Wire Harness on page 193.
8. Remove the 24V/120V/240V wire harness from the disconnect switch terminals SW2-6, SW2-7, and SW2-8. See Remove the 24V/120V/240V Wire Harness on page 195.
9. Remove the five disconnect switch jumper wires from the disconnect switch SW2. See Remove the Disconnect Switch Jumper Wires on page 201.
10. Extend the two release tabs near poles 4 and 7 on the bottom of the disconnect switch. Remove the disconnect switch, auxiliary contact, and handle shaft from the mounting rail.

Note: The auxiliary contact snaps fits onto the disconnect switch.

Note: If removed, fully insert the handle shaft to the bottom of the disconnect switch before set screw tightening. A 2.5 mm hex key and torque requirement of 0.6 N•m (5.4 lb•in) is recommended for the set screw.
Install the Disconnect Switch, Auxiliary Contact and Handle Shaft

Install the disconnect switch, auxiliary contact, and handle shaft in the reverse order of removal. See Remove the Disconnect Switch, Auxiliary Contact and Handle Shaft on page 202.

Wiring must be installed as shown in the DC Input with Precharge Assembly Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes Common DC Input Drives) on page 442.

Disconnect Switch Handle Removal/Installation

Remove the Disconnect Switch Handle

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. Remove the two M4 x 12 mm long screws and washers that secure the handle to the front cover and remove the handle.

Install the Disconnect Switch Handle

Install the disconnect switch handle in the reverse order of removal. See Remove the Disconnect Switch Handle on page 203.
Control Transformer
Removal/Installation

Remove the Control Transformer

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.

4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.

5. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.

IMPORTANT The disconnect switch handle must be installed in the orientation that is shown in the illustration.
6. Loosen, but do not remove, the M4 screws that secure the X1, X2, X3, and X4 secondary lead wires to the control transformer and remove the wires.

IMPORTANT Before you disconnect the control-transformer primary wire leads, note the terminal locations. The control transformer has both 120V and 240V input phase terminals. See the DC Input with Precharge Assembly Control Transformer Schematic Diagram on page 442 for more information.

7. Loosen, but do not remove, the M4 screws that secure the H1 and HX primary lead wires to the control transformer and remove the wires.
8. Remove the four M6 hex nuts that secure the control transformer to the control panel and slide the control transformer forward off the control panel studs.

Note: The undervoltage delay is not shown only to clarify the instructions.
Install the Control Transformer

Install the control transformer in the reverse order of removal. See Remove the Control Transformer on page 204.

IMPORTANT Be sure that the control-transformer primary wire harness lead wires H1 and HX are connected to the proper input terminals. The control transformer has both 120V and 240V input phase terminals. See the DC Input with Precharge Assembly Control Transformer Schematic Diagram on page 442 for more information. If the wires are connected to the wrong terminals, drive damage can occur.

Control Power Isolator Board 24V Wire Harness Removal/Installation (810/932V DC Input Drives Only)

Remove the Control Power Isolator Board 24V Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the door of the enclosure that contains the control pod.
4. To gain access to the DC input with precharge assembly control panel, rotate the control pod. See Rotate the Control Pod Forward on page 88.
5. If necessary, disconnect the 24V wire harness two-position connector from P14 on the fiber interface board in the control pod.

6. Disconnect the 24V wire harness two-position connector from the bottom of the control power isolator board.

7. Untwist one twist-lock cable support and remove the harness.

Install the Control Power Isolator Board 24V Wire Harness

Install the control power isolator board 24V wire harness in the reverse order of removal. See Remove the Control Power Isolator Board 24V Wire Harness on page 207.

Control Power Isolator Board Removal/Installation (810/932V DC Input Drives Only)

Remove the Control Power Isolator Board

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the door of the enclosure that contains the control pod.

4. To gain access to the DC input with precharge assembly control panel, rotate the control pod. See Rotate the Control Pod Forward on page 88.
5. Disconnect the 24V wire harness two-position connector from the bottom of the control power isolator board.

6. Disconnect the one, two, or three bay 24V wire harness two-position connector from the top of the control power isolator board. Disengage the harness from the two side-entry cable supports.

7. Remove the two M4 x 12 mm screws that secure the control power isolator board to the mounting bracket, slide the board to the right to disengage it from the two keyhole standoffs, and remove the board.

Install the Control Power Isolator Board

Install the control power isolator board in the reverse order of removal. See Remove the Control Power Isolator Board on page 208.
Remove the Undervoltage Delay Bracket

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.
5. For 810/932V DC input drives only, disconnect the 24V wire harness two-position connector from the bottom of the control power isolator board.
6. For 810/932V DC input drives only, disconnect the upper 24V wire harness two-position connector from the top of the control power isolator board. Disengage the harness from the two side entry cable supports.
7. Disconnect the undervoltage wire harness connector from terminal P5 on the DC precharge control board.
8. Disconnect the undervoltage wire harness connector from connector UV on the molded-case switch control wire harness.

9. Loosen the four M4 captive panel fasteners on the undervoltage delay bracket and remove bracket.

Install the Undervoltage Delay Bracket

Install the undervoltage delay bracket in the reverse order of removal. See Remove the Undervoltage Delay Bracket on page 210.
Remove the Undervoltage Delay Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.
5. Remove the undervoltage delay bracket from the control panel. See Remove the Undervoltage Delay Bracket on page 210.
6. Loosen the captive screws that secure the five harness wires to the undervoltage delay terminals and remove the wire harness.

Install the Undervoltage Delay Wire Harness

Install the undervoltage delay wire harness in reverse order of removal. See Remove the Undervoltage Delay Wire Harness on page 213.
Undervoltage Delay Removal/Installation

Remove the Undervoltage Delay

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.
5. Remove the undervoltage delay bracket from the control panel. See Remove the Undervoltage Delay Bracket on page 210.
6. Remove the undervoltage delay wire harness. See Remove the Undervoltage Delay Wire Harness on page 213.
7. Remove two M4 x 16 mm screws that secure the undervoltage delay to its mounting bracket, and remove the undervoltage delay.
Install the Undervoltage Delay

Install the undervoltage delay in the reverse order of removal. See Remove the Undervoltage Delay on page 214.

Remove the DC Precharge Control Board Stirring Fan

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.
5. Remove the undervoltage delay bracket. See Remove the Undervoltage Delay Bracket on page 210.
6. Disconnect the two-position fan connector from the stirring fan to the 24V/120V/240V wire harness.

7. Remove two M4 x 35 mm long screws that secure the stirring fan to the control panel and remove the stirring fan.

Install the DC Precharge Control Board Stirring Fan

Install the stirring fan in the reverse order of removal. See Remove the DC Precharge Control Board Stirring Fan on page 215.

Door-interlock Wire Harness Removal/Installation

Removing the Door Interlock Wire Harness

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.
4. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.

5. Disconnect the door-interlock wire harness connector J6 from the connector P6 on the DC precharge control board.

6. Remove the two M3 x 12 mm hexalobular screws that secure the terminal block TB4 to the control panel and remove the wire harness from the control panel.

Note: The control pod and undervoltage delay are shown removed only to clarify the instructions.
Install the Door Interlock Wire Harness

Install the door interlock wire harness in the reverse order of removal. See Removing the Door Interlock Wire Harness on page 216.

Digital I/O Wire Harness Removal/Installation

Remove the Digital I/O Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.
6. Disconnect the digital I/O wire harness connector from connector P7 on the DC precharge control board.

7. Disconnect the digital I/O wire harness connector from connector P8 on the DC precharge control board.

8. Remove the two M3 x 12 mm hexalobular screws that secure the terminal block TB3 to the control panel and remove the wire harness from the control panel.

Install the Digital I/O Wire Harness

Install the digital I/O wire harness in the reverse order of removal. See Remove the Digital I/O Wire Harness on page 218.
Remove the DC Precharge Control Circuit Board

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the left cover, top guard, and left guard assembly. See Remove the DC Input with Precharge Assembly Left Cover, Top Guard, and Left Guard on page 163.
5. If the control pod is installed, then rotate the control pod to gain access to the DC input with precharge assembly control panel. See Rotate the Control Pod Forward on page 88.

If the control pod is not installed, then remove the right cover. See Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.

6. Remove the undervoltage delay bracket. See Remove the Undervoltage Delay Bracket on page 210.
7. Disconnect the wire harnesses from the DC precharge control board.
8. From the fiber-optic cage in the lower left corner of the DC precharge control board, remove the fiber-optic transceiver by pulling its wire latch. Set the transceiver aside and save for reinstallation.
9. Remove the two M4 x 40 mm hex standoffs.

10. Remove the three M4 x 8 mm screws that secure the DC precharge control board to the DC input control panel, slide the DC precharge control board up to disengage its four keyhole slots, and remove the board.

Install the DC Precharge Control Circuit Board

Install the DC precharge control board in the reverse order of removal. See Remove the DC Precharge Control Circuit Board on page 220.
DC Input with Precharge Assembly Removal/Installation

ATTENTION: Only perform a field replacement of the DC input with precharge assembly of the power core as part of the drive assembly removal procedure. Otherwise, equipment damage can result.

Remove the DC Input with Precharge Assembly

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Remove the drive assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.

4. Remove the inverter circuit board connections cover from the inverter. See Inverter Circuit Board Connections Cover Removal/Installation on page 238.

5. Disconnect the inverter power-supply wire harness connector from terminal P6 on the inverter power control board.

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

6. Disconnect the fiber-optic cable from CONV on the inverter power-layer interface board and secure it to the DC input with precharge assembly. Do not remove the fiber-optic transceiver.

7. If the control pod is assembled on the DC input with precharge assembly, disconnect the fiber-optic cable from INV on the inverter power-layer interface board and secure it to the control pod. Do not remove the fiber-optic transceiver.
8. Remove the four M8 x 30 mm machine screws that secure the inverter DC bus bars to the DC input with precharge assembly bus bars.

IMPORTANT
A load capacity of 80 kg (175 lb) minimum is required for all lifting equipment and hardware that is used for this procedure. Verify that the angle of attachment of the lifting hardware is no more than 45° from vertical.

9. Connect the lifting hardware to the two lifting holes on the lifting bar at the top of the DC input with precharge assembly.

10. Loosen the two M8 screws that secure the DC input with precharge assembly duct to the inverter duct.

11. Lift and slide the DC input with precharge assembly away from the inverter assembly.
Install the DC Input with Precharge Assembly

1. Inspect the gasket at the top of the DC input with precharge assembly duct for damage and replace if necessary. See Remove the DC Input with Precharge Assembly Duct Gasket on page 225.

2. Inspect the gasket at the top of the inverter duct for damage and replace if necessary.

3. Install the DC input with precharge assembly on the inverter assembly in the reverse order of removal. See Remove the DC Input with Precharge Assembly on page 222.

Remove the DC Input with Precharge Assembly Duct Gasket

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Remove the drive assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.

4. Remove the DC input with precharge assembly. Remove the DC Input with Precharge Assembly on page 222.

5. Carefully remove the gasket and any gasket material that can be stuck to the sealing surface.

6. Clean the duct surface with a 50% isopropyl alcohol/50% water mixture.

Install the DC Input with Precharge Assembly Duct Gasket

Note: One side of the duct gasket is coated with an adhesive. Take care to align the gasket properly before fully removing the paper liner and exposing the adhesive.

1. Begin removing the paper liner as you align the replacement gasket with the duct edges as shown and press the gasket into place on the duct.
2. Install the DC input with precharge assembly on the inverter assembly in the reverse order of removal. See Remove the DC Input with Precharge Assembly on page 222.
Inverter Component Replacement Procedures

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Components Identification</td>
<td>228</td>
</tr>
<tr>
<td>Common-mode Core Assembly Removal/Installation</td>
<td>233</td>
</tr>
<tr>
<td>Internal Stirring Fan Tray Removal/Installation</td>
<td>234</td>
</tr>
<tr>
<td>Heatsink Fan Inlet Screen Removal/Installation</td>
<td>235</td>
</tr>
<tr>
<td>Heatsink Fan Assembly Removal/Installation</td>
<td>236</td>
</tr>
<tr>
<td>Inverter Circuit Board Connections Cover Removal/Installation</td>
<td>238</td>
</tr>
<tr>
<td>Inverter Front Cover Removal/Installation</td>
<td>239</td>
</tr>
<tr>
<td>Inverter Current Sensors Removal/Installation</td>
<td>240</td>
</tr>
<tr>
<td>Inverter Current Sensor Wire Harness Removal/Installation</td>
<td>243</td>
</tr>
<tr>
<td>Inverter Capacitor Bank Assembly Removal/Installation</td>
<td>246</td>
</tr>
<tr>
<td>Capacitor Balance Resistor Assembly Removal/Installation</td>
<td>248</td>
</tr>
<tr>
<td>IGBT Flexbus Bars Removal/Installation</td>
<td>250</td>
</tr>
<tr>
<td>Inverter Gate Board Connection Ribbon Cables Removal/Installation</td>
<td>251</td>
</tr>
<tr>
<td>Inverter Gate Circuit Board Removal/Installation</td>
<td>253</td>
</tr>
<tr>
<td>Rating Plug Removal/Installation</td>
<td>255</td>
</tr>
<tr>
<td>Power Layer Interface Circuit Board Removal/Installation</td>
<td>256</td>
</tr>
<tr>
<td>Power Supply Circuit Board Removal/Installation</td>
<td>258</td>
</tr>
<tr>
<td>Power Control Circuit Board Removal/Installation</td>
<td>262</td>
</tr>
<tr>
<td>Inverter Backplane Circuit Board Removal/Installation</td>
<td>265</td>
</tr>
<tr>
<td>Inverter EMC Capacitor Removal/Installation (AC Input Drive Only)</td>
<td>268</td>
</tr>
<tr>
<td>Inverter Side DC Bus Bar Removal/Installation (AC Input Drive Only)</td>
<td>272</td>
</tr>
<tr>
<td>Inverter Top DC Bus Bar Removal/Installation (Common DC Input Drive Only)</td>
<td>280</td>
</tr>
<tr>
<td>DC Choke Removal/Installation (AC Input Drives Only)</td>
<td>285</td>
</tr>
<tr>
<td>Inverter Wire Harness Removal/Installation</td>
<td>287</td>
</tr>
<tr>
<td>Discharge Resistor Assembly Removal/Installation</td>
<td>291</td>
</tr>
<tr>
<td>Inverter Heatsink Fan Inlet Bottom Cover Removal/Installation</td>
<td>298</td>
</tr>
<tr>
<td>Inlet Bottom Cover Gasket Replacement</td>
<td>299</td>
</tr>
</tbody>
</table>
This chapter provides detailed procedures for how to remove and replace inverter components.

Important Complete the procedures in Chapter 12 Drive Startup after Repairs that begin on page 419 before placing the drive back into service.

Inverter Components Identification

Table 13 contains the components that comprise the inverter assembly and provides the following information for each component, if applicable:

- Kit catalog number or part number
- Quantity that is contained in the kit
- Illustration figure and page number and identification number

See PowerFlex Architecture Class Low Voltage Drives Spare Parts Options, publication PFELEX-SB002 for a complete list of spare parts for PowerFlex® 755 Frame 8...10 drives.

Important A replacement IGBT assembly is not available. If IGBT replacement is required, the recommendation is to replace the entire inverter unit.

Table 13 - Inverter Replacement Kits/Parts

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Quantity</th>
<th>Figure and Page</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Unit for 400V, 460 A / 480V, 430 A AC Input Drives</td>
<td>20-750-I1-C460D430 (Series A) 20-750-I1B-C460D430 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 400V, 540 A / 480V, 485 A AC Input Drives</td>
<td>20-750-I1-C540D485 (Series A) 20-750-I1B-C540D485 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 400V, 567 A / 480V, 545 A AC Input Drives</td>
<td>20-750-I1-C567D545 (Series A) 20-750-I1B-C567D545 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 400V, 650 A / 480V, 617 A AC Input Drives</td>
<td>20-750-I1-C650D617 (Series A) 20-750-I1B-C650D617 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 400V, 750 A / 480V, 710 A AC Input Drives</td>
<td>20-750-I1-C750D710 (Series A) 20-750-I1B-C750D710 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 400V, 770 A / 480V, 740 A AC Input Drives</td>
<td>20-750-I1-C770D740 (Series A) 20-750-I1B-C770D740 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 600V, 295 A / 690V, 265 A AC Input Drives</td>
<td>20-750-I1B-E295F265 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 600V, 355 A / 690V, 330 A AC Input Drives</td>
<td>20-750-I1B-E355F330 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 600V, 395 A / 690V, 370 A AC Input Drives</td>
<td>20-750-I1B-E395F370 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 600V, 435 A / 690V, 415 A AC Input Drives</td>
<td>20-750-I1B-E435F415 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 600V, 650 A / 690V, 617 A AC Input Drives</td>
<td>20-750-I1B-E650F617 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 600V, 510 A / 690V, 500 A AC Input Drives</td>
<td>20-750-I1B-E510F500 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 540V, 460 A / 650V, 430 A DC Input Drives</td>
<td>20-750-I2B-C460D430 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 540V, 540 A / 650V, 485 A DC Input Drives</td>
<td>20-750-I2B-C540D485 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 540V, 567 A / 650V, 545 A DC Input Drives</td>
<td>20-750-I2B-C567D545 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 540V, 650 A / 650V, 617 A DC Input Drives</td>
<td>20-750-I2B-C650D617 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 540V, 750 A / 650V, 710 A DC Input Drives</td>
<td>20-750-I2B-C750D710 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 540V, 770 A / 650V, 740 A DC Input Drives</td>
<td>20-750-I2B-C770D740 (Series B)</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Inverter Unit for 810V, 295 A / 932V, 265 A DC Input Drives</td>
<td>20-750-I2B-E295F265</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Component Description</td>
<td>Replacement Kit Cat. No. or Part No.</td>
<td>Quantity</td>
<td>Figure and Page</td>
<td>ID No.</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------------</td>
<td>----------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Inverter Unit for 810V, 355 A / 932V, 330 A DC Input Drives</td>
<td>20-750-12B-E355F330</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Inverter Unit for 810V, 395 A / 932V, 370 A DC Input Drives</td>
<td>20-750-12B-E395F370</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Inverter Unit for 810V, 435 A / 932V, 415 A DC Input Drives</td>
<td>20-750-12B-E435F415</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Inverter Unit for 810V, 460 A / 932V, 460 A DC Input Drives</td>
<td>20-750-12B-E460F460</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Inverter Capacitor Bank, 400V 770 A, 480V 740 A</td>
<td>SK-R1-CP1-C770D740</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>1</td>
</tr>
<tr>
<td>Capacitor Balance Resistors, 400/480V AC Input Drive (includes mounting tray)</td>
<td>SK-R1-RB1-CD-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>2</td>
</tr>
<tr>
<td>Capacitor Balance Resistors, 600/690V AC Input Drive (includes mounting tray)</td>
<td>SK-R1-RB1-EF-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>2</td>
</tr>
<tr>
<td>Discharge Resistor Assembly, 400/480V AC Input Drive</td>
<td>SK-R1-RD1-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>3</td>
</tr>
<tr>
<td>Discharge Resistor Assembly, 600/690V AC Input Drive</td>
<td>SK-R1-RD2-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>3</td>
</tr>
<tr>
<td>Inverter IGBT Flexbus, 400V 567 A, 480V 545 A</td>
<td>SK-R1-BS1-C567D545</td>
<td>3</td>
<td>Figure 13 on page 231</td>
<td>4</td>
</tr>
<tr>
<td>Inverter IGBT Flexbus, 400V 770 A, 480V 740 A</td>
<td>SK-R1-BS1-C770D740</td>
<td>3</td>
<td>Figure 13 on page 231</td>
<td>4</td>
</tr>
<tr>
<td>Inverter Current Sensor</td>
<td>SK-R1-INVIFB1-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>5</td>
</tr>
<tr>
<td>Inverter Heatsink Fan Kit</td>
<td>SK-R1-FAN1-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>6</td>
</tr>
<tr>
<td>Inverter Internal Stir Fans w/Tray</td>
<td>SK-R1-FAN2-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>7</td>
</tr>
<tr>
<td>DC Choke, 33 mH, 400V 770 A, 480V 740 A</td>
<td>SK-R1-DCCHK1-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>8</td>
</tr>
<tr>
<td>DC Choke, 50 mH, 400V 567 A, 480V 545 A</td>
<td>SK-R1-DCCHK2-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>8</td>
</tr>
<tr>
<td>DC Choke, 69 mH, 600V 510 A, 690V 500 A</td>
<td>SK-R1-DCCHK3-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>8</td>
</tr>
<tr>
<td>Inverter Power Control Board</td>
<td>SK-R1-PC1-F8</td>
<td>1</td>
<td>Figure 14 on page 232</td>
<td>10</td>
</tr>
<tr>
<td>Inverter Heatsink Power Supply Board, 400/480V</td>
<td>SK-R1-PWRS1-CD-F8</td>
<td>1</td>
<td>Figure 14 on page 232</td>
<td>11</td>
</tr>
<tr>
<td>Inverter Heatsink Power Supply Board, 600/690V</td>
<td>SK-R1-PWRS1-EF-F8</td>
<td>1</td>
<td>Figure 14 on page 232</td>
<td>11</td>
</tr>
<tr>
<td>Inverter Gate Board, 400V 770 A, 480V 740 A</td>
<td>SK-R1-IG1-C770D740</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>14</td>
</tr>
<tr>
<td>Inverter Gate Board, 400V 567 A, 480V 545 A</td>
<td>SK-R1-IG1-C567D545</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>14</td>
</tr>
<tr>
<td>Inverter Gate Board, 600V 510 A, 690V 500 A</td>
<td>SK-R1-IG1-E510F500</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>14</td>
</tr>
<tr>
<td>Inverter Gate Board, 600V 395 A, 690V 370 A</td>
<td>SK-R1-IG1-E395F370</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>14</td>
</tr>
<tr>
<td>Inverter Ribbon Cable</td>
<td>SK-R1-ICBL1-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>15</td>
</tr>
<tr>
<td>Inverter Front Cover with Side Shield</td>
<td>SK-R1-IFCVR1-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>16(2)</td>
</tr>
<tr>
<td>Inverter Heatsink Fan Inlet Screen</td>
<td>SK-R1-IFCVR2-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>17</td>
</tr>
<tr>
<td>Inverter Heatsink Fan Inlet Bottom Cover</td>
<td>SK-R1-IFCVR1-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>18</td>
</tr>
<tr>
<td>Inverter Wire Harness Kit</td>
<td>SK-R1-INVH1-F8</td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>19</td>
</tr>
<tr>
<td>EMC Capacitors</td>
<td>SK-R1-EMCCAP1-F8</td>
<td>3</td>
<td>Figure 13 on page 231</td>
<td>21</td>
</tr>
</tbody>
</table>
Table 13 - Inverter Replacement Kits/Parts (continued)

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Quantity</th>
<th>Figure and Page</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame 8 Gasket Kit</td>
<td>20-750-G1-F8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasket, Converter, Heatsink</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasket, Converter/DC Input with Precharge Assembly, Duct</td>
<td></td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>22</td>
</tr>
<tr>
<td>Gasket, Inverter, IGBT Assembly Heatsink</td>
<td></td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>23</td>
</tr>
<tr>
<td>Gasket, Inverter, Door Interface</td>
<td></td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>24</td>
</tr>
<tr>
<td>Gasket, Inverter, Exhaust Interface</td>
<td></td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>25</td>
</tr>
<tr>
<td>Gasket, Inverter, Inlet Ring</td>
<td></td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>26</td>
</tr>
<tr>
<td>Gasket, Inverter, No Choke</td>
<td></td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>27</td>
</tr>
<tr>
<td>Gasket, Inverter, Fan Inlet Bottom Cover</td>
<td></td>
<td>1</td>
<td>Figure 13 on page 231</td>
<td>28</td>
</tr>
<tr>
<td>Gasket, Inverter, Choke</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. This gasket is included in the Frame 8 Gasket Kit (20-750-G1-F8), but is identified in the table in Converter Components Identification on page 82.

2. Updated panel excludes access to the P6 connector on the inverter power control board. Access to this connector, is now gained by removing the entire side shield.

TIP

See Fastener/Tool/Torque Information on page 33 for descriptions of the fasteners, tools, and torque figures that are used in the disassembly/assembly procedures in this chapter.
Figure 13 - Inverter Main Assembly Components Diagram
Figure 14 - Inverter Card Cage Assembly Components Diagram
Common-mode Core Assembly Removal/Installation

Remove the Common Mode Core Assembly

Note: This assembly is installed in the field only.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the two M6 x 25 mm screws that secure the common mode core assembly to the drive frame and slide the assembly off the AC output bus terminals.

Install the Common Mode Core Assembly

Install the common mode core assembly in the reverse order of removal. See Remove the Common Mode Core Assembly.

IMPORTANT Grounding and Power Jumper configuration must be appropriate for EMC applications. See “Drive Power Jumper Configuration” in the Powerflex 750-Series Installation Instructions (Publication 750-IN001) for detailed information.
Internal Stirring Fan Tray
Removal/Installation

Remove the Internal Stirring Fan Tray

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Loosen the two captive screws on the face of the fan tray and pull the tray straight out from the inverter frame.

Install in the internal stirring fan tray in the reverse order of removal. See Remove the Internal Stirring Fan Tray.

IMPORTANT The power wire connector for the fans is at the right, rear of the fan mounting tray. Verify that the connector mates with the socket at the back of the enclosure when sliding the tray into the inverter frame.
Heatsink Fan Inlet Screen
Removal/Installation

Remove the Heatsink Fan Inlet Screen

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the four M5 x 14 mm screws that secure the screen to the drive frame pull down and out on the bottom screen.

Install the Heatsink Fan Inlet Screen

Install the heatsink fan inlet screen in the reverse order of removal. See Remove the Heatsink Fan Assembly.
Heatsink Fan Assembly
Removal/Installation

Remove the Heatsink Fan Assembly

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the heatsink fan inlet screen. See Remove the Heatsink Fan Inlet Screen on page 235.
5. Disconnect the control and power wire connectors P4 and P5 from the front, right side of the fan assembly.
6. Remove the eight M6 x 20 mm screws that secure the inlet seal mounting plate to the chassis and remove the plate.

Note: The inverter is shown removed from the drive enclosure only to clarify the instructions.
7. Remove the two M6 x 20 mm screws from the fan assembly. The assembly rests on two guide pins on the back wall.

8. Remove the fan assembly:
 a. By using both hands, pull the assembly slightly forward until it comes off the guide pins.
 b. Pull the bottom of the assembly toward the front of the inverter chassis and tilt the top backward so it clears the DC choke assembly (if installed). Remove the assembly.

Install the Heatsink Fan Assembly

Install the heatsink fan assembly in the reverse order of removal. See Install the Heatsink Fan Assembly on page 237.
Inverter Circuit Board Connections Cover Removal/Installation

Remove the Inverter Circuit Board Connections Cover

This section only applies when the inverter cover has the inverter circuit board connections cover present.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Loosen the two M5 x 14 mm screws that secure the clear cover to the inverter front cover and remove the cover.

Install the Inverter Circuit Board Connections Cover

Install the inverter circuit board connections cover in the reverse order of removal. See Remove the Inverter Circuit Board Connections Cover.
Inverter Front Cover
Removal/Installation

Remove the Inverter Front Cover

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Loosen the six M5 x 14 mm screws, raise the front cover vertically, and lift it off the screws.

Note: The inverter is shown removed from the drive enclosure only to clarify the instructions.

7.25 or 0.25 in.
2.8 N·m (25.0 lb·in)
Install the Inverter Front Cover

Install the inverter front cover in the reverse order of removal. See Remove the Inverter Front Cover on page 239.

Inverter Current Sensors
Removal/Installation

Remove the Inverter Current Sensors

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
6. Disengage the locking tabs and disconnect the wire connector from P1 on the power control board.
7. Remove the eight M5 x 12 mm screws and the two M5 x 10 mm screws from the current sensor mounting panel on the left side of the inverter.
8. Disengage the locking tabs and disconnect the connector that is labeled U, V, or W attached to the current sensor and remove the current sensor.

9. Remove the four M6 x 14 mm screws that secure each of the current sensors to the mounting panel.

Install the Inverter Current Sensors

Install the inverter current sensor in the reverse order of removal. See Remove the Inverter Current Sensors on page 240.
Inverter Current Sensor Wire Harness Removal/Installation

Remove the Inverter Current Sensor Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
6. Disengage the locking tabs and disconnect the wire connector from P1 on the power control board.
7. Remove the eight M5 x 12 mm screws and the two M5 x 10 mm screws from the current sensor mounting panel on the left side of the inverter.
8. Disengage the locking tabs and disconnect the connector that is labeled U, V, or W attached to the current sensor and remove the current sensor.

9. Cut all wire ties from the tie locations and remove the harness.

Install the Inverter Current Sensor Wire Harness

Install the inverter current-sensor wire harness in the reverse order of removal. See Remove the Inverter Current Sensor Wire Harness on page Remove the Inverter Current Sensor Wire Harness.
Inverter Capacitor Bank Assembly Removal/Installation

Remove the Inverter Capacitor Bank Assembly

IMPORTANT A load capacity of 80 kg (175 lb) minimum is required for all lifting equipment and hardware that is used for this procedure.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the internal stirring fan tray. See Remove the Internal Stirring Fan Tray on page 234.
5. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
6. Remove the lower tray in the card cage that contains the power control and power supply circuit boards and store it in a dry, electrically protected, static-free location. See Remove the Power Control Circuit Board on page 262. Note, it is not necessary to remove the power control board from the tray for this procedure.

Note: The inverter is shown removed from the drive enclosure only to clarify the instructions.

IMPORTANT Verify that the angle of attachment of the lifting hardware is no more than 45° from vertical.
7. Connect the lifting hardware to the two lifting holes on the front of the capacitor bank assembly.

8. Remove the 12 M6 hex nuts and washers from the bus connection tabs at the top and bottom of the capacitor bank assembly.

9. Remove the six or 12 M8 x 20 mm IGBT connection screws from the capacitor bank assembly. Use lifting equipment to pull the assembly forward and out of the inverter.

10. Remove the six M6 x 50 mm screws (three at the top, three at the bottom), from the capacitor bank assembly.

<table>
<thead>
<tr>
<th>Screw Size</th>
<th>Torque Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>10 mm 5.1 N·m (45.0 lb·in)</td>
</tr>
<tr>
<td>M6</td>
<td>T30 or F - 6.4 mm (0.25 in.) 5.1 N·m (45.0 lb·in)</td>
</tr>
<tr>
<td>M8</td>
<td>T40 or F - 6.4 mm (0.25 in.) 9.0 N·m (80.0 lb·in)</td>
</tr>
</tbody>
</table>
Install the Inverter Capacitor Bank

Install in the reverse order of removal. See Remove the Inverter Capacitor Bank Assembly on page 246.

Capacitor Balance Resistor Assembly Removal/Installation

Remove the Capacitor Balance Resistor Assembly

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the internal stirring fan tray. See Remove the Internal Stirring Fan Tray on page 234.
5. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
6. Remove the capacitor bank. See Remove the Inverter Capacitor Bank Assembly on page 246.
7. Remove the six M5 x 16 mm screws from the sides of the capacitor balance resistor mounting tray.

8. Disconnect the POS, NEG, and MIDP wire connections from the three faston terminals on the capacitor bank assembly.

9. Slide the capacitor balance resistor mounting tray up and out of the capacitor bank assembly.

Install the Capacitor Balance Resistors

Install the capacitor balance resistors (on mounting tray) in the reverse order of removal. See Remove the Capacitor Balance Resistor Assembly on page 248.
IGBT Flexbus Bars Removal/Installation

Remove the IGBT Flexbus Bars

Note: This assembly is installed in the field only.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the internal stirring fan tray. See Remove the Internal Stirring Fan Tray on page 234.
6. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
7. Remove the current sensor mounting panel. See Remove the Inverter Current Sensors on page 240.
8. Remove the capacitor bank. See Remove the Inverter Capacitor Bank Assembly on page 246.
9. Remove the M10 hex nut that secures each IGBT Flexbus bar to the AC output bus bar assembly.
10. Remove the two M8 x 30 mm screws that secure each IGBT Flexbus bar to the IGBT connections.

11. Slide each of the IGBT Flexbus bars out of the front of the inverter.

IMPORTANT Remove the IGBT Flexbus bars carefully, so as not to damage the inverter gate boards.

Inverter Gate Board Connection Ribbon Cables Removal/Installation

Remove the Inverter Gate Board Connection Ribbon Cables

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the internal stirring fan tray. See Remove the Internal Stirring Fan Tray on page 234.
5. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.

Install the IGBT Flexbus Bars

Install the IGBT Flexbus bars in the reverse order of removal. See Remove the IGBT Flexbus Bars on page 250.
6. Remove the capacitor bank. See Remove the Inverter Capacitor Bank Assembly on page 246.

7. Disengage the locking tabs and disconnect each end of the jumper ribbon cable from the inverter gate board and remove the ribbon cable.

8. Disengage the locking tabs and disconnect one end of the upper ribbon cable from the gate board and disconnect the opposite end of the ribbon cable from the backplane in the card cage. Remove the upper ribbon cable by pulling it vertically out of the top of the inverter.

Note: The inverter is shown removed from the drive enclosure only to clarify the instructions.
Install the Inverter Gate Board Connection Ribbon Cables

Install the inverter gate board connection ribbon cables in the reverse order of removal. See Remove the Inverter Gate Board Connection Ribbon Cables on page 251.

- The gate board connection ribbon cables kit contains one each of the straight (type A) and folded (type B) upper ribbon cables. Only use the cable in the kit that matches that cable type that you have removed from the drive. Use the following drive sizing information for verification of the appropriate cable type to use with your drive.

<table>
<thead>
<tr>
<th>Table 14 - Gate Board Upper Ribbon Cable Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Ribbon Cable Type</td>
</tr>
<tr>
<td>A (straight)</td>
</tr>
<tr>
<td>B (folded)</td>
</tr>
</tbody>
</table>

Inverter Gate Circuit Board Removal/Installation

Remove the Inverter Gate Circuit Board

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the internal stirring fan tray. See Remove the Internal Stirring Fan Tray on page 234.
6. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
7. Remove the current sensor mounting panel. See Remove the Inverter Current Sensors on page 240.
8. Remove the capacitor bank. See Remove the Inverter Capacitor Bank Assembly on page 246.
9. Remove the IGBT Flexbus bars. See Remove the IGBT Flexbus Bars on page 250.
10. Remove the inverter ribbon cables. See Remove the Inverter Gate Board Connection Ribbon Cables on page 251.
11. Remove the seven M4 x 10 mm screws that secure the gate board to the IGBT (E1, E2, G1, G2, C1, NTC1, NTC2 connections).
12. Remove the four M4 x 10 mm screws that secure the gate board to the standoffs and remove the board.

Install the Inverter Gate Circuit Board

Install the inverter gate board in the reverse order of removal. See Remove the Inverter Gate Circuit Board on page 253.
Remove the Rating Plug

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the drive enclosure door.

4. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.

5. Remove the lower tray in the card cage that contains the power control and power supply circuit boards and store it in a dry, electrically protected, static-free location. See Remove the Power Control Circuit Board on page 262. Note, it is not necessary to remove the power control board from the tray for this procedure.

IMPORTANT The program that is embedded in the backplane board determines the inverter rating; the rating plug must be compatible with the programmed value.

Note: The inverter is shown removed from the drive enclosure only to clarify the instructions.
6. Unlatch the two metal clips that secure the rating plug in the slot, tilt slightly upward, and gently pull forward to remove the plug.

Install the Rating Plug

Install the rating plug in the reverse order of removal. See Remove the Rating Plug on page 255.

Power Layer Interface Circuit Board Removal/Installation

IMPORTANT Determine if the existing inverter power-layer interface board is series A or series B, and verify that you have ordered/received a compatible board before replacement. See Drive Series Components Compatibility on page 30 for details.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
5. Disconnect the terminal block from P6 on the power control board.

6. Disconnect the fiber-optic cables from CONV and INV on the power layer interface board.

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.
7. From the INV and CONV fiber-optic cages on the power layer interface board, remove each fiber-optic transceiver by pulling its wire latch. Set the transceivers aside and save for reinstallation.

8. Fully loosen the two captive screws on the face of the top tray in the card cage, pull forward, and remove the tray. Note, the right front corner of the power layer interface board may not clear the card cage frame. Lift the tray up to clear the card cage.

9. Remove the three M4 x 8 mm screws that secure the power layer interface board to the tray, push the board slightly back and then up to remove it from the two keyhole standoffs on the tray.

Install the Power-layer Interface Circuit Board

Install the power layer interface board in the reverse order of removal. See Remove the Power-layer Interface Circuit Board on page 256.

Power Supply Circuit Board Removal/Installation

Remove the Power Supply Circuit Board

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the drive enclosure door.
4. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.

5. Disengage the locking tabs and disconnect the wire connector from P1 on the power control board.

6. Disconnect the terminal block from P6 on the power control board.
7. Disengage the locking tabs and disconnect the wire connector from J1 on the power supply board.
8. Fully loosen the two captive screws on the face of the bottom tray in the card cage and pull the tray out of the cage.

9. Remove the five M4 x 8 mm screws that secure the power supply board to the tray, pull the board slightly forward and then down to remove it from the two keyhole standoffs on the tray.

Note: The inverter is shown removed from the drive enclosure only to clarify the instructions.

Install the Power Supply Circuit Board

Install the power supply board in the reverse order of removal. See Remove the Power Supply Circuit Board on page 258.
Power Control Circuit Board
Removal/Installation

Remove the Power Control Circuit Board

TIP During removal, keep the rating plug. It is needed for proper installation of the replacement board.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
5. Disengage the locking tabs and disconnect the wire connector from P1 on the power control board.
 TIP During installation mate P1 to J1.
6. Disconnect the terminal block from P6 on the power control board.
7. Disengage the locking tabs and disconnect the wire connector from J1 on the power supply board.
8. Fully loosen the two captive screws on the face of the bottom tray in the card cage and pull the tray out of the cage.

9. Remove the five M4 x 8 mm screws that secure the power control board to the tray, pull the board slightly back and then up to remove it from the two keyhole standoffs on the tray.

Install the Power Control Circuit Board

Install the power control board in the reverse order of removal. See Remove the Power Control Circuit Board on page 262.
Remove the Inverter Backplane Circuit Board

IMPORTANT Firmware must be factory programmed into the inverter backplane board by qualified Rockwell Automation personnel. Field programming is not supported.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
5. Disengage the locking tabs and disconnect the wire connector from P1 on the power control board.
6. Disconnect the terminal block from P6 on the power control board.
7. Disengage the locking tabs and disconnect the wire connector from J1 on the power supply board.

8. Disconnect the fiber-optic cables from CONV and INV on the power layer interface board.
9. Fully loosen the two captive screws on the face of the top tray in the card cage, pull forward, and remove the tray.

10. Fully loosen the two captive screws on the face of the bottom tray in the card cage and pull the tray out of the cage.

11. Disconnect the ribbon cable that is connected to the top edge of the backplane board.

12. Remove the three M4 x 8 mm screws that secure the backplane board to the tray and pull the backplane gently forward to release it from the four snap-top standoffs.

Install the Inverter Backplane Circuit Board

Install the inverter backplane board in the reverse order of removal. See Remove the Inverter Backplane Circuit Board on page 265.
Inverter EMC Capacitor
Removal/Installation (AC
Input Drive Only)

Remove the Inverter EMC Capacitors (AC Input Drive Only)

Note: There are three sets of EMC capacitors on the inverter. One set is to the left of the card cage, a second set is behind the card cage, and a third set is below the capacitor bank.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the internal stirring fan tray. See Remove the Internal Stirring Fan Tray on page 234.
6. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
7. Remove the current sensor mounting panel. See Remove the Inverter Current Sensors on page 240.
8. Remove the capacitor bank. See Remove the Inverter Capacitor Bank Assembly on page 246.
9. Remove the two M4 hex nuts that secure the connections from the EMC capacitors to DC choke/converter bus bar assembly.

![Diagram of Inverter EMC Capacitor](image-url)
10. Remove the two M3 x 12 mm screws that secure the inverter wire harness to the backplane in the card cage.

11. Disconnect the ribbon cable that is connected to the top edge of the backplane board.

12. Remove the two M4 x 10 mm screws that secure the card cage to the inverter frame and slide the card cage out and up to remove it.

13. Remove the two M4 x 8 mm screws that secure the EMC capacitor assembly to the card cage and remove the capacitor assembly.
14. Remove the two M4 hex nuts that secure the connections from the EMC capacitors to DC choke/converter bus bar assembly.

15. Remove the two M4 x 8 mm screws that secure the EMC capacitor assembly to the standoffs on the capacitor bank support and remove the EMC capacitor assembly.
16. Remove the five M4 hex nuts that secure the connections from the EMC capacitors to the DC choke input positive and negative bus bars and the EMC capacitor assembly to the drive chassis and remove the EMC capacitor assembly.

Install the Inverter EMC Capacitors (AC Input Drive Only)

Install the Inverter EMC Capacitors in the reverse order of removal. See Remove the Inverter EMC Capacitors (AC Input Drive Only) on page 268.
Remove the Inverter Side DC Bus Bars (AC Input Drive Only)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the internal stirring fan tray. See Remove the Internal Stirring Fan Tray on page 234.
6. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
7. Remove the current sensor mounting panel. See Remove the Inverter Current Sensors on page 240.
8. Remove the capacitor bank. See Remove the Inverter Capacitor Bank Assembly on page 246.
9. Remove the IGBT Flexbus bars. See Remove the IGBT Flexbus Bars on page 250.
10. Remove the two M4 hex nuts that secure the connections from the EMC capacitors to DC choke/converter bus bar assembly.
11. Remove the two M3 x 12 mm screws that secure the inverter wire harness to the backplane in the card cage.

12. Disconnect the ribbon cable that is connected to the top edge of the backplane board.

13. Remove the two M4 x 10 mm screws that secure the card cage to the inverter frame and slide the card cage out and up to remove it.
14. Fully loosen, but do not remove, the two M6 hex nuts at the back edge of the AC output bus bar assembly.

15. Remove the three M6 hex nuts and washers that secure the front of the AC output assembly to the capacitor bank support.

16. Lift the assembly off the front three bolts and pull forward to remove the AC output assembly.
17. Remove the two M6 hex nuts and two M5 x 10 mm screws that secure the capacitor bank gusset to the capacitor bank support and drive chassis and remove the gusset.

<table>
<thead>
<tr>
<th>Nut/Socket Head Screw</th>
<th>Torque Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6 hex nuts</td>
<td>10 mm (0.4 in.)</td>
</tr>
<tr>
<td></td>
<td>5.1 N·m (45.0 lb·in)</td>
</tr>
<tr>
<td>M5 x 10 mm screws</td>
<td>T25</td>
</tr>
<tr>
<td></td>
<td>2.8 N·m (25.0 lb·in)</td>
</tr>
</tbody>
</table>
18. Remove the two M4 hex nuts that secure the connections from the EMC capacitors to the DC choke input positive and negative bus bars.

19. Remove the four M8 x 30 mm screws and four M8 flat washers that secure the bottom of the DC choke/converter bus bar assembly to the DC choke input positive and negative bus bars.

20. Remove the four M8 x 30 mm screws and M8 flat washers from the DC input and output positive and negative bus bars where they connect to the top of the DC choke and remove the bus bars.
21. Remove the three M6 x 16 mm screws that secure the DC choke/converter bus bar assembly to the chassis and remove the DC choke/converter bus bar assembly.
22. Remove the two M4 hex nuts that secure the connections from the EMC capacitors to side DC bus bars.

23. Remove the two M4 x 8 mm screws that secure the EMC capacitor assembly to the standoffs on the capacitor bank support and remove the EMC capacitor assembly.

24. Remove the two M4 x 40 mm standoffs that are secured to the capacitor bank support.

25. Remove the two M6 hex nuts that secure the two discharge resistor wires to the inverter side DC bus bars. Move the wires out of the way to allow for removal of the side DC bus bars.

26. Remove the four M6 x 20 mm screws that secure the side DC bus bars to the chassis and remove the bus bars.
Install the Inverter Side DC Bus Bars (AC Input Drive Only)

Install the inverter side DC bus bars in the reverse order of removal. See Remove the Inverter Side DC Bus Bars (AC Input Drive Only) on page 272.

IMPORTANT The new side DC bus bar assembly is shipped with a stabilizer bar secured to the upper connection bolts. This stabilizer bar must be removed before installing the new assembly.

Remove the four nuts and washers and stabilizer bar from the side DC bus bar assembly before installation.
Inverter Top DC Bus Bar Removal/Installation (Common DC Input Drive Only)

Remove the Inverter Top DC Bus Bars (Common DC Input Drive Only)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the internal stirring fan tray. See Remove the Internal Stirring Fan Tray on page 234.
6. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
7. Remove the current sensor mounting panel. See Remove the Inverter Current Sensors on page 240.
8. Remove the capacitor bank. See Remove the Inverter Capacitor Bank Assembly on page 246.
9. Remove the IGBT Flexbus bars. See Remove the IGBT Flexbus Bars on page 250.
10. Remove the two M3 x 12 mm screws that secure the inverter wire harness to the backplane in the card cage.

11. Disconnect the ribbon cable that is connected to the top edge of the backplane board.

12. Remove the two M4 x 10 mm screws that secure the card cage to the inverter frame and slide the card cage out and up to remove it.
13. Fully loosen, but do not remove, the two M6 hex nuts at the back edge of the AC output bus bar assembly.

14. Remove the three M6 hex nuts and washers that secure the front of the AC output assembly to the capacitor bank support.

15. Lift the assembly off the front three bolts and pull forward to remove the AC output assembly.
16. Remove the two M6 hex nuts and two M5 x 10 mm hexalobular screws that secure the capacitor bank gusset to the capacitor bank support and drive chassis and remove the gusset.
17. Remove the two M4 hex nuts that secure the connections from the EMC capacitors to top DC bus bars.

18. Remove the two M4 x 8 mm screws that secure the EMC capacitor assembly to the standoffs on the capacitor bank support and remove the EMC capacitor assembly.

19. Remove the two M4 x 40 mm standoffs that are secured to the capacitor bank support.

20. Remove the two M6 hex nuts that secure the two discharge resistor wires to the inverter top DC bus bars. Move the wires out of the way to allow for removal of the top DC bus bars.

21. Remove the four M6 x 20 mm screws that secure the top DC bus bars to the chassis and remove the bus bars.

Install the Inverter Top DC Bus Bars (Common DC Input Drive Only)

Install the inverter top DC bus bars in the reverse order of removal. See Remove the Inverter Top DC Bus Bars (Common DC Input Drive Only) on page 280.
DC Choke Removal/ Installation (AC Input Drives Only)

Remove the DC Choke (AC Input Drives Only)

ATTENTION: The DC choke weighs 42 kg (93 lb). To guard against possible personal injury, do not place any part of your person below the DC choke when removing it from the drive.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the internal stirring fan tray. See Remove the Internal Stirring Fan Tray on page 234.
6. Remove the heatsink fan inlet screen. See Remove the Heatsink Fan Inlet Screen on page 235.
7. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
8. Remove the current sensor mounting panel. See Remove the Inverter Current Sensors on page 240.
9. Remove the capacitor bank. See Remove the Inverter Capacitor Bank Assembly on page 246.
10. Remove the eight M8 x 30 mm screws and eight M8 flat washers from the DC input and output positive and negative bus bars where they connect to the top of the DC choke.

11. Remove the five M4 hex nuts that secure the connections from the EMC capacitors to the DC choke input positive and negative bus bars and the EMC capacitor assembly to the drive chassis and remove the EMC capacitor assembly.

12. Loosen only, the six M6 x 70 mm screws that secure the DC choke to the inverter.

13. Remove the four corner screws that were loosened in the previous step and then slowly loosen the remaining two screws to lower the DC choke onto the two angle brackets on either side of the fan inlet. Once the DC choke is resting on the two angle brackets, the remaining two screws can be removed.

14. Pull the DC choke forward through the fan inlet opening and remove the choke.
Install the DC Choke (AC Input Drives Only)

Install the DC choke in the reverse order of removal. See Remove the DC Choke (AC Input Drives Only) on page 285.

Inverter Wire Harness Removal/Installation

Remove the Inverter Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the internal stirring fan tray. See Remove the Internal Stirring Fan Tray on page 234.
6. Remove the heatsink fan inlet screen. See Remove the Heatsink Fan Inlet Screen on page 235.
7. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
8. Remove the inverter current-sensor mounting panel only. Do not remove the current sensors from the mounting panel. See Remove the Inverter Current Sensors on page 240.
9. Remove the capacitor bank. See Remove the Inverter Capacitor Bank Assembly on page 246.
10. For AC input drives, remove the side DC bus bar assembly. See Remove the Inverter Side DC Bus Bars (AC Input Drive Only) on page 272. For common DC input drives, remove the top DC bus bar assembly. See Remove the Inverter Top DC Bus Bars (Common DC Input Drive Only) on page 280.
11. Remove the three M6 x 20 mm screws that secure the top bus bar support to the capacitor bank support and remove the bus bar support.
12. Cut the wire ties from the group of blue control wires on the inside, right-rear corner of the capacitor bank support.

13. Depress the tabs on the stirring fan connector and disconnect it from the mounting bracket.

14. Cut the two final cables ties where the blue fan control wires are routed through the right side of the heatsink fan inlet.

15. Remove the bushing and blue wires from the heatsink fan-inlet side plate.

16. On the inside of the heatsink fan inlet, depress the tabs on the blue control wire connector to remove it from the heatsink fan connection.

17. Remove the two M4 hex nuts that secure the black power wires at the top of the inverter.

18. Cut the remaining wire ties where the wires are routed down the outside of the inverter.

19. Remove the bushing and black wires from the heatsink fan-inlet side plate.
20. On the inside of the heatsink fan inlet, depress the tabs on the black power wire connector to remove it from the heatsink fan connection.

Install the Inverter Wire Harness

Install the inverter wire harness in the reverse order of removal. See Remove the Inverter Wire Harness on page 287.
Discharge Resistor Assembly Removal/Installation

Remove the Discharge Resistor Assembly

Note: The discharge resistor assembly includes the resistors, harness, and screws.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the inverter front cover. See Remove the Inverter Front Cover on page 239.
6. Remove the current sensor mounting panel. See Remove the Inverter Current Sensors on page 240.
7. Remove the capacitor bank. See Remove the Inverter Capacitor Bank Assembly on page 246.
8. Remove the IGBT Flexbus bars. See Remove the IGBT Flexbus Bars on page 250.
9. Remove the two M4 hex nuts that secure the connections from the EMC capacitors to DC choke/converter bus bar assembly.
10. Remove the two M3 x 12 mm screws that secure the inverter wire harness connector to the backplane in the card cage.

11. Remove the two M4 x 10 mm screws that secure the card cage to the inverter frame and slide the card cage out and up to remove it.
12. Fully loosen, but do not remove, the two M6 hex nuts at the back edge of the AC output bus bar assembly.

13. Remove the three M6 screws that secure the front of the AC output assembly to the capacitor bank support.

14. Lift the assembly off the front three bolts and pull forward to remove the AC output assembly.
15. Remove the two M6 hex nuts and two M5 x 10 mm screws that secure the capacitor bank gusset to the capacitor bank support and drive chassis and remove the gusset.
16. Remove the two M4 hex nuts that secure the connections from the EMC capacitors to the DC choke input positive and negative bus bars.

17. Remove the four M8 x 30 mm screws and four M8 flat washers that secure the bottom of the DC choke/converter bus bar assembly to the DC choke input positive and negative bus bars.

18. Remove the four M8 x 30 mm screws and M8 flat washers from the DC input and output positive and negative bus bars where they connect to the top of the DC choke and remove the bus bars.
19. Remove the three M6 x 16 mm screws that secure the DC choke/converter bus bar assembly to the chassis and remove the DC choke/converter bus bar assembly.
20. Remove the two M4 hex nuts that are used to secure the connections from the EMC capacitors to the side DC bus bar assembly.

21. Remove the two M4 x 8 mm screws that secure the EMC capacitor assembly to the standoffs on the capacitor bank support.

22. Remove the four M4 x 8 mm screws from the discharge resistors.

23. Remove the two M6 hex nuts from the wire connections on the side DC bus bars and remove the discharge resistor assembly.

Install the Discharge Resistor Assembly

Install the discharge resistor assembly in the reverse order of removal. See Remove the Discharge Resistor Assembly on page 291.
Inverter Heatsink Fan Inlet Bottom Cover Removal/Installation

Remove the Inverter Heatsink Fan Inlet Bottom Cover

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Lay the inverter on the back panel. See the Lifting instructions that are contained in the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001.
6. Remove the 12 M6 x 12 mm screws that secure the bottom cover and gasket to the inverter frame and remove the cover and gasket.

Install the Inverter Heatsink Fan Inlet Bottom Cover

1. Inspect the inlet bottom cover gasket for damage and replace it if necessary. See Inlet Bottom Cover Gasket Replacement on page 299.
2. Install the inverter heatsink fan-inlet bottom cover in the reverse order of removal. See Remove the Inverter Heatsink Fan Inlet Bottom Cover on page 298.

Inlet Bottom Cover Gasket Replacement

Remove the Inlet Bottom Cover Gasket

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the drive enclosure door.
4. Remove the inverter heatsink fan-inlet bottom cover. See Remove the Inverter Heatsink Fan Inlet Bottom Cover on page 298.
5. Carefully remove the gasket and any gasket material that may be stuck to the sealing surface.
6. Clean the chassis surface on which the gasket is installed with a 50% isopropyl alcohol / 50% water mixture.

Install the Inlet Bottom Cover Gasket

Note: One side of the duct gasket is coated with an adhesive. Take care to align the gasket properly before fully removing the paper liner and exposing the adhesive.

1. Begin removing the paper liner as you align the replacement gasket with the cover edges and press the gasket into place on the duct.
2. Install the inverter heatsink fan-inlet bottom cover. See Install the Inverter Heatsink Fan Inlet Bottom Cover on page 298.
Notes:
Chapter 8

AC Input Drive Enclosure Component Replacement Procedures

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input Drive Enclosure Components Identification</td>
<td>302</td>
</tr>
<tr>
<td>IP20, NEMA/UL Type 1 Debris Screen Removal/Installation</td>
<td>303</td>
</tr>
<tr>
<td>Exhaust Hood Removal/Installation</td>
<td>304</td>
</tr>
<tr>
<td>Top Conduit Plate Removal/Installation</td>
<td>305</td>
</tr>
<tr>
<td>IP20, NEMA/UL Type 1 Enclosure Door Fan Removal/Installation</td>
<td>306</td>
</tr>
<tr>
<td>IP20, NEMA/UL Type 1 Enclosure Door Fan Harness Removal/Installation</td>
<td>309</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Blower Wire Harness Removal/Installation</td>
<td>310</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Blower Exhaust Filters Removal/Installation</td>
<td>312</td>
</tr>
<tr>
<td>IP20, NEMA/UL Type 1 Door Filter Removal/Installation</td>
<td>313</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Filters Removal/Installation</td>
<td>314</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet-door Filter Cassette Removal/Installation</td>
<td>316</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Gasket Removal/Installation</td>
<td>317</td>
</tr>
<tr>
<td>DC Bus Fuse Wire Harness Removal/Installation (Frame 9 and Larger Drives Only)</td>
<td>318</td>
</tr>
<tr>
<td>DC Bus Fuses and Fuse Indicators Removal/Installation (Frame 9 and Larger Drives Only)</td>
<td>320</td>
</tr>
<tr>
<td>Input Common-mode Core Removal/Installation (Frame 9 and Larger, Common DC Input Drives Only)</td>
<td>323</td>
</tr>
<tr>
<td>Cabinet L Bus Bars Removal/Installation</td>
<td>326</td>
</tr>
<tr>
<td>Cabinet Door EMC Shield Removal/Installation (Frame 10 Drives Only)</td>
<td>327</td>
</tr>
</tbody>
</table>

This chapter provides detailed procedures for how to remove and replace AC input drive and common drive enclosure components.

Note: For detailed removal and installation instructions for the IP54, NEMA/UL Type 12 cabinet blower assembly, see the PowerFlex® 755 AC Drives Cabinet Blower Assembly Kit - Frames 8...10 Installation Instructions, publication 750-IN026.
AC Input Drive Enclosure Components Identification

This table contains the components that comprise the AC input drive and provides the following information for each component, if applicable:

- Kit catalog number or part number
- Quantity that is contained in the kit

See PowerFlex Architecture Class Low Voltage Drives Spare Parts Options, publication PFLEX-SB002 for a complete list of spare parts for PowerFlex 755 Frame 8…10 drives.

IMPORTANT Use only Rockwell Automation provided filters, gaskets, and components. Use of third-party components is not supported.

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP20, NEMA/UL Type 1 Door Filter</td>
<td>20-750-FLTR1-F8</td>
<td>1</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Blower Exhaust Filter, Fiber (Single Pair)</td>
<td>SK-R1-FLTR2-F8</td>
<td>2</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Blower Exhaust Filter, Fiber (12 Pairs)</td>
<td>SK-R1-FLTR2M-F8</td>
<td>24</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Filter Cassette</td>
<td>SK-R1-FLTRFRM-F8</td>
<td>1</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Inlet Filter, Pleated (Single Piece)</td>
<td>SK-R1-FLTR3-F8</td>
<td>1</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Inlet Filter, Pleated (12 Pieces)</td>
<td>SK-R1-FLTR3M-F8</td>
<td>12</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Inlet Filter, Metal Mesh</td>
<td>SK-R1-FLTR4-F8</td>
<td>1</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Gasket</td>
<td>SK-R1-G2-F8</td>
<td>1</td>
</tr>
<tr>
<td>IP20, NEMA/UL Type 1 Debris Screen</td>
<td>SK-R1-GRILL1-F8</td>
<td>1</td>
</tr>
<tr>
<td>(1) Exhaust Hood</td>
<td>20-750-HOOD1-F8</td>
<td>1</td>
</tr>
<tr>
<td>Top Conduit Plate 600 mm</td>
<td>SK-R1-CPLT1-F8</td>
<td>1</td>
</tr>
<tr>
<td>Top Conduit Plate 800 mm</td>
<td>SK-R1-CPLT2-F8</td>
<td>1</td>
</tr>
<tr>
<td>IP20, NEMA/UL Type 1 Door Fan with Finger Guard</td>
<td>20-750-FAN3-F8</td>
<td>1</td>
</tr>
<tr>
<td>IP20, NEMA/UL Type 1 Door Fan Harness</td>
<td>SK-R1-FANH1-F8</td>
<td>1</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Blower Assembly</td>
<td>SK-R1-FAN4-F8</td>
<td>1</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Blower Harness</td>
<td>SK-R1-FANH4-F8</td>
<td>1</td>
</tr>
<tr>
<td>DC Bus Fuse, 1400 A</td>
<td>SK-R1-FUSE3-F9</td>
<td>1</td>
</tr>
<tr>
<td>DC Bus Fuse Wire Harness</td>
<td>SK-R1-DCBUSH1-F9</td>
<td>1</td>
</tr>
<tr>
<td>Cabinet L Bus Bar</td>
<td>20-750-LBRKT1</td>
<td>1</td>
</tr>
<tr>
<td>Cabinet Door Shield Kit (Frame 10)</td>
<td>20-750-EMCDK1-F10</td>
<td>15</td>
</tr>
</tbody>
</table>

(1) Included with IP54 enclosure, optional for IP20 enclosure.

TIP See Fastener/Tool/Torque Information on page 33 for descriptions of the fasteners, tools, and torque figures that are used in the disassembly/assembly procedures in this chapter.
IP20, NEMA/UL Type 1 Debris Screen Removal/Installation

Remove the Debris Screen

Note: This procedure applies to both AC input and Common DC input drive enclosures.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the four M5 x 16 screws that secure the debris screen to the top of the enclosure and remove the screen.

Install the Debris Screen

Install the debris screen in the reverse order of removal. See Remove the Debris Screen.
Exhaust Hood Removal/Installation

Remove the Exhaust Hood

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the four M5 x 16 screws that secure the exhaust hood to the top of the enclosure and remove the hood.

![Diagram of exhaust hood](image)

Install the Exhaust Hood

Install the exhaust hood in the reverse order of removal. See Remove the Exhaust Hood.
Remove the Top Conduit Plate

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the eight (for 600 mm deep enclosures) or ten (for 800 mm deep enclosures) M5 x 16 screws that secure the conduit plate to the top of the enclosure and remove the plate.

Install the Top Conduit Plate

Install the top conduit plate in the reverse order of removal. See Remove the Top Conduit Plate.
Remove the Enclosure Door Fan

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the M5 x 8 mm screw that secures the fan-power harness ground wire to the fan and remove the ground wire. Retain the screw for reuse.
5. Disconnect the Fan (+) and Fan (-) power wires from the fan terminals.
6. Remove the four M5 x 20 screws that secure the inner guard to the fan housing and remove the guard.

7. Remove the four M5 x 20 screws that secure the outer fan guard and fan to the enclosure door and remove the outer fan guard and fan.

IP54, NEMA 12 Cabinet Blower Assembly and Exhaust Hood Removal/Installation

Remove the Enclosure Door Fan

IP54, NEMA 12 drives are equipped with a top mounted blower assembly and exhaust hood.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the ten screws that secure the blower to the drive.
4. Remove the four screws that anchor the exhaust hood to the blower unit.
5. Remove the exhaust hood.
Install the Enclosure Door Fan

Install the enclosure door fan in the reverse order of removal. See Remove the Enclosure Door Fan on page 306.

IMPORTANT When installing a new fan, verify that the airflow direction arrow on the fan points toward the exterior of the drive enclosure.
IP20, NEMA/UL Type 1
Enclosure Door Fan Harness
Removal/Installation

Remove the Enclosure Door Fan Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Disconnect the two-position, fan power connector from terminal TB2-3 and TB2-4 on the outside, right wall of the drive control panel.
5. Remove the M6 grounding nut from the enclosure wireway ceiling.
6. Cut the cable ties on the enclosure wireway.

![Diagram of enclosure door fan harness removal/installation](image)
7. Remove the M5 x 8 mm screw that secures the fan-power harness ground wires to each of the fans and remove the ground wires.

8. Disconnect the Fan (+) and Fan (-) power wires from the terminals on both fans and remove the fan harness.

Install the Enclosure Door Fan Wire Harness

Install the enclosure door fan harness in the reverse order of removal. See Remove the Enclosure Door Fan Wire Harness on page 309.

IP54, NEMA/UL Type 12 Cabinet Blower Wire Harness Removal/Installation

Remove the Cabinet Blower Wire Harness

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Remove the drive assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
4. Remove the blower assembly from the drive. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.

5. Remove the M6 x 12 mm screw that secures the wire harness ground wire to the cabinet.

6. Cut all cable ties that secure the blower wire harness to the cabinet and remove the wire harness.

Install the Cabinet Blower Wire Harness

Install the cabinet blower wire harness in the reverse order of removal. See Remove the Cabinet Blower Wire Harness on page 310.
IP54, NEMA/UL Type 12
Cabinet Blower Exhaust Filters Removal/Installation

Remove the Cabinet Blower Exhaust Filters

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Loosen the two hexalobular screws that secure each of the outer metal mesh filters to the blower assembly and remove the outer metal and inner fiber filters from the blower.

Install the Cabinet Blower Exhaust Filters

Install the cabinet blower exhaust filters in the reverse order of removal. See Remove the Cabinet Blower Exhaust Filters on page 312.

For more information on the removal and installation of the cabinet blower, see PowerFlex 755 AC Drives Cabinet Blower Assembly, publication 750-IN026.
IP20, NEMA/UL Type 1 Door Filter Removal/Installation

Remove the IP20 Door Filter

Note: This procedure applies to both AC input and Common DC input drive enclosures.

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Remove the two M6 x 16 mm screws that secure the filter bracket to the enclosure door and remove the bracket.

4. Remove the filter from the holder.

Install the Door Filter

Install the door filter in the reverse order of removal. See Remove the IP20 Door Filter.
Remove the Cabinet Door Filters

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the four hexalobular screws that secure the filter cassette cover and metal mesh filter to the filter cassette chassis and remove the cover.
4. Remove the pleated fiber filter from the cassette on the cabinet door.
5. Loosen the four hexalobular screws on the outside walls of the cassette chassis that secure the metal mesh filter to the chassis.

6. Rotate the four metal latches on the inside wall of the cassette chassis and remove the filter.

T25 or F - 6.4 mm (0.25 in.)

2.8 N·m (25 lb·in)

Install the Cabinet Door Filters

Install the cabinet door filters in the reverse order of removal. See Remove the Cabinet Door Filter Cassette on page 316.
IP54, NEMA/UL Type 12 Cabinet-door Filter Cassette Removal/Installation

Remove the Cabinet Door Filter Cassette

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the cabinet door filters. See IP54, NEMA/UL Type 12 Cabinet Door Filters Removal/Installation on page 314.
4. Remove the 16-hex nuts that secure the filter cassette chassis to the cabinet door and remove the chassis.

Install the Cabinet Door Filter Cassette

Install the cabinet door filter cassette in the reverse order of removal. See Remove the Cabinet Door Filter Cassette on page 316.
Remove the Cabinet Door Gasket

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Carefully remove the gasket and any gasket material that may be stuck to the sealing surface.
5. Clean the surface on which the gasket is installed with a 50% isopropyl alcohol / 50% water mixture.

Install the Cabinet Door Gasket

Note: One side of the door gasket is coated with an adhesive. Take care to align the gasket properly before fully removing the paper liner and exposing the adhesive.

- Begin removing the paper liner as you align the replacement gasket with the cabinet edges and press the gasket into place.
DC Bus Fuse Wire Harness
Removal/Installation (Frame 9 and Larger Drives Only)

Remove the DC Bus Fuse Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. The DC bus fuses and fuse indicators, to which the wire harness is connected, are at the back of the drive enclosure. Therefore, the drive assemblies must be removed from the enclosure. Remove the drive assemblies from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.

IMPORTANT You must first remove the wiring as detailed in the PowerFlex 750-Series AC Drive Installation Instructions. Then, you must disconnect the three-position, DC bus fuse wire harness connector from terminal block TB6 on the lower left side of the converter (as shown here).

Note: The converter is shown removed from the drive enclosure for clarity only.
5. Unlock the cable support on the left wall of the drive enclosure and release the DC bus wire harness from the support.

6. Remove the DC bus wire harness leads from the fuse indicators and remove the wire harness.

Install the DC Bus Fuse Wire Harness

Install the DC Bus Fuse Wire Harness in the reverse order of removal. See Remove the DC Bus Fuse Wire Harness on page 318.
DC Bus Fuses and Fuse Indicators Removal/Installation (Frame 9 and Larger Drives Only)

Remove the DC Bus Fuses and Fuse Indicators

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. The DC bus fuses and fuse indicators are at the back of the drive enclosure. Therefore, the drive assemblies must be removed from the enclosure. Remove the drive assemblies from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.

IMPORTANT You must first remove the wiring as detailed in the PowerFlex 750-Series AC Drive Installation Instructions. Then, you must disconnect the three-position, DC bus fuse wire harness connector from terminal block TB6 on the lower left side of the converter (as shown here).

Note: The converter is shown removed from the drive enclosure for clarity only.
5. Remove the two M10 hex nuts that secure each of the L-brackets to the drive backplane DC bus (extruded bars) at the back of the drive enclosure.

6. Remove the two M10 hex nuts that secure each of the brackets to the DC+ and DC- forward bus bar terminals.

IMPORTANT
Note the orientation of the fuse indicator terminals before removal. Replace each fuse with the terminals in same orientation.

7. Remove the DC bus wire harness leads from the fuse indicators and slide the fuse assemblies off the bolts.

Important: Note the orientation of the fuse indicator terminals before removal. Replace each fuse with the terminals in same orientation.

- DC+ (FU7) - terminals point downward.
- DC- (FU8) - terminals point upward.
8. Remove the two M12 x 18 mm hex bolts and washers that secure the L-bracket and connector plate to the fuse and remove the fuse.

Install the DC Bus Fuses and Fuse Indicators

Install the DC bus fuses and fuse indicators in the reverse order of removal. See Remove the DC Bus Fuses and Fuse Indicators on page 320.
Remove the Input Common Mode Core

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. The input common mode core is at the back of the drive enclosure. Therefore, the drive assemblies must be removed from the enclosure. Remove the drive assemblies from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.

IMPORTANT You must first remove the wiring as detailed in the PowerFlex 750-Series AC Drive Installation Instructions. Then, you must disconnect the three-position, DC bus fuse wire harness connector from terminal block TB6 on the lower left side of the converter (as shown here).

Note: The converter is shown removed from the drive enclosure for clarity only.
5. Remove the two M10 nuts that secure the center (S/L2) AC input terminal to the input common-mode core assembly.

6. Remove the M8 nut and washer that secures the center (S/L2) AC input terminal and isolation sheet to the insulator material on the side of the drive enclosure. Remove the terminal and isolation sheet.

7. Remove front plate and aluminum core for the center terminal from the bolts.
8. Remove the four M10 nuts that secure the remaining (R/L1, T/L3) AC input terminals to the input common-mode core assembly.

9. Remove the two M8 nuts that secure each of the remaining (R/L1, T/L3) AC input terminals to the insulator material on the side of the drive enclosure. Remove the terminals.

10. While supporting the input common mode core, remove the two front plates from the bolts connected to the drive backplane DC bus (extruded bars) at the back of the enclosure.

11. Remove the input common mode core.

12. Remove the two aluminum cores from the bolts.

13. Remove the three back plates from the bolts.

Install the Input Common Mode Core

Install the input common-mode core assembly in the reverse order of removal. See Remove the Input Common Mode Core on page 323.

IMPORTANT The isolation sheet that separates the S/L2 terminal from the other two terminals must be installed in the same location as it was before removal.
Cabinet L Bus Bars Removal/Installation

Remove the Cabinet L Bus Bars

Note: The cabinet L bus bars are used on both AC input and common DC input frame 10 drives.

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.

4. The cabinet L bus bar is at the back of the drive enclosure. Therefore, the drive assemblies must be removed from the enclosure. Remove the drive assemblies from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.

5. Disconnect the AC line input power, output to motor, or DC power cables from the L bus bars.

6. Loosen the two M10 x 1.5 nuts that secure each L bus bar to the extruded bus bar at the back of the cabinet. Slide the L bus bars and hardware to the notch in the extruded bus bar and pull the bus bar, clamp, and bolt off the bus bar.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Review the General Precautions on page 24.</td>
</tr>
<tr>
<td>2</td>
<td>Remove power from the drive. See Remove Power from the Drive on page 25.</td>
</tr>
<tr>
<td>3</td>
<td>Open the enclosure door.</td>
</tr>
<tr>
<td>4</td>
<td>The cabinet L bus bar is at the back of the drive enclosure. Therefore, the drive assemblies must be removed from the enclosure. Remove the drive assemblies from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.</td>
</tr>
<tr>
<td>5</td>
<td>Disconnect the AC line input power, output to motor, or DC power cables from the L bus bars.</td>
</tr>
<tr>
<td>6</td>
<td>Loosen the two M10 x 1.5 nuts that secure each L bus bar to the extruded bus bar at the back of the cabinet. Slide the L bus bars and hardware to the notch in the extruded bus bar and pull the bus bar, clamp, and bolt off the bus bar.</td>
</tr>
</tbody>
</table>
Install the Cabinet L Bus Bars

Install the cabinet L bus bars in the reverse order of removal. See Remove the Cabinet L Bus Bars on page 326.

IMPORTANT Verify that the clamp fits squarely in the extruded bus bar slot.

Cabinet Door EMC Shield

Removal/Installation (Frame 10 Drives Only)

Remove the Cabinet Door EMC Shield

Note: The cabinet door EMC shield assembly is used on both AC input and common DC input frame 10 drives.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the two hex-head screws that secure the EMC assembly (five per cabinet) to the cabinet frame and remove the assembly.
5. Remove the M5 hex nut that secures the EMC assembly (five per door) to the cabinet door and remove the assembly.

Install the Cabinet Door EMC Shield

Install the cabinet door shield in the reverse order of removal. Verify that the new EMC shield kit is installed as described in the illustration that is shown here. Also, see Remove the Cabinet Door EMC Shield on page 327.
Notes:
Chapter 9

Common DC Input Drive Enclosure Component Replacement Procedures

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common DC Input Drive Enclosure Components Identification</td>
<td>332</td>
</tr>
<tr>
<td>Enclosure Door Fan Removal/Installation</td>
<td>333</td>
</tr>
<tr>
<td>Enclosure Door Fan Wire Harness Removal/Installation</td>
<td>334</td>
</tr>
<tr>
<td>DC Back Bus Guards Removal/Installation</td>
<td>336</td>
</tr>
<tr>
<td>120/240V Control Power Input Wire Harness Removal/Installation</td>
<td>338</td>
</tr>
<tr>
<td>120/240V Control Power Output Wire Harness Removal/Installation</td>
<td>339</td>
</tr>
<tr>
<td>120/240V Circuit Breaker Removal/Installation</td>
<td>340</td>
</tr>
<tr>
<td>120V UPS Power Input Wire Harness Removal/Installation</td>
<td>342</td>
</tr>
<tr>
<td>Input Common-mode Core Removal/Installation (Common DC Input Drives)</td>
<td>343</td>
</tr>
</tbody>
</table>

This chapter provides detailed procedures for how to remove and replace common DC input drive enclosure components.
Common DC Input Drive
Enclosure Components
Identification

This table contains the components that comprise the common DC input drive
enclosure and provides the following information for each component, if
applicable:
- Kit catalog number or part number
- Quantity that is contained in the kit

See PowerFlex Architecture Class Low Voltage Drives Spare Parts Options,
publication PFLEX-SB002 for a complete list of spare parts for PowerFlex® 755
Frame 8...10 drives.

Table 16 - Common DC Input Drive Enclosure Replacement Kits/Parts

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP20, NEMA/UL Type 1 Door Filter</td>
<td>20-750-FLTR1-F8</td>
<td>1</td>
</tr>
<tr>
<td>DC Input Cabinet Wire Harness Kit</td>
<td>SK-R1-CBPBRKH1-F8</td>
<td></td>
</tr>
<tr>
<td>Wire Harness, 120/240V Control Power</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Wire Harness, Transformer Primary</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Wire Harness, 120V UPS Input</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DC Input Cabinet Back Bus Guard Kit</td>
<td>SK-R1-CBPGRD1-F8</td>
<td></td>
</tr>
<tr>
<td>Guard, Control Rail</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Guard, DC Bus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Door Fan with Finger Guard</td>
<td>20-750-FAN3-F8</td>
<td>1</td>
</tr>
<tr>
<td>Door Fan Harness</td>
<td>SK-R1-FANH1-F8</td>
<td>1</td>
</tr>
<tr>
<td>Input Common Mode Core</td>
<td>20-750-CBPEMCCM1-F8</td>
<td>1</td>
</tr>
<tr>
<td>Cabinet L Bus Bar (see Cabinet L Bus Bars Removal/Installation on page 326 for instructions)</td>
<td>20-750-LBRKT1</td>
<td>1</td>
</tr>
<tr>
<td>Circuit Breaker, 2-Pole, 13 A</td>
<td>1489-A2D130</td>
<td>1</td>
</tr>
<tr>
<td>Lockout Attachment</td>
<td>1489-AALOA</td>
<td>1</td>
</tr>
<tr>
<td>Cabinet Door Shield Kit (Frame 10) (see Cabinet Door EMC Shield Removal/Installation (Frame 10 Drives Only) on page 327 for instructions)</td>
<td>20-750-EMCDK1-F10</td>
<td>1</td>
</tr>
</tbody>
</table>

TIP
See Fastener/Tool/Torque Information on page 33 for descriptions of the
fasteners, tools, and torque figures that are used in the disassembly/assembly
procedures in this chapter.
Enclosure Door Fan Removal/Installation

Remove the Enclosure Door Fan

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the M5 x 8 mm screw that secures the fan power-harness ground wire to the fan and remove the ground wire. Retain the screw for reuse.
5. Disconnect the Fan (+) and Fan (-) power wires from the fan terminals.
6. Remove the four M5 x 20 screws that secure the inner guard to the fan housing and remove the guard.

7. Remove the four M5 x 20 screws that secure the outer fan guard and fan to the enclosure door and remove the outer fan guard and fan.

Install the Enclosure Door Fan

Install the enclosure door fan in the reverse order of removal. See Remove the Enclosure Door Fan on page 333.

IMPORTANT When installing a new fan, verify that the airflow direction arrow on the fan points toward the exterior of the drive enclosure.

Enclosure Door Fan Wire Harness Removal/Installation

Remove the Enclosure Door Fan Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Disconnect the two-position, fan power connector from terminal TB2-5 and TB2-6 on the outside, right wall of the drive control panel.

5. Remove the M6 grounding nut from the enclosure wireway ceiling.

6. Cut the cable ties that secure the wire harness to the enclosure wireway.
7. Remove the M5 x 8 mm screw that secures the fan power-harness ground wires to each of the fans and remove the ground wires.

8. Disconnect the Fan (+) and Fan (-) power wires from the terminals on both fans and remove the fan harness.

Install the Enclosure Door Fan Wire Harness

Install the enclosure door fan harness in the reverse order of removal. See Remove the Enclosure Door Fan Wire Harness on page 334.

DC Back Bus Guards Removal/Installation

Remove the DC Back Bus Guards

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Remove the drive assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
4. Remove the two ¼-20 x 1 in. hex head screws that secure the top guard (that covers the 120V control bus) to the enclosure and remove the guard.

5. Remove the four M10 x 16 mm screws that secure the middle guard (that covers the +DC and -DC bus) to the enclosure and remove the guard.

6. Remove the two ¼-20 x 1 in. hex head screws that secure the bottom guard (that covers the 120V UPS bus) to the enclosure and remove the guard.

Install the DC Back Bus Guards

Install the DC back bus guards in the reverse order of removal. Guards must be replaced before returning the drive to service. See Remove the DC Back Bus Guards on page 336.
120/240V Control Power Input Wire Harness Removal/Installation

Remove the 120/240V Control Power Input Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the drive assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
4. Remove the top DC bus back guard to access the 120V control bus. See Remove the DC Back Bus Guards on page 336.
5. Loosen the two ¼-20 x ½ in. hex head screws that secure the harness to the 120V control bus and remove the wires.
6. Loosen the screws that secure the input wires to terminals SW5-2 and SW5-4 on the bottom of the circuit breaker and remove the wires.
7. Cut the cable ties that secure the wire harness to the enclosure wireways and remove the harness.
Install the 120/240V Control Power Input Wire Harness

Install the 120/240V control power-input wire harness in the reverse order of removal. See Remove the 120/240V Control Power Input Wire Harness on page 338.

Remove the 120/240V Control Power Output Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Loosen the screws that secure the output wires from terminals SW5-1 and SW5-3 on the top of the circuit breaker and remove the wires.
5. Disconnect the two-position connector from terminal block TB2-3 and TB2-4 on the outside right wall of the drive control panel.
6. Cut the cable ties from enclosure wireways and remove the harness.
Install the 120/240V Control Power Output Wire Harness

Install the 120/240V control-power output wire harness in the reverse order of removal. See 120/240V Control Power Output Wire Harness Removal/Installation on page 339.

120/240V Circuit Breaker Removal/Installation

Remove the 120/240V Circuit Breaker

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.

4. Loosen the screws that secure the output wires to terminals SW5-1 and SW5-3 on the top of the circuit breaker and the input wires to terminals SW5-2 and SW5-4 on the bottom of the circuit breaker. Remove the wires.
5. Release the spring-loaded latches at the bottom of the circuit breaker and lift the circuit breaker off the DIN rail.

Install the 120/240V Circuit Breaker

Install the 120/240V circuit breaker in the reverse order of removal. See Remove the 120/240V Circuit Breaker on page 340.
120V UPS Power Input Wire Harness Removal/Installation

Remove the 120V UPS Power Input Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the drive assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
4. Remove the bottom DC bus back guard to access the 120V UPS bus. See Remove the DC Back Bus Guards on page 336.
5. Loosen the two ¼-20 x ½ in. hex head screws that secure the harness to the 120V UPS bus and remove the wires.
6. Disconnect the two-position connector from terminal block TB2-1 and TB2-2 on the outside, right wall of the drive control panel.
7. Cut the cable ties that secure the wire harness to the enclosure wireways and remove the harness.
Install the 120V UPS Power Input Wire Harness

Install the 120V UPS power input wire harness in the reverse order of removal. See Remove the 120V UPS Power Input Wire Harness on page 342.

Remove the Input Common Mode Core

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. The input common-mode core is at the back of the drive enclosure. Therefore, the drive assembly must be removed from the enclosure. Remove the drive assembly from the enclosure. See the PowerFlex 750-Series AC Drive Installation Instructions, publication number 750-IN001, for details.
5. Remove the two M10 nuts and washers that secure each of the DC+ and DC- input terminals to the input common-mode core assembly.

6. Remove the M8 nut and washer that secures each of the DC+ and DC- input terminals to the insulator material on the side of the drive enclosure. Remove the terminals.

7. While supporting the input common-mode core, remove the two front plates from the bolts connected to the drive backplane DC bus (extruded bars) at the back of the enclosure.

8. Remove the input common-mode core from the back plates.

9. Remove the two aluminum cores from the bolts.

10. Remove the two back plates from the bolts.

Install the Input Common Mode Core

Install the input common-mode core assembly in the reverse order of removal. See Remove the Input Common Mode Core on page 343.
Chapter 10

Option-bay Enclosure Component Replacement Procedures

This chapter provides detailed procedures for how to remove and replace option bay enclosure components.
Option-bay Enclosure Components Identification

Table 17 and *Table 18* (on page 347) contain the components that comprise the frame 8 and 9 option bay enclosures and provides the following information for each component, if applicable:

- Kit catalog number or part number
- Quantity that is contained in the kit

See PowerFlex Architecture Class Low Voltage Drives Spare Parts Options, publication [PFLX-SB002](#) for a complete list of spare parts for PowerFlex® 755 Frame 8...10 drives.

Table 17 - Frame 8 Option Bay Replacement Kits/Parts

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No. (Series A & B)</th>
<th>Replacement Kit Cat. No. or Part No. (Series C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Breaker Disconnect Handle Panel</td>
<td>SK-R1-ODISCP1-F8</td>
<td>SK-R1-ODISCP1-F8C</td>
</tr>
<tr>
<td>Circuit Breaker Disconnect Handle (includes handle, cable, operating, and bail mechanism)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Mechanism for 600 A, L-Frame Circuit Breaker</td>
<td>1494V-M72</td>
<td>--</td>
</tr>
<tr>
<td>Operating Mechanism for 800 A, M-Frame Circuit Breaker</td>
<td>1494V-M72</td>
<td>--</td>
</tr>
<tr>
<td>Operating Mechanism for 1200 A, N-Frame Circuit Breaker</td>
<td>1494V-M72</td>
<td>--</td>
</tr>
<tr>
<td>Disconnect Switch Handle</td>
<td>--</td>
<td>1494F-M2</td>
</tr>
<tr>
<td>IP20, NEMA/UL Type 1 Door Fan with Finger Guard</td>
<td>20-750-FAN3-F8</td>
<td></td>
</tr>
<tr>
<td>IP20, NEMA/UL Type 1 Door Fan Harness</td>
<td>SK-R1-OFANH1-F8</td>
<td></td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Assembly</td>
<td>SK-R1-OFAN12-F8</td>
<td></td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Harness</td>
<td>SK-R1-OFAN12H1-F8</td>
<td></td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Filter, Fiber (Single)</td>
<td>SK-R1-FLTR2-F8</td>
<td></td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Filter, Fiber (Multi)</td>
<td>SK-R1-FLTR2M-F8</td>
<td></td>
</tr>
<tr>
<td>Thermostat</td>
<td>SK-R1-OTH1-F8</td>
<td></td>
</tr>
<tr>
<td>Thermostat Wire Harness</td>
<td>SK-R1-OTH1H1-F8</td>
<td></td>
</tr>
<tr>
<td>Control Transformer</td>
<td>SK-R1-OFAUXFMR</td>
<td></td>
</tr>
<tr>
<td>Control Transformer Fuses (includes both 400V and 600V class)</td>
<td>SK-R1-OXFMRFUSES</td>
<td></td>
</tr>
<tr>
<td>IP20, NEMA/UL Type 1 Control Transformer Panel Harness</td>
<td>SK-R1-OXFMRH1-F8</td>
<td>SK-R1-OXFMRH1-F8C</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Control Transformer Panel Harness</td>
<td>SK-R1-OXFMRH2-F8</td>
<td>SK-R1-OXFMRH2-F8C</td>
</tr>
<tr>
<td>Contactor Wire Harnesses</td>
<td>SK-R1-OCONTH1-F8</td>
<td>SK-R1-OCONTH1-F8C</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Inlet Filter, Pleated (Single Piece)</td>
<td>SK-R1-FLTR3-F8</td>
<td></td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Inlet Filter, Pleated (12 Pieces)</td>
<td>SK-R1-FLTR3M-F8</td>
<td></td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Inlet Filter, Metal Mesh</td>
<td>SK-R1-FLTR4-F8</td>
<td></td>
</tr>
</tbody>
</table>
Table 18 - Frame 9 Option Bay Replacement Kits/Parts

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No. (Series B)</th>
<th>Replacement Kit Cat. No. or Part No. (Series C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option Bay Guards</td>
<td>SK-R1-OGRD2-F9</td>
<td>SK-R1-OGRD2-F9C</td>
</tr>
<tr>
<td>Door Interlock with Wire Harness</td>
<td>SK-R1-ODISCP1-F9</td>
<td>SK-R1-ODRL1-F9C</td>
</tr>
<tr>
<td>Circuit Breaker Disconnect Handle Panel</td>
<td>SK-R1-ODISCP1-F9</td>
<td>SK-R1-ODISCP1-F9C</td>
</tr>
<tr>
<td>Circuit Breaker Disconnect Handle (includes handle, cable, operating, and bail mechanism)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flex-Cable Operating Mechanism for 1200 A, N-Frame Circuit Breaker</td>
<td>140U-N-FCX04</td>
<td>SK-R1-OFAN12-F8</td>
</tr>
<tr>
<td>Flex-Cable Operating Mechanism for 2500 A, R-Frame Circuit Breaker</td>
<td>140U-R-FCX04</td>
<td>SK-R1-OFAN12-F9</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Assembly</td>
<td>SK-R1-OFAN12-F8</td>
<td>SK-R1-OFAN12-F8</td>
</tr>
<tr>
<td>IP20, NEMA/UL Type 1 Cabinet Exhaust Blower Assembly</td>
<td>SK-R1-OFAN12-F9</td>
<td>SK-R1-OFAN12-F9</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Filter, Fiber (Single)</td>
<td>SK-R1-FLTR2-F8</td>
<td>SK-R1-FLTR2-F8</td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Filter, Fiber (Multi)</td>
<td>SK-R1-FLTR2M-F8</td>
<td>SK-R1-FLTR2M-F8</td>
</tr>
<tr>
<td>Option-bay Wire Harness Kit</td>
<td>SK-R1-OBAH1-F9</td>
<td>SK-R1-OBAH1-F9</td>
</tr>
<tr>
<td>600V and below Control-transformer Panel Wire Harness</td>
<td>SK-R1-OBAH1-F9</td>
<td>SK-R1-OBAH1-F9</td>
</tr>
<tr>
<td>690V Control Transformer Panel Wire Harness</td>
<td>SK-R1-OBAH1-F9</td>
<td>SK-R1-OBAH1-F9</td>
</tr>
<tr>
<td>Output Reactor Wire Harness</td>
<td>SK-R1-OTH1-F8</td>
<td>SK-R1-OTH1-F8</td>
</tr>
<tr>
<td>With input/output Reactor Jumper Wire</td>
<td>SK-R1-OTH1-F8</td>
<td>SK-R1-OTH1-F8</td>
</tr>
<tr>
<td>No Reactor Jumper Wire</td>
<td>SK-R1-OTH1-F8</td>
<td>SK-R1-OTH1-F8</td>
</tr>
<tr>
<td>Reactor Fan Tray Wire Harness</td>
<td>SK-R1-OTH1-F8</td>
<td>SK-R1-OTH1-F8</td>
</tr>
<tr>
<td>Exhaust Blower Wire Harness</td>
<td>SK-R1-OTH1-F8</td>
<td>SK-R1-OTH1-F8</td>
</tr>
<tr>
<td>Exhaust Blower Jumper Wire</td>
<td>SK-R1-OTH1-F8</td>
<td>SK-R1-OTH1-F8</td>
</tr>
<tr>
<td>24V Supply Wire Harness</td>
<td>SK-R1-OTH1-F8</td>
<td>SK-R1-OTH1-F8</td>
</tr>
<tr>
<td>Thermostat</td>
<td>SK-R1-OTH1-F8</td>
<td>SK-R1-OTH1-F8</td>
</tr>
<tr>
<td>Thermostat Wire Harness</td>
<td>SK-R1-OTH1-F8</td>
<td>SK-R1-OTH1-F8</td>
</tr>
<tr>
<td>Control Transformer</td>
<td>SK-R1-OTH1-F8</td>
<td>SK-R1-OTH1-F8</td>
</tr>
</tbody>
</table>
Table 18 - Frame 9 Option Bay Replacement Kits/Parts (continued)

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No. (Series B)</th>
<th>Replacement Kit Cat. No. or Part No. (Series C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Transformer Fuses (includes both 400V and 600V class)</td>
<td>SK-R1-OXFMRFUSES</td>
<td></td>
</tr>
<tr>
<td>Reactor Fan Tray</td>
<td>SK-R1-OCAARTFAN-F9</td>
<td></td>
</tr>
<tr>
<td>Reactor Fan Relay</td>
<td>700-HLT12U2X</td>
<td></td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Inlet Filter, Pleated (Single Piece)</td>
<td>SK-R1-FLTR3-F8</td>
<td></td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Inlet Filter, Pleated (12 Pieces)</td>
<td>SK-R1-FLTR3M-F8</td>
<td></td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Inlet Filter, Metal Mesh</td>
<td>SK-R1-FLTR4-F8</td>
<td></td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Filter Cassette</td>
<td>SK-R1-FLTRFRM-F8</td>
<td></td>
</tr>
<tr>
<td>IP54, NEMA/UL Type 12 Cabinet Door Gasket</td>
<td>SK-R1-G2-F8</td>
<td></td>
</tr>
<tr>
<td>Upper and Lower Conduit Plates (600 mm deep cabinet)</td>
<td>SK-R1-OCPLT1-F8</td>
<td></td>
</tr>
<tr>
<td>Upper and Lower Conduit Plates (800 mm deep cabinet)</td>
<td>SK-R1-OCPLT2-F8</td>
<td></td>
</tr>
</tbody>
</table>

TIP See Fastener/Tool/Torque Information on page 33 for descriptions of the fasteners, tools, and torque figures that are used in the disassembly/assembly procedures in this chapter.

Remove the Frame 8 Circuit Breaker Disconnect Handle Panel

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the circuit breaker disconnect handle per the manufacturer’s instructions.
5. Remove the three M8 x 20 mm hexalobular screws that secure the disconnect handle panel to the support bracket and remove the handle panel.

T40
6.7 N·m (60 lb·in)
6. Remove the four M5 x 12 mm hex head screws that secure the disconnect support bracket to the enclosure frame and remove the support bracket.

Install the Frame 8 Circuit Breaker Disconnect Handle Panel

Install the disconnect support bracket and handle panel in the reverse order of removal. See Remove the Frame 8 Circuit Breaker Disconnect Handle Panel on page 348.
Remove the IP20, NEMA/UL Type 1 Door Fan (Frame 8 Only)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the M5 x 8 mm screw that secures the fan-power harness ground wire to the fan and remove the ground wire. Retain the screw for reuse.
5. Disconnect the Fan (+) and Fan (-) power wires from the fan terminals.
6. Remove the four M5 x 20 mm screws that secure the inner guard to the fan housing and remove the guard.

7. Remove the four M5 x 20 mm screws that secure the outer fan guard and fan to the enclosure door and remove the outer fan guard and fan.

Install the IP20, NEMA/UL Type 1 Door Fan (Frame 8 Only)

Install the door fan in the reverse order of removal. See Remove the IP20, NEMA/UL Type 1 Door Fan (Frame 8 Only) on page 351.

IMPORTANT When installing a new fan, verify that the airflow direction arrow on the fan points to the exterior of the drive enclosure.
Remove the IP20, NEMA/UL Type 1 Door Fan Harness (Frame 8)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the M5 screw that secures the fan-power harness ground wire to the fan and remove the ground wire. Retain the screw for reuse.
5. Disconnect the Fan (+) and Fan (-) power wires from the fan terminals.
6. Remove the M6 grounding nut from the cabinet ceiling.

7. Disconnect the fan harness from the connector in the upper left corner of the cabinet, and remove the fan harness.

Install the IP20, NEMA/UL Type 1 Door Fan Harness (Frame 8 Only)

Install the door fan harness in the reverse order of removal. See Remove the IP20, NEMA/UL Type 1 Door Fan Harness (Frame 8) on page 353.
Remove the IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Filter

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the four hexalobular screws that secure the filter cover to the door and remove the filter and cover from the drive.

Install the IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Filter

Install the IP54, NEMA/UL Type 12 cabinet exhaust blower in the reverse order of removal. See Remove the IP54, NEMA/UL Type 12 Cabinet Exhaust Blower Filter.

IP54, NEMA/UL Type 12 Cabinet Door-inlet Filters Removal/Installation

The steps to remove and install the IP54, NEMA/UL Type 12 cabinet door inlet filters is the same as the IP54, NEMA/UL Type 12 Cabinet Door Filters Removal/Installation procedures on page 314.

IP54, NEMA/UL Type 12 Cabinet Door-inlet Filter Cassette Removal/Installation

The steps to remove and install the IP54, NEMA/UL Type 12 cabinet door-inlet filter cassette is the same as the IP54, NEMA/UL Type 12 Cabinet-door Filter Cassette Removal/Installation procedures on page 316.
IP54, NEMA/UL Type 12 Cabinet Door Gasket Removal/Installation

The steps to remove and install the IP54, NEMA/UL Type 12 cabinet door gasket is the same as the IP54, NEMA/UL Type 12 Cabinet Door Gasket Removal/Installation procedures on page 317.

Frame 8 Option Bay Guard Removal/Installation

Remove the Frame 8 Option Bay Guard

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Loosen, but do not remove, the 11 M5 x 12 mm hex head screws that secure the guard to the cabinet frame and remove the guard.

Install the Frame 8 Option Bay Guard

Install the frame 8 option bay guard in the reverse order of removal. See Remove the Frame 8 Option Bay Guard on page 356.
Frame 9 Series B Option Bay Guards Removal/Installation

Remove the Frame 9 Series B Option Bay Guards

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the six nylon M5 hex nuts that secure the upper guard to the chassis, and remove the guard.

![Diagram showing the removal process](image-url)
5. Remove the six nylon M5 hex nuts that secure the lower guard to the chassis, and remove the guard.

Install the Frame 9 Series B Option Bay Guards

Install the frame 9 series B option bay guards in the reverse order of removal. See Remove the Frame 9 Series B Option Bay Guards on page 357.

IMPORTANT The circuit breaker disconnect handle cable must be positioned in front of the lower guard and behind the upper guard.
Frame 9 Series C Option Bay Guards Removal/Installation

Remove the Frame 9 Series C Option Bay Guards

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the six nylon M5 hex nuts that secure the upper guard to the chassis, and remove the guard.
5. Remove the six nylon M5 hex nuts that secure the lower guard to the chassis, and remove the guard.

Install the Frame 9 Series C Option Bay Guards

Install the frame 9 series C option bay guards in the reverse order of removal. See Remove the Frame 9 Series C Option Bay Guards on page 359.
Control Transformer Fuses

Removal/Installation

Remove the Control Transformer Fuses

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the guards. See Remove the Frame 8 Option Bay Guard on page 356, or Remove the Frame 9 Series B Option Bay Guards on page 357.
5. To remove the fuses from the two-position fuse holders, use a fuse puller.

Install the Control Transformer Fuses

Install the control transformer fuses in the reverse order of removal. See Remove the Control Transformer Fuses on page 361. Also, see the frame 8 and frame 9 option bay schematics in Appendix A on page 423 for fuse designations.
Frame 8 IP54, NEMA/UL Type 12 Cabinet Blower Assembly

Remove the Frame 8 IP54, NEMA/UL Type 12 Cabinet Blower Assembly

Note: The blower assembly weights approximately 12.4 kg (27.3 lb).

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Disconnect the four-position blower power harness connector from the connector on the bottom of the blower assembly.
5. Loosen the four captive 5 mm hex screws that secure the blower assembly to the cabinet frame and remove the assembly from the drive.

Install the Frame 8 IP54, NEMA/UL Type 12 Cabinet Blower Assembly

Install the frame 8 IP54, NEMA/UL Type 12 cabinet blower assembly in the reverse order of removal. See Remove the Frame 8 IP54, NEMA/UL Type 12 Cabinet Blower Assembly on page 362.
Frame 8 IP54, NEMA/UL Type 12 Cabinet Blower Wire Harness Removal/Installation

Remove the Frame 8 IP54, NEMA/UL Type 12 Cabinet Blower Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the guard. See Remove the Frame 8 Option Bay Guard on page 356.
5. Disconnect the power connector from terminal block TB5 on the control transformer panel on the right side of the cabinet.
6. Open the releasable cable tie that secures the harness to the control transformer panel and pull the harness up from behind the panel.
7. Disconnect the cable connector from the blower assembly.

8. Disconnect the two-position blower harness connector from the drive bay connector.

9. Open the releasable cable ties that secure the blower harness to the enclosure wireway and remove the harness.

Install the Frame 8 IP54, NEMA/UL Type 12 Cabinet Blower Wire Harness

Install the IP54, NEMA/UL Type 12 cabinet blower wire harness in the reverse order of removal. See Remove the Frame 8 IP54, NEMA/UL Type 12 Cabinet Blower Wire Harness on page 363.

Frame 8 Control Transformer Removal/Installation

Remove the Frame 8 Control Transformer

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the option bay door.
4. Remove the guard. See Remove the Frame 8 Option Bay Guard on page 356.

IMPORTANT Before you disconnect the control-transformer primary wires leads, note the terminal connections. The control transformer has multiple input phase terminals. See Frame 8 AC Input IP20 Option Bay with a Control Transformer Schematic Diagram on page 431 or Frame 8 AC Input IP54 Option Bay Schematic Diagram on page 432 for more information.

5. Loosen the M4 screws that secure the primary wire leads to the Hx terminals at the top of the transformer and remove the wires.

6. Loosen the M4 screws that secure the secondary wire leads to the X1...X3 terminals at the bottom of the transformer and remove the wires.

IMPORTANT The control transformer is heavy. Be sure to support it as you remove the screws, so it does not fall and damage other components.

7. Remove the four M6 nuts and washers that secure the transformer to the control panel and remove the control transformer.
Install the Frame 8 Control Transformer

Install the frame 8 control transformer in the reverse order of removal. See Remove the Frame 8 Control Transformer on page 364.

IMPORTANT The control transformer has multiple input phase terminals. See Frame 8 AC Input IP20 Option Bay with a Control Transformer Schematic Diagram on page 431 or Frame 8 AC Input IP54 Option Bay Schematic Diagram on page 432 for more information.

Frame 8 Control Transformer Wire Harness Removal/Installation

Remove the Frame 8 Control Transformer Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the guard. See Remove the Frame 8 Option Bay Guard on page 356.

IMPORTANT Before you disconnect the control-transformer primary wires leads, note the terminal connections. The control transformer has multiple input phase terminals. See Frame 8 AC Input IP20 Option Bay with a Control Transformer Schematic Diagram on page 431 or Frame 8 AC Input IP54 Option Bay Schematic Diagram on page 432 for more information.
5. Loosen the M4 screws that secure the primary wire leads to the Hx terminals at the top of the transformer and remove the wires.

6. Loosen the M4 screws that secure the secondary wire leads to the X1...X3 terminals at the bottom of the transformer and remove the wires.

7. Remove the M6 nut and washer that secures the ground wire (GND) to the control panel. Retain the screw and washer for reuse.
8. Loosen the screws that secure each of the wire leads to the fuse holders (FU9, FU10, FU11, FU12, FU13) and remove the wires.

9. For IP54 drives only, loosen the screws that secure the wires to the relay terminal block (RELAY1) and remove the wires.
10. Loosen the screws that secure the wires to terminal blocks TB4 and GND.

11. If present, disconnect the four-position contactor status connector from terminal block TB3.

12. If present, disconnect the three-position control power connector from terminal block TB3.

13. For IP54 drives, disconnect the five-position blower power connector from terminal blocks TB5.
14. For IP54 drives, remove the two screws that secure terminal block TB5 to the control panel and remove the terminal block. Retain the screws for reuse. Torque requirement for reassembly is 1.6 N•m (15 lb•in).

15. Use a flat nose screwdriver to remove the push-mount terminal block TB3 from the DIN rail.

16. Remove the removable cable tie mounts that secure the wire harness to the control panel and remove the wire harness.

Install the Frame 8 Control Transformer Wire Harness

Install the frame 8 control transformer wire harness in the reverse order of removal. See Remove the Frame 8 Control Transformer Wire Harness on page 366.
Frame 8 Contactor Wire Harness Removal/Installation

Remove the Frame 8 Contactor Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the guard. See Remove the Frame 8 Option Bay Guard on page 356.
5. Loosen the screws that secure the wire leads to terminals A1 and A2 on the top of the contactor and remove the wires.
6. Loosen the screws that secure the wire leads to terminals 13, 14, 21, and 22 on the side of the contactor and remove the wires.
Chapter 10 Option-bay Enclosure Component Replacement Procedures

7. Loosen the screws that secure the four wires to the top of terminal block TB3 on the control panel and remove the wires.

8. Loosen the screws that secure the two wires to the bottom of terminal block TB4 on the control panel and remove the wire harness.

Install the Frame 8 Contactor Wire Harness

Install the frame 8 contactor wire harness in the reverse order of removal. See Remove the Frame 8 Contactor Wire Harness on page 371.

Frame 8 Thermostat and Wire Harness Removal/Installation

Remove the Frame 8 Thermostat and Wire Harness

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the option bay enclosure door.

4. Remove the guard. See Remove the Frame 8 Option Bay Guard on page 356.
5. Remove the two nylon screws that secure the thermostat to the mounting standoffs and remove the thermostat and wire harness.

6. Disconnect the thermostat wire harness from the connector on the side of the cabinet frame.

7. Remove the cable tie mounts from the cabinet frame and remove the wire harness.

Install the Frame 8 Thermostat and Wire Harness

Install the thermostat and wire harness in the reverse order of removal. See Remove the Frame 8 Thermostat and Wire Harness on page 372.
Frame 9 Cabinet Blower Assembly Removal/Installation

Remove the Frame 9 Cabinet Blower Assembly

Note: The blower assembly weights approximately 12.4 kg (27.3 lb).

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Disconnect the blower power connector from the connector on the bottom of the blower assembly.
5. Loosen the four captive 5 mm hex screws that secure the blower assembly to the cabinet frame and remove the assembly from the drive.

Install the Frame 9 Cabinet Blower Assembly

Install the frame 9 cabinet blower assembly in the reverse order of removal. See Remove the Frame 9 Cabinet Blower Assembly on page 374.
Frame 9 Cabinet Blower Wire Harness Removal/Installation

Remove the Frame 9 Cabinet Blower Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the upper guard. See Remove the Frame 9 Series B Option Bay Guards on page 357.
5. Disconnect the blower wire harness from the terminal block on the left side of the control panel.
6. Open the releasable cable ties that secure the harness to the side of the cabinet.
7. Disconnect the blower power connector from the connector on the bottom of the blower assembly.

8. Disconnect the connector from the drive bay connector and remove the harness.

Install the Frame 9 Cabinet Blower Wire Harness

Install the frame 9 cabinet blower wire harness in the reverse order of removal. See Remove the Frame 9 Cabinet Blower Wire Harness on page 375.
Frame 9 Circuit Breaker Disconnect Handle Panel (Series A) Removal/Installation

Remove the Frame 9 Circuit Breaker Disconnect Handle Panel (Series A)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the power option assembly from the cabinet. See the PowerFlex 750-Series AC Drives Installation Instructions, publication 750-IN001 for details.
5. Remove the circuit breaker disconnect handle per the manufacturer’s instructions.
6. Push the thermostat harness connector through the cutout in the top of the panel.
7. Remove the two cable tie mounts from the panel and remove the thermostat wire harness.
8. Remove the eight M5 x 12 mm hexalobular screws that secure the disconnect handle panel to the power option assembly and remove the panel.

6 7 8

2.8 N•m (25 lb•in)
Install the Frame 9 Circuit Breaker Disconnect Handle Panel (Series A)

Install the frame 9 circuit breaker disconnect handle panel (series A) in the reverse order of removal. See Remove the Frame 9 Circuit Breaker Disconnect Handle Panel (Series A) on page 377.

Frame 9 Thermostat and Wire Harness Removal/Installation

Remove the Frame 9 Thermostat and Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the power option assembly from the cabinet. See the PowerFlex 750-Series AC Drives Installation Instructions, publication 750-IN001 for details.
5. Remove the two nylon screws that secure the thermostat to the mounting standoffs and remove the thermostat.
6. Open the releasable cable ties that secure the harness to the chassis.
7. Push the thermostat harness connector through the cutout in the top of the panel and remove the thermostat and wire harness.

Install the Frame 9 Thermostat and Wire Harness

Install the frame 9 thermostat and wire harness in the reverse order of removal. See Remove the Frame 9 Thermostat and Wire Harness on page 378.
Frame 9 Control Transformer Removal/Installation

Remove the Frame 9 Control Transformer

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the option bay door.

4. Remove the upper guard. See Remove the Frame 9 Series B Option Bay Guards on page 357.

IMPORTANT Before you disconnect the control-transformer primary wires leads, note the terminal connections. The control transformer has multiple input phase terminals. See Frame 9 AC Input Option Bay Schematic Diagram on page 433 for more information.

5. Loosen the M4 screws that secure the primary wire leads to the Hx terminals on the left side of the transformer and remove the wires.

6. Loosen the M4 screws that secure the secondary wire leads to the X1...X3 terminals on the right side of the transformer and remove the wires.

IMPORTANT The control transformer is heavy. Be sure to support it as you remove the screws, so it does not fall and damage other components.

7. Remove the four M6 nuts and washers that secure the transformer to the control panel and remove the control transformer.
Install the Frame 9 Control Transformer

Install the frame 9 control transformer in the reverse order of removal. See Remove the Frame 9 Control Transformer on page 380.

IMPORTANT
The control transformer has multiple input phase terminals. See Frame 9 AC Input Option Bay Schematic Diagram on page 433 for more information.

Frame 9 Main Control-panel Wire Harness Removal/Installation

Remove the Frame 9 Main Control-panel Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the guards. See Remove the Frame 9 Series B Option Bay Guards on page 357.
5. Loosen the two screws that secure the wires from the control panel to the door interlock and remove the wires.
6. Disconnect the blower wire harness from terminal block TB5 on the left side of the control panel.
7. Remove the two M3 x 12 mm hexalobular screws and washers that secure the terminal block to the left side of the control panel. Retain the screws and washers for reuse.
8. Loosen the M4 screws that secure the primary wire leads to the Hx terminals on the left side of the transformer and remove the wires.

9. Loosen the M4 screws that secure the secondary wire leads to the X1...X3 terminals on the right side of the transformer and remove the wires.

IMPORTANT Before you disconnect the control-transformer primary wires leads, note the terminal connections. The control transformer has multiple input phase terminals. See Frame 9 AC Input Option Bay Schematic Diagram on page 433 for more information.
10. Remove the two screws and washers that secure the fuse wire leads to the AC input bus bars and remove the wires. Retain the screws and washers for reuse.

11. Loosen the screws that secure each of the eight wire leads to the fuse holders (FU9, FU10, FU11, FU12) and remove the wires.

12. Loosen the screws that secure the wires to the relay terminal block (RELAY1) and remove the wires.

13. Loosen the screws that secure the wires to the top and bottom of the grounding terminal block (GND) and remove the wires.
14. Remove the screw and washer that secures the ground wire to the control panel (GND) and remove the ground wire. Retain the screw and washer for reuse.

15. If present, disconnect the three-position control output power connector from terminal block TB3.

16. If present, disconnect the three-position reactor fans power connector from terminal block TB3.
17. To remove the push-mount terminal block TB3 from the DIN rail, use a flat nose screwdriver.

18. Remove the removable cable tie mounts that secure the wire harness to the control panel and remove the wire harness.

Install the Frame 9 Main Control-panel Wire Harness

Install the frame 9 main control-panel wire harness in the reverse order of removal. See Remove the Frame 9 Main Control-panel Wire Harness on page 381.

IMPORTANT The control transformer has multiple input phase terminals. See Frame 9 AC Input Option Bay Schematic Diagram on page 433 for more information.
Frame 9 Reactor Fan Tray
Removal/Installation

Remove the Frame 9 Reactor Fan Tray

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the guards. See Remove the Frame 9 Series B Option Bay Guards on page 357.
5. Disconnect the three-position fan power connector from the terminal block at the bottom, right side of the option bay chassis.

6. Remove the two M4 x 12 mm hexalobular screws that secure the fan tray to the chassis and slide the fan tray out of the chassis.

120°F - 6.4 mm (0.25 in.)
3.3 N·m (30 lb·in.)
Install the Frame 9 Reactor Fan Tray

Install the frame 9 reactor fan tray in the reverse order of removal. See Remove the Frame 9 Reactor Fan Tray on page 386.

Frame 9 Reactor Fan Tray Wire Harness Removal/Installation

Remove the Frame 9 Reactor Fan Tray Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the Reactor Fan Tray from the drive. See Remove the Frame 9 Reactor Fan Tray on page 386.
5. Disconnect the Fan (+) and Fan (-) power wires from the fan terminals.
6. Remove the M4 x 8 mm hexalobular screw that secures the ground wire to the side of the fan and remove the ground wire.

T20 or F - 6.4 mm (0.25 in.)
2.2 N-m (20 lb-in)
7. On the underside of the tray, remove the two M4 x 12 mm hexalobular screws that secure the fan harness ground wires to the fan tray.

8. On the underside of the tray, remove the two M4 x 16 mm hexalobular screws that secure the fan harness terminal block to the fan tray.

9. On the underside of the tray, disengage the two cable tie push mounts that secure the fan harness to the fan tray and remove the harness.

Install the Frame 9 Reactor Fan Tray Wire Harness

Install the frame 9 reactor fan tray harness in the reverse order of removal. See Remove the Frame 9 Reactor Fan Tray Wire Harness on page 387.

TIP The positions of the cable tie push mounts and ground wire connection points determine the proper orientation of the wire harness.
Frame 9 Reactor Fans Wire Harness Removal/Installation

Remove the Frame 9 Reactor Fans Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the power option assembly from the cabinet. See the PowerFlex 750-Series AC Drives Installation Instructions, publication 750-IN001 for details.
5. Disconnect the three-position fan power connector from terminal block TB3 on the control panel.
6. Disconnect the three-position fan power connector from the terminal block at the bottom, right side of the option bay chassis.

7. Remove the cable tie mounts from the side of the power option assembly.

8. Remove the grommets from the holes in the power option assembly and remove the wire harness.
Install the Frame 9 Reactor Fans Wire Harness

Install the frame 9 reactor fans wire harness in the reverse order of removal. See Remove the Frame 9 Reactor Fans Wire Harness on page 389.

Frame 9 Cabinet Blower Relay Removal/Installation

Remove the Frame 9 Cabinet Blower Relay

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the guards. See Remove the Frame 9 Series B Option Bay Guards on page 357.
5. Loosen the four screws that secure the wire leads to the top of the fan relay terminal block (RELAY1) and remove the wires.
6. Loosen the two screws that secure the wire leads to the bottom of the fan relay and remove the wires.
7. To remove the relay from the DIN rail, use a flat nose screwdriver.

Install the Frame 9 Cabinet Blower Relay

Install the frame 9 cabinet blower relay in the reverse order of removal. See Remove the Frame 9 Cabinet Blower Relay.
Frame 9 Control Panel Thermostat Harness Removal/Installation

Remove the Frame 9 Control-panel Thermostat Wire Harness

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the option bay door.
4. Remove the guards. See Remove the Frame 9 Series B Option Bay Guards on page 357.
5. Disconnect the thermostat connector from terminal block TB6 on the right side of the control panel.
6. Remove the two M3 x 12 mm hexalobular screws that secure the terminal block to the support bracket.

T15
2.8 N·m (25 lb·in)
7. Loosen the screws that secure the wire leads to the top and bottom of terminal block TB4, remove the wire harness from the supports, and remove the wire harness.

Install the Frame 9 Control-panel Thermostat Wire Harness

Install the frame 9 control-panel thermostat wire harness in the reverse order of removal. See Remove the Frame 9 Control-panel Thermostat Wire Harness on page 392.
Top Conduit Plate Removal/Installation

Remove the Top Conduit Plate

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the ten M5 x 16 mm screws that secure the conduit plate to the top of the enclosure and remove the plate.

Install the Top Conduit Plate

Install the top conduit plate in the reverse order of removal. See Remove the Top Conduit Plate.
Bottom Conduit Plate Removal/Installation

Remove the Bottom Conduit Plate

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Remove the chassis from the option bay.
4. Remove the eight M5 x 16 screws that secure the plate to the bottom of the enclosure and remove the plate.

Install the Bottom Conduit Plate

Install the bottom conduit plate in the reverse order of removal. See Remove the Bottom Conduit Plate.
Notes:
Enclosure Cable Components Replacement Procedures (Frame 9 and Larger Drives)

This chapter provides detailed procedures for how to remove and replace enclosure cable components that are used on frame 9 and larger drives.

Enclosure Cable Components and Part Numbers

This table contains the components that comprise the frame 9 and larger drive enclosure cables and provides the following information for each component, if applicable:

- Kit catalog number or part number
- Quantity that is contained in the kit

See PowerFlex Architecture Class Low Voltage Drives Spare Parts Options, publication **PFLEx-SB002** for a complete list of spare parts for PowerFlex® 755 Frame 8...10 drives.

IMPORTANT Use only Rockwell Automation provided fiber-optic cables and transceivers. Use of third-party components is not supported.

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Bay 24V Wire Harness Kit</td>
<td>20-750-PH2-F9</td>
<td>1</td>
</tr>
<tr>
<td>3-Bay 24V Wire Harness Kit</td>
<td>20-750-PH3-F10</td>
<td>1</td>
</tr>
<tr>
<td>Fiber-optic Cable, 560 mm (22 in.) Long, Kit</td>
<td>20-750-FCBL1-F8</td>
<td>–</td>
</tr>
<tr>
<td>Fiber-optic Cable, 560 mm (22 in.) Long</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cable Labels (CONV and INV)</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Table 19 - Enclosure Cable Replacement Kits/Parts (continued)

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Replacement Kit Cat. No. or Part No.</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber-optic Cable, 2.8 m (110 in.) Long, Kit</td>
<td>20-750-FCL1-F10</td>
<td></td>
</tr>
<tr>
<td>Fiber-optic Cable, 2.8 m (110 in.) Long</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Cable Labels (INV1, INV2, and INV3)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fiber-optic Cable Spool Kit</td>
<td>20-750-SPL1-F10</td>
<td>1</td>
</tr>
<tr>
<td>Fiber-optic Transceiver</td>
<td>SK-R1-FTR1-F8</td>
<td>1</td>
</tr>
</tbody>
</table>

TIP
See Fastener/Tool/Torque Information on page 33 for descriptions of the fasteners, tools, and torque figures that are used in the disassembly/assembly procedures in this chapter.

24V Wire Harness Removal/Installation (Frame 9 and Larger Drives)

Removing the 24V Wire Harness (Frame 9 and Larger Drives)

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure doors.
4. Complete the following steps in the drive bay that holds the control pod.
 a. Remove the control pod cover. See Remove the Control Pod Cover on page 59.
b. Disconnect the J14 connector from P14 on the fiber interface board in the control pod.
c. Disconnect the three-position 24V wire harness connector from terminal block TB1 on the control panel (behind the control pod). Remove the cable from the cable support on the bottom of the control panel.
d. Unlock the three cable supports along the inside left wall of the control pod.

e. Open the two releasable cable ties; one at the top left of the control pod, and one on the horizontal wireway at the top of the enclosure.
5. Complete the following steps in each additional enclosure.
 a. Remove the converter or common-bus precharge right cover. See Remove the Converter Right Cover (No Control Pod) on page 88 or Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.
 b. Disconnect the three-position 24V wire harness connector from terminal block TB1 on the control panel and remove the cable from the cable support on the bottom of the control panel.
 c. Open the three releasable cable ties along the inside right wall of the control panel.

6. On the horizontal wireway, open all releasable cable ties.

7. Remove the 24V wire harness from the enclosures.

Installing the 24V Wire Harness (Frame 9 and Larger Drives)

Install the 24V wire harness in the reverse order of removal. See Removing the 24V Wire Harness (Frame 9 and Larger Drives) on page 398.
First Inverter (INV1) Fiber-optic Cable Removal/Installation

Removing the First Inverter (INV1) Fiber-optic Cable

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Remove the control pod cover. See Remove the Control Pod Cover on page 59.
5. Disconnect the fiber-optic cable from INV1 on the fiber interface board in the control pod.

6. Disconnect the fiber-optic cable from INV on the power layer interface board in the inverter card cage (below the control pod).
7. Unlock the three cable supports along the inside left wall of the control pod.

8. Open the releasable cable tie at the top left of the control pod.

9. On the cable spool at the top of the horizontal enclosure wireway, open the two releasable cable ties and unspool the fiber-optic cable from the cable supports and remove the fiber-optic cable.
Installing the First Inverter (INV1) Fiber-optic Cable

IMPORTANT Frame 9 and larger drives fiber-optic cables that are connected between the fiber interface circuit board and the power-layer interface circuit board on each inverter must be the same length. Cables kits are provided with a length of 2.8 m (110 in.) to meet this requirement.

IMPORTANT Follow these guidelines when installing the new fiber-optic cable on the inverters for frame 9 and 10 drives:
- The cable must be looped through the cable supports on the fiber-optic cable spool as directed in the following table.
- The cable must be routed through all existing cable ties as previously installed.

<table>
<thead>
<tr>
<th>Drive Enclosure</th>
<th>Number of Fiber-optic Cable Loops on Spool</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Inverter</td>
<td>2</td>
</tr>
<tr>
<td>Second Inverter</td>
<td>1</td>
</tr>
<tr>
<td>Third Inverter</td>
<td>0</td>
</tr>
</tbody>
</table>

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

Install the first inverter (INV1) fiber-optic cable in the reverse order of removal. See Removing the First Inverter (INV1) Fiber-optic Cable on page 403.
Second Inverter (INV2) Fiber-optic Cable Removal/Installation

Removing the Second Inverter (INV2) Fiber-optic Cable

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.

4. Complete the following steps in the drive bay that holds the control pod.
 a. Remove the control pod cover. See Remove the Control Pod Cover on page 59.
 b. Disconnect the fiber-optic cable from INV2 on the fiber interface board in the control pod.

![Diagram of Fiber Interface Board with labels: INV1, INV2, INV3, Fiber Interface Board, 4b, P12, P11, P15, P13, P14, P15, P13, P14]
c. Unlock three cable supports along the inside left wall of the control pod.

d. Open the two releasable cable ties; one at the top left of the control pod, and one on the horizontal wireway at the top of the enclosure.
5. Complete the following steps in the second bay.
 a. Remove the converter or common-bus precharge right cover. See Remove the Converter Right Cover (No Control Pod) on page 88 or Remove the DC Input with Precharge Assembly Right Cover (No Control Pod) on page 172.
 b. Disconnect the fiber-optic cable from INV on the power layer interface board in the inverter card cage (below the control panel).
c. Open the three releasable cable ties along the inside right wall of the control panel.

d. Open the two releasable cable ties on the horizontal enclosure wireway.

e. On the cable spool at the top of the horizontal enclosure wireway, open the two releasable cable ties and unspool the fiber-optic cable from the cable supports and remove the fiber-optic cable.
Installing the Second Inverter (INV2) Fiber-optic Cable

IMPORTANT Frame 9 and larger drives fiber-optic cables that are connected between the fiber interface circuit board and the power-layer interface circuit board on each inverter must be the same length. Cables kits are provided with a length of 2.8 m (110 in.) to meet this requirement.

IMPORTANT Follow these guidelines when installing the new fiber-optic cable on the inverters for frame 9 and 10 drives:
- The cable must be looped through the cable supports on the fiber-optic cable spool as directed in the following table.
- The cable must be routed through all existing cable ties as previously installed.

<table>
<thead>
<tr>
<th>Drive Enclosure</th>
<th>Number of Fiber-optic Cable Loops on Spool</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Inverter</td>
<td>2</td>
</tr>
<tr>
<td>Second Inverter</td>
<td>1</td>
</tr>
<tr>
<td>Third Inverter</td>
<td>0</td>
</tr>
</tbody>
</table>

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

Install the second inverter (INV2) fiber-optic cable in the reverse order of removal. See Removing the Second Inverter (INV2) Fiber-optic Cable on page 407.
Chapter 11 Enclosure Cable Components Replacement Procedures (Frame 9 and Larger Drives)

Third Inverter (INV3) Fiber-optic Cable Removal/Installation

Removing the Third Inverter (INV3) Fiber-optic Cable

1. Review the General Precautions on page 24.

2. Remove power from the drive. See Remove Power from the Drive on page 25.

3. Open the enclosure door.

4. Complete the following steps in the drive bay that holds the control pod.
 a. Remove the control pod cover. See Remove the Control Pod Cover on page 59.
 b. Disconnect the fiber-optic cable from INV3 on the fiber interface board in the control pod.
c. Unlock three cable supports along the inside left wall of the control pod.

d. Open the two releasable cable ties; one at the top left of the control pod, and one on the horizontal wireway at the top of the enclosure.
5. Complete the following steps in the third bay.
 a. Remove the converter or common-bus precharge right cover. See
 Remove the Converter Right Cover (No Control Pod) on page 88 or
 Remove the DC Input with Precharge Assembly Right Cover (No
 Control Pod) on page 172.
 b. Disconnect the fiber-optic cable from INV on the power layer interface
 board in the inverter card cage (below the control panel).
c. Open the three releasable cable ties along the inside right wall of the control panel.

d. Open the four releasable cable ties on the horizontal enclosure wireway and remove the fiber-optic cable.
Installing the Third Inverter (INV3) Fiber-optic Cable

IMPORTANT Frame 9 and larger drives fiber-optic cables that are connected between the fiber interface circuit board and the power-layer interface circuit board on each inverter must be the same length. Cables kits are provided with a length of 2.8 m (110 in.) to meet this requirement.

IMPORTANT Follow these guidelines when installing the new fiber-optic cable on the inverters for frame 9 and 10 drives:

- The cable must be looped through the cable supports on the fiber-optic cable spool as directed in the following table.
- The cable must be routed through all existing cable ties as previously installed.

<table>
<thead>
<tr>
<th>Drive Enclosure</th>
<th>Number of Fiber-optic Cable Loops on Spool</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Inverter</td>
<td>2</td>
</tr>
<tr>
<td>Second Inverter</td>
<td>1</td>
</tr>
<tr>
<td>Third Inverter</td>
<td>0</td>
</tr>
</tbody>
</table>

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.

Install the third inverter (INV3) fiber-optic cable in the reverse order of removal. See Removing the Third Inverter (INV3) Fiber-optic Cable on page 412.

Fiber-optic Spool Removal/Installation

Removing the Fiber-optic Spool

1. Review the General Precautions on page 24.
2. Remove power from the drive. See Remove Power from the Drive on page 25.
3. Open the enclosure door.
4. Open the releasable cable ties on the fiber-optic spool.

5. Carefully unspool the fiber-optic cable from the cable supports on the spool.

6. Remove the M6 x 14 mm hex screw that secures the spool to the enclosure wireway.

7. To remove the spool, lift it off the tabs on the wireway.

| 14.0 mm |
| 5.1 N·m (45.0 lb-in) |
Installing the Fiber-optic Spool

Install the fiber-optic spool in the reverse order of removal. See Removing the Fiber-optic Spool on page 416.

IMPORTANT Follow these guidelines when installing the new fiber-optic cable on the inverters for frame 9 and 10 drives:

- The cable must be looped through the cable supports on the fiber-optic cable spool as directed in the following table.
- The cable must be routed through all existing cable ties as previously installed.

<table>
<thead>
<tr>
<th>Drive Enclosure</th>
<th>Number of Fiber-optic Cable Loops on Spool</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Inverter</td>
<td>2</td>
</tr>
<tr>
<td>Second Inverter</td>
<td>1</td>
</tr>
<tr>
<td>Third Inverter</td>
<td>0</td>
</tr>
</tbody>
</table>

IMPORTANT Minimum inside bend radius for fiber-optic cable is 50 mm (2 in.). Any bends with a shorter inside radius can permanently damage the fiber-optic cable. Signal attenuation increases with decreased inside bend radii.
Chapter 12

Drive Startup after Repairs

This chapter provides detailed instructions for starting a drive after you have completed repairs.

Before You Apply Power to the Drive

1. Check the DC bus voltage at the -DC and +DC testpoints sockets on the front of the power module.
2. Perform forward and reverse biased diode tests, by using a digital multimeter. See Forward and Reverse Biased SCR/Diode Tests on page 49.

3. Inspect the drive for loose bolts, disconnected cables, and so forth.

4. Verify the following connections.
 - All fiber-optic cables are connected at both ends and properly supported by cable ties along their entire length when connected between enclosures.
 - If any work was performed on the converter, inspect all converter wire harnesses to be sure that they are all connected at both ends.
 - If any work was performed on the converter, inspect the control transformer primary connections to verify that the taps are appropriate for the applied voltage:

<table>
<thead>
<tr>
<th>Primary Terminal Connections</th>
<th>Input Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 & H2</td>
<td>380/415</td>
</tr>
<tr>
<td>H1 & H3</td>
<td>440/480</td>
</tr>
<tr>
<td>H1 & H4</td>
<td>575/600</td>
</tr>
<tr>
<td>H1 & H5</td>
<td>690</td>
</tr>
</tbody>
</table>

 - If any work was performed on the DC input with precharge assembly, inspect all DC input wire harnesses to be sure that they are all connected at both ends.
 - If any work was performed on the DC input with precharge assembly, inspect the control transformer primary connections to verify that the taps are appropriate for the applied voltage:

<table>
<thead>
<tr>
<th>Primary Terminal Connections</th>
<th>Input Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 & H2</td>
<td>120</td>
</tr>
<tr>
<td>H1 & H3</td>
<td>240</td>
</tr>
</tbody>
</table>

 - If any work was performed on a frame 9 or larger drive, inspect the 24V wire harnesses to be sure that they are properly connected at the ends and properly supported by cables ties along their entire length.
 - If any work was performed to or around the inverter card cage, verify that the current feedback cable is connected to the inverter power board, and to all three current sensors. Also verify that the P6 cable is connected to the inverter power board, and that the J1 cable is connected to the main power supply board.
 - The two heatsink fan cables are connected to the fan terminal block.
Testing with the Motor without a Mechanical Load

This test lets you measure the DC bus voltage and output current and diagnose problems without connecting the motor to its mechanical load.

1. Verify that the input power and ground wires are connected.
2. Verify that the motor cables are connected.
3. Verify that the motor load is disconnected.
4. Energize the drive.
5. Measure the DC bus voltage and verify that the value is reflected in parameter 11 [DC Bus Volts].
6. Start the drive and increase the speed from zero to base speed.
7. Measure drive output current and verify that the value is reflected in the parameter 7 [Output Current].
8. Stop the drive.
Notes:
Schematics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame 8 AC Input Drive Schematic Diagram (400V AC and 600V AC Classes)</td>
<td>424</td>
</tr>
<tr>
<td>Frame 9 AC Input Drive Schematic Diagram (400V AC and 600V AC Classes)</td>
<td>425</td>
</tr>
<tr>
<td>Frame 10 AC Input Drive Schematic Diagram (400V AC and 600V AC Classes)</td>
<td>426</td>
</tr>
<tr>
<td>Frame 8 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes)</td>
<td>427</td>
</tr>
<tr>
<td>Frame 9 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes)</td>
<td>428</td>
</tr>
<tr>
<td>Frame 10 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes)</td>
<td>429</td>
</tr>
<tr>
<td>Frame 8 AC Input IP20 Option Bay without a Control Transformer Schematic Diagram</td>
<td>430</td>
</tr>
<tr>
<td>Frame 8 AC Input IP20 Option Bay with a Control Transformer Schematic Diagram</td>
<td>431</td>
</tr>
<tr>
<td>Frame 8 AC Input IPS4 Option Bay Schematic Diagram</td>
<td>432</td>
</tr>
<tr>
<td>Frame 9 AC Input Option Bay Schematic Diagram</td>
<td>433</td>
</tr>
<tr>
<td>Control Pod Schematic Diagram</td>
<td>434</td>
</tr>
<tr>
<td>Converter Schematic Diagram (400V AC and 600V AC Classes AC Input Drive)</td>
<td>435</td>
</tr>
<tr>
<td>Frame 8 Control Power Isolator Board Wiring Diagrams (600V AC Class AC Input Drive, and 810V DC and 932V DC Classes Common DC Input Drive)</td>
<td>436</td>
</tr>
<tr>
<td>Frame 9 Control Power Isolator Board Wiring Diagrams (600V AC Class AC Input Drive, and 810V DC and 932V DC Classes Common DC Input Drive)</td>
<td>436</td>
</tr>
<tr>
<td>Frame 10 Control Power Isolator Board Wiring Diagrams (600V AC Class AC Input Drive, and 810V DC and 932V DC Classes Common DC Input Drive)</td>
<td>437</td>
</tr>
<tr>
<td>DC Input with Precharge Assembly Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes Common DC Input Drives)</td>
<td>438</td>
</tr>
<tr>
<td>DC Input with Precharge Devices Schematic Diagrams</td>
<td>439</td>
</tr>
<tr>
<td>Inverter Circuit Board Schematic Diagram (All Drive Configurations)</td>
<td>440</td>
</tr>
<tr>
<td>Inverter Power Layer Schematic Diagram (All Drive Configurations)</td>
<td>441</td>
</tr>
<tr>
<td>AC Input Drive Control Transformer Schematic Diagram</td>
<td>442</td>
</tr>
<tr>
<td>DC Input with Precharge Assembly Control Transformer Schematic Diagram</td>
<td>442</td>
</tr>
<tr>
<td>Inverter Main Blower and Capacitor Bank Cooling Fan Wire Harness Diagram</td>
<td>443</td>
</tr>
<tr>
<td>Cabinet Cooling Wiring Diagrams</td>
<td>443</td>
</tr>
</tbody>
</table>
Frame 8 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes)

Converter Spare Part Cat. No. = (See Table 11 on page 82 for a list of replacement converter units)

Three Phase AC Input

Chassis PE

Source Ground

Converter Gate Board

Converter with Control Pod

1 2 3 4 5

FIB

P3

INV

Chopper

Field-Installed Option)

Inverter-Mounted Output Common Mode Core (Field-Installed Option)

Spare Part Cat. No. = 20-750-POD1-F8

Spare Part Cat. No. = 20-750-FCBL1-F8

INV Fiber-Optic Cable 560 mm Long

Spare Part Cat. No. = 20-750-FCBL1-F8

CONV Fiber-Optic Cable 560 mm Long

Spare Part Cat. No. = 20-750-FCBL1-F8

To use a chopper on a frame 8 AC input drive a 20-750-BUS1A-F8 kit is required to connect to the DC bus.

Chopper (AC Input Version) with DC Link Choke

Spare Part Cat. No. = 20-750-11-BcoxDoor (Series B)
20-750-11B-coxDoor (Series B)
20-750-11B-exoDoor (Series B)

Inverter (AC Input Version) with DC Link Choke

Spare Part Cat. No. = 20-750-P0D1-F8 (Series A)

Frame 8 No DC Bus Fuse Wire Harness. See Converter Schematic.

Three Phase AC Output

Motor Ground

1-Bay 24V Wire Harness (400V Class Only)

Spare Part Cat. No. = 20-750-PH1-F8

(F for 600V Class; see Control Power Isolator Board Wiring Diagram on page 436.)

Fiber-Optic Transceiver (4 Per Drive, 1 Per Kit)

Spare Part Cat. No. = SK-R1-FTR-F8

INV Fiber-Optic Cable 560 mm Long

Spare Part Cat. No. = 20-750-POD1-F8 (Series A)

Converter Gate Board

Control Pod Spare Part Cat. No. = 20-750-POD1-F8 (Series A)

Fiber Interface Board

P1

INV1

1-Bay 240V AC Neutral 24V Com

1-Bay 240V AC Hot

24V/240V Wire Harness. See Converter and Inverter Schematics.

Three Phase AC Input

Three Phase AC Output

Motor Ground

Chassis PE

To use a chopper on a frame 8 AC input drive a 20-750-BUS1A-F8 kit is required to connect to the DC bus.

Inverter-Mounted Output Common Mode Core (Field-Installed Option)

Spare Part Cat. No. = 20-750-POD1-F8

Spare Part Cat. No. = 20-750-FCBL1-F8

INV Fiber-Optic Cable 560 mm Long

Spare Part Cat. No. = 20-750-FCBL1-F8

CONV Fiber-Optic Cable 560 mm Long

Spare Part Cat. No. = 20-750-FCBL1-F8

To use a chopper on a frame 8 AC input drive a 20-750-BUS1A-F8 kit is required to connect to the DC bus.

Inverter-Mounted Output Common Mode Core (Field-Installed Option)

Spare Part Cat. No. = 20-750-POD1-F8

Spare Part Cat. No. = 20-750-FCBL1-F8

INV Fiber-Optic Cable 560 mm Long

Spare Part Cat. No. = 20-750-FCBL1-F8

CONV Fiber-Optic Cable 560 mm Long

Spare Part Cat. No. = 20-750-FCBL1-F8

To use a chopper on a frame 8 AC input drive a 20-750-BUS1A-F8 kit is required to connect to the DC bus.

Inverter-Mounted Output Common Mode Core (Field-Installed Option)

Spare Part Cat. No. = 20-750-POD1-F8

Spare Part Cat. No. = 20-750-FCBL1-F8

INV Fiber-Optic Cable 560 mm Long
Frame 10 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes)

Note: See the “Frame 9 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes)” for all spare part kit catalog numbers not shown.

Converter Spare Part Cat. No. = (See Table 11 on page 82 for a list of replacement converter units)

Cabinet-Mounted Input Common Mode Core (3) (Field-Installed Option)
Spare Part Cat. No. = 20-750-EMCCM1-F8

3-Bay 24V Wire Harness (400V Class Only)
Spare Part Cat. No. = 20-750-FH1-10

Inverter-Mounted Output Common Mode Core (Field-Installed Option)
(3 per Drive, 1 per Kit)
Spare Part Cat. No. = 20-750-EMCCM1-F8

Field-Installed Option
Spare Part Cat. No. = SK-R1-FTR-F8

Cabinet-Mounted Input Common Mode Core (3) (Field-Installed Option)
Spare Part Cat. No. = 20-750-EMCCM1-F8

Spare Part Cat. No. = 20-750-FCBL1-F10

Spare Part Cat. No. = 20-750-PH3-F10

(For 600V Class, see Control Power Isolator Board Wiring on page 436.)

Spare Part Cat. No. = 20-750-FCBL1-F8

Spare Part Cat. No. = 20-750-EMCCM1-F8

Note: See the “Frame 9 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes)” for all spare part kit catalog numbers not shown.
Frame 8 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes)

Drive Backplane DC Bus

Cabinet-Mounted Input Common Mode Core (Factory-Installed)
Spare Part Cat. No. = 20-750-CBPEMCCM1-F8

DC Input Cabinet Wire Harness Kit
Spare Part Cat. No. = SK-R1-CBP-BRKHI-F8
(3 Harnesses Per Kit)
Transformer Primary Harness
120V AC UPS Harness

User-Provided Drive Control 120/240V AC Bus In
User-Provided Drive UPS Control 120V AC Bus In (Optional)

SWS - Drive Circuit Breaker, 2-Pole, 13 A, 120/240V AC Input
(1 per Drive, 1 per Kit)
Spare Part Cat. No. = 1489-A2D130A
Circuit Breaker Lock Attachment
(1 per Drive, 1 per Kit)
Spare Part Cat. No. = 1489-AALOA

DC Input with Precharge Assembly
with Control

DC Inverters

INV Fiber-Optic Cable 560 mm Long
Spare Part Cat. No. = 20-750-FCBL1-F8

CONV Fiber-Optic Cable 560 mm Long
Spare Part Cat. No. = 20-750-FCBL1-F8

User-Provided Drive Control 120/240V AC Bus In
User-Provided Drive UPS Control 120V AC Bus In (Optional)

Inverter (DC Input Version)
Without DC Link Choke
Spare Part Cat. No. = 20-750-12B-CoxDxx (Series B)
20-750-12B-Eoxxx (Series B)

Inverter-Mounted Output Common Mode Core
(Factory-Installed Option)
Spare Part Cat. No. = 20-750-EMCCM1-F8

Motor Ground

Three Phase AC Output

DC Input with Precharge Assembly
with Control

Control Pod
Spare Part Cat. No. = 20-750-P001-F8 (Series A)

Fiber Interface Board

INV Fiber-Optic Cable
560 mm Long
Spare Part Cat. No. = 20-750-FCBL1-F8

CONV Fiber-Optic Cable
560 mm Long
Spare Part Cat. No. = 20-750-FCBL1-F8

21G cabinet option code P30 provides bus and wire harness. See the PowerFlex® 750-Series AC Drives Installation Instructions, publication 750-IN001, for DC Input TB5 jumper settings for use with Drive UPS Control 120V AC Bus.

24V/240V Wire Harness. See DC Input with Precharge Assembly and Inverter Schematics.

1-Bay 24V Wire Harness
(400V Class Only)
Spare Part Cat. No. = 20-750-PH1-F8
(For 600V Class, see Control Power Isolator Board Wiring Diagram on page 436.)

Circuit Breaker Lock Attachment
(1 per Drive, 1 per Kit)
Spare Part Cat. No. = 1489-AALOA

24V Com
TB1-7
24V
TB1-8

DC Bus
DC- DC+
DC- DC+
DC- DC+

U V W
INV Fiber-Optic Cable 560 mm Long
Spare Part Cat. No. = 20-750-FCBL1-F8

CONV Fiber-Optic Cable 560 mm Long
Spare Part Cat. No. = 20-750-FCBL1-F8

Fiber-Optic Transceiver
(4 Per Drive, 1 Per Kit)
Spare Part Cat. No. = SK-R1-FTR-F8
Frame 9 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes)

Drive Backplane
DC Bus

Cabinet-Mounted Input Common Mode Core (Factory-Installed)
Spare Part Cat. No. = 20-750-CBPEMCCM1-F8

Frame 9 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes)

User-Provided Drive Control 120/240V AC Bus In
User-Provided Drive UPS Control 120V AC Bus In (Optional)

Inverter
(DC Input Version)
without DC Link Choke
Spare Part Cat. No. = 20-750-I2B-CxxxDxxx (Series B)
20-750-I2B-ExxxFxxx (Series B)

Inverter-Mounted Output Common Mode Core (Field-Installed Option)
Spare Part Cat. No. = 20-750-EMCCM1-F8

Three Phase AC Output

Motor Ground

Chassis PE
Appendix A Schematics

Frame 8 AC Input IP20 Option Bay without a Control Transformer Schematic Diagram

Input Reactor LR1 or LR3 (Factory-installed Option)
Input Contactor M4 (Factory-installed Option)

Main Control Board
(ENABLE jumper removed)

Converter with Control Pod

Option Bay Contactor Harness
Spare Part Cat. No. = SK-R1-OCONTH1-F8

Input Circuit Breaker CB1 or Molded Case Switch MCS1
See Notes 1 and 2

Converter (AC Input Version) With DC Link Choke

Digital Input 0 (120V AC)
Digital Input Common
Connections for AC power supply

Input Circuit Breaker CB1 or Molded Case Switch MCS1
See Notes 1 and 2

Notable Components:
- Drive Bay
- Door Fan 1
- Door Fan 2
- Option Bay
- Option Bay Contactor Harness
- User-provided Contactor Status Wiring
- User-provided Contactor Input Voltage 50 Hz 230VAC 60 Hz 115V AC

Notes:
1. For 21G Required Selections — Either P3 or P5 option is required and is installed at the factory.
2. See Appendix C, on page 451 for default circuit breaker or molded case switch settings.
Frame 8 AC Input IP20 Option Bay with a Control Transformer Schematic Diagram

Notes:
1. For 21G Required Selections – Either P3 or P5 option is required and is installed at the factory.
2. See Appendix C, on page 452 for default circuit breaker or molded case switch settings.
Frame 8 AC Input IP54 Option Bay Schematic Diagram

Main Control Board TB1 I/O Terminal Designations

1. 24V common
2. 24V Power
3. Digital Input 0 (24V DC)
4. Digital Input Common
5. Digital Input 0 (120V AC)

Connections for drive supplied 24V power. 150 mA max.
Connections for DC power supply
Connections for AC power supply

Input Circuit Breaker CB1 or Molded Case Switch MCS1 (Factory-installed Option) See Notes 1 and 2

Input Reactor LR1 or LR3 (Factory-installed Option)

Option Bay Contactor Harness Spare Part Cat. No. = SK-R1-0CNTH1-F8

Control Panel Fuse Specifications:
- FU9, FU10 (690VAC) 690V AC, 6 A, IEC gl-gG
- FU9, FU10 (400, 480, 600VAC) 600V AC, 6 A, Class CC
- FU11 600V AC, 5 A, Class CC
- FU12 (120V AC) 600V AC, 5 A, Class CC
- FU12 (230VAC) 600V AC, 3 A, Class CC
- FU13 600V AC, 5 A, Class CC

Three-Phase AC Output Bus

Relay 1 Circuit Breaker CB1

Relay 3 (Wired to the Drive Enable Terminals at the Factory)

Input Bus to Frame 8 Drive Bay

Drive Bay Fan / Blower Harness Spare Part Cat. No. = SK-R1-OFAN12-F8

TB4

Option Bay Exhaust Blower Spare Part Cat. No. = SK-R1-0FAN12H-F8

M2/M4 Contactor Coil 230V Coil for 400V & 600V Drives 120V Coil for 480V & 600V Drives (Factory-installed Option)

TB3

Control Power Output For Customer Use 500VAC 50 Hz 230VAC 2.2 A 60 Hz 120V AC 4.2 A

FU9, FU10, FU11, FU12, FU13 Control Transformer Fuses Spare Part Cat. No. = SK-R1-OXFMRFUSES (See Control Panel Fuse Specifications Below)

Jumper Option Bay Thermostat / Relay Harness Spare Part Cat. No. = SK-R1-OXFMRFH2-F8

FU9, FU10, FU11, FU12, FU13 (Factory-installed Option)

Output Reactor LR2 or LR4 (Factory-installed Option)

Motor Ground Chassis PE

Chassis PE

Three-Phase AC Input Bus

Notes:
1. For 21G Required Selections – Either P3 or P5 option is required and is installed at the factory.
2. See Appendix C, on page 451 for default circuit breaker or molded case switch settings.
Frame 9 AC Input Option Bay Schematic Diagram

Notes:
1. For 21G Required Selections – PS Input Non-Fused Molded Case Disconnect Switch is not offered.
2. For 21G Additional Selections – P11 & P12 contactors are not offered; and L3 & L4 5% reactors are not offered.
3. See Appendix C, on page 451 for default circuit breaker settings.
Control Pod Schematic Diagram

Fiber Interface Board
Spare Part Cat. No. = SK-R1-FIB1-F8
(Includes one board and one fiber-optic transceiver)

Pod Bucket - Main Control

Main Control Board
Spare Part Cat. No. = SK-R1-MCB1-F8 (Series A)

External HIM

Pod Bucket - Main Control Board

See Drive Schematic Diagrams for frame-specific INV fiber-optic cable connections.

Fiber-Optic Transceiver (1 Per Kit)
1 per Frame 8 Drive
2 per Frame 9 Drive
3 per Frame 10 Drive
Spare Part Cat. No. = SK-R1-FTR-F8

See Drive Schematic Diagrams for frame-specific 24V wire harness connections.

User-Provided 24V DC Auxiliary Power Supply

To Converter or DC Input with Precharge

See Drive Schematic Diagrams for frame-specific 24V wire harness connections.
Converter Schematic Diagram (400VAC and 600VAC Classes AC Input Drive)

- Chassis PE
- Transformer Primary Harness
- Disconnected
- Connected
- Removable at User Accessible Location
- FU1, FU2, FU3 - AC Line Fuse
- 690V, 900 A (600V Class)
- 600V, 1100 A (600V Class)
- SW1, SW2, SW3 - Fuse Indicator
- Converter Wire Harness Kit Cat. No. = SK-R1-FUSEFAN-F8 (One board and one Fiber-optic transceiver per kit)

- Primary Harness, AC Bus Harness
- Current Transformer Sense Harness
- SCR Gate Harness
- DC Bus Harness
- Harness, Power 24V/240V Harness

- EMC Filter Board
- Spare Part Cat. No. = SK-R1-EMCFLT-F8
- (Series B - 400V and 600V Classes)
- CT1, CT2, CT3 - Current Transformer
- One transformer and cable ties per kit

- Converter Gate Board
- (Spare Part Cat. No. Listed Below)*
- DC Bus Switch Senser
- Direct Screw Connection (3 Places)

- Converter Wire Harness Kit Cat. No. = SK-R1-CNVH1-F8 (11 Harnesses Per Kit)
- No DC Bus Fuse Harness, Misc., I/O Harness, Power 24V/240V Harness
- Inverter Power Supply Harness, ITC, Current Transformer Sense Harness, AC Line Fuse Harness, Transformer Primary Harness, AC Bus Harness

- FU1, FU2, FU3 - AC Line Fuse
- 690V, 900 A (600V Class)
- 600V, 1100 A (600V Class)
- SW1, SW2, SW3 - Fuse Indicator

- Converter Gate Board Spare Part Cat. No. = SK-R1-GGDB1-CD-F8 (Series A - 400V Class)
- SK-R1-GGDB3-CD-F8 (Series B - 400V Class)
- SK-R1-GGDB3-CD-F8 (Series B - 600V Class)

Notes:
1. If you have a 600V or 690V drive, a control power isolator board is installed. See pages 436-437 for corresponding frame sizes.
2. Fiber-Optic Transceiver (1 Per Converter, 1 Per Kit) Spare Part Cat. No. = SK-R1-FTR-F8.
Frame 8 Control Power Isolator Board Wiring Diagrams (600V AC Class AC Input Drive, and 810V DC and 932V DC Classes Common DC Input Drive)

Frame 9 Control Power Isolator Board Wiring Diagrams (600V AC Class AC Input Drive, and 810V DC and 932V DC Classes Common DC Input Drive)

Notes:
1. If you have a 600V or 690V drive, a control power isolator board is installed. See pages 436 – 437 for corresponding frame sizes.
2. Based on the system configuration, the use of the optional control power isolator board may or may not be necessary.
Frame 10 Control Power Isolator Board Wiring Diagrams (600V AC Class AC Input Drive, and 810V DC and 932V DC Classes Common DC Input Drive)

Notes:
1. If you have a 600V or 690V drive, a control power isolator board is installed. See pages 436...437 for corresponding frame sizes.
2. Based on the system configuration, the use of the optional control power isolator board may or may not be necessary.
DC Input with Precharge Assembly Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes Common DC Input Drives)
DC Input with Precharge Devices Schematic Diagrams

DC Input Circuit Breaker (SW5)
User-Provided Drive Control 120/240V AC Bus In

1. Hot
2. Neutral
3. 4

To Disconnect Switch SW2 Via TB2

DC Input Disconnect Switch (SW2)
Drive Backplane DC Bus In

1. Hot
2. Neutral
3. 4

To Precharge Fuses FU3 and FU4
To Control Transformer (T1)

To DC Precharge Control Board P3

24V I/O

13

24V Aux. In N.O.

To SW2 Aux. In N.O.

User-Provided Drive Control 120/240V AC Bus In Via TB2

User-Provided UPS 120V AC Bus In Via TB2

DC Input Molded Case Switch (SW1) Control
To DC Precharge Control Board P2
To UV Connector

To UV Connector

To DC Precharge Control Board P3

DC Input Molded Case Switch (SW1) Power

To SW1 Undervoltage Trip

To DC Precharge Control Board P3

DC Input Undervoltage Delay Module (PS1)

240V AC Hot

Delay Setting:
• No Jumper Connection
• Time Delay = 3 seconds (Factory Default)
Inverter Circuit Board Schematic Diagram (All Drive Configurations)

Inverter Gate Driver Board Ribbon Cables
Spare Part Cat. No. = SK-R1-IB1-F8
Includes one upper ribbon cable (folded),
one upper ribbon cable (straight),
and two jumper ribbon cables.
Usage based on Inverter section replacement or equivalent
component Cat. No. 20-750-ICEE-7F74.

For Cat. No. Position 9 = C; and Position 10...12 = 460, 540, or 567 and
For Cat. No. Position 13 = D; and Position 14...16 = 265, 330, or 370:
For Cat. No. Position 13 = F; and Position 14...16 = 415, 460, or 500:
For Cat. No. Position 9 = E; and Position 10...12 = 435, 460, or 510 and
For Cat. No. Position 13 = F; and Position 14...16 = 265, 330, or 370:
For Cat. No. Position 13 = D; and Position 14...16 = 430, 485, or 545; or
For Cat. No. Position 9 = C; and Position 10...12 = 460, 540, or 567 and
For Cat. No. Position 13 = D; and Position 14...16 = 430, 485, or 545; or
For Cat. No. Position 9 = C; and Position 10...12 = 460, 540, or 567 and
For Cat. No. Position 13 = D; and Position 14...16 = 430, 485, or 545; or

Ribbon Cable
Jumper Ribbon Cable
Gate Driver Board “U”
Gate Driver Board “V”
Gate Driver Board “W”

Spare Part Cat. Nos. Based on Inverter Equivalent Component Voltage and
current Ratings (1 Per Kit):

For 400V 770 A, 480V 740 A = SK-R1-IG1-C770D740
For 400V 567 A, 480V 545 A = SK-R1-IG1-C540D545
For 600V 510 A, 690V 500 A = SK-R1-IG1-E510F500
For 600V 395 A, 690V 370 A = SK-R1-IG1-E395F370

Direct Screw Connection (5 Places)

See Inverter Main Blower and Capacitor Bank Cooling Fan Wire Harness Diagram
on page 443 for details.

Ratings Plug Board -
Spare Part Cat. Nos. Based on Inverter Equivalent Component Voltage and
current Ratings:

For 400V 770 A, 480V 740 A = SK-R1-IR1-E540D430
For 600V 510 A, 690V 500 A = SK-R1-IR1-E510F500
For 600V 460 A, 480V 430 A = SK-R1-IR1-E460D430
For 600V 395 A, 690V 370 A = SK-R1-IR1-E395F370
For 600V 355 A, 480V 330 A = SK-R1-IR1-E355F330
For 600V 295 A, 480V 265 A = SK-R1-IR1-E295F265
For 400V 460 A, 480V 430 A = SK-R1-IR1-E460D430
For 400V 355 A, 480V 330 A = SK-R1-IR1-E355F330
For 400V 295 A, 480V 265 A = SK-R1-IR1-E295F265

(1) Inverter Switch Mode Power Supply - Spare Part Cat. Nos.
For 400V Class AC Input and 540V and 650V Classes Common DC Input = SK-R1-PWR51-CD-F8
For 600V Class AC Input and 810V and 932V Classes Common DC Input = SK-R1-PWR51-EF-F8

Direct Screw Connection (3 Places)
Chassis PE

Motor Shield

L1 - DC Link Choke: Spare Part Cat. No. based on Inverter Section Replacement or Equivalent Component Cat. No. 20-750-xx-xxxx-yyyy.

For Cat. No. Position 9 = C and Position 10...12 = 460, 540, or 567, and
For Cat. No. Position 13 = D and Position 14...16 = 430, 485, or 545, and
For Cat. No. Position 9 = E and Position 10...12 = 435, 460, 510, and
For Cat. No. Position 13 = F and Position 14...16 = 415, 460, or 500.
Inductance = 50 uH
Spare Part Cat. No. = SK-R1-DCHK2-F8

For Cat. No. Position 9 = C and Position 10...12 = 650, 750, or 770, and
For Cat. No. Position 13 = D and Position 14...16 = 617, 710, or 740.
Inductance = 33 uH
Spare Part Cat. No. = SK-R1-DCHK1-F8

For Cat. No. Position 9 = E and Position 10...12 = 295, 355, or 395, and
For Cat. No. Position 13 = F and Position 14...16 = 265, 330, or 370.
Inductance = 69 uH
Spare Part Cat. No. = SK-R1-DCHK3-F8

AC Input Drives Only

Discharge Bleeder Resistors
Balance Resistors
Capacitor Bank

R3, R4 - Discharge Bleeder Resistors
Spare Part Cat. No.:
For 400V Class AC Input and
540V and 650V Classes DC Input = SK-R1-RD1-F8
(2600 Ohms each)
For 600V Class AC Input and
810V and 932V Classes DC Input = SK-R1-RD2-F8
(5000 Ohms each)
Includes two resistors and
wire harness

R1, R2 - Balance Resistors
Spare Part Cat. No.:
For 400V Class AC Input and
540V and 650V Classes DC Input = SK-R1-RB1-F8
(2600 Ohms each)
For 600V Class AC Input and
810V and 932V Classes DC Input = SK-R1-RB2-F8
(5000 Ohms each)
Includes two resistors,
mounting plate, and
wire harness

Capacitor Bank
Spare Part Cat. No.:
For 400V 770A, 480V 740A = SK-R1-CP1-C770D740
For 400V 567A, 480V 545A = SK-R1-CP1-C567D545
For 600V 510A, 690V 500A = SK-R1-CP1-E510F500
For 600V 395A, 690V 370A = SK-R1-CP1-E395F370

EMC Caps
(Inverter Input)

EMC Capacitor Kit
Spare Part Cat. No. = SK-R1-EMCCAP1-F8
Includes one inverter input part
one choke input part and one
Capacitor Bank output parts

Inverter Wire Harness Kit
Spare Part Cat. No. = SK-R1-INWH1-F8
(Includes 4 Harnesses Per Kit)
Bleeder Resistor Harness, Cap Bank Stirring Fans/
Main Blower Harness, Current Sensor Harness,
and DC Test Point/Balance Resistor Cables

DC Link Choke

18 Caps for:
400V 650...770A, 480V 617...740A
600V 435...510A, 690V 415...500A
12 Caps for:
400V 460...567A, 480V 430...544A
600V 295...395A, 690V 265...370A

Screw Connections to
Gate Driver Board

Screw Connections to
Gate Driver Board

Screw Connections to
Gate Driver Board

To P1 on Inverter Power
Board

EMC Caps
(Cap Bank Output)

CT1, CT2, CT3
Current Sensor
(3 Per Unit, 1 Per Kit)
Spare Part Cat. No = SK-R1-INVIFS-F8

Bleeder Resistor Harness, Cap Bank Stirring Fans/
Main Blower Harness, Current Sensor Harness,
and DC Test Point/Balance Resistor Cables
AC Input Drive Control Transformer Schematic Diagram

DC Input with Precharge Assembly Control Transformer Schematic Diagram
Inverter Main Blower and Capacitor Bank Cooling Fan Wire Harness Diagram

Cabinet Cooling Wiring Diagrams

IP20, NEMA/UL Type 1 Drive Bay
- Door Fan 1
 - G + -
 - Direct Screw Connection
 - Door Bay Door Fan Harness (1 per Bay, 1 per Kit)
 - Spare Part Cat. No. = SK-R1-FANH1-F8
- Door Fan 2
 - G + -
 - Door Fan with Finger Guard (2 per Bay, 1 per Kit)
 - Spare Part Cat. No. = 20-750-FAN3-F8
- 240V AC Neutral
- 240V AC Hot
- See Note: TB2 terminal numbers for AC Input and Common DC Input drives, see Drive Schematic Diagrams on previous pages.

IP54, NEMA/UL Type 12 Drive Bay
- Cabinet Blower
 - G + -
 - Direct Screw Connection
- Cabinet Blower Harness (1 per Bay, 1 per Kit)
 - Spare Part Cat. No. = SK-R1-FANH3-F8
- Cabinet Blower Fan (1 per Bay, 1 per Kit)
 - Spare Part Cat. No. = SK-R1-FAN4-F8
- 240V AC Neutral
- 240V AC Hot
- See Note

IP20, NEMA/UL Type 1 Option Bay (Frame 8)
- Door Fan 1
 - G + -
 - Direct Screw Connection
 - Option Bay Door Fan Harness (1 per Bay, 1 per Kit)
 - Spare Part Cat. No. = SK-R1-OFANH1-F8
- Door Fan 2
 - G + -
 - Door Fan with Finger Guard (2 per Bay, 1 per Kit)
 - Spare Part Cat. No. = 20-750-FAN3-F8
- 240V AC Neutral
- 240V AC Hot
- Option Bay
Notes:
Circuit Board Interconnections

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Board Interconnections Diagram 1</td>
<td>446</td>
</tr>
<tr>
<td>Inverter Board Interconnections Diagram 2</td>
<td>447</td>
</tr>
<tr>
<td>Control Board Interconnections Diagram 1</td>
<td>448</td>
</tr>
<tr>
<td>Control Board Interconnections Diagram 2</td>
<td>449</td>
</tr>
</tbody>
</table>

This chapter provides the interconnection signals between drive circuit boards.
Appendix B Circuit Board Interconnections

Inverter Board Interconnections Diagram 1

Power Layer Interface Board

Power Control Board

Power Supply Board
Inverter Board Interconnections Diagram 2

Power Layer Interface Board

A2 VBUS GND A2
B2 VBUS PB B2
A3 VMID GND A3
B3 VMID PB B3
A4 DGND A4
B4 PH NTC B4
A5 PH V NTC A5
B5 PH W NTC B5
A6 DGND A6
B6 AIR TEMP B6
A7 FLOW SBNR A7
B7 GATE D U B7
A8 GATE D V A8
B8 GATE D W B8
A9 DGND A9
B9 SP ADV B9
A10 PWK JUP NTC A10
B10 I SCALE ID B10
A12 IGC U POS A12
A13 IGC U NEG A13
A14 IGC V POS A14
A15 IGC V NEG A15
A16 IGC W POS A16
B16.B17 DGND B16.B17
A17 IGC W NEG A17
A18 BLWR PS LV A18
B18 BUUK PS LV B18
A19 LOC PS LV A19
B19 BSY PS LV B19
A20 BSY PS CG A20
B20 DGND B20
A21 BLWI SBD A21
B21 FAN1 SBD B21
A22 FAN2 SBD A22
B22 DGND B22
A23 LEM P08 A23
B23 LEM P01 B23
A24 480/690V A24
B24 RP IO6 B24
A25 RP IO1 A25
B25 RP IO7 B25
A26 RP IO3 A26
B26 DGND B26
A27 SP IO0 1 A27
B27.B28 DGND B27.B28
A28 SP IO2 A28
A29 SP IO3 A29
A30 SP IO4 A30
A31 SP IO5 A31
A32 SP IO6 A32

Power Control Board

A25 GATE W- A25
B25 GATE W+ B25
A26 GATE V- A26
B26 GATE V+ B26
A27 GATE U- A27
B27 GATE U+ B27
A28 GATE U- A28
B28 GATE U+ B28
A29 GATE V+ A29
B29 GATE V- B29
A30 PWK CAM A30
B30 PWK CAM B30
A31 PWK CAM A31
B31 PWK CAM B31

Gate Board Cable

A32 PWK CAM A32
B32 PWK CAM B32
Circuit Board Interconnections

Control Board Interconnections Diagram 1

Main Control Board

<table>
<thead>
<tr>
<th>DPI Mini-DIN</th>
<th>HIM</th>
<th>Fiber Interface Board</th>
<th>J5</th>
<th>J4</th>
<th>J3</th>
<th>J2, J3, J4</th>
<th>J1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CAN+</td>
<td>33</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 D+ND</td>
<td>34</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 D+ND</td>
<td>35</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 D+ND</td>
<td>36</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 CAN+</td>
<td>37</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 CAN+</td>
<td>38</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 CAN+</td>
<td>39</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 CAN+</td>
<td>40</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 CAN+</td>
<td>41</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 CAN+</td>
<td>42</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPI</td>
<td>43</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini-DIN</td>
<td>44</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber</td>
<td>45</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>46</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board</td>
<td>47</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backplane</td>
<td>48</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board</td>
<td>49</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modules</td>
<td>51</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verify that all faceplate plug/ header interfaces have Tlx reference designators

1. Verify that all faceplate plug/ header interfaces have Tlx reference designators.

Internal Stirring

- Fan

Backplane Board

- Option Modules

Appendix B

- Circuit Board Interconnections

448 Rockwell Automation Publication 750-TG001G-EN-P - August 2018
Control Board Interconnections Diagram 2

Verify that all faceplate plug/header interfaces have TBx reference designators.
Notes:
Appendix C

Drive-compatible Circuit Breakers, Molded Case Switches, Contactors, and Line Reactors

Replacement Part Catalog Numbers, Ratings, and Settings

This appendix contains catalog numbers, ratings, and corresponding settings for the following:

- Drive-compatible circuit breakers
- Molded case switches
- Contactors
- 3% and 5% line reactors
Table 20 - 400V AC Input Drive, Light-Duty Ratings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C460</td>
<td>8</td>
<td>540</td>
<td>315</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>690</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D630EA11</td>
<td>1321-3R600-B</td>
<td>1321-3R600-C</td>
</tr>
<tr>
<td>C540</td>
<td>8</td>
<td>585</td>
<td>315</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>720</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D630EA11</td>
<td>1321-3R600-B</td>
<td>1321-3R600-C</td>
</tr>
<tr>
<td>C567</td>
<td>8</td>
<td>610</td>
<td>355</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>750</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D630EA11</td>
<td>1321-3R750-B</td>
<td>1321-3R750-C</td>
</tr>
<tr>
<td>C569</td>
<td>8</td>
<td>750</td>
<td>400</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>930</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td>140G-N653-E12</td>
<td>1200</td>
<td>100-D860EA11</td>
<td>1321-3R750-B</td>
<td>1321-3R750-C</td>
</tr>
<tr>
<td>C750</td>
<td>8</td>
<td>796</td>
<td>450</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>990</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td>140G-N653-E12</td>
<td>1200</td>
<td>100-D860EA11</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>C770</td>
<td>8</td>
<td>832</td>
<td>450</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>1020</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td>140G-N653-E12</td>
<td>1200</td>
<td>100-D860EA11</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>C910</td>
<td>9</td>
<td>1040</td>
<td>560</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1300</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K0</td>
<td>9</td>
<td>1090</td>
<td>630</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1350</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K1</td>
<td>9</td>
<td>1175</td>
<td>710</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1450</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K2</td>
<td>9</td>
<td>1465</td>
<td>800</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1800</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K4</td>
<td>9</td>
<td>1480</td>
<td>850</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1850</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K5</td>
<td>9</td>
<td>1600</td>
<td>900</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>2000</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K6 (1)</td>
<td>10</td>
<td>1715</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>C2K1 (1)</td>
<td>10</td>
<td>2330</td>
<td>1400</td>
<td></td>
</tr>
</tbody>
</table>

(1) Contact the factory.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D430</td>
<td>8</td>
<td>485</td>
<td>400</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>570</td>
<td>6000</td>
<td>10800</td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R500-B</td>
<td>1321-3R500-C</td>
</tr>
<tr>
<td>D485</td>
<td>8</td>
<td>545</td>
<td>450</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>660</td>
<td>6000</td>
<td>10800</td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R600-B</td>
<td>1321-3R600-C</td>
</tr>
<tr>
<td>D545</td>
<td>8</td>
<td>590</td>
<td>500</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>720</td>
<td>6000</td>
<td>10800</td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R600-B</td>
<td>1321-3R600-C</td>
</tr>
<tr>
<td>D617</td>
<td>8</td>
<td>710</td>
<td>600</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>840</td>
<td>6000</td>
<td>10800</td>
<td>140G-N653-E12</td>
<td>1200</td>
<td>100-D860ED11</td>
<td>1321-3R750-B</td>
<td>1321-3R750-C</td>
</tr>
<tr>
<td>D710</td>
<td>8</td>
<td>765</td>
<td>650</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>900</td>
<td>6000</td>
<td>10800</td>
<td>140G-N653-E12</td>
<td>1200</td>
<td>100-G1200KD12</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>D740</td>
<td>8</td>
<td>800</td>
<td>700</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>960</td>
<td>6000</td>
<td>10800</td>
<td>140G-N653-E12</td>
<td>1200</td>
<td>100-G1200KD12</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>D800</td>
<td>9</td>
<td>960</td>
<td>800</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>1140</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D960</td>
<td>9</td>
<td>1045</td>
<td>900</td>
<td>140G-R1213-E20</td>
<td>2000</td>
<td>1250</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D1K0</td>
<td>9</td>
<td>1135</td>
<td>1000</td>
<td>140G-R1213-E20</td>
<td>2000</td>
<td>1350</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D1K2</td>
<td>9</td>
<td>1365</td>
<td>1100</td>
<td>140G-R1213-E20</td>
<td>2000</td>
<td>1650</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D1K3</td>
<td>9</td>
<td>1420</td>
<td>1250</td>
<td>140G-R1213-E20</td>
<td>2000</td>
<td>1700</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D1K4</td>
<td>9</td>
<td>1540</td>
<td>1350</td>
<td>140G-R1213-E20</td>
<td>2000</td>
<td>1850</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D1K5(1)</td>
<td>10</td>
<td>1655</td>
<td>1500</td>
<td>–</td>
</tr>
<tr>
<td>D2K0(1)</td>
<td>10</td>
<td>2240</td>
<td>2000</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) Contact the factory.
Table 22 - 600V AC Input Drive, Light-Duty Ratings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E295</td>
<td>8</td>
<td>355</td>
<td>350</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>–</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3RC400-C</td>
<td>RL-54004</td>
<td></td>
</tr>
<tr>
<td>E355</td>
<td>8</td>
<td>395</td>
<td>400</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>–</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3R500-B</td>
<td>RL-54003</td>
<td></td>
</tr>
<tr>
<td>E395</td>
<td>8</td>
<td>435</td>
<td>450</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>–</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R500-B</td>
<td>RL-54003</td>
<td></td>
</tr>
<tr>
<td>E435</td>
<td>8</td>
<td>460</td>
<td>500</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>4500</td>
<td>–</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R500-B</td>
<td>RL-54003</td>
<td></td>
</tr>
<tr>
<td>E460</td>
<td>8</td>
<td>510</td>
<td>500</td>
<td>140G-M0F3-D80</td>
<td>800</td>
<td>680</td>
<td>6000</td>
<td>–</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R500-B</td>
<td>RL-54004</td>
<td></td>
</tr>
<tr>
<td>E510</td>
<td>8</td>
<td>545</td>
<td>550</td>
<td>140G-M0F3-D80</td>
<td>800</td>
<td>680</td>
<td>6000</td>
<td>–</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R500-B</td>
<td>RL-54003</td>
<td></td>
</tr>
<tr>
<td>E595</td>
<td>9</td>
<td>595</td>
<td>700</td>
<td>140G-NSOH3-E12</td>
<td>1200</td>
<td>810</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E630</td>
<td>9</td>
<td>760</td>
<td>800</td>
<td>140G-NSOH3-E12</td>
<td>1200</td>
<td>900</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E760</td>
<td>9</td>
<td>835</td>
<td>900</td>
<td>140G-NSOH3-E12</td>
<td>1200</td>
<td>990</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E825</td>
<td>9</td>
<td>900</td>
<td>950</td>
<td>140G-NSOH3-E12</td>
<td>1200</td>
<td>1080</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E900</td>
<td>9</td>
<td>980</td>
<td>1000</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1150</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E980</td>
<td>9</td>
<td>1045</td>
<td>1100</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1250</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E1K4(1)</td>
<td>10</td>
<td>1220</td>
<td>1200</td>
<td>–</td>
</tr>
<tr>
<td>E1K4(1)</td>
<td>10</td>
<td>1530</td>
<td>1500</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) Contact the factory.
Table 23 - 690V AC Input Drive, Light-Duty Ratings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F265</td>
<td>8</td>
<td>330</td>
<td>315</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>-</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420EA11</td>
<td>1321-3RC400-C</td>
<td>RL-41508</td>
</tr>
<tr>
<td>F330</td>
<td>8</td>
<td>370</td>
<td>355</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>-</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420EA11</td>
<td>1321-3RC400-C</td>
<td>RL-41508</td>
</tr>
<tr>
<td>F370</td>
<td>8</td>
<td>410</td>
<td>400</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>-</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420EA11</td>
<td>1321-3RC400-C</td>
<td>RL-41508</td>
</tr>
<tr>
<td>F415</td>
<td>8</td>
<td>460</td>
<td>450</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>4500</td>
<td>-</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630EA11</td>
<td>1321-3R500-C</td>
<td>RL-54004</td>
</tr>
<tr>
<td>F460</td>
<td>8</td>
<td>500</td>
<td>500</td>
<td>140G-M6F3-D80</td>
<td>800</td>
<td>680</td>
<td>6000</td>
<td>-</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630EA11</td>
<td>1321-3R600-C</td>
<td>RL-54004</td>
</tr>
<tr>
<td>F500</td>
<td>8</td>
<td>530</td>
<td>530</td>
<td>140G-M6F3-D80</td>
<td>800</td>
<td>680</td>
<td>6000</td>
<td>-</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630EA11</td>
<td>1321-3R600-C</td>
<td>RL-54004</td>
</tr>
<tr>
<td>F590</td>
<td>9</td>
<td>650</td>
<td>630</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>780</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F650</td>
<td>9</td>
<td>710</td>
<td>710</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>840</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F710</td>
<td>9</td>
<td>790</td>
<td>800</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>930</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F765</td>
<td>9</td>
<td>860</td>
<td>850</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>1020</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F795</td>
<td>9</td>
<td>960</td>
<td>900</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>1140</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F960</td>
<td>9</td>
<td>1020</td>
<td>1000</td>
<td>140G-R12F3-E20</td>
<td>2000</td>
<td>1300</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F1K4(1)</td>
<td>10</td>
<td>1150</td>
<td>1100</td>
<td>-</td>
</tr>
<tr>
<td>F1K4(1)</td>
<td>10</td>
<td>1485</td>
<td>1500</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Contact the factory.
Table 24 - 400V AC Input Drive, Normal Duty Ratings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C460</td>
<td>8</td>
<td>460</td>
<td>250</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>4500</td>
<td>-</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630EA11</td>
<td>1321-3R500-B</td>
<td>1321-3R500-C</td>
</tr>
<tr>
<td>C540</td>
<td>8</td>
<td>540</td>
<td>315</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>660</td>
<td>6000</td>
<td>10100</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630EA11</td>
<td>1321-3R600-B</td>
<td>1321-3R600-C</td>
</tr>
<tr>
<td>C567</td>
<td>8</td>
<td>567</td>
<td>315</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>720</td>
<td>6000</td>
<td>10100</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630EA11</td>
<td>1321-3R600-B</td>
<td>1321-3R600-C</td>
</tr>
<tr>
<td>C650</td>
<td>8</td>
<td>650</td>
<td>355</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>810</td>
<td>6000</td>
<td>10100</td>
<td>-</td>
<td>140G-N6S3-E12</td>
<td>1200</td>
<td>100-D680EA11</td>
<td>1321-3R750-B</td>
<td>1321-3R750-C</td>
</tr>
<tr>
<td>C750</td>
<td>8</td>
<td>750</td>
<td>400</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>930</td>
<td>6000</td>
<td>10100</td>
<td>-</td>
<td>140G-N6S3-E12</td>
<td>1200</td>
<td>100-D680EA11</td>
<td>1321-3R750-B</td>
<td>1321-3R750-C</td>
</tr>
<tr>
<td>C700</td>
<td>8</td>
<td>770</td>
<td>400</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>960</td>
<td>6000</td>
<td>10100</td>
<td>-</td>
<td>140G-N6S3-E12</td>
<td>1200</td>
<td>100-D680EA11</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>C910</td>
<td>9</td>
<td>910</td>
<td>500</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>1140</td>
<td>6000</td>
<td>10100</td>
<td>-</td>
<td>-</td>
<td>1200</td>
<td>100-D680EA11</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>C1K0</td>
<td>9</td>
<td>1040</td>
<td>560</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1300</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>-</td>
<td>1200</td>
<td>100-D680EA11</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>C1K1</td>
<td>9</td>
<td>1090</td>
<td>630</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1350</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>-</td>
<td>1200</td>
<td>100-D680EA11</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>C1K2</td>
<td>9</td>
<td>1175</td>
<td>710</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1450</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>-</td>
<td>1200</td>
<td>100-D680EA11</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>C1K4</td>
<td>9</td>
<td>1465</td>
<td>800</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1800</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>-</td>
<td>1200</td>
<td>100-D680EA11</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>C1K5</td>
<td>9</td>
<td>1480</td>
<td>850</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1850</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>-</td>
<td>1200</td>
<td>100-D680EA11</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>C1K6 (1)</td>
<td>10</td>
<td>1590</td>
<td>900</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1200</td>
<td>100-D680EA11</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
<tr>
<td>C2K1 (1)</td>
<td>10</td>
<td>2150</td>
<td>1250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1200</td>
<td>100-D680EA11</td>
<td>1321-3R850-B</td>
<td>1321-3R850-C</td>
</tr>
</tbody>
</table>

(1) Contact the factory.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D430 8</td>
<td>430</td>
<td>350</td>
<td>140G-MOF3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R500-B</td>
<td>1321-3R500-C</td>
</tr>
<tr>
<td>D485 8</td>
<td>485</td>
<td>400</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>570</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R500-B</td>
<td>1321-3R500-C</td>
</tr>
<tr>
<td>D545 8</td>
<td>545</td>
<td>450</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>660</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R600-B</td>
<td>1321-3R600-C</td>
</tr>
<tr>
<td>D617 8</td>
<td>617</td>
<td>500</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>750</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R750-B</td>
<td>1321-3R750-C</td>
</tr>
<tr>
<td>D710 8</td>
<td>710</td>
<td>600</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>840</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>140G-N6S3-E12</td>
<td>1200</td>
<td>100-D860ED11</td>
<td>1321-3R750-B</td>
<td>1321-3R750-C</td>
</tr>
<tr>
<td>D740 8</td>
<td>740</td>
<td>650</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>870</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>140G-N6S3-E12</td>
<td>1200</td>
<td>100-G1200KD12</td>
<td>1321-3R750-B</td>
<td>1321-3R750-C</td>
</tr>
<tr>
<td>D800 9</td>
<td>800</td>
<td>700</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>960</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D960 9</td>
<td>960</td>
<td>800</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>1140</td>
<td>6000</td>
<td>10800</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D1K0 9</td>
<td>1045</td>
<td>900</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1250</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D1K2 9</td>
<td>1135</td>
<td>1000</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1350</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D1K3 9</td>
<td>1365</td>
<td>1100</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1650</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D1K4 9</td>
<td>1420</td>
<td>1250</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1700</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D1K5(1) 10</td>
<td>1525</td>
<td>1350</td>
<td>-</td>
</tr>
<tr>
<td>D2K0(1) 10</td>
<td>2070</td>
<td>1750</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Contact the factory.
Table 26 - 600V AC Input Drive, Normal Duty Ratings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E295</td>
<td>8</td>
<td>295</td>
<td>300</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3RC400-C</td>
<td>RL-41508</td>
</tr>
<tr>
<td>E355</td>
<td>8</td>
<td>355</td>
<td>350</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3RC400-C</td>
<td>RL-54004</td>
</tr>
<tr>
<td>E395</td>
<td>8</td>
<td>395</td>
<td>400</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3R6000-C</td>
<td>RL-4003B14</td>
</tr>
<tr>
<td>E435</td>
<td>8</td>
<td>435</td>
<td>450</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R6000-C</td>
<td>RL-54503</td>
</tr>
<tr>
<td>E460</td>
<td>8</td>
<td>460</td>
<td>500</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>–</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R5000-B</td>
<td>RL-54503</td>
</tr>
<tr>
<td>E510</td>
<td>8</td>
<td>510</td>
<td>500</td>
<td>140G-M6F3-D80</td>
<td>800</td>
<td>800</td>
<td>680</td>
<td>6000</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3R5000-B</td>
<td>RL-54503</td>
</tr>
<tr>
<td>E595</td>
<td>9</td>
<td>595</td>
<td>600</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>1200</td>
<td>720</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E630</td>
<td>9</td>
<td>630</td>
<td>700</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>1200</td>
<td>750</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E760</td>
<td>9</td>
<td>760</td>
<td>800</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>1200</td>
<td>900</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E825</td>
<td>9</td>
<td>825</td>
<td>900</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>1200</td>
<td>990</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E900</td>
<td>9</td>
<td>900</td>
<td>950</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>1200</td>
<td>1080</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E980</td>
<td>9</td>
<td>980</td>
<td>1000</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>2000</td>
<td>1150</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E1K1(1)</td>
<td>10</td>
<td>1110</td>
<td>1100</td>
<td>–</td>
</tr>
<tr>
<td>E1K4(1)</td>
<td>10</td>
<td>1430</td>
<td>1400</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) Contact the factory.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F265</td>
<td>8</td>
<td>265</td>
<td>250</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420EA11</td>
</tr>
<tr>
<td>F330</td>
<td>8</td>
<td>330</td>
<td>315</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420EA11</td>
</tr>
<tr>
<td>F370</td>
<td>8</td>
<td>370</td>
<td>355</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420EA11</td>
</tr>
<tr>
<td>F415</td>
<td>8</td>
<td>415</td>
<td>400</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420EA11</td>
</tr>
<tr>
<td>F460</td>
<td>8</td>
<td>460</td>
<td>450</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>4500</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630EA11</td>
</tr>
<tr>
<td>F500</td>
<td>8</td>
<td>500</td>
<td>500</td>
<td>140G-M6F3-D80</td>
<td>800</td>
<td>680</td>
<td>6000</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630EA11</td>
</tr>
<tr>
<td>F590</td>
<td>9</td>
<td>590</td>
<td>560</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>690</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F650</td>
<td>9</td>
<td>650</td>
<td>630</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>780</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F710</td>
<td>9</td>
<td>710</td>
<td>710</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>840</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F765</td>
<td>9</td>
<td>765</td>
<td>750</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>900</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F795</td>
<td>9</td>
<td>795</td>
<td>800</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>930</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F960</td>
<td>9</td>
<td>960</td>
<td>900</td>
<td>140G-N50H3-E12</td>
<td>1200</td>
<td>1140</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F1K0(1)</td>
<td>10</td>
<td>1040</td>
<td>1000</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F1K4(1)</td>
<td>10</td>
<td>1400</td>
<td>1400</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) Contact the factory.
Table 28 - 400V AC Input Drive, Heavy-Duty Ratings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C460</td>
<td>8</td>
<td>385</td>
<td>200</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td></td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420EA11</td>
<td>1321-3RB400-B</td>
<td>1321-3RC400-C</td>
</tr>
<tr>
<td>C540</td>
<td>8</td>
<td>456</td>
<td>250</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>4500</td>
<td></td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630EA11</td>
<td>1321-3RS500-B</td>
<td>1321-3RS500-C</td>
</tr>
<tr>
<td>C567</td>
<td>8</td>
<td>472</td>
<td>250</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>4500</td>
<td></td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630EA11</td>
<td>1321-3RS500-B</td>
<td>1321-3RS500-C</td>
</tr>
<tr>
<td>C650</td>
<td>8</td>
<td>540</td>
<td>315</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>660</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>1321-3R600-B</td>
<td>1321-3R600-C</td>
</tr>
<tr>
<td>C750</td>
<td>8</td>
<td>585</td>
<td>315</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>720</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>1321-3R600-B</td>
<td>1321-3R600-C</td>
</tr>
<tr>
<td>C770</td>
<td>8</td>
<td>642</td>
<td>355</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>810</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>1321-3R750-B</td>
<td>1321-3R750-C</td>
</tr>
<tr>
<td>C910</td>
<td>9</td>
<td>750</td>
<td>400</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>930</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K0</td>
<td>9</td>
<td>880</td>
<td>500</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>1080</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K1</td>
<td>9</td>
<td>910</td>
<td>500</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>1140</td>
<td>6000</td>
<td>10800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K2</td>
<td>9</td>
<td>1040</td>
<td>560</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1300</td>
<td>10000</td>
<td>18000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K4</td>
<td>9</td>
<td>1090</td>
<td>630</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1350</td>
<td>10000</td>
<td>18000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K5</td>
<td>9</td>
<td>1175</td>
<td>710</td>
<td>140G-R12I3-E20</td>
<td>2000</td>
<td>1450</td>
<td>10000</td>
<td>18000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1K6(1)</td>
<td>10</td>
<td>1325</td>
<td>710</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2K1(1)</td>
<td>10</td>
<td>1800</td>
<td>1000</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Contact the factory.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D430</td>
<td>8</td>
<td>370</td>
<td>300</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>–</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3RB400-B</td>
<td>1321-3RC400-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D485</td>
<td>8</td>
<td>414</td>
<td>350</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>–</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3RS500-B</td>
<td>1321-3RS500-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D545</td>
<td>8</td>
<td>454</td>
<td>350</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>600</td>
<td>4500</td>
<td>–</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3RS500-B</td>
<td>1321-3RS500-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D617</td>
<td>8</td>
<td>485</td>
<td>400</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>570</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3RS500-B</td>
<td>1321-3RS500-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D710</td>
<td>8</td>
<td>545</td>
<td>450</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>660</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3RS600-B</td>
<td>1321-3RS600-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D740 8</td>
<td>8</td>
<td>617</td>
<td>500</td>
<td>140G-N0H3-E12</td>
<td>1200</td>
<td>750</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3RS750-B</td>
<td>1321-3RS750-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D800</td>
<td>9</td>
<td>710</td>
<td>600</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>840</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D960</td>
<td>9</td>
<td>795</td>
<td>700</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>960</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1K0</td>
<td>9</td>
<td>800</td>
<td>750</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>960</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1K2</td>
<td>9</td>
<td>960</td>
<td>800</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>1140</td>
<td>6000</td>
<td>10800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1K3</td>
<td>9</td>
<td>1045</td>
<td>900</td>
<td>140G-R123-E20</td>
<td>2000</td>
<td>1250</td>
<td>10000</td>
<td>18000</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1K4</td>
<td>9</td>
<td>1135</td>
<td>1000</td>
<td>140G-R123-E20</td>
<td>2000</td>
<td>1350</td>
<td>10000</td>
<td>18000</td>
<td>1200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1K5(1)</td>
<td>10</td>
<td>1270</td>
<td>1100</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2K0(1)</td>
<td>10</td>
<td>1730</td>
<td>1650</td>
<td>–</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Contact the factory.
Table 30 - 600V AC Input Drive, Heavy-Duty Ratings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E295</td>
<td>8</td>
<td>272</td>
<td>250</td>
<td>140G-MOF3-D60</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>4500</td>
<td>4500</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3RC400-C</td>
<td>RL-41508</td>
</tr>
<tr>
<td>E355</td>
<td>8</td>
<td>295</td>
<td>300</td>
<td>140G-MOF3-D60</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>4500</td>
<td>4500</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3RC400-C</td>
<td>RL-41508</td>
</tr>
<tr>
<td>E395</td>
<td>8</td>
<td>329</td>
<td>350</td>
<td>140G-MOF3-D60</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>4500</td>
<td>4500</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3RC400-C</td>
<td>RL-54004</td>
</tr>
<tr>
<td>E435</td>
<td>8</td>
<td>355</td>
<td>350</td>
<td>140G-MOF3-D60</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>4500</td>
<td>4500</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3RC400-C</td>
<td>RL-54004</td>
</tr>
<tr>
<td>E460</td>
<td>8</td>
<td>395</td>
<td>400</td>
<td>140G-MOF3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>4500</td>
<td>4500</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D420ED11</td>
<td>1321-3RC600-C</td>
<td>RL-4003B14</td>
</tr>
<tr>
<td>E510</td>
<td>8</td>
<td>425</td>
<td>450</td>
<td>140G-MOF3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>4500</td>
<td>4500</td>
<td>140G-M6S3-D80</td>
<td>800</td>
<td>100-D630ED11</td>
<td>1321-3RC600-C</td>
<td>RL-54503</td>
</tr>
<tr>
<td>E595</td>
<td>9</td>
<td>510</td>
<td>500</td>
<td>140G-NSOH3-E12</td>
<td>1200</td>
<td>600</td>
<td>6000</td>
<td>10800</td>
<td>10800</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>600</td>
<td>10800</td>
<td></td>
</tr>
<tr>
<td>E630</td>
<td>9</td>
<td>595</td>
<td>600</td>
<td>140G-NSOH3-E12</td>
<td>1200</td>
<td>720</td>
<td>6000</td>
<td>10800</td>
<td>10800</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>600</td>
<td>10800</td>
<td></td>
</tr>
<tr>
<td>E760</td>
<td>9</td>
<td>630</td>
<td>700</td>
<td>140G-NSOH3-E12</td>
<td>1200</td>
<td>750</td>
<td>6000</td>
<td>10800</td>
<td>10800</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>600</td>
<td>10800</td>
<td></td>
</tr>
<tr>
<td>E825</td>
<td>9</td>
<td>700</td>
<td>750</td>
<td>140G-NSOH3-E12</td>
<td>1200</td>
<td>840</td>
<td>6000</td>
<td>10800</td>
<td>10800</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>600</td>
<td>10800</td>
<td></td>
</tr>
<tr>
<td>E900</td>
<td>9</td>
<td>760</td>
<td>800</td>
<td>140G-NSOH3-E12</td>
<td>1200</td>
<td>900</td>
<td>6000</td>
<td>10800</td>
<td>10800</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>600</td>
<td>10800</td>
<td></td>
</tr>
<tr>
<td>E980</td>
<td>9</td>
<td>815</td>
<td>900</td>
<td>140G-NSOH3-E12</td>
<td>1200</td>
<td>960</td>
<td>6000</td>
<td>10800</td>
<td>10800</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>600</td>
<td>10800</td>
<td></td>
</tr>
<tr>
<td>E1K1(1)</td>
<td>10</td>
<td>920</td>
<td>1000</td>
<td>–</td>
</tr>
<tr>
<td>E1K4(1)</td>
<td>10</td>
<td>1190</td>
<td>1250</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) Contact the factory.
Table 31 - 690V AC Input Drive, Heavy-Duty Ratings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F265</td>
<td>8</td>
<td>215</td>
<td>200</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>--</td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D420EA11</td>
<td>RL-41508</td>
<td>RL-26503</td>
</tr>
<tr>
<td>F330</td>
<td>8</td>
<td>265</td>
<td>250</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>--</td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D420EA11</td>
<td>RL-41508</td>
<td>RL-26503</td>
</tr>
<tr>
<td>F370</td>
<td>8</td>
<td>308</td>
<td>300</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>420</td>
<td>4500</td>
<td>--</td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D420EA11</td>
<td>1321-3RC400-C</td>
<td>RL-41508</td>
</tr>
<tr>
<td>F415</td>
<td>8</td>
<td>370</td>
<td>355</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>--</td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D420EA11</td>
<td>1321-3RC400-C</td>
<td>RL-41508</td>
</tr>
<tr>
<td>F460</td>
<td>8</td>
<td>375</td>
<td>375</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>--</td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D420EA11</td>
<td>1321-3RC400-C</td>
<td>RL-41508</td>
</tr>
<tr>
<td>F500</td>
<td>8</td>
<td>413</td>
<td>400</td>
<td>140G-M0F3-D60</td>
<td>600</td>
<td>510</td>
<td>4500</td>
<td>--</td>
<td>140G-M653-D80</td>
<td>800</td>
<td>100-D420EA11</td>
<td>1321-3RC400-C</td>
<td>RL-41508</td>
</tr>
<tr>
<td>F590</td>
<td>9</td>
<td>460</td>
<td>450</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>540</td>
<td>6000</td>
<td>10800</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>F650</td>
<td>9</td>
<td>500</td>
<td>500</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>600</td>
<td>6000</td>
<td>10800</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>F710</td>
<td>9</td>
<td>590</td>
<td>560</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>690</td>
<td>6000</td>
<td>10800</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>F765</td>
<td>9</td>
<td>650</td>
<td>630</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>780</td>
<td>6000</td>
<td>10800</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>F795</td>
<td>9</td>
<td>750</td>
<td>710</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>900</td>
<td>6000</td>
<td>10800</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>F960</td>
<td>9</td>
<td>795</td>
<td>800</td>
<td>140G-NS0H3-E12</td>
<td>1200</td>
<td>930</td>
<td>6000</td>
<td>10800</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>F1K0(1)</td>
<td>10</td>
<td>865</td>
<td>900</td>
<td>--</td>
</tr>
<tr>
<td>F1K4(1)</td>
<td>10</td>
<td>1160</td>
<td>1120</td>
<td>--</td>
</tr>
</tbody>
</table>

(1) Contact the factory.
Notes:
History of Changes

This appendix summarizes the revisions to this manual. Reference this appendix if you need information to determine what changes have been made across multiple revisions. This may be especially useful if you are deciding to upgrade your hardware based on information added with previous revisions of this manual.

750-TG001F-EN-P, December 2017

Table 32 - 750-TG001F-EN-P, November 2017

<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added cross-reference pages (hot links) to the preventive maintenance table for maintenance items.</td>
</tr>
<tr>
<td>Updated maintenance topic names to correlate with maintenance section names.</td>
</tr>
<tr>
<td>Removed Power Switching Components, Control Pod Components Enhancements, and Operational Conditions from the maintenance table.</td>
</tr>
<tr>
<td>Updated section Maintenance of Industrial Control Equipment to have the most current descriptions.</td>
</tr>
<tr>
<td>Added publication reference for Cabinet Blower Exhaust Removal/Installation.</td>
</tr>
<tr>
<td>Separated IP54 and IP20 maintenance tasks.</td>
</tr>
<tr>
<td>Updated CH.3 to include notes for result readings from the reverse base diode tests.</td>
</tr>
<tr>
<td>Updated images of the inverter front cover. Access panel has been removed; P6 connector no longer accessible.</td>
</tr>
</tbody>
</table>

750-TG001E-EN-P, July 2012

Table 33 - 750-TG001E-EN-P, July 2012

<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated the Spare Part Compatibility with Series A and Series B Drives table to include a new Series B Converter Unit part number.</td>
</tr>
<tr>
<td>Updated the Converter Components Identification table to reflect the addition of the stirring fan kit.</td>
</tr>
<tr>
<td>Updated the Converter Assembly Components Diagram 2 to reflect the addition of the stirring fan kit.</td>
</tr>
<tr>
<td>Added the new Converter Gate Board Stirring Fan Removal/Installation procedure.</td>
</tr>
<tr>
<td>Updated the 24V/240V Power Wire Harness Removal/Installation procedure to include disconnecting the stirring fan.</td>
</tr>
<tr>
<td>Updated the DC Input with Precharge Assembly Components Identification table to reflect the addition of the stirring fan kit.</td>
</tr>
<tr>
<td>Updated the DC Input with Precharge Assembly Components Diagram 2 to reflect the addition of the stirring fan kit.</td>
</tr>
<tr>
<td>Updated the 24V/120V/240V Wire Harness Removal/Installation procedure to include disconnecting the stirring fan.</td>
</tr>
</tbody>
</table>
Appendix D History of Changes

Table 33 750-TG001E-EN-P, July 2012

| Topic |
|-------|---|
| Added the new DC Precharge Control Board Stirring Fan Removal/Installation procedure. |
| Updated the Converter Schematic Diagram (400VAC and 600VAC Classes AC Input Drive) to reflect the addition of the stirring fan. |
| Updated the DC Input with Precharge Assembly Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes Common DC Input Drives) to reflect the addition of the stirring fan. |

750-TG001D-EN-P, April 2012

Table 34 750-TG001D-EN-P, April 2012

| Topic |
|-------|---|
| Added illustrations of Frame 10 drives to the “Drive Input Power Configurations” section. |
| Updated the “Drive Series Components Compatibility” section to include frame 10 drives. |
| Updated the “Maintenance of Industrial Control Equipment” table to include filters for the IP54 cabinet blower assembly. |
| Removed the Series A Converter EMC Filter Board from the “Converter Components Identification” table. |
| Removed the Series A Converter Current Sensor kit from the “Converter Components Identification” table. |
| Added the Three Bay 24V Wire Harness kit for frame 10 drives to the “Converter Components Identification” table. |
| Updated the “Control Power Isolator Board Removal/Installation (600/690V AC Input Drives Only)” procedures to include steps for frame 10 drives. |
| Added the Three Bay 24V Wire Harness kit for frame 10 drives to the “DC Input with Precharge Assembly Components Identification” table. |
| Updated the “Control Power Isolator Board Removal/Installation (810/932V DC Input Drives Only)” procedures to include steps for frame 10 drives. |
| Added the Cabinet L Bus Bar kit to the “AC Input Drive Enclosure Components Identification” table. |
| Added the Cabinet Door Shield Kit (Frame 10) to the “AC Input Drive Enclosure Components Identification” table. |
| Added the “Cabinet L Bus Bars Removal/Installation” AC input enclosure procedures. |
| Added the “Cabinet Door EMC Shield Removal/Installation (Frame 10 Drives Only)” AC input enclosure procedures. |
| Added the Circuit Breaker kit to the “Common DC Input Drive Enclosure Components Identification” table. |
| Added the Lockout Attachment kit to the “Common DC Input Drive Enclosure Components Identification” table. |
| Updated the “Enclosure Cable Components and Part Numbers” table to include the 3-Bay 24V Wire Harness Kit. |
| Added the new Third Inverter (INV3) Fiber-optic Cable Removal/Installation procedure. |
| Added the “Frame 10 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes)”. |
| Added the “Frame 10 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes)”. |
| Updated the “Frame 8 Control Power Isolator Board Wiring Diagrams (600V AC Class AC Input Drive, and 810V DC and 932V DC Classes Common DC Input Drive)” for frame 10 drives. |
| Corrected the terminal labels on “Inverter Main Blower and Capacitor Bank Cooling Fan Wire Harness Diagram”. |
| Added the “Cabinet Cooling Wiring Diagrams”. |
750-TG001C-EN-P, January 2012

Table 35 - 750-TG001C-EN-P, January 2012

<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated the Converter Components Identification table to include the new kits for 600/690V AC input drives.</td>
</tr>
<tr>
<td>Updated the Converter Assembly Components Diagram 2 to include the new Control Power Isolation board.</td>
</tr>
<tr>
<td>Updated the Surge-suppressor Sense Wire Harness Removal/Installation procedure to reflect the addition of the new Control Power Isolation board and 24V wire harness for 600/690V AC input drives.</td>
</tr>
<tr>
<td>Updated the Surge Suppressor Removal/Installation procedure to reflect the addition of the new Control Power Isolation board and 24V wire harness for 600/690V AC input drives.</td>
</tr>
<tr>
<td>Updated the Surge Suppressor Assembly Removal/Installation procedure to reflect the addition of the new Control Power Isolation board and 24V wire harness for 600/690V AC input drives.</td>
</tr>
<tr>
<td>Added the new Control Power Isolator Board 24V Wire Harness Removal/Installation (600/690V AC Input Drives Only) procedure.</td>
</tr>
<tr>
<td>Added the new Control Power Isolator Board Removal/Installation (600/690V AC Input Drives Only) procedure.</td>
</tr>
<tr>
<td>Added the new Control Power Isolator Board 24V Wire Harness Removal/Installation (810/932V DC Input Drives Only) procedure.</td>
</tr>
<tr>
<td>Added the new Control Power Isolator Board Removal/Installation (810/932V DC Input Drives Only) procedure.</td>
</tr>
<tr>
<td>Updated the Undervoltage Delay Bracket Removal/Installation procedure to reflect the addition of the new Control Power Isolation board.</td>
</tr>
<tr>
<td>Updated the Inverter Components Identification table to include the new kits for 600/690V AC input drives.</td>
</tr>
<tr>
<td>Updated the following schematic diagrams in Appendix A Schematics to reflect the addition of 600/690V AC input and 810/932V DC input drives:</td>
</tr>
<tr>
<td>- Frame 8 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes)</td>
</tr>
<tr>
<td>- Frame 9 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes)</td>
</tr>
<tr>
<td>- Frame 8 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes)</td>
</tr>
<tr>
<td>- Frame 9 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes)</td>
</tr>
<tr>
<td>- Converter Schematic Diagram (400VAC and 600VAC Classes AC Input Drive)</td>
</tr>
<tr>
<td>- DC Input with Precharge Assembly Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes Common DC Input Drives)</td>
</tr>
<tr>
<td>- Inverter Circuit Board Schematic Diagram (All Drive Configurations)</td>
</tr>
<tr>
<td>- Inverter Power Layer Schematic Diagram (All Drive Configurations)</td>
</tr>
</tbody>
</table>
| Added the following new schematic diagram to Appendix A Schematics:
| - Frame 8 Control Power Isolator Board Wiring Diagrams (600V AC Class AC Input Drive, and 810V DC and 932V DC Classes Common DC Input Drive) |
| Added the new History of Changes appendix. |

750-TG001B-EN-P, October 2011

Table 36 - 750-TG001B-EN-P, October 2011

<table>
<thead>
<tr>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated the lockout/tagout procedure to include steps for common DC input drives.</td>
</tr>
<tr>
<td>Added the new “Drive Input Power Configurations” section to provide general information on identifying the main drive components for each available configuration.</td>
</tr>
<tr>
<td>Added the new “Drive Series Components Compatibility” section to provide important information about drive component compatibility based on the drive series designator.</td>
</tr>
<tr>
<td>Updated the list of “Commonly Used Tools” to include additional required tool sizes.</td>
</tr>
</tbody>
</table>
Table 36 - 750-TG001B-EN-P, October 2011 (continued)

<table>
<thead>
<tr>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated the “Fastener/Tool/Torque Information” table to include the Pozidriv fastener and tool types.</td>
</tr>
<tr>
<td>Updated the “Component Inspection and Maintenance” procedure to include common DC input drives.</td>
</tr>
<tr>
<td>Added the “DC Precharge Assembly Fuse Tests” procedure.</td>
</tr>
<tr>
<td>Added the “Fiber-optic Cable Removal/Installation (Frame 8)” procedures to Chapter 4.</td>
</tr>
<tr>
<td>Added the new “DC Input with Precharge Assembly Component Replacement Procedures” chapter.</td>
</tr>
<tr>
<td>Added the new “Inverter Top DC Bus Bar Removal/Installation (Common DC Input Drive Only)” to Chapter 7.</td>
</tr>
<tr>
<td>Updated the “IP20, NEMA/UL Type 1 Enclosure Door Fan Removal/Installation” procedure to include an additional required step.</td>
</tr>
<tr>
<td>Added the “DC Bus Fuse Wire Harness Removal/Installation (Frame 9 and Larger Drives Only)” procedure.</td>
</tr>
<tr>
<td>Added the “DC Bus Fuses and Fuse Indicators Removal/Installation (Frame 9 and Larger Drives Only)” procedure.</td>
</tr>
<tr>
<td>Added the “Input Common-mode Core Removal/Installation (Frame 9 and Larger, Common DC Input Drives Only)” procedure.</td>
</tr>
<tr>
<td>Added the new “Common DC Input Drive Enclosure Component Replacement Procedures” chapter.</td>
</tr>
<tr>
<td>Added the new “Enclosure Cable Components Replacement Procedures (Frame 9 and Larger Drives)” chapter.</td>
</tr>
<tr>
<td>Updated the “Before Applying Power to the Drive” procedure to include steps for common DC input drives.</td>
</tr>
<tr>
<td>Added the following new schematic diagrams to Appendix A Schematics:</td>
</tr>
<tr>
<td>- Frame 8 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes)</td>
</tr>
<tr>
<td>- Frame 9 AC Input Drive Schematic Diagram (400VAC and 600VAC Classes)</td>
</tr>
<tr>
<td>- Frame 8 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes)</td>
</tr>
<tr>
<td>- Frame 9 Common DC Input Drive Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes)</td>
</tr>
<tr>
<td>- DC Input with Precharge Assembly Schematic Diagram (540V DC, 650V DC, 810V DC, and 932V DC Classes Common DC Input Drives)</td>
</tr>
<tr>
<td>- DC Input with Precharge Devices Schematic Diagrams</td>
</tr>
<tr>
<td>- DC Input with Precharge Assembly Control Transformer Schematic Diagram</td>
</tr>
<tr>
<td>Updated the following schematic diagrams in Appendix A Schematics:</td>
</tr>
<tr>
<td>- Control Pod Schematic Diagram</td>
</tr>
<tr>
<td>- Converter Schematic Diagram (400VAC and 600VAC Classes AC Input Drive)</td>
</tr>
<tr>
<td>- Inverter Circuit Board Schematic Diagram (All Drive Configurations)</td>
</tr>
<tr>
<td>- Inverter Power Layer Schematic Diagram (All Drive Configurations)</td>
</tr>
</tbody>
</table>
Index

Numerics

120/240V circuit breaker (DC input drive)
install 340
remove 341

120/240V control power input wire harness
(DC input drive)
install 338
remove 339

120/240V control power output wire harness
(DC input drive)
install 339
remove 340

120V UPS power input wire harness (DC input
drive)
install 342
remove 343

24V control wire harness (DC input drives)
install 189
remove 187

24V wire harness (frame 9 and larger drives)
install 402
remove 398

24V/120V/240V wire harness (DC input drives)
install 200
remove 195

24V/240V power wire harness
install 137
remove 132

A

AC line fuse sense wire harness
install 98
remove 97

AC line fuses
install 101
remove 99

AC line wire harness
install 124
remove 123

B

backplane circuit board (inverter)
install 267
remove 265

blower assembly 307

board interconnections
inverter 446

bottom conduit plate (option bay)
install 395
remove 395

C

cabinet blower assembly (frame 9 option bay)
install 374
remove 374

cabinet blower exhaust filter
install 312
remove 312

cabinet blower relay (frame 9 option bay)
install 391
remove 391

cabinet blower wire harness (AC input
closeup)
install 311
remove 310

cabinet blower wire harness (frame 9 option
bay)
install 376
remove 375

cabinet door EMC shield
install 329
remove 327

cabinet door filter cassette
install 316
remove 316

cabinet door gasket
install 317
remove 317

cabinet L bus bars
install 327
remove 326

cable components
part numbers 397

capacitor balance resistors
install 249
remove 248

capacitor bank assembly (inverter)
install 248
remove 246

catalog numbers
control pod components 57
converter components 82
DC input with precharge assembly
components 158
inverter components 228

circuit boards
series A and B 31

circuit breaker disconnect handle panel
(frame 8 option bay)
install 350
remove 348

common mode core assembly (inverter)
install 233
remove 233
compatibility
firmware versions and components 31
contactor wire harness (frame 8 option bay)
install 372
remove 371
control board interconnections 448
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>control panel thermostat wire harness (frame 9 option bay)</td>
</tr>
<tr>
<td>control pod</td>
</tr>
<tr>
<td>control pod cables</td>
</tr>
<tr>
<td>control pod components</td>
</tr>
<tr>
<td>control power isolator board (converter)</td>
</tr>
<tr>
<td>control power isolator board (DC input with precharge)</td>
</tr>
<tr>
<td>control power isolator board 24V wire harness (converter)</td>
</tr>
<tr>
<td>control power isolator board 24V wire harness (DC input with precharge)</td>
</tr>
<tr>
<td>control transformer (converter)</td>
</tr>
<tr>
<td>control transformer (DC input drives)</td>
</tr>
<tr>
<td>control transformer (frame 8 option bay)</td>
</tr>
<tr>
<td>control transformer (frame 9 option bay)</td>
</tr>
<tr>
<td>control transformer fuses (option bay)</td>
</tr>
<tr>
<td>control transformer primary fuses (converter)</td>
</tr>
<tr>
<td>control transformer primary wire harness (converter)</td>
</tr>
<tr>
<td>control transformer secondary fuse (converter)</td>
</tr>
<tr>
<td>control transformer secondary fuses (DC input drives)</td>
</tr>
<tr>
<td>control transformer wire harness (frame 8 option bay)</td>
</tr>
<tr>
<td>converter</td>
</tr>
<tr>
<td>converter components</td>
</tr>
<tr>
<td>converter fuse</td>
</tr>
<tr>
<td>current sensor wire harness (converter)</td>
</tr>
<tr>
<td>current sensor wire harness (inverter)</td>
</tr>
<tr>
<td>current sensors (converter)</td>
</tr>
<tr>
<td>current sensors (inverter)</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>DC back bus guards</td>
</tr>
<tr>
<td>DC bus fuse wire harness</td>
</tr>
<tr>
<td>DC bus fuses and fuse indicators</td>
</tr>
<tr>
<td>DC bus input wire harness (DC input drives)</td>
</tr>
<tr>
<td>DC bus out/sense wire harness (DC input drives)</td>
</tr>
<tr>
<td>DC bus sense wire harness (converter)</td>
</tr>
<tr>
<td>DC choke (AC input drive)</td>
</tr>
<tr>
<td>DC input with precharge assembly</td>
</tr>
<tr>
<td>DC input with precharge assembly components</td>
</tr>
<tr>
<td>DC input with precharge assembly fuse tests</td>
</tr>
<tr>
<td>DC line fuses</td>
</tr>
<tr>
<td>DC precharge control circuit board</td>
</tr>
</tbody>
</table>
Index

debris screen (drive bay)
install 303
remove 303

digital I/O wire harness (DC input drives)
install 219
remove 218

discharge resistor assembly
install 297
remove 291

disconnect switch handle (DC input drive)
install 203
remove 203

disconnect switch jumper wires
install 202
remove 201

disconnect switch, auxiliary contact and handle shaft
install 203
remove 202

door interlock wire harness
install 218
remove 216

drive
remove power 25

drive enclosure (AC input) components
part numbers 302

drive enclosure (common DC input) components
part numbers 332

drive input power configurations 28

drive series compatibility 30

drive start-up test without a motor (no load) 421

duct gasket (converter)
install 156
remove 155

duct gasket (DC input with precharge assembly)
install 225
remove 225

E
EMC capacitors (AC input drive)
install 271
remove 268

EMC filter circuit board (converter)
install 94
remove 93

enclosure door fan (AC input drive)
install 308
remove 306, 307

enclosure door fan (DC input drive)
install 334
remove 333

enclosure door fan wire harness (AC input drive)
install 309, 310

enclosure door fan wire harness (DC input drive)
install 336

exhaust hood 307

exhaust hood (drive bay)
install 304
remove 304

F
fastener types 33

fiber interface board
install 79
remove 73

fiber-optic cable (frame 8)
install 64
remove 61

fiber-optic spool
install 418
remove 416

filter (IP20 door, AC input drive)
install 313
remove 313

firmware versions and components
compatibility 31

first inverter (INV1) fiber-optic cable
install 406
remove 403

front cover (inverter)
install 240
remove 239

G
gate board connection ribbon cables (inverter)
install 253
remove 251

gate circuit board (converter)
install 151
remove 149

gate circuit board (inverter)
install 254
remove 253

gate leads
resistance measurements 53

H
heat sink gasket (converter)
install 121
remove 120

heat sink fan
inspection 48

heat sink fan assembly
install 237
remove 236

heat sink fan inlet bottom cover (inverter)
install 298
remove 298

heat sink fan inlet screen
inspection 48
install 235
remove 235
IGBT flex bus bars	install 251
	remove 250
input common mode core (common DC input drives)	install 250
	remove 250
input common mode core (frame 9 and larger drives)	install 325
	remove 323
inspect	components 48
install	120/240V circuit breaker (DC input drive) 340
	120/240V control power input wire harness (DC input drive) 338
	120/240V control power output wire harness (DC input drive) 339
	120V UPS power input wire harness (DC input drive) 342
	24V control wire harness (DC input drives) 189
	24V wire harness (frame 9 and larger drives) 402
	24V/120V/240V wire harness (DC input drives) 200
	24V/240V power wire harness 137
	AC line fuse sense wire harness 98
	AC line fuses 101
	AC line wire harness 124
	backplane circuit board (inverter) 267
	bottom conduit plate (option bay) 395
	cabinet blower assembly (frame 9 option bay) 374
	cabinet blower exhaust filter 312
	cabinet blower wire relay (frame 9 option bay) 391
	cabinet blower wire harness (AC input enclosure) 311
	cabinet blower wire harness (frame 9 option bay) 376
	cabinet door EMC shield 329
	cabinet door filter cassette 316
	cabinet door gasket 317
	cabinet L bus bars 327
	capacitor balance resistors 249
	capacitor bank assembly (inverter) 248
	circuit breaker disconnect handle panel (frame 8 option bay) 350
	common mode core assembly (inverter) 233
	contactor wire harness (frame 8 option bay) 372
	control panel thermostat wire harness (frame 9 option bay) 393
	control pod 59, 72
	control pod cables 60
	control power isolator board (converter) 149
	control power isolator board (DC input with precharge) 209
	control power isolator board 24V wire harness (converter) 147
	control power isolator board 24V wire harness (DC input with precharge) 208
	control transformer (converter) 142
	control transformer (DC input drives) 207
	control transformer (frame 8 option bay) 366
	control transformer (frame 9 option bay) 381
	control transformer fuses (option bay) 361
	control transformer primary fuses (converter) 91
	control transformer primary wire harness (converter) 140
	control transformer secondary fuse (converter) 92
	control transformer secondary fuses (DC input drives) 172, 173
	control transformer wire harness (frame 8 option bay) 370
	converter 155
	current sensor wire harness (converter) 104
	current sensor wire harness (inverter) 245
	current sensors (converter) 109
	current sensors (inverter) 242
	DC back bus guards 337
	DC bus fuse wire harness 145, 319
	DC bus fuses and fuse indicators 322
	DC bus input wire harness (DC input drives) 184
	DC bus out/sense wire harness (DC input drives) 177
	DC bus sense wire harness (converter) 103
	DC choke (AC input drive) 287
	DC input with precharge assembly 225
	DC line fuses 181
	DC precharge control circuit board 221
	digital I/O wire harness (DC input drives) 219
	discharge resistor assembly 297
	disconnect switch handle (DC input precharge) 203
	disconnect switch jumper wires 202
	disconnect switch, auxiliary contact and handle shaft 203
	door interlock wire harness 218
	duct gasket (converter) 156
	duct gasket (DC input with precharge assembly) 225
	EMC capacitors (AC input drive) 271
	EMC filter circuit board (converter) 94
	enclosure door fan (AC input drive) 308
	enclosure door fan (DC input drive) 334
	enclosure door fan wire harness (AC input drive) 309, 310
	enclosure door fan wire harness (DC input drive) 336
	exhaust hood (drive bay) 304
	fiber interface board 79
	fiber-optic cable (frame 8) 64
	fiber-optic spool 418
	filter (IP20 door, AC input drive) 313
	first inverter (INV1) fiber-optic cable 406
	front cover (inverter) 240
	gate board connection ribbon cables (inverter) 253
	gate circuit board (converter) 151
	gate circuit board (inverter) 254
	heat sink gasket (converter) 121
	heatsink fan assembly 237
	heatsink fan inlet bottom cover (inverter) 298
	heatsink fan inlet screen 235
IGBT flex bus bars 251
input common mode core (common DC input drives) 344
input common mode core (frame 9 and larger drives) 325
internal stirring fan tray (inverter) 234
IP20 door fan (frame 8 option bay) 352
IP20 door fan wire harness (frame 8 option bay) 354
IP20 door filter (AC input drive) 313
IP54 cabinet blower assembly (frame 8 option bay) 362
IP54 cabinet blower wire harness (frame 8 option bay) 364
IP54 cabinet exhaust blower filter (option bay) 355
left cover (converter) 87
left cover (DC input drives) 163
left wall (DC input drives) 185
main control board 68
main control panel wire harness (frame 9 option bay) 385
molded case switch control wire harness (DC input drives) 192
molded case switch wire terminal support (DC input drives) 186
no DC bus fuse wire harness 143
option bay guard (frame 8) 356
option bay guards - series B (frame 9) 358
option bay guards - series C (frame 9) 360
power control circuit board 264
power layer interface circuit board 258
power supply circuit board 261
power supply wire harness (inverter) 122
precharge circuit fuses (DC input drives) 182
precharge resistor assembly (DC input drives) 179
precharge resistor jumper wires (DC input drives) 179
rating plug 256
reactor fan tray (frame 9 option bay) 387
reactor fan tray wire harness (frame 9 option bay) 391
right cover, no control pod (converter) 88
right cover, no control pod (DC input drives) 172
SCR assembly (converter) 120
SCR gate wire harness (converter) 110
second inverter (INV2) fiber-optic cable 411
side DC bus bars (inverter - AC input drive) 279
stirring fan (converter) 132
stirring fan (DC input with precharge assembly) 216
surge suppressor 127
surge suppressor assembly 130
surge suppressor sense wire harness 125
thermostat and wire harness (frame 8 option bay) 373
thermostat and wire harness (frame 9 option bay) 379
third inverter (INV3) fiber-optic cable 416
top conduit plate (drive bay) 305
top DC bus bars (inverter - DC input drive) 284
transformer primary wire harness (DC input drives) 193
undervoltage delay 215
undervoltage delay bracket 212
undervoltage delay wire harness 213
wire harness (inverter) 290
interconnections
control board 448
internal stirring fan tray (inverter) 234
install 234
remove 234
inverter board interconnections 446
inverter components
catalog numbers 228
part numbers 228
IP20 door fan (frame 8 option bay) 352
install 352
remove 351
IP20 door fan wire harness (frame 8 option bay) 354
install 354
remove 353
IP20 door filter (AC input drive) 313
install 313
remove 313
IP54 cabinet blower assembly (frame 8 option bay) 362
install 362
remove 362
IP54 cabinet blower wire harness (frame 8 option bay) 364
install 364
remove 363
IP54 cabinet exhaust blower filter (option bay) 355
install 355
remove 355
IP54, NEMA 12 Cabinet
blower assembly 307
exhaust hood 307

L
left cover (converter)
install 87
remove 87
left cover (DC input drives)
install 163
remove 163
replace 164
left wall (DC input drives)
install 185
remove 184
Index

M
main control board
install 68
remove 65
main control panel wire harness (frame 9 option bay)
install 385
remove 381
maintenance
schedule 43, 45
tasks 43, 45
molded case switch control wire harness (DC input drives)
install 192
remove 190
molded case switch wire terminal support (DC input drives)
install 186
remove 186
no DC bus fuse wire harness
install 143
remove 143
O
option bay enclosure components
part numbers 346
option bay guard (frame 8)
install 356
remove 356
option bay guards - series B (frame 9)
install 358
remove 357
option bay guards - series C (frame 9)
install 360
remove 359
P
part numbers
cable components 397
control pod components 57
converter components 82
DC input with precharge assembly components 158
drive enclosure (AC input) components 302
drive enclosure (common DC input) components 332
inverter components 228
option bay enclosure components 346
power control circuit board
install 264
remove 262
power layer interface circuit board
install 258
remove 256
power supply circuit board
install 261
Remove 258
power supply wire harness (inverter)
install 122
remove 121
precautions 24
precharge circuit fuses (DC input drives)
install 182
remove 182
precharge resistor assembly (DC input drives)
install 179
remove 178
precharge resistor jumper wires (DC input drives)
install 179
remove 179
R
rating plug
install 256
remove 255
reactor fan tray (frame 9 option bay)
install 387
remove 386
reactor fan tray wire harness (frame 9 option bay)
install 391
remove 389
remove
120/240V circuit breaker (DC input drive) 341
120/240V control power input wire harness (DC input drive) 339
120/240V control power output wire harness (DC input drive) 340
120V UPS power input wire harness (DC input drive) 343
24V control wire harness (DC input drives) 187
24V wire harness (frame 9 and larger drives) 398
24V/120V/240V wire harness (DC input drives) 195
24V/240V power wire harness 132
AC line fuse sense wire harness 97
AC line fuses 99
AC line wire harness 123
backplane circuit board (inverter) 265
bottom conduit plate (option bay) 395
Cabinet blower assembly (frame 9 option bay) 374
Cabinet blower exhaust filter 312
Cabinet blower relay (frame 9 option bay) 391
Cabinet blower wire harness (AC input enclosure) 310
Cabinet blower wire harness (frame 9 option bay) 375
Cabinet door EMC shield 327
Cabinet door filter cassette 316
Cabinet door gasket 317
Cabinet L bus bars 326
Capacitor balance resistors 248
Capacitor bank assembly (inverter) 246
Circuit breaker disconnect handle panel (frame 8 option bay) 348
Common mode core assembly (inverter) 233
Index

- contactor wire harness (frame 8 option bay) 371
- control panel thermostat wire harness (frame 9 option bay) 392
- control pod 59, 68
- control pod cables 60
- control power isolator board (converter) 148
- control power isolator board (DC input with precharge) 208
- control power isolator board 24V wire harness (converter) 146
- control power isolator board 24V wire harness (DC input with precharge) 207
- control transformer (converter) 140
- control transformer (DC input drives) 204
- control transformer (frame 8 option bay) 364
- control transformer (frame 9 option bay) 380
- control transformer fuses (option bay) 361
- control transformer primary fuses (converter) 91
- control transformer primary wire harness (converter) 138
- control transformer secondary fuse (converter) 92
- control transformer wire harness (frame 8 option bay) 366
- converter 152
- current sensor wire harness (converter) 103
- current sensor wire harness (inverter) 243
- current sensors (converter) 105
- current sensors (inverter) 240
- DC back bus guards 336
- DC bus fuse wire harness 144, 318
- DC bus fuses and fuse indicators 320
- DC bus input wire harness (DC input drives) 183
- DC bus out/sense wire harness (DC input drives) 174
- DC bus sense wire harness (converter) 101
- DC choke (AC input drive) 285
- DC input with precharge assembly 222
- DC line fuses 180
- DC precharge control circuit board 220
- debris screen (drive bay) 303
- digital I/O wire harness (DC input drives) 218
- discharge resistor assembly 291
- disconnect switch handle (DC input drive) 203
- disconnect switch jumper wires 201
- disconnect switch, auxiliary contact and handle shaft 202
- door interlock wire harness 216
- duct gasket (converter) 155
- duct gasket (DC input with precharge assembly) 225
- EMC capacitors (AC input drive) 268
- EMC filter circuit board (converter) 93
- enclosure door fan (AC input drive) 306, 307
- enclosure door fan (DC input drive) 333
- enclosure door fan wire harness (DC input drive) 334
- exhaust hood (drive bay) 304
- fiber interface board 73
- fiber-optic cable (frame 8) 61
- fiber-optic spool 416
- filter (IP20 door, AC input drive) 313
- first inverter (INV1) fiber-optic cable 403
- front cover (inverter) 239
- gate board connection ribbon cables (inverter) 251
- gate circuit board (converter) 149
- gate circuit board (inverter) 253
- heat sink gasket (converter) 120
- heatsink fan assembly 236
- heatsink fan inlet bottom cover (inverter) 298
- heatsink fan inlet screen 235
- IGBT flex bus bars 250
- input common mode core (common DC input drives) 343
- input common mode core (frame 9 and larger drives) 323
- internal stirring fan tray (inverter) 234
- IP20 door fan (frame 8 option bay) 351
- IP20 door fan wire harness (frame 8 option bay) 353
- IP20 door filter (AC input drive) 313
- IP54 cabinet blower assembly (frame 8 option bay) 362
- IP54 cabinet blower wire harness (frame 8 option bay) 363
- IP54 cabinet exhaust blower filter (option bay) 355
- left cover (converter) 87
- left cover (DC input drives) 163
- left wall (DC input drives) 184
- main control board 65
- main control panel wire harness (frame 9 option bay) 381
- molded case switch control wire harness (DC input drives) 190
- molded case switch wire terminal support (DC input drives) 186
- no DC bus fuse wire harness 143
- option bay guard (frame 8) 356
- option bay guards - series B (frame 9) 357
- option bay guards - series C (frame 9) 359
- power control circuit board 262
- power layer interface circuit board 256
- power supply circuit board 258
- power supply wire harness (inverter) 121
- precharge circuit fuses (DC input drives) 182
- precharge resistor assembly (DC input drives) 178
- precharge resistor jumper wires (DC input drives) 179
- rating plug 255
- reactor fan tray (frame 9 option bay) 386
- reactor fan tray wire harness (frame 9 option bay) 389
- right cover, no control pod (converter) 88
- right cover, no control pod (DC input drives) 172
- SCR assembly (converter) 111
- SCR gate wire harness (converter) 109
- second inverter (INV2) fiber-optic cable 407
- side DC bus bars (inverter - AC input drive) 272
- stirring fan (converter) 131
- stirring fan (DC input with precharge assembly) 215
- surge suppressor 126
- surge suppressor assembly 127
- surge suppressor sense wire harness 125
thermostat and wire harness (frame 8 option bay) 372
thermostat and wire harness (frame 9 option bay) 378
third inverter (INV3) fiber-optic cable 412
top conduit plate (drive bay) 305
top DC bus bars (inverter - DC input drive) 280
transformer primary wire harness (DC input drives) 194
undervoltage delay 214
undervoltage delay bracket 210
undervoltage delay wire harness 213
wire harness (inverter) 287
remove power
drive 25
replace
left cover (DC input drives) 164
resistance measurements
gate leads 53
return to service position
control pod 91
right cover, no control pod (converter)
install 88
remove 88
right cover, no control pod (DC input drives)
install 172
remove 172
rotate
control pod 88

S

schematic
control pod 434
control power isolator board wiring (600V AC/ 810V DC classes) 436, 437
control transformer (AC input drive) 442
control transformer (DC input drive) 442
converter 435
DC input with precharge 438
DC input with precharge devices 439
frame 10 AC input drive (400/600V class) 426
frame 10 DC input drive (540V, 650V, 810V and 932V classes) 429
frame 8 AC input drive (400/600V class) 424
frame 8 AC input IP20 option bay with a control transformer 431
frame 8 AC input IP20 option bay without a control transformer 430
frame 8 AC input IP54 option bay 432
frame 8 DC input drive (540V, 650V, 810V, and 932V classes) 427
frame 9 AC input drive (400/600V class) 425
frame 9 AC input option bay 433
frame 9 DC input drive (540V, 650V, 810V, and 932V classes) 428
inverter circuit board (400V class) 440
inverter power layer 441

SCR assembly (converter)
install 120
remove 111

SCR gate wire harness (converter)
install 110
remove 109

SCR/diode tests 49
second inverter (INV2) fiber-optic cable
install 411
remove 407
series A and B circuit boards 31
series specific components 30
service tools 32
side DC bus bars (inverter - AC input drive)
install 279
remove 272
software tools 32
stirring fan (converter)
install 132
remove 131
stirring fan (DC input with precharge assembly)
install 216
remove 215
surge suppressor
install 127
remove 126
surge suppressor assembly
install 130
remove 127
surge suppressor sense wire harness
install 125
remove 125

test
converter fuses 53
converter SCRs/diodes 51
DC input with precharge assembly fuses 55
inverter IGBTs 52
no motor (no load) 421
thermostat and wire harness (frame 8 option bay)
install 373
remove 372
thermostat and wire harness (frame 9 option bay)
install 379
remove 378
third inverter (INV3) fiber-optic cable
install 416
remove 412
tool type and size 33
top conduit plate (drive bay)
install 305
remove 305
top DC bus bars (inverter - DC input drive)
install 284
remove 280
transformer primary wire harness (DC input drives)
install 193
remove 194
Index

U
undervoltage delay
install 215
remove 214
undervoltage delay bracket
install 212
remove 210
undervoltage delay wire harness
install 213
remove 213

W
wire harness (inverter)
install 290
remove 287
Notes:
Rockwell Automation Support

Use the following resources to access support information.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Dial Codes</td>
<td>Find the Direct Dial Code for your product. Use the code to route your call directly to a technical support engineer.</td>
<td>http://www.rockwellautomation.com/global/support/direct-dial.page</td>
</tr>
</tbody>
</table>

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the How Are We Doing? form at http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002-en-c.pdf.

Allen-Bradley, Rockwell Software, and Rockwell Automation are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İcerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com