CU-FLEX - GENERAL TECHNICAL DATA

Rated current at $\mathbf{3 0}{ }^{\circ} \mathrm{C}[\mathrm{ln}]$					
FB25	FB50	FB100	$\mathbf{2 \times F B 1 0 0}$	FB243	$\mathbf{2 \times F B 2 4 3}$
190 A	295 A	420 A	645 A	690 A	1040 A

Dimensioning of Cu-flex is done just like wires according to IEC 60364-5-52, where the basic rated current [In] is corrected according to the surrounding temperature [K1] and the installation method [K2].

CUBIC have on top of that decided to add a correction factor [K3] taking into account the high temperatures that might be on the joint between Cu-flex and e.g. a busbar or component.

Dimension of Cu-flex: Iz $\geq \mathrm{lb}$
$\mathrm{Iz}=$ The corrected current of a wire (Cu-flex) $=\operatorname{In} \times \mathrm{K} 1 \times \mathrm{K} 2 \times \mathrm{K} 3$
In = Rated current at $30^{\circ} \mathrm{C}$
$\mathrm{lb}=$ Design current of a circuit [A]

K1	Correction factor for surrounding temperature arround the Cu-flex															
Surrounding temperature ${ }^{\circ} \mathrm{C}$	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
Correction factor	1.16	1.13	1.10	1.07	1.04	1.00	0.96	0.93	0.89	0.85	0.80	0.76	0.71	0.65	0.60	0.53

K2	Correction factor for installation method			
	Bonded		Bonded	
Cu-flex dimension	FB25 / FB50	FB100	FB240 / FB243	
Correction factor	0.80	0.85	0.90	1.0

The rated current values are verified by test at an ambient temperature around the Cu-flex of $30^{\circ} \mathrm{C}$.
The ratings are ajusted to 80% insulation temperature according to rules in IEC 61439-1,8.6.4 and table 4 about "Selection and installation of non-protected live conductors to reduce the possibility of short-circuits".

Cu-flex characteristics								
Type	FB25	FB50	FB50	FB50	FB100	FB100	FB243	FB243
Number of busbars	One	One	Two	Three	One	Two	One	Two
Rated operational voltage, U_{e} (IEC)	1000 V							
Rated voltage (UL)	600 V							
Rated frequency	$50-60 \mathrm{~Hz}$							
Cut off current ${ }^{1)^{2)}}$ Limited peak ${ }^{\left.1{ }^{12}\right)}$, (IEC)	30 kA	65 kA	105 kA					
Cut off current ${ }^{1{ }^{12}}$ Limited peak ${ }^{112)}$, (UL)	24 kA	64 kA						
Joule integral, $\mathrm{I}^{2} \mathrm{t}$ [Ás] (IEC)	2.1×10^{7}	6.0×10^{7}	2.4×10^{8}	5.4×10^{8}	2.4×10^{8}	9.6×10^{8}	1.3×10^{9}	5.5×10^{9}
Joule integral, $\mathrm{I}^{2} \mathrm{t}$ [$A^{2} \mathrm{~s}$] (UL)	8.3×10^{6}	3.3×10^{7}	1.3×10^{8}	3.0×10^{8}	1.3×10^{8}	5.3×10^{8}	7.6×10^{8}	3.0×10^{9}
1) For the sake of dynamic short-circuit influences, the spacers are fitted as shown.				${ }^{2)}$ At a prospective short-circuit current, the short-circuit protection devices must limit the peak to the values shown in the table above				
Insulation, character Rated voltage, (IEC) Rated voltage, (UL) Test voltage, (IEC) Test voltage, (UL)	ics	$\begin{array}{r} 1000 \mathrm{~V} \\ 600 \mathrm{~V} \\ 3500 \mathrm{~V} \\ 2200 \mathrm{~V} \end{array}$		Operating temperatu Flammabil Colour Dioxine Insulation	e max. y lass	$105^{\circ} \mathrm{C}$ UL 94 Vo, (Dark grey Green / yell None Reinforced to electrica between el	ame retard w insulation f componen ctrical com	nt) busbar and onents

$\begin{gathered} \text { Cu-flex type }+ \text { length } \\ =\text { type No.: } \end{gathered}$	Power loss [W] Rated current at $30{ }^{\circ} \mathrm{C}$													
Length in mm (in)	$\begin{aligned} & 160 \\ & (6.3) \end{aligned}$	$\begin{gathered} 224 \\ (8.82) \end{gathered}$	$\begin{gathered} 288 \\ (11.34) \end{gathered}$	$\begin{gathered} 352 \\ (13.86) \end{gathered}$	$\begin{gathered} 416 \\ (16.38) \end{gathered}$	$\begin{gathered} 480 \\ (18.9) \end{gathered}$	$\begin{gathered} 544 \\ (21.42) \end{gathered}$	$\begin{gathered} 608 \\ (23.94) \end{gathered}$	$\begin{gathered} 672 \\ (26.46) \end{gathered}$	$\begin{gathered} 736 \\ (28.98) \end{gathered}$	$\begin{gathered} 800 \\ (31.5) \end{gathered}$	$\begin{gathered} 864 \\ (34.02) \end{gathered}$	$\begin{gathered} 928 \\ (36.54) \end{gathered}$	$\begin{aligned} & 1120 \\ & (44.1) \end{aligned}$
$1 \times$ FB25	5.0	7.0	9.1	11.1	13.1	15.1	17.1	19.1	21.1	23.1	25.2	27.2	29.2	35.2
$1 \times$ FB50	6.4	9.0	11.6	14.2	16.7	19.3	21.9	24.5	27.0	29.6	32.2	34.8	37.3	45.1
$1 \times$ FB100	6.5	9.1	11.7	14.4	17.0	19.6	22.2	24.8	27.4	30.0	32.6	35.2	37.8	45.7
$2 \times$ FB100	7.7	10.8	13.8	16.9	20.0	23.1	26.2	29.2	32.3	35.4	38.5	41.5	44.6	53.8
$1 \times$ FB243	6.9	9.6	12.4	15.1	17.9	20.6	23.4	26.1	28.9	31.6	34.4	37.1	39.9	48.2
$2 \times$ FB243	7.8	10.9	14.1	17.2	20.3	23.4	26.6	29,7	32.8	35.9	39.1	42.2	45.3	54.7

