1606-XLS480E-3 24V, 20A; Three Phase Input

POWER SUPPLY

- Ultra-small size
- Extra-low inrush current
- Active power factor correction
- Wide range AC/DC input; auto select input
- Superior reserve power (can support 150% rated power for five seconds)
- Superior efficiency and temperature rating
- DC-OK and overload LED

1. GENERAL DESCRIPTION

The most outstanding features of this 1606-XLS DIN-rail power supply are the high efficiency and the small size, which are achieved by a synchronous rectification and further novel design details.

With short-term peak power capability of 150% and built-in large sized output capacitors, these features help start motors, charge capacitors and absorb reverse energy and often allow a unit of a lower wattage class to be used.

High immunity to transients and power surges as well as low electromagnetic emission makes usage in nearly every environment possible.

The integrated output power manager, a wide range input voltage design and virtually no input inrush current make installation and usage simple. Diagnostics are easy due to the dry DC-ok contact, a green DC-ok LED and red overload LED.

Unique quick-connect spring-clamp terminals allow a safe and fast installation and a large international approval package for a variety of applications makes this unit suitable for nearly every situation.

2. SPECIFICATION QUICK REFERENCE

<table>
<thead>
<tr>
<th>Output voltage</th>
<th>DC 24V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment range</td>
<td>24-28V</td>
</tr>
<tr>
<td>Output current</td>
<td>20A Continuous, 24V</td>
</tr>
<tr>
<td></td>
<td>30A For typ. 4s, 24V</td>
</tr>
<tr>
<td>Output power</td>
<td>480W Continuous, 24V</td>
</tr>
<tr>
<td></td>
<td>720W For typ. 4s, 24V</td>
</tr>
<tr>
<td>Output ripple</td>
<td>< 100mVpp 20Hz to 20MHz</td>
</tr>
<tr>
<td>Input voltage</td>
<td>AC 380-480V ±15%</td>
</tr>
<tr>
<td>Line frequency</td>
<td>50-60Hz ±6%</td>
</tr>
<tr>
<td>AC Input current</td>
<td>0.79 / 0.65A At 3x400 / 480Vac</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.94 / 0.95 At 3x400 / 480Vac</td>
</tr>
<tr>
<td>AC Inrush current</td>
<td>typ. 3A peak</td>
</tr>
<tr>
<td>Efficiency</td>
<td>95.0 / 94.8% At 3x400 / 480Vac</td>
</tr>
<tr>
<td>Losses</td>
<td>25.3 / 26.4W At 3x400 / 480Vac</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-25°C to +70°C Operational</td>
</tr>
<tr>
<td>Derating</td>
<td>12W°C +60 to +70°C</td>
</tr>
<tr>
<td>Hold-up time</td>
<td>typ. 22 / 22ms At 3x400 / 480Vac</td>
</tr>
<tr>
<td>Dimensions</td>
<td>65x124x127mm WxHxD</td>
</tr>
<tr>
<td>Output voltage</td>
<td>DC 24V</td>
</tr>
<tr>
<td>Adjustment range</td>
<td>24-28V</td>
</tr>
</tbody>
</table>

3. AGENCY APPROVALS

- UL US LISTED IND. CONT. EQ.
 - UL 508
 - UL 60950-1

- CE
 - Class I Div 2
 - EMC, LVD
 - C N223

4. RELATED PRODUCTS

- 1606-XLS-480E-3C Conformal coated unit
- 1606-XLB Wall mount bracket
- 1606-XLSRED Redundancy Module
- 1606-XLBUFFER Buffer unit
INDEX | PAGE | INDEX | PAGE
--- | --- | --- | ---
1. General Description | 1 | 22. Fulfilled Standards | 15
2. Specification Quick reference | 1 | 23. Used Substances | 15
3. Agency Approvals | 1 | 24. Physical Dimensions and Weight | 15
4. Related Products | 1 | 25. Installation and Operation Instructions | 16
5. AC-Input | 3 | 26. Accessories | 17
6. DC-Input | 4 | 27. Application Notes | 18
7. Input Inrush Current | 4 | 27.1. Repetitive Pulse Loading | 18
8. Output | 4 | 27.2. Peak Current Capability | 19
10. DC-OK Relay Contact | 8 | 27.4. Charging of Batteries | 19
11. Efficiency and Power Losses | 8 | 27.5. Output Circuit Breakers | 20
13. Product Face Label | 10 | 27.7. 2-Phase Operation | 21
15. Reliability | 11 | 27.9. Parallel Use for Redundancy | 22
16. EMC | 12 | 27.10. Daisy Chaining of Outputs | 22
17. Environment | 13 | 27.11. Series Operation | 23
19. Safety | 14 | 27.13. Use in a Tightly Sealed Enclosure | 23
21. Approvals | 15

INTENDED USE
Those responsible for the application and use of the products must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including and applicable laws, regulation, codes, and standards.

TERMINOLOGY AND ABBREVIATIONS

PE and ♂ symbol
PE is the abbreviation for Protective Earth and has the same meaning as the symbol ♂.

Earth, Ground
This document uses the term “earth” which is the same as the U.S. term “ground”.

T.b.d.
To be defined, value or description will follow later.

AC 400V
A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually ±15%) included.
E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V)
As long as not otherwise stated, AC 380V and AC 400V parameters are valid at 50Hz and AC 480V parameters are valid at 60Hz mains frequency.

400Vac
A figure with the unit (Vac) at the end is a value without any additional tolerances included.

400Vac

PELV
Protective Extra Low Voltage

SELV
Safety Extra Low Voltage

DISCLAIMER
The information presented in this document is believed to be accurate and reliable and may change without notice.
5. AC-INPUT

AC input

<table>
<thead>
<tr>
<th>nom.</th>
<th>3AC 380-480V</th>
<th>Wide-range input, see Fig. 5-1</th>
<th>Consult factory if one phase is earthed.</th>
</tr>
</thead>
</table>

AC input range

<table>
<thead>
<tr>
<th>min.</th>
<th>3x 323-552Vac</th>
<th>Continuous operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>min.</td>
<td>3x 280-323Vac</td>
<td>Full power for 200ms, no damage between 0 and 280Vac For 2-phase operation see section 27.7</td>
</tr>
</tbody>
</table>

Input frequency

<table>
<thead>
<tr>
<th>nom.</th>
<th>50–60Hz</th>
<th>±6%</th>
</tr>
</thead>
</table>

Turn-on voltage

<table>
<thead>
<tr>
<th>typ.</th>
<th>3x 263Vac</th>
<th>Steady-state value, see Fig. 5-1</th>
</tr>
</thead>
</table>

Shut-down voltage

<table>
<thead>
<tr>
<th>typ.</th>
<th>3x 242Vac</th>
<th>Steady-state value, see Fig. 5-1</th>
</tr>
</thead>
</table>

3AC 400V 3AC 480V

Input current

<table>
<thead>
<tr>
<th>typ.</th>
<th>0.79A</th>
<th>0.65A At 24V, 20A, all three phases equal voltage See Fig. 5-3</th>
</tr>
</thead>
</table>

Power factor *

<table>
<thead>
<tr>
<th>typ.</th>
<th>0.94</th>
<th>0.95 At 24V, 20A, see Fig. 5-4</th>
</tr>
</thead>
</table>

Start-up delay

<table>
<thead>
<tr>
<th>typ.</th>
<th>350ms</th>
<th>290ms See Fig. 5-2</th>
</tr>
</thead>
</table>

Rise time

<table>
<thead>
<tr>
<th>typ.</th>
<th>30ms</th>
<th>30ms 0mF, 24V, 20A, see Fig. 5-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>typ.</td>
<td>40ms</td>
<td>40ms 20mF, 24V, 20A, see Fig. 5-2</td>
</tr>
</tbody>
</table>

Turn-on overshoot

<table>
<thead>
<tr>
<th>max.</th>
<th>500mV</th>
<th>500mV See Fig. 5-2</th>
</tr>
</thead>
</table>

* The power factor is the ratio of the true (or real) power to the apparent power in an AC circuit.

Fig. 5-1 Input voltage range

Fig. 5-2 Turn-on behavior, definitions

Fig. 5-3 Input current vs. output load at 24V

Fig. 5-4 Power factor vs. output load
6. DC-INPUT

The 1606-XLS480E-3 shall not be used with a DC-input voltage without consulting Rockwell Automation.

Check 1606-XLS480E-3 for DC-input voltage. (special version for intermediate bus systems, drive systems)

7. INPUT INRUSH CURRENT

An active inrush limitation circuitry limits the input inrush current after turn-on of the input voltage and after short input voltage interruptions.

The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

<table>
<thead>
<tr>
<th>3AC 400V</th>
<th>3AC 480V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush current</td>
<td>max. 10A\text{peak}</td>
</tr>
<tr>
<td></td>
<td>typ. 3A\text{peak}</td>
</tr>
<tr>
<td>Inrush energy</td>
<td>max. 1A\text{s}</td>
</tr>
<tr>
<td></td>
<td>typ. 270ms</td>
</tr>
</tbody>
</table>

Fig. 7-1 Input inrush current, typical behavior

8. OUTPUT

<table>
<thead>
<tr>
<th>Output voltage</th>
<th>nom. 24V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment range</td>
<td>min. 24-28V</td>
</tr>
<tr>
<td></td>
<td>max. 30V</td>
</tr>
<tr>
<td>Factory setting</td>
<td>24.1V</td>
</tr>
<tr>
<td>Line regulation</td>
<td>max. 10mV</td>
</tr>
<tr>
<td>Load regulation</td>
<td>max. 100mV</td>
</tr>
<tr>
<td>Ripple and noise voltage</td>
<td>max. 100mVpp</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>typ. 950µF</td>
</tr>
</tbody>
</table>
1606- XLS480E-3 24V, 20A; Three Phase Input

Continuous power capability

<table>
<thead>
<tr>
<th>Output current</th>
<th>nom. 20A</th>
<th>At 24V, see Error! Reference source not found.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nom. 17.5A</td>
<td>At 28V, see Error! Reference source not found.</td>
</tr>
<tr>
<td>Output power</td>
<td>nom. 480W</td>
<td>24V, continuous</td>
</tr>
<tr>
<td></td>
<td>nom. 490W</td>
<td>28V, continuous</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>min. 20A</td>
<td>Load impedance 50mOhm, see Error! Reference source not found.</td>
</tr>
<tr>
<td></td>
<td>max. 23A</td>
<td>Load impedance 50mOhm, see Error! Reference source not found.</td>
</tr>
</tbody>
</table>

Power-Boost, short term power capability (up to typ. 4s)

The power supply is designed to support loads with a higher short-term power requirement without damage or shutdown. The short-term duration is hardware controlled by an output power manager. The Power-Boost is repeatedly available. Detailed information can be found in chapter 27.1.

Once Power-Boost has been stopped by the output power limiter, a timer disables the next Power-Boost capability. The recovery timer will start as soon as the output voltage reaches the adjusted value again, which usually happens after the load has been reduced.

<table>
<thead>
<tr>
<th>Output current</th>
<th>nom. 30A</th>
<th>At 24V, see Error! Reference source not found.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nom. 26A</td>
<td>At 28V, see Error! Reference source not found.</td>
</tr>
<tr>
<td>Output power</td>
<td>nom. 720W</td>
<td>24V, short term</td>
</tr>
<tr>
<td></td>
<td>nom. 728W</td>
<td>28V, short term</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>min. 30A</td>
<td>Load impedance 50mOhm, see Error! Reference source not found.</td>
</tr>
<tr>
<td></td>
<td>max. 34A</td>
<td>Load impedance 50mOhm, see Error! Reference source not found.</td>
</tr>
<tr>
<td>Power-Boost time</td>
<td>typ. 4s</td>
<td>At 24V, 30A, duration until the output voltage dips,</td>
</tr>
<tr>
<td></td>
<td>min 3.5s</td>
<td>See Error! Reference source not found.</td>
</tr>
<tr>
<td></td>
<td>max. 4.5s</td>
<td></td>
</tr>
<tr>
<td>Power-Boost recovery time</td>
<td>typ. 7s</td>
<td>Overload free time to reset power manager, see Fig. 8-3</td>
</tr>
</tbody>
</table>

Peak current capability (up to several ms)

The power supply can deliver a peak current which is higher than the specified short-term current. This helps to start current demanding loads or to safely operate subsequent circuit breakers.

The extra current is supplied by the output capacitors inside the power supply. During this event, the capacitors will be discharged and causes a voltage dip on the output. Detailed curves can be found in chapter 27.2.

<table>
<thead>
<tr>
<th>Peak current voltage dips</th>
<th>typ. from 24V to 16V</th>
<th>At 40A for 50ms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>typ. from 24V to 19V</td>
<td>At 80A for 2ms</td>
</tr>
<tr>
<td></td>
<td>typ. from 24V to 16.5V</td>
<td>At 80A for 5ms</td>
</tr>
</tbody>
</table>
Power-Boost is available as soon as power comes on and immediately after the end of an output short circuit.

9. HOLD-UP TIME

<table>
<thead>
<tr>
<th>3AC 400V</th>
<th>3AC 480V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold-up Time</td>
<td>typ. 22ms</td>
</tr>
<tr>
<td></td>
<td>typ. 44ms</td>
</tr>
</tbody>
</table>

20A, 24V, see Error! Reference source not found.
10A, 24V, see Error! Reference source not found.
1606- XLS480E-3 24V, 20A; Three Phase Input
10. **DC-OK RELAY CONTACT**

This feature monitors the output voltage, which is produced by the power supply itself. It is independent of a back-fed voltage from a unit which is connected in parallel to the power supply output.

<table>
<thead>
<tr>
<th>Contact Behavior</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact closes</td>
<td>As soon as the output voltage reaches the adjusted output voltage.</td>
</tr>
<tr>
<td>Contact opens</td>
<td>As soon as the output voltage dips more than 10% below the adjusted output voltage. Short dips will be extended to a signal length of 250ms. Dips shorter than 1ms will be ignored.</td>
</tr>
<tr>
<td>Contact re-closes</td>
<td>As soon as the output voltage exceeds 90% of the adjusted voltage.</td>
</tr>
<tr>
<td>Contact ratings</td>
<td>max 60Vdc 0.3A, 30Vdc 1A, 30Vac 0.5A resistive load</td>
</tr>
<tr>
<td></td>
<td>min 1mA at 5Vdc min. permissible load</td>
</tr>
</tbody>
</table>

Isolation voltage: See dielectric strength table in section Error! Reference source not found.

Note:

The DC-ok feature requires that the output voltage reaches the nominal (=adjusted) level after turn-on in order to function according to specification. If this level cannot be achieved, the overload lamp will be on and the DC-ok contact will be open. The overload signal will only shut off as soon as the adjusted voltage is reached. This is an important condition to consider particularly, if the load is a battery, the power supply is used in parallel or the power supply is used for N+1 redundant systems.

11. **EFFICIENCY AND POWER LOSSES**

<table>
<thead>
<tr>
<th></th>
<th>3AC 400V</th>
<th>3AC 480V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>typ. 95.0%</td>
<td>94.8% 20A, 24V</td>
</tr>
<tr>
<td>Power losses</td>
<td>typ. 25.3W</td>
<td>26.3W 20A, 24V</td>
</tr>
<tr>
<td></td>
<td>typ. 8.2W</td>
<td>10.0W 0A</td>
</tr>
</tbody>
</table>

Fig. 10-1 DC-ok relay contact behavior

Fig. 11-1 Efficiency vs. output current at 24V

Fig. 11-2 Losses vs. output current at 24V

References:

- Efficiency vs. output current at 24V
- Losses vs. output current at 24V
- DC-ok relay contact behavior
- See dielectric strength table in section Error! Reference source not found.
1606- XLS480E-3 24V, 20A; Three Phase Input

Fig. 11-3 Efficiency vs. input voltage, 24V, 20A

Fig. 11-4 Losses vs. input voltage, 24V, 20A

12. FUNCTIONAL DIAGRAM

Fig. 12-1 Functional diagram
13. PRODUCT FACE LABEL

Output Terminals
Quick-connect spring-clamp terminals, no tools required

Positive output
Negative (return) output
Dual pins per pole

DC ok Relay contact (NO-contact)

480W Continuous power /
720W Peak power

Input Terminals
Quick-connect spring-clamp terminals, no tools required

L1, L2, L3 Line inputs
… PE (Protective Earth) input

See chapter Error! Reference source not found. “Terminals and Wiring” to choose appropriate wire gauges

Output voltage potentiometer
(multi turn potentiometer)
Open the flap to tune the output voltage.
Factory setting: 24.1V

DC-ok lamp (green)

Overload lamp (red)

<table>
<thead>
<tr>
<th>Overload lamp</th>
<th>DC-ok lamp</th>
<th>DC-ok contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mode</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Closed</td>
</tr>
<tr>
<td>Power-Boost mode</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>Closed</td>
</tr>
<tr>
<td>Overload (VOUT < 90%)</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Short-circuit (VOUT = ca. 0V)</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Over-temperature</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>No input power</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td></td>
</tr>
</tbody>
</table>

DC-ok lamp and DC-ok contact function synchronized

www.ab.com
14. TERMINALS AND WIRING

Type	Bi-stable, quick-connect spring clamp terminals. IP20 Finger safe construction. Suitable for field- and factory installation. Shipped in open position.
Solid wire | 0.5-6mm²
Stranded wire | 0.5-4mm²
American wire gauge | 20-10 AWG
Ferrules | Allowed, but not required
Wire stripping length | 10mm / 0.4inch
Pull-out force | 10AWG:80N, 12AWG:60N, 14AWG:50N, 16AWG:40N (according to UL486E)

Instructions:

- Use appropriate copper cables that are designed for an operating temperature of:
 - 60°C for ambient up to 45°C and
 - 75°C for ambient up to 60°C minimum.
- Follow national installation codes and installation regulations!
- Ensure that all strands of a stranded wire enter the terminal connection!
- Up to two stranded wires with the same cross section are permitted in one connection point (except PE wire).
- Do not use the unit without PE connection.

15. RELIABILITY

<table>
<thead>
<tr>
<th>3AC 400V</th>
<th>3AC 480V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime expectancy</td>
<td>min. 51 000h</td>
</tr>
<tr>
<td></td>
<td>min. 89 000h</td>
</tr>
<tr>
<td></td>
<td>min. 144 000h</td>
</tr>
<tr>
<td>MTBF SN 29500, IEC 61709</td>
<td>690 000h</td>
</tr>
<tr>
<td></td>
<td>1 194 000h</td>
</tr>
<tr>
<td>MTBF MIL HDBK 217F</td>
<td>284 000h</td>
</tr>
<tr>
<td></td>
<td>389 000h</td>
</tr>
</tbody>
</table>

The Lifetime expectancy shown in the table indicates the operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors.

Lifetime expectancy is specified in operational hours. Lifetime expectancy is calculated according to the capacitor's manufacturer specification. The prediction model allows a calculation of up to 15 years from date of shipment.

MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.
16. EMC

The power supply is suitable for applications in industrial environment as well as in residential, commercial and light industry environment without any restrictions. CE mark is in conformance with EMC guideline 89/336/EEC and 93/68/EEC and the low-voltage directive (LVD) 73/23/EEWG.

EMC Immunity

<table>
<thead>
<tr>
<th>EN 61000-6-1</th>
<th>EN 61000-6-2</th>
<th>Generic standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge Contact discharge</td>
<td>EN 61000-4-2</td>
<td>Air discharge 8kV</td>
</tr>
<tr>
<td>Electromagnetic RF field</td>
<td>EN 61000-4-3</td>
<td>80MHz-1GHz 10kV</td>
</tr>
<tr>
<td>Fast transients (Burst) Input lines</td>
<td>EN 61000-4-4</td>
<td>4kV</td>
</tr>
<tr>
<td>Output lines 2kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surge voltage on input L1 → L2, L2 → L3, L1 → L3</td>
<td>EN 61000-4-5</td>
<td>2kV</td>
</tr>
<tr>
<td>Surge voltage on input L1 / L2 / L3 → PE</td>
<td>EN 61000-4-5</td>
<td>4kV</td>
</tr>
<tr>
<td>Surge voltage on output + → -</td>
<td>EN 61000-4-5</td>
<td>500V</td>
</tr>
<tr>
<td>+ / - → PE 500V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conducted disturbance</td>
<td>EN 61000-4-6</td>
<td>0.15-80MHz 10V</td>
</tr>
<tr>
<td>Mains voltage dips Dip on all three phases</td>
<td>EN 61000-4-11</td>
<td>70% of 380Vac 266Vac, 10ms</td>
</tr>
<tr>
<td>40% of 380Vac 152Vac, 100ms</td>
<td>40% of 380Vac 152Vac, 1000ms</td>
<td></td>
</tr>
<tr>
<td>Mains voltage dips Dip on one phase</td>
<td>EN 61000-4-11</td>
<td>70% of 380Vac 266Vac, 10ms</td>
</tr>
<tr>
<td>40% of 380Vac 152Vac, 100ms</td>
<td>40% of 380Vac 152Vac, 1000ms</td>
<td></td>
</tr>
<tr>
<td>Voltage interruptions</td>
<td>EN 61000-4-11</td>
<td>0Vac, 5000ms</td>
</tr>
<tr>
<td>Voltage sags</td>
<td>SEMI F47 0200</td>
<td>Dips on two phases according to section 7.2. (SEMI F47-200) 304Vac, 1000ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>266Vac, 500ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190Vac, 200ms</td>
</tr>
<tr>
<td>Powerful transients</td>
<td>VDE 0160</td>
<td>over entire load range 1300V, 1.3ms</td>
</tr>
</tbody>
</table>

Criteria:

A: Power supply shows normal operation behavior within the defined limits.
C: Temporary loss of function is possible. Power supply might shut-down and restarts by itself. No damages or hazards for the power supply occur.

EMC Emission

<table>
<thead>
<tr>
<th>EN 61000-6-3 and EN 61000-6-4</th>
<th>EN 55011, EN 55022, FCC Part 15, CISPR 11, CISPR 22</th>
<th>Generic standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted emission</td>
<td>EN 55011, EN 55022, FCC Part 15, CISPR 11, CISPR 22</td>
<td>Class B, Input lines</td>
</tr>
<tr>
<td>Radiated emission</td>
<td>EN 55011, EN 55022</td>
<td>Class B</td>
</tr>
<tr>
<td>Harmonic input current</td>
<td>EN 61000-3-2</td>
<td>Fulfilled, active PFC</td>
</tr>
<tr>
<td>Voltage fluctuations, flicker</td>
<td>EN 61000-3-3</td>
<td>Fulfilled</td>
</tr>
</tbody>
</table>

This device complies with FCC Part 15 rules. Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Switching Frequencies

The power supply has three converters with three different switching frequencies included. One is nearly constant. The other two are input voltage and load dependent.

Switching frequency 1	100kHz	Nearly constant
Switching frequency 2	30kHz to 90kHz	Input voltage and load dependent
Switching frequency 3	40kHz to 220kHz	Input voltage and load dependent
17. ENVIRONMENT

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational temperature</td>
<td>-25°C to +70°C (-13°F to 158°F)</td>
</tr>
<tr>
<td>Reduce output power above</td>
<td>+60°C 60-70°C (140°F to 158°F), see Error! Reference source not found.</td>
</tr>
<tr>
<td>Output de-rating</td>
<td>12W/°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40 to +85°C (-40°F to 185°F)</td>
</tr>
<tr>
<td>Storage and transportation</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>5 to 95% r.H.</td>
</tr>
<tr>
<td>IEC 60068-2-30</td>
<td>Do not energize while condensation is present</td>
</tr>
<tr>
<td>Vibration sinusoidal</td>
<td>2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g</td>
</tr>
<tr>
<td>IEC 60068-2-6</td>
<td></td>
</tr>
<tr>
<td>Vibration random</td>
<td>0.5m²(s⁻¹)</td>
</tr>
<tr>
<td>IEC 60068-2-64</td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td>30g 6ms, 20g 11ms, 18 bumps / direction, 3 bumps / direction,</td>
</tr>
<tr>
<td>IEC 60068-2-27</td>
<td>18 bumps in total</td>
</tr>
<tr>
<td>Altitude</td>
<td>0 to 6000m (0 to 20 000ft)</td>
</tr>
<tr>
<td>Reduce output power or ambient</td>
<td>above 2000m sea level.</td>
</tr>
<tr>
<td>Output de-rating (for altitude)</td>
<td>30W/1000m or 5°C/1000m</td>
</tr>
<tr>
<td>Over-voltage category</td>
<td>III</td>
</tr>
<tr>
<td>EN 50178, altitudes up to</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>2000m</td>
</tr>
<tr>
<td>Altitudes from 2000m to 6000m</td>
<td></td>
</tr>
<tr>
<td>Degree of pollution</td>
<td>2</td>
</tr>
<tr>
<td>EN 50178, not conductive</td>
<td></td>
</tr>
</tbody>
</table>

The ambient temperature is defined as the air temperature 2cm below the unit.
18. PROTECTION FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output protection</td>
<td>Electronically protected against overload, no-load and short-circuits</td>
</tr>
<tr>
<td>Output over-voltage protection</td>
<td>typ. 32Vdc, max. 35Vdc</td>
</tr>
<tr>
<td>In case of an internal power supply defect, a redundant circuitry limits the maximum output voltage. The output shuts-down and automatically attempts to restart.</td>
<td></td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 20, EN/IEC 60529</td>
</tr>
<tr>
<td>Penetration protection</td>
<td>> 3.5mm, e.g. screws, small parts</td>
</tr>
<tr>
<td>Over-temperature protection</td>
<td>yes, Output shut-down with automatic restart</td>
</tr>
<tr>
<td>Input transient protection</td>
<td>MOV (Metal Oxide Varistor) and active transient filter</td>
</tr>
<tr>
<td>Internal input fuse</td>
<td>Not included, See section 27.6</td>
</tr>
</tbody>
</table>

Note: In case of a protection event, audible noise may occur.

19. SAFETY

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input / output separation</td>
<td>SELV, IEC/EN 60950-1</td>
</tr>
<tr>
<td>PELV</td>
<td>EN 60204-1, EN 50178, IEC 60364-4-41</td>
</tr>
<tr>
<td>Class of protection</td>
<td>I, PE (Protective Earth) connection required</td>
</tr>
<tr>
<td>Isolation resistance</td>
<td>> 5MΩ, Input to output, 500Vdc</td>
</tr>
<tr>
<td>PE resistance</td>
<td>< 0.1 Ohm, Between housing and PE terminal</td>
</tr>
<tr>
<td>Touch current (leakage current)</td>
<td>typ. 0.38mA, 3x 440Vac, 50Hz, TN mains</td>
</tr>
<tr>
<td></td>
<td>typ. 0.54mA, 3x 528Vac, 60Hz, TN mains</td>
</tr>
<tr>
<td></td>
<td>< 0.47mA, 3x 400Vac, 50Hz, TN mains</td>
</tr>
<tr>
<td></td>
<td>< 0.7mA, 3x 480Vac, 60Hz, TN mains</td>
</tr>
</tbody>
</table>

20. DIELECTRIC STRENGTH

WARNING

To fulfill the PELV requirements according to EN60204-1 § 6.4.1, we recommend that either the + pole, the – pole or any other part of the output circuit shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off any more when unnoticed earth faults occur.

![Dielectric strength diagram](image)

Type tests and factory tests:

Conducted by the manufacturer. Do not repeat test in field!

Rules for field test:

Use appropriate test equipment which applies the voltage with a slow ramp! Connect L1, L2 and L3 together as well as all output poles.

The output voltage is floating and has no connection to ground.
21. APPROVALS

IEC 60950-1
IECEE CB Scheme, Information Technology Equipment

UL 508
LISTED E198865 listed for use in U.S.A. (UL 508) and Canada (C22.2 No. 14-95) Industrial Control Equipment

UL 60950-1
RECOGNIZED E137006 recognized for use in U.S.A. (UL 60950-1) and Canada (C22.2 No. 60950) Information Technology Equipment, Level 5

UL 1604
RECOGNIZED E246877 recognized for use in U.S.A. (UL 1604) and Canada (C22.2 No. 213-M1987) Hazardous Location Class I Div 2 T4A Groups A,B,C,D and Class I Zone 2 Groups IIA, IIB and IIC

The unit is suitable for use in Class I Division 2 Groups A, B, C, D locations as well as for Class I Zone 2 Groups IIA, IIB and IIC locations. Substitution of components may impair suitability for Class I Division 2 environment. Do not disconnect equipment unless power has been switched off. Wiring must be in accordance with Class I, Division 2 wiring methods of the National Electrical Code, NFPA 70, and in accordance with other local or national codes.

SEMI F47
SEMI F47-0200 Power Quality Star
Ride-through compliance for semiconductor industry.
Full SEMI range compliance (Dips on two phase: 304Vac for 1000ms, 266Vac for 500ms and 190Vac for 200ms)

22. FULFILLED STANDARDS

EN 61558-2-17 Safety of Power Transformers
EN/IEC 60204-1 Safety of Electrical Equipment of Machines
EN/IEC 61131-2 Programmable Controllers
EN 50178 Electronic Equipment in Power Installations

23. USED SUBSTANCES

The unit does not release any silicone and is suitable for the use in paint shops.

Electrolytic capacitors included in this unit do not use electrolytes such as Quaternary Ammonium Salt Systems.
Plastic housings and other molded plastic materials are free of halogens, wires and cables are not PVC insulated.

The production material within our production does not include following toxic chemicals:
Polychlorized Biphenyl (PCB), Polychlorized Terphenyl (PCT), Pentachlorophenol (PCP), Polychlorinated naphthalene (PCN), Polybrom Biphenyll (PBB), Polybrom Bipheny-oxyd (PBO), Polybrominated Diphenylether (PBDE), Polychlorinated Diphenylether (PCDE), Polydibromphenyl Oxyd (PBDO), Cadmium, Asbest, Mercury, Silicia

24. PHYSICAL DIMENSIONS AND WEIGHT

Weight 870g / 1.92lb
DIN-Rail Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm. The DIN-rail height must be added to the depth (127mm) to calculate the total required installation depth.
25. INSTALLATION AND OPERATION INSTRUCTIONS

WARNING

Hazardous voltage inside device. Risk of electric shock, severe burns, or death.
- Do not use the unit without proper earth connection (Protective Earth). Use the pin on the terminal block for earth connection and not one of the screws on the housing.
- Turn power off before working on the power supply. Protect against inadvertent re-powering.
- Make sure the wiring is correct by following all local and national codes.
- Do not open, modify or repair the unit.
- Use caution to prevent any foreign objects from entering into the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.

Mounting Orientation:
Output terminal must be located on top and input terminal on the bottom. For other orientations see section 27.14.

Cooling:
Convection cooled, no forced cooling required. Do not cover ventilation grid (e.g. cable conduits) by more than 30%!

Installation clearances:
40mm on top, 20mm on the bottom, 5mm on the left and right side are recommended when loaded permanently with full power. In case the adjacent device is a heat source, 15mm clearance is recommended.

Service parts:
The unit does not contain any serviceable parts.
26. ACCESSORIES

1606-XLB Wall mounting bracket
This bracket is used to mount Dimension units onto a flat surface without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slide of the unit have to be detached, so that the two steel brackets can be mounted.

Fig. 26-1 1606-XLB Wall Mounting Bracket

Fig. 26-2 Assembled Wall Mounting Bracket
27. APPLICATION NOTES

27.1. REPETITIVE PULSE LOADING

Typically, a load current is not constant. It varies over time. For pulse load compatibility, following rules must be met:

a) The pulse power demand must be below 150% of the nominal power.
b) The duration of the pulse power must be shorter than the allowed Power-Boost Time. (see output section)
c) The average (R.M.S.) output current must be below the specified continuous output current.
 If the R.M.S. current is higher, the unit will respond with a thermal shut-down after a while. Use the max. duty cycle curve (Fig. 27-2) to check if the average output current is below the nominal current.
d) The duty cycle must be below 0.75.
e) For altitudes higher than 2000m reduce the pulse loading (15W/1000m) or the ambient temperature (5°C/1000m)

Utilizing the Max. Duty Cycle Curve:

Example to determine the repetition rate of pulses without dipping of the output voltage:

Parameters of application:

Pulse length is \(T_{\text{PEAK}} = 1 \text{s} \)
Steady state load \(P_0 = 120 \text{W} \)
\((= 50\% \text{ of } I_{\text{RATED}}) \)
Peak load \(P_{\text{PEAK}} = 360 \text{W} \)
\((= 150\% \text{ of } I_{\text{RATED}}) \)

Determining the repetition rate:

1) Make a vertical line at \(P_{\text{PEAK}} = 150\% \)
2) Make a horizontal line where the vertical line crosses the \(P_0 = 50\% \) curve
3) Read the Max. Duty Cycle from the Duty Cycle-axis \((= 0.37) \)
4) Calculate the min. pause (base load) length \(T_0 \):
\[
T_0 = \frac{T_{\text{PEAK}} - (\text{DutyCycle} \times T_{\text{PEAK}})}{\text{DutyCycle}} = \frac{1 \text{s} - (0.37 \times 1 \text{s})}{0.37} = 1.7 \text{s}
\]
5) Pulse length = 1s, min. pause length = 1.7s
6) Max. repetition rate = pulse length + pause length = 2.7s

More examples for pulse load compatibility:

<table>
<thead>
<tr>
<th>(P_{\text{PEAK}})</th>
<th>(P_0)</th>
<th>(T_{\text{PEAK}})</th>
<th>(T_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>720W</td>
<td>480W</td>
<td>1s</td>
<td>>25s</td>
</tr>
<tr>
<td>720W</td>
<td>0W</td>
<td>1s</td>
<td>>1.3s</td>
</tr>
<tr>
<td>600W</td>
<td>240W</td>
<td>1s</td>
<td>>0.75s</td>
</tr>
<tr>
<td>(P_{\text{PEAK}})</td>
<td>(P_0)</td>
<td>(T_{\text{PEAK}})</td>
<td>(T_0)</td>
</tr>
<tr>
<td>720W</td>
<td>240W</td>
<td>0.1s</td>
<td>>0.16s</td>
</tr>
<tr>
<td>720W</td>
<td>240W</td>
<td>1s</td>
<td>>1.6s</td>
</tr>
<tr>
<td>720W</td>
<td>240W</td>
<td>3s</td>
<td>>4.9s</td>
</tr>
</tbody>
</table>
27.2. **PEAK CURRENT CAPABILITY**

Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady state current and usually exceeds the nominal output current (including the Power-Boost) The same situation applies, when starting a capacitive load.

Branch circuits are often protected with circuit breakers or fuses. In case of a short or an overload in the branch circuit, the fuse needs a certain amount of over-current to trip or to blow. The peak current capability ensures the safe operation of subsequent circuit breakers.

Assuming the input voltage is turned on before such an event, the built-in large sized output capacitors inside the power supply can deliver extra current. Discharging this capacitor causes a voltage dip on the output. The following two examples show typical voltage dips:

![Fig. 27-3 Peak load 40A for 50ms, typ.](image1)

![Fig. 27-4 Peak load 80A for 5ms, typ.](image2)

Please note: The DC-OK relay triggers when the voltage dips more than 10% for longer than 1ms.

27.3. **BACK-FEEDING LOADS**

Loads such as decelerating motors and inductors can feed voltage back to the power supply. This feature is also called return voltage immunity or resistance against Back- E.M.F. (Electro Magnetic Force).

This power supply is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter, whether the power supply is on or off.

The maximum allowed feed back voltage is 34Vdc. The absorbing energy can be calculated according to the built-in large sized output capacitor which is specified in chapter Error! Reference source not found.

27.4. **CHARGING OF BATTERIES**

The power supply can be used to charge lead-acid or maintenance free batteries. (Two 12V batteries in series)

Instructions for charging batteries:

a) Set output voltage (measured at the battery) very precisely to the end-of-charge voltage.

<table>
<thead>
<tr>
<th>End-of-charge voltage</th>
<th>27.8V</th>
<th>27.5V</th>
<th>27.15V</th>
<th>26.8V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery temperature</td>
<td>10°C</td>
<td>20°C</td>
<td>30°C</td>
<td>40°C</td>
</tr>
</tbody>
</table>

b) Use a 25A circuit breaker (or blocking diode) between the power supply and the battery.

c) Ensure that the output current of the power supply is below the allowed charging current of the battery.

d) Use only matched batteries when putting 12V types in series.

e) The return current to the power supply is typ. 16mA at 25Vdc when the power supply is switched off (except in case a blocking diode is utilized).
27.5. OUTPUT CIRCUIT BREAKERS

Standard miniature circuit breakers (MCBs) can be used for branch protection. Ensure that the MCB is rated for DC voltage, too. The following tests show which circuit breakers the power supply typically trips.

Circuit breakers have huge tolerances in their tripping behavior. Therefore, these typical tests can only be used as a recommendation or for comparing two different power supplies. Furthermore, the loop impedance has a major influence on whether a breaker trips or not. Two tests were performed, representing typical situations:

Test 1: Short circuit with S1 on the power supply end of the cable (loop impedance approx. 20mOhm)

![Branch protectors, test circuit 1](image)

Parameters:
- Input voltage: 3x 400Vac, load current: 0A
- Tripping time shorter than 5s.

The following circuit breaker tripped during the test:
- A- or Z- Characteristic: equal or smaller 25A
- B- Characteristic: equal or smaller 16A
- C- Characteristic: equal or smaller 10A

Test 2: Short circuit with S1 on the load end (additional impedance included; represents longer load wire length).

![Branch protectors, test circuit 2](image)

Parameters:
- Input voltage: 3x 400Vac, load current: 0A
- Tripping time shorter than 5s.

The following circuit breaker tripped during the test:
- A- or Z- Characteristic: ≤ 16A and R< 82mOhm
- B- Characteristic: ≤ 6A and R< 180mOhm
- C- Characteristic: ≤ 8A and R<= 150mOhm

What does this resistance mean in wire length?

<table>
<thead>
<tr>
<th>Resistance</th>
<th>0.5mm²</th>
<th>0.7mm²</th>
<th>1.0mm²</th>
<th>1.5mm²</th>
<th>2.5mm²</th>
<th>4.0mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>82mOhm</td>
<td>2.3m</td>
<td>3.2m</td>
<td>4.6m</td>
<td>6.9m</td>
<td>11.4m</td>
<td>18.3m</td>
</tr>
<tr>
<td>150mOhm</td>
<td>4.2m</td>
<td>5.9m</td>
<td>8.4m</td>
<td>12.5m</td>
<td>20.9m</td>
<td>33.4m</td>
</tr>
<tr>
<td>180mOhm</td>
<td>5.0m</td>
<td>7.0m</td>
<td>10.0m</td>
<td>15.0m</td>
<td>25.1m</td>
<td>40.1m</td>
</tr>
</tbody>
</table>

Example:

Which wire gauge must be used to trip a B-Characteristic circuit breaker with a rating of 6A? The load wire length is 21m.

Answer: A 6A B-Characteristic circuit breaker requires a loop impedance of less than 180mOhm (test results). The wire length table shows that up to 25.1m wire with a cross section of 2.5mm² are below 180mOhm. A wire not smaller than 2.5mm² shall be used.
27.6. **EXTERNAL INPUT PROTECTION**

The unit is tested and approved for branch circuits up to 15A (U.S.A.) and 16A (IEC). External protection is only required, if the supplying branch has an ampacity greater than this. In some countries local regulations might apply. Check also local codes and local requirements.

If an external fuse is necessary or utilized, a minimum value is required to avoid undesired tripping of the fuse.

<table>
<thead>
<tr>
<th>B-Characteristic</th>
<th>C-Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampacity max.</td>
<td>16A (U.S.A.: 15A)</td>
</tr>
<tr>
<td>min.</td>
<td>6A (U.S.A.: 15A)</td>
</tr>
<tr>
<td></td>
<td>16A (U.S.A.: 15A)</td>
</tr>
<tr>
<td></td>
<td>3A</td>
</tr>
</tbody>
</table>

27.7. **2-PHASE OPERATION**

The 1606-XLS480E-3 is specified to operate on two phases.

Instructions for 2-ph operation:

Reduce output power according to curve. Exceeding the limits results in a thermal shut-down.

The specification for EMC performance, hold-up time, losses and output ripple will no longer be valid. Check suitability individually in the application.
27.8. PARALLEL USE TO INCREASE OUTPUT POWER

Power supplies can be paralleled to increase the output power.

Instructions for parallel use:

- a) Use only power supplies from the same series (XLS).
- b) Adjust the output voltages of all power supplies to approximately the same value (±500mV). Otherwise, the DC-ok signal might not work properly.
- c) A fuse (or diode) on the output is only required if more than three units are connected in parallel.
- d) Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other.

Fig. 27-10 Schematic for parallel operation

27.9. PARALLEL USE FOR REDUNDANCY

Power supplies can be paralleled for redundancy to gain a higher system availability. Redundant systems require a certain amount of extra power to support the load in case one power supply unit fails. The simplest way is to put two XLS power supplies in parallel. This is called a 1+1 redundancy. In case one power supply unit fails, the other one is automatically able to support the load current without any interruption. Redundant systems for a higher power demand are usually built in an N+1 method. E.g. Five power supplies, each rated for 10A are paralleled to build a 40A redundant system.

Please note: This simple way to build a redundant system does not cover failures such as an internal short circuit in the secondary side of the power supply. In such a - virtually nearly impossible - case, the defect unit becomes a load for the other power supplies and the output voltage can not be maintained any more. This can only be avoided by utilizing decoupling diodes which are included in the redundancy module 1606-XLSRED. (One module per power supply)

Recommendations for building redundant power systems:

- a) Use separate input fuses for each power supply.
- b) Monitor the individual power supply units. A DC-ok lamp and a DC-ok contact is already included in the units This feature reports a faulty unit.
- c) When possible, connect each power supply to different phases or circuits.
- d) It is desirable to set the output voltages of all power supplies to the same value to avoid a false DC-ok signal.

27.10. DAISY CHAINING OF OUTPUTS

Daisy chaining (jumping from one power supply output to the next) is allowed as long as the maximum current through one terminal pin does not exceed 25A. If the current is higher, use a separate distribution terminal block.

Fig. 27-11 Daisy chaining of outputs

Fig. 27-12 Using distribution terminals
27.11. SERIES OPERATION

The power supply can be put in series to increase the output voltage.

Instructions for use in series:

- a) It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc.
- b) **Warning**! Voltages with a potential above 60Vdc are not SELV any more and can be dangerous. Such voltages must be installed with a protection against touching.
- c) For serial operation use power supplies of the same type.
- d) Earthing of the output is required when the sum of the output voltage is above 60Vdc.
- e) Keep an installation clearance of 15mm (left/right) between two power supplies and avoid installing the power supplies on top of each other.

Note: Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.

27.12. INDUCTIVE AND CAPACITIVE LOADS

The unit is designed to supply any kind of load, including unlimited capacitive and inductive loads.

27.13. USE IN A TIGHTLY SEALED ENCLOSURE

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. The inside temperature defines the ambient temperature for the power supply.

Results from such an installation:

Power supply is placed in the middle of the box, no other heat producer inside the box

- Enclosure: Typ IP66 Box PK 9519 100, plastic, 180x180x165mm
- Load: 24V, 16A; (=80%) load is placed outside the box
- Input: 3x 400Vac
- Temperature inside enclosure: 55.9°C (in the middle of the right side of the power supply with a distance of 2cm)
- Temperature outside enclosure: 24.9°C
- Temperature rise: 31°C
27.14. MOUNTING ORIENTATIONS

Mounting orientations other than input terminals on the bottom and output on the top require a reduction in continuous output power or a limitation in the max. allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

Curve A1 Recommended output current.
Curve A2 Max allowed output current (results approx. in half the lifetime expectancy of A1).