I/O Wiring Conversion Systems
PLC-5 1771 to ControlLogix 1756
What’s Inside

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Selection</td>
<td>3</td>
</tr>
<tr>
<td>Approximate Dimensions</td>
<td>11</td>
</tr>
<tr>
<td>Wiring Diagrams - Digital Inputs</td>
<td>19</td>
</tr>
<tr>
<td>Wiring Diagrams - Digital Outputs</td>
<td>47</td>
</tr>
<tr>
<td>Wiring Diagrams - Analog Inputs and Outputs</td>
<td>77</td>
</tr>
<tr>
<td>Wiring Diagrams - High Resolution Isolated Analog</td>
<td>103</td>
</tr>
</tbody>
</table>

Summary of Changes

This publication contains new and updated information as indicated in the following table.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Inputs and Outputs Product Selection - added new options for 1771-IL, 1771-OFE1 and 1771-OFE2 conversions</td>
<td>7</td>
</tr>
<tr>
<td>1771-N High Resolution Isolated Analog I/O Modules - New conversion options in standard and combination</td>
<td>8</td>
</tr>
</tbody>
</table>
1771 I/O to 1756 I/O Conversion Modules

I/O Conversion Modules provide a fast and efficient method for converting 1771 PLC-5 I/O to 1756 ControlLogix I/O. The I/O conversion is accomplished without removing any field wires from the existing swing arm, virtually removing the risk of wiring errors. The existing swing arms fit directly onto the edge connector of the conversion modules.

The cables are pre-wired and have a connector for the conversion module on one end and a removable terminal block (RTB) on the other end. The I/O signals are routed through the conversion module and the cable to the appropriate terminals on the I/O module.

The I/O Conversion System includes:
• Conversion Modules (Ex: Cat No: 1492-CM1771-LD001)
• Cables (Ex: Cat No: 1492-CONACAB005X)
• Conversion Mounting Assembly (Ex: Cat No: 1492-MUA4-A13-A17)

Conversion Modules, Cables, and Mounting Assemblies

Conversion Modules
Pre-wired Cables, 25-pin
Pre-wired Cables, 37-pin

Base Plate
The Conversion Modules are housed in a Conversion Mounting Assembly Base Plate. This base plate has the same footprint and mounting holes as the 1771 chassis. There is no need to drill and tap new mounting holes in the control cabinet.

Cover Plate
The Conversion Mounting Assembly Cover Plate covers and helps protect the Conversion Modules while providing a place to mount the new 1756 chassis. The Cover Plate has pre-drilled and tapped mounting holes allowing the new 1756 chassis to be mounted in several locations -- centered, right-justified or left-justified. There is no need to drill and tap new mounting holes in the control cabinet.
Product Selection

Conversion Mounting Assembly Selection

Conversion Modules must be installed in a 1492 Conversion Mounting Assembly (see table below, a complete System Installation Manual is included with each assembly. Use the following steps to select the proper conversion mounting assembly:

1. Determine the quantity of each type of 1771 I/O modules used in the I/O chassis to be converted.
2. From the table below:
 a. Select the applicable 1492 conversion modules
 b. Review the Max Slots for I/O and Chassis Width data from the table below
 c. Select a 1756 I/O chassis which has enough I/O slots. Two I/O slots are required in the 1756 chassis for conversions where one 1771 I/O module converts to two 1756 I/O modules.
 d. Select the conversion mounting assembly which has enough conversion module slots.
 (2) conversion module slots are required in the conversion mounting assembly for conversions where (2) 1771 I/O modules convert to (1) 1756 I/O modules.

The combined depth of the conversion mounting assembly with the 1756 chassis mounted on top is 10.25 inches (controller w/key) or 10.0 inches (controller w/o key). Dimension drawings are included in the System Installation Manual that ships with the Assembly.

Chassis Dimensions and Max Slot Information

<table>
<thead>
<tr>
<th>1771 Chassis</th>
<th>1756 Chassis</th>
<th>Conversion Mounting Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat. No.</td>
<td>Max Slots for I/O</td>
<td>Chassis Width(2) in (mm)</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1771-A1B</td>
<td>4</td>
<td>9.01 (229)</td>
</tr>
<tr>
<td>1771-A2B</td>
<td>8</td>
<td>14.01 (356)</td>
</tr>
<tr>
<td>1771-A3B(1)</td>
<td>12</td>
<td>19.01 (483)</td>
</tr>
<tr>
<td>1771-A4B</td>
<td>16</td>
<td>24.01 (610)</td>
</tr>
</tbody>
</table>

1. 1771-A1B is not listed as it is used for 19 inch wide instrumentation panels.
2. Notice that the 1756 Chassis Width sometimes exceeds the 1771 Chassis Width, with or without the Power Supply. The Cover-Plate of the 1492 Conversion Mounting Assembly allows the 1756 Chassis to be Left justified, Right justified or Centered. A complete System Installation Manual ships with the 1492 Conversion Mounting Assembly.
Digital Inputs

1. Column 1: find the Catalog Number of the **1771 Module** you are converting from.

2. Column 2: find the Catalog Number of the compatible **1756 Module** you are converting to. In some cases more than one module exists. Review the matrix carefully and review the I/O module Installation Manuals to determine full compatibility.

3. Column 3: find the **Conversion Module** catalog number and order quantity.

4. Column 4: find the **Conversion Cable** catalog number and order quantity.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converting From 1771 Module</td>
<td>Qty.</td>
<td>Converting to 1756 Module</td>
<td>Qty.</td>
<td>Conversion Module Cat. No.</td>
</tr>
<tr>
<td>1771-IA</td>
<td>2</td>
<td>1756-IA16</td>
<td>1</td>
<td>1492-CM1771-LD007</td>
</tr>
<tr>
<td>1771-IA2</td>
<td>2</td>
<td>1756-IA16</td>
<td>1</td>
<td>1492-CM1771-LD007</td>
</tr>
<tr>
<td>1771-IAD</td>
<td>1</td>
<td>1756-IA16</td>
<td>1</td>
<td>1492-CM1771-LD001</td>
</tr>
<tr>
<td>1771-IAD</td>
<td>1</td>
<td>1756-II16</td>
<td>1</td>
<td>1492-CM1771-LD002</td>
</tr>
<tr>
<td>1771-IAN</td>
<td>1</td>
<td>1756-IA32</td>
<td>1</td>
<td>1492-CM1771-LD003</td>
</tr>
<tr>
<td>1771-IB</td>
<td>2</td>
<td>1756-IB16</td>
<td>1</td>
<td>1492-CM1771-LD007</td>
</tr>
<tr>
<td>1771-IBD</td>
<td>1</td>
<td>1756-IB16</td>
<td>1</td>
<td>1492-CM1771-LD001</td>
</tr>
<tr>
<td>1771-IBN</td>
<td>1</td>
<td>1756-IB32</td>
<td>1</td>
<td>1492-CM1771-LD003</td>
</tr>
<tr>
<td>1771-IC</td>
<td>1</td>
<td>1756-IC16</td>
<td>1</td>
<td>1492-CM1771-LD004</td>
</tr>
<tr>
<td>1771-ID</td>
<td>2</td>
<td>1756-IA16</td>
<td>1</td>
<td>1492-CM1771-LD012</td>
</tr>
<tr>
<td>1771-ID01</td>
<td>2</td>
<td>1756-IM16</td>
<td>1</td>
<td>1492-CM1771-LD012</td>
</tr>
<tr>
<td>1771-ID16</td>
<td>1</td>
<td>1756-IA16</td>
<td>1</td>
<td>1492-CM1771-LD004</td>
</tr>
<tr>
<td>1771-ID16</td>
<td>1</td>
<td>1756-IH16</td>
<td>1</td>
<td>1492-CM1771-LD004</td>
</tr>
<tr>
<td>1771-IG</td>
<td>2</td>
<td>1756-IG16</td>
<td>1</td>
<td>1492-CM1771-LD003</td>
</tr>
<tr>
<td>1771-IGD</td>
<td>1</td>
<td>1756-IG16</td>
<td>1</td>
<td>1492-CM1771-LD006</td>
</tr>
<tr>
<td>1771-IH</td>
<td>2</td>
<td>1756-IH16</td>
<td>1</td>
<td>1492-CM1771-LD007</td>
</tr>
<tr>
<td>1771-IM</td>
<td>2</td>
<td>1756-IM16</td>
<td>1</td>
<td>1492-CM1771-LD007</td>
</tr>
<tr>
<td>1771-IND</td>
<td>1</td>
<td>1756-IM16</td>
<td>1</td>
<td>1492-CM1771-LD002</td>
</tr>
<tr>
<td>1771-IND</td>
<td>1</td>
<td>1756-IM16</td>
<td>1</td>
<td>1492-CM1771-LD001</td>
</tr>
<tr>
<td>1771-IND1</td>
<td>1</td>
<td>1756-IM16</td>
<td>1</td>
<td>1492-CM1771-LD001</td>
</tr>
<tr>
<td>1771-IQ</td>
<td>2</td>
<td>1756-IQ16</td>
<td>1</td>
<td>1492-CM1771-LD004</td>
</tr>
<tr>
<td>1771-IQ</td>
<td>2</td>
<td>1756-IQ16</td>
<td>1</td>
<td>1492-CM1771-LD004</td>
</tr>
<tr>
<td>1771-IQ16</td>
<td>1</td>
<td>1756-IB16</td>
<td>1</td>
<td>1492-CM1771-LD004</td>
</tr>
<tr>
<td>1771-IU</td>
<td>2</td>
<td>1756-IB16</td>
<td>1</td>
<td>1492-CM1771-LD014</td>
</tr>
<tr>
<td>1771-IV</td>
<td>2</td>
<td>1756-IV16</td>
<td>1</td>
<td>1492-CM1771-LD014</td>
</tr>
<tr>
<td>1771-IW1</td>
<td>1</td>
<td>1756-TV32</td>
<td>1</td>
<td>1492-CM1771-LD005</td>
</tr>
</tbody>
</table>

(1) To understand any issues concerning I/O module compatibility refer to the conversion module wiring diagrams and the Installation Manuals for the specific I/O modules involved (with particular attention to the specification and wiring instructions).

(2) These 1771 Digital I/O Modules use a Swing Arm that only mounts to these Analog I/O Conversion Modules, which will therefore be used to provide for these 1771 Digital I/O conversions.

(3) The 005 in the Cat. No. indicates cable length of the 1492 cable. The recommended length of 0.5 M is listed, additional lengths are listed below.

1.0M Cable = 1492-CONCAB010__ 1.0M/1.0M Cable = 1492-C010005X 0.5M/1.0M Cable = 1492-C005005C 1.0M/0.5M Cable = 1492-C010005X
Digital Outputs

1. Column 1: find the catalog number of the **1771 Module** you are converting from.
2. Column 2: find the catalog number of the compatible **1756 Module** you are converting to.

 In some cases more than one module exists. Review the matrix carefully and review the I/O module Installation Manuals to determine full compatibility.

3. Column 3: find the catalog number of the **Conversion Module**.
4. Column 4: find the catalog number of the **Conversion Cable**.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converting from 1771 Module(1)</td>
<td>Converting to 1756 Module</td>
<td>Conversion Module</td>
<td>Conversion Cable(4)</td>
<td>Wiring Diagram</td>
</tr>
<tr>
<td>Cat. No.</td>
<td>Qty.</td>
<td>Cat. No.</td>
<td>Qty.(2)</td>
<td>Cat. No. (3)</td>
</tr>
<tr>
<td>1771-OA</td>
<td>1</td>
<td>1756-OA16</td>
<td>1</td>
<td>1492-CM1771-LD014</td>
</tr>
<tr>
<td>1771-QD</td>
<td>2</td>
<td>1756-QD16</td>
<td>2</td>
<td>1492-CM1771-LD013</td>
</tr>
<tr>
<td>1771-QB</td>
<td>2</td>
<td>1756-QB16</td>
<td>2</td>
<td>1492-CM1771-LD100</td>
</tr>
<tr>
<td>1771-OB</td>
<td>1</td>
<td>1756-OB16</td>
<td>1</td>
<td>1492-CM1771-LD014</td>
</tr>
<tr>
<td>1771-OD</td>
<td>2</td>
<td>1756-OD16</td>
<td>2</td>
<td>1492-CM1771-LD012</td>
</tr>
<tr>
<td>1771-OB</td>
<td>1</td>
<td>1756-OB16E</td>
<td>1</td>
<td>1492-CM1771-LD100</td>
</tr>
<tr>
<td>1771-OG</td>
<td>1</td>
<td>1756-OG16</td>
<td>1</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OK</td>
<td>1</td>
<td>1756-OK16</td>
<td>1</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-ON</td>
<td>1</td>
<td>1756-ON16</td>
<td>1</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OK</td>
<td>2</td>
<td>1756-OK16</td>
<td>2</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OP</td>
<td>2</td>
<td>1756-OP16</td>
<td>2</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OP</td>
<td>1</td>
<td>1756-OP16</td>
<td>1</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OR</td>
<td>1</td>
<td>1756-OR16</td>
<td>1</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OP</td>
<td>2</td>
<td>1756-OP16</td>
<td>2</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OP</td>
<td>1</td>
<td>1756-OP16</td>
<td>1</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OQ</td>
<td>2</td>
<td>1756-OQ16</td>
<td>2</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OW</td>
<td>2</td>
<td>1756-OW16</td>
<td>2</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OW</td>
<td>1</td>
<td>1756-OW16</td>
<td>1</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OW</td>
<td>2</td>
<td>1756-OW16</td>
<td>2</td>
<td>1492-CM1771-LD010</td>
</tr>
<tr>
<td>1771-OA</td>
<td>1</td>
<td>1756-OA16</td>
<td>1</td>
<td>1492-CM1771-LD010</td>
</tr>
</tbody>
</table>

(1) To understand any issues concerning I/O module compatibility refer to the conversion module wiring diagrams and the Installation Manuals for the specific I/O modules involved (with particular attention to the specification and wiring instructions).

(2) Where two is indicated, these modules need to be located directly next to each other in the 1756 chassis.

(3) An “F” at the end of the 1756 catalog number indicates that it is fused to match the functionality of the 1771 module being replaced.

(4) The 005 in the Cat. No. indicates cable length of the 1492 cable. The recommended length of 0.5 M is listed, additional lengths are listed below.

1.0M Cable = 1492-CONCAB0010_, 1.0M/1.0M Cable = 1492-C010010X_0.5M/1.0M Cable = 1492-C005S010X_1.0M/0.5M Cable = 1492-C010005X_
Analog Inputs and Outputs

1. Column 1: find the catalog number of the **1771 Module** you are converting from.
2. Column 2: find the catalog number of the compatible **1756 Module** you are converting to.

 In some cases more than one module exists. Review the matrix carefully and review the I/O module Installation Manuals to determine full compatibility.
3. Column 3: find the catalog number of the **Conversion Module**.
4. Column 4: find the catalog number of the **Conversion Cable**.

Conversion Table

<table>
<thead>
<tr>
<th>Converting from 1771 Module</th>
<th>Converting to 1756 Module</th>
<th>Conversion Module</th>
<th>Conversion Cable</th>
<th>Wiring Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>1771-IFE</td>
<td>1</td>
<td>1756-IF16</td>
<td>Differential Current</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Differential Voltage</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single End Current</td>
<td>1</td>
</tr>
<tr>
<td>1771-IFF</td>
<td>1</td>
<td>1756-IF16</td>
<td>Differential Current</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Differential Voltage</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single End Current</td>
<td>1</td>
</tr>
<tr>
<td>1771-IL</td>
<td>1</td>
<td>1756-IF8i</td>
<td>Current</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Voltage</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1756-IF6i (6-ch)</td>
<td>Current</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Voltage</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1756-IF6i (2x 4-ch)</td>
<td>Current</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Voltage</td>
<td>2</td>
</tr>
<tr>
<td>1771-IR</td>
<td>1</td>
<td>1756-IRT8i</td>
<td>RTD</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1756-IR6i</td>
<td>RTD</td>
<td>1</td>
</tr>
<tr>
<td>1771-OX</td>
<td>1</td>
<td>1756-IT62</td>
<td>Thermocouple</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1756-IRT8i</td>
<td>Thermocouple</td>
<td>1</td>
</tr>
<tr>
<td>1771-OXH</td>
<td>1</td>
<td>1756-IT62</td>
<td>Thermocouple</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1756-IRT8i</td>
<td>Thermocouple</td>
<td>1</td>
</tr>
<tr>
<td>1771-OFE1</td>
<td>1</td>
<td>1756-OF6i</td>
<td>Voltage</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1756-OF8i</td>
<td>Voltage</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Voltage</td>
<td>1</td>
</tr>
<tr>
<td>1771-OFE2</td>
<td>1</td>
<td>1756-OF6i</td>
<td>Current</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Current</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Current</td>
<td>1</td>
</tr>
</tbody>
</table>
1771-N High Resolution Isolated Analog I/O Modules

The 1771-N High Resolution Analog I/O modules are designed for use with 1771-RTPs (Remote Termination Panels) and connected by a 6 or 15 foot cable (Cat. No. 1771-NC6 or 1771-NC15). The conversion of the 1771-N Series I/O to a 1756 ControlLogix I/O can be accomplished without the removal of any field wires from the existing 1771-RTPs.

Simply replace the (2) existing 1771 cables with (2) of the following cables in the table below. Each of these cables has a connector on one end that attaches directly to the existing 1771-RTP and a 1756 RTB (Removable Terminal Block) on the other end for connection to the ControlLogix I/O module.

Use the following steps to select the proper conversion cables:

1. Column 2: find the catalog number of the 1771 Digital I/O module.
2. In column 3, find the catalog number of the compatible 1756 Digital I/O module. In some cases more than one module is required. Review the matrix and the I/O module installation manuals to determine full compatibility.
3. In column 4, find the catalog numbers and descriptions of the appropriate cables.

<table>
<thead>
<tr>
<th>I/O Description</th>
<th>Convert From:</th>
<th>Convert To:</th>
<th>Cable Description</th>
<th>Conversion Cable Catalog Number</th>
<th>Wiring Diagram Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1771 Module</td>
<td>1756 Module</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qty.</td>
<td>Qty.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 1771-N High Resolution I/O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1771-NOC

- **1771-NOC**
 - 1771-NOC:
 - 1 1756-OF8I 1 Current (8 Ch) 1492-CONACAB020N88 103
 - 1 1756-OF8 1 Current (8 CH) 1492-CONACAB020N8 104

1771-NIS

- **1771-NIS**
 - 1771-NIS:
 - 1 1756-IF8I 1 Current (8 CH) 1492-CONACAB020N38 106
 - 1 1756-IF6I 2 Current (4/4 CH) 1492-CONACAB020N1 1492-CONACAB020N1 105

1771-NIV

- **1771-NIV**
 - 1771-NIV:
 - 1 1756-IF8I 1 Current (8 CH) 1492-CONACAB020N38 108
 - 1 1756-IF6I 2 Current (4/4 CH) 1492-CONACAB020N3 1492-CONACAB020N3 109

1771-NR

- **1771-NR**
 - 1771-NR:
 - 1 1756-IRT8I 1 RTD (8 CH) 1492-CONACAB020N48 114
 - 1 1756-IRT6I 2 RTD (4/4 CH) 1492-CONACAB020N4 1492-CONACAB020N4 115

1771-NT1

- **1771-NT1**
 - 1771-NT1:
 - 1 1756-IRT8I 1 Thermocouple (8 CH) 1492-CONACAB020N68 116
 - 1 1756-IT8I 2 Thermocouple (4/4 CH) 1492-CONACAB020N5 1492-CONACAB020N5 117

1771-NOV

- **1771-NOV**
 - 1771-NOV:
 - 1 1756-OF8I 1 Voltage (8 CH) 1492-CONACAB020N18 118
 - 1 1756-OF6I 2 Voltage (4/4 CH) 1492-CONACAB020N5 1492-CONACAB020N1 119

1771-NIV1

- **1771-NIV1**
 - 1771-NIV1:
 - 1 1756-IF6I 1 Voltage (8 CH) 1492-CONACAB020N78 120
 - 1 1756-IF6I 2 Voltage (4/4 CH) 1492-CONACAB020N7 1492-CONACAB020N7 121

1771-NT2

- **1771-NT2**
 - 1771-NT2:
 - 1 1756-IRT8I 1 Thermocouple (8 CH) 1492-CONACAB020N68 122
 - 1 1756-IT8I 2 Thermocouple (4/4 CH) 1492-CONACAB020N6 1492-CONACAB020N6 123
Specifications

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (H x D x W)</td>
<td>300 x 111.25 x 38.1 mm (11.81 x 4.38 x 1.5 in.)</td>
</tr>
<tr>
<td>Approximate Shipping Weight</td>
<td>260g (0.57 lb)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>Storage Temperature -40...+85 °C (-40...+185 °F)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>Operating Temperature 0...+60 °C (+32...+140 °F)</td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>Operating Humidity 5...95% at +55 °C (+131 °F)</td>
</tr>
<tr>
<td>Shock</td>
<td>Nonoperating 50 g</td>
</tr>
<tr>
<td></td>
<td>Operating 30 g</td>
</tr>
<tr>
<td>Operational Vibration</td>
<td>2 g at 10...500 Hz</td>
</tr>
<tr>
<td>Agency Certifications</td>
<td>UL Classified (UL File No. E113724)</td>
</tr>
<tr>
<td>CE Certifications</td>
<td>Compliant for all applicable directives</td>
</tr>
<tr>
<td>Pollution Degree</td>
<td>2</td>
</tr>
<tr>
<td>Environmental Rating</td>
<td>IP20</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>I/O Description</th>
<th>Convert From:</th>
<th>Convert To:</th>
<th>Cable Description</th>
<th>Conversion Cable Catalog Number</th>
<th>Wiring Diagram Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1771-NIVR</td>
<td>1</td>
<td>1</td>
<td>1756-IR8I</td>
<td>RTD (4 CH)</td>
<td>1492-CONACAB020N44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IF8I</td>
<td>Voltage (4 CH)</td>
<td>1492-CONACAB020N74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IR6I</td>
<td>RTD (4 CH)</td>
<td>1492-CONACAB020N4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IF6I</td>
<td>Voltage (4 CH)</td>
<td>1492-CONACAB020N7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IR8I</td>
<td>RTD (4 CH)</td>
<td>1492-CONACAB020N44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IF8I</td>
<td>Current (4 CH)</td>
<td>1492-CONACAB020N34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IR6I</td>
<td>RTD (4 CH)</td>
<td>1492-CONACAB020N4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IF6I</td>
<td>Current (4 CH)</td>
<td>1492-CONACAB020N3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IR8I</td>
<td>Thermocouple (4 CH)</td>
<td>1492-CONACAB020N54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IF8I</td>
<td>Voltage (4 CH)</td>
<td>1492-CONACAB020N74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IR6I</td>
<td>Thermocouple (4 CH)</td>
<td>1492-CONACAB020N5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IF6I</td>
<td>Voltage (4 CH)</td>
<td>1492-CONACAB020N7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IR8I</td>
<td>Thermocouple (4 CH)</td>
<td>1492-CONACAB020N54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IF8I</td>
<td>Current (4 CH)</td>
<td>1492-CONACAB020N34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IR6I</td>
<td>Thermocouple (4 CH)</td>
<td>1492-CONACAB020N5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1756-IF6I</td>
<td>Current (4 CH)</td>
<td>1492-CONACAB020N3</td>
</tr>
</tbody>
</table>

[124] 1756-IR8I

Rockwell Automation Publication 1492-SG121E-EN-P - July 2016 9
Notes:
Approximate Dimensions

Dimensions are in. (mm).

Cat No. MUA1B-A4-A7 used with Cat No. 1756-A4
Approximate Dimensions

Cat No. MUA1B-A4-A7 used with Cat No. 1756-A7
Cat No. MUA2B-A7-A10 used with Cat No. 1756-A7
Cat No. MUA3-A10-A13 used with Cat No. 1756-A10
Approximate Dimensions

Cat No. MUA3-A10-A13 used with Cat No. 1756-A13

<table>
<thead>
<tr>
<th>Left Justified</th>
<th>Centered</th>
<th>Right Justified</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 [60.2]</td>
<td>2.2 [56.8]</td>
<td>2.4 [60.2]</td>
</tr>
<tr>
<td>5.4 [137]</td>
<td>5.4 [137]</td>
<td>5.4 [137]</td>
</tr>
<tr>
<td>19.0 [483.6]</td>
<td>19.0 [483.6]</td>
<td>23.2 [588]</td>
</tr>
<tr>
<td>5.7 [146]</td>
<td>11.2 [285.6]</td>
<td>11.1 [281.7]</td>
</tr>
<tr>
<td>9.6 [243.9]</td>
<td>12.5 [317.3]</td>
<td>4.1 [103.1]</td>
</tr>
<tr>
<td>23.2 [588]</td>
<td>4.1 [103.1]</td>
<td>23.2 [588]</td>
</tr>
<tr>
<td>2.4 [60.2]</td>
<td>5.4 [137]</td>
<td>2.4 [60.2]</td>
</tr>
<tr>
<td>23.2 [588]</td>
<td>11.1 [281.7]</td>
<td>23.2 [588]</td>
</tr>
<tr>
<td>19.0 [483.6]</td>
<td>11.2 [285.6]</td>
<td>19.0 [483.6]</td>
</tr>
<tr>
<td>5.4 [137]</td>
<td>11.2 [285.6]</td>
<td>2.2 [56.8]</td>
</tr>
<tr>
<td>5.4 [137]</td>
<td>19.0 [483.6]</td>
<td>5.4 [137]</td>
</tr>
</tbody>
</table>
Approximate Dimensions

Cat No. MUA4-A13-A17 used with Cat No. 1756-A13

[Diagram showing approximate dimensions]
Approximate Dimensions

Cat No. MUA4-A13-A17 used with Cat No. 1756-A17

Left Justified

Centered

Right Justified
Wiring Diagrams - Digital Inputs

1771-IA, IA2 to 1756-IA16

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-IA16 RTB. Recommended cable lengths of 0.5 M / 0.5 M are shown. See table 2 for other lengths.

2. The input delay times for the 1771-IA, -IA2 module versus the 1756-IA16 module are as follows:

<table>
<thead>
<tr>
<th>1771-IA, -IA2</th>
<th>1756-IA16 w/ 1492-C005005XE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Off-to-On Delay</td>
<td>24ms (±10ms)</td>
</tr>
<tr>
<td>b) On-to-Off Delay</td>
<td>24ms (±10ms)</td>
</tr>
</tbody>
</table>

3. The 1771-IA, -IA2 module is rated 87V to 138V AC and 97V to 138V DC. The 1756-IA16 module is rated 79V to 132V AC only.

4. Refer to your 1771-IA, -IA2 and 1756-IA16 Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-952 (Version 02)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-IA16 RTB. Recommended cable lengths of 0.5M or 1.0M (0.05=0.5M, 0.10=1.0M). See table 2 for other lengths.

2. The input delay times for the 1771-IAD module versus the 1756-IA16 module are as follows:

 1771-IAD
 - Off-to-On Delay: 5ms (+/-3ms) @120VAC
 - On-to-Off Delay: 25ms (+/-5ms) 8ms max (plus selectable filter)

 1756-IA16 w/ 1492-CONCAB005X
 - Off-to-On Delay: 10ms max (plus selectable filter)
 - On-to-Off Delay: 8ms max (plus selectable filter)

3. The 1771-IAD module is rated 79V to 138V AC or DC. The 1756-IA16 module is rated 74V to 132V AC. If the input source voltage is DC use a 1756-IH16L and 1492-CM1771-LD002 conversion module.

4. Refer to your 1771-IAD and 1756-IA16 Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-925 (Version 02)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. The input delay times for the 1771-IAD module versus 1756-IH16I module are as follows:
 - **1771-IAD**
 - Off-to-On Delay: 3ms @120V DC
 - On-to-Off Delay: 25ms (+/-5ms)
 - **1756-IH16I**
 - Off-to-On Delay: 2ms
 - On-to-Off Delay: 6ms (+/-5ms)

2. The 1771-IAD module is rated 79V to 138V AC or DC. The 1756-IH16I module is rated 90V to 146V DC. If the input source voltage is AC use a 1756-IA16 and 1492-CM1771-LD002 conversion module.

3. Refer to your 1771-IAD and 1756-IH16I Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-927 (Version 02)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

WARNING

Conversion Module Installation and Application Considerations

a) Off-to-On Delay 10ms (+/-7ms)

b) On-to-Off Delay 20ms (+/-15ms)

This module/cable combination ties Groups 0 & 1 from the 1771-IAN to Group 0 on the 1756-IA32 and it ties Groups 2 & 3 from the 1771-IAN to Group 1 on the 1756-IA32. Field wiring modification must be made to accommodate this if multiple supplies were used. If 4 supplies were used, 2 must be removed.

Refer to your 1771-IAN and 1756-IA32 Installation Manual wiring schematics and diagrams for more details.
1771-IB to 1756-IB16

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

- This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-IB16 RTB. Recommended cable lengths of 0.5 M / 0.5 M are shown. See table 2 for other lengths.
- The input delay times for the 1771-IB module versus the 1756-IB16 module are as follows:
 a) Off-to-On Delay 24ms (+/-10ms) 1ms max (plus selectable filter)
 b) On-to-Off Delay 24ms (+/-10ms) 2ms max (plus selectable filter)
- The 1771-IB module is rated 24V DC. The 1756-IB16 module is rated 10 - 31V DC only.
- Refer to your 1771-IB and 1756-IB16 Installation Manual wiring schematics and diagrams for more details.
[Reference Doc: 41170-995 (Version 00)]
Wiring Diagrams - Digital Inputs

1771-IBD to 1756-IB16

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-IB16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The input delay times for the 1771-IBD module versus the 1756-IB16 module are as follows:

<table>
<thead>
<tr>
<th>1771-IBD</th>
<th>1756-IB16 w/ 1492-CONCAB005X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-to-On Delay</td>
<td>1ms</td>
</tr>
<tr>
<td>On-to-Off Delay</td>
<td>2ms (plus selectable filter)</td>
</tr>
</tbody>
</table>

3. Refer to your 1771-IBD and 1756-IB16 Installation Manual wiring Schematics and diagrams for more details. [Reference Doc: 41170-926 (Version 02)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

The input delay times for the 1771-IBN module versus 1756-IB32 module are as follows:

a) Off-to-On Delay
- 1771-IBN: 6ms (+/-2ms)
- 1756-IB32: 1ms (plus selectable filter)

b) On-to-Off Delay
- 1771-IBN: 6ms (+/-2ms)
- 1756-IB32: 1ms (plus selectable filter)

The 1771-IBN has 4 groups (allowing 4 separate power supplies) and the 1756-IB32 has 2 groups. This module/cable combination ties Groups 0 & 1 from the 1771-IBN to Group 0 on the 1756-IB32 and it ties Groups 2 & 3 from the 1771-IBN to Group 1 on the 1756-IB32. Field wiring modification must be made to accommodate this if multiple supplies were used. If 4 supplies were used, 2 must be removed.

Refer to your 1771-IBN and 1756-IB32 Installation Manual wiring schematics and diagrams for more details.
1771-IC to 1756-IC16

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

① This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-IC16 RTB. Recommended cable lengths of 0.5 M / 0.5 M are shown. See Table 2 for other lengths.

② The input delay times for the 1771-IC module versus the 1756-IC16 module are as follows:

<table>
<thead>
<tr>
<th>1771-IC</th>
<th>1756-IC16 w/ 1492-C005005XE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Off-to-On Delay</td>
<td>12ms (+/-7ms)</td>
</tr>
<tr>
<td>b) On-to-Off Delay</td>
<td>20ms (+/-7ms)</td>
</tr>
</tbody>
</table>

③ The 1771-IC module is rated 42 to 56V DC. The 1756-IC16 module is rated 42 to 56V DC only.

④ Refer to your 1771-IC and 1756-IC16 Installation Manual wiring schematics and diagrams for more details. [Reference Doc: 41170-996 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-IC16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The input delay times for the 1771-ICD module versus the 1756-IC16 module are as follows:

 - **1771-ICD**
 - Off-to-On Delay: 6ms (+/-2ms)
 - On-to-Off Delay: 20ms (+/-1ms)

 - **1756-IC16 w/ 1492-CONCAB005X**
 - Off-to-On Delay: 1ms max (plus selectable filter)
 - On-to-Off Delay: 4ms max (plus selectable filter)

3. The 1771-ICD module is rated 20V to 60V AC or DC. The 1756-IC16 module is rated 30V to 60V DC.

4. Refer to your 1771-ICD and 1756-IC16 Installation Manual wiring schematics and diagrams for more details.
1771-ID to 1756-IA16I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-IA16I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The input delay times for the 1771-ID module versus the 1756-IA16I module are as follows:
 - **1771-ID**
 - Off-to-On Delay: 24ms (+/-10ms)
 - On-to-Off Delay: 24ms (+/-10ms)
 - **1756-IA16I**
 - Off-to-On Delay: 10ms max (plus selectable filter)
 - On-to-Off Delay: 8ms max (plus selectable filter)

3. The 1771-ID module had a jumper selection of N.O. and N.C. outputs. The 1756-IA16I has both N.O. and N.C. outputs, but selection is by wiring termination on the 1756 swing arm. The 1492-CM1771-LD012 conversion module replaces the functionality of the 1771-ID jumpers with eight jumpers (JMP0 through JMP7). In the default position, the output will be N.O. If a N.C. output is required, change the jumper from pins 1-2 to pins 3-4.

4. Refer to your 1771-ID and 1756-IA16I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

[Reference Doc: 41170-993 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

- **This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-IM16I RTB. Each cable can be either 0.5M or 1.0M (0.05=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.**

- **The input delay times for the 1771-IM module versus the 1756-IM16I module are as follows:**
 - **1771-ID01**
 - **1756-IM16I w/ 1492-C005005XL**
 - a) Off-to-On Delay: 20ms (+/-10ms) 10ms max (plus selectable filter)
 - b) On-to-Off Delay: 20ms (+/-10ms) 8ms max (plus selectable filter)

- **The 1771-ID01 module had a jumper selection of N.O. and N.C. outputs. The 1756-IM16I has both N.O. and N.C. outputs, but selection is by wiring termination on the 1756 swing arm. The 1492-CM1771-LD012 conversion module replaces the functionality of the 1771-ID01 jumpers with eight jumpers (JMP0 through JMP7). In the default position, the output will be N.O. If a N.C. output is required, change the jumper from pins 1-2 to pins 3-4.**

- **Refer to your 1771-ID01 and 1756-IM16I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.** [Reference Doc: 41171-015 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

jf The input delay times for the 1771-ID16 module versus 1756-IA16I module are as follows:

- **1771-ID16**
 - Off-to-On Delay: 0.57ms
 - On-to-Off Delay: 9ms or 18ms (selectable)

- **1756-IA16I**
 - Off-to-On Delay: 10ms max (plus selectable filter)
 - On-to-Off Delay: 8ms max (plus selectable filter)

jf The 1771-ID16 module is rated 74V to 138V AC and 105V to 138V DC. The 1756-IA16I is rated 79V to 132V AC. If the input source voltage is DC use a 1756-IH16I with this conversion module.

jf Refer to your 1771-ID16 and 1756-IA16I Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-931 (Version 02)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

The input delay times for the 1771-ID16 module versus 1756-IH16I module are as follows:

<table>
<thead>
<tr>
<th></th>
<th>1771-ID16</th>
<th>1756-IH16I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-to-On Delay</td>
<td>0.57ms</td>
<td>2ms max (plus selectable filter)</td>
</tr>
<tr>
<td>On-to-Off Delay</td>
<td>9ms or 18ms (selectable)</td>
<td>6ms max (plus selectable filter)</td>
</tr>
</tbody>
</table>

The 1771-ID16 module is rated 74V to 138V AC and 105V to 138V DC. The 1756-IH16I is rated 90V to 146V DC. If the input source voltage is AC use a 1756-IA16I with this conversion module.

Refer to your 1771-ID16 and 1756-IH16I Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-932 (Version 02)]

1771-ID16 to 1756-IH16I
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable 'A' and cable 'B') wired to one 1756-IG16 RTB. Each cable can be either 0.5M or 1.0M (005=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.

2. The input delay times for the 1771-IG module versus the 1756-IG16 module are as follows:
 - 1771-IG
 - Off-to-On Delay: 1ms (+/-10ms)
 - On-to-Off Delay: 1ms (+/-10ms)
 - 1756-IG16 w/ 1492-C005005XS
 - Off-to-On Delay: 270ms max (plus selectable filter)
 - On-to-Off Delay: 390ms max (plus selectable filter)

3. The 1771-IG module is rated 5V DC TTL INPUT MODULE. The 1756-IG16 module is rated 5V DC TTL INPUT MODULE only.

4. Refer to your 1771-IG and 1756-IG16 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details. [Reference Doc: 41171-027 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-IG16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-IGD module output current limits versus 1756-IG16 limits are as follows:
 - 1771-IGD
 - Current/Point: 122mA
 - Current/Module: 500mA
 - 1756-IG16 w/ 1492-CONCAB005X
 - Current/Point: 110mA
 - Current/Module: 110mA

3. The 1771-IGD is rated 5V DC. The 1756-IG16 is rated 4.5V to 5.5V DC.

4. Refer to your 1771-IGD and 1756-IG16 Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41171-004 (Version 00)]
1771-IH to 1756-IC16

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

IMPORTANT

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-IC16 RTB. Recommended cable lengths of 0.5 M / 0.5 M are shown. See table 2 for other lengths.

2. The input delay times for the 1771-IH module versus the 1756-IC16 module are as follows:

 - **1771-IH**
 - Off-to-On Delay: 15ms (+/-7ms)
 - On-to-Off Delay: 15ms (+/-7ms)

 - **1756-IC16 w/ 1492-C005005XE**
 - 1ms max (plus selectable filter)

3. The 1771-IH module is rated 24V - 48V DC. The 1756-IC16 module is rated 30V - 60V DC.

4. Refer to your 1771-IH and 1756-IC16 Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-997 (Version 00)]
1771-IM to 1756-IM16I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

1771-IM to 1756-IM16I

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable "A" and cable "B") wired to one 1756-IM16I RTB. Recommended cable lengths of 0.5 M / 0.5 M are shown. See table 2 for other lengths.

2. The input delay times for the 1771-IM module versus the 1756-IM16I module are as follows:

 - 1771-IM
 a) Off-to-On Delay 20ms (+/-6ms)
 b) On-to-Off Delay 20ms (+/-6ms)

 - 1756-IM16I
 a) Off-to-On Delay 10ms max (plus selectable filter)
 b) On-to-Off Delay 8ms max (plus selectable filter)

3. The 1771-IM module is rated 220V to 240V AC. The 1756-IM16I module is rated 159 - 265V AC only.

4. Refer to your 1771-IM and 1756-IM16I Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-990 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. The input delay times for the 1771-IMD module versus 1756-IM16I module are as follows:

<table>
<thead>
<tr>
<th>Module</th>
<th>Off-to-On Delay</th>
<th>On-to-Off Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1771-IMD</td>
<td>15ms (+/-8ms)</td>
<td>172ms (+/-56ms)</td>
</tr>
<tr>
<td>1756-IM16I</td>
<td>10ms (plus selectable filter)</td>
<td>8ms (plus selectable filter)</td>
</tr>
</tbody>
</table>

2. The 1771-IMD module is rated 184V AC to 250V AC and 166V-230V DC. The 1756-IM16I module is rated 159V to 265V AC. A 1756 input module with an equivalent DC voltage range to convert the 1771-IMD is not available.

3. Refer to your 1771-IMD and 1756-IM16I Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-928 (Version 02)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable "A" and cable "B") wired to one 1756-IN16 RTB. Recommended cable lengths of 0.5 m / 0.5 m are shown. See table 2 for other lengths.
2. The input delay times for the 1771-IN module versus the 1756-IN16 module are as follows:
 - **1771-IN**
 - Off-to-On Delay: 18 ms (+/-10 ms)
 - On-to-Off Delay: 18 ms (+/-10 ms)
 - **1756-IN16 w/ 1492-C005005XE**
 - Off-to-On Delay: 10 ms max (plus selectable filter)
 - On-to-Off Delay: 10 ms max (plus selectable filter)
3. The 1771-IN module is rated 24V AC. The 1756-IN16 module is rated 24V AC only.
4. Refer to your 1771-IN and 1756-IN16 Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-998 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

This Bul. 1492 cable consists of a cable wired to one 1756-IN16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

The 1771-IND module is rated 24V AC or DC. The 1756-IN16 module is rated 10V to 30V AC.

Refer to your 1771-IND and 1756-IN16 Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-002 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-IN16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The input delay times for the 1771-IND1 module versus the 1756-IN16 module are as follows:

 - **1771-IND1**
 - Off-to-On Delay: 25ms (+/-5ms) @48V AC
 - On-to-Off Delay: 35ms (+/-10ms)

 - **1756-IN16 w/ 1492-CONCAB005X**
 - Off-to-On Delay: 10ms max (plus selectable filter)
 - On-to-Off Delay: 10ms max (plus selectable filter)

3. The 1771-IND1 module is rated 48V AC. The 1756-IN16 module is rated 10V to 30V AC.

4. Refer to your 1771-IND1 and 1756-IN16 Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-003 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-IB16I RTB. Recommended cable lengths of 0.5 M / 0.5 M are shown. See table 2 for other lengths.
2. The input delay times for the 1771-IQ module versus the 1756-IB16I module are as follows:
 a) Off-to-On Delay 12ms (+/-14ms) 1ms max (plus selectable filter)
 b) On-to-Off Delay 12ms (+/-7ms) 4ms max (plus selectable filter)
3. The 1771-IQ module is rated 5V to 30V DC. The 1756-IB16I module is rated 10V to 30V DC only.
4. Refer to your 1771-IQ and 1756-IB16I Installation Manual wiring schematics and diagrams for more details.
5. For Sourcing applications use 1492-CM1771-LD014. [Reference Doc: 41170-992 (Version 00)]
Wiring Diagrams - Digital Inputs

1771-IQ to 1756-IB16I— Sourcing

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable "A" and cable "B") wired to one 1756-IB16I RTB. Each cable can be either 0.5M or 1.0M (005=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.

2. The input delay times for the 1771-IQ module versus the 1756-IB16 module are as follows:

<table>
<thead>
<tr>
<th>1771-IQ</th>
<th>1756-IB16I w/1492-C005005XJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Off-to-On Delay 12ms (+/-14ms) 1ms max (plus selectable filter)</td>
<td></td>
</tr>
<tr>
<td>b) On-to-Off Delay 12ms (+/-14ms) 4ms max (plus selectable filter)</td>
<td></td>
</tr>
</tbody>
</table>

3. The 1771-IQ module is rated 5V to 30V DC. The 1756-IB16I module is rated 10V to 30V SOURCING DC only.

4. Refer to your 1771-IQ and 1756-IB16I Installation Manual wiring schematics and diagrams for more details.

5. For Sinking applications use 1492-CM1771-LD007. [Reference Doc: 41170-991 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. **Input Delay Times**
 - **1771-IQ16**
 - Off-to-On Delay: 0.57ms (plus selectable filter)
 - On-to-Off Delay: 0.57ms (plus selectable filter)
 - **1756-IB16I**
 - Off-to-On Delay: 1ms max
 - On-to-Off Delay: 4ms max

2. Both the 1771-IQ16 and 1756-IB16I allow operation with sourcing inputs. Refer to Installation Instructions for details.

3. Refer to your 1771-IQ16 and 1756-IB16I Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-933 (Version 02)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-IB16 RTB. Recommended cable lengths of 0.5 M / 0.5 M are shown. See table 2 for other lengths.

2. The input delay times for the 1771-IT module versus the 1756-IB16 module are as follows:
 - a) Off-to-On Delay 0.6ms (+/-0.2ms) 1ms max (plus selectable filter)
 - b) On-to-Off Delay 0.6ms (+/-0.2ms) 2ms max (plus selectable filter)

3. The 1771-IT module is rated 24V DC. The 1756-IB16 module is rated 24V DC only.

4. Refer to your 1771-IT and 1756-IB16 Installation Manual wiring schematics and diagrams for more details. [Reference Doc: 41170-999 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

<table>
<thead>
<tr>
<th>Conversion Module Installation and Application Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-IV16 RTB. Each cable can be either 0.5M or 1.0M (005=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.</td>
</tr>
<tr>
<td>2. The input delay times for the 1771-IV module versus the 1756-IV16 module are as follows:</td>
</tr>
<tr>
<td>1771-IV</td>
</tr>
<tr>
<td>a) Off-to-On Delay</td>
</tr>
<tr>
<td>b) On-to-Off Delay</td>
</tr>
<tr>
<td>3. The 1771-IV module is rated 12 To 24V DC. The 1756-IV16 module is rated 10V To 30V DC only.</td>
</tr>
<tr>
<td>4. Refer to your 1771-IV and 1756-IV16 Installation Manual wiring schematics and diagrams for more details.</td>
</tr>
</tbody>
</table>

[Reference Doc: 41170-989 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. The input delay times for the 1771-IVN module versus 1756-IV32 module are as follows:

<table>
<thead>
<tr>
<th>1771-IVN</th>
<th>1756-IV32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-to-On Delay</td>
<td>6ms (+/-2ms)</td>
</tr>
<tr>
<td>On-to-Off Delay</td>
<td>6ms (+/-2ms)</td>
</tr>
</tbody>
</table>

2. The 1771-IVN has 4 groups (allowing 4 separate power supplies) and the 1756-IV32 has 2 groups.

 This module/cable combination ties Groups 0 & 1 from the 1771-IVN to Group 0 on the 1756-IV32 and it ties Groups 2 & 3 from the 1771-IVN to Group 1 on the 1756-IV32. Field wiring modification must be made to accommodate this if multiple supplies were used. If 4 supplies were used, 2 must be removed.

3. Refer to your 1771-IVN and 1756-IV32 Installation Manual wiring schematics and diagrams for more details.

[Reference Doc: 41170-934 (Version 02)]
Notes:
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-OA8E RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-OA module output current limits versus 1756-OA8E limits are as follows:

<table>
<thead>
<tr>
<th>1771-OA</th>
<th>1756-OA8E w/ 1492-CONCAB005U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Current/Point</td>
<td>1.5A</td>
</tr>
<tr>
<td>b) Current/Module</td>
<td>6A</td>
</tr>
<tr>
<td>c) Surge Current/Point</td>
<td>4A for 8.3ms</td>
</tr>
</tbody>
</table>

3. The 1771-OA has eight (8) 2A, 250V fuses - 1 per output. The 1756-OA8E is electronically fused per point. Refer to the 1756-OA8E Installation Manual for details on electronic fusing.

4. Refer to your 1771-OA and 1756-OA8E Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

[Reference Doc: 41170-943 (Version 01)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-OA16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-OAD module output current limits versus 1756-OA16 limits are as follows:
 a) Current/Point 1771-OAD 1756-OA16 w/ 1492-CONCAB005X
 2A 0.5A
 b) Current/Module 8A 4A
 c) Surge Current/point 25A for 100ms 5A for 43ms

3. The L2 terminal (Terminal E) on the 1771-OAD module was an optional connection, but it is required for the 1756-OA16. This connection must be added if it was not connected.

4. The 1771-OAD is rated 10V to 138V AC. The 1756-OA16 is rated 74V to 256V AC.

5. Refer to your 1771-OAD and 1756-OA16 Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41170-935 (Version 01)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to two 1756-OA16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-OAN module output current limits versus 1756-OA16 limits are as follows:

<table>
<thead>
<tr>
<th>1771-OAN</th>
<th>1756-OA16 w/ 1492-CONCAB005S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Current/Point</td>
<td>1A</td>
</tr>
<tr>
<td>b) Current/Module</td>
<td>8A (32 pts)</td>
</tr>
<tr>
<td>c) Surge Current/Point</td>
<td>10A for 25ms</td>
</tr>
</tbody>
</table>

3. The 1771-OAN has 4 groups (allowing 4 separate power supplies). This module/cable combination ties all 4 groups from the 1771-OAN together. Field wiring modification must be made to accommodate this if multiple supplies were used. If more than 1 supply was used, all but 1 of the power supplies must be removed.

4. The 1771-OAN did not allow connections for L2, however the 1756-OA16 requires an L2 connection for proper operation. The 1771-OAN did not use terminals 10, 20, 30, 40. These terminal have been reassigned for an L2 connection in this application. The installer must rewire L2 to one of these terminals.

5. Refer to your 1771-OAN and 1756-OA16 Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

6. This configuration uses two (2) 1756-OA16 output modules to replace a single 1771-OAN output module. This may require the use of a larger 1756 I/O chassis and conversion mounting assembly. Ensure there is sufficient panel space to allow for this possibility.

[Reference Doc: 41170-942 (Version 02)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-OB16D RTB. Each cable can be either 0.5M or 1.0M (005=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.

2. The 1771-OB module output current limits versus 1756-OB16D limits are as follows:
 - a) Current/Point: 1.5A (1771-OB) vs. 2A (1756-OB16D w/ 1492-C00S005XF)
 - b) Current/Module: 6A (1771-OB) vs. 4A (1756-OB16D @ 60°C)
 - c) Surge Current/Point: 4A for 8.3ms (1771-OB) vs. 4A for 10ms (1756-OB16D)

3. The 1771-OB has eight (8) 2A, 250V fuses - 1 per output. The 1756-OB16D is a DIAGNOSTIC MODULE. Refer to the 1756-OB16D Installation Manual for details on diagnostics.

4. Refer to your 1771-OB and 1756-OB16D Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41170-988 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

WARNING

From 1771-OBD

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-OA16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-OBD module output current limits versus 1756-OB16E limits are as follows:
 a) Current/Point: 2A for 1771-OBD and 1A for 1756-OB16E
 b) Current/Module: 8A for 1771-OBD and 4A for 1756-OB16E
 c) Surge Current/point: 2A for 1771-OBD and 2A for 1756-OB16E

3. The 1771-OBD has a single 10A, 250V rectifier fuse (1/4 x 1 1/4 inch). The 1756-OB16E is electronically fused per group. Refer to the 1756-OB16E Installation Manual for details on electronic fusing.

4. The 1771-OBD is rated 10V to 60V DC. The 1756-OB16E is rated 10V to 31.2V DC. If the load source voltage is greater than 30V DC, then use the 1756-OC8 with the 1492-CM1771-LD008F conversion module.

5. Refer to your 1771-OBD and 1756-OB16E Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

[Reference Doc: 41170-936 (Version 01)]
Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to two 1756-OC8 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-OBD module output current limits versus 1756-OC8 limits are as follows:
 - **1771-OBD**
 - Current/Point: 2A
 - Current/Module: 8A
 - Surge Current/Point: 4A for 10ms
 - **1756-OC8**
 - Current/Point: 2A
 - Current/Module: 8A
 - Surge Current/Point: 4A for 10ms

3. The 1771-OBD has a single 10A, 250V rectifier fuse (1/4 x 1 1/4 inch). The 1756-OC8 is NOT fused, as such a 2AG fuse clip and 10A fuse is provided on the 1492-CM1771-LD008F conversion module.

4. The 1771-OBD is rated 10V to 60V DC. The 1756-OC8 is rated 30V to 60V DC. If the load source voltages is less than 30V DC, then use 1756-OB16E with the 1492-CM1771-LD006 conversion module.

5. This configuration uses two(2) 1756-OC8 output modules to replace a single 1771-OBD output module. This may require the use of a larger 1756 I/O chassis and conversion mounting assembly. Ensure there is sufficient panel space to allow for this possibility.

6. Refer to your 1771-OBD and 1756-OC8 Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41170-937 (Version 01)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. **This Bul. 1492 cable consists of a cable wired to one 1756-OB16E RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.**

2. **The 1771-OBDS module output current limits versus 1756-OB16E limits are as follows:**

 | 1771-OBDS | 1756-OB16E w/ 1492-CONCAB005X
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Current/Point</td>
<td>1A</td>
</tr>
<tr>
<td>b) Current/Module</td>
<td>8A</td>
</tr>
<tr>
<td>c) Surge Current/Point</td>
<td>4A for 10ms</td>
</tr>
</tbody>
</table>

3. **The 1771-OBDS has a single 12A, 250V rectifier fuse (1/4 x 1-1/4 inch). The 1756-OB16E is electronically fused per group. Refer to the 1756-OB16E Installation Manual for details on electronic fusing.**

4. **The 1771-OBDS is rated 10V to 40V DC. The 1756-OB16E is rated 10V to 31.2V DC. If the load source voltage is greater than 30V DC, then use the 1756-OC8 with the 1492-CM1771-LD008F conversion module.**

5. **Refer to your 1771-OBDS and 1756-OB16E Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.**

[Reference Doc: 41171-005 (Version 00)]
The 1771-OBN module output current limits versus 1756-OB32 limits are as follows:

- **Current/Point**: 0.5A for 1771-OBN, 0.35A @ 60°C for 1756-OB32.
- **Current/Module**: 8A for 1771-OBN, 6A @ 60°C for 1756-OB32.
- **Surge Current/Point**: 2A for 10ms for 1771-OBN, 1A for 10ms for 1756-OB32.

The 1771-OBN has four (4) 4A, 250V rectifier fuses. The 1756-OB32 is NOT fused, as such four (4) 2AG fuse clips and 4A fuses are provided on the 1492-CM1771-LD009F conversion module.

The 1492-CONAB005Z is limited to 3A per pin.

The 1771-OBN has 4 groups (allowing 4 separate power supplies) and the 1756-OB32 has 2 groups. This module/cable combination ties Groups 0 & 1 from the 1771-OBN to Group 0 on the 1756-OB32 and Groups 2 & 3 from the 1771-OBN to Group 1 on the 1756-OB32. Field wiring modification must be made to accommodate this if multiple supplies were used. If 4 supplies were used, 2 must be removed.

Refer to your 1771-OBN and 1756-OB32 Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-OC8 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-OC module output current limits versus 1756-OC8 limits are as follows:

 - a) Current/Point 1.5A 2A
 - b) Current/Module 8A 8A @ 60°C
 - c) Surge Current/Point 4A for 1.0ms 4A for 10ms

3. The 1771-OC has eight (8) 2A, 250V fuses - 1 per output. Refer to the 1756-OC8 Installation Manual for details.

4. Refer to your 1771-OC and 1756-OC8 Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41171-020 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and output module). Read and understand these considerations before installation. In addition, refer to the current draw requirements of the existing loads for this configuration to ensure they are within the current ratings of the 1756 output module.

1. The 1492 cable consists of 2 separate cables (cable "A" and "B") wired to one 1756-IM16I RTB. Each cable can be either 0.5M or 1.0M (005=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.

2. The 1771-OD module output resistive current limits versus 1756-OA16I limits are as follows:
 - 0.25A@ 125V DC
 - 1A @ 30V DC
 - 2A@ 30V DC
 - 0.2A @ 138V AC
 - 2A @ 240V AC

 The 1492-CD005005XM is limited to 3A per pin.

 a) Current/Point
 - 0.2A @ 138V AC
 - 1A @ 30V DC
 - 0.25A @ 125V DC
 - 0.25A @ 125V DC

 b) The 1492-COO5005XM is limited to 3A per pin.

 c) The 1771-OD module had a jumper selection of N.O. and N.C. outputs. The 1756-OA16I has both N.O. and N.C. outputs, but selection is by wiring termination on the 1756 swing arm. The 1492-CM1771-LD012 conversion module replaces the functionality of the 1771-OD jumpers with eight jumpers (JMP0 through JMP7). In the default position, the output will be N.O. If a N.C. output is required, change the jumper from pins 1-2 to pins 3-4.

 d) Refer to your 1771-OD and 1756-OA16I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-OA16I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-OD16 module output current limits versus 1756-OA16I limits are as follows:

<table>
<thead>
<tr>
<th></th>
<th>1771-OD16</th>
<th>1756-OA16I w/ 1492-CONCAB005Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Current/Point</td>
<td>2A</td>
<td>1A</td>
</tr>
<tr>
<td>b) Current/Module</td>
<td>8A</td>
<td>4A</td>
</tr>
<tr>
<td>b) Surge Current/Point</td>
<td>20A for 100ms</td>
<td>20A for 43ms</td>
</tr>
</tbody>
</table>

3. The 1771-OD16 has sixteen (16) 3A, 250V rectifier fuses. The 1756-OA16I is NOT fused, as such sixteen (16) 2AG fuse clips are provided on the 1492-CM1771-LD010F conversion module. Max fuse rating is 1.5A based on 1756-OA16I.

4. The 1771-OD16 is rated 74V to 138V AC and 105V to 138V DC. The 1756-OA16I is rated 74V to 265V AC. A1756 isolated output module with an equivalent DC voltage range to convert the 1771 -OD16 is not available.

5. Refer to your 1771-OD16 and 1756-OA16I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module rating are not exceeded. [Reference Doc: 41170-939 (Version 01)]
1771-ODD to 1756-OA16I

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-OA16I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-ODD module output current limits versus 1756-OA16I limits are as follows:
 a) Current/Point 2A 2A
 b) Current/Module 8A 5A
 c) Surge Current/Point 20A for 100ms 20A for 43ms

3. The 1771-ODD has sixteen (16) 3A, 250V rectifier fuses. The 1756-OA16I is NOT fused, as such sixteen (16) 2AG fuses and clips are provided on the 1492-CM1771-LD010F conversion module. Max fuse rating is 1.5A based on 1756-OA16I.

4. The 1771-ODD is rated 74V to 138V AC. The 1756-OA16I is rated 74V to 265V AC.

5. Refer to your 1771-ODD and 1756-OA16I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

[Reference Doc: 41171-009 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable "A" and cable "B") wired to one 1756-OA16I RTB. Each cable can be either 0.5M or 1.0M (0.05=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.

2. The 1771-ODZ module output resistive current limits versus 1756-OA16I limits are as follows:

<table>
<thead>
<tr>
<th>1771-ODZ</th>
<th>1756-OA16I w/ 1492-C005005XP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current/Point</td>
<td>2A</td>
</tr>
<tr>
<td>Current/Module</td>
<td>6A</td>
</tr>
<tr>
<td>Surge Current/Point</td>
<td>20A for 100ms</td>
</tr>
</tbody>
</table>

3. The 1771-ODZ module had a jumper selection of N.O. and N.C. outputs. The 1756-OA16I has both N.O. and N.C. outputs, but selection is by wiring termination on the 1756 swing arm. The 1492-CM1771-LD012 conversion module replaces the functionality of the 1771-ODZ jumpers with eight jumpers (JMP0 through JMP7). In the default position, the output will be N.O. If a N.C. output is required, change the jumper from pins 1-2 to pins 3-4.

4. Refer to your 1771-ODZ and 1756-OA16I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41171-016 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-OG16 RTB. Each cable can be either 0.5M or 1.0M (005=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.

2. The input delay times for the 1771-OG module versus the 1756-OG16 module are as follows:
 - **1771-OG**
 - Off-to-On Delay: 1ms (+/-10ms)
 - On-to-Off Delay: 1ms (+/-10ms)
 - **1756-OG16 w/ 1492-C005005XS**
 - Off-to-On Delay: 45ms max (plus selectable filter)
 - On-to-Off Delay: 145ms max (plus selectable filter)

3. The 1771-OG module is rated 5V DC TTL INPUT MODULE. The 1756-OG16 module is rated 5V DC TTL INPUT MODULE only.

4. Refer to your 1771-OG and 1756-OG16 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
 [Reference Doc: 41171-028 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-OG16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.
2. The 1771-OGD module output current limits versus 1756-OG16 limits are as follows:
 - **1771-OGD**
 - Current/Point: 1mA, 24mA
 - Current/Module: 310mA, 384mA
 - **1756-OG16 w/ 1492-CONCAB005X**
 - Current/Point: 24mA
 - Current/Module: 384mA
3. The 1771-OGD has a single 10A, 250V rectifier fuse (1/4 x 1-1/4 inch). The 1756-OG16 is electronically fused per group. Refer to the 1756-OG16 Installation Manual for details on electronic fusing.
4. The 1771-OGD is rated 10V to 60V DC. The 1756-OG16 is rated 10V to 31.2V DC.
5. Refer to your 1771-OGD and 1756-OG16 Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41171-006 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

- Conversion Module
 - 1492-CM1771-LD014

- Cable
 - 1492-C005005XG

Conversion Module Installation and Application Considerations

- Conversion Module
 - 1492-CM1771-LD014

- Cable
 - 1492-C005005XG

1771-OM to 1756-OA16

IMPORTANT

- There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

- Conversion Module
 - 1492-CM1771-LD014

- Cable
 - 1492-C005005XG

1771-OM module output current limits versus 1756-OA16 limits are as follows:

1. **Current/Point**
 - 1771-OM: 2A
 - 1756-OA16: 0.5 @ 60°C

2. **Current/Module**
 - 1771-OM: 6A
 - 1756-OA16: 4A @ 60°C

3. **Surge Current/Point**
 - 1771-OM: 20A for 100ms
 - 1756-OA16: 5A for 43ms

Conversion Module Installation and Application Considerations

- This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-OA16 RTB. Each cable can be either 0.5M (005=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.

- The 1771-OM module output current limits versus 1756-OA16 limits are as follows:
 - 1771-OM
 - Current/Point: 2A
 - Current/Module: 6A
 - Surge Current/Point: 20A for 100ms
 - 1756-OA16 w/ 1492-CONCAB005XG
 - Current/Point: 0.5 @ 60°C
 - Current/Module: 4A @ 60°C
 - Surge Current/Point: 5A for 43ms

- The 1771-OM module is rated 220V to 240V AC. The 1756-OA16 module is rated 74V to 265V AC only.

- Refer to your 1771-OM and 1756-OA16 Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

[Reference Doc: 41171-022 (Version 00)]
1771-OMD to 1756-OA16

Conversion Module

1771-OMD

1756-OA16

Cable

1492-CONCAB005X

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-OA16 RTB. Recommended cable lengths 0.5M or 1.0M (005=0.5M, 010=1.0M). See Table 2 for other lengths.

2. The 1771-OMD module output current limits versus 1756-OA16 limits are as follows:

<table>
<thead>
<tr>
<th>1771-OMD</th>
<th>1756-OA16 w/ 1492-CONCAB005X</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Current/Point</td>
<td>2A</td>
</tr>
<tr>
<td>b) Current/Module</td>
<td>8A</td>
</tr>
<tr>
<td>c) Surge Current/Point</td>
<td>25A for 100ms</td>
</tr>
</tbody>
</table>

3. The 1771-OMD has a single 10A, 250V rectifier fuse (1/4 x 1 1/4 inch). The 1756-OA16 has a mechanical 3.15A @250V AC slow blow fuse. Refer to the 1756-OA16 Installation Manual for details on electronic fusing.

4. The 1771-OMD is rated 184V to 250V AC. The 1756-OA16 is rated 74V to 265V AC. If the load source voltage is greater than 30V DC, then use the 1756-OA8 with the 1492-CM1771-LD008F conversion module.

5. Refer to your 1771-OMD and 1756-OA16 Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

[Reference Doc: 41171-007 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-ON8 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-ON module output current limits versus 1756-ON8 limits are as follows:
 a) Current/Point 1.5A 2A
 b) Current/Module 6A 5A @ 60°C
 c) Surge Current/Point 4A for 10ms 20A for 43ms

3. The 1771-ON has eight (8) 2A, 250V fuses - 1 per output. The 1756-ON8 is electronically fused per point. Refer to the 1756-ON8 Installation Manual for details on electronic fusing.

4. Refer to your 1771-ON and 1756-ON8 Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41171-021 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to two 1756-ON8 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-OND module output current limits versus (2)1756-ON8 limits are as follows:

<table>
<thead>
<tr>
<th>1771-OND</th>
<th>1756-ON8</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Current/Point</td>
<td>2A</td>
</tr>
<tr>
<td>b) Current/Module</td>
<td>8A</td>
</tr>
<tr>
<td>c) Surge Current/Point</td>
<td>25A for 100ms</td>
</tr>
</tbody>
</table>

3. The L2 terminal (Terminal E) on the 1771-ON8 module was an optional connection, but it is required for the 1756-OA16. This connection must be added if it was not connected.

4. The 1771-OND is rated 24V AC. The 1756-ON8 is rated 10V to 30V AC.

5. Refer to your 1771-OND and 1756-ON8 Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41171-008 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

1771-OQ to 1756-OB16I

Conversion Module 1492-CM1771-LA004

Cable 1492-C005005XT®

1756-OB16I

Conversion Module 1492-CM1771-LA004

Cable “B”.

Conversion Module Installation and Application Considerations

1. This Bull 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-OB16I RTB. Each cable can be either 0.5M or 1.0M (005=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.

2. The 1771-OQ module output resistive current limits versus 1756-OB16I limits are as follows:
 - 1771-OQ: 2.25A, 2A
 - 1756-OB16I: 2A, 2A
 - Surge Current/Point: 4A for 10ms, 4A for 10ms

3. Refer to your 1771-OQ and 1756-OB16I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

[Reference Doc: 41171-033 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

WARNING

This Bul. 1492 cable consists of a cable wired to one 1756-OB16I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

The 1771-OQ16 module output current limits versus 1756-OB16I limits are as follows:

- **1771-OQ16**
 - a) Current/Point: 2A
 - b) Current/Module: 32A
 - c) Surge Current/Point: 4A for 10ms

- **1756-OB16I**
 - a) Current/Point: 2A
 - b) Current/Module: 8A
 - c) Surge Current/Point: 4A for 10ms

The 1771-OQ16 has sixteen (16) 3A, 250V rectifier fuses. The 1756-OB16I is NOT fused, as such sixteen (16) 2AG fuses and clips are provided on the 1492-CM1771-LD010F conversion module. Max fuse rating is 1.5A based on 1756-OA16I.

The 1771-OQ16 is rated 10V to 32V DC. The 1756-OB16I is rated 10V to 30V DC.

Refer to your 1771-OQ16 and 1756-OB16I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41171-010 (Version 00)]

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-OB16I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-OQ16 module output current limits versus 1756-OB16I limits are as follows:
 - **1771-OQ16**
 - a) Current/Point: 2A
 - b) Current/Module: 32A
 - c) Surge Current/Point: 4A for 10ms
 - **1756-OB16I**
 - a) Current/Point: 2A
 - b) Current/Module: 8A
 - c) Surge Current/Point: 4A for 10ms

3. The 1771-OQ16 has sixteen (16) 3A, 250V rectifier fuses. The 1756-OB16I is NOT fused, as such sixteen (16) 2AG fuses and clips are provided on the 1492-CM1771-LD010F conversion module. Max fuse rating is 1.5A based on 1756-OA16I.

4. The 1771-OQ16 is rated 10V to 32V DC. The 1756-OB16I is rated 10V to 30V DC.

5. Refer to your 1771-OQ16 and 1756-OB16I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41171-010 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-OA16I RTB. Each cable can be either 0.5M or 1.0M (005=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.

2. The 1771-OR module output resistive current limits versus 1756-OA16I limits are as follows:
a) Current/Point 2A 2A
b) Current/Module 6A 5A @ 60°C
c) Surge Current/Point 15A for 100ms 20A for 43ms

3. The 1771-OR module had a jumper selection of N.O. and N.C. outputs. The 1756-OA16I has both N.O. and N.C. outputs, but selection is by wiring termination on the 1756 swing arm. The 1492-CM1771-LD012 conversion module replaces the functionality of the 1771-OR jumpers with eight jumpers (JMP0 through JMP7). In the default position, the output will be N.O. If a N.C. output is required, change the jumper from pins 1-2 to pins 3-4.

4. Refer to your 1771-OR and 1756-OA16I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

[Reference Doc: 41171-017 (Version 00)]

1771-OR to 1756-OB16I
Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to two 1756-OV16E RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. The 1771-OVN module output current limits versus 1756-OV16E limits are as follows:
 a) Current/Point 0.5A 1A
 b) Current/Module 8A (32 pts) 8A (16 pts)
 c) Surge Current/Point 2A for 10ms 2A for 10ms

3. The 1771-OVN has 4 groups (allowing 4 separate power supplies). This module/cable combination ties all 4 groups from the 1771-OVN together. Field wiring modification must be made to accommodate this if multiple supplies were used. If more than 1 supply was used, all but 1 of the power supplies must be removed.

4. The 1771-OVN did not allow connections for L2, however the 1756-OV16E requires an L2 connection for proper operation. The 1771-OVN did not use terminals 10, 20, 30, 40. These terminals have been reassigned for an L2 connection in this application. The installer must rewire L2 to one of these terminals.

5. Refer to your 1771-OVN and 1756-OV16E Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

6. This configuration uses two (2) 1756-OV16E output modules to replace a single 1771-OVN output module. This may require the use of a larger 1756 I/O chassis and conversion mounting assembly. Ensure there is sufficient panel space to allow for this possibility.

[Reference Doc: 41171-018 (Version 00)]
Conversion Module Installations and Application Considerations

1 This Bul. 1492 cable consists of a cable wired to one 1756-OX8I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M), 010=1.0M). See table 2 for other lengths.

2 The 1771-OW module output resistive current limits versus 1756-OX8I limits are as follows:

![Conversion Module Diagram]

Conversion Module 1492-CM1771-LD012 with 1771-WD Swing Arm From 1771-OW

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-OX8I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M), 010=1.0M). See table 2 for other lengths.

2. The 1771-OW module output resistive current limits versus 1756-OX8I limits are as follows:

<table>
<thead>
<tr>
<th>1771-OW</th>
<th>1756-OX8I w/ 1492-CONCAB005Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current/Point</td>
<td></td>
</tr>
<tr>
<td>0.2A @ 138V AC</td>
<td>2A @ 240V AC</td>
</tr>
<tr>
<td>1A @ 30V DC</td>
<td>2A @ 30V DC</td>
</tr>
<tr>
<td>0.25A @ 125V DC</td>
<td>0.25A @ 125V DC</td>
</tr>
</tbody>
</table>

3. The 1771-OW module had a jumper selection of N.O. and N.C. outputs. The 1756-OX8I has both N.O. and N.C. outputs, but selection is by wiring termination on the 1756 swing arm. The 1492-CM1771-LD012 conversion module replaces the functionality of the 1771-OW jumpers with eight jumpers (JMP0 through JMP7). In the default position, the output will be N.O. If a N.C. output is required, change the jumper from pins 1-2 to pins 3-4.

4. Refer to your 1771-OW and 1756-OX8I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

[Reference Doc: 41170-941 (Version 01)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

1771-OW16 to 1756-OW16i

Conversion Module Installation and Application Considerations

- **1771-OW16**
 - Output 00
 - Common 00
 - Common 01
 - Output 01
 - Common 02
 - Output 02
 - Common 03
 - Output 03
 - Common 04
 - Output 04
 - Common 05
 - Output 05
 - Common 06
 - Output 06

- **1771-WN Swing Arm**
 - From 1771-OW16

Conversion Module

- **1492-CM1771-LD011**

Cable

- **1492-CONCAB005Y**

1756-OW16i

IMPORTANT

The 1771-OW16 module output resistive current limits versus 1756-OW16i limits are as follows:

<table>
<thead>
<tr>
<th>1771-OW16</th>
<th>1756-OW16i w/ 1492-CONCAB005Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A @ 250V AC</td>
<td>2A @ 240V AC</td>
</tr>
<tr>
<td>2A @ 30V DC</td>
<td>2A @ 30V DC</td>
</tr>
<tr>
<td>0.3A @ 150V DC</td>
<td>0.25A @ 125V AC</td>
</tr>
</tbody>
</table>

- The 1492-CONCAB005Y is limited to 3A per pin.
- The 1771-OW16 has N.O. and N.C. relay contact outputs. The 1756-OW16i has N.O. relay contact outputs only. The conversion module does not convert the N.C. to N.O. contacts. If the 1771-OW16 N.C. outputs were being used, the installer must rewire the 1771-WN swing arm and move the N.C. wires to the N.O. output terminals. In addition, the control Logix programming will need to be changed to simulate a N.C. relay with this output.
- Refer to your 1771-OW16 and 1756-OW16i Installation Manual wiring schematics and diagrams for more details.
- Ensure 1756 output module ratings are not exceeded.

Reference Doc: 41170-940 (Version 01)
1771-OWNA to 1756-OW16I

IMPORTANT There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to two 1756-OW16I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M).

2. The 1771-OWNA module output current limits versus 1756-OW16I limits are as follows:

 - **1771-OWNA**
 - a) Current/Point 1A
 - b) Current/Module 12A (32 pts)
 - **1756-OW16I**
 - a) Current/Point 0.5A
 - b) Current/Module 2A (16 pts)

3. The 1771-OWNA has 4 groups (allowing 4 separate power supplies). This module/cable combination ties all 4 groups from the 1771-OWNA to 1756-OW16I to operate 1 module/cable combination. This may require the use of a larger 1756 I/O chassis and conversion mounting assembly. Ensure there is sufficient panel space to allow for this possibility.

4. The 1771-OWNA did not allow connections for L2, however the 1756-OW16I requires an L2 connection for proper operation. The 1771-OWNA did not use terminals 10, 20, 30, 40. These terminals have been reassigned for an L2 connection in this application. The installer must rewire L2 to one of these terminals.

5. Refer to your 1771-OWNA and 1756-OW16I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

6. The 1756-OW16I output modules have all inputs jumpered together pins 2 through 34 even.

[Reference Doc: 41171-019 (Version 00)]
1771-OY to 1756-OX8I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable, and output module). Read and understand these considerations before installation. In addition, refer to the current draw requirements of the existing loads for this configuration to ensure they are within the current ratings of the 1756 output module.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. This Bul. 1492 cable consists of a cable wired to one 1756-OX8I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.
2. The 1771-OY module output resistive current limits versus 1756-OX8I limits are as follows:
 a) Current/Point 100mA @ 138V AC, 2A @ 240V AC
 b) 100mA @ 125V DC, 2A @ 30V DC
 c) 0.25A @ 125V DC

3. The 1771-OY module had a jumper selection of N.O. and N.C. outputs. The 1756-OX8I has both N.O. and N.C. relay outputs, but selection is by wiring termination on the 1756 swing arm. The 1492-CM1771-LD012 conversion module replaces the functionality of the 1771-OY jumpers with eight jumpers (JMP0 through JMP7). In the default position, the output will be N.O. If a N.C. output is required, change the jumper from pins 1-2 to pins 3-4.
4. Refer to your 1771-OY and 1756-OX8I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and output module). Read and understand these considerations before installation. In addition, refer to the current draw requirements of the existing loads for this configuration to ensure they are within the current ratings of the 1756 output module.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. **This Bul. 1492 cable consists of a cable wired to one 1756-OX8I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.**

2. **The 1771-OYL module output resistive current limits versus 1756-OX8I limits are as follows: (NOTE: for switching and inductive current ratings, refer to the modules Installation Instructions)**

 - **1771-OYL**
 - Current/Point: 100mA @ 24V AC, 2A @ 240V AC
 - 0.25A @ 125V DC

 - **1756-OX8I**
 - Out-0 N.O. @ 24V DC, 2A @ 30V DC
 - Out-0 N.C. @ 30V DC
 - Out-1 N.O. @ 125V DC
 - Out-1 N.C. @ 100mA @ 24V AC, 2A @ 240V AC

3. **The 1771-OYL module had a jumper selection of N.O. and N.C. outputs. The 1756-OX8I has both N.O. and N.C. relay outputs, but selection is by wiring termination on the 1756 swing arm. The 1492-CM1771-LD012 conversion module replaces the functionality of the 1771-OYL jumpers with eight jumpers (JMP0 through JMP7). In the default position, the output will be N.O.. If a N.C. output is required, change the jumper from pins 1-2 to pins 3-4.**

4. **Refer to your 1771-OYL and 1756-OX8I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.**

Diagram Details:
- **Conversion Module:** 1492-CM1771-LD012
- **Cable:** 1492-CONCAB005Y
- **Output Module:** 1756-OX8I

Implementation Notes:
- Use the table provided to select the appropriate cable length.
- Ensure all output module ratings are within the limits specified for the 1756-OX8I.
- Refer to the Installation Manual for detailed wiring diagrams and schematics.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bl. 1492 cable consists of a cable wired to one 1756-OX8I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M), 010=1.0M). See table 2 for other lengths.

2. The 1771-OZ module output resistive current limits versus 1756-OX8I limits are as follows:

<table>
<thead>
<tr>
<th>1771-OZ</th>
<th>1756-OX8I w/ 1492-CONCAB005Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Current/Point</td>
<td>1771-OZ</td>
</tr>
<tr>
<td></td>
<td>100mA @ 138V AC</td>
</tr>
<tr>
<td></td>
<td>100mA @ 138V DC</td>
</tr>
<tr>
<td></td>
<td>0.25A @ 125V DC</td>
</tr>
</tbody>
</table>

3. The 1771-OZ module had a jumper selection of N.O. and N.C. outputs. The 1756-OX8I has both N.O. and N.C. outputs, but selection is by wiring termination on the 1756 swing arm. The 1492-CM1771-LD012 conversion module replaces the functionality of the 1771-OZ jumpers with eight jumpers (JMP0 through JMP7). In the default position, the output will be N.O. If a N.C. output is required, change the jumper from pins 1-2 to pins 3-4.

4. Refer to your 1771-OZ and 1756-OX8I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded.

[Reference Doc: 41171-013 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to one 1756-OX8I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M), 010=1.0M). See table 2 for other lengths.

2. The 1771-OZL module output resistive current limits versus 1756-OX8I limits are as follows:
 (NOTE: For switching and inductive current ratings, refer to the modules Installation Instructions)

<table>
<thead>
<tr>
<th>1771-OZL</th>
<th>1756-OX8I w/ 1492-CM1771-LD012</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Current/Point</td>
<td>1771-OZL</td>
</tr>
<tr>
<td>100mA @ 138V AC</td>
<td>2A @ 240V AC</td>
</tr>
</tbody>
</table>

3. The 1771-OZL module had a jumper selection of N.O. and N.C. outputs. The 1756-OX8I has both N.O. and N.C. outputs, but selection is by wiring termination on the 1756 swing arm. The 1492-CM1771-LD012 conversion module replaces the functionality of the 1771-OZL jumpers with eight jumpers (JMP0 through JMP7). In the default position, the output will be N.O. If a N.C. output is required, change the jumper from pins 1-2 to pins 3-4.

4. Refer to your 1771-OZL and 1756-OX8I Installation Manual wiring schematics and diagrams for more details. Ensure 1756 output module ratings are not exceeded. [Reference Doc: 41171-014 (Version 00)]
Wiring Diagrams - Analog Inputs and Outputs

1771-IFE to 1756-IF16 Differential Current

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and output module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. **SHIELD GROUNDING**: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA002 module. The pre-wired cable used between the 1492-CM1771-LA002 module and the 1756-IF16 (1492-CONACAB005D) provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

2. This design assumes that all inputs on the 1771-IFE were connected to current transmitters. If there was a mix of current and voltage transmitters, then modification of the pre-wired cable (1492-CONACAB005D) will need to occur at the 1756-IF16 terminal block. Refer to the 1756-IF16 Installation Manual for modification details.

3. The 1771-IFE analog input ranges were configured via software, as is the input range for the 1756-IF16. Please ensure the correct input range is configured in the 1756-IF16.

4. Refer to your 1771-IFE and 1756-IF16 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.

IMPORTANT
1771-IFE to 1756-IF16 Differential Voltage

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA002 module. The pre-wired cable used between the 1492-CM1771-LA002 module and the 1756-IF16 [1492-CONACAB005C] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

2. This design assumes that all inputs on the 1771-IFE were connected to current or voltage transmitters. If there was a mix of current and voltage transmitters, then modification of the pre-wired cable (1492-CONACAB005C) will need to occur at the 1756-IF16 terminal block. Refer to the 1756-IF16 Installation Manual for modification details.

3. The 1771-IFE analog input ranges were configured via software, as is the input range for the 1756-IF16. Please ensure the correct input range is configured in the 1756-IF16.

4. Refer to your 1771-IFE and 1756-IF16 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
1771-IFE to 1756-IF16 Single End Current

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. **SHIELD GROUNDING:** In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA001 module. The pre-wired cable used between the 1492-CM1771-LA001 module and the 1756-IF16 [1492-CONACAB005B] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

2. **This design assumes that all inputs on the 1771-IFE were connected to current transmitters. If there was a mix of current and voltage transmitters, then modification of the pre-wired cable [1492-CONACAB005B] will need to occur at the 1756-IF16 terminal block. Refer to the 1756-IF16 Installation Manual for modification details.**

3. **The 1771-IFE analog input ranges were configured via software, as is the input range for the 1756-IF16. Please ensure the correct input range is configured in the 1756-IF16.**

4. **Refer to your 1771-IFE and 1756-IF16 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.**
1771-IFE to 1756-IF16 Single End Voltage

IMPORTANT
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA001 module. The pre-wired cable used between the 1492-CM1771-LA001 module and the 1756-IF16 (1492-CONACAB005A) provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. DO NOT connect this ground lug to the conversion module grounding stud.

2. This design assumes that all inputs on the 1771-IFE were connected to voltage transmitters. If there was a mix of current and voltage transmitters, then modification of the pre-wired cable (1492-CONACAB005A) will need to occur at the 1756-IF16 terminal block. Refer to the 1756-IF16 Installation Manual for modification details.

3. The 1771-IFE analog input ranges were configured via software, as is the input range for the 1756-IF16. Please ensure the correct input range is configured in the 1756-IF16.

4. Refer to your 1771-IFE and 1756-IF16 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
1771-IFF to 1756-IF16 Differential Current

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. This Bul. 1492 cable consists of a cable wired to one 1756-IF16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the ground stud on the 1492-CM1771-LA002 module. The pre-wired cable used between the 1492-CM1771-LA002 module and the 1756-IF16 (1492-CONACAB005D) provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. This design assumes that all inputs on the 1771-IFF were connected to current transmitters. If there was a mix of current and voltage transmitters, then modification of the pre-wired cable (1492-CONACAB005D) will need to occur at the 1756-IF16 terminal block. Refer to the 1756-IF16 Installation Manual for modification details.

4. The 1771-IFF analog input ranges were configured via software, as is the input range for the 1756-IF16. Please ensure the correct input range is configured in the 1756-IF16.

5. Refer to your 1771-IFF and 1756-IF16 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.

1771-IFF to 1756-IF16 Differential Current

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. This Bul. 1492 cable consists of a cable wired to one 1756-IF16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the ground stud on the 1492-CM1771-LA002 module. The pre-wired cable used between the 1492-CM1771-LA002 module and the 1756-IF16 (1492-CONACAB005D) provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. This design assumes that all inputs on the 1771-IFF were connected to current transmitters. If there was a mix of current and voltage transmitters, then modification of the pre-wired cable (1492-CONACAB005D) will need to occur at the 1756-IF16 terminal block. Refer to the 1756-IF16 Installation Manual for modification details.

4. The 1771-IFF analog input ranges were configured via software, as is the input range for the 1756-IF16. Please ensure the correct input range is configured in the 1756-IF16.

5. Refer to your 1771-IFF and 1756-IF16 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.

41171-025 (00)
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. This Bul. 1492 cable consists of a cable wired to one 1756-IF16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA002 module. The pre-wired cable used between the 1492-CM1771-LA002 module and the 1756-IF16 [1492-CONACAB005C] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. This design assumes that all inputs on the 1771-IFF were connected to voltage transmitters. If there was a mix of current and voltage transmitters, then modification of the pre-wired cable [1492-CONACAB005C] will need to occur at the 1756-IF16 terminal block. Refer to the 1756-IF16 Installation Manual for modification details.

4. The 1771-IFF analog input ranges were configured via software, as is the input range for the 1756-IF16. Please ensure the correct input range is configured in the 1756-IF16.

5. Refer to your 1771-IFF and 1756-IF16 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
1771-IFF to 1756-IF16 Single End Current

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. This Bul. 1492 cable consists of a cable wired to one 1756-IF16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.
2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA001 module. The pre-wired cable used between the 1492-CM1771-LA001 module and the 1756-IF16 [1492-CONACAB005B] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.
3. This design assumes that all inputs on the 1771-IFF were connected to current transmitters. If there was a mix of current and voltage transmitters, then modification of the pre-wired cable [1492-CONACAB005B] will need to occur at the 1756-IF16 terminal block. Refer to the 1756-IF16 Installation Manual for modification details.
4. The 1771-IFF analog input ranges were configured via software, as is the input range for the 1756-IF16. Please ensure the correct input range is configured in the 1756-IF16.
5. Refer to your 1771-IFF and 1756-IF16 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
1771-IFF to 1756-IF16 Single End Voltage

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1 This Bul. 1492 cable consists of a cable wired to one 1756-IF16 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2 SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA001 module. The pre-wired cable used between the 1492-CM1771-LA001 module and the 1756-IF16 [1492-CONACAB005A] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3 This design assumes that all inputs on the 1771-IFF were connected to voltage transmitters. If there was a mix of current and voltage transmitters, then modification of the pre-wired cable [1492-CONACAB005A] will need to occur at the 1756-IF16 terminal block. Refer to the 1756-IF16 Installation Manual for modification details.

4 The 1771-IFF analog input ranges were configured via software, as is the input range for the 1756-IF16. Please ensure the correct input range is configured in the 1756-IF16.

5 Refer to your 1771-IFF and 1756-IF16 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.

41171-024 (00)
1771-IL to 1756-IF8I Current

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. This Bul 1492 cable consists of a cable wired to one 1756-IF8I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M).
2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA004 module. The pre-wired cable used between the 1492-CM1771-LA004 module and the 1756-IF8I (1492-CONACAB005K8) provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.
3. The 1771-IL input configuration was software configured, as is the 1756-IF8I. Please ensure the correct configuration in the 1756-IF8I.
4. Refer to your 1771-IL and 1756-IF8I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

- **IMPORTANT**

1. This Bul. 1492 cable consists of a cable wired to one 1756-IF8I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M).
2. **SHIELD GROUNDING**: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA004 module. The pre-wired cable used between the 1492-CM1771-LA004 module and the 1756-IF8I [1492-CONACAB005L8] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.
3. The 1771-IL input configuration was software configured, as is the 1756-IF8I. Please ensure the correct configuration in the 1756-IF8I.
4. Refer to your 1771-IL and 1756-IF8I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. This Bul. 1492 cable consists of a cable wired to one 1756-IF6I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA004 module. The pre-wired cable used between the 1492-CM1771-LA004 module and the 1756-IF6I [1492-CONACAB005K] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. The 1771-IL input configuration was software configured, as is the 1756-IF6I. Please ensure the correct configuration in the 1756-IF6I.

4. Refer to your 1771-IL and 1756-IF6I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.

41171-030 (00)
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

1. This Bul. 1492 cable consists of a cable wired to one 1756-IF6I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA004 module. The pre-wired cable used between the 1492-CM1771-LA004 module and the 1756-IF6I [1492-CONACAB005L] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. The 1771-IL input configuration was software configured, as is the 1756-IF6I. Please ensure the correct configuration in the 1756-IF6I.

4. Refer to your 1771-IL and 1756-IF6I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
1771-IL to 1756-IF6I — (2 x 4-ch) Current

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to two 1756-IF6I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA004 module. The pre-wired cable used between the 1492-CM1771-LA004 module and the 1756-IF6I [1492-CONACAB005T1] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. The 1771-IL input configuration was software configured, as is the 1756-IF6I. Please ensure the correct configuration in the 1756-IF6I.

4. Refer to your 1771-IL and 1756-IF6I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.

5. This configuration uses two (2) 1756-IF6I output modules to replace a single 1771-IL output module. This may require the use of a larger 1756 I/O chassis and conversion mounting assembly. Ensure there is sufficient panel space to allow for this possibility.

[Reference Doc: 41171-032 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of a cable wired to two 1756-IF6I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA004 module. The pre-wired cable used between the 1492-CM1771-LA004 module and the 1756-IF6I [1492-CONACAB005T2] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. The 1771-IL is software configured as is the 1756-IF6I. Please ensure the correct configuration in the 1756-IF6I.

4. Refer to your 1771-IL and 1756-IF6I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.

5. This configuration uses two (2) 1756-IF6I output modules to replace a single 1771-IL output module. This may require the use of a larger 1756 I/O chassis and conversion mounting assembly. Ensure there is sufficient panel space to allow for this possibility.

41171-031 (00)
1771-IR to 1756-IRT8I

IMPORTANT

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and output module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. Cables are available in lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M)

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA004 module. The pre-wired cable used between the 1492-CM1771-LA004 module and the 1756-IRT8I [1492-CONACAB005F80] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. The 1771-IR input configuration was software configured, as is the 1756-IRT8I. Please ensure the correct configuration in the 1756-IRT8I.

4. Refer to your 1771-IR and 1756-IRT8I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. **SHIELD GROUNDING**: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA004 module. The pre-wired cable used between the 1492-CM1771-LA004 module and the 1756-IR6I [1492-CONACAB005F] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

2. The 1771-IR input configuration was software configured, as is the 1756-IR6I. Please ensure the correct configuration in the 1756-IR6I.

3. Refer to your 1771-IR and 1756-IR6I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
1771-IXE to 1756-IT6I2

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA005 module. The pre-wired cable used between the 1492-CM1771-LA005 module and the 1756-IT6I2 [1492-CONACAB005G] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

2. The 1771-IXE has 8 input channels. The 1756-IT6I2 only has 6 input channels. This module combination can only be used to convert the signals if 6 or less channels were used on the 1771-IXE.

3. The 1771-IXE has built CJC (cold junction compensation) into the swing-arm. The conversion module [1492-CM1771-LA005] passes this CJC signal to the 1756-IT6I2. Ensure that the 1756-IT6I2 is configured for external CJC.

4. The 1771-IXE input configuration was software configured, as is the 1756-IT6I2. Please ensure the correct configuration in the 1756-IT6I2.

5. Refer to your 1771-IXE and 1756-IT6I2 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.

41170-951 (1)
Wiring Diagrams - Analog Inputs and Outputs

1771-IXE to 1756-IRT8I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. This Bul. 1492 cable consists of a cable wired to one 1756-IRT8I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M).

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA005 SER "B" module. The pre-wired cable used between the 1492-CM1771-LA005 SER "B" module and the 1756-IRT8I [1492-CONACAB005G8] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. The 1771-IXE has built CJC (cold junction compensation) into the swing-arm. The conversion module [1492-CM1771-LA005 SER "B"] passes this CJC signal to the 1756-IRT8I. Ensure that the 1756-IRT8I is configured for external CJC.

4. The 1771-IXE input configuration was software configured, as is the 1756-IRT8I. Please ensure the correct configuration in the 1756-IRT8I.

5. Refer to your 1771-IXE and 1756-IRT8I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
1771-IXHR to 1756-IT6I2

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. This Bul. 1492 cable consists of a cable wired to one 1756-IT6I2 RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M). See table 2 for other lengths.
2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA005 module. The pre-wired cable used between the 1492-CM1771-LA005 module and the 1756-IT6I2 (1492-CONACAB005G) provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.
3. The 1771-IXHR has 8 input channels. The 1756-IT6I2 only has 6 input channels. This module combination can only be used to convert the signals if 6 or less channels were used on the 1771-IXHR.
4. The 1771-IXHR has built CJC (cold junction compensation) into the swing-arm. The conversion module (1492-CM1771-LA005) passes this CJC signal to the 1756-IT6I2. Ensure that the 1756-IT6I2 is configured for external CJC.
5. The 1771-IXHR input configuration was software configured, as is the 1756-IT6I2. Please ensure the correct configuration in the 1756-IT6I2.
6. Refer to your 1771-IXHR and 1756-IT6I2 Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.

41171-035 [00]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. This Bul. 1492 cable consists of a cable wired to one 1756-IRT8I RTB. Recommended cable lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M).

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA005 SER"B" module. The pre-wired cable used between the 1492-CM1771-LA005 SER"B" module and the 1756-IRT8I [1492-CONACAB005G8] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. The 1771-IXHR has built CJC (cold junction compensation) into the swing-arm. The conversion module [1492-CM1771-LA005 SER"B"] passes this CJC signal to the 1756-IRT8I. Ensure that the 1756-IRT8I is configured for external CJC.

4. The 1771-IXHR input configuration was software configured, as is the 1756-IRT8I. Please ensure the correct configuration in the 1756-IRT8I.

5. Refer to your 1771-IXHR and 1756-IRT8I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
Wiring Diagrams - Analog Inputs and Outputs

1771-OFE1 to 1756-OF6VI

IMPORTANT
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and output module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. **SHIELD GROUNDING:** In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA003 module. The pre-wired cable used between the 1492-CM1771-LA003 module and the 1756-OF6VI [1492-CONACAB005E] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

2. **The 1771-OFE1 analog output range was configured by jumpers, the output range for the 1756-OF6VI is software configured. Please ensure the correct output range is configured in the 1756-OF6VI.**

3. **Refer to your 1771-OFE1 and 1756-OF6VI Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.**
Wiring Diagrams - Analog Inputs and Outputs

1771-OFE1 to 1756-OF8I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. Cables are available in lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M)

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA003 module. The pre-wired cable used between the 1492-CM1771-LA003 module and the 1756-OF8I [1492-CONACAB005EBV] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. The 1771-OFE1 analog output range was configured by jumpers, the output range for the 1756-OF8I is software configured. Please ensure the correct output range is configured in the 1756-OF8I.

4. Refer to your 1771-OFE1 and 1756-OF8I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
Wiring Diagrams - Analog Inputs and Outputs

1771-OFE1(2) to 1756-OF8I

IMPORTANT

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

This Bul. 1492 cable consists of 2 separate cables (cable "A" and cable "B") wired to one 1756-OF8I. Each cable can be either 0.5M or 1.0M (005=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.

SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA003 module. The pre-wired cable used between the 1492-CM1771-LA003 module and the 1756-OF8I [1492-C005005EBV] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

The 1771-OFE1 analog output range was configured by jumpers, the output range for the 1756-OF8I is software configured. Please ensure the correct output range is configured in the 1756-OF8I.

Refer to your 1771-OFE1 and 1756-OF8I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.

DIR 10002306858 (Version 00)
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and output module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. **SHIELD GROUNDING:** In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA003 module. The pre-wired cable used between the 1492-CM1771-LA003 module and the 1756-OF6CI [1492-CONACAB005E] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

2. **IMPORTANT:** The 1771-OFE2 module required the use of an external power supply to drive the analog device. The 1756-OF6CI analog output provides the drive power to the analog device. ENSURE the external power supply is REMOVED from the current loop before applying power to the 1756-OF6CI module or the analog output module may be damaged.

3. **The 1756-OF6CI module can drive a load up to 550 ohms with the standard pre-configured cable [1492-CONACAB005E]. If greater than a 550 ohm drive current is required, the pre-wired cable can be modified at the 1756-OF6CI terminal block to drive up to a 1000 ohms. Refer to the 1756-OF6CI Installation Manual for modification details.**

4. **Refer to your 1771-OFE2 and 1756-OF6CI Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.**

41170-948 (1)
There are several key application considerations and system specifications when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. Cables are available in lengths of 0.5M or 1.0M (005=0.5M, 010=1.0M).
2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA003 module. The pre-wired cable used between the 1492-CM1771-LA003 module and the 1756-OF8I [1492-CONACAB005EBC] provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.
3. The 1771-OFE1 analog output range was configured by jumpers, the output range for the 1756-OF8I is software configured. Please ensure the correct output range is configured in the 1756-OF8I.
4. Refer to your 1771-OFE1 and 1756-OF8I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.
Wiring Diagrams - Analog Inputs and Outputs

1771-OFE2(2) to 1756-OF8I

Conversion Module Installation and Application Considerations

1. This Bul. 1492 cable consists of 2 separate cables (cable “A” and cable “B”) wired to one 1756-OF8I. Each cable can be either 0.5M or 1.0M (005=0.5M, 010=1.0M). Ensure that cable A and cable B are connected to the correct module in the conversion.

2. SHIELD GROUNDING: In some installations, the field wiring shield was grounded on the 1771 chassis. If this was the case, the installer must remove these shield connections from the 1771 chassis and they can be connected to the grounding stud on the 1492-CM1771-LA003 module. The pre-wired cable used between the 1492-CM1771-LA003 module and the 1756-OF8I (1492-C005005E8C) provides a shield ground lug to ground the shield at the 1756 ControlLogix chassis, this must be connected. Do NOT connect this ground lug to the conversion module grounding stud.

3. The 1771-OFE2 analog output range was configured by jumpers, the output range for the 1756-OF8I is software configured. Please ensure the correct output range is configured in the 1756-OF8I.

4. Refer to your 1771-OFE2 and 1756-OF8I Installation and User Manuals for additional information concerning comparisons of module wiring, features and configuration details.

DIR 10002306859 (Version 00)
Wiring Diagrams - High Resolution Isolated Analog

Standard High Resolution I/O

1771-NOC to 1756-OF8I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Interface Module Installation and Application Considerations

1. Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M)
2. Terminals starting with A are the lower row terminals, B terminals are the upper row.
4. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP3 and RTP4. Cable does not connect to these terminals.
IMPORTANT

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. Cables are available in 2.0m, or 5.0m.
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-OF8.
5. Terminals w1, w2, w3, are spares used for field wire convenience. **NOTE:** this is only true for modules RTP3 and RTP4. The Bull. 1492 cable does not connect to these terminals.
6. The 1771-NOC module provides channel to channel isolation, the 1756-OF8 does not. A conversion from 1771-NOC to an isolated 1756-OF8 is available.

CONVERSION MODULE INSTALLATION

AND APPLICATION CONSIDERATIONS
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. Cables are available in 2.0m, or 5.0m
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-OF6CI.
5. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for modules RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.

[Reference Doc: 41171-072 (Version 00)]
1771-NIS to 1756-IF8I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Interface Module Installation and Application Considerations

1. Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M).
2. Terminals starting with A are the lower row terminals, B terminals are the upper row.
4. Terminals W1, W2, W3, are spares used for field wire convenience. NOTE: This is only true for module RTP4. The Bul. 1492 cable does not connect to these terminals.

DIR 10002306457 (Version 00)
1771-NIS to 1756-IF6CIS

IMPORTANT

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. Cables are available in 2.0m, or 5.0m
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-IF6CIS.
5. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: this is only true for modules RTP4. The Bul.1492 cable does not connect to these terminals.

Diagram Description

- **1771-RTP4**
 - terminals: A1 to A11, B1 to B18, SH, W1 to W5

- **1756-IF6CIS**
 - terminals: I-RTN-0 to I-RTN-7, I-IN-0 to I-IN-7, V-OUT-0 to V-OUT-7

- **Cable “B”**
 - connections: 1492-CONACAB020N2

- **Cable “A”**
 - connections: 1492-CONACAB020N2

Notes

- Loop power supplied internally
- User supplied loop power supplied internally
- 24VDC supply
Interface Module Installation and Application Considerations

1. Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M).
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.
1771-NIV to 1756-IF6I — Current

IMPORTANT

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. Cables are available in 2.0m, or 5.0m
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-IF6I.
5. Terminals w1, w2, w3... are spares used for field wire convenience. **NOTE:** this is only true for modules RTP3. The Bul. 1492 cable does not connect to these terminals.

41171-074 (00)
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Interface Module Installation and Application Considerations

1. Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M)
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP4. The Bul. 1492 cable does not connect to these terminals.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

- Cables are available in 2.0m, or 5.0m
- Terminals starting with A are the lower row of terminals, B terminals are the upper row.
- Follow your PLC Analog User Manual for proper shield grounding instructions.
- RTN terminals are internally connected on the 1756-IF6I.
- Terminals w1, w2, w3, are spares used for field wire convenience. **NOTE:** This is only true for module RTP4. The Bul. 1492 cable does not connect to these terminals.

41171-080 Ver (00)
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. Cables are available in 2.0m, or 5.0m
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-IF6I.
5. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP4. The Bul. 1492 cable does not connect to these terminals.
1771-NIV to 1756-IF6I — Voltage and Current

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1. Cables are available in 2.0m, or 5.0m
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-IF6I.
5. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: this is only true for modules RTP3. The Bul. 1492 cable does not connect to these terminals.

41171-038 (00)
1771-NR to 1756-IRT8I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Interface Module 1771-RTP4

1492-CONACAB020N48 Cable “B”

1756-IRT8I

Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M)

Terminals starting with A are the lower row of terminals, B terminals are the upper row.

Follow your PLC Analog User Manual for proper shield grounding instructions.

Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.

DIR 10002306848 (Version 00)
There are several key application considerations and system specifications (bottom using these components (conversion module, cable and input module). Read and considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS
1. Cables are available in 2.0m, or 5.0m.
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-IR6I.
5. Terminals w1, w2, w3, are spares used for field wire convenience. **NOTE: this is only true for modules RTP4. The Bul. 1492 cable does not connect to these terminals.**
1771-NT1 or -NT2 to 1756-IRT8I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Interface Module Installation and Application Considerations

1. Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M)
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.
5. This conversion solution requires replacement of the existing (1) 1771-RTP1 interface module with (2) 1771-RT41 interface modules. Each 1771-RTP1 and RT41 module has there own cold junction compensation thermocouple attached to the interface module.

DIR 10002306849 (Version 00)
1771-NT1 to 1756-IT6I

There are several key application considerations and system specifications (bottom using these components (conversion module, cable and input module). Read and considerations before installation.

CONVERSION MODULE INSTALLATION
AND APPLICATION CONSIDERATIONS

1. Cables are available in 2.0M or 5.0M.
2. Terminals starting with A are the lower row of terminals. B terminals are the upper row.
4. Terminals W1, W2 and W3 are spares used for field wire convenience. NOTE. This is only true for modules RT41. The Bul. 1492 cable does not connect to these terminals.
1771-NOV to 1756-OF8I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Interface Module Installation and Application Considerations

1. Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M)
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. Cables are available in 2.0m, or 5.0m
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-OF6VI.
5. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for modules RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.

41171-081 Ver(00)
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Interface Module 1771-RTP4

1492-CONACAB020N78

CABLE "B"

29 \(\text{RTN}_7 \)
27 \(\text{IN}_7/V \)
30 \(\text{RTN}_6 \)
26 \(\text{IN}_6/V \)
21 \(\text{RTN}_5 \)
17 \(\text{IN}_5/V \)
22 \(\text{RTN}_4 \)
18 \(\text{IN}_4/V \)
23 \(\text{RTN}_3 \)

CABLE "A"

13 \(\text{RTN}_3 \)
11 \(\text{IN}_3/V \)
14 \(\text{RTN}_2 \)
12 \(\text{IN}_2/V \)
5 \(\text{RTN}_1 \)
4 \(\text{IN}_1/V \)
6 \(\text{RTN}_0 \)
3 \(\text{IN}_0/V \)

Interface Module Installation and Application Considerations

1. Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M)
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.

DIR 10002306486 (Version 00)
1771-NIV1 to 1756-IF6I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

1) Cables are available in 2.0m, or 5.0m
2) Terminals starting with A are the lower row of terminals, B terminals are the upper row.
3) Follow your PLC Analog User Manual for proper shield grounding instructions.
4) RTN terminals are internally connected on the 1756-IF6I.
5) Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: this is only true for modules RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M)

Terminals starting with A are the lower row of terminals, B terminals are the upper row.

Follow your PLC Analog User Manual for proper shield grounding instructions.

Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.

This conversion solution requires replacement of the existing (1) 1771-RTP1 interface module with (2) 1771-RT41 interface modules. Each 1771-RTP1 and RT41 module has their own cold junction compensation thermocouple attached to the interface module.

DIR 10002306849 (Version 00)
CONVERSION MODULE INSTALLATION AND APPLICATION CONSIDERATIONS

① Cables are available in 2.0M or 5.0M.
② Terminals starting with A are the lower row of terminals, B terminals are the upper row.
③ Follow your PLC Analog User Manual for proper shield grounding instructions.
④ Terminals W1, W2 and W3 are spares used for field wire convenience. NOTE. This is only true for modules RT41. The Bul. 1492 cable does not connect to these terminals.
Combination High Resolution I/O

1771-NIVR to 1756-IRT8I and -IF8I

Interface Module Installation and Application Considerations

1. Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M)
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.
Conversion Module Installation and Application Considerations

1. Cables are available in 2.0m, or 5.0m
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-IF6I.
5. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP4. The Bul. 1492 cable does not connect to these terminals.

[Reference Doc: 41171-082 (Version 00)]
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Interface Module Installation and Application Considerations

1. Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M)
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. Cables are available in 2.0m, or 5.0m.
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-IF6I.
5. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP4. The Bul. 1492 cable does not connect to these terminals.

[Reference Doc: 41171-083 (Version 00)]
1771-NIVT to 1756-IRT8I and -IF8I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Interface Module Installation and Application Considerations

1. Cables are available in lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M)
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP3 and RTP4. The Bul. 1492 cable does not connect to these terminals.
There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. Cables are available in 2.0m, or 5.0m
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-IF6I.
5. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP4. The Bul. 1492 cable does not connect to these terminals.

[Reference Doc: 41171-084 (Version 00)]
1771-NIVT to 1756-IRT8I and -IF8I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Interface Module 1771-IRT1

CABLE "B"
1492-CONACAB020N54

1756-IRT8I

16 IN_3/I/B
15 IN_3/I/A
12 IN_2/I/B
11 IN_2/I/A
8 IN_1/I/B
7 IN_1/I/A
4 IN_0/I/B
3 IN_0/I/A
10 CJC+
14 CJC

CABLE "A"
1492-CONACAB020N34

1756-IF8I

13 RTN_3
11 IN_3/I/SRC
14 RTN_2
12 IN_2/I/SRC
5 RTN_1
3 IN_1/I/SRC
6 RTN_0
4 IN_0/I/SRC

Interface Module Installation and Application Considerations

1 This Bul. 1492 cable consists of a cable wired to one 1756-IF8I (or 1756-IRT8I). Recommended cable lengths of 2.0M or 5.0M (020=2.0M, 050=5.0M). See table 2 for other lengths.

2 Terminals starting with A are the lower row of terminals, B terminals are the upper row.

3 Follow your PLC Analog User Manual for proper shield grounding instructions.

4 Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP4. The Bul. 1492 cable does not connect to these terminals.
1771-NIVT to 1756-IT6I and -IF6I

There are several key application considerations and system specifications (bottom of drawing) when using these components (conversion module, cable and input module). Read and understand these considerations before installation.

Conversion Module Installation and Application Considerations

1. Cables are available in 2.0m, or 5.0m
2. Terminals starting with A are the lower row of terminals, B terminals are the upper row.
4. RTN terminals are internally connected on the 1756-IF6I.
5. Terminals w1, w2, w3, are spares used for field wire convenience. NOTE: This is only true for module RTP4. The Bul. 1492 cable does not connect to these terminals.

41171-085 Ver (00)
Rockwell Automation Support

Use the following resources to access support information.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Support Center</td>
<td>Knowledgebase Articles, How-to Videos, FAQs, Chat, User Forums, and Product Notification Updates</td>
<td>www.rockwellautomation.com/knowledgebase</td>
</tr>
<tr>
<td>Local Technical Support Phone Numbers</td>
<td>Locate the phone number for your country.</td>
<td>www.rockwellautomation.com/global/support/get-support-now.page</td>
</tr>
<tr>
<td>Direct Dial Codes</td>
<td>Find the Direct Dial Code for your product. Use the code to route your call directly to a technical support engineer.</td>
<td>www.rockwellautomation.com/global/support/direct-dial.page</td>
</tr>
<tr>
<td>Literature Library</td>
<td>Installation Instructions, Manuals, Brochures, and Technical Data.</td>
<td>www.rockwellautomation.com/literature</td>
</tr>
<tr>
<td>Product Compatibility and Download Center (PCDC)</td>
<td>Get help determining how products interact, check features and capabilities, and find associated firmware.</td>
<td>www.rockwellautomation.com/global/support/pcdc.page</td>
</tr>
</tbody>
</table>

Documentation Feedback

Allen-Bradley, ControlLogix, LISTEN. THINK. SOLVE, Rockwell Automation, and Rockwell Software are trademarks of Rockwell Automation, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies.

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

- **Americas:** Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA. Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
- **Europe/Middle East/Africa:** Rockwell Automation NV, Pegasus Park, De Kirelaan 12a, 1831 Diegem, Belgium. Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
- **Asia Pacific:** Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong. Tel: (852) 2887 4788, Fax: (852) 2508 1846

Publication 1492-SG121E-EN-P - July 2016
Supersedes Publication 1492-SG121D-EN-P - October 2014

Copyright © 2016 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.