PlantPAx Logix Batch and Sequence Manager
Version 4.0
Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).
Table of Contents

Preface
- Software Compatibility and Content Revision 5
- Before You Begin .. 6
 - Extract the LBSM Zip Files ... 7
 - Install the Infrastructure ... 7
- LBSM Faceplates .. 8
 - Quick Display ... 9
 - Operator Tab .. 10
 - Manual Tab ... 11
 - Advanced (Engineering) Tab ... 12
- Additional Resources .. 13
- Guidelines .. 16
- Functional Description .. 16
- Install the Components ... 17
 - Configure Controller Files ... 17
 - Incorporate LBSM into an HMI Application 20
- Configure LBSM (size arrays) ... 30
- Modify the Data Structure ... 30
- Unit Configuration ... 35
 - User-defined Data Types ... 36
 - Operator Prompt ... 36
- Phase Configuration .. 37
- Configure a Master Recipe .. 40
 - Setting Phase Parameters ... 44
 - Using Pause and Skip .. 45
 - Built-in Phases .. 46
- Create a Batch ... 51
- Save Master Recipe .. 53
- Connect Equipment to Controller Logic ... 55
 - PhaseManager Interface ... 56
 - Bit Interface ... 58
 - Use the DN and State Bits ... 60
- Operator Phase Control .. 62
- Equipment Control .. 65
 - Multi-Step Configuration ... 65
 - Easy Recipe Configuration ... 68
- Start/Run Batch Demonstration ... 69
 - LBSM Help Displays .. 86

Logix Batch and Sequence Manager (LBSM)

Advanced Capabilities
- PIContinue .. 87
- PIOwned ... 88
- PIImmRel (immediate release) .. 88
- Manual Generation of Batch ID ... 88

Appendix A
Table of Contents

Appendix B

Equipment Interface Codes
- Equipment Interface Codes ... 89

Appendix C

Bit Interface Examples
- 'Add Ingredient' Example .. 91
- Run Until Done Example ... 92
- Run Until Stopped Example .. 94
- Run Until Done, Continue Until Stopped Example 96

Appendix D

LBSM Reporting
- LBSM Report Data Structure ... 99
- Retrieve Records ... 99
 - Boolean Mechanism .. 100
 - Integer Mechanism .. 100
 - Log on Demand ... 100

Appendix E

HMI Security Codes
- HMI Security Codes .. 101
This document applies to version 4.0 of the PlantPAx® Logix Batch and SequenceManager™ (LBSM). The LBSM application defines and stores recipes and sequences equipment and phases to make products.

Software Compatibility and Content Revision

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Control Recipe Edits - Changed HMI and Table</td>
<td>36</td>
</tr>
<tr>
<td>Prompt section rewritten, New HMI</td>
<td>36</td>
</tr>
<tr>
<td>Incorporate LBSM into an HMI Application- Split step 11 into two steps</td>
<td>29</td>
</tr>
<tr>
<td>Modify Data Structure - Added steps to expand User-Defined folder</td>
<td>31, 32, 33, 34</td>
</tr>
<tr>
<td>Pause and Skip section was rewritten, new HMI</td>
<td>45</td>
</tr>
<tr>
<td>Wait Timer section rewritten, New HMI</td>
<td>50</td>
</tr>
<tr>
<td>Security information rewritten</td>
<td>101</td>
</tr>
</tbody>
</table>

The LBSM application can be downloaded from the Product Compatibility and Download Center at http://www.rockwellautomation.com/rockwellautomation/support/downloads.page.

The LBSM application version 4.0 is compatible with the following products:

- Logix 5000® controller\(^{(1)}\), firmware revision 18 or later
- RSLogix 5000® software, version 18 or later
- Studio 5000 Logix Designer® application, version 24.x
- FactoryTalk® View Site Edition (SE) and FactoryTalk View Machine Edition (ME) software, version 7.0 or later

\(^{(1)}\) The CompactLogix™ 5370 L1 controller does not meet minimum CPU and memory requirements for the LBSM application. Verify your sizing requirements with the LBSM Memory Estimator that is included with the LBSM download. See Figure 2 on page 7.
Before You Begin

Familiarity with ISA-88 is helpful because LBSM uses constructs and terminology that is established in that standard. While the LBSM application can be used in non-batch equipment sequencing, we have chosen to use batch sequencing examples and ISA-88 terminology throughout this manual.

Figure 1 is the state model for LBSM procedure management.

To implement an LBSM solution, we also suggest knowledge of the following:

- How to program Logix 5000 controllers with the Studio 5000 Logix Designer application
- How to use the Rockwell Automation’ Library of Process Objects
Extract the LBSM Zip Files

The LBSM_Vxx.yy.zz zip file that is downloaded with your LBSM application includes two folders:

- Documents -- Contains the LBSM Memory Estimator (a Microsoft Excel spreadsheet) to verify your sizing requirements for the controller

See Figure 2.
- Files -- Includes controller code, graphics, sample project, and templates

Install the Infrastructure

The LBSM application file is designed as a standalone starting point for projects. The add-on capability lets you integrate the application into your existing controller project. To integrate the LBSM application into your application, see the following sections:

- Controller infrastructure – See page 17
- HMI infrastructure – See page 20
LBSM Faceplates

The LBSM faceplate consists of three tabs: Operator, Manual, and Advanced (Engineering.)

![Image of LBSM Faceplate Tabs]

Figure 3 - LBSM Faceplate Tabs

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operator Tab</td>
</tr>
<tr>
<td>2</td>
<td>Manual Tab</td>
</tr>
<tr>
<td>3</td>
<td>Advanced Tab (Engineering)</td>
</tr>
</tbody>
</table>

The main display can be configured to open with the Quick Display or the Operator tab depending on the parameter value that is entered in the Global Objects Parameters Values table. See Figure 8 on page 29.

The faceplate provides the means for operators, maintenance personnel, engineers, and others to interact with the LBSM instruction instance. When a given input is restricted via FactoryTalk View security, the required user security code letter is shown in the table.

For a list of the security codes and descriptions, see HMI Security Codes on page 101.
Quick Display

The Quick Display screen provides means for operators to perform key interactions with the LBSM application. From the Quick Display, you can navigate to the faceplate for full access for operation, maintenance, and configuration. Press the Home button to navigate to the full faceplate.
Operator Tab

The control buttons on the LBSM application let you run a batch from this tab. In addition, the Operator tab shows the following information:

- Current state
- What phase the sequence is waiting on and how much time remains
- Manual prompt attention

Current step and wait timer in sequence, if applicable

Figure 4 - Operator Tab Description

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abort sequence</td>
</tr>
<tr>
<td>2</td>
<td>Stop sequence</td>
</tr>
<tr>
<td>3</td>
<td>Hold sequence</td>
</tr>
<tr>
<td>4</td>
<td>Start or resume sequence</td>
</tr>
<tr>
<td>5</td>
<td>Reset sequence</td>
</tr>
<tr>
<td>6</td>
<td>Access the runtime detail faceplate</td>
</tr>
<tr>
<td>7</td>
<td>Respond to Operator prompt</td>
</tr>
<tr>
<td>8</td>
<td>Load a sequence from the master sequence list</td>
</tr>
<tr>
<td>9</td>
<td>Restart sequence</td>
</tr>
</tbody>
</table>

Figure 5 - Operator Tab Description
Manual Tab

This tab provides manual controls over the features.

Figure 6 - Manual Tab Description

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Skip to next pause point</td>
</tr>
<tr>
<td>2</td>
<td>Skip to previous pause point</td>
</tr>
<tr>
<td>3</td>
<td>Abort sequence</td>
</tr>
<tr>
<td>4</td>
<td>Stop sequence</td>
</tr>
<tr>
<td>5</td>
<td>Hold sequence</td>
</tr>
<tr>
<td>6</td>
<td>Save As – Saves the current recipe as a master recipe. A warning message states ‘Are you sure you want to overwrite Master Recipe (name) with the current runtime Recipe?’ Click Yes or No.</td>
</tr>
<tr>
<td>7</td>
<td>Master Sequence Edit – Accesses the Edit Master Sequence window to let you select a master recipe from a list. Edits that are made to the master recipe apply to any new batches.</td>
</tr>
<tr>
<td>8</td>
<td>Control Recipe Edit – Accesses a configuration dialog screen to let you change the currently loaded recipe in the unit. These edits are only for this batch; does not affect the master recipe.</td>
</tr>
<tr>
<td>9</td>
<td>Start or resume sequence</td>
</tr>
<tr>
<td>10</td>
<td>Reset sequence</td>
</tr>
<tr>
<td>11</td>
<td>Show runtime detail</td>
</tr>
<tr>
<td>12</td>
<td>Acknowledge operator prompt</td>
</tr>
<tr>
<td>13</td>
<td>Load a sequence from the master sequence list</td>
</tr>
<tr>
<td>14</td>
<td>Restart a sequence</td>
</tr>
</tbody>
</table>
Advanced (Engineering) Tab

From the Engineering tab you can:

- Set the Unit Name and Number
- Set the Security Area
- Set the allowable Scale Range
- Access the Phase Configuration display to configure the equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type a name for the unit.</td>
</tr>
</tbody>
</table>
| 2 | Type a unit number.
IMPORTANT: This number is the unit number that is used to identify the equipment in your facility, not the unit index used in the controller array. |
| 3 | Type in the area name for security. The default is ‘area01.’ |
| 4 | The allowable scale range limits the ‘Scale’ input that affects ‘Scaled’ configuration in equipment. Click the Minimum and Maximum boxes to access a calculator for entering the values for the scale range. |
| 5 | Click an equipment configuration button to access the Phase Configuration Display. See [Phase Configuration on page 37](#). |
Additional Resources

These documents contain additional information concerning related products from Rockwell Automation.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FactoryTalk View SE Edition User Manual, publication VIEWSE-UM006</td>
<td>Explains how to use this software package for HMI applications that can involve multiple users and servers, which are distributed over a network.</td>
</tr>
<tr>
<td>PhaseManager™ User Manual, publication LOGIX-UM001</td>
<td>Explains how to define a state model for your equipment and develop equipment phases.</td>
</tr>
<tr>
<td>Logix 5000 Controllers General Instructions Reference Manual, publication 1756-RM003</td>
<td>Provides programming controller applications by using relay ladder instructions.</td>
</tr>
<tr>
<td>PlantPAx Logix Batch and Sequence Manager Product Profile, publication PROCES-PP004</td>
<td>Explains a controller-based batch and sequencing solution that leverages the Logix Control Platform and FactoryTalk View software for integrated control and visualization.</td>
</tr>
<tr>
<td>Rockwell Automation® Library of Process Objects, publication PROCES-RM002</td>
<td>Provides an overview of the code objects, display elements, and faceplates that comprise the Rockwell Automation Library of Process Objects.</td>
</tr>
<tr>
<td>publication PROCES-RM013</td>
<td></td>
</tr>
<tr>
<td>publication PROCES-RM014</td>
<td></td>
</tr>
<tr>
<td>PlantPAx Distributed Control System Selection Guide, publication PROCES-SG001</td>
<td>Provides basic definitions of system elements and sizing guidelines for procuring a PlantPAx system.</td>
</tr>
<tr>
<td>PlantPAx Distributed Control System Reference Manual, publication PROCES-RM001</td>
<td>Provides characterized recommendations for implementing your PlantPAx system.</td>
</tr>
<tr>
<td>Product Compatibility and Download Center at http://www.rockwellautomation.com/rockwellautomation/support/pcdc.page</td>
<td>Website helps you find product-related downloads including firmware, release notes, associated software, drivers, tools, and utilities.</td>
</tr>
</tbody>
</table>

You can view or download publications at http://www.rockwellautomation.com/literature/.
Notes:
Logix Batch and Sequence Manager (LBSM)

The PlantPAx® Logix Batch and SequenceManager™ (LBSM) application provides batch-process management functionality. A Logix controller and FactoryTalk® View software are the only requirements for configuration and execution. This solution lets you start small with a finite number of recipes, but easily scales into a server-based system without costly re-engineering and testing.

The ability of the LBSM application to sequence phases or equipment with or without Logix PhaseManager™ software provides a platform that you can use in nearly any application. Logix PhaseManager software permits seamless migration from LBSM to FactoryTalk Batch software.

The global object and faceplate that are shown are examples of the graphical interface tools for this standalone application.
Guidelines

The LBSM application has the following features:
- Up to 32 Master Recipes per unit; default is 6 Master Recipes per unit
- Up to 32 phases per unit; default is 16 phases per unit
- A maximum of 32 steps per procedure
- Memory calculator (shown on page 7) helps you select a Logix controller to handle operational requirements

Functional Description

The LBSM application configures and stores recipes while defining how to make products. A recipe consists of a procedure and formula. The procedure defines the process action and the formula contains the parameters that modify the activity. Examples of process actions are add, agitate, and so on. Activities include how much to add, for how long, how fast to agitate, and so on.

A unit is a group of equipment that works together to perform a major processing activity, such as a combination of ingredients. For example, an LBSM unit can be a mixer, blender, reactor, process skid, or continuous process equipment. LBSM is configured by default for one unit, but can be modified to accommodate additional independent units per controller.

An equipment phase commands the equipment in a unit to perform a specific process action. For example, add ingredient A, add ingredient B, and dispense can be equipment phases for a mixing tank. The LBSM application is preconfigured to include up to 16 equipment phases per unit. If necessary, a controller tag (_Equipment) can be modified to accommodate additional equipment phases.

IMPORTANT Expanding the number of equipment phases applies to all units in the system. You cannot expand the number of equipment phases on a per unit basis.
Install the Components

To begin the process, download the LBSM zip files from the Product Compatibility and Download Center at http://www.rockwellautomation.com/rockwellautomation/support/downloads.page.

You must install one of two LBSM applications that are included in the download file set:
- Components with Journal
- Components No Journal (smaller footprint without reporting)

See page 7 for a description of the zip folder contents.

Configure Controller Files

This section describes how to install the controller files. You have two options:
- Integrate the LBSM application into your existing application
- Start a new project with the templates provided in the download
 - LBSM_Template_No_Journal.ACD
 - LBSM_Template_with_Journal.ACD

Important: ControlLogix® and CompactLogix™ controllers(1) are available for the LBSM application. We suggest that you use the spreadsheet that is included in the download to calculate memory requirements for your system. The requirements determine if your selected controller has sufficient capacity.

(1) The CompactLogix™ 5370 L1 controller does not meet minimum CPU and memory requirements for the LBSM application.

Complete these steps only for integrating the LBSM application into an existing Studio 5000 Logix Designer® project. The supplied templates for a new project contain the necessary tasks.

1. To add the tasks, _PIs and _SQs, along with the program within the tasks, right-click the Tasks folder in the Controller Organizer and choose New Task.

 - The _PIs (procedural interfaces) task controls the execution of each phase.
 - The _SQs (sequences) task controls the execution of each sequence.
2. On the New Task dialog box, create a task that is named _PIs and set the configuration to the following:
 - Type: Periodic
 - Period: 20...100 ms (typical)
 - Priority: Low number (lower number yields higher priority)
 - Watchdog: 500 ms (default)

3. Right-click _PIs and choose Import Program.

4. Browse for the PI.L5X file and click Import.
 The Import Configuration dialog box appears.

5. Click OK.

6. Repeat step 1 through step 5 for the _SQs task, by using a period of 50...100 ms and the SQ.L5X program file.
7. To add the EM_LBSM Add-On Instruction to your project, right-click the Add-On Instructions folder and choose Import Add-On Instruction.

![Controller Organizer]

IMPORTANT You must use the EM_LBSM Add-On Instruction in each equipment module that you create. This Add-On Instruction manages the equipment module modes and handshakes to the rest of the system.

The Import Add-On Instruction dialog box appears.

8. Select the EM_LBSM.L5X Add-On Instruction and click Import.

9. On the Import Configuration dialog box, click OK.

The controller scope tags in the Controller Scope Tags table are added to your Logix project. By default, the following tags are available:
- One unit
- 16 equipment phases per unit
- Six master recipes per unit

To modify array sizes, if necessary, see [Table 5 on page 36](#).
Incorporate LBSM into an HMI Application

You must import the visualization files that are associated with and included in the LBSM download. The files are included in the download from the Product Compatibility and Download Center at http://www.rockwellautomation.com/rockwellautomation/support/pcdc.page.

IMPORTANT The visualization file dependencies require Process Library content imports to occur in a specific order as reflected in the following tables:

- Images
- Global Objects
- Standard Displays
- HMI Tags

Images are external graphic files that can be used in displays. They must be imported for FactoryTalk View to use them.

Upon import, PNG files are renamed by FactoryTalk View with a .bmp file extension, but retain a .png format.

<table>
<thead>
<tr>
<th>Table 1 - Visualization Files: Images (.png)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FactoryTalk View SE Software</td>
</tr>
<tr>
<td>All .png files in the images folder</td>
</tr>
</tbody>
</table>

The Global Object files (.ggfx file type) in the following table are Process Library display elements that are created once and referenced multiple times on multiple displays in an application. When changes are made to a Global Object, all instances in the application are automatically updated.

<table>
<thead>
<tr>
<th>Table 2 - Visualization Files: Global Objects (.ggfx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FactoryTalk View SE Software</td>
</tr>
<tr>
<td>(RA-LBSM) Standard Objects</td>
</tr>
<tr>
<td>(RA-BAS) Common Faceplate Objects</td>
</tr>
<tr>
<td>(RA-BAS) Process Faceplate Common Objects</td>
</tr>
<tr>
<td>(RA-UI) Prompt Objects</td>
</tr>
</tbody>
</table>
The Standard Display files (.gfx file type) in the following table are the Process Library displays that you see at runtime.

Table 3 - Visualization Files: Standard Displays (.gfx)

<table>
<thead>
<tr>
<th>FactoryTalk View SE Software</th>
<th>FactoryTalk View ME Software</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RA-LBSM) Equipment-Config</td>
<td>(RA-LBSM-ME) Equipment-Config</td>
<td>Configuration display used to configure the equipment phase.</td>
</tr>
<tr>
<td>(RA-LBSM) Equipment-Faceplate</td>
<td>(RA-LBSM-ME) Equipment-Faceplate</td>
<td>Faceplate used for the equipment module.</td>
</tr>
<tr>
<td>(RA-LBSM) MasterSeq-Edit-Select</td>
<td>(RA-LBSM-ME) MasterSeq-Edit-Select</td>
<td>Selection display used to select the Master Sequence to edit.</td>
</tr>
<tr>
<td>(RA-LBSM) MasterSeq-Load-Select</td>
<td>(RA-LBSM-ME) MasterSeq-Load-Select</td>
<td>Selection display used to select the Master Sequence to load into the runtime tags.</td>
</tr>
<tr>
<td>(RA-LBSM) Phase-Faceplate</td>
<td>(RA-LBSM-ME) Phase-Faceplate</td>
<td>Faceplate used to run the phases in a sequence.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-Config</td>
<td>(RA-LBSM-ME) Sequence-Config</td>
<td>Configuration display used to configure the unit and phases in the sequence.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-Config-Easy</td>
<td>(RA-LBSM-ME) Sequence-Config-Step-Confirm</td>
<td>Confirmation display used to verify the requested 'Delete Step', 'Copy Step', and 'Insert Step' commands.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-Config-Step</td>
<td>(RA-LBSM-ME) Sequence-Config-Step</td>
<td>Configuration display used to configure one step in a sequence.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-Config-MultiStep</td>
<td>(RA-LBSM-ME) Sequence-Config-MultiStep</td>
<td>Configuration display used to configure attributes for multiple steps in a sequence.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-Config-PhaseStep</td>
<td>(RA-LBSM-ME) Sequence-Config-PhaseStep</td>
<td>Configuration display used to configure the instance of a phase and step in a sequence.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-Detail</td>
<td>(RA-LBSM-ME) Sequence-Detail</td>
<td>Faceplate used to show Run Time Detail of a sequence.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-Faceplate</td>
<td>(RA-LBSM-ME) Sequence-Faceplate</td>
<td>The Sequence faceplate used for the object.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-Help</td>
<td>(RA-LBSM-ME) Sequence-Help</td>
<td>Help information that is accessed from the sequence faceplate.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-Quick</td>
<td>(RA-LBSM-ME) Sequence-Quick</td>
<td>The Quick display used for the object.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-RunTime-PhaseValues</td>
<td>(RA-LBSM-ME) Sequence-RunTime-PhaseValues</td>
<td>Display used to show the phase values for one step in the runtime sequence.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-RunTime-SaveAs-Confirm</td>
<td>(RA-LBSM-ME) Sequence-RunTime-SaveAs-Confirm</td>
<td>Confirmation display used to verify a master sequence overwrite during the requested 'Save As Master Sequence' command.</td>
</tr>
<tr>
<td>(RA-LBSM) Sequence-RunTime-SaveAs-Select</td>
<td>(RA-LBSM-ME) Sequence-RunTime-SaveAs-Select</td>
<td>Display used to select a Master Sequence location for the runtime sequence.</td>
</tr>
<tr>
<td>(RA-LBSM-ME) Sequence-RunTime-Confirm</td>
<td>(RA-LBSM-ME) Sequence-RunTime-Confirm</td>
<td>Confirmation display used to verify the requested 'Sequence Stop' or 'Sequence Abort' command.</td>
</tr>
<tr>
<td>(RA-UI) P_Prompt-Config</td>
<td>(RA-UI-ME) P_Prompt-Config</td>
<td>Display used to configure the prompt.</td>
</tr>
<tr>
<td>(RA-UI) P_Prompt-Response</td>
<td>(RA-UI-ME) P_Prompt-Response</td>
<td>Display used to complete the operator prompt.</td>
</tr>
<tr>
<td>(RA-UI) P_Prompt-Select</td>
<td>(RA-UI-ME) P_Prompt-Select</td>
<td>Display used to select a prompt for the sequence step.</td>
</tr>
</tbody>
</table>
HMI Tags are created in a FactoryTalk View ME application to support tab switching on Process Library faceplates. The HMI tags can be imported via the comma-separated values file (.csv file type) in the following table.

Table 4 - Visualization Files: HMI Tags (.csv)

<table>
<thead>
<tr>
<th>FactoryTalk View SE Software</th>
<th>FactoryTalk View ME Software</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTViewSE_ProcessLibrary_Tags_4_0_xx.CSV</td>
<td>FTViewME_ProcessLibrary_Tags_4_0_xx.CSV</td>
<td>These tags must be imported into the FactoryTalk View SE/ME project to support the LBSM displays. See Add HMI Tags to the Application on page 26 for procedures.</td>
</tr>
</tbody>
</table>

Import Images

Complete these steps to add the common icons (images) for the global objects and faceplates for the HMI application.

1. In the FactoryTalk View Studio software, expand the Graphics folder in the Explorer™ window.

2. Right-click Images and choose Add Component Into Application.

The Add Component Into Project dialog box appears.

3. Browse to your downloaded graphics folder.
4. Open the graphics folder and double-click the Images folder.

5. Click the pull-down menu (as circled) and select a file type.
 For example, PNG Images (*.png)
6. Click Ctrl-A to highlight all .png images.
7. Click Open to import the images.

Import Global Object Files

Global objects serve two purposes:
- Faceplate objects files contain common elements that are used in building faceplate displays.
- Graphics Library files contain device symbols that you can use to build your application displays. Clicking the symbol opens the corresponding faceplate displays.

1. In the FactoryTalk View Studio software, expand the Graphics folder in the Explorer window.
2. Right-click Global Objects and choose Add Component Into Application.

The Add Component Into Project dialog box appears.

3. Browse to your downloaded graphics folder.

4. Open the graphics folder and double-click the FTView SE folder.

5. Double-click Global Objects.

6. Select all .ggfx files and click Open to import the three LBSM global objects as shown.
Import HMI Displays

LBSM displays depict a batch procedure. Complete these steps to import displays.

1. Right-click Displays and choose Add Component Into Application.

 ![Add Component Into Project dialog box](image)

 The Add Component Into Project dialog box appears.

2. Browse to your downloaded graphics folder.

3. Open the graphics folder and double-click the FTView SE folder.

4. Double-click GFX and select all *.gfx files.

5. Click Open.
Add HMI Tags to the Application

Import HMI tags so you can switch between tabs on the faceplates.

TIP FactoryTalk View SE is used in the following procedures. The instructions are similar for FactoryTalk View ME projects.

1. In FactoryTalk View Studio software, from the Tools menu, choose Tag Import and Export Wizard.

 ![Tag Import and Export Wizard](image)

 The Tag Import and Export Wizard dialog box appears.

2. From the Operation pull-down menu, choose Import FactoryTalk View tag CSV files.

 ![Select operation](image)

 3. Click Next.

 4. From the Project type pull-down menu, choose Site Edition or Machine Edition depending on your application.
5. Browse for and select your FactoryTalk View SE project file, and then click Next.

6. Check Tags

7. Browse for and select the RAProcessLibrary-Tags.CSV file, and then click Next.

8. Click Skip existing (fastest), and then click Next.

9. Click Finish to import the HMI files.
10. Configure communication with your Logix controllers.

The LBSM application uses direct reference tags. A shortcut must exist in RSLinx® Enterprise software that is directed to the controller containing the LBSM tags. If you have installed the LBSM application in multiple controllers, you must create a shortcut for each controller. This shortcut name is used as a parameter in several global objects on the main display.

a. To create a shortcut, right-click the LBSM server and choose Add New Server > Rockwell Automation® Device Server (RSLinx Enterprise).

b. Click OK.

A RSLinx Enterprise folder is added under the LBSM server folder.

c. Click ‘+’ to expand the RSLinx Enterprise folder, and double-click Communication Setup.

The Communication Setup dialog box appears, with the controller information in the right-hand pane.

d. Click Add and type a shortcut.

e. Select a controller and click Apply at the top of the dialog box.
11. In FactoryTalk View Studio, incorporate the unit global object into your application.

This object provides a unit summary with the following information:
- Runtime status (white circle)
- Current step in the Control Recipe (runtime sequence)
- Running state of the batch (inverted exclamation point indicates prompt)

12. To add navigation to the object, right-click, and choose Global Object Parameter Values.

Figure 8 - Global Objects Parameters Values Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#101</td>
<td></td>
<td>The Shortcut name for the Controller, including the braces</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
<td></td>
<td>Unit UDT (includes full path)</td>
</tr>
<tr>
<td>3</td>
<td>#120</td>
<td></td>
<td>Additional display parameter (e.g., N100 or NCC (optional))</td>
</tr>
<tr>
<td>4</td>
<td>#121</td>
<td></td>
<td>Additional display parameter (e.g., N1000 (optional))</td>
</tr>
<tr>
<td>5</td>
<td>#122</td>
<td></td>
<td>0 = Always show Faceplate; 1 = Show Quick Display for users</td>
</tr>
</tbody>
</table>

a. Replace parameter #101 with your shortcut name entered in step 10.
b. Replace parameter #102 with the full path of the unit UDT.
c. Parameters #120 and #121 are optional; define position of the faceplate.
d. Type a value (0, 1, 2) in parameter #122 per the desired display for the faceplate.
e. Click OK.
f. Repeat Step 12 for all objects on the display.
Configure LBSM (size arrays)

You can size arrays for the elements that comprise the application, such as the maximum number of units, equipment phases, sequence steps, and so on. The size of your recipe/sequence affects the amount of memory that is required for the controller that operates your application. For example, four units with 16 phases each requires more memory usage than two units with five phases per unit.

Therefore, to make sure that you have the correct controller with sufficient memory, you must first identify the units in your application. A unit is a group of equipment that works together to perform a major processing activity.

IMPORTANT If multiple units reside in a controller, assign each unit a unique number, starting with zero. This number correlates your equipment with a specific array memory location in the controller. This correlation is essential for implementing the logic to run your equipment. See page 55 for more information.

Modify the Data Structure

The LBSM ACD file, which is included with the download, has User-defined Data Types (UDT) that contain arrays. The arrays let you enter a numeric value to modify the size. For example, the LBSM_Unit[6] UDT indicates that there are six independent units for a project.

These four UDTs determine the following arrays (up to system maximums) for your application:
- LBSM_Unit – Number of units in the project
- LBSM_Equipment – Number of phases per unit
- LBSM_SQm – Number of master recipes per unit
- LBSM_SQ_Config – Number of steps and prompts per sequence

Number of Units

Complete these steps to set the number of units.

1. Open the LBSM ACD file in the Logix Designer application and double-click Controller Tags in the left Controller Organizer pane. The tags appear in the right pane.
2. In the Data Type column, change the value in the brackets for the LBSM_Unit[x] UDT.

3. Click File>Save.

Number of Phases

Complete these steps to modify the maximum number of phases per unit.

1. In the Logix Designer application, scroll down the Controller Organizer and click to expand Data Types.

2. Click to expand User-Defined.

3. Double-click LBSM_Unit and change the value in the brackets for the LBSM_EQPI[x] array within the _Equipment UDT.

4. Click File>Save.
Number of Recipes

Complete these steps to modify the maximum number of recipes per unit.

1. In the Logix Designer application, scroll down the Controller Organizer and click to expand Data Types.

![Controller Organizer screenshot](image)

2. Click to expand User-Defined.

3. Double-click LBSM_Unit and change the value in the brackets for the LBSM_SQ_Config[x] array within the _SQm UDT.

4. Click File>Save.
Number of Steps

Complete these steps to modify the maximum number of steps (32) per unit.

1. In the Logix Designer application, scroll down the Controller Organizer and click to expand Data Types.

![Image of Logix Designer interface](image)

2. Click to expand User-Defined.

3. Double-click LBSM_SQ_Config and change the value in the brackets for the LBSM_SQ_Step\[x\] array within the Step tag.

4. Click File>Save.
Number of Prompts

Complete these steps to modify the maximum number of prompts per unit.

1. In the Logix Designer application, scroll down the Controller Organizer and click to expand Data Types.

2. Click to expand User-Defined.

3. Double-click LBSM_SQ_Config and change the value in the brackets for the P_PromptCfg[x] array within the Prompts tag.

4. Click File>Save.
Unit Configuration

After you have sized the arrays, you are ready to configure a unit in your LBSM application. You must have engineering configuration security to modify the unit configuration.

1. On the Operator tab, click the Display Advanced Properties button.

The Engineering tab appears.
2. Configure the unit on the Engineering tab faceplate.

Table 5 - Unit Configuration Description

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Name</td>
<td>Type a name for the unit.</td>
</tr>
<tr>
<td>Unit Number</td>
<td>Type a unit number. IMPORTANT: This is the unit number that is used to identify the equipment in your facility, not the unit index used in the controller array.</td>
</tr>
<tr>
<td>Allowable Scale Range (%)</td>
<td>The allowable scale range limits the ‘Scale’ input that affects ‘Scaled’ configuration in equipment. Click the Minimum and Maximum boxes to access a calculator for entering values for the scale range.</td>
</tr>
<tr>
<td>Minimum</td>
<td>Maximum</td>
</tr>
</tbody>
</table>

User-defined Data Types

These LBSM_Unit user-defined data types (UDTs) define the number of equipment phases per unit (_Equipment) and the number of master recipes (_SQm) in each unit; 32 maximum.

The maximum step count per phase is 32; there is no step array.

Operator Prompt

An embedded prompt instruction is included with the LBSM ACD file to perform prompting. The prompt lets an operator interact with a running phase in various ways, including entering values, verifying data, or providing directions to perform a task.

The number of manual prompts available for a unit is configurable, up to 32. The default number is four.
Phase Configuration

This section describes how to define phases in a unit. Phases are the process actions that comprise the batch. You must have engineering configuration security to modify phase definitions.

See HMI Security Codes on page 101 for a list of descriptions.

IMPORTANT The order that you list the equipment on the Equipment Phase Configuration display is not relative to the recipe. However, the equipment order must correspond to the mapping in the controller, as shown on page 55.

1. On the Engineering tab, click an Equipment Configuration button.

The value that is entered in the array of the LBSM_Equipment UDT determines the number of columns for phases. See page 31.
The Phase Configuration display appears when an Equipment Configuration button is clicked.

2. Complete the Phase Configuration display.

Table 6 - Phase Configuration Description

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Name</td>
<td>Type a name for the equipment. Phase columns without names are unused placeholders.</td>
</tr>
<tr>
<td>Phase Name</td>
<td>Type a name for a phase. The name is often the same as the equipment name, but separate configurations have been provided if you want a different name for a phase.</td>
</tr>
</tbody>
</table>

Real Parameters

These are values in the formula, such as setpoints. Up to four Real parameters can be configured per phase. Each defined value is captured for reporting when the phase starts. You can configure these items for each parameter.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Check to indicate that the parameter belongs to the phase. The parameters are exposed to the recipe author.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>Click to indicate that the parameter belongs to the equipment module. The parameters are configurable attributes but not available for recipe configuration.</td>
</tr>
<tr>
<td>Name</td>
<td>Type a name for the parameter.</td>
</tr>
<tr>
<td>EU</td>
<td>Type an engineering unit for the parameter.</td>
</tr>
</tbody>
</table>

IMPORTANT: Phase parameters can be changed from the Equipment Phase Configuration display or the Run Time Detail faceplate. IMPORTANT: Equipment module parameters can be modified only from the Run Time Detail faceplate.
Logix Batch and Sequence Manager (LBSM)

Table 6 - Phase Configuration Description

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Type a low value and a high value to set an operational range for the parameter. These values limit the entries when configuring a step or manually controlling the equipment. For example, you can set the high limit for a mixer speed of 30 if the mixer cannot exceed 30 rpm.</td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Scaled</td>
<td>Check if the parameter value is to be scaled up or down when the scale factor for the batch is changed from 100%. Leave the box blank if the parameter value is to be the same when the batch is scaled.</td>
</tr>
<tr>
<td>Default</td>
<td>Default values are constants that can be set when values are not expected to be used by an operator, maintenance personnel, sequence, or formulation. For example, you can change the temperature value to accommodate the physical equipment when commissioning. Large vats can require 10° while smaller vats can require 2°. IMPORTANT: A default value is not considered a phase or an equipment module parameter. Leave the Phase and EM boxes blank if you configure a default value.</td>
</tr>
</tbody>
</table>

If you use Real parameters, the equipment module code must be configured to interface with these LBSM parameters. Refer to Connect Equipment to Controller Logic on page 55 and Equipment Interface Codes on page 89.

Boolean Parameters

These are discrete values that the equipment phase sends to the equipment module, such as a mode selection. Each defined value is captured for reporting when the phase starts. Up to four Boolean parameters can be configured per phase. You can configure these items for each parameter.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Check to indicate that the parameter belongs to the phase. The parameters are exposed to the recipe author. IMPORTANT: Phase parameters can be changed from the Equipment Phase Configuration display or the Run Time Detail faceplate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>Click to indicate that the parameter belongs to the equipment module. These parameters are configurable attributes but are not available for recipe configuration. IMPORTANT: Equipment module parameters can be modified only from the Run Time Detail faceplate.</td>
</tr>
<tr>
<td>Name</td>
<td>Type a name for the parameter.</td>
</tr>
<tr>
<td>Default</td>
<td>Default is used for configurations that do not need to be accessed from the Run Time Detail faceplate. The configuration can default to either Off or On state. In this situation, the parameter is not considered a phase or equipment module parameter.</td>
</tr>
<tr>
<td>Off State</td>
<td>The logic state descriptor for the Off state.</td>
</tr>
<tr>
<td>Default</td>
<td>See Off State.</td>
</tr>
<tr>
<td>On State</td>
<td>The logic state descriptor for the On state.</td>
</tr>
</tbody>
</table>

If Boolean parameters are used, the equipment module code must be configured to interface with these LBSM parameters. Refer to Connect Equipment to Controller Logic on page 55 and Equipment Interface Codes on page 89.
Configure a Master Recipe

This section describes how to configure the procedural steps in a recipe. The current runtime sequence, which is the Control Recipe, manages the interaction of the phases to make product.

IMPORTANT Changes to a Control Recipe are not saved at the completion of a batch. You must use the Save As button to save the revised recipe as a Master Recipe. See page 53 for procedures.

1. On the Operator tab, click the Manual Control tab.
2. Click the Master Sequence Edit button.

The Edit Master Sequence popup appears.

The number of master recipes available in the list is set by the value in the array for the LBSM_SQm UDT (see page 32).

3. Do one of the following:
 - Click a blank master to create a master recipe.
 - Click an existing master to make a copy and edit the recipe.
The Recipe Configuration display appears.

The Product A Master Recipe from the LBSM demonstration, starting on page 69, is shown in the graphic.

4. To configure a step in a recipe, click the top of a numerical column – 0, 1, 2, 3, 4, and so on.

The Step Configuration display appears for the numbered step that you clicked. The example shows step 4.
5. For each step, complete the display for the actions to be taken to accomplish the step.

Table 7 - Step Configuration Description

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step x Name</td>
<td>Type a name for the step.</td>
</tr>
<tr>
<td>Enable an operator prompt</td>
<td>Check to enable an operator prompt for the step. A blank box appears. Click the box to type a name for the prompt for the step. See Built-in Phases on page 46.</td>
</tr>
<tr>
<td>Enable a Step Wait Timer in this step</td>
<td>Check to enable a step wait based on the conditions of the additional entry fields that display. See Set a Wait Timer on page 50.</td>
</tr>
<tr>
<td>Wait Timer preset value (msecs)</td>
<td>Type a value to set a time frame for the wait. IMPORTANT: A setpoint of '0' disables the timer.</td>
</tr>
<tr>
<td>If step is held, stop and reset Wait Timer</td>
<td>Check to reset the Wait Timer if step is in a Held state.</td>
</tr>
<tr>
<td>Insert Step</td>
<td>Click to add a step before to the current step. A message box appears that states to Insert a new step before step x (Name). Click OK or Cancel.</td>
</tr>
<tr>
<td>Delete Step</td>
<td>Click to delete this step from the sequence. A message box appears stating Are you sure you want to DELETE step x (Name)? Click Yes or No.</td>
</tr>
<tr>
<td>Copy Step</td>
<td>Click to copy the previous step and insert it before the current step. A message box appears that states Copy the previous step and insert it before step x (Name)? Click OK or Cancel.</td>
</tr>
<tr>
<td>Sequence can be paused after this step</td>
<td>Check to enable a pause point after this step in the sequence. See Using Pause and Skip on page 45.</td>
</tr>
<tr>
<td>Step Fault Timer</td>
<td>Type a value to trigger a fault if the time to complete this step exceeds the timer setting.</td>
</tr>
<tr>
<td>Equipment Phase (for example, agitation)</td>
<td>Click the equipment phase to access the Phase Configuration faceplate. See Setting Phase Parameters.</td>
</tr>
</tbody>
</table>

6. Repeat step 4 and step 5 for each step in the recipe/sequence.
Setting Phase Parameters

You can configure and maintain parameter values in the entry boxes for each phase instance.

1. Click a phase at the bottom of the Step Configuration display. A Phase Configuration display appears.

2. Check the Active box to enable the phase in this step.
3. Click the parameter value to open the keypad entry display.
4. Type a value and click OK.

IMPORTANT Once the phases are configured for a batch, the LBSM application provides operator control in a runtime environment to users with manual operation security privileges. See page 62.
Using Pause and Skip

When organizing your recipe, this functionality helps you move around to different phases without having to run each step.

When you enable a pause for a step on the Step Configuration display, a symbol \(\downarrow \) appears to indicate where the pause occurs in the sequence. You can then skip to this pause point.

Complete these steps to activate the Pause Control buttons.

1. Switch the Auto Pause toggle bar to Yes to request the sequence to stop at the next configured pause point.

When the sequence reaches the next pause point, the sequence pauses, symbol turns brown, and the Pause Control buttons activate.
2. Review the functionality of the Pause Control buttons.

Pause Control Button Description

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>❌</td>
<td>Click to skip to the previous pause point.</td>
</tr>
<tr>
<td>➔</td>
<td>Click to skip to the next pause point.</td>
</tr>
<tr>
<td>✯</td>
<td>Click to resume the sequence. Once resumed, the sequence does not pause at a configured pause point until another pause request is issued or an auto pause is requested.</td>
</tr>
<tr>
<td></td>
<td>Switch the auto pause toggle bar to Yes to request the sequence to stop at every configured pause point.</td>
</tr>
<tr>
<td></td>
<td>Switch the auto pause toggle bar to Yes to request the sequence to stop at the next configured pause point.</td>
</tr>
</tbody>
</table>

Built-in Phases

There are two built-in phases with the LBSM application:

- Prompt
- Wait Timer

Configure a Prompt Instance in the Procedure

You can configure the LBSM application to prompt an operator and then wait for operator input before proceeding with the procedure. You can configure each instance of the prompt to include instructions for an operator, expected or desired values for selected parameters, and operator input.
1. On the Step Configuration display, click the name of the prompt.

2. On the Prompt popup, click Browse (button with ellipsis) to open the Prompt Configuration display.
3. Complete the Prompt Configuration display.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual Prompt Label</td>
<td>Type a label for the prompt.</td>
</tr>
<tr>
<td>Prompt Message Text</td>
<td>Type a text message that explains to the operator the purpose of this prompt.</td>
</tr>
<tr>
<td>Do not show the “Operator Attention” symbol on the Prompt button (applies to standalone prompts only)</td>
<td>Check not to show the operator attention symbol (inverted exclamation point) on the prompt button.</td>
</tr>
</tbody>
</table>

Display Values – This prompt shows an operator floating point values in run time. This informs the operator of specific quantities or operating conditions. An Entered Value can be scaled by a programmatic percentage.

Display Value Enable	Check to enable a Label text field.
Label	Type a label.
Engineering Units	Type an engineering unit.
Decimal Places	Type the number of decimal places to be used.
Display Value Source	Check to either display a value from the prompt 'AOI Input' or the value that you enter in the box that appears.
• 'AOI Input'	
• Entered Value	
Scale Value	The LBSM application sets the Inp_ScalePct to the value of its scaling when a recipe transitions to 'Run'.
Verify Required	Check to require the operator to verify the displayed value.

Input Values – Input values let the operator enter floating point values via the prompt that are used programatically. Minimum and maximum values are entered for a range. Value entry can be optionally required (default).

Input Value Enable	Check to enable a Label text box.
Label	Type a label for the input value.
Engineering Units	Type an engineering unit.
Decimal Places	Type the number of decimal places to be used.
Minimum Value	Type a minimum value for the entry.
### Topic	Action
Maximum Value | Type a maximum value for the entry.
Input Required | Check to require an operator to enter a value.
Default Uses | If an input is not required, click Minimum or Maximum to be used for the entry.
- Min
- Max

Selection Options — Selection options give an operator a choice from two to four offerings. One of the selections can be designated a default. You do not need to designate any of the selections as default.

| Selection Enable | Check to enable a Label text box.
| Label | Check and type a label for the selection option.
| Default Selections | Click to designate a selection as the default.

Response Prompts — Response prompts let the operator enter string-based information (comments, lot numbers, and so forth). Response entry is required by default, but can be configured as optional.

| Response Enable | Check to enable a Label text box.
| Label | Check and type a label for the response prompt.
| Input Required | Check to require an input.

Figure 9 - Operator Interaction Example

![Operator Interaction Example](image-url)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Required entry field (Brown highlight around box indicates it is a required entry)</td>
</tr>
<tr>
<td>2</td>
<td>Acknowledge prompt and proceed (Acknowledgment prompt activates once all required inputs are entered)</td>
</tr>
</tbody>
</table>
Set a Wait Timer

You can use a wait phase to force the sequence to stay in a step for a preset amount of time. By setting a preset value on the Step Configuration display, the timer starts counting down when the step that contains the Wait Timer becomes active. The remaining wait time is displayed in seconds.

You can configure the Wait Timer to reset on hold, if desired.

When active, the timer counts down on the run-time detail faceplate.
Create a Batch

To create a batch, select a recipe and define the batch size.

1. On the Operator tab, click the Master Sequence List button.

![Image of Master Sequence List]

The Load Master Sequence display appears.

2. Choose a recipe by clicking the respective Master Sequence List button.

The Operator tab appears with the recipe information on the display.

![Image of Operator tab with recipe information]
3. In the Scale Factor entry box, type a value.
 Default value is 100%.

4. Click the Start Command button to begin operating the batch.
 See the demonstration on page 69.
Save Master Recipe

Changes applied to a Control Recipe can be saved to a Master Recipe if you want to use the same data for other batches. Complete these steps.

1. On the Run Time Detail faceplate, click the Save As button.

The Save Sequence As window appears.
2. Click a button to save the current recipe as a new Master recipe. If you click an empty button, the recipe saves to that slot. If you click the currently loaded product slot a warning message displays.

3. To overwrite the current recipe, type a name for the new master recipe and press the Yes button.

IMPORTANT Make sure to upload your changes in the Logix Designer application after modifying your Master Recipe.
Connect Equipment to Controller Logic

The LBSM application interfaces to your equipment through a tag named _Equipment. This tag is an array that is composed of two data types:

- EM_Composite (see list of interface codes on page 89)
- PIDefinition

These data types store the configuration for your equipment phase instances. The objects on the Equipment Configuration display align with the members of this array. For example, the equipment phases for the first unit (unit 0) align with the _Equipment array as illustrated.

Expanding _Equipment[3] reveals how the _Equipment array aligns with several other objects on the Equipment Configuration display for the phase instance of the first unit instance [0].

The LBSM application supports two equipment interfaces to your selected controller:

- PhaseManager – see page 56
- Bit Interface – see page 58

Depending on your equipment need, choose the appropriate interface. You can use either one or both in any application.
PhaseManager Interface

Prior to LBSM version 3.x, the interface to PhaseManager consisted of a routine of fixed code and a JSR to execute that code. This routine had to be placed into each Phase Manager phase to be controlled.

To reduce the required memory, this routine is replaced by an Add-On Instruction, PMIntfc_LBSM. The Add-On Instruction creates an instance of the interface without additional programming.

Complete these steps to create the PMIntfc_LBSM interface.

1. Import the PMIntfc_LBSM Add-On Instruction definition into the project.
2. Create an instance of the Add-On Instruction in a routine in the Phase Manager phase to be controlled.
3. Create the backing tag for the Add-On Instruction.
4. Associate the InOut parameters on the Add-On Instruction as shown in the table.

<table>
<thead>
<tr>
<th>InOut Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThisEquipmentDN</td>
<td>A bit to indicate when the equipment accomplishes what is requested (BOOL).</td>
</tr>
<tr>
<td>EP</td>
<td>Reference to the specific equipment tag structure (LBSM_EQPI).</td>
</tr>
<tr>
<td>ThisPhase</td>
<td>The name of the PhaseManager phase.</td>
</tr>
<tr>
<td>UNref</td>
<td>Standard name of the unit structure array (LBSM_Unit).</td>
</tr>
</tbody>
</table>

IMPORTANT If the PhaseManager ownership is used (PATT and PDET), then the PCmd commands have to be outside the phase.
5. Program the outputs of the PMIntfc_LBSM instruction to command the PhaseManager phase.

As stated in the Important for step 2, the PCMD commands can be in the PhaseManager phase program only if the 'Acquire' (PATT and PDET) and ownership is not used.
Bit Interface

The Equipment Bit Interface consists of a number of inputs and/or outputs that are used to control and monitor your equipment when you're not using PhaseManager software. In this equipment, lower-level devices (such as control modules) are configured to perform some predefined function as one piece of equipment, or equipment module. This predefined Equipment Bit Interface provides a consistent way to connect custom user-coded equipment to the LBSM application.

These are the LBSM bits used by the interface.

1. To begin using this interface, create a tag of type EM_Composite for each equipment module.

 The tag naming convention is up to you.

2. Alias the equipment tag to the corresponding LBSM equipment tags at the controller scope.

 Using the example from the Equipment Configuration mapping section (page 55), the Equipment tag name Agitate is aliased to _Equipment[3]. Refer to this table.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Equipment Phase</th>
<th>Alias</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Premix</td>
<td>0 = Add Ingredient A</td>
<td>_Equipment[0].EQ</td>
</tr>
<tr>
<td>1 = Add Ingredient B</td>
<td>_Equipment[1].EQ</td>
<td></td>
</tr>
<tr>
<td>2 = Add Ingredient C</td>
<td>_Equipment[2].EQ</td>
<td></td>
</tr>
<tr>
<td>3 = Agitate</td>
<td>_Equipment[3].EQ</td>
<td></td>
</tr>
<tr>
<td>4 = Dispense</td>
<td>_Equipment[4].EQ</td>
<td></td>
</tr>
<tr>
<td>5 = Heat Vessel</td>
<td>_Equipment[5].EQ</td>
<td></td>
</tr>
<tr>
<td>6 = Blank</td>
<td>_Equipment[6].EQ</td>
<td></td>
</tr>
<tr>
<td>7 = Blank</td>
<td>_Equipment[7].EQ</td>
<td></td>
</tr>
<tr>
<td>8 = Blank</td>
<td>_Equipment[8].EQ</td>
<td></td>
</tr>
</tbody>
</table>
3. Use the equipment tags created in step 1 to program each equipment module interface with these bits.

<table>
<thead>
<tr>
<th>Member</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmnd</td>
<td>BOOL</td>
<td>Boolean inputs that command the object code to perform its primary function.</td>
</tr>
<tr>
<td>ParameterValues</td>
<td>ParameterValues</td>
<td>Inputs to the object code that can be modified from the HMI. For example, setpoints. You can use a maximum of four Real and four Boolean parameters.</td>
</tr>
<tr>
<td>HoldReq</td>
<td>BOOL</td>
<td>Boolean input that requests the object code to perform its Hold function. This could be to go to a known state or stay where it is (do nothing).</td>
</tr>
<tr>
<td>ResetReq</td>
<td>BOOL</td>
<td>Boolean input that requests the object code to reset; put the EM into a known initial state, ready to run again.</td>
</tr>
<tr>
<td>State</td>
<td>BOOL</td>
<td>Boolean output that indicates that the object code is Off (0) or On (1).</td>
</tr>
<tr>
<td>DN</td>
<td>BOOL</td>
<td>Boolean output that indicates that the object code has achieved its final state. User program must always set this tag at some point in the operation of the EM. See Use the DN and State Bits on page 60.</td>
</tr>
<tr>
<td>Actual</td>
<td>ActualValues</td>
<td>Outputs saved for reporting.</td>
</tr>
<tr>
<td>ResetDN</td>
<td>BOOL</td>
<td>Boolean output that indicates that the object code has been reset caused by the setting of the ResetReq input.</td>
</tr>
<tr>
<td>Held</td>
<td>BOOL</td>
<td>Boolean output that indicates the object code is in a state caused by the setting of the HoldReq input.</td>
</tr>
<tr>
<td>Fault</td>
<td>BOOL</td>
<td>Indicates an object code fault. Could be the OR'ed composite of all code component faults.</td>
</tr>
<tr>
<td>Health</td>
<td>BOOL</td>
<td>Indicates bad object code health. Could be the OR'ed composite of all code component health bits (like CM IO health bits).</td>
</tr>
</tbody>
</table>

IMPORTANT Refer to Appendix A for details of the EM_Composite data type. Refer to Appendix B for several example applications.

4. Add an instance of the EM_LBSM Add-On Instruction to each equipment module.

The EM_LBSM Add-On Instruction manages the equipment module modes and handshakes to the rest of the system. You must use this in each equipment module that you create.
Use the DN and State Bits

The relationship between the DN and State bits is critical for the appropriate behavior of procedural handling of equipment entities. There are two distinct behaviors that can occur:

- Equipment completes (finish and be released)
- Equipment qualifies step and continues activity

Completion – If DN = 1 and State = 0. This combination of bits instructs the engine that the equipment has finished what was requested (EM.DN=1) and is in a low state or de-energized (EM.State=0).

Example: Ingredient Addition

The equipment is to add a specified amount of an ingredient.

- EM.Cmd=1 tells the equipment to perform its function.
- EM.State=1 to indicate that it is adding material.
- EM.State=0 to indicate that it is no longer adding material.
- EM.DN=1 to indicate that it is done (has added the requested amount and turned off).

Finish, keep running – If DN = 1 and State = 1. The equipment accomplishes what has been requested but remains running.

Example: Simple Agitation

The equipment is to maintain an agitator at a specified speed.

- EM.Cmd=1 tells the equipment to perform its function.
- EM.State=1 to indicate that it is running.
- EM.DN=1 to indicate that it is done (has attained the desired speed).
User programming for a piece of equipment could change the behavior of the EM.State bit depending on its mode of operation. This provides for the equipment to perform as one in a particular step, but as a different behavior in another step.

Example: Timed Agitator

In one step, it is desirable to use as a free running agitator that is stopped at the end of the step. In another step, it could be used with a timer in the equipment to perform a precision-timed agitation that shuts down and completes when finished. In each case, the programming to set the EM.State is different.
Operator Phase Control

Users with the proper security can take control of a phase in a runtime environment. Complete these steps.

1. On the Run Time Detail faceplate, click an equipment box to access the Phase Control faceplate.

2. Click the Acquire Equipment button to let an authorized user take ownership of the phase.
3. To modify an input parameter, click the value field to open the keypad entry display.

![Keypad Display](image)

4. Using the keypad, type a new value and click OK. The keypad disappears and the new value is entered.

5. To run a phase, click the Start Command button.

![Start Command Button](image)
The Output value activates and shows the amount.

6. When a phase is complete, stopped, or aborted, the Reset Command button activates to let you reset the phase to the Idle state (which can then be started again).
Equipment Control

If you have the proper security, complete these steps to take control of equipment.

1. On the Phase Control faceplate, click the icon for the Equipment Run-Time Display.

2. Click the Acquire Equipment button.

3. With this access you can perform the following actions similar to the Phase Control faceplate:
 - Click the input parameter value field to modify the value
 - Click the Start Command button to run the equipment module
 - Click the Hold button to hold the equipment
 - Click the Reset button to reset the equipment module

Multi-Step Configuration

The Multi-Step Configuration display provides an alternative means of configuring your recipe with prompts, pauses, and wait timers on one display.
1. On the Manual tab, click the button to edit the currently running sequence.

2. Click the Display Multi-Step Config Window button.
3. Complete the Multi-Step Configuration display.

![Multi-Step Configuration Display](image.png)

Table 8 - Multi-Step Configuration Description

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step Name</td>
<td>Type a name for the step.</td>
</tr>
<tr>
<td>Allow Pause</td>
<td>Check to let the sequence pause after this step.</td>
</tr>
<tr>
<td>Oper Prompt</td>
<td>Check to use a prompt message for an operator to take action. A Browse (...) button appears to provide access to a Manual Prompt faceplate to configure the specific prompt message.</td>
</tr>
<tr>
<td>Step Wait Time</td>
<td>Check and type a value for the step wait time, if applicable for the step.</td>
</tr>
<tr>
<td>Step Fault Time</td>
<td>Type a value (in milliseconds) for the Step Fault Time. If the time to complete this step exceeds the timer setting, a step timeout is triggered.</td>
</tr>
</tbody>
</table>
Easy Recipe Configuration

The Easy Config button on the Recipe Configuration display provides access to a display that lets you create a basic outline of a recipe. When you decide the steps are correct, you can go back and add the specific parameters.

On the grid display, click the phase/step intersection block to toggle the phase between inactive/active for that step, rather than open the phase configuration window.

See page 40 for details on configuring phases per step in a sequence.
This section steps through a demonstration of LBSM functionality by using the provided FactoryTalk View HMI components. The demonstration assumes that the installation and configuration steps have been completed, and that a batch has been created. We cover these preliminary steps later in the manual.

The red circle in the illustration indicates that our demonstration, or running a batch in general, occurs after the configuration of several application benchmarks. After the demonstration, we’ll walk you through each section (denoted by page number) with the configuration activities that comprise the master recipe.

In the LBSM demonstration, we use recipe ‘Product A’ to add and mix three ingredients to tank ‘Premix 1’, and then transfer the resulting product from the tank. LBSM lets you break the capabilities of the process into independent process actions, which can include operator interaction via prompts.

Figure 10 - LBSM Unit Example
1. Click the main global object to access the Operator tab faceplate.

The global object uses text and graphics to summarize the unit.

IMPORTANT The main global object is the launch point for LBSM, but it’s not intended to be the only link to LBSM. For example, you can place the object on each unit graphic or multiple HMI displays.

TIP This demonstration assumes that you have created a batch and entered the batch scale factor. See page 51 for procedures on how to create a batch.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abort sequence</td>
</tr>
<tr>
<td>2</td>
<td>Stop sequence</td>
</tr>
<tr>
<td>3</td>
<td>Hold sequence</td>
</tr>
<tr>
<td>4</td>
<td>Start sequence</td>
</tr>
<tr>
<td>5</td>
<td>Reset sequence</td>
</tr>
<tr>
<td>6</td>
<td>Access the runtime detail faceplate</td>
</tr>
<tr>
<td>7</td>
<td>Respond to Operator prompt</td>
</tr>
<tr>
<td>8</td>
<td>Load a sequence from the master sequence list</td>
</tr>
<tr>
<td>9</td>
<td>Restart sequence</td>
</tr>
</tbody>
</table>
The same buttons on the Operator tab are also available on the Run Time Detail faceplate. The Run Time Detail faceplate visually arranges the progress of the procedural steps.

2. Access the Run Time Detail faceplate.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sequence steps</td>
</tr>
<tr>
<td>2</td>
<td>Equipment phases</td>
</tr>
<tr>
<td>3</td>
<td>Pause point</td>
</tr>
<tr>
<td>4</td>
<td>A white box indicates that this phase is configured in this step.</td>
</tr>
</tbody>
</table>

3. On the Run Time Detail faceplate, click the Start button.

You can start a batch **only** when it’s in the Idle state.

The Start command button, when clicked, transitions the batch to the Running state. Each time a batch starts, the batch or sequence unique ID is incremented.
If you click the Stop button or the Abort button to terminate the sequence immediately, you must click the Reset button to return to the Idle state. You must also click the Reset button when a batch is ‘Complete’.

When a sequence starts, the faceplate shows the procedural progress of the unit.

Step 0 - Material Addition

![Faceplate Diagram]

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Column turns green to show that the current step is in progress. Column turns brown if a running sequence is held.</td>
</tr>
<tr>
<td>2</td>
<td>Indicator to display phase state</td>
</tr>
<tr>
<td>3</td>
<td>Current page number depending on the number of steps in your sequence</td>
</tr>
</tbody>
</table>
Step 1 - Heat Vessel

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indicator to signify that operator interaction is required</td>
</tr>
<tr>
<td>2</td>
<td>Phase State</td>
</tr>
<tr>
<td>3</td>
<td>Black dot in the white box indicates that the phase has been completed</td>
</tr>
<tr>
<td>4</td>
<td>Indicator to signify that operator interaction is required</td>
</tr>
</tbody>
</table>
Step 1a - Prompt Acknowledgment

Click either of the indicators for operator interaction to access the prompt acknowledgment display. Type in the response value and press the check mark button to acknowledge the response.
Step 2 - Material Addition and Agitation

Column turns white to indicate that the current step is in progress.

The black dots indicate that Add Ingredient B and Agitate phases are complete. The step is waiting for the Heating Vessel phase before continuing.

IMPORTANT

You do not have to stop phase equipment to get to a new setpoint. A ‘transfer of control’ permits the equipment, such as an agitator or a heating device, to acquire a different setting. In our example, the agitator phase runs across multiple steps, and configured for different recipe speeds if applicable.
Step 3 - Continue to Agitate

Column turns white to indicate that the current step is in progress.

The black dot indicates that the desired function for that phase is complete. The step is waiting for the Heating Vessel phase before continuing.
Step 4 - Heat Vessel, Wait Timer

Column turns white to indicate that the current step is in progress.

The wait timer starts timing when the step becomes active. The timer counts down from the preset value. The remaining wait time is displayed in seconds.

The black dot indicates that the desired function for that phase is complete.
Step 5 - Continue to Heat Vessel, Hold Functionality

Column turns white to indicate that the current step is in progress.

Column turns brown when a running sequence is Held. All active phases are commanded to their respective hold states. The sequence can then be restarted, stopped, or aborted.
Step 6 - Agitate, Heat Vessel

Column turns white to indicate that the current step is in progress.

The black dot indicates that the desired function for that phase is complete.
Step 7 - Ingredient C Addition, Continue Agitation and Heating

Column turns white to indicate that the current step is in progress.

The black dot indicates that the desired function for that phase is complete.
Step 8 - Continue Agitation and Heating Vessel, Wait Timer

Column turns white to indicate that the current step is in progress.

The wait timer starts timing when the step becomes active. The timer counts down from the preset value. The remaining wait time is displayed in seconds.

The black dot indicates that the desired function for that phase is complete.
Step 9 - Continue Agitation and Heating Vessel

Column turns white to indicate that the current step is in progress.

The black dot indicates that the desired function for that phase is complete.
Step 10 - Continue Agitation, Wait Timer

Column turns white to indicate that the current step is in progress.

The wait timer starts timing when the step becomes active. The timer counts down from the preset value. The remaining wait time is displayed in seconds.

The black dot indicates that the desired function for that phase is complete.
Step 11 - Continue Agitation, Prompt Acknowledgment

Column turns white to indicate that the current step is in progress.

The black dot indicates that the desired function for that phase is complete.

Click either of the indicators for operator interaction to access the prompt acknowledgment display.

Press the check mark button to acknowledge the response.
Batch Complete

Status box indicates that the procedure is ‘Complete’.

Boxes are cleared for another batch.

The reset button is active. The state can be reset to Idle. The batch state must be in Idle before a new batch can be started.
LBSM Help Displays

Press the help button on the faceplates to access help specific to that faceplate.

The help file is in .pdf format and opens in a separate window.

Help Display

<table>
<thead>
<tr>
<th>LBSM Faceplate Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Indicators</td>
</tr>
<tr>
<td> A condition requires attention</td>
</tr>
</tbody>
</table>

Sequence States
- Idle
- Running
- Continuing
- Holding
- Held
- Restarling
- Stopping
- Stopped
- Complete
- Aborting
- Aborted
- Resetting

Input Qualification Indicators
- ![Icon](image2.png) Phase has achieved parameters for step.
- ![Icon](image3.png) Phase has not yet achieved parameters for step.

Sequence Symbols
- Configured Pause point. Sequence will pause at this point if the “Pause” button is pressed.
- The sequence is currently paused at this point. Press the “Resume” button to continue.

Commands
- ![Icon](image4.png) Start Command
- ![Icon](image5.png) Resume Command
- ![Icon](image6.png) Reset Command
- ![Icon](image7.png) Hold Command
- ![Icon](image8.png) Next Pause Point. Move the current step pointer to the next pause position.
- ![Icon](image9.png) Stop Command. Perform orderly shutdown of running sequence
- ![Icon](image10.png) Abort Command. Immediate shutdown of running sequence
- ![Icon](image11.png) Restart Command
- Previous Pause Point. Move the current step pointer to the previous pause position.
Advanced Capabilities

This appendix describes additional phase configurations that extend the LBSM application for advanced situations. These features are performed behind-the-scenes of visual clues.

Within the LBSM unit step array, there are configuration options that are not represented on the HMI faceplates and displays. These options are PIContinue, PIOwned, and PIImmRel (immediate release). Each of these features is a DINT, where each bit in the DINT is mapped to its respective, numbered phase (or PI).

<table>
<thead>
<tr>
<th>Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step</td>
<td>LBSM_SQ-St</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0]</td>
<td>LBSM_SQ-St</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] Name</td>
<td>String_16</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] PauseStep</td>
<td>BOOL</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] PromptStep</td>
<td>BOOL</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] WaitPhaseStep</td>
<td>BOOL</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] ResetAccOnHold</td>
<td>BOOL</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] StepTOReseOn...</td>
<td>BOOL</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] StepTOPre</td>
<td>DINT</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] StepWaitPre</td>
<td>DINT</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] PromptRef</td>
<td>DINT</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] PIContinue</td>
<td>DINT</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] PIOwned</td>
<td>DINT</td>
</tr>
<tr>
<td>LBSM_Unit[0]_SQtn_Config_Step[0] PIImmRel</td>
<td>DINT</td>
</tr>
</tbody>
</table>

PIContinue

When a bit is set for this option, the step does not wait for the corresponding phase (PI) to complete before a transition to the next step. All other conditions must be met, such as other phases finishing.

This feature is useful when a phase is used across multiple, contiguous steps and it does not require that phase to be done in the intervening steps. This option is similar to a parallel branch in an SFC; one branch has one phase and the other branch has multiple phases (sequentially) but they converge.

Caution, however, must be exercised when you use this configuration. There are no visual cues or indications that this option is active in the HMI.
For example, a Pause Point is configured at one of the steps where a PIContinue is configured and the Pause is used. The step is still allowed to move between Pause Points and resume execution. Upon resuming execution, the sequence is still waiting for the phase to complete from the Continue. There is no visual clue on the HMI that the Continue is occurring and gives an impression the sequence is 'hung.'

PIOwned

This option was originally implemented to allow ownership of equipment in steps before its actual use to make sure that the equipment was available. This bit has no value today because equipment ownership is implied by unit in LBSM.

PIImmRel (immediate release)

When a bit is set in this option, the corresponding phase (PI) is reset and released immediately upon completion of the equipment task (done and de-energized). The release does not wait until the end of the step. Critical equipment, which is shared between units, is released as soon as it finishes so that it is available for use by another unit.

Manual Generation of Batch ID

This feature provides an option to disable automatic batch ID generation and let a user externally generate their own identifier. Users who choose to exercise this option must be careful to make sure of batch ID uniqueness.

To enable/disable the batch ID generation, use the 'Cfg_UID' tag in the SQ Program Tags.

By default this tag is set to '0' and automatic batch ID generation is enabled. If you set this bit to '1', you can manually generate batch ID.

You can set your own batch ID value by writing to the LBSMUnit[x].UID tag.
Equipment Interface Codes

The EM_Composite member of the _Equipment array provides the interface between the LBSM application and your equipment. Your equipment module code must be configured to interface to these tags.

IMPORTANT Details for each member of the EM_Composite data type are shown in Table 9. Examples for programming the interface are shown in Appendix C on page 91.

<table>
<thead>
<tr>
<th>Member</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EquipmentName</td>
<td>String_16</td>
<td>Equipment name that is displayed on the HMI.</td>
</tr>
<tr>
<td>Display</td>
<td>String_16</td>
<td>For future enhancement.</td>
</tr>
<tr>
<td>EMProgReq</td>
<td>BOOL</td>
<td>Boolean input that requests the Equipment Module use Program mode. This input is used by the EM Add-On Instruction.</td>
</tr>
<tr>
<td>EMProgLReq</td>
<td>BOOL</td>
<td>Latched version of the EMProgReq</td>
</tr>
<tr>
<td>EMOperReq</td>
<td>BOOL</td>
<td>Boolean input that requests the Equipment Module use Operator mode. This input is used by the EM Add-On Instruction.</td>
</tr>
<tr>
<td>EMOperLReq</td>
<td>BOOL</td>
<td>Latched version of the EMOperReq</td>
</tr>
<tr>
<td>CMReq</td>
<td>BOOL</td>
<td>Boolean input that requests the CMs use Operator mode. This input is used by the EM Add-On Instruction.</td>
</tr>
<tr>
<td>Cmd</td>
<td>BOOL</td>
<td>Boolean input that commands the EM to perform its primary function.</td>
</tr>
<tr>
<td>ParameterEnable</td>
<td>DINT</td>
<td>Enabling a parameter makes it active for the equipment module. This action corresponds to EM enable on the Equipment Configuration dialog box.</td>
</tr>
<tr>
<td>ParameterValues</td>
<td>LBSM_ParameterValues</td>
<td>Inputs to the EM that can be modified from the HMI. For example, setpoints.</td>
</tr>
<tr>
<td>ActualEnable</td>
<td>DINT</td>
<td>Enabling an actual value (or report value) makes it active for the equipment module. This corresponds to EM enable on the Equipment Configuration dialog box.</td>
</tr>
<tr>
<td>ActualNamesReal</td>
<td>LBSM_ParameterReal[4]</td>
<td>Names of the values reported to the phases for display on the HMI equipment.</td>
</tr>
<tr>
<td>HoldReq</td>
<td>BOOL</td>
<td>Boolean input that requests the EM to perform its Hold function. This could be to go to a known state or stay where it is (or do nothing).</td>
</tr>
<tr>
<td>ResetReq</td>
<td>BOOL</td>
<td>Boolean input that requests the EM to reset; put the EM into a known initial state, ready to run again.</td>
</tr>
<tr>
<td>NewParmsONS</td>
<td>BOOL</td>
<td>Set by a supervisory entity when new parameters are given to the EM.</td>
</tr>
</tbody>
</table>
Table 9 - EM_Composite Data Types

<table>
<thead>
<tr>
<th>Member</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMProg</td>
<td>BOOL</td>
<td>Boolean output that indicates the EM is in Program mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMPORTANT: The EMProgReq/EMProg interaction is used by the Running routine of the phase to determine the appropriate EM access mode for operation.</td>
</tr>
<tr>
<td>EMProgL</td>
<td>BOOL</td>
<td>Latched version of the EMProg</td>
</tr>
<tr>
<td>EMOper</td>
<td>BOOL</td>
<td>Boolean output that indicates the EM is in Operator mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMPORTANT: The EMOperReq/EMOper interaction is used by the Running routine of the phase to determine the appropriate EM access mode for operation.</td>
</tr>
<tr>
<td>EMOperL</td>
<td>BOOL</td>
<td>Latched version of the EMOper</td>
</tr>
<tr>
<td>EM</td>
<td>BOOL</td>
<td>Boolean output that indicates the EM is in the EM mode.</td>
</tr>
<tr>
<td>CM</td>
<td>BOOL</td>
<td>Boolean output that indicates the EM is in the CM mode.</td>
</tr>
<tr>
<td>State</td>
<td>BOOL</td>
<td>Boolean output that indicates that the EM is Off (0) or On (1).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMPORTANT: Used by the Stopping routine in the phase to determine when the EM is in the user-definable Off or On state.</td>
</tr>
<tr>
<td>DN</td>
<td>BOOL</td>
<td>Boolean output indicates that the EM has achieved its final state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User program must always set this tag at some point in the operation of the EM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Every EM has a condition or state that is considered its final condition or state. You must define that condition for an individual EM and appropriately condition the DN bit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EMs that ‘Run until Done’ set the DN bit when its objective is achieved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For example, ‘automatically metered ingredient add’.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EMs that ‘Run until Stop’ set the DN bit immediately or constantly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For example, ‘agitator’.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EMs that ‘Run until Done, Continue until Stop’ set the DN bit when its objective is achieved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For example, ‘Slow reacting temperature loop’ (it is ‘DN’ when at SP but continues to regulate until told to stop).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The DN must be reset whenever the Cmnd bit is low.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The DN can go low as the result of receiving new parameters that indicate a new objective, as defined by user logic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMPORTANT: The Cmnd/DN interaction tells a phase that the EM has performed the requested action. The phase sets the Cmnd and waits to see a DN to know that the EM has performed the requested action.</td>
</tr>
<tr>
<td>Actual</td>
<td>LBSM_ActualValues</td>
<td>Outputs from the EM that are used by the phase. For example, a control variable, such as temperature or speed.</td>
</tr>
<tr>
<td>ResetDN</td>
<td>BOOL</td>
<td>Boolean output that indicates that the EM has been reset.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The ResetDN is reset whenever the ResetReq is low.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMPORTANT: The ResetReq/ResetDN interaction is used by the Resetting routine of the phase to determine that the EM has been reset.</td>
</tr>
<tr>
<td>Held</td>
<td>BOOL</td>
<td>Boolean output that indicates that the EM is in a state that is caused by the setting of the HoldReq input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Held is reset whenever HoldReq is low and the EM has resumed normal operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMPORTANT: The HoldReq/Held interaction is used by the Holding and Restarting routines of the phase to determine that the EM is in the correct states.</td>
</tr>
<tr>
<td>Fault</td>
<td>BOOL</td>
<td>Indicates an EM fault.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Could be the OR’ed composite of all EM component faults.</td>
</tr>
<tr>
<td>LEMFault</td>
<td>BOOL</td>
<td>Latched version of the Fault</td>
</tr>
<tr>
<td>Health</td>
<td>BOOL</td>
<td>Indicates bad EM health.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Could be the OR’ed composite of all EM component health bits (like CM I/O health bits).</td>
</tr>
<tr>
<td>Exists</td>
<td>BOOL</td>
<td>Bit that is set if the controller has code that uses this EM interface and is executing.</td>
</tr>
<tr>
<td>MyIndex</td>
<td>DINT</td>
<td>Set automatically by the LBSM code.</td>
</tr>
<tr>
<td>MyUnit</td>
<td>DINT</td>
<td>Set automatically by the LBSM code.</td>
</tr>
<tr>
<td>AcquisitionTO</td>
<td>FBD_TIMER</td>
<td>This timer, which starts when ownership of the EM is requested, is used for acquiring ownership of the EM. If ownership is not confirmed within this amount of time, a fault is issued.</td>
</tr>
<tr>
<td>CmndTO</td>
<td>FBD_TIMER</td>
<td>This timer, which starts when the command is issued, is used for completion of a command. If the command is not completed within this amount of time, a fault is issued.</td>
</tr>
</tbody>
</table>
Appendix C

Bit Interface Examples

The following examples illustrate the basic usage of the bit interface if you are not using PhaseManager™ software.

‘Add Ingredient’ Example

An ingredient addition function can be comprised of one valve or the combination of a pump, valve, and totalizer. Either way, you must define these functions:

- How much ingredient to add (ParameterValue)
- When to go (Cmd=1)
- When to temporarily suspend its operation, if needed (HoldReq = 1)
- When to stop (Cmd = 0)
- When to reset any persistent functionality (ResetReq = 1)

You need to monitor these activities:

- The group is actively functioning or energized (State)
- The group accomplishes what you requested (DN)
- How much ingredient it actually adds (ActualValue)
- When it achieves a temporary suspension of activity (Held)
- When it resets its internal functions (ResetDn)
- Whether any device faults occur (Fault)
Run Until Done Example

This example uses a timer as the equipment.

The functionality of this piece of equipment is what is required of any equipment that runs and finishes on its own (and 'Complete' a commanding phase). Usually this type of equipment is used in one step and its functionality does not span contiguous steps, although it can span contiguous steps in non-continuous operation.

This type of equipment must be reset before running again. 'Ingredient Add' is an example of this type of equipment.

Table 10 - Run Until Done Specification Example

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Time in milliseconds to run (timer.PRE).</td>
</tr>
<tr>
<td>Output</td>
<td>Accumulated time (timer.ACC).</td>
</tr>
<tr>
<td>Runtime functionality</td>
<td>When the Cmnd bit is set, run the timer. Set the State bit while the timer is running (timer.ACC = 1). Set the DN bit when the timer is done (timer.DN = 1).</td>
</tr>
<tr>
<td>Hold functionality</td>
<td>When the HoldReq bit is set, hold the timer where it is and set the Held bit.</td>
</tr>
<tr>
<td>Reset functionality</td>
<td>When the ResetReq bit is set, reset the timer (and set the ResetDN bit).</td>
</tr>
<tr>
<td>NewParms functionality</td>
<td>Not used because the intent of this equipment functionality is to run once and complete (requiring a reset and another start to run again).</td>
</tr>
</tbody>
</table>

Function Block
Structured Text

EM_LBSM(EM_01, L_EMIntfc);

DFOR_ST.DRE := EM_Time_Drase;

L_EMIntfc.ResetDN := L_EMIntfc.ResetReq;

FROR_ST.Reset := L_EMIntfc.ResetReq OR NOT(L_EMIntfc.Cmd) OR L_EMIntfc.NewFarms;

RTOR_ST.TimerEnable := L_EMIntfc.Cmd AND NOT(L_EMIntfc.HoldReq);

DFOR (RTOR_ST);

L_EMIntfc.DN := RTOR_ST.DN AND L_EMIntfc.Cmd;

L_EMIntfc.Held := L_EMIntfc.HoldReq;

EM_Time_Acc := DFOR_ST.ACC;
Run Until Stopped Example

This example uses a timer as the equipment.

The functionality of this piece of equipment is what is required of any equipment that runs and continues until commanded to stop (and not ‘Complete’ the phase). This type of equipment can be used in one or more steps and its functionality can span contiguous steps in an uninterrupted fashion.

This type of equipment does not need to be reset before running again. Examples of this type of equipment include Continuous Agitation and Temperature Control.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Time in milliseconds to qualify as DN (timer.PRE).</td>
</tr>
<tr>
<td>Output</td>
<td>Accumulated time (timer.ACC).</td>
</tr>
<tr>
<td>Runtime functionality</td>
<td>When the Cmd bit is set, run the timer.</td>
</tr>
<tr>
<td></td>
<td>Set the State bit while the Cmd bit is set.</td>
</tr>
<tr>
<td></td>
<td>Set the DN bit when the timer is done (timer.DN = 1).</td>
</tr>
<tr>
<td>Hold functionality</td>
<td>When the HoldReq bit is set, hold the timer where it is if it has not yet completed (and set the Held bit).</td>
</tr>
<tr>
<td>Reset functionality</td>
<td>When the ResetReq bit is set, reset the timer (and set the ResetDN.bit).</td>
</tr>
<tr>
<td>NewParms functionality</td>
<td>When the NewParms bit is set, the timer is to be reset. During the course of automatic control with a phase, this type of equipment could be given new parameters in another step without stopping. NewParms instructs the equipment that it has new parameters and must accommodate them. It is possible that the equipment can respond to the new parameters instantly. If so, the NewParms bit is not needed.</td>
</tr>
</tbody>
</table>

Function Block
Ladder Logic

Structured Text

EM_LSBM(EM O1, L_EMIntfc);
RTOR.ST.PRE := EM_Timer.Preset;
L_EMIntfc.ResetDN:= L_EMIntfc.ResetReq;
RTOR.ST.Reset:= L_EMIntfc.ResetReq OR NOT(L_EMIntfc.Cmd) OR L_EMIntfc.NewFarms;
RTOR.ST.TimerEnable:= L_EMIntfc.Cmd AND NOT(L_EMIntfc.HoldReg);
RTOR(ST);
L_EMIntfc.State:= L_EMIntfc.Cmd;
L_EMIntfc.DN:= RTOR.ST.DN AND L_EMIntfc.Cmd;
L_EMIntfc.Held:= L_EMIntfc.HoldReg;
EM_Timer.Acc:=RTOR.ST.ACC;
Run Until Done, Continue Until Stopped Example

This example uses a timer as the equipment.

The functionality of this piece of equipment is what is required of any equipment that executes as either of the previous two, selected by a parameter. This type of equipment can be used in one or more steps and its functionality can span multiple contiguous steps in an uninterrupted fashion.

This type of equipment could need to be reset before running again. Examples of this type of equipment include Timed/Free Agitation.

Table 12 - Run Until Done, Continue Until Stopped Specification Example

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Time in milliseconds to qualify as DN (timer.PRE). The mode (0 - Timed, 1 - Free Running).</td>
</tr>
<tr>
<td>Output</td>
<td>Accumulated time (timer.ACC).</td>
</tr>
<tr>
<td>Runtime functionality</td>
<td>When the Cmnd bit is set, run the timer.</td>
</tr>
<tr>
<td></td>
<td>Set the State bit while the Cmnd bit is set.</td>
</tr>
<tr>
<td></td>
<td>Set the DN bit when the timer is done (timer.DN = 1).</td>
</tr>
<tr>
<td>Hold functionality</td>
<td>When the HoldReq bit is set, hold the timer where it is if it has not yet completed (and set the Held bit).</td>
</tr>
<tr>
<td>Reset functionality</td>
<td>When the ResetReq bit is set, reset the timer (and set the ResetDN.bit).</td>
</tr>
<tr>
<td>NewParms functionality</td>
<td>This is not used because the intent of this equipment functionality is to run once and complete (requiring a reset and another start to run again). When the NewParms bit is set, the timer is to be reset. During the course of automatic control with a phase, this type of equipment could be given new parameters in another step without stopping. NewParms instructs the equipment that it has new parameters and must accommodate them. It is possible that the equipment can respond to the new parameters instantly. If so, the NewParms bit is not needed.</td>
</tr>
</tbody>
</table>

Function Block
Structured Text

EM_LSBN(EM_O1, L_EMIntfc);

RTOR_ST.PRE := EM_Timer_Preset;

L_EMIntfc.ResetDN := L_EMIntfc.ResetReq;

RTOR_ST.Dset := L_EMIntfc.ResetReq OR NOT(L_EMIntfc.Cmd) OR L_EMIntfc.NewVars;

RTOR_ST.TimerEnable := L_EMIntfc.Cmd AND NOT(L_EMIntfc.HoldReq);

RTOR(RTOR_ST);

L_EMIntfc.State := (RTOR_LLD.TT OR EM_Mode) AND L_EMIntfc.Cmd;

L_EMIntfc.DN := RTOR_ST.DN AND L_EMIntfc.Cmd;

L_EMIntfc.Held := L_EMIntfc.HoldReq;

EM_Timer_Acc := RTOR_ST.ACC;
Notes:
LBSM Reporting

The LBSM application has tag structures that support the development of a reporting solution.

IMPORTANT Rockwell Automation® provides a Microsoft Windows service, called the Event Queue Processor. The service performs the extraction and output of the reporting parameters. This application is available as an optional download to the LBSM application.

LBSM Report Data Structure

The LBSM report data structure consists of elements that are shown in the table.

<table>
<thead>
<tr>
<th>Data Element</th>
<th>Data Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time stamp</td>
<td>7 DINT time stamp of RSLogix 5000® controller format</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>‘LBSM’</td>
<td></td>
</tr>
</tbody>
</table>

Data

A set of fields that consist of the following:

<table>
<thead>
<tr>
<th>Data Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique ID</td>
<td>An integer number that is incremented in the controller to indicate the run number for that unit</td>
</tr>
<tr>
<td>Owner</td>
<td>Operator or recipe name</td>
</tr>
<tr>
<td>Phase</td>
<td>Phase name, if applicable</td>
</tr>
<tr>
<td>Action</td>
<td>State, Input, Output, Prompt, Timer, Step, Paused, Resumed</td>
</tr>
<tr>
<td>Event</td>
<td>State name, if applicable</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Name of the parameter that is being referenced, if applicable</td>
</tr>
<tr>
<td>Parameter Value</td>
<td>Value of the parameter that is being referenced, if applicable</td>
</tr>
<tr>
<td>Parameter EU</td>
<td>Engineering units of the parameter that is being referenced, if applicable</td>
</tr>
<tr>
<td>Count</td>
<td>Specific count of actions, if applicable</td>
</tr>
<tr>
<td>Unit</td>
<td>Name of the unit</td>
</tr>
</tbody>
</table>

Retrieve Records

There are two handshake mechanisms available for you to control record removal:

- Boolean
- Integer

All tags exist within the _LBSMJournalCntl controller scoped tag.
Boolean Mechanism

The Boolean handshake is a two-bit handshake:

a. The Add-On Instruction sets Sts_ReadyBOOL when a record is available for you to read. You then read the record in the _LBSMJournalCntl.Record data field.

b. You set Inp_ConfirmBOOL to instruct the Add-On Instruction that the record is received. The Add-On Instruction clears the Sts_ bit.

Integer Mechanism

In situations where the retrieval process is asynchronous, such as via OPC, the Boolean mechanism can be unacceptable. You could miss the low interval of the Sts_ bit between records.

The DINT mechanism is used for these scenarios.

a. The Add-On Instruction increments the Sts_ReadyDINT (and sets Sts_ReadyBOOL) when a record is available for you to read. You then read the record in the _LBSMJournalCntl.Record data field.

b. You set the value of Inp_ConfirmDINT to the value of Sts_ReadyDINT to instruct the Add-On Instruction that the record is received.

c. The Add-On Instruction then sets the value of Sts_ConfirmDINT_Echo to echo back your confirmation.

The three-value exchange makes sure that the handshake is involved with either mechanism.

Log on Demand

This journal functionality lets you log real-time values at any point of the phase. The Report Phase Output Parameters button places values, such as temperature or volume, immediately into a journal entry.
HMI Security Codes

FactoryTalk® View software security codes help protect information that is contained within the HMI faceplates. Operators, maintenance personnel, and engineers must have security permissions to modify their respective faceplate tabs.

Display elements (global objects) have an associated faceplate that appears when the display element is clicked. Variables, setpoints, alarms, and other device configuration data is entered and viewed on the HMI faceplates.

The following table references the security codes that are required for each tag.

For more information on configuring FactoryTalk Security, see these manuals.

- PlantPAx® Distributed Control System
 Infrastructure Configuration, publication PROCES-UM001

- PlantPAx Distributed Control System
 Application Configuration, publication PROCES-UM003

Table 13 - Security Codes

<table>
<thead>
<tr>
<th>FTView Tag</th>
<th>Description</th>
<th>Security Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security\AlarmAck</td>
<td>Acknowledge/Reset Alarms</td>
<td>ABCDEF</td>
</tr>
<tr>
<td>Security\AlarmConfig</td>
<td>Alarm Configuration</td>
<td>E</td>
</tr>
<tr>
<td>Security\AlarmDisable</td>
<td>Disable Alarms</td>
<td>BCDEF</td>
</tr>
<tr>
<td>Security\AlarmShelve</td>
<td>Shelfe Alarms</td>
<td>ABCDEF</td>
</tr>
<tr>
<td>Security\BypassFeedback</td>
<td>Can Bypass Feedback</td>
<td>CDE</td>
</tr>
<tr>
<td>Security\BypassInterlocks</td>
<td>Bypass Permissives and Interlocks</td>
<td>BCDEF</td>
</tr>
<tr>
<td>Security\CmdSrcMaint</td>
<td>Acquire/Release Equipment Maintenance Command Source</td>
<td>CDE</td>
</tr>
<tr>
<td>Security\CmdSrcOperProg</td>
<td>Acquire/Lock and Release Equipment Operator Command Source</td>
<td>BCDEF</td>
</tr>
<tr>
<td>Security\CmdSrcOutOfService</td>
<td>Can put device in/out of service</td>
<td>CDE</td>
</tr>
<tr>
<td>Security\ConfigSecurity</td>
<td>Change Security for the device</td>
<td>E</td>
</tr>
<tr>
<td>Security\DeviceConfigBehavior</td>
<td>Change the setup of the device (Advanced)</td>
<td>E</td>
</tr>
<tr>
<td>Security\DeviceConfigDiagnostics</td>
<td>Configure device diagnostics</td>
<td>CDE</td>
</tr>
</tbody>
</table>
Display elements (global objects) have an associated faceplate that appears when the display element is clicked. Variables, setpoints, alarms, and other device configuration data is entered and viewed on the HMI faceplates.

Data cannot be entered or changed without an administrator granting permission with the corresponding security code on each faceplate tab.

<table>
<thead>
<tr>
<th>FTView Tag</th>
<th>Description</th>
<th>Security Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security\DeviceConfigFailTimers</td>
<td>Modify Alarm Delay Times</td>
<td>DE</td>
</tr>
<tr>
<td>Security\DeviceConfigHMI</td>
<td>Change the configuration of the HMI interface for the device</td>
<td>E</td>
</tr>
<tr>
<td>Security\DeviceConfigLimits</td>
<td>Configure device limits</td>
<td>DE</td>
</tr>
<tr>
<td>Security\DeviceConfigThresholds</td>
<td>Modify Limits and Deadbands</td>
<td>BCDEF</td>
</tr>
<tr>
<td>Security\DeviceConfigTimers</td>
<td>Configure device timers</td>
<td>DE</td>
</tr>
<tr>
<td>Security\DeviceConfigTuning</td>
<td>Change Tuning; Inflights; and Preacts</td>
<td>DE</td>
</tr>
<tr>
<td>Security\EnableSimulation</td>
<td>Put Device in Simulation</td>
<td>E</td>
</tr>
<tr>
<td>Security\EnterOperatorSettings</td>
<td>Enter Setpoints and Control Variables</td>
<td>ABCDEF</td>
</tr>
<tr>
<td>Security\OperateEquipment</td>
<td>Command Equipment in Operator Command Source</td>
<td>ABCDEF</td>
</tr>
<tr>
<td>Security\OverrideInputs</td>
<td>Override Inputs</td>
<td>CDE</td>
</tr>
<tr>
<td>Security\OverrideOutputs</td>
<td>Override Outputs</td>
<td>CDE</td>
</tr>
<tr>
<td>Security\ProcedureAdvancedExceptions</td>
<td>Exception Processing (Step Change; Parameter Change; Acquire; Reorder; Activate)</td>
<td>BCDEF</td>
</tr>
<tr>
<td>Security\ProcedureChangeParameters</td>
<td>Override Downloaded Phase Parameters</td>
<td>BCDEF</td>
</tr>
<tr>
<td>Security\ProcedureChangeSetpoints</td>
<td>Override Downloaded Setpoints</td>
<td>BCDEF</td>
</tr>
<tr>
<td>Security\ProcedureControl</td>
<td>Select; run; hold; and restart Procedures; Sequences; and Batches</td>
<td>ABCDEF</td>
</tr>
<tr>
<td>Security\ProcedureEquipmentControl</td>
<td>Manual Supervisory EP/EM Control</td>
<td>BCDEF</td>
</tr>
<tr>
<td>Security\ProcedureExceptions</td>
<td>Exception Processing (Resume; manual; Auto; Semi-Auto; Pause; Disconnect; Release)</td>
<td>ABCDEF</td>
</tr>
<tr>
<td>Security\ProcedureForceSequence</td>
<td>Force Steps/Stages</td>
<td>BCDEF</td>
</tr>
<tr>
<td>Security\ProcedureManualControl</td>
<td>Manual Procedure; Sequence; and Batch Processing (Stop; Abort; Reset)</td>
<td>ABCDEF</td>
</tr>
<tr>
<td>Security\ResetAccumulators</td>
<td>Reset Run Time Accumulators</td>
<td>CDE</td>
</tr>
<tr>
<td>Security\RespondToPrompts</td>
<td>Respond to Prompts</td>
<td>ABCDEF</td>
</tr>
<tr>
<td>Security\ShowFaceplate</td>
<td>Navigate to full faceplate</td>
<td>CDE</td>
</tr>
</tbody>
</table>
Index

A
- **add**
 - HMI tag 26
 - ingredient 91
- **addition**
 - material 73
 - resources 13
- **advanced**
 - capabilities 87
- **array**
 - size 30

B
- **batch**
 - create 51
 - Manual ID generation 88
- **before you begin**
 - 6
- **bit**
 - 60
 - DN 60
 - interface 58, 91
 - state 60
- **boolean**
 - mechanism 100
- **built-in**
 - phase 46

C
- **capabilities**
 - advanced 87
- **changes**
 - summary 5
- **components**
 - install 17
- **configure**
 - controller files 17
 - easy recipe 68
 - master recipe 40
 - multi-step 65
 - phase 37
 - unit 35
- **connect**
 - equipment to controller 55
- **control**
 - equipment 65
 - operator phase 62
 - transfer 75
- **controller files**
 - configure 17
- **create**
 - batch 51

D
- **data structure**
 - modify 30
- **demonstration**
 - LBSM 69
- **display**
 - quick 9
 - DN 60
- **document**
 - preface 5
- **done**
 - run until 92
 - run until. continue until stop 96

E
- **easy recipe**
 - configuration 68
- **engineering**
 - tab 12
- **equipment**
 - connect logic 55
 - control 65
 - interface codes 89
- **extract**
 - LBSM zip files 7

F
- **faceplate**
 - LBSM 8
- **functional**
 - LBSM description 16

G
- **global object**
 - import 23
- **guidelines**
 - LBSM 16

H
- **HMI**
 - display import 25
 - incorporate existing application 20
 - security codes 101
 - tag add 26

I
- **ID**
 - batch generation 88
- **image**
 - import 22
- **import**
 - global object 23
 - HMI display 25
 - image 22
- **infrastructure**
 - installation 7
- **ingredient**
 - add 91
install
 components 17
 infrastructure 7
integer
 mechanism 100
interface
 bit 58, 91
 phasemanager 56
interface codes
 equipment 89
introduction
 LBSM 15

L
LBSM
demonstration 69
 extract zip files 7
 faceplate 8
 functional description 16
 guidelines 16
 incorporate into existing HMI 20
 install components 17
 introduction 15
 reporting 99
 size array 30
 software 5
 state model 6
log
 on demand
 On-demand
 Log 100
logic
 connect equipment 55

M
manual
 batch ID generation 88
master
 recipe configuration 40
 save recipe 53
material
 addition 73
mechanism
 boolean 100
 integer 100
modify
 data structure 30
multi-step
 configuration 65

N
number
 of phases 31
 of prompts 34
 of recipes 32
 of steps 33
 of units 30

O
operator
 phase control 62
 prompt 36
 tab 10

P
phasemanager
 interface 56
parameter
 set phase 44
pause
 skip 45
phase
 built-in 46
 configuration 37
 number 31
 operator control 62
 set parameter 44
PContinue
 advanced capability 87
PImmRel
 advanced capability 88
PlOwned
 advanced capability 88
preface
 document description 5
prompt
 number 34
 operator 36

Q
quick
 display 9

R
recipe
 number 32
 save master 53
recored
 retrieval 99
reporting
 LBSM 99
retrieve
 records 99
run
 until done 92
 until done, continue until stop 96
 until stopped 94
run time detail
 faceplate 71

S
save
 master recipe 53
security codes
 HMI 101
set
 phase parameter 44
 wait timer 50
size
 LBSM array 30
skip
 pause 45
software
 LBSM 5
state
 bit 60
state model
 LBSM 6
step
 number 33
stop
 run until 94
summary of changes 5

T
 tab
 engineering 12
 operator 10
timer
 set wait 50
transfer
 of control 75

U
 UDT
 number of equipment phases in unit 36
unit
 configuration 35
 equipment phases UDT 36
 number 30
user-defined data types 36

W
 wait
 set timer 50

Z
 zip files
 LBSM extraction 7
Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products. At http://www.rockwellautomation.com/support you can find technical and application notes, sample code, and links to software service packs. You can also visit our Support Center at https://rockwellautomation.custhelp.com/ for software updates, support chats and forums, technical information, FAQs, and to sign up for product notification updates.

In addition, we offer multiple support programs for installation, configuration, and troubleshooting. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/services/online-phone.

Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

<table>
<thead>
<tr>
<th></th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States or Canada</td>
<td>1.440.646.3434</td>
</tr>
<tr>
<td>Outside United States or Canada</td>
<td>Use the Worldwide Locator at http://www.rockwellautomation.com/rockwellautomation/support/overview.page, or contact your local Rockwell Automation representative.</td>
</tr>
</tbody>
</table>

New Product Satisfaction Return

Rockwell Automation tests all of its products to help ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

<table>
<thead>
<tr>
<th></th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.</td>
</tr>
<tr>
<td>Outside United States</td>
<td>Please contact your local Rockwell Automation representative for the return procedure.</td>
</tr>
</tbody>
</table>

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication RA-DU002, available at http://www.rockwellautomation.com/literature/.

Allen-Bradley, FactoryTalk, Logix 5000, PhaseManager, Plant PiX, RSLinx, Rockwell Software, Rockwell Automation, SequenceManager, and Studio 5000 Logix Designer are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com

Publication PROCES-RM007C-EN-P - September 2018
Succeeded Publication PROCES-RM007B-EN-P - May 2016
Copyright © 2018 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.