e

YIS L

: ...“‘\‘\\
SR LLLIYNNN
LA L1111}

FactoryTalk Linx SDK Reference
Manual

Version 6.40.00

u'g Rockwell
Aultomation

Reference Manual Original Instructions

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install,
configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all
applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained
personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular
installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.
Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal

injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss.

P> B>

Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT: Identifies information that is critical for successful application and understanding of the product.

These labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous

temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash

B> >

will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for

Personal Protective Equipment (PPE).

The following icon may appear in the text of this document.

Q Tip: Identifies information that is useful and can help to make a process easier to do or easier to understand.

Rockwell Automation recognizes that some of the terms that are currently used in our industry and in this publication are not in alignment with the movement toward
inclusive language in technology. We are proactively collaborating with industry peers to find alternatives to such terms and making changes to our products and content.
Please excuse the use of such terms in our content while we implement these changes.

2 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Contents

SDK Interface

SDK Interface Installation

SDK Interface Activation

[tems on the SDK Interface tab

Troubleshoot the SDK Interface

Use case: CIP communications.

Connect to a message router in a CIP device to send messages

Send unconnected messages

Use case: PCCC communications.

Send the PCCC messages

Overview of SDK reference calls.

DTL_INIT

DTL_CreateDtsa

14

25

26

DTL_CreateDtsaFromPathString

DTL_PCCC_MSG_W.

DTL_PCCC_MSG_CB

DTL_ASA_OPEN

DTL_ASA_CLOSE

27

28

32

34

35

DTL_ASA_MSG_W

DTL_ASA_MSG_CB

DTL_CIP_CONNECTION_OPEN

DTL_CIP_CONNECTION_CLOSE

DTL_CIP_LARGE_CONNECTION_OPEN

DTL_CIP_LARGE_CONNECTION_CLOSE

DTL_CIP_MESSAGE_SEND_CB

35

35

36

38

39

40

41

DTL_CIP_MESSAGE_SEND_W.

43

DTL_OpenDtsa

DTL_CloseDtsa

45

46

DTL_DestroyDtsa

47

DTL_UNINIT

DTL_ERROR_S

DTL_DRIVER_OPEN

DTL_DRIVER_CLOSE

Rockwell Automation, Inc.

LNXSDK-RMOO1A-EN-E - November 2023

48

48

48

50

DTL_GetRSLinxDriverlD

DTL_GetDriverIDByDriverName

DTL_GetHandleByDriverName

DTL_GetDstDriverlDByDriverName

DTL_MaxDrivers

DTL_DRIVER_LIST_EX

DTL_SetDriverListEntryType

DTL_GetTypeFromDriverListEntry

DTL_GetHandleFromDriverListEntry

DTL_GetMTUFromDriverListEntry

DTL_CreatetDriverList

DTL_DestroyDriverList

DTL_GetNameByDriverld

DTL_CIP_CONNECTION_SEND

DTL_I0_CALLBACK _PROC

Global Header.

Example: Open a large connection

Example: Request the service

50
51
51
52
DTL_GetNetworkTypeByDriverName 53
54
54
55
56
56
DTL_GetDriverNameFromDriverListEntry 57
DTL_GetNetworkTypeFromDriverListEntry 57
DTL_GetDriverlDFromDriverListEntry. 57
DTL_GetDstDriverIDFromDriverListEntry. 59
DTL_GetStationFromDriverListEntry 60
60
DTL_GetServerNameFromDriverListEntry 60
DTL_GetDriverAliasFromDriverListEntry 61
DTL_GetDriverListEntryFromDriverListindex 61
61
62
62
63
DTL_CIP_CONNECTION_PACKET_PROC 64
DTL_CIP_CONNECTION_STATUS_PROC 65
67
67
Example: Open a normal connection 3
76
Example: Read tag value using a connected connection 8
Example: Read and write tag value using an unconnected connection 82
Example: Multiple packets in one request using a connected connection 84
Example: Multiple packets in one request using an unconnected connection 88
90
Example: Send the PCCC request to the ControlLogix, SLC, or PLC controllers in a synchronized method 93

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Example: Send the PCCC request to the ControlLogix, SLC, or PLC controllers in an asynchronized method 96

FactoryTalk Linx SDK Test Client 104
Test the SDK Interface 104
Items in the FactoryTalk Linx SDK Test Client dialog 105
Troubleshoot the FactoryTalk Linx SDK Test Client 106
FactoryTalk Linx SDK Test Client's sample codes 106

Legal Notices. 108
Legal Notices 108

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 5

Chapter 1

SDK Interface

How do | open the SDK Interface?
1. From the Start menu, select Rockwell Software > FactoryTalk Linx Gateway Configuration.
2. Select SDK Interface.

Starting with version 6.31.00, the FactoryTalk Linx Software Development Kit (SDK) provides a collection of software
development tools that permit custom-built software to communicate with automation equipment using an
Application Program Interface (AP1) in FactoryTalk Linx. This enables the custom-built software to communicate

to devices using the Open Vendor Device Assaciation (ODVA) Common Industrial Protocol (CIP) to access services

and certain forms of device data. By using the API, the custom-built software must manage most aspects of the
communications and does not currently provide access to FactoryTalk Linx shortcut data optimization. To enable
custom-built software to access the API, FactoryTalk Linx Gateway must detect an appropriate activation, and access

to the APl must be enabled in the FactoryTalk Linx Gateway configuration user interface.

To use the API calls effectively, you must be familiar with:

« The Allen-Bradley (A-B) products in your system

» The Rockwell Automation software in your system

» Intel-based computers in your system

* Microsoft Windows operating systems

» Microsoft Visual Studio software development environment

» The C programming language

Q Tip:

o This API utilizes a similar approach and many similar commands as the RSLinx Classic C-

SDK. For more information, refer to Overview of SDK reference calls on page 14.

o You can use Ctrl+rotate the mouse wheel to zoom in or zoom out the SDK Interface tab.

SDK Interface Installation

The SDK Interface is an optional portion of the FactoryTalk Linx Gateway installation. If you have already installed
FactoryTalk Linx Gateway, you can modify FactoryTalk Linx Gateway installation in Control Panel or from Start >

Apps > Apps & Features. The SDK Interface is installed in:

e C:\Windows\System32 for the 32-bit operation system
e C:\Windows\SysWOW64 for the 64-bit operation system

The following files will be installed:

e DTL_ErrorCode.h
Defines all error codes returned by the SDK Interface.
e DTLMsgCommon.h
Defines the common data structures used in the SDK Interface.
o FTLinx_SDK.dIl
The SDK Interface's dynamic link library which will be used when running the applications.
e FTLinx_SDK.h

The header file that defines all interfaces provided by the SDK Interface.

6 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter1 SDK Interface

SDK Interface Activation

Items on the SDK Interface tab

Rockwell Automation, Inc.

* FTLinx_SDK.lib

The SDK Interface's static library which will be used when compiling the applications.

The SDK Interface only supports the 32-bit client software. To use the SDK Interface, you must purchase a FactoryTalk

Linx Gateway license.

» Standard Activation
Permits communications with a single device at a time.
» Extended, Distributed, or Professional Activation
Permits communications to multiple devices simultaneously. The SDK Interface supports up to 200 clients

and 200 devices.

For more information about licenses, see Activation types on page

The following table shows the items on the SDK Interface tab.

Items Descriptions

Activation Status Shows the status of the FactoryTalk Linx Gateway activations.

Refer to Activation types on page for more information.

Enable access to the SDK API Turns on access to the SDK API.
Access Control Specifies the clients that can access the SDK API.
- Al

Grants access to all clients.
+ Listed Client
Grants access to the clients in the client list. The clients

must have digital signatures.

Refresh Refreshes the client list.

New client requests are listed with the disabled status after

refreshing.
Add Adds a Signer Name of digital signature.
Delete Deletes the selected clients.
Client Shows the client's Signer Name that:

* Requested access to the API.

» Added to enable or disable access to the API.

Enabled Defines the API access status of the client.
e On: APl access is turned on.

» Off: APl access is turned off.

Last Request Time Shows the time that this client last requested APl access.

-

Sorts the table's contents in ascending order based on the

column's items.

LNXSDK-RMOO1A-EN-E - November 2023 7

unique_6
unique_6
unique_6
unique_6

Chapter1 SDK Interface

Items

Descriptions

Sort the table's contents in descending order based on the

column's items.

Filters the column's item.

Troubleshoot the SDK Interface

Verify whether the SDK Interface is installed.
If the SDK Interface is not installed, a warning message appears on the SDK Interface tab indicating that the
SDK Interface is not installed. Go to Start > Settings > Apps >Apps & features to modify FactoryTalk Linx
Gateway to install the SDK Interface. For more information, see SDK Interface Installation on page 6.
Verify whether the SDK Interface is activated.
If the SDK Interface is not activated, a warning message appears on the SDK Interface tab indicating that the
SDK Interface is not activated. Use the proper FactoryTalk Linx Gateway license to activate the SDK Interface.
For more information, see SDK Interface Activation on page 7.
Verify whether the SDK Interface is enabled.
If the SDK Interface is not enabled, the Enable access to the FactoryTalk Linx SDK API checkbox on the
SDK Interface tab is not selected. Select the Enable access to the FactoryTalk Linx SDK APl checkbox to
enable the SDK Interface. For more information, see Items on the SDK Interface tab on page 7.
Verify whether the multiple applications are approved when you have multiple applications attempt to
connect to the SDK Interface.
The detailed information shows whether single or multiple connections are supported under Activation
Status on the SDK Interface tab. If you have multiple applications connecting to the SDK Interface at
the same time, use the proper FactoryTalk Linx Gateway license to activate the SDK Interface. For more
information, see SDK Interface Activation on page 7.
Verify whether the multiple device connections are approved when connecting to multiple devices using the
SDK Interface.
The detailed information shows whether connecting to single or multiple devices is supported under
Activation Status on the SDK Interface tab. If you want to connect to multiple devices using the SDK
Interface at the same time, use the proper FactoryTalk Linx Gateway license to activate the SDK Interface.
For more information, see SDK Interface Activation on page 7.
Verify whether the application signature is included and enabled in the list when you select the Listed Client
option on the SDK Interface tab.
You can search for the application signature in the list and check whether it is enabled. Otherwise, add the
application signature to the listed client and enable it. For more information, see Items on the SDK Interface
tab on page 7.
Verify whether the SDK Interface version is the same as the FactoryTalk Linx version.
You can find the FactoryTalk Linx version in Control Panel.
You can find the SDK Interface version by performing these steps:
1. Go to the following path:

= C:\Windows\System32 for the 32-bit operation system

= C:\Windows\SysWOW64 for the 64-bit operation system.
2. Right-click FTLinx_SDK.dII, and then select Properties.

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter1 SDK Interface

3. On the Details tab, check the SDK Interface version in Product version.
If the SDK Interface version and the FactoryTalk Linx version are different, change either of them to the

same version.

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 9

Chapter 2

Use case: CIP communications

The Software Development Kit (SDK) Interface supports communication to automation devices system using the

Common Industrial Protocol (CIP) protocol, either connected or unconnected messaging.
Connected messaging

A connected message opens a persisted link from the computer to a target device. This form of communications
allocates resources in every device in the route to ensure responses and subsequent exchanges of information are

able to pass more efficiently.
Unconnected messaging

An unconnected message permits the computer to perform a single interaction with a device. While an unconnected
message can be simpler to initiate, the entire route must be included in every request. Processing of the unconnected
message request and response are lower priority than other forms of communications making this a less efficient

form of communications.

NOTE: The applications must call:
» DTL_INIT before using the SDK Interface.
» DTL_UNIT before exiting the SDK Interface.

For more information about the CIP protocal, see The Common Industrial Protocol (CIP™) and the Family of CIP

Networks.

Connect to a message router in a CIP device to send messages

10

If an application expects to send messages to CIP objects in the same CIP device, greater reliability and efficiency
can be obtained by establishing a connection to the message router in that module and sending the messages over

that connection, rather than sending each message using the unconnected messaging.

To connect to a message router in a CIP device to send messages

1. Specify the path to the CIP device which contains the target object.
The path format should be <MachineName>!<DriverName>\<IP>\Backplane\<SlotNumber>.
You can right-click a device in the FactoryTalk Linx Browser, and then select Device Properties to get the
device path.
2. Create a DTSA.
Call DTL_CreateDtsaFromPathString with the path and flag DTL_FLAGS_ROUTE_TYPE_CIP.
The Device Transport System Access (DTSA) is a cache utilized by the DTL interface to hold route information
and state information to communicate with a device.
3. Open aconnection to the message router in a CIP device.
o To open a normal connection, call DTL_ASA_OPEN or DTL_CIP_CONNECTION_OPEN.
> Toopen a large connection (> 500 bytes, maximum size determined by the device), call
DTL_CIP_LARGE_CONNECTION_OPEN.
o These interfaces initiate and send a Forward_Open service request to the Message Router.
o Aparameter of the interface is a pointer to a connection structure containing the necessary

information.

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

https://www.odva.org/wp-content/uploads/2020/06/PUB00123R1_Common-Industrial_Protocol_and_Family_of_CIP_Networks.pdf
https://www.odva.org/wp-content/uploads/2020/06/PUB00123R1_Common-Industrial_Protocol_and_Family_of_CIP_Networks.pdf

Chapter2 Use case: CIP communications

Send unconnected messages

Rockwell Automation, Inc.

The variable of connection structure must have a global lifecycle, because the member will be used by
the asynchronous callback process.
> Another parameter of the interface is an internal object identifier (I01), which must be set to specify the
logical address of the message router.
o The application should provide a callback function, for example, DTL_CIP_CONNECTION_STATUS_PROC,
which the SDK Interface can call when the connection is established, closed, rejected, or timed out.
o These interfaces will return a connection ID for the application to use.
Wait for the connection to be established.
When the connection is established, the SDK Interface will call DTL_CIP_CONNECTION_STATUS_PROC.
o If the connection is established, the returned value will be DTL_CONN_ESTABLISHED.
o If the connection is not established, the returned value will be DTL_CONN_ERROR or DTL_CONN_FAILED.
Use the connection to send messages.
Call DTL_CIP_CONNECTION_SEND to send a CIP message. The parameter is an 10l which includes service
requests and logical segment information. For more information, see Logix 5000 Controllers Data Access.
Wait for the response.
The SDK Interface will asynchronously call DTL_CIP_CONNECTION_PACKET_PROC to the application if the

response is ready.

Q Tip: Repeat steps 5 anb6 if additional communication to the CIP device is required.

Close connection (when communications to the device is complete).
Call DTL_ASA_CLOSE, DTL_CIP_CONNECTION_CLOSE or DTL_CIP_LARGE_CONNECTION_CLOSE to close the

connection to the message router.

O Tip: You can perform additional reads and writes before closing.

Wait for the connection to close.
When the connection is closed, the SDK Interface will call DTL_CIP_CONNECTION_STATUS_PROC.
o If the connection is closed, the returned value will be DTL_CONN_CLOSED.
o If the connection is not closed, the returned value will be DTL_CONN_ERROR or DTL_CONN_FAILED.
Release the DTSA.
Call DTL_DestroyDtsa to free up the DTSA resource.

Unconnected messaging is primarily for use in module identification, network configuration, and system debugging.

We do not recommend that you use the unconnected messaging for the applications with real-time requirements due

to their unreliability and large variability of response time.

To send unconnected messages

1.

Specify the path to the CIP device which contains the target object.

The path format should be <MachineName>!<DriverName>\<IP>\Backplane\<SlotNumber>. You can get the
path from the device's properties in the Network Browser.

You can right-click a device in the FactoryTalk Linx Browser, and then select Device Properties to get the

device path.

LNXSDK-RMOO1A-EN-E - November 2023 l

https://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm020_-en-p.pdf

Chapter2 Use case: CIP communications
Create a DTSA.
Call DTL_CreateDtsaFromPathString with the path and flag DTL_FLAGS_ROUTE_TYPE_CIP.
Send unconnected messages.
Call DTL_ASA_MSG_CB, DTL_ASA_MSG_W, DTL_CIP_MESSAGE_SEND_CB, DTL_CIP_MESSAGE_SEND_W to send
messages.

Q Tip: Commands ending with "W" are synchronous and will cause the software to wait for the
operation to complete. Using commands ending with "CB" operate asynchronously and will
perform a "callback" when completed.

These interfaces initiate the actual service request message across the network and transmit it.

The interface parameters include a pointer to a buffer in which the application must contain the 10l or logical
address of the target object within its CIP device. You can find the logical address format in the Logix 5000
Data Access Programming Manual. For more information, see Logix 5000 Controllers Data Access.

Wait for the response.

If the application sends messages using DTL_ASA_MSG_CB or DTL_CIP_MESSAGE_SEND_CB, the SDK Interface
will asynchronously call DTL_CIP_CONNECTION_PACKET_PROC.

If the application sends messages using DTL_ASA_MSG_W or DTL_CIP_MESSAGE_SEND_W, the application will
stop responding until the response returns or times out.

Release the DTSA.

Call DTL_DestroyDtsa to free up the DTSA resource.

Q Tip: You can perform multiple reads and writes to the device before releasing the DTSA.

12 LNXSDK-RMOOTIA-EN-E - November 2023 Rockwell Automation, Inc.

https://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm020_-en-p.pdf

Chapter 3

Use case: PCCC communications

The SDK Interface supports using the Programmable Controller Communication Commands (PCCC) protocol to

communicate with legacy Allen-Bradley controllers (e.g. PLC-5, SLC500 MicroLogix).

NOTE: The applications must call:
o DTL_INIT before using the SDK Interface.
» DTL_UNIT before exiting the SDK Interface.

Send the PCCC messages

Follow these steps to use the PCCC protocol to communicate with controllers.

To send the PCCC messages

1. Specify the path to the CIP device which contains the target object.
The path format should be <MachineName>!<DriverName>\<IP> or <MachineName>!<DH+DriverName>
\<SlotNumber>.
You can right-click a device in the FactoryTalk Linx Browser, and then select Device Properties to get the
device path.
2. Create a DTSA.
Call DTL_CreateDtsaFromPathString with the path and flag DTL_FLAGS_ROUTE_TYPE_PCCC.
3. Send the PCCC messages.
Call DTL_PCCC_MSG_W or DTL_PCCC_MSG_CB to send the messages.
You can find the interface parameters format in the Logix 5000 Data Access Programming Manual. For more

information, see Logix 5000 Contraollers Data Access.

O Tip: Commands ending with "W" are synchronous and will cause the software to wait for the
operation to complete. Using commands ending with "CB" operate asynchronously and will

perform a “callback” when completed.

4. Wait for the response.
If the application sends messages using DTL_PCCC_MSG_CB, the SDK Interface will asynchronously call
DTL_I0_CALLBACK_PROC.
If the application sends messages using DTL_PCCC_MSG_W, the application will stop responding until the
response returns or times out.

5. Release the DTSA.
Call DTL_DestroyDtsa to free up the DTSA resource.

O Tip: You can perform multiple reads and writes to the device before releasing the DTSA.

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 13

https://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm020_-en-p.pdf

Chapter 4

Overview of SDK reference calls

14

This section introduces the supported interfaces by FactoryTalk Linx, including parameters, return values, and

specific comment information.

The Common Industrial Protocol (CIP), supported by ODVA, is an industrial protocol for industrial automation

applications.

The Programmable Controller Communication Commands protocol (PCCC) lets you deal with the legacy poll or

response messages to arrays of data. It is the core message that moves easily between DF1, DH485, DH+, AB/Enet, and
Ethernet/IP with the PCCC encapsulation.

Protocol (CIP or Operation
Function name Description Initialization Data access
PCCC) termination
DTL_INIT on page | This interface must | The SDK Interface. | The SDK Interface's | N/A Only when this
25 be called before The maximum size | internal data and interface succeeds,
other interfaces of the internal data. | the FactoryTalk the other interfaces
because it starts | The value of this Linx Gateway can be executed
the SDK Interface’s | parameter will be | activation correctly. The
internal data set as 0 by default. DTL_UNIT must
and checks the be called at last,
activation license. which will free up
This interface the SDK interface's
must be called with resources.
DTL_UNIT in pairs.
DTL_CreateDtsa on | This interface ADTSA structure | Allocate memory N/A The application can
page 26 is only for for the DTSA compose the DTSA
composing the structure. content by itself

DTSA content by
the application. We
do not recommend
that you use this
interface.

We recommend
that you use
DTL_CreateDtsaFro
mPathString.

This interface
must be called with
DTL_DestroyDtsa
in pairs. When the
DTSAis no longer
used, you must
close it.

Tip: The Device

Transport System

based on the DTSA
structure returned

by this interface.

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter 4

Overview of SDK reference calls

Rockwell Automation, Inc.

Protocol (CIP or Operation
Function name Description Initialization Data access
PCCC) termination
Access (DTSA)is a
cache utilized by
the DTL interface
to hold route
information and
state information to
communicate with
a device.
DTL_CreateDtsaFro | This interface A utility DTSA Allocate memory N/A The application
mPathString on starts a utility DTSA | structure for the DTSA can send requests
page 27 with a valid path. It structure and to the controller
must be called with assign the path. along with the DTSA
DTL_DestroyDtsa The DTSA is an returned by this
in pairs. When the internal handle of interface.
DTSAis no longer the SDK Interface,
used, you must which represents a
close it. controller.
The path indicates
a topology path of
a controller in the
FactoryTalk Linx
server.
For example,
<MachineName>!<D
riverName>\<IP>\B
ackplane\<SlotNum
ber >or
<MachineName>!<D
riverName>\<IP>.
Tip: You can
right-click a device
in the FactoryTalk
Linx Browser, and
then select Device
Properties to get
the path.
DTL_PCCC_MSG_W | This interface The PCCC request | The FactoryTalk PCCC The response
on page 28 sends the PCCC Linx Transport will be received

requests. Itis
not required
to establish
the connection

previously

synchronously
in other threads.
This interface
will not block the

application.

LNXSDK-RMOO1A-EN-E - November 2023

Chapter 4

Overview of SDK reference calls

16

Function name

Description

Initialization

Data access

Protocol (CIP or
PCCC)

Operation

termination

and block the
application to
receive response.
Tip: The
Programmable
Controller
Communication
Commands
protocol (PCCC)
lets you deal with
the legacy poll or
response messages

to arrays of data.

DTL_PCCC_MSG_CB
on page 32

This interface
sends the PCCC
requests to receive
the response
asynchronously
through the
callback function
set by this

interface.

It is not required
to establish
connection

previously.

The PCCC request

The FactoryTalk

Linx Transport

pPccc

The response
will be received
asynchronously
in other threads.
This interface
will not block the

application.

DTL_ASA_OPEN on
page 34

This interface

will call
DTL_CIP_CONNECTI
ON_OPEN that
establishes a CIP
connection to the
specified controller.
This interface
must be called with
DTL_ASA_CLOSE

in pairs. When the
connection is no
longer used, you
must close it.

Tip: Automation

System

A connected
connection

structure

This interface
builds and sends

a Forward_Open
service request

to the Message
Router to establish
a connected

connection.

cIp

Get a connection
ID if this interface
succeeds. You
must send and
receive messages
along with this

connection ID later.

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter 4

Overview of SDK reference calls

Protocol (CIP or Operation
Function name Description Initialization Data access
PCCC) termination
Architecture (ASA)
is the Rockwell
Automation internal
name for the
protocol that is
renamed CIP by
0DVA.
DTL_ASA_CLOSE on | This interface A specified This interface CIP The CIP connection
page 35 will call the connection ID builds and sends will be no longer
DTL_CIP_CONNECTI a Forward_Close used.
ON_CLOSE that service request
closes and to the Message
releases a CIP Router to close
connection opened and releases a
by DTL_ASA_OPEN. CIP connection
that associated
with the specified
connection ID.
DTL_ASA_MSG_W on | This interface ACIP requestand | This interface CIP This interface
page 35 will call the an unconnected initializes a CIP will block the
DTL_CIP_MESSAGE_ | connection request and an application. When
SEND_W which unconnected it succeeds, the
sends the CIP connection. application can
requests through get the response
an unconnected directly.
connection to wait
for the response to
the application.
DTL_ASA_MSG_CB | This interface ACIPrequestand | This interface Cip This interface

on page 35

will call
DTL_CIP_MESSAGE_
SEND_CB which
sends the CIP
requests through
an unconnected
connection

to receive

the response
asynchronously
through the

callback function

an unconnected

connection

initializes a CIP
request and an
unconnected
connection and
registers a callback
function that will
send the response

to the application.

will not block the
application. When
it succeeds, the
application will
keep moving,
and the callback
function will
receive the
response

asynchronously.

Rockwell Automation, Inc.

LNXSDK-RMOO1A-EN-E - November 2023

Chapter4 Overview of SDK reference calls

18

Protocol (CIP or Operation
Function name Description Initialization Data access
PCCC) termination
set by this
interface.
DTL_CIP_CONNECTI | This interface A connected This interface CIp Get a connection
ON_OPEN on page | will establish a connection builds and sends ID if this interface
36 CIP connected structure a Forward_Open succeeds. You
connection to the service request must send and
specified controller. to the Message receive messages
This interface must Router to establish along with this
be called with the a connected connection ID later.
DTL_CIP_CONNECTI connection.
ON_CLOSE in
pairs. When the
connection is no
longer used, you
must close it.
DTL_CIP_CONNECT!I | This interface will | A specified This interface CIp The CIP connection
ON_CLOSE on page | close and release | connection ID builds and sends will be no longer
38 a CIP connection a Forward_Close used.
opened by the service request
DTL_CIP_CONNECTI to the Message
ON_OPEN. Router to close
and releases a
CIP connection
associated with
the specified
connection ID.
DTL_CIP_LARGE_CO | This interface Alarge CIP This interface is CIP Get a connection
NNECTION_OPEN on | will establish a connected different from the 1D if this interface
page 39 CIP connected connection DTL_CIP_CONNECTI succeeds. You
connection to the | structure ON_OPEN. The must send and

specified controller.
The connection
can convey much
bigger buffer
messages between
the application and
controller.

This interface must
be called with the
DTL_CIP_LARGE_CO
NNECTION_CLOSE
in pairs. When the

connection is no

difference is in
the data type
and bit-field
assignments of
the 0 to T and

T to 0 Network
Connection
parameters. For
example, the
size can be up to
4000 bytes for the
Ethernet.

receive messages
along with this

connection ID later.

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter 4

Overview of SDK reference calls

Protocol (CIP or Operation
Function name Description Initialization Data access
PCCC) termination
longer used, you
must close it.
DTL_CIP_LARGE_CO | This interface A specified This interface CIp The CIP connection
NNECTION_CLOSE [will close and connection 1D builds and sends will be no longer
on page 40 release a large a Forward_Close used.
CIP connection service request
opened by the to the Message
DTL_CIP_LARGE_CO Router to close
NNECTION_OPEN. and releases a
CIP connection
associated with
the specified
connection ID.
DTL_CIP_MESSAGE_ | This interface ACIPrequestand | Thisinterface CIP This interface
SEND_CB on page | sends the CIP an unconnected starts a CIP will not block the
4 requests through connection request and an application. When
an unconnected unconnected it succeeds, the
connection connection and application will
to receive registers a callback keep moving,
the response function that will and the callback
asynchronously send the response function will
through the to the application. receive response
callback function asynchronously.
set by this
interface.
DTL_CIP_MESSAGE_ | This interface ACIPrequestand | Thisinterface CIP This interface
SEND_W on page sends the CIP an unconnected starts a CIP will block the
43 requests through | connection request and an application. When
an unconnected unconnected it succeeds, the
connection to wait connection. application can
for the response to get the response
the application. directly.
DTL_OpenDtsaon | This interface A utility DTSA This interface N/A When this interface
page 45 will call the marks the DTSA succeeds, the
DTL_DRIVER_OPEN being used. application
which marks the can call the

DTSA being used.
We do not
recommend that
you use it because
it is only used for

RSLinx Classic.

interface, like the
DTL_GetNameByDri
verld, to get the
driver's name
corresponding to

the DTSA.

Rockwell Automation, Inc.

LNXSDK-RMOO1A-EN-E - November 2023

Chapter 4

Overview of SDK reference calls

20

Protocol (CIP or Operation
Function name Description Initialization Data access
PCCC) termination
DTL_CloseDtsaon | This interface A utility DTSA This interface N/A When this interface
page 46 will call the marks the DTSA not succeeds, the
DTL_DRIVER_CLOSE being used. application cannot
which marks the get the driver
DTSA not being namedriver's name
used. corresponding
to the DTSA
through the
DTL_GetNameByDri
verld.
DTL_DestroyDtsa on | This interface ADTSA This interface frees | N/A The DTSA will be no
page 47 will free up the up the DTSA. longer used.
DTSA's memory
returned by the
DTL_CreateDtsaFro
mPathString or
DTL_CreateDtsa.
DTL_UNINIT on This interface Nothing This interface N/A If this interface
page 48 will not start the frees up the SDK fails to complete,
SDK Interface, Interface and the FactoryTalk
de-allocate detaches from the Linx server will
resource, and FactoryTalk Linx identify that the
detach from the server. application is still
FactoryTalk Linx running and then
Server. return an unknown
The application error.
must call it before
exiting. It must
be called with the
DTL_INIT in pairs.
DTL_ERROR_S on This interface Error code ID Map of the SDK N/A Get the error
page 48 interprets error Interface that maps message content
codes generated by the error code ID to which represents
the SDK Interface error messages. the meaning of
to a null-terminated error codes.
ASCII string text
message.
DTL_DRIVER_OPEN | This interface Driver ID This interface N/A When this interface

on page 48

marks the driver

being used.

marks the driver

being used.

succeeds, the
application
can call the

interfaces, like the

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter 4

Overview of SDK reference calls

Rockwell Automation, Inc.

Protocol (CIP or Operation
Function name Description Initialization Data access
PCCC) termination
DTL_GetNameByDri
verld, to get name
of driver.
DTL_DRIVER_CLOSE | This interface Driver ID This interface N/A When this interface
on page 50 marks the driver marks the driver succeeds, the
not being used. not being used. application cannot
get the driver
namedriver's
name through the
DTL_GetNameByDri
verld.
DTL_GetRSLinxDrive [This interface will [N/A N/A N/A N/A
rID on page 50 return a fixed value
65535.
We do not
recommend that
you use it because
it is only used for
RSLinx Classic.
DTL_GetDriverlDByD | This interface gets [Driver name FTLinx topology N/A Get the FactoryTalk
riverName on page | the driver ID of the Linx driver
51 FactoryTalk Linx ID, such as
server from the LINXE_DRVTYPE_ET
driver's name. HERNET,
LINXE_DRVTYPE_D
F1, and
LINXE_DRVTYPE_VB
ACKPLANE defined
in FTLinx_SDK.h.
DTL_GetHandleByDr | This interface gets [Driver name FactoryTalk Linx N/A Get the driver
iverName on page | the driver handle driver list handle to identify
51 which represents the specified driver
the address of this object.
driver object from
the driver's name.
DTL_GetDstDriverID | This interface gets [Driver name FactoryTalk Linx N/A Get the FactoryTalk
ByDriverName on | the driver ID that topology Linx driver
page 52 is the same as the ID, such as

returned by the
DTL_GetDriverlDByD

riverName.

LINXE_DRVTYPE_ET
HERNET,
LINXE_DRVTYPE_D
F1, and

LNXSDK-RMOO1A-EN-E - November 2023

2

Chapter 4

Overview of SDK reference calls

22

Protocol (CIP or Operation
Function name Description Initialization Data access
PCCC) termination
LINXE_DRVTYPE_VB
ACKPLANE
defined in the file
FTLinx_SDK.h.
DTL_GetNetworkTyp | This interface gets | Driver name FactoryTalk Linx N/A Get the driver
eByDriverName on | the driver network topology network type
page 53 type from the driver from the driver
namedriver's name. namedriver's
name, such as
DTL_NETTYPE_EN
ET, and
DTL_NETTYPE_VBP
defined in the file
FTLinx_SDK.h.
DTL_MaxDriverson | This interface will [N/A N/A N/A N/A
page 54 return a fixed value
32.
We do not
recommend that
you use it because
it is only used for
RSLinx Classic.
DTL_DRIVER_LIST | This interface The driver list FactoryTalk Linx N/A Get the
_EX on page 54 will fetch a new memory that topology corresponding
driver list from the | started by the driver structure
current FactoryTalk | DTL_SetDriverListE list according to
Linx server. ntryType. the driver type
Before calling setting for the
this interface, DTL_SetDriverListE
you must call the ntryType, such as
DTL_SetDriverListE DTL_DVRLIST_TY
ntryType to start PE2 and
the first entry in the DTL_DVRLIST_TYPE
block of memory _EX.
that receives the
driver list.
DTL_SetDriverListE | This interface The driver list block | FactoryTalk Linx N/A This interface
ntryType on page | must be called and driver type. topology starts a specific
55 before calling the | The driver driver list block to

DTL_DRIVER_LIST_
EX. It starts

the first entry

type includes
DTL_DVRLIST_TY
PE2 and

receive the driver

information of the

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter 4

Overview of SDK reference calls

Protocol (CIP or Operation
Function name Description Initialization Data access
PCCC) termination
according to the DTL_DVRLIST_TYPE current FactoryTalk
driver type. _EX. Linx server.
DTL_GetTypeFromD | This interface will | A specific driver Driver object N/A Get the driver type
riverListEntry on return the specified to determine what
page 56 driver's type. to do next.
DTL_GetHandleFro | This interface will [A specific driver Driver object N/A Get members of
mDriverListEntry on | return a handle the driver structure
page 56 for the specified directly.
driver. The handle
represents the
address of this
driver object.
DTL_GetDriverName | This interface will | A specific driver Driver object N/A Get the driver's
FromDriverListEntry | return the specified name to determine
on page 57 driver's name. what to do next.
DTL_GetNetworkTyp | This interface A specific driver Driver object N/A Get the network
eFromDriverListEn | will return the type, such as
try on page 57 network type of the DTL_NETTYPE_EN
specified driver. ET,
DTL_NETTYPE_VBP
and so on.
DTL_GetDriverIDFro | This interface will | A specific driver Driver object N/A This driver ID can
mDriverListEntry on | return the specified represent the
page 57 driver's ID. SDK Interface
driver's ID, such as
DTL_DVRTYPE_ETH
ERNET and
DTL_DVRTYPE_VBAC
KPLANE, or
represent the
handle of this
driver.
DTL_GetDstDriverlD | This interface is A specific driver Driver object N/A Refer to the
FromDriverListEntry | the same as the DTL_GetDriverlDFro
on page 59 DTL_GetDriverlDFro mDriverListEntry.
mbDriverListEntry.
DTL_GetStationFro | This interface will | A specific driver Driver object N/A N/A
mDriverListEntry on | return the specified
page 60 driver's station
address.

Rockwell Automation, Inc.

LNXSDK-RMOO1A-EN-E - November 2023

23

Chapter 4

Overview of SDK reference calls

24

Protocol (CIP or Operation
Function name Description Initialization Data access
PCCC) termination
DTL_GetMTUFromDr | This interface will [A specific driver Driver object N/A N/A
iverListEntry on return the specified
page 60 driver's maximum
transmission unit.
DTL_GetServerNam | This interface will [A specific driver Driver object N/A N/A
eFromDriverListEn | return the specified
try on page 60 driver's server
name.
DTL_GetDriverAliasF [This interface will [A specific driver Driver object N/A N/A
romDriverListEntry | return the specified
on page 61 driver's name. It
is the same as the
DTL_GetDriverName
FromDriverListEnt
ry.
DTL_GetDriverListE | This interface will | Index of the driver | Driver list N/A N/A
ntryFromDriverListl | return a driver list
ndex on page 61 entry from a list.
DTL_CreateDriverL | This interface will | A variable indicates | FactoryTalk Linx N/A Enumerate every
ist on page 61 fetch all drivers that the driver topology driver in the list.
from the current amount and a It must be
FactoryTalk Linx timeout. called with the
server and return DTL_DestroyDriverL
apointerto a istin pairs.
list of the struct
DTLDRIVER_EX.
DTL_DestroyDriverL | This interface must [The pointer Driver list N/A N/A
ist on page 62 be called with the | returned by the
DTL_CreateDriverL | DTL_CreateDriverLi
istin pairs. It frees | st.
up the resources
returned by the
DTL_CreateDriverLi
st.
DTL_GetNameByDri | This interface will | Before calling Driver list N/A N/A
verld on page 62 return the driver's | this interface,
name. you must call the
DTL_DRIVER_OPEN
or DTL_OpenDtsa.
DTL_CIP_CONNECTI [This interface will [CIP request CIP connection CIP The response

ON_SEND on page
63

send a packet on

a connected CIP

will be received

asynchronously

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter 4

Overview of SDK reference calls

Protocol (CIP or Operation
Function name Description Initialization Data access
PCCC) termination

connection. The in other threads.

response will be This interface

asynchronously will not block the

received by application.

the callback

function set by the

DTL_CIP_CONNECTI

ON_OPEN.
DTL_CIP_CONNECTI | Thisinterfaceisa | This address of the | FactoryTalk Linx CIP Receive the
ON_PACKET_PROC | callback function | callback function | transport response from the
on page 64 that the application | must be set to CIP connection.

can implement the interfaces

it to receive the that want to get

response package | the response

to a CIP request asynchronously.

asynchronously.
DTL_CIP_CONNECTI | Thisinterfaceisa | This address of the | FactoryTalk Linx CIP Receive the CIP
ON_STATUS_PROC | callback function | callback function | transport connection’s status.
on page 65 that the application | must be set to the

can implement interfaces that

it to receive create the CIP

status of current [connection.

CIP connection

asynchronously.
DTL_IO_CALLBACK_ [Thisinterfaceisa [This address of the |FactoryTalk Linx PCCC Receive the
PROC on page 67 callback function | callback function | transport response to the

that the application | must be set to the PCCC request.

can implement DTL_PCCC_MSG_CB

it to receive the as an argument.

response package

to the PCCC request

asynchronously.

DTL-INIT

The DTL_INIT starts the SDK Interface, and it will check the activation of FactoryTalk Linx Gateway. This interface

must be called before calling the others.

DTL_INIT

DTL_RETVAL LI BMVEM DTL_I NI T(unsi gned | ong nmax_defi nes);

Parameters

Rockwell Automation, Inc.

LNXSDK-RMOO1A-EN-E - November 2023

25

Chapter4 Overview of SDK reference calls

The following table identifies the DTL_INIT parameters.

Parameters Descriptions

Max_defines The maximum size of the internal data. The maximum size of
the internal data. The value of this parameter will be set as 0 by

default.

Return values

When DTL_INIT returns values of DTL_RETVAL to the client application, you can use the DTL_ERROR_S function to
interpret the return values.

Values Messages Descriptions
0 DTL_SUCCESS The interface is completed successfully.
39 DTL_E_NOREINIT The interface fails to complete because

the DTL is already started.

7 DTL_E_NO_MEM The interface fails to complete
because the memory is not enough to

accommodate the data definition.

24 DTL_E_FAIL The interface fails to complete because

of some reasons.

244 DTL_NO_LICENCE The interface fails to complete because
there is no correct FactoryTalk Linx
Gateway activation.

This includes:

» No activation is present.

+ The client software is attempting an
operation that is not supported with
the present activation.

» The DTLinterface is disabled.

» The DTL Client is not approved.

DTL_CreateDtsa

The DTL_CreateDtsa will return the Device Transmision System Access (DTSA) structure by allocating a memory. We
do not recommend this interface. We recommend that you use the DTL_CreateDtsaFromPathString to create the DTSA

from a given path.

DTL_CreateDtsa

DTSA TYPE* LI BMEM DTL_Cr eat eDt sa(voi d) ;
Parameters

N/A

Return values

26 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

DTL_CreateDtsaFromPathString

Rockwell Automation, Inc.

This interface returns a pointer to a DTSA structure.

The DTL_CreateDtsaFromPathString creates a Device Transmision System Access (DTSA) structure in the

specified path. The DTSA contains the device's information, such as driver handle. It is required when you set up a

connection with the device or send messages to the device, and it will be used in the DTL_CIP_CONNECTION_OPEN,

DTL_CIP_MESSAGE_SEND_W, etc.

DTL_CreateDtsaFromPathString

DTSA TYPE* LI BVEM DTL_Cr eat eDt saFr onPat hSt ri ng(
const char* szPathString,

DWORD* pError,

DWORD dwFl ags

)

Parameters

The following table identifies the DTL_CreateDtsaFromPathString parameters.

Parameters Descriptions

szPathString szPathString is the device's path. For example,
APCNSDATPYSF62!AB_ETH-5\\10.224.82.10.
You can right-click a device in the FactoryTalk Linx Browser,
and then select Device Properties to get the path.

pError pError is the returned error code, see the error codes table for
more information.

dwFlags dwFlags is the required route type. The SDK Interface supports
the follows:
* DTL_FLAGS_ROUTE_TYPE_CIP
» DTL_FLAGS_ROUTE_TYPE_PCCC

Error codes

The following table identifies the error codes that can be returned by the DTL_CreateDtsaFromPathString.

Error codes Messages Descriptions

0 DTL_SUCCESS The interface is completed successfully.

19 DTL_E_NOINIT The interface fails to complete because
the internal data is not started by the
DTLINIT.

158 DTL_E_DRIVER_NAME_INVALID The interface fails to complete because
the specified driver's name is not valid.

LNXSDK-RMOO1A-EN-E - November 2023

27

Chapter4 Overview of SDK reference calls

DTL_PCCC_MSG_W

28

Error codes

Messages

Descriptions

186

DTL_E_NULL_POINTER

The interface fails to complete because

one or more pointers are null.

188

DTL_E_ILLEGAL_-WHOACTIVE_TYPE

The interface fails to complete because

the who active structure type is not valid.

189

DTL_E_BAD_WHOACTIVE_SIZE

The interface fails to complete because
who active structure size is wrong for the

structure type.

191

DTL_E_ILLEGAL_WHOACTIVE_MFG

The interface fails to complete because

who active manufacturer type is not valid.

228

DTL_E_RSHARMONY_BIND_OBJECT

The interface fails to complete because it

cannot bind to the target object.

234

DTL_E_ILLEGAL_TARGET_TYPE

The interface fails to complete because

the target structure type is not valid.

122

DTL_E_NO_SERVER

The interface fails to complete because

the DTL server is not loaded.

o

DTL_NO_LICENCE

The interface fails to complete because
there is no correct FactoryTalk Linx
Gateway activation.

This includes:

» No activation is present.

» The client software is attempting an
operation that is not supported with
the present activation.

+ The DTLinterface is disabled.

» The DTL Client is not approved.

Return values

The DTL_CreateDtsaFromPathString returns the DTSA structure that can be used for interfaces, such as

DTL_CIP_CONNECTION_OPEN, DTL_CIP_MESSAGE_SEND_W, etc.

The DTL_PCCC_MSG_W provides the synchronous method to allow the client applications to send the PCCC commands

directly to processors. This interface can be used when you want to read or write tags from a device via the PCCC

command. The interface call will keep waiting until the device response returns or the request is timed out. The DTSA

must be created successfully before this interface is called.

O Tip: The "W" at the end of the interface indicates that the operation will be synchronous and will wait for

a response from the device or a timeout before proceeding.

DTL_PCCC_MSG_W

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Rockwell Automation, Inc.

DTL_RETVAL LI BVEM DTL_PCCC MSG W

DTSA _TYPE* dtsa,

unsi gned char cnd,

unsi gned char* sptr,

unsi gned | ong ssi ze,

unsi gned char* dptr,

unsi gned | ong* dsi ze,

unsi gned | ong* iostat,

unsi gned | ong timeout);

Parameters

/* station address*/
/* PCCC CMVD byt e*/
/* ptr to source data | ocation */
/* source data size */
/* ptr to dest data |ocation */
/* destination data size */
/* 1/0 conpl etion status */

/* time to wait on reply “ff

The following table identifies the DTL_PCCC_MSG_W parameters.

Parameters

Descriptions

dtsa

A pointer to a DTSA_AB_DH_LOCAL, DTSA_AB_NAME, and
DTSA_AB_DH_LONGLOCAL structure that specify the address of
the target processor. This parameter is the returned value of
the DTL_CreateDtsaFromPathString. Based on the information in
the DTSA, the DTL_PCCC_MSG_W will create the PCCC header for

the command packet automatically.

cmd

Cmd specifies which PCCC command to send. This value is
copied into the CMD byte of the PCCC header. The FNC byte,
specifying the extended command or subcommand code, is
considered a data byte; therefore, if it is present, it must be
the first byte of sptr, and it must be included when calculating
ssize. You can find the detailed information from DF1 Protocol

and Command Set.

sptr

A pointer to a buffer which contains parameters for the PCCC
command. You can find the detailed information from DF1

Protocol and Command Set.

ssize

Size of the source message in bytes. If the client application
knows that there are no parameters for the PCCC command
being sent, it is permissible to pass a null pointer in sptr and
zero in ssize. This will not cause the DTL_PCCC_MSG interface
to fail; instead, it causes it to send the command without any

parameters.

dptr

A pointer to the buffer where FactoryTalk Linx will copy the
reply data from the target processor. Only the data following the
PCCC header, not the header itself, will be copied from the reply

packet to the destination buffer.

dsize

A pointer to the destination size buffer.
dsize is a variable that is an input or output parameter. On

input, it specifies the size of the destination buffer in bytes.

LNXSDK-RMOO1A-EN-E - November 2023

29

https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf

Chapter 4

Overview of SDK reference calls

30

Parameters

Descriptions

FactoryTalk Linx will not copy more than this number of bytes
into the destination buffer. On output, FactoryTalk Linx stores
the actual number of bytes in the reply data in this variable.

If the client application knows that there is no reply data,
including status and extended status, it is permissible to pass a
null pointer in dptr and zero in dsize.

When dsize is a null pointer, there is no limit to the size of the
reply data, and the size is not returned to the client application.
When dsize is non-null, and the PCCC reply data is larger than
the specified size of dptr, the reply data will be copied only until
dptr is full; the remaining reply data will be discarded, and the

final completion status will be set to DTL_E_TOOBIG.

jostat

A pointer to a buffer in the client application into which the final
1/0 completion status will be written.

For more information, see the iostat values table.

timeout

Timeout is the maximum time, calculating in milliseconds,
which the client application will wait for this interface call to
complete. If the call does not complete before the specified
time expires, control will be returned to the client application,
and the final 1/0 completion status will be set to DTL_E_TIME.

A timeout value of the DTL_FOREVER specifies that this function
will not return until at least one of the expected waiting
identifiers is set. If one of these waiting identifiers have

never been set, the I/0 operation will never complete unless a

response is received from the network interface.

lostat value

The final 1/0 completion status code may be any one of the return values or one of the following.

Values Messages Descriptions

1 DTL_PENDING The 1/0 operation is in progress.

18 DTL_E_TIME The interface fails to complete because
the I/0 operation did not complete in the
time allowed.

2 DTL_E_NO_BUFFER The interface fails to complete because
the buffer is full.

21 DTL_E_NOATMPT The I/0 operation is not attempted.

0x100+nn PCCCSTSnn The interface fails to complete, and the

processor returned status error code "nn

that is a 3-digit hex value.

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Overview of SDK reference calls

Values Messages Descriptions

0x200+nn PCCCEXTnn The interface fails to complete, and the
processor returned extended status error
code "nn" that is a 3-digit hex value.

Returned values

The following table identifies the error codes that can be returned by the DTL_PCCC_MSG_W.

Values

Messages

Descriptions

0

DTL_SUCCESS

The interface is completed successfully.

19

DTL_E_NOINIT

The interface fails to complete because
the internal data is not started with the

DTL_INIT or DTL_INIT_EX.

23

DTL_E_NOS_TMR

The interface fails to complete because
the SDK Interface cannot start the NOS

timer.

24

DTL_E_FAIL

The interface fails to complete because

the I/0 is completed with errors.

33

DTL_E_BAD_WAITID

The interface fails to complete because

wait_id is not a valid value.

34

DTL_TOOMANYIO

The interface fails to complete because
there are too many pending 1/0

operations. The maximum number is 40.

46

DTL_E_BADNIID

The interface fails to complete because

ni_id is not a valid value.

57

DTL_E_NOTCONNECT

The interface fails to complete because
there is no connection to the network

interface.

69

DTL_E_BAD_ADDRESS

The interface fails to complete because

the station address is not a valid value.

70

DTL_E_BAD_CHANNEL

The interface fails to complete because

the channel is not a valid value.

n

DTL_E_BAD_MODULE

The interface fails to complete because

the module is not a valid value.

75

DTL_E_BAD_PUSHWHEEL

The interface fails to complete because

pushwheel is not a valid value.

118

DTL_E_BAD_DTSA_TYPE

The interface fails to complete because

the address type is not a valid value.

Rockwell Automation, Inc.

LNXSDK-RMOO1A-EN-E - November 2023

31

Chapter4 Overview of SDK reference calls

DTL-PCCC_MSG_CB

The DTL_PCCC_MSG_CB provides the asynchronous method to allow the client application to send the PCCC

commands directly to processors. This interface can be used when you want to read or write tags from a device via

the PCCC command. The interface call will return immediately after sending out the message. The callback will be

called if the PCCC response returns from the device, or the request is timed out.

DTL_PCCC_MSG_CB

DTL_RETVAL LI BVEM DTL_PCCC_MSG_CB(
DTSA TYPE* dtsa, A
unsi gned char cnd,
unsi gned char* sptr,
unsi gned | ong ssi ze,
unsi gned char* dptr,
unsi gned | ong* dsi ze,
unsi gned | ong ti meout,

DTL_| O CALLBACK_PRCC cb_proc,

unsi gned | ong ch_param;

Parameters

station address*/

/* PCCC CVD byte*/

/* ptr to source data |ocation */

/* source data size */

/* ptr to dest data | ocation “ff
/* destination data size */
/* time to wait on reply */
/* proc to call on conpletio*/

/* arg to pass to ch_proc “ff

The following table identifies the DTL_PCCC_MSG_CB parameters.

Parameters

Descriptions

dtsa

A pointer to a DTSA_AB_DH_LOCAL, DTSA_AB_NAME,
DTSA_AB_DH_LONGLOCAL structure that specifies the address
of the target processor. This parameter is the returned value of
the DTL_CreateDtsaFromPathString. Based on the information in
the DTSA, the DTL_PCCC_MSG_W API will create the PCCC header

for the command packet automatically.

cmd

Cmd specifies which PCCC command to send. This value is
copied into the CMD byte of the PCCC header. The FNC byte,
specifying the extended command or subcommand code, is
considered a data byte; therefore, if it is present, it must be the

first byte of sptr, and it must be included when calculating ssize

sptr

A pointer to a buffer which contains parameters for the PCCC

command.

ssize

Size of the source message in bytes. If the client application
knows that there are no parameters for the PCCC command
being sent, it is permissible to pass a null pointer in sptr and
zero in ssize. This will not cause the DTL_PCCC_MSG interface

to fail; instead, it causes it to send the command without any

parameter.

32 LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Rockwell Automation, Inc.

Parameters

Descriptions

dptr

A pointer to the buffer where FactoryTalk Linx will copy the
replied data from the target processor. Only the data following
the PCCC header, not the header itself, will be copied from the

reply packet to the destination buffer.

dsize

A pointer to the destination size buffer.

Dsize is a variable that is an input or output parameter. On
input, it specifies the size of the destination buffer in bytes.
FactoryTalk Linx will not copy more than this number of bytes
into the destination buffer. On output, FactoryTalk Linx stores
the actual number of bytes in the reply data in this variable.

If the client application knows that there is no reply data,
including status and extended status, it is permissible to pass a
null pointer in dptr and zero in dsize.

When dsize is a null pointer, there is no limit to the size of the
reply data, and the size is not returned to the client application.
When dsize is non-null, and the PCCC reply data is larger than
the specified size of dptr, the reply data will be copied only until
dptr is full; the remaining reply data will be discarded, and the

final completion status will be set to the DTL_E_TOOBIG.

Timeout

Timeout is the maximum time, calculating in milliseconds,
which the client application will wait for this function call to
complete. If the call does not complete before the specified
time expires, control will be returned to the client application,
and the final 1/0 completion status will be set to DTL_E_TIME.

A timeout value of DTL_FOREVER specifies that this function will
not return until at least one of the expected waiting identifiers
is set. If one of these waiting identifiers have never been set,
the I/0 operation will never complete unless a response is

received from the network interface.

Callback_proc

Callback_proc is a routine in the client application that
will be called by FactoryTalk Linx after an 1/0 operation
completes or times out. For detailed information, see the

DTL_I0_CALLBACK_PROC.

Callback_param

Callback_param is an uninterpreted value that will be passed
into callback_proc when the I/0 operation completes. The

client application may use this value as an index, pointer, or
handle for processing a reply. For more information, see the

DTL_I0_CALLBACK_PROC.

Returned values

The following table identifies the error codes that can be returned by the DTL_PCCC_MSG_CB.

LNXSDK-RMOO1A-EN-E - November 2023

33

Chapter 4

Overview of SDK reference calls

DTL-ASA_OPEN

34

Values Messages Descriptions

0 DTL_SUCCESS The interface is completed successfully.

19 DTL_E_NOINIT The API fails to complete because the
internal data is not started with the
DTL_INIT or DTL_INIT_EX call.

23 DTL_E_NOS_TMR The interface fails to complete because
the SDK Interface cannot start the NOS
timer.

24 DTL_E_FAIL The interface fails to complete because
the I/0 is completed with errors.

33 DTL_E_BAD_WAITID The interface fails to complete because
the wait_id is not a valid value.

34 DTL_TOOMANYIO The interface fails to complete because
there are too many pending 1/0
operations. The maximum number is 40.

46 DTL_E_BADNIID The interface fails to complete because
the ni_id is not a valid value.

57 DTL_E_NOTCONNECT The interface fails to complete because
there is no connection to a network
interface.

69 DTL_E_BAD_ADDRESS The interface fails to complete because
the station address is not a valid value.

70 DTL_E_BAD_CHANNEL The interface fails to complete because
the channel is not a valid value.

il DTL_E_BAD_MODULE The interface fails to complete because
the module is not a valid value.

75 DTL_E_BAD_PUSHWHEEL The interface fails to complete because
the pushwheel is not a valid value.

8 DTL_E_BAD_DTSA_TYPE The interface fails to complete because

the address type is not a valid value.

The DTL_ASA_OPEN calls the DTL_CIP_CONNECTION_OPEN.Refer to the DTL_CIP_CONNECTION_OPEN for more details.

DTL_ASA_OPEN

DTSA TYPE
unsi gned char
unsi gned | ong

unsi gned | ong

DTL_RETVAL LI BVEM DTL_ASA OPEN(

*target,
*ioi,

*conn_i d,

conn_par am

LNXSDK-RMOO1A-EN-E - November 2023

/* connection path */
/* 10 (Internal oject ID) */
/* loc to put connection handle */

/* arg to pass with call backs */

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

DTL_Cl P_TRANSPORT_CONNECTI ON *asa_conn, /* connection paraneters */
DTL_Cl P_CONNECTI ON_PACKET_PROC packet _proc, /* data call back function */
DTL_Cl P_CONNECTI ON_STATUS_PROC notify_proc, /* state call back function */
unsi gned | ong ti meout /* time to wait on conpletion */

DTL-ASA_CLOSE

The DTL_ASA_CLOSE calls the DTL_CIP_CONNECTION_CLOSE. Refer to the DTL_CIP_CONNECTION_CLSOE for more

details.

DTL_ASA_CLOSE
DTL_RETVAL LI BVEM DTL_ASA_CLOSE(
unsi gned |long conn_id, // connection handle

unsigned long tinmeout // time to wait on conpletion

):

DTL-ASA_MSG_W

The DTL_ASA_MSG_W calls the DTL_CIP_MESSAGE_SEND_W. Refer to the DTL_CIP_MESSAGE_SEND_W for more details.

DTL_ASA_MSG_W

DTL_RETVAL LI BVEM DTL_ASA_NMSG W

DTSA TYPE *target, /* connection path or ID */
int svc_code, /* ASA service code @[]
unsi gned char *ioi, /* 1A (Internal Object ID 2
unsi gned char *src_buf, /* ptr to request data */
unsi gned | ong src_si ze, /* size of request in bytes */
unsi gned char *dst _buf, /* ptr to reply data |location */
unsi gned | ong *dst _si ze, /* size of reply data/location gl
unsi gned char *ext _buf, /* ptr to ext status/buffer */
unsi gned | ong *ext_si ze, /* size of ext status/buffer */
unsi gned | ong *iostat, /* 1/0O conpl etion status */

unsi gned | ong timeout); /* time to wait on reply “ff

DTL-ASA_MSG_CB

The DTL_ASA_MSG_CB calls the DTL_CIP_MESSAGE_SEND_CB. Refer to the DTL_CIP_MESSAGE_SEND_CB for more

details.

DTL_ASA_MSG_CB

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 35

Chapter4 Overview of SDK reference calls

DTL-CIP_CONNECTION_-OPEN

36

DTL_RETVAL LI BVEM DTL_ASA MBG_CB(

DTSA_TYPE *target, /* connection path or ID */

int svc_code, /* ASA service code */

unsi gned char *ioi, /* 1A (Internal Object ID) */
unsi gned char *src_buf, /* ptr to request data ()

unsi gned | ong src_si ze, /* size of request in bytes */
unsi gned char *dst _buf, /* ptr to reply data |ocation */
unsi gned | ong *dst _si ze, /* size of reply data/location */
unsi gned char *ext _buf, /* ptr to ext status/buffer =
unsi gned | ong *ext _si ze, /* size of ext status/buffer */
unsi gned | ong ti meout, /* time to wait on reply =]

DTL_| O_CALLBACK_PRCC cal | back_proc, /* proc to call on conpletion */
unsi gned | ong cal | back_param /* arg to pass to ch_proc “ff

The DTL_CIP_CONNECTION_OPEN opens a connection with a CIP object. If you want to send the CIP messages to

devices via the connected methad, this interface must be called to create a connection before sending messages to

the device. Connected means there has been a CIP connection

before the CIP message is send to the device, which

improves the communication performance and reliability. When this interface is completed, it returns a value of type

DTL_RETVAL to the client application, and you can use the DTL_

DTL_CIP_CONNECTION_OPEN

DTL_RETVAL LI BVEM DTL_Cl P_CONNECTI ON_OPEN(

DTSA TYPE *target,
unsi gned char *ioi,

unsi gned | ong *conn_id,
unsi gned | ong conn_par am
DTL_Cl P_TRANSPORT_CONNECTI ON *asa_conn,

DTL_Cl P_CONNECTI ON_PACKET_PROC packet _proc,

DTL_Cl P_CONNECTI ON_STATUS_PROC notify_proc,
unsi gned | ong ti meout

)

Parameters

ERROR_S to interpret the returned value.

/* connection path */
/* 10 (Internal Ooject ID) */

/* loc to put connection handle */
/* arg to pass with call backs */
/* connection paraneters */

/* data cal |l back function */

/* state cal |l back function */

/* time to wait on conpletion */

The following table identifies the DTL_CIP_CONNECTION_OPEN parameters.

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Rockwell Automation, Inc.

Parameters

Descriptions

Target

Target is a pointer to a DTSA_AB_CIP_PATH structure.
This parameter is the returned value of the

DTL_CreateDtsaFromPathString.

loi

Internal Object Identifier (loi) identifies the CIP object with
which the connection is to be established within the CIP device

specified by the target.

Conn_id

Conn_id is a pointer to a location in which the
DTL_CIP_CONNECTION_OPEN will place a handle for the

application to use in subsequent references to the connection.

Conn_param

Conn_param is a value which will be passed back to the
application as a parameter in the packet_proc and status_proc
callback functions whenever they are called for the connection.
The application may use this to store an index, a pointer, or a

handle. It is uninterpreted by the SDK Interface.

Asa_conn

Asa_conn is a pointer to a structure containing the connection

parameters for the requested connection.

Packet_proc

Packet_proc is a function of the
DTL_CIP_CONNECTION_PACKET_PROC in the calling application
which will be called whenever new data becomes available on

the connection.

Notify_proc

Notify_proc is a function of the
DTL_CIP_CONNECTION_STATUS_PROC in the calling application
which will be called whenever the state of the connection
changes, for example, when the connection closes or fails,

and whenever a status event of interest occurred on the
connection. After the connection has been successfully
established, the status_proc function will be called with a status

of TL_.CONN_ESTABLISHED.

Timeout

Timeout is the maximum time, calculating in milliseconds, to
wait for the connection to be established. If this time interval
expires, the status_proc function will be called with a status of
DTL_CONN_ERROR and an 1/0 completion value of DTL_E_TIME.

The conn_id will be not valid.

Returned values

The following table identifies the error codes that can be returned by the DTL_CIP_CONNECTION_OPEN.

Values Messages Descriptions
0 DTL_SUCCESS The interface is completed successfully.
186 DTL_E_NULL_POINTER The interface fails to complete because

one or more pointers are null.

LNXSDK-RMOO1A-EN-E - November 2023

37

Chapter 4

Overview of SDK reference calls

DTL-CIP_CONNECTION_CLOSE

38

Values Messages Descriptions

19 DTL_E_NOINIT The interface fails to complete because
the internal data is not started by the
DTL_INIT.

18 DTL_E_BAD_DTSA_TYPE The interface fails to complete because
of the invalid DTSA_TYPE Address type.

146 DTL_E_CTYPE The interface fails to complete because
of the invalid connection structure type.

148 DTL_E_ASA_TRIGGER The interface fails to complete because
of the invalid CIP trigger type.

149 DTL_E_ASA_TRANSPORT The interface fails to complete because
of the invalid CIP transport type.

150 DTL_E_ASA_TMO_MULT The interface fails to complete because
of the invalid CIP timeout multiplier.

151 DTL_E_ASA_CONN_TYPE The interface fails to complete because
of the invalid CIP network connection
type.

152 DTL_E_ASA_CONN_PRI The interface fails to complete because
of the invalid CIP network connection
priority.

153 DTL_E_ASA_PKT_TYPE The interface fails to complete because
of the invalid CIP connection packet type.

154 DTL_E_ASA_PKT_SIZE The interface fails to complete because
of the invalid CIP connection maximum
packet size.

138 DTL_E_BAD_ASA_PATH The interface fails to complete because
of the uninterpretable path in the DTSA.

142 DTL_E_MAX_SIZE The interface fails to complete because
the sent data exceeds the maximum size
allowed.

7 DTL_E_NO_MEM The interface fails to complete because
there is no enough memory.

21 DTL_E_NOATMPT The interface fails to complete because
the specified timeout is zero.

24 DTL_E_FAIL The interface fails to complete because

of other reasons.

The DTL_CIP_CONNECTION_CLOSE closes a connection with a CIP object. The connection is created by
DTL_CIP_CONNECTION_OPEN. You must call this interface to close the CIP connection if the connection is not needed.

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Calling DTL_UNINIT or exiting the application will cause the connection to be terminated but will not clean up the

connection properly.

DTL_CIP_CONNECTION_CLOSE

DTL_RETVAL LI BNVEM DTL_Cl P_CONNECTI ON_CLOSE(

unsi gned | ong conn_id, /* connection handl e */
unsi gned | ong ti meout /* time to wait on conpletion */
)

Parameters

The following table identifies the DTL_CIP_CONNECTION_CLOSE parameters.

Parameters Descriptions

Conn_id Conn_id parameter is the connection handle which created by

DTL_CIP_CONNECTION_OPEN.

Timeout Timeout parameter is the maximum time, calculating in

milliseconds, to wait for the connection to close.

Returned values

The following table identifies the error codes that can be returned by the DTL_CIP_CONNECTION_CLOSE.

Values Messages Descriptions
0 DTL_SUCCESS The interface is completed successfully.
19 DTL_E_NOINIT The interface fails to complete because

the internal data is not started by the

DTL_INIT.

144 DTL_E_CONN_BUSY The interface fails to complete because
the connection is not ready or able to

send.

139 DTL_E_BAD_CID The interface fails to complete because
of an invalid connection ID in the

DTSA_CONN.

21 DTL_E_NOATMPT The interface fails to complete because

the specified timeout is zero.

24 DTL_E_FAIL The interface fails to complete because

the specified timeout is zero.

DTL-CIP_LARGE_CONNECTION_OPEN

The DTL_CIP_LARGE_CONNECTION_OPEN is similar with the DTL_CIP_CONNECTION_OPEN but opens a large connection
with a CIP object. The MaxPacketSize is up to 65535 bytes for the Ethernet. You must call this interface to open the

CIP connection if the CIP message size is greater than 504 bytes which is the regular CIP message size.

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 39

Chapter4 Overview of SDK reference calls

DTL_CIP_LARGE_CONNECTION_OPEN

DTL_RETVAL LI BVEM DTL_CI P_LARGE_CONNECTI ON_OPEN(

DTSA TYPE *target, /* connection path */

unsi gned char *ioi, /* 1 (Internal Object ID) =
unsi gned | ong *conn_i d, /* loc to put connection handle */
unsi gned | ong conn_par am /* arg to pass with call backs =

DTL_Cl P_TRANSPORT_CONNECTI ON *asa_conn,/* connection paraneters */

DTL_Cl P_CONNECTI ON_PACKET_PROC packet _proc, /* data cal | back function “ff
DTL_CI P_CONNECTI ON_STATUS_PRCC notify_proc, /* state callback function */
unsi gned | ong timeout /* time to wait on conpletion */

)

Parameters
Refer to the DTL_CIP_CONNECTION_OPEN
Returned values

Refer to the DTL_CIP_CONNECTION_OPEN

DTL-CIP_LARGE_CONNECTION_CLOSE

The DTL_CIP_LARGE_CONNECTION_CLOSE closes a large connection with a CIP object. The connection is created by
the DTL_CIP_LARGE_CONNECTION_OPEN. Calling the DTL_UNINIT or exiting the application will cause the connection

to be terminated but will not clean up the connection properly.

DTL-CIP_LARGE_CONNECTION_CLOSE

DTL_RETVAL LI BVEM DTL_Cl P_LARGE_CONNECTI ON_CLOSE(

unsi gned | ong conn_id, /* connection handl e */
unsi gned | ong timeout /* time to wait on conpletion */
)
Parameters

The following table identifies the DTL_CIP_LARGE_CONNECTION_CLOSE parameters.

Parameters Descriptions

Conn_id Conn_id parameter is the large connection handle which

created by the DTL_CIP_LARGE_CONNECTION_OPEN.

Timeout Timeout parameter is the maximum time , calculating in

millisecond, to wait for the connection to close cleanly.

Returned values

40 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter 4

Overview of SDK reference calls

The following table identifies the error codes that can be returned by the DTL_CIP_LARGE_CONNECTION_CLOSE.

Values

Messages

Descriptions

0

DTL_SUCCESS

The interface is completed successfully.

19

DTL_E_NOINIT

The interface fails to complete because
the internal data is not started by the

DTL_INIT.

M

DTL_E_CONN_BUSY

The interface fails to complete because
the connection is not ready or able to

send.

139

DTL_E_BAD_CID

The interface fails to complete because
of an invalid connection ID in the the

DTSA_CONN.

27

DTL_E_NOATMPT

The interface fails to complete because

the specified timeout is zero.

24

DTL_E_FAIL

The interface fails to complete because

of other reasons.

DTL_CIP_MESSAGE_SEND_CB

The DTL_CIP_MESSAGE_SEND_CB provides the asynchronous way to send a service request to a CIP object.

Asynchronous means the interface call will return immediately after sending out the message. The callback will be

called if the response is returned from the device or timed out. When the interface is completed, it returns a value of
DTL_RETVAL to the client application. You can use the DTL_ERROR_S to interpret the returned value.

DTL_CIP_MESSAGE_SEND_CB

DTL_RETVAL LI BVEM DTL_Cl P_MESSAGE_SEND_CB(
DTSA_TYPE *target,
int svc_code,
unsi gned char *ioi,
unsi gned char *src_buf,
unsi gned | ong src_si ze,
unsi gned char *dst _buf,
unsi gned | ong *dst _si ze,
unsi gned char *ext _buf,
unsi gned | ong *ext _si ze,
unsi gned | ong timeout,

unsi

Parameters

DTL_I O CALLBACK_PRCC cal | back_proc,

gned | ong cal | back_paranm ;

/'l connection path or ID
/1 ASA service code
/1 1O (Internal Object ID

/] ptr to request data

of request in bytes

/1 ptr to reply data |ocation
Il size of reply data/location
/1 ptr to ext status/buffer
Il size of ext status/buffer

/1l time to wait on reply

/1l proc to call on conpletion

The following table identifies the DTL_CIP_MESSAGE_SEND_CB parameters.

Rockwell Automation, Inc.

LNXSDK-RMOO1A-EN-E - November 2023

/Il arg to pass to cb_proc

4

Chapter 4

Overview of SDK reference calls

42

Parameters Descriptions

Target Target is a pointer to a DTSA structure that specifies the target
to which the service request will be sent.

Svc_code Svc_code is the CIP- or CIP object-defined code for the service
being requested.

loi loi is a pointer to a buffer containing an 8-bit size field followed
by a sequence of "segments", as described in the Logix5000
Data Access Manual.

Src_buf Src_buf is a pointer to a buffer containing the service
parameters for the request.

Src_size Src_size is the size in bytes of the contents of src_buf.

Dst_buf Dst_buf is a pointer to the buffer where the SDK Interface will
copy the response from the CIP target.

Dst_size Dst_size is a pointer to a variable which is an input or output
parameter.

Ext_buf Ext_buf is a pointer to the buffer where The SDK Interface will
copy any extended status information from the CIP target.

Ext_size Ext_size is a pointer to a variable which is an input or output
parameter.

Timeout Timeout is the maximum time, calculating in milliseconds, to

wait for the operation to complete before it is terminated, and

the final completion status is set to DTL_E_TIME.

Callback_proc

Callback_proc is a function in the calling application which will
be called after the operation has completed or timed out. See

the DTL_IO_CALLBACK_PROC for more details.

Callback_param

Callback_param is a value which will be passed back to the
callback_proc function when the operation has completed. The
caller may use this parameter to store an index, a pointer, or a

handle. It is uninterpreted by the SDK Interface.

Returned values

The following table identifies the error codes that can be returned by the DTL_CIP_MESSAGE_SEND_CB.

Values Messages Descriptions

0 DTL_SUCCESS The interface is completed successfully.

186 DTL_E_NULL_POINTER The interface fails to complete because
one or more pointers are null.

19 DTL_E_NOINIT The interface fails to complete because

the internal data is not started by the

DTL_INIT.

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

DTL_CIP_MESSAGE_SEND_W

Rockwell Automation, Inc.

Values Messages Descriptions

14 DTL_E_INVALID_DTSA_TYPE The interface fails to complete because
the DTSA type is not valid for this

operation.

144 DTL_E_CONN_BUSY The interface fails to complete because
the connection is not ready or able to

send.

139 DTL_E_BAD_CID The interface fails to complete because
of the invalid connection ID in the

DTSA_CONN.

140 DTL_E_BAD_SVC_CODE The interface fails to complete because

of the disallowed CIP service code.

68 DTL_E_NOT_SUPPORTED The interface fails to complete because

the operation is not supported.

34 DTL_E_TOOMANYIO The interface fails to complete because

there are too many pending I/0 requests.

2 DTL_E_NO_BUFFER The interface fails to complete because

of no buffer space available for I/0.

138 DTL_E_BAD_ASA_PATH The interface fails to complete because
of the uninterpretable path in the DTSA.

142 DTL_E_MAX_SIZE The interface fails to complete because
the sent data exceeds the maximum size

allowed.

7 DTL_E_NO_MEM The interface fails to complete because

the memory is not enough.

21 DTL_E_NOATMPT The interface fails to complete because

the specified timeout is zero.

24 DTL_E_FAIL The interface fails to complete because

of other reasons.

The DTL_CIP_MSG_W provides the synchronous method to allow the client application to send a CIP request message
to a CIP object. Synchronous means the interface call will keep waiting till the response is returned, or the request
is timed out.The DTSA must be created successfully before this interface is called. When the interface is completed,
it returns a value of DTL_RETVAL to the client application. You can use the DTL_ERROR_S to interpret the returned

values.

DTL_CIP_MESSAGE_SEND_W

DTL_RETVAL LI BVEM DTL_Cl P_MESSAGE_SEND W
DTSA TYPE *target, // connection path or ID

int svc_code, // ASA service code

LNXSDK-RMOO1A-EN-E - November 2023 43

Chapter 4

Overview of SDK reference calls

4

Paramet

unsi gned char *ioi, // 1O (Internal Object ID)

unsi gned char *src_buf, // ptr to request data

unsigned long src_size, // size of request in bytes

unsi gned char *dst_buf, // ptr to reply data |ocation

unsi gned | ong *dst_size, // size of reply data/location

unsi gned char *ext_buf, // ptr to ext status/buffer

unsi gned | ong *ext_size, // size of ext status/buffer

unsigned long *iostat, // 1/0O conpletion status

unsi gned | ong tineout);

ers

I/l time to wait on reply

The following table identifies the DTL_CIP_MESSAGE_SEND_W parameters.

Parameters Descriptions

Target Target is a pointer to a DTSA structure that specifies the target
to which the service request will be sent. Its type must be cast
to the DTSA_TYPE when calling this function.

Svc_code Svc_code is the CIP- or CIP object-defined code for the service
being requested.

loi loi is a pointer to a buffer containing an 8-bit size field followed
by a sequence of "segments", as described in the Logix5000
Data Access Manual.

Src_buf Src_buf is a pointer to a buffer containing the service
parameters for the request.

Src_size Src_size is the size in bytes of the contents of src_buf.

Dst_buf Dst_buf is a pointer to the buffer where the SDK Interface will
copy the response from the CIP target.

Dst_size Dst_size is a pointer to a variable which is an input or output
parameter.

Ext_buf Ext_buf is a pointer to the buffer where the SDK Interface will
copy any extended status information from the CIP target.

Ext_size Ext_size is a pointer to a variable which is an input or output
parameter.

lostat lostat is a pointer to an address into which the final completion
status is written.

Timeout Timeout is the maximum time, calculating in milliseconds, to
wait for the operation to complete before it is terminated and
the final completion status is set to the DTL_E_TIME.

Returned values

The following table identifies the error codes that can be returned by the DTL_CIP_MESSAGE_SEND_W.

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Values Messages Descriptions
0 DTL_SUCCESS The interface is completed successfully.
186 DTL_E_NULL_POINTER The interface fails to complete because

one or more pointers are null.

19 DTL_E_NOINIT The interface fails to complete because
the internal data is not started by the

DTLLINIT.

14 DTL_E_INVALID_DTSA_TYPE The interface fails to complete because

the DTSA type is invalid for this operation.

144 DTL_E_CONN_BUSY The interface fails to complete because
the connection is not ready or able to

send.

139 DTL_E_BAD_CID The interface fails to complete because
of the invalid connection ID in the

DTSA_CONN.

140 DTL_E_BAD_SVC_CODE The interface fails to complete because

of the disallowed CIP service code.

68 DTL_E_NOT_SUPPORTED The interface fails to complete because

the operation is not supported.

34 DTL_E_TOOMANYIO The interface fails to complete because

there are too many pending I/0 requests.

2 DTL_E_NO_BUFFER The interface fails to complete because

there is no buffer space available for I/0.

18 DTL_E_TIME The interface fails to complete because
the I/0 operation does not complete in

the allowed time.

138 DTL_E_BAD_ASA_PATH The interface fails to complete because
of the uninterpretable path in the DTSA.

142 DTL_E_MAX_SIZE The interface fails to complete because
the sent data exceeds the allowed

maximum size.

7 DTL_E_NO_MEM The interface fails to complete because

there is no enough memory.

21 DTL_E_NOATMPT The interface fails to complete because

the specified timeout is zero.

24 DTL_E_FAIL The interface fails to complete because

of other reasons.

DTL_OpenDtsa

The DTL_OpenDtsa will call the DTL_DRIVER_OPEN to open the DTSA related the driver. You must call this interface

before calling the DTL_GetNameByDriverld to get the driver's name, and the DTSA must be created before this call.

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 45

Chapter 4

Overview of SDK reference calls

DTL_CloseDtsa

46

DTL_OpenDtsa
DTL_RETVAL LI BMEM DTL_OpenDt sa(DTSA TYPE* pDtsa);
Parameters

The following table identifies the DTL_OpenDtsa parameters.

Parameters Descriptions

dtsa A pointer to a DTSA structure that specifies the address of the
target processor. This parameter is the returned value of the
DTL_CreateDtsaFromPathString.

Returned values

When this interface completes, it returns a value of the DTL_RETVAL to the client application. You can call the
DTL_ERROR_S to interpret the returned values.

Values Messages Descriptions

0 DTL_SUCCESS The interface is completed successfully.

18 DTL_E_TIME The interface fails to complete because
the I/0 operation does not complete in

the time allowed .

19 DTL_E_NOINIT The interface fails to complete because
the internal data is not started by the

DTLINIT.

155 DTL_E_DRIVER_ID_ILLEGAL The interface fails to complete because

the driver_id is not a valid value.

157 DTL_E_DRIVER_ID_INUSE The interface fails to complete because
this application is already opened the

specified driver_id.

158 DTL_E_DRIVER_NAME_INVALID The interface fails to complete because

the specified driver_name is not

configured.

The DTL_CloseDtsa will call the DTL_DRIVER_CLOSE to close the DTSA related the driver. The DTSA must be created
before this call.

DTL_CloseDtsa
DTL_RETVAL LI BMEM DTL_O oseDt sa(DTSA TYPE* pDtsa);
Parameters

The following table identifies the DTL_CloseDtsa parameters.

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

DTL_DestroyDtsa

Rockwell Automation, Inc.

Parameters Descriptions

dtsa A pointer to a DTSA structure that specifies the address of the
target processor. This parameter is the returned value of the
DTL_CreateDtsaFromPathString.

Returned values

When this function completes, it returns a value of the DTL_RETVAL to the client application. You can use the

DTL_ERROR_S to interpret the returned values.

Values Messages Descriptions

0 DTL_SUCCESS The interface is completed successfully.

18 DTL_E_TIME The interface fails to complete because
the I/0 operation does not complete in
the time allowed.

19 DTL_E_NOINIT The interface fails to complete because
the internal data is not started by the
DTLLINIT.

155 DTL_E_DRIVER_ID_ILLEGAL The interface fails to complete because
the driver_id is not a valid value.

156 DTL_E_DRIVER_ID_INVALID The interface fails to complete because

the specified driver_id does not

correspond to an open driver.

The DTL_DestroyDtsa will free up the memory allocated for the DTSA structure. You can call this interface if the DTSA

is not needed.

DTL_DestroyDtsa

voi d LI BVEM DTL_DestroyDt sa(DTSA_TYPE* pDtsa);

Parameters

The following table identifies the DTL_DestroyDtsa parameters.

Parameters Descriptions
dtsa A pointer to a DTSA structure that specifies the address of the
target processor. This parameter is the returned value of the
DTL_CreateDtsaFromPathString.
Returned values
N/A

LNXSDK-RMOO1A-EN-E - November 2023 47

Chapter4 Overview of SDK reference calls

DTL-UNINIT

DTL-ERROR-S

DTL-DRIVER_OPEN

48

The DTL_UNINIT un-initialize the SDK interface, de-allocates resources, and detaches from the FactoryTalk Linx
executable. Applications must call the DTL_UNINIT before exiting. If not, the FactoryTalk Linx executable will identify

that the application is still running.

DTL_UNINIT

voi d LI BVMEM DTL_UNI NI T(unsigned |long iostat)
Parameters

The following table identifies the DTL_UNINIT parameters.

Parameters Descriptions

jostat It will be set to 0 by default.
Returned values

N/A

The DTL_ERROR_S interprets the error codes generated by the SDK Interface and returns a null-terminated ASCII

string text message that describes the error.

DTL_ERROR_S

voi d LI BVEM DTL_ERROR S (unsigned long id, char LIBPTR * buf, int bufsize);
Parameters

The following table identifies the DTL_ERROR_S parameters.

Parameters Descriptions

Id Id is the SDK Interface returned value or I/0 completion status

value to be interpreted.

Buf Buf is a pointer to the buffer where the DTL_ERROR_S will place

the ASCII text string that describes the error.

Bufsize Bufsize is the maximum number of bytes, including the
terminating null byte, which the DTL_ERROR_S is allowed to
copy the message buffer. If the actual message text is too long,

DTL_ERROR_S will truncate the text.

Returned values

N/A

The DTL_DRIVER_OPEN will open the driver if the driver is not opened previously.

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter 4

Overview of SDK reference calls

Rockwell Automation, Inc.

DTL_DRIVER_OPEN

DTL_RETVAL LI BVEM DTL_DRI VER_OPEN(

long driver_id,

const char LIBPTR * szDriver Nane,

unsi gned | ong ti nmeout)

Parameters

The following table identifies the DTL_DRIVER_OPEN parameters.

Parameters Descriptions

driver_id This parameter is an integer specified by the client
application. Valid values range from the DTL_DRIVER_ID_MIN to
DTL_DRIVER_ID_MAX

driver_name This parameter is a null-terminated character string specified
by the client application. This string identifies as an FactoryTalk
Linx driver name, and it is case sensitive.

timeout This parameter is the maximum time, calculating in
millisecands, which the client application is willing to wait for
this function call to complete. If the call does not complete
before the specified time expires, the call returns DTL_E_TIME.

Returned values

When this function completes, it returns a value of type DTL_RETVAL to the client application. User can use the

DTL_ERROR_S function to interpret the returned value.

Values Messages Descriptions

0 DTL_SUCCESS The interface is completed successfully.

18 DTL_E_TIME The interface fails to complete because
the I/0 operation does not complete in
the time allowed.

19 DTL_E_NOINIT The interface fails to complete because
the internal data is not started by the
DTLINIT.

155 DTL_E_DRIVER_ID_ILLEGAL The interface fails to complete because
the driver_id is not a valid value.

157 DTL_E_DRIVER_ID_INUSE The interface fails to complete because
this application is already opened by the
specified driver_id.

158 DTL_E_DRIVER_NAME_INVALID The interface fails to complete because

the specified driver_name is not

configured.

LNXSDK-RMOO1A-EN-E - November 2023

Chapter4 Overview of SDK reference calls

DTL-DRIVER_CLOSE

DTL_GetRSLinxDriverlD

50

The DTL_DRIVER_CLOSE will close the driver.

DTL-DRIVER_CLOSE

DTL_RETVAL LI BMVEM DTL_DRI VER _CLOSE(| ong driver_id, unsigned | ong tinmeout);

Parameters

The following table identifies the DTL_DRIVER_CLOSE parameters.

Parameters Descriptions
driver_id This parameter is an integer specified by the client
application. Valid values range from the DTL_DRIVER_ID_MIN to
DTL_DRIVER_ID_MAX
timeout This parameter is the maximum time, calculating in
milliseconds, which the client application is willing to wait for
this function call to complete. If the call does not complete
before the specified time expires, the call returns DTL_E_TIME.
Returned values

When this function completes, it returns a value of type DTL_RETVAL to the client application. User can use the

DTL_ERROR_S function to interpret the returned values.

Values Messages Descriptions

0 DTL_SUCCESS The interface is completed successfully.

18 DTL_E_TIME The interface fails to complete because
the 1/0 operation does not complete in
the time allowed.

19 DTL_E_NOINIT The interface fails to complete because
the internal data is not stared by the
DTL_INIT.

155 DTL_E_DRIVER_ID_ILLEGAL The interface fails to complete because
the driver_id is not a valid value.

156 DTL_E_DRIVER_ID_INVALID The interface fails to complete because
the specified driver_id does not
correspond to an open driver.

The DTL_GetRSLinxDriverID will return a fixed value "65535". It is used for RSLinx Classic. We do not recommend that

you use it.

DTL_GetRSLinxDriveriD

| ong LI BMEM DTL_Get RSLi nxDri ver| D(voi d);

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Parameters

N/A

Returned values

This interface will return 65535.

DTL_GetDriverlDByDriverName

The DTL_GetDriverIDByDriverName gets the driver ID of the FactoryTalk Linx server by the driver's name. If the driver's

name is not correct, this interface returns 0.

DTL_GetDriverlDByDriverName

WORD LI BMEM DTL_Get Dri ver | DByDri ver Nane(const char LIBPTR* szDriver Nane);

Parameters

The following table shows the DTL_GetDriver|DByDriverName parameters.

Parameters

Descriptions

szDriverName

The driver's name

Returned values

This interface returns the driver ID if the driver's name is correct. The following table shows the driver ID and the

related driver types.

Driver ID

Driver type

0x01

LINXE_DRVTYPE_ETHERNET

0x02

LINXE_DRVTYPE_DF1

0x03

LINXE_DRVTYPE_DHP

0x04

LINXE_DRVTYPE_DH485

0x05

LINXE_DRVTYPE_RIO

0x06

LINXE_DRVTYPE_VBACKPLANE

0x07

LINXE_DRVTYPE_RN6_DHP

0x08

LINXE_DRVTYPE_SERIAL_DH485

0x09

LINXE_DRVTYPE_RN6_DH485

0x0a

LINXE_DRVTYPE_RNG_RIO

0x0b

LINXE_DRVTYPE_RN1_RIO

DTL_GetHandleByDriverName

The DTL_GetHandleByDriverName gets the driver handle by the driver's name. The driver handle is a pointer value of

the driver object.

DTL_GetHandleByDriverName

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023

51

Chapter 4

Overview of SDK reference calls

DWORD LI BVMEM DTL_Get Handl eByDri ver Nane(const char LI BPTR* szDriver Nane);

Parameters

The following table shows the DTL_GetHandleByDriverName parameters.

Parameters Descriptions
szDriverName The driver's name
Returned values

This function return the driver handle. If driver's name is not correct, this function returns Oxffffffff.

DTL_GetDstDriverlDByDriverName

52

The DTL_GetDstDriverIDByDriverName gets the driver ID by the driver's name from the FactoryTalk Linx server. This

function is same with the DTL_GetDriverIDByDriverName.

DTL_GetDstDriverlDByDriverName

WORD LI BMEM DTL_Cet Dst Dri ver | DByDri ver Name(const char LI BPTR* szDriver Nane);

Parameters

The following table shows the DTL_GetDstDriverlDByDriverName parameters.

Parameters Descriptions
szDriverName The driver's name
Returned values

This function returns the driver 1D, and return 0 if driver's name is not correct.

Driver ID Driver type

0xO0F PLC-5 Emulator

0x13 SLC-500 Emulator

0x14 Soft 5

0x16 The SDK Interface client driver connected to the SDK Interface
server

0x17 Shortcut name

0x1c Ethernet

0x3c WinLinx AutoRouter/App Interface driver

0x5e FactoryTalk Linx Virtual Link driver

0xd9 1784-PCMK on DH+

0Oxa3 Direct connection to PLC or connection to KF2

0Oxbb 1784-KT on DH+

Oxcc Direct connection to SLC or connection to KF3

Oxce 1747-PIC

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Driver ID

Driver type

Oxda

1784-KTX on DH485

0Oxdb

DF1 Polling Master

0Oxd6

DF1 Slave Driver

0Oxdb

Connection to KFC

Oxel

1784-KTC

Oxee

1784-PCMK on DH485

0xf0

S&S SD/SD2

Oxfa

1756-L1(ControlLogix Automation Controller) on DF1

Oxfd

1784-KTX on DH+

0x104

1784-PCC

0x110

Virtual Backplane driver (generic)

0xm

1784-PCIC

0x1234

Generic DNet driver

0x01

LINXE_DRVTYPE_ETHERNET

0x02

LINXE_DRVTYPE_DF1

0x03

LINXE_DRVTYPE_DHP

0x04

LINXE_DRVTYPE_DHA85

0x05

LINXE_DRVTYPE_RIO

0x06

LINXE_DRVTYPE_VBACKPLANE

0x07

LINXE_DRVTYPE_RNG_DHP

0x08

LINXE_DRVTYPE_SERIAL_DH485

0x09

LINXE_DRVTYPE_RNG_DH485

0x0a

LINXE_DRVTYPE_RNG_RIO

0x0b

LINXE_DRVTYPE_RN1_RIO

DTL_GetNetworkTypeByDriverName

The DTL_GetNetworkTypeByDriverName gets the network type by the driver's name from the FactoryTalk Linx server.

The network includes Controlnet, Ethernet, Devicenet, etc.

DTL_GetNetworkTypeByDriverName

WORD LI BMEM DTL_Get Net wor kTypeByDri ver Nanme(const char LI BPTR* szDriver Nane);

Parameters

The following table shows the DTL_GetNetworkTypeByDriverName parameters.

Parameters

Descriptions

szDriverName

The driver's name

Rockwell Automation, Inc.

LNXSDK-RMOO1A-EN-E - November 2023

53

Chapter4 Overview of SDK reference calls

DTL_MaxDrivers

DTL-DRIVER_LIST_EX

54

Returned values

Table following table shows the network type codes:

Network type code Network type
0x0040 Controlnet
0x0010 Ethernet
0x0100 Devicenet
0x0080 ICP
0x0400 RIO
0x0002 DHP
0x0200 DF1
0x0800 VBP
0x0001 DH

0x0004 DH485

The DTL_MaxDrivers returns the max drivers of the SDK Interface. We do not recommend that you use it.
DTL_MaxDrivers

DWORD LI BVMEM DTL_MaxDri vers(voi d);

Parameters

N/A

Returned values

This interface returns 32.

The DTL_DRIVER_LIST_EX gets a driver list from the FactoryTalk Linx server. You must call the
DTL_SetDriverListEntryType to indicate which driver list, DTLDRIVER or DTLDRIVER_EX, will be fetched.

DTL_DRIVER_LIST_EX
DTL_RETVAL LI BVEM DTL_DRI VER LI ST_EX(
PDTLDRI VER pDt | Dri ver,

unsi gned | ong *drivers,

unsi gned | ong tineout);

Parameters

The following table identifies the DTL_DRIVER_LIST_EX parameters.

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

DTL_SetDriverListEntryType

Rockwell Automation, Inc.

Parameters

Descriptions

pDtiDriver

This parameter is a pointer to a block of memory in the client
application which the driver description structures will be
written. This block should be large enough to hold the number

of DTLDRIVER or DTLDRIVER_EX as specified in drivers.

drivers

This parameter is a pointer to an unsigned long word which
the caller must start to tell the library how many DTLDRIVER or
DTLDRIVER_EX structures that the pDtiDrivers block of memory
can hold. The library sets this location to the actual number of
driver structures written into the block. The library writes no

more than the number specified by drivers.

timeout

This parameter is the maximum time, calculating in
milliseconds. The client application will wait for this function
call to complete. If the call does not complete before the

specified time expires, the call returns DTL_E_TIME

Returned values

The following table identifies the error codes that can be returned by the DTL_DRIVER_LIST_EX.

Values Messages Descriptions

0 DTL_SUCCESS The interface is completed successfully.

18 DTL_E_TIME The interface fails to complete because
the I/0 operation does not complete in
the time allowed.

19 DTL_E_NOINIT The interface fails to complete because
the internal data is not started by the
DTLINIT.

25 DTL_E_BADPARAM The interface fails to complete because

the drivers is null.

You must call the DTL_SetDriverListEntryType before calling the DTL_DRIVER_LIST_EX to start the first entry in the
block of memory that will receive the driver list. The valid values are DTL_DVRLIST_TYPE2 and DTL_DVRLIST_TYPE_EX.

DTL_SetDriverListEntryType

DTL_RETVAL LI BVEM DTL_Set Dri ver Li st EntryType(voi d* pDriver, WORD wType) ;

Parameters

The following table identifies the DTL_SetDriverListEntryType parameters.

Parameters

Descriptions

pDriverListEntry

pOriverListEntry is the driver list.

LNXSDK-RMOO1A-EN-E - November 2023

55

Chapter 4

Overview of SDK reference calls

Parameters Descriptions

wType wType is the type code, DTL_DVRLIST_TYPE2 or
DTL_DVRLIST_TYPE_EX.

Returned values

The following table identifies the error codes that can be returned by the DTL_SetDriverListEntryType.

Values Messages Descriptions

0 DTL_SUCCESS The interface is completed successfully.

186 DTL_E_NULL_POINTER The interface fails to complete because
one or more pointers are null.

DTL_GetTypeFromDriverListEntry

The DTL_GetTypeFromDriverListEntry returns the driver type in the specified structure DTLDRIVER or DTLDRIVER_EX.
DTL_GetTypeFromDriverListEntry

WORD LI BMEM DTL_Get TypeFr omDr i ver Li st Ent ry(voi d* pDriver);

Parameters

pDriver is the pointer to the structure DTLDRIVER or DTLDRIVER_EX

Returned values

This interface returns the driver type in the specified structure, DTLDRIVER or DTLDRIVER_EX. The valid type value are
DTL_DVRLIST_TYPE2 and DTL_DVRLIST_TYPE_EX.

DTL_GetHandleFromDriverListEntry

56

The DTL_GetHandleFromDriverListEntry returns the driver handle in the specified structure, DTLDRIVER or
DTLDRIVER_EX.

DTL_GetHandleFromDriverListEntry

WORD LI BMEM DTL_Cet Handl eFr onDri ver Li st Entry(voi d* pDriver);
Parameters

pDriver is the pointer to the structure, DTLDRIVER or DTLDRIVER_EX

Returned values

This interface returns the driver handle in the specified structure, DTLDRIVER or DTLDRIVER_EX, or returns Oxffffffff if

pDrivier is null.

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

DTL_GetDriverNameFromDriverListEntry

The DTL_GetDriverNameFromDriverListEntry returns the driver's name in the specified structure, DTLDRIVER or
DTLDRIVER_EX.

DTL_GetDriverNameFromDriverListEntry

char* LI BMEM DTL_Get Dri ver NameFronDri ver Li st Entry(voi d* pDriver);
Parameters

pDriver is the pointer to the structure, DTLDRIVER or DTLDRIVER_EX

Returned values

This interface returns the driver's name in the specified structure, DTLDRIVER or DTLDRIVER_EX.

DTL_GetNetworkTypeFromDriverListEntry

The DTL_GetNetworkTypeFromDriverListEntry returns the network type in the specified structure, DTLDRIVER or
DTLDRIVER_EX.

DTL_GetNetworkTypeFromDriverListEntry

WORD LI BMEM DTL_Get Net wor kTypeFr onDri ver Li st Entry(voi d* pDriver);
Parameters

pDriver is the pointer to the structure, DTLDRIVER or DTLDRIVER_EX

Returned values

This interface returns the network types in the specified structure, DTLORIVER or DTLDRIVER_EX.

Network type code Network type
0x0040 Controlnet
0x0010 Ethernet
0x0100 Devicenet
0x0080 ICP
0x0400 RIO
0x0002 DHP
0x0200 DF1
0x0800 VBP
0x0001 DH
0x0004 DH485

DTL_GetDriverIDFromDriverListEntry

Rockwell Automation, Inc.

The DTL_GetDriverIDFromDriverListEntry returns the driver ID in the specified structure, DTLDRIVER or DTLDRIVER_EX.

LNXSDK-RMOO1A-EN-E - November 2023 57

Chapter4 Overview of SDK reference calls

DTL_GetDriverlDFromDriverListEntry

WORD LI BMEM DTL_Get Dri ver | DFronDri verLi st Entry(voi d* pDriver);
Parameters

pDriver is the pointer to the structure, DTLDRIVER or DTLDRIVER_EX

Returned values

This interface returns the driver ID in the specified structure, DTLDRIVER or DTLDRIVER_EX, or returns O if pDriver is

null.

Driver ID Driver type

0xO0F PLC-5 Emulator

0x13 SLC-500 Emulator

0x14 Soft &

0x16 The SDK Interface client driver connected to the SDK Interface
server

0x17 Shortcut name

0x1c Ethernet

0x3c WinLinx AutoRouter/App Interface driver

0x5e FactoryTalk Linx Virtual Link driver

0xd9 1784-PCMK on DH+

0Oxa3 Direct connection to PLC or connection to KF2

0Oxbb 1784-KT on DH+

Oxcc Direct connection to SLC or connection to KF3

Oxce 1747-PIC

Oxda 1784-KTX on DH485

0Oxd5 DF1 Polling Master

0xd6 DF1 Slave Driver

0Oxdb Connection to KFC

Oxel 1784-KTC

Oxee 1784-PCMK on DH485

0xf0 S&S SD/SD2

Oxfa 1756-L1 (ControlLogix Automation Controller) on DF1

Oxfd 1784-KTX on DH+

0x104 1784-PCC

0x110 Virtual Backplane driver (generic)

0xm 1784-PCIC

0x1234 Generic DNet driver

58 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

DTL_GetDstDriverIDFromDriverListEntry

Rockwell Automation, Inc.

The DTL_GetDstDriverIDFromDriverListEntry funtion returns the driver ID in the specified structure, DTLDRIVER or
DTLDRIVER_EX.

DTL_GetDstDriverlDFromDriverListEntry

WORD LI BMEM DTL_Get Dst Dri ver | DFronDri ver Li st Entry(voi d* pDriver);

Parameters

pDriver is the pointer to the structure, DTLDRIVER or DTLDRIVER_EX

Returned values

This interface returns the driver ID in the specified structure, DTLDRIVER or DTLDRIVER_EX, or returns O if pDriver is

null.

Driver ID Driver type

0x0F PLC-5 Emulator

0x13 SLC-500 Emulator

0x14 Softb

0x16 The SDK Interface client driver connected to the SDK Interface
server

0x17 Shortcut name

Oxlc Ethernet

0x3c WinLinx AutoRouter/App Interface driver

0Oxbe FactoryTalk Linx Virtual Link driver

0xd9 1784-PCMK on DH+

0Oxa3 Direct connection to PLC or connection to KF2

Oxbb 1784-KT on DH+

Oxcc Direct connection to SLC or connection to KF3

Oxce 1747-PIC

Oxda 1784-KTX on DH485

0Oxdb DF1 Polling Master

0xd6 DF1 Slave Driver

0Oxdb Connection to KFC

Oxel 1784-KTC

Oxee 1784-PCMK on DH485

0xf0 S&S SD/SD2

Oxfa 1756-L1 (ControlLogix Automation Controller) on DF1

Oxfd 1784-KTX on DH+

0x104 1784-PCC

0x110 Virtual Backplane driver (generic)

LNXSDK-RMOO1A-EN-E - November 2023

59

Chapter 4

Overview of SDK reference calls

Driver ID Driver type
0xm 1784-PCIC
0x1234 Generic DNet driver

DTL_GetStationFromDriverListEntry

The DTL_GetStationFromDriverListEntry returns the driver's own station address on its network in the specified
structure, DTLDRIVER or DTLDRIVER_EX.

DTL-GetStationFromDriverListEntry

DWORD LI BMEM DTL_Get St ati onFronDri verLi st Entry(voi d* pDriver);
Parameters

pDriver is the pointer to the structure, DTLDRIVER or DTLDRIVER_EX

Returned values

This interface returns the driver’s own station address on its network in the specified structure, DTLDRIVER or
DTLDRIVER_EX, or returns Oxffffffff if pDrive is null.

DTL_GetMTUFromDriverListEntry

The DTL_GetMTUFromDriverListEntry returns the Maximum Transmission Unit on the driver's network in the specified
structure, DTLDRIVER or DTLDRIVER_EX.

DTL_GetMTUFromDriverListEntry

DWORD LI BVEM DTL_Get MTUFr onDr i ver Li st Entry(voi d* pDriver);
Parameters

pDriver is the pointer to the structure, DTLDRIVER or DTLDRIVER_EX

Returned values

This interface returns the Maximum Transmission Unit on the driver's network in the specified structure, DTLDRIVER
or DTLDRIVER_EX.

DTL_GetServerNameFromDriverListEntry

60

The DTL_GetServerNameFromDriverListEntry returns server name of DTLDRIVER_EX or returns NULL for DTLDRIVER.
DTL_GetServerNameFromDriverListEntry

char* LI BVMEM DTL_Get Ser ver NameFr onDr i ver Li st Entry(voi d* pDriver);

Parameters

pDriver is the pointer to the structure, DTLDRIVER or DTLDRIVER_EX

Returned values

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

This interface returns the server name of DTLDRIVER_EX or returns NULL for DTLDRIVER.

DTL_GetDriverAliasFromDriverListEntry

The DTL_GetDriverAliasFromDriverListEntry returns the driver alias name in the specified structure, DTLDRIVER_EX or
DTLDRIVER.

DTL_GetDriverAliasFromDriverListEntry

char* LI BVMEM DTL_Get Driver Ali asFronDriverListEntry(voi d* pDriver);
Parameters

pDriver is the pointer to the structure DTLDRIVER or DTLDRIVER_EX.

Returned values

This interface returns the driver alias name in the specified structure, DTLDRIVER_EX or DTLDRIVER.

DTL_GetDriverListEntryFromDriverListindex

DTL_CreatetDriverList

Rockwell Automation, Inc.

The DTL_GetDriverListEntryFromDriverListindex returns a pointer to a DTLDRIVER or DTLDRIVER_EX structure

specified by the nindex value.
DTL_GetDriverListEntryFromDriverListindex

voi d* LI BVEM DTL_Get Dri verLi st EntryFronDri verLi stlndex(voi d* pDriverList, int

nl ndex) ;
Parameters

The following table identifies the DTL_GetDriverListEntryFromDriverListindex parameters.

Parameters Descriptions

pDriverList pOriverList is the driver list created by the

DTL_CreateDriverList.

nindex nindex specify which driver to be retrieved.

Returned values

This interface returns a pointer to a DTLDRIVER or DTLDRIVER_EX in the driver list.

The DTL_CreateDriverList returns driver list of the DTLDRIVER_EX structure.

DTL_CreatetDriverList

voi d* LI BMEM DTL_CreateDri verLi st (DNMORD* dwNunDri vers, DWORD dwTi meout) ;
Parameters

The following table identifies the DTL_CreatetDriverList parameters.

LNXSDK-RMOO1A-EN-E - November 2023 61

Chapter4 Overview of SDK reference calls

DTL_DestroyDriverList

DTL_GetNameByDriverld

62

Parameters Descriptions

dwNumDrivers dwNumDrivers is the maximum driver number.
dwTimeout The timeout value.

Returned values

This interface returns the driver list of the DTLDRIVER_EX.

The DTL_DestroyDriverList releases the driver list created by the DTL_CreateDriverList.
DTL_DestroyDriverList

voi d LI BVEM DTL_DestroyDri verList(void* pDriverList, DWORD dwTi meout);
Parameters

The following table identifies the DTL_DestroyDriverList parameters.

Parameters Descriptions

pDriverList pOriverList is a pointer to driver list which created by the

DTL_CreateDriverList

dwTimeout The timeout value which is not used.

Returned values

NULL

The DTL_GetNameByDriverld gets the driver's name by the drive ID. You must call the DTL_DRIVER_OPEN or

DTL_OpenDtsa before calling this interface.

DTL-GetNameByDriverld

DTL_RETVAL LI BMEM DTL_Get NaneByDri ver|ld(long driver_id, char* szDriverNane);
Parameters

The following table identifies the DTL_GetNameByDriverld parameters.

Parameters Descriptions
Driver_id Driver_id is the driver ID or driver handle.
szDriverName szDriverName is the driver's name of the specified driver

ID, whose max length is 16. The client is responsible for the

memory allocation.

Returned values

The following table identifies the error codes that can be returned by the DTL_ GetNameByDriverld.

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Values Messages Descriptions
0 DTL_SUCCESS The interface is completed successfully.
186 DTL_E_NULL_POINTER The interface fails to complete because

one or more pointers are null.

156 DTL_E_DRIVER_ID_INVALID The interface fails to complete because

the driver ID is invalid.

DTL_CIP_CONNECTION_SEND

The DTL_CIP_CONNECTION_SEND sends data on a CIP connection. If the application expects to receive data on the
connection, it must specify a DTL_CIP_CONNECTION_PACKET_PROC in its DTL_CIP_CONNECTION_OPEN call. This

callback function will be called whenever data comes in on the connection.

DTL_CIP_CONNECTION_SEND

DTL_RETVAL LI BVEM DTL_ClI P_CONNECTI ON_SEND(
unsi gned | ong conn_i d,
unsi gned |ong trans_id,
unsi gned char *src_buf,

unsi gned | ong src_size);

Parameters

The following table identifies the DTL_CIP_CONNECTION_SEND parameters.

Parameters Descriptions

Conn_id Conn_id is the connection handle obtained from a previous

DTL_CIP_CONNECTION_OPEN call made by the application.

Trans_id Trans_id is a value that will be passed back to the application
when the connection’s

DTL_CIP_CONNECTION_PACKET_PROC callback function is called
with an ACK/NAK type status notification for the packet. The
ACK/NAK notifications are turned on for certain connection
transport classes by appropriately setting the mode field of the

DTL_CIP_TRANSPORT_CONNECTION structure for the connection.

Src_buf Src_buf is a pointer to a buffer containing the application data
to be sent.

Src_size Src_size is the size in bytes of the data in src_buf.

Returned values

The following table identifies the error codes that can be returned by the DTL_ CIP_CONNECTION_SEND.

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 63

Chapter 4

Overview of SDK reference calls

Values Messages Descriptions
0 DTL_SUCCESS The interface is completed successfully.
186 DTL_E_NULL_POINTER The interface fails to complete because

one or more pointers are null.

139 DTL_E_BAD_CID The interface fails to complete because
of the invalid connection ID in the

DTSA_CONN.

142 DTL_E_MAX_SIZE The interface fails to complete because
the sent data exceeds the maximum size

allowed.

144 DTL_E_CONN_BUSY The interface fails to complete because
the connection is not ready or able to

send.

2 DTL_E_NO_BUFFER The interface fails to complete because

there is no buffer space available for 1/0.

145 DTL_E_CONN_LOST The interface fails to complete because

the CIP connection times out or closes.

DTL-CIP_CONNECTION_PACKET_PROC

64

The DTL_CIP_CONNECTION_PACKET_PROC is a callback procedure for receiving data on a CIP connection. It is a
user-defined function called for the application each time when new data is available on the CIP connection. A
DTL_CIP_CONNECTION_ PACKET _PROC procedure is associated with a connection via the packet_proc parameter in
the DTL_CIP_CONNECTION_OPEN.

DTL-CIP_CONNECTION_PACKET_PROC

DTL_RETVAL LI BVEM DTL_ClI P_CONNECTI ON_PACKET_PRCC (
unsi gned | ong conn_id,
unsi gned | ong conn_param
unsi gned char *src_buf,

unsi gned | ong src_size);

Parameters

The following table identifies the DTL_CIP_CONNECTION_PACKET_PROC parameters.

Parameters Descriptions

Conn_id Conn_id is the connection handle obtained from the

DTL_CIP_CONNECTION_OPEN call.

Conn_param Conn_param is the value which is provided by the application as

the conn_param argument in the DTL_CIP_CONNECTION_OPEN

call.

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Parameters

Descriptions

Src_buf

Src_buf is a pointer to a buffer containing the data received

over the CIP connection.

Src_size

Src_size is the size in bytes of the data in src_buf.

Returned values

ADTL_CIP_CONNECTION_PACKET_PROC procedure is a user-defined function called for the application each time

when new data is received over a CIP connection. The returned value is not used currently.

DTL-CIP_CONNECTION_STATUS_PROC

The DTL-CIP_CONNECTION_STATUS_PROC is the callback procedure for notices of status changes on a CIP
connection. It is a user-defined function called for the application each time the status of a CIP connection changes.
ADTL_CIP_CONNECTION_STATUS_PROC procedure is associated with a connection via the status_proc parameter in a

DTL_CIP_CONNECTION_OPEN.

DTL_CIP_CONNECTION_STATUS_PROC

DTL_RETVAL LI BVEM DTL_CI P_CONNECTI ON_SEND(

unsi gned | ong conn_i d,
unsigned long trans_id,
unsi gned | ong state,
unsi gned char *info,

unsi gned | ong info_size);

Parameters

The following table identifies the DTL_CIP_CONNECTION_STATUS_PROC parameters.

Parameters

Descriptions

Conn_id

Conn_id is the connection handle obtained from the

DTL_CIP_CONNECTION_OPEN call.

Conn_param

Conn_param is the value which was provided by
the application as the conn_param argument in the

DTL_CIP_CONNECTION_OPEN call.

state

State indicates the new state of the CIP connection or an event
which occurred on the connection. See the possible state values

table.

info

Info is a pointer to a buffer containing additional information
relevant to the state of the CIP connection. If status

is DTL_CONN_ESTABLISHED, DTL_CONN_FAILED, or
DTL_CONN_CLOSED, the buffer will contain the portion of

the CIP response that begins with the general status. So, it

includes all the extended status and response data obtained

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023

65

Chapter 4

Overview of SDK reference calls

66

Parameters

Descriptions

for the connection. If status is DTL_.CONN_ERROR, the buffer

will contain an 1/0 completion status. The buffer can be

cast to a DTL_RETVAL for ease of interpretation. If status is
DTL_CONN_ACK, the buffer will contain the transaction ID for the
relevant packet, as provided in the trans_id parameter of the

DTL_CIP_CONNECTION_SEND call.

Info_size

Info_size is the number of bytes in the info buffer.

Possible state value:

Values Messages Descriptions

1 DTL_CONN_ESTABLISHED The connection establishment has
completed successfully.

2 DTL_CONN_ERROR The connection establishment or closure
fails to complete.

3 DTL_CONN_FAILED The connection establishment or closure
has received a failure response.

4 DTL_CONN_TIMEQUT The connection has timed out.

5 DTL_CONN_CLOSED The connection has been closed
successfully.

6 DTL_CONN_PKT_DUP A duplicate packet, for example,a
repeated sequence number, has been
received on the connection.

1 DTL_CONN_PKT_LOST One or more packets have lost on the
connection, that is, one or more sequence
numbers have been skipped.

8 DTL_CONN_ACK An ACK has been received for a packet
that has been sent on the connection.

9 DTL_CONN_NAK_GENERAL A NAK has been received for a packet
that has been sent on the connection:
"unspecified type".

10 DTL_CONN_NAK_BAD_CMD A NAK has been received for a packet that
has been sent on the connection: "Bad
Command".

1 DTL_CONN_NAK_SEQ_ERR A NAK has been received for a packet
that has been sent on the connection:
"Sequence Error".

12 DTL_CONN_NAK_NO_MEM A NAK has been received for a packet that
has been sent on the connection: "Not
Enough Memory".

13 DTL_CONN_SHORTCUT_ESTABLISHED Shortcut Connection establishment has

completed successfully.

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Values Messages Descriptions

14 DTL_CONN_SHORTCUT_ACTIVE_PATH_CHA | Shortcut device switch happens.
NGED

Returned values

ADTL_CIP_CONNECTION_STATUS_PROC procedure is a user-defined function called for the application each time new

data is received over a CIP connection. The returned value is not used currently.

DTL-I0_CALLBACK _PROC

The DTL_IO_CALLBACK_PROC is a callback procedure that the client application can use to handle the completion
of /0 operations. It is associated with an |/0 operation by specifying it as callback_proc in the initiating function
call. Do not use callback_param to point to automatic data, that is, data within the stack frame of a function, as it

probably will not be active when the callback is invoked.

DTL_I0_CALLBACK _PROC

voi d LI BVEM DTL_I O CALLBACK_PROC (
unsi gned | ong cal | back_par am

unsi gned |ong io_stat);

Parameters

The following table identifies the DTL_IO_CALLBACK _PROC parameters.

Parameters Descriptions

callback_param Callback_param is an uninterpreted value that will be passed
into callback_proc when the 1/0 operation completes. The
client application may use this value as an index, a pointer, or a
handle for processing a reply. If the callback procedure needs
additional information about the 1/0 operation, for example, the
DTSA structure, buffer address, or data item handle, the client
application must keep this information in a data structure and

use callback_param as a handle or pointer to this structure.

lo_stat The final I/0 completion status. You can use the DTL_ERROR_S

function to interpret the io_stat value.

Returned values

N/A

Global Header

I

#i ncl ude <i ostrean>

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 67

Chapter 4

Overview of SDK reference calls

68

#i ncl ude <map>
#i ncl ude <array>
#i ncl ude <vector>

#i nclude "FTLi nx_SDK. h"

const expr auto HARMONY_PATH = " APCNSDA4S94H62! Et her net\\ 10. 224. 82. 113\ \ Backpl ane\\ 1";

constexpr auto TAG NAME = "tagLl NT";

cl ass Cd obal Dat a

{
public:
Cd obal Dat a()
{
m hEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
m hEvent Packet = CreateEvent (NULL, FALSE, FALSE, NULL);
I
~Cd obal Dat a()
{
if(m_hEvent)
:: O oseHandl e(m_hEvent) ;
i f (m_hEvent Packet)
:: O oseHandl e(m hEvent Packet) ;
}
voi d Set ResponseDat a(BYTE* pData, DWORD dwSi ze)
{
if (NULL == pData || 0 == dwSize)
return;
std::vector<BYTE> vecDat a(pData, pData + dwSize);
m vecBuf f er. swap(vecDat a) ;
}
HANDLE m hEvent{ 0 };
HANDLE m hEvent Packet{ 0 };
WORD m wCormSt ate{ 0 };
std::vector<BYTE> m vecBuffer;
h

DTL_Cl P_TRANSPORT_CONNECTI ON g_ci p_conn = { 0 };

/1 Note: g_cip_conn - Mist pay attention to its |ifecycle, especialy asynchronous calling with

this variable.

/1 The nenbers of this struct variable would be used by the internal callback, so, it would

stop respondi ng when the call back returned if this object had been rel eased.

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Cd obal Dat a g_obj Dat a;

/1l Note: g_objData - It has the sane |ifecycle as g_cip_conn.

int DTL_CALLBACK status_proc(unsigned | ong conn_id,
unsi gned | ong conn_par am
unsigned |long state,
unsi gned char* info,

unsi gned | ong TRACE_si ze)

{
if (conn_param!= NULL)
{
Cd obal Data* pPtr = (Cd obal Dat a*)conn_param
pPtr->m wCommft ate = (WORD) st at e;
Set Event (pPtr->m hEvent);
}
return 0O;
}
int DTL_CALLBACK packet _proc(unsigned | ong conn_id,
unsi gned | ong conn_par am
unsi gned char* data_buf,
unsi gned | ong data_si ze)
{
if (conn_param!= NULL)
{
Cd obal Data* pPtr = (Cd obal Dat a*) conn_par am
pPtr->Set ResponseDat a(dat a_buf, data_size);
Set Event (pPt r- >m_hEvent Packet) ;
}
return O;
}

int DTL_CALLBACK cal | back_proc(unsigned | ong cal |l back_param unsigned |ong io_stat)

if (io_stat != DTL_SUCCESS)

{

char szErrMsg[256] {0};

DTL_ERROR S(io_stat, szErrMg, 256);

std::cout << "callback_proc, error: " << io_stat << " with " << szErrMsg << "\n";
}

if (callback_param!= NULL)

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 69

Chapter4 Overview of SDK reference calls

{
Cd obal Data* pPtr = (Cd obal Dat a*) cal | back_param
Set Event (pPt r- >m_hEvent Packet) ;

}

return 0O;

void Set| O (BYTE* pl O, WORD nC assld, WORD ninstld, BYTE nAttribld)

{

int nCount = O;

if (nCassld > 255 || nlnstld > 255)

{
plO[1] = 0x21;
plO[2] = 0x00;
pl O [3] = LOBYTE(nd assld);
pl O [4] = H BYTE(nd assld);
plA[5] = 0x25;
plO[6] = 0x00;
plA[7] = LOBYTE(nlnstld);
pl O [8] = H BYTE(nlnstld);
if (nAttribld == 0)
{
pl O [0] = 0x04;
}
el se
{
pl O [0] = 0xO05;
pl O [9] = 0x30;
pl O [10] = (BYTE)nAttribld
}
}
el se
{

pl O [1] = 0x20;
plA[2] = LOBYTE(nd assld);
pl O [3] = 0x24;

plO[4] = LOBYTE(nlnstld);

if (nAttribld == 0)

{

plO[0] = 0x02;

70 LNXSDK-RMOO1A-EN-E - November 2023

/1 1ogical
Il reserved

Il class id

/1 1ogical

Il reserved

/1 inst id

/1 numm.io

segment ,

byte

segment,

byte

class follows in 16 bit word

instance id follows in 16 bit word

i words with attribute id present

/l attribute id as an 8 bit val ue

/1 1ogical

Il inst id

segment

instance id follows in 16 bit word

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

el se

pl O [0] = 0x03; // numm.ioi words with attribute id present
plO[5] = 0x30; /] attribute id as an 8 bit val ue

plO[6] = (BYTE)nAttribld;

voi d Get ArrayDi nf Tag(std::string szTagNane, std::map<int, DWORD>* indexList, int& array_dim
{

int index = 0;

int rightPos = 0;

DWORD di nval ;

int leftPos = szTagNane.find('[");

int | eft Posl = | eftPos;

while (leftPos I= -1)
{
array_di m-+;

index += | eftPosl;

szTagNane = szTagNane. substr(leftPos + 1, szTagNane.|ength());
| eft Pos = szTagNane.find('[");

right Pos = szTagNane.find(']');

di nval = (DWORD) at ol ((szTagNane. substr (0, rightPos)).c_str());

i ndexLi st ->i nsert (std: : make_pai r (i ndex, dinval));

leftPosl = | eftPos + 1;

void Createl O byTagName(std::string szTagName, BYTE* pl Q)
{

int leftPos = -1;

int rightPos = -1;

std:: map<i nt, DWORD> i ndexMap;

std:: map<int, DWORD>::iterator indexlter;

int array_dim= 0;

int tagLen = szTagNane. | ength();

Get ArrayDi nf Tag(szTagName, & ndexMap, array_din;

if (array_dim!= 0)

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 il

Chapter 4

Overview of SDK reference calls

72

tagLen = szTagName. substr (0, indexMap.begin()->first).length();

mencpy(pl O + 3, szTagNane.c_str(), taglLen);

plA[2] = taglLen;

if (tagLen % 2)
{
tagLen = taglLen + 1;
}
int wSize = tagLen / 2 + 1;
pla[1] = 0x91;
int wenOf Logi cSegment = O;
if (array_dim!= 0)
{
DWORD di nval = 0;

int len = wSize * 2 + 1;

int j =1;
for (indexlter = indexMap.begin(); j <= array_dim j++, indexlter++)
{

di mval = indexlter->second;

if (dinval <= Oxff)

(char)di nval ;

{
plO[len] = 0x28;
plOf[len + 1] =
len = len + 2;
w enCf Logi cSegnment += 1;
}

else if (dinval < Oxffff)

{

plO[len] = 0x29;

plOflen + 1] =
plAf[len + 2] =
plO[len + 3] =

len = len + 4;

0x00;
LOBYTE(di nval) ;

HI BYTE(di mval) ;

w enCf Logi cSegnment += 2;

}

else if (dinval < Oxffffffff)

{

plA[len] = 0x2a;

plOf[len + 1] =
plAflen + 2] =

plOf[len + 3] =

LNXSDK-RMOO1A-EN-E - November 2023

0x00;
LOBYTE(LOAORD(di nval)) ;

HI BYTE(LOAORD(di nval)) ;

Rockwell Automation, Inc.

Chapter 4

Overview of SDK reference calls

plO[len + 4] = LOBYTE(H WORD(di nval));
plO[len + 5] = H BYTE(H WORD(di nval));
len = len + 6;

w enOf Logi cSegnent += 3;

plO[0] = wSize + W enCf Logi cSegnent ;

tenpl ate <typename Inputlter, typename Qutputlter>

voi d nmyCopyMenory(| nputlter begin_nem

{

for (auto iter{ begin_mem}; iter != end_nem ++iter, ++target_nen)

{

*target _nmem = *iter;

auto destroy = [](DTSA_TYPE* pDtsa) {

Example: Open a normal connection

Rockwell Automation, Inc.

if (pDtsa)

{
DTL_DestroyDt sa(pDtsa);
pDtsa = NULL;

}

DTL_UNI NI T(0) ;

Add Global Header on page 67 to the beginning of this example.

/1 Open a normal connection.

DTL_RETVAL Opend oseCl PNor nal Connecti on()

{

/Il Step 1: Initialize the SDK
DTL_RETVAL retval = DTL_SUCCESS;
retval = DIL_INIT(O);
if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);
std::cout << "DTL INIT NOT SUCCESS, error: " << retval

return retval;

LNXSDK-RMOO1A-EN-E - November 2023

<< "

with "

Inputlter end_nem OQutputlter target_nem

<< szError <<

“\n";

73

Chapter4 Overview of SDK reference calls

Il Step 2: Create a DTSA before connecting a controller.

DWORD dwError = 0;

DTSA _TYPE* pDtsa = DTL_Creat eDt saFronPat hSt ri ng(HARMONY_PATH, &dwError,
DTL_FLAGS_ROUTE_TYPE CI P);

if (pDtsa == NULL || dwError != DTL_SUCCESS)

{
char szError[256];
DTL_ERROR S(dwError, szError, 256);
std::cout << "Failed to create dtsa, dwError = " << dwError << " with " << szError <<
\n";
DTL_UNI NI T(0) ;
return dwerror;
}

// Step 3: Establish the connection to a controller.

unsi gned char nr_ioi[5] = { 0x02, 0x20, 0x02, 0x24, 0x01, };// CIP class: Message Router
0x02; | nstance: 0x01

DWORD dwConnld = 0;

g_cip_conn.ctype = DTL_CONN_Cl P;

g_cip_conn. node = DTL_CI P_CONN_MODE_| S_CLI ENT;

g_cip_conn.trigger = DTL_ClI P_CONN_TRI GGER_APPLI CATI ON;

g_cip_conn.transport = 3;

g_cip_conn.tno_nult = O;

g_cip_conn. OT. conn_type = DTL_CI P_CONN_TYPE_PQO NT_TO_PQ NT;

g_cip_conn.OTl. priority = (unsigned char)DTL_Cl P_PRI ORI TY_LOW

g_ci p_conn. OT. pkt _type = DTL_ClI P_CONN_PACKET_SI ZE_VARI ABLE;

g_ci p_conn. OT. pkt _si ze = 400;

g_cip_conn. OT.rpi = 30000000L;

g_ci p_conn. OT. api = OL;

g_ci p_conn. TO conn_type = DTL_Cl P_CONN_TYPE_PO NT_TO_PQO NT;

g_cip_conn. TO priority = (unsigned char)DTL_Cl P_PRI ORI TY_LOW

g_ci p_conn. TO pkt _type = DTL_CI P_CONN_PACKET_SI ZE_VARI ABLE;

g_ci p_conn. TO pkt _si ze = 400;

g_cip_conn. TO. rpi = 30000000L;

g_cip_conn. TO api = OL;

g_ci p_conn. bLar geConnection = 0;

retval = DTL_CI P_CONNECTI ON_OPEN(
pDt sa,
nr_ioi,
&dwConnl d,
(unsi gned | ong) &g_obj Dat a,

&g_ci p_conn,

Th LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

(DTL_CI P_CONNECTI ON_PACKET_PROC) NULL,
(DTL_CI P_CONNECTI ON_STATUS_PRCC) st at us_pr oc,

5000L) ;

if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);

std::cout << "Failed to open connection, error: " << retval << " with " << szError <<

destroy(pDtsa);

return retval;

if (\WaitForSingleject(g_objData. mhEvent, 5000) != WAI T_OBJECT_0)

{
std::cout << "Timed out while waiting for connection opening.\n";
destroy(pDtsa);
return retval;

}

if(g_obj Data. m wConmBt ate ! = DTL_CONN_ESTABLI SHED)
{
char szError[256];
DTL_ERROR_S(g_obj Dat a. m wConmBt ate, szError, 256);
std::cout << "Failed to establish connection, error: " << g_objData. mwCommfBtate << "
with " << szError << "\n";
destroy(pDtsa);

return g_obj Data. m wConmft at e;

Il Step 4: O ose the connection to a controller.
retval = DTL_CI P_CONNECTI ON_CLOSE(dwConnl d, 10000L);
if (retval != DTL_SUCCESS)
{

char szError[256];

DTL_ERROR S(retval, szError, 256);

std::cout << "Failed to close connection, error: " << retval << " with " << szError <<

if (\WaitForSingleObject(g_objData. mhEvent, 10000) != WAl T_OBJECT_0)
{

std::cout << "Timed out while waiting for connection closing." << "\n";

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 75

Chapter 4

Overview of SDK reference calls

Example: Open a large connection

76

destroy(pDtsa);

return retval;

Il Step 5: Release the DTSA and uninitialize the SDK
destroy(pDtsa);

return retval;

Add Global Header on page 67 to the beginning of this example.

/'l Open a |arge connection
DTL_RETVAL Opend oseCl PLar geConnect i on()
{
/] Step 1. Initialize the SDK
DTL_RETVAL retval = DTL_SUCCESS;
retval = DTL_INIT(0);
if (retval != DTL_SUCCESS)
{
char szError[256];

DTL_ERROR S(retval, szError, 256);

std::cout << "DTL INIT NOT SUCCESS, error: " << retval << " with "

return retval;

I/l Step 2: Create a DTSA before connecting a controller.

DWORD dwError = 0;

<< szError << "\n";

DTSA TYPE* pDtsa = DTL_Creat eDt saFronPat hStri ng(HARMONY_PATH, &dwError,

DTL_FLAGS_ROUTE_TYPE_CI P);

0x02;

if (pDtsa == NULL || dwError != DTL_SUCCESS)

{
char szError[256];
DTL_ERROR S(dwError, szError, 256);
std::cout << "Failed to create dtsa, dwError = " << dwerror << "
DTL_UNI NI T(0) ;
return dwerror;
}

I/l Step 3: Establish the connection to a controller.

with " << szError <<

unsi gned char nr_ioi[5] = { 0x02, 0x20, 0x02, 0x24, 0x01, };// CIP class: Message Router

I nstance: 0x01

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Rockwell Automation, Inc.

DWORD dwConnld = 0;

g_cip_conn.ctype = DTL_CONN Cl P;

g_ci p_conn. node = DTL_Cl P_CONN_MODE_| S_CLI ENT;

g_cip_conn.trigger = DTL_ClI P_CONN_TRI GGER_APPLI CATI ON;

g_cip_conn.transport = 3;

g_cip_conn.tno_nult = O;

g_ci p_conn. OT. conn_t ype = DTL_Cl P_CONN_TYPE_PQ NT_TO_PQ NT;

g_ci p_conn.

g_ci p_conn.

g_ci p_conn.

g_ci p_conn.

qr.
qr.
g_ci p_conn. OT. pkt _si ze = 4002;
qr.
qr.

.priority = (unsigned char)DTL_CI P_PRI ORI TY_LOW

_pkt_type = DTL_CI P_CONN_PACKET_S| ZE_VARI ABLE;

.rpi = 30000000L;

.api = OL;

g_cip_conn. TO conn_type = DTL_ClI P_CONN_TYPE_PO NT_TO PO NT;

g_cip_conn. TO priority = (unsigned char)DTL_Cl P_PRI ORI TY_LOW

g_ci p_conn. TQ pkt _type = DTL_CI P_CONN_PACKET_SI| ZE_VARI ABLE;

g_ci p_conn. TO. pkt _si ze = 4002;

g_cip_conn. TO. rpi = 30000000L;

g_cip_conn. TO api = OL;

g_ci p_conn. bLar geConnection = 1;

retval = DTL_Cl P_LARGE_CONNECTI ON_OPEN(

pDt sa,

nr_ioi,

&dwConnl d,

(unsi gned | ong) &y_obj Dat a,

&g_ci p_conn,

(DTL_CI P_CONNECTI ON_PACKET_PROC) NULL,

(DTL_CI P_CONNECTI ON_STATUS_PRCC) st at us_pr oc,

5000L) ;

if (retval != DTL_SUCCESS)

{

char szError[256];

DTL_ERROR S(retval, szError, 256);

std::cout << "Failed to open connection, error: " << retval <<*"

destroy(pDtsa);

return retval;

if (WaitForSingl eObject(g_objData. m hEvent, 5000) != WAI T_OBJECT_0)

{

std::cout << "Tined out while waiting for connection opening.\n";

destroy(pDtsa);

LNXSDK-RMOO1A-EN-E - November 2023

with "

<< szError <<

77

Chapter 4

Overview of SDK reference calls

return retval;

if (g_objData. mwCommttate ! = DTL_CONN_ESTABLI SHED)

{

char szError[256];

DTL_ERROR_S(g_obj Data. m wConmBt ate, szError, 256);

std::cout << "Failed to establish connection, error:

with " << szError << "\n";
destroy(pDtsa);

return g_obj Data. m wConmBt at e;

Il Step 4: close the connection to a controller.

retval = DTL_Cl P_LARGE_CONNECTI ON_CLOSE(dwConnl d, 10000L);

<< "

<< g_obj Data. m wComtt ate << "

with " << szError <<

if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);
std::cout << "Failed to close connection, error: " << retval
“\n";
}
if (WaitForSingl elbject(g_objData. m hEvent, 10000) != WAI T_OBJECT_0)
{
std::cout << "Tinmed out while waiting for connection closing." << "
destroy(pDtsa);
return retval;
}
Il Step 5. Release the DTSA and uninitialize SDK.
destroy(pDtsa);
return retval ;
}

Example: Read tag value using a connected connection

78

Add Global Header on page 67 to the beginning of this example.

/l Read a tag with the connected CI P connection nethod.
DTL_RETVAL ReadTagOnConnect edConnecti on()
{

// Step 1: Initialize the SDK.

DTL_RETVAL retval = DTL_SUCCESS;

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Rockwell Automation, Inc.

retval = DTL_INIT(0);
if (retval != DTL_SUCCESS)
{

char szError[256];

DTL_ERROR S(retval, szError, 256);

std::cout << "DTL INIT NOT SUCCESS, error: " << retval << " with "

return retval;

I/l Step 2: Create a DTSA before connecting a controller.

DWORD dwError = O;

<< szError << "\n";

DTSA TYPE* pDtsa = DTL_Creat eDt saFronPat hStri ng(HARMONY_PATH, &dwError,

DTL_FLAGS_ROUTE_TYPE_CI P);

if (pDtsa == NULL || dwError != DTL_SUCCESS)

{
char szError[256];
DTL_ERROR _S(dwError, szError, 256);
std::cout << "Failed to create dtsa, dwError = " << dwkrror << "
\n";
DTL_UNI NI T(0) ;
return dwerror;
}

/] Step 3: Establish the connection to a controller.

with " << szError <<

unsi gned char nr_ioi[5] = { 0x02, 0x20, 0x02, 0x24, 0x01, };// CIP class: Message Router

0x02; I nstance: 0x01
DWORD dwConnld = 0;
g_cip_conn.ctype = DIL_CONN _Cl P;
g_cip_conn. node = DTL_CI P_CONN_MODE_| S_CLI ENT;
g_cip_conn.trigger = DTL_ClI P_CONN_TRI GGER_APPLI CATI ON;
g_cip_conn.transport = 3;
g_cip_conn.tno_nult = O;
g_ci p_conn. OT. conn_type = DTL_ClI P_CONN_TYPE_PO NT_TO_PQO NT;
g_cip_conn.Ol. priority = (unsigned char)DTL_Cl P_PRI ORI TY_LOW
g_ci p_conn.

. pkt_type = DTL_CI P_CONN_PACKET_S| ZE_VARI ABLE;

g_ci p_conn.

qr.
qr.

g_ci p_conn. OT. pkt _si ze = 400;
OT. rpi = 30000000L;
qr.

g_cip_conn.OT. api = OL;

g_ci p_conn. TO. conn_type = DTL_CI P_CONN_TYPE_PQO NT_TO POl NT;
g_cip_conn. TO priority = (unsigned char)DTL_Cl P_PRI ORI TY_LOW
g_ci p_conn. TO pkt _type = DTL_Cl P_CONN_PACKET_SI ZE_VARI ABLE;
g_ci p_conn. TO pkt _si ze = 400;

g_ci p_conn. TO rpi = 30000000L;

g_cip_conn. TO api = OL;

g_ci p_conn. bLar geConnection = 0;

LNXSDK-RMOO1A-EN-E - November 2023

7

Chapter4 Overview of SDK reference calls

retval = DTL_CI P_CONNECTI ON_OPEN(
pDt sa,
nr_ioi,
&dwConnl d,
(unsi gned | ong) &y_obj Dat a,
&g_ci p_conn,
(DTL_CI P_CONNECTI ON_PACKET_PRCC) packet _proc,
(DTL_CI P_CONNECTI ON_STATUS_PRCC) st at us_pr oc,

5000L) ;

if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);
std::cout << "Failed to open connection, error: " << retval << " with " << szError <<
"\n";
destroy(pDtsa);

return retval;

if (WaitForSingl eObject(g_objData. m hEvent, 5000) != WAI T_OBJECT_0)

{
std::cout << "Tined out while waiting for connection opening.\n";
destroy(pDtsa);
return retval;

}

if (g_objData. mwComState != DTL_CONN_ESTABLI SHED)
{
char szError[256];
DTL_ERROR_S(g_obj Dat a. m wConmBt at e, szError, 256);
std::cout << "Failed to establish connection, error: " << g_objData. m wCormfState << "
with " << szError << "\n";
destroy(pDtsa);

return g_obj Data. m wCommBt at e;

/] Step 4. Read a LINT tag.

std::array<BYTE, 64> buflO{ 0 };

buf lO[0] = 0x4C, // service code(Datat abl e_Read)
Cr eat el O byTagName(TAG_NAME, &buflO[1]);
buflQ[buflO[1] * 2 + 2] = 0x01;// Tag count

buf IO [buf IOI[1] * 2 + 3] = OX00;

80 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

retval = DTL_Cl P_CONNECTI ON_SEND(dwConnid, 0, &buflO[0], buf IQ[1] * 2 + 4);

bool bSuccess = true;
if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR_S(g_obj Dat a. m wConmSt at e, szError, 256);
std::cout << "Failed to read this tag, error: " << g_objData.mwCommftate << " with "
<< szError << "\n";
bSuccess = fal se;
}
if (\WaitForSingl eObject(g_objData. m hEvent Packet, 5000) != WAl T_OBJECT_O)
{
std::cout << "Timed out while waiting for sending message.\n";

bSuccess = fal se;

if (bSuccess)

{
LONGLONG | | Val ueRead = *(LONGLONG*) &g_obj Dat a. m vecBuffer[6] ;
std::cout << TAG NAME <<" Type of value: " << (WORD)g_objData. mvecBuffer[4] << "
Value: " << || Val ueRead << "\n";
}

I/l Step 5: O ose the connection to a controller.
retval = DTL_CI P_CONNECTI ON_CLOSE(dwConnl d, 10000L);
if (retval != DTL_SUCCESS)
{

char szError[256];

DTL_ERROR S(retval, szError, 256);

std::cout << "Failed to close connection, error: " << retval << " with " << szError <<

if (\WaitForSingleObject(g_objData. mhEvent, 10000) != WAI T_OBJECT_0)

{
std::cout << "Timed out while waiting for connection closing." << "\n";
destroy(pDtsa);
return retval;

}

Il Step 6: Release the DTSA and uninitialize the SDK
destroy(pDtsa);

return retval;

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 81

Chapter4 Overview of SDK reference calls

Example: Read and write tag value using an unconnected connection

Add Global Header on page 67 to the beginning of this example.

/'l Read or wite a tag with the unconnected Cl P connection nethod.
DTL_RETVAL ReadW i teTagOnUnconnect edConnecti on()
{

/Il Step 1: Initialize the SDK

DTL_RETVAL retval = DTL_SUCCESS;

retval = DIL_INIT(O);

if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);
std::cout << "DTL INIT NOT SUCCESS, error: " << retval << " with " << szError << "\n";
return retval;
}

/] Step 2. Create a DTSA before connecting a controller.

DWORD dwError = 0;

DTSA TYPE* pDtsa = DTL_Creat eDt saFronPat hSt ri ng(HARMONY_PATH, &dwError,
DTL_FLAGS_ROUTE_TYPE CI P);

if (pDtsa == NULL || dwError != DTL_SUCCESS)

{
char szError[256];
DTL_ERROR_S(dwError, szError, 256);
std::cout << "Failed to create dtsa, dwError = " << dwError << " with " << szError <<
"\'n";
DTL_UNI NI T(0) ;
return dwerror;
}

/Il Step 3: Read a LINT tag.

std::array<BYTE, 2> arrRequest{ 0x01,0x00 }; // Tag count: 1
std::array<BYTE, 512> arrReply{ 0 };

DWORD dwReadsi ze = arrReply.size();

BYTE byExt Status = O;

DWORD dwExt Si ze = 0, dw oStat = 0;

BYTE i0i[32] = { 0 };

Creat el O byTagName(TAG_NAMVE, io0i);

retval = DTL_Cl P_MESSAGE_SEND W pDt sa, Il reference to target device

82 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls
0x4C, /'l service code (Datatabl e_Read)
ioi, /'l object address
arr Request . data(), Il request data buff
arr Request . si ze(), /1 request data buff size
arrReply.data(), /'l response buffer
&dwReadsi ze, /'l response buffer size
&byExt St at us, /1 extended status
&dwEXt Si ze, /1l ext status buff size
&dw oSt at , /1 status returned here
20000) ; /1 tineout
if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);
std::cout << "Failed to read this tag, error: " << retval << " with " << szError <<
"\n";
destroy(pDtsa);
return retval;
}

LONGLONG | | Val ueRead = *(LONGLONG*) &ar r Repl y[2] ;

std::cout << TAG NAME << " Type of val ue:

|| Val ueRead << "\n";

2);

Il Step 4: Wite a LINT tag.
std:: vect or <BYTE> vecRequest ;
vecRequest . insert(std:: begin(vecRequest),

Il type of value

<< (WORD) arrRepl y[0] << " Value: " <<

std::begin(arrReply), std::begin(arrReply) +

vecRequest . r esi ze(dwReadsi ze + si zeof (WORD)) ;

vecRequest[2] = LOBYTE(O0x0001); // Tag count: 1

vecRequest [3] = HI BYTE(0x0001);

LONGLONG || val ue = |1 Val ueRead;

I'lValue += 1; // Increase the current value then wite back.

* (LONGLONG*) &ecRequest[4] = || Val ue;

arrReply.fill(0);

dwReadsi ze = arrReply. size();

retval = DTL_CI P_MESSAGE_SEND W pDt sa,

Il reference to target device

0x4D, /'l service code (Datatable_Wite)
ioi, /|1 object address
vecRequest . data(), /'l request data buff

LNXSDK-RMOO1A-EN-E - November 2023

83

Chapter4 Overview of SDK reference calls

vecRequest . si ze(), /1 request data buff size
arrReply. data(), /'l response buffer
&dwReadsi ze, Il response buffer size

&byExt St at us, /1 extended status

&dwExt Si ze, /1 ext status buff size
&JIw oSt at , /] status returned here
20000) ; /1l timeout
if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);
std::cout << "Failed to wite this tag, error: " << retval << " with " << szError <<
\n";
destroy(pDtsa);
return retval;
}
std::cout << TAG NAME << " Type of value: " << (WORD)vecRequest[0] << " Value wote: " <<
I'l Val ue << "\n";
/Il Step 5: Release the DTSA and uninitialize the SDK
destroy(pDtsa);
return retval;
}
. . . .
Example: Multiple packets in one request using a connected connection
Add Global Header on page 67 to the beginning of this example.
/1 Multiple packts in a CIP request with the connected Cl P connection nethod.
DTL_RETVAL Request Mul ti Packet sOnceOnConnect edConnecti on()
{
/Il Step 1: Initialize the SDK
DTL_RETVAL retval = DTL_SUCCESS;
retval = DTIL_INIT(O);
if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);
std::cout << "DTL INIT NOT SUCCESS, error: " << retval << " with " << szError << "\n";

84

return retval;

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter 4

Overview of SDK reference calls

Rockwell Automation, Inc.

Il Step 2:

Create a DTSA before connecting a controller.

DWORD dwError = 0;

DTSA TYPE* pDtsa = DTL_Creat eDt saFronPat hSt ri ng(HARMONY_PATH, &dwError,

DTL_FLAGS_ROUTE_TYPE CI P);

if (pDtsa == NULL || dwError != DTL_SUCCESS)

char szError[256];

DTL_ERROR_S(dwError, szError, 256);

std::cout << "Failed to create dtsa, dwError =

{
\n";
DTL_UNI
return
}
Il Step 3:

unsigned char nr_ioi[5] = { 0x02, 0x20, 0x02, 0x24, 0x01, };// CIP class: Message Router

0x02; | nstance: 0x01

NI T(0);

dwError;

Establish the connection to a controller.

DWORD dwConnld = 0;

g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.
g_ci p_conn.

g_ci p_conn.

ctype = DTL_CONN_CI P;

node = DTL_CI P_CONN_MODE_| S_CLI ENT;

trigger = DTL_CI P_CONN_TRI GGER_APPLI CATI ON;
transport = 3;

tnmo_mult = 0;

OT. conn_type = DTL_CI P_CONN_TYPE_PO NT_TO_PQO NT;

OT.priority = (unsigned char)DTL_Cl P_PRI ORI TY_LOW

OT. pkt _type = DTL_CI P_CONN_PACKET_SI ZE_VARI ABLE;
OT. pkt _si ze = 400;

OT.rpi = 30000000L;

OrT. api = OL;

TO. conn_type = DTL_Cl P_CONN_TYPE_PO NT_TO_PQl NT;

TO priority = (unsigned char)DTL_Cl P_PRI ORI TY_LOW

TQ pkt _type = DTL_CI P_CONN_PACKET_SI| ZE_VARI ABLE;
TO. pkt _si ze = 400;

TO. rpi = 30000000L;

TO api = OL;

bLar geConnection = O;

retval = DTL_Cl P_CONNECTI ON_OPEN(

pDt sa,

nr_ioi,

&dwConnl d,

(unsi gned | ong) &y_obj Dat a,

&g_cip_

conn,

" << dwError << "

(DTL_CI P_CONNECTI ON_PACKET_PRCC) packet _proc,

(DTL_CI P_CONNECTI ON_STATUS_PRCC) st at us_pr oc,

LNXSDK-RMOO1A-EN-E - November 2023

85

Chapter4 Overview of SDK reference calls

5000L) ;

if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);

std::cout << "Failed to open connection, error: " << retval << " with " << szError <<

destroy(pDtsa);

return retval;

if (WaitForSingl eObject(g_objData. m hEvent, 5000) != WAI T_OBJECT_0)

{
std::cout << "Tined out while waiting for connection opening.\n";
destroy(pDtsa);
return retval;

}

if (g_objData. mwCommttate != DTL_CONN_ESTABLI SHED)
{
char szError[256];
DTL_ERROR_S(g_obj Dat a. m wConmSt at e, szError, 256);
std::cout << "Failed to establish connection, error: " << g_objData.mwCormBtate << "
with " << szError << "\n";
destroy(pDtsa);

return g_obj Data. m wConmBt at e;

/Il Step 4: Multiple services in a ClP request.

std::array<BYTE, 22> arrRequest{ 0 };

arrRequest[0] = 0x02; // Nunmber of packages in this request
arrRequest[2] = 0x06; // O fset bytes of the first package

arrRequest[4] = OxOE; // Ofset bytes of the second package

arrRequest[6] = 0x01; // Get Attribute Al
arrRequest[7] = 0x03;
arr Request[8] = 0x20;

arrRequest[9] = 0x64; /

-

Ext ended Devi ce
arrRequest [10] = 0x25;
arr Request [11] = 0x00;
arr Request [12] = 0xO01;

arr Request [13] = 0xO00;

86 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

arrRequest[14] = 0x01; // Get Attribute All

arr Request [15]

0x03;

arr Request [16]

0x20;

arr Request [17]

0x01; // ldentity

arrRequest [18] = 0x25;

arrRequest[19] = 0x00;
arr Request[20] = 0xO01;
arr Request[21] = 0xO00;

std::vector<BYTE> bufl O = { OxO0A , 0x03, 0x20, 0x02, 0x25, 0x00, 0x01, 0x00 };// OxOA :
Ml ti pl eServi cePacket; 0x02 : CIP class (Message Router); O0x01 : Instance

bufl O .insert(std::end(bufl), std::begi n(arrRequest), std::end(arrRequest));

retval = DTL_CI P_CONNECTI ON_SEND(dwConnld, 0, &buflQ[0], buflO.size());

bool bSuccess = true;
if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);

std::cout << "Failed to send nessage, error: << retval << " with " << szError <<

\n";
bSuccess = fal se;
}
if (WaitForSingl eCbject(g_objData. m hEvent Packet, 5000) != WAI T_OBJECT_0)
{
std::cout << "Tined out while waiting for sending nessage.\n";
bSuccess = fal se;
}
if (bSuccess)
{
std::cout << " Nunber of service responses: " << *(WORD*)&g_obj Data. m vecBuffer[4] <<
\n";

std::cout << " The offset of first service response: " <<
(WORD) &g_obj Dat a. m vecBuffer[6] << "\n";

std::cout << " The offset of second service response: " <<
(WORD) &g_obj Dat a. m vecBuffer[8] << "\n";

}

I/l Step 5: Cose the connection to a controller.
retval = DTL_Cl P_CONNECTI ON_CLOSE(dwConnl d, 10000L);
if (retval != DTL_SUCCESS)

{

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 87

Chapter 4

Overview of SDK reference calls

char szError[256];

DTL_ERROR S(retval, szError, 256);

std::cout << "Failed to close connection, error: " << retval <<"

}

i f (WaitForSingleject(g_objData. m hEvent, 10000) != WAI T_OBJECT_0)

with " << szError <<

{
std::cout << "Tined out while waiting for closing connection.\n";
destroy(pDtsa);
return retval;

}

Il Step 6: Release the DTSA and uninitialize the SDK
destroy(pDtsa);

return retval;

Example: Multiple packets in one request using an unconnected connection

88

Add Global Header on page 67 to the beginning of this example.

/1 Multiple packts in a CIP request with the unconnected Cl P connection method.

DTL_RETVAL Request Ml ti Packet sOnceOnUnconnect edConnecti on()

{

/] Step 1. Initialize the SDK
DTL_RETVAL retval = DTL_SUCCESS;

retval = DTL_INIT(0);

if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);
std::cout << "DTL INIT NOT SUCCESS, error: " << retval << " with "
return retval;
}

Il Step 2: Create a DTSA before connecting a controller.

DWORD dwError = 0;

<< szError << "\n";

DTSA TYPE* pDtsa = DTL_Creat eDt saFronPat hStri ng(HARMONY_PATH, &dwError,

DTL_FLAGS_ROUTE_TYPE_CI P);

if (pDtsa == NULL || dwError != DTL_SUCCESS)
{
char szError[256];

DTL_ERROR S(dwError, szError, 256);

LNXSDK-RMOO1A-EN-E - November 2023

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Rockwell Automation, Inc.

I nst ance:

std::cout << "Failed to create dtsa, dwError = " << dwError << " with " << szError <<

DTL_UNI NI T(0) ;

return dwerror;

/Il Step 3: Miltiple services in a CIP request.

std::array<BYTE, 22> arrRequest{ 0 };

std::array<BYTE,

DWORD dwReadsi ze

BYTE byExt St at us

512> arrReply{ 0 };
= arrReply.size();

= 0;

DWORD dwExt Size = 0, dwl oStat = 0;

BYTE ioi [] = { 0x03, 0x20, 0x02, 0x25, 0x00, 0x01, 0x00 };// CIP class: Message Router 0x02;

0x01

arr Request [0]
arr Request [2]

arr Request [4]

arr Request [6]
arr Request [7]
arr Request [8]
arr Request [9]
arr Request [10]
arr Request [11]
arr Request [12]

arr Request [13]

arr Request [14]
arr Request [15]
arr Request [16]

arr Request [17]

0x02; // Nunber of packages in this request
0x06; // Ofset bytes of the first package

Ox0E; // O fset bytes of the second package

0x01; // Get Attribute All
0x03;
0x20;
0x64; // Extended Device
0x25;
0x00;
0x01;

0x00;

0x01; // Get Attribute Al
0x03;
0x20;

0x01; // ldentity

arrRequest [18] = 0x25;
arrRequest[19] = 0x00;
arr Request [20] = 0xO01;
arr Request[21] = 0xO00;
retval = DTL_CI P_MESSAGE_SEND W pDt sa, Il reference to target device
0x0A, Il service code (MiltipleServicePacket)
ioi, /1 object address
arr Request . data(), /'l request data buff
arr Request . si ze(), /'l request data buff size
arrReply. data(), Il response buffer
&dwReadsi ze, Il response buffer size
&byExt St at us, /'l extended status
LNXSDK-RMOQTA-EN-E - November 2023 89

Chapter 4

Overview of SDK reference calls

&dwExt Si ze, /1 ext status buff size
&JIw oSt at , /] status returned here
20000) ; /1l timeout

if (retval != DTL_SUCCESS)

{
char szError[256];
DTL_ERROR S(retval, szError, 256);
std::cout << "Failed to send nessage, error:

\n";

}

el se

{
std::cout << " Number of service responses:
std::cout << " The offset of first service response:
std::cout << " The offset of second service response:

“\n";

}

/Il Step 4. Release the DTSA and uninitialize the SDK

destroy(pDtsa);

return retval ;

}

Example: Request the service

90

Add Global Header on page 67 to the beginning of this example.

/!l Request the service.
DTL_RETVAL Request Cl PService()

{

/1 Step 1: Initialize the SDK
DTL_RETVAL retval = DTL_SUCCESS;
retval = DTL_I NI T(O);

if (retval != DTL_SUCCESS)

{

char szError[256];

DTL_ERROR S(retval, szError, 256);

std::cout << "DTL INIT NOT SUCCESS, error: " << retval << "

return retval;

}

/l Step 2: Create a DTSA before connecting a controller.

DWORD dwError = 0;

LNXSDK-RMOO1A-EN-E - November 2023

<< retval

<<

" Wwth " << szError <<

" << *(WORD*) &arrRepl y[0] << "\n";

" << *(WORD*) &arrReply[2] << "\n";

" << *(WORD*) &arr Repl y[4] <<

wth "

<< szError << "\n";

Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

DTSA _TYPE* pDtsa = DTL_Creat eDt saFronPat hSt ri ng(HARMONY_PATH, &dwError,
DTL_FLAGS_ROUTE_TYPE_CI P);

if (pDtsa == NULL || dwError != DTL_SUCCESS)

{

char szError[256];

DTL_ERROR S(dwerror, szError, 256);

std::cout << "Failed to create dtsa, dwError = " << dwError << " with " << szError << "\n";
DTL_UNI NI T(0) ;

return dwerror;

}

/] Step 3: Establish the connection to a controller.

unsi gned char nmr_ioi[5] = { 0x02, 0x20, 0x02, 0x24, 0x01, };// CIP class: Message Router 0x02;
I nst ance: 0x01

DWORD dwConnld = 0;

g_ci p_conn.ctype = DIL_CONN_Cl P;

g_ci p_conn. node = DTL_CI P_CONN_MODE_| S_CLI ENT;

g_cip_conn.trigger = DTL_Cl P_CONN_TRI GGER_APPLI CATI ON;

g_ci p_conn.transport = 3;

g_cip_conn.tmo_nult = 0;

g_ci p_conn. OT. conn_type = DTL_Cl P_CONN_TYPE_PQO NT_TO PO NT;

g_cip_conn.Ol. priority = (unsigned char)DTL_Cl P_PRI ORI TY_LOW

g_ci p_conn. OT. pkt _type = DTL_ClI P_CONN_PACKET_SI| ZE_VARI ABLE;

g_ci p_conn. OT. pkt _si ze = 400;

g_ci p_conn. OT.rpi = 30000000L;

g_cip_conn. OT. api = OL;

g_ci p_conn. TO conn_type = DTL_CI P_CONN_TYPE_PQ NT_TO POl NT;

g_cip_conn. TO priority = (unsigned char)DTL_Cl P_PRI ORI TY_LOW

g_ci p_conn. TO. pkt _type = DTL_CI P_CONN_PACKET_SI ZE_VARI ABLE;

g_ci p_conn. TO. pkt _si ze = 400;

g_ci p_conn. TO rpi = 30000000L;

g_ci p_conn. TO api = OL;

g_ci p_conn. bLar geConnection = 0;

retval = DTL_CI P_CONNECTI ON_OPEN(

pDt sa,

nr_ioi,

&dwConnl d,

(unsi gned | ong) &g_obj Dat a,

&g_ci p_conn,

(DTL_CI P_CONNECTI ON_PACKET_PRCC) packet _proc,
(DTL_CI P_CONNECTI ON_STATUS_PRCC) st at us_pr oc,

5000L) ;

if (retval != DTL_SUCCESS)

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 91

Chapter4 Overview of SDK reference calls

{
char szError[256];
DTL_ERROR S(retval, szError, 256);

std::cout << "Failed to open connection, error: " << retval << " with " << szError << "\n";

destroy(pDtsa);

return retval;

}

if (Wit ForSingl elbject(g_objData. m hEvent, 5000) != WAl T_OBJECT_0)
{

std::cout << "Tinmed out while waiting for connection opening.\n";
destroy(pDtsa);

return retval;

}

if (g_objData. mwCommttate != DTL_CONN_ESTABLI SHED)

{

char szError[256];

DTL_ERROR _S(g_obj Dat a. m wComrmSt ate, szError, 256);

std::cout << "Failed to establish connection, error: " << g_objData.mwCommBtate << " with "
<< szError << "\n";

destroy(pDtsa);

return g_obj Data. m wConmBt at e;

}

Il Step 4: Request the service.

std::array<BYTE, 64> buflO{ 0 };

buf IO [0] = OxOE; // Get Attribute Single

Set1 O (&uflA[1], 0x01, 0x01, 0x07); // 0x01 : ldentity class; 0x01 : Instance |D; 0x07:

Attribute ID (Product Name)

retval = DTL_Cl P_CONNECTI ON_SEND(dwConnld, 0, &uflA[0], buflOQ[1] * 2 + 2);

bool bSuccess = true;

if (retval != DTL_SUCCESS)

{

char szError[256];

DTL_ERROR S(retval, szError, 256);

std::cout << "Failed to send nessage, error: " << retval << " with " << szError << "\n";
bSuccess = fal se;

}

if (Wit ForSingl eObject(g_objData. m hEvent Packet, 5000) != WAI T_OBJECT_0)
{

std::cout << "Timed out while waiting for sending nmessage.\n";

bSuccess = fal se;

92 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

if (bSuccess)

{

std::cout << " Product Nanme : ;

nmyCopyMenor y(std:: begi n(g_obj Data. m vecBuffer) + 4, std::end(g_objData. mvecBuffer),

std::ostream.iterator<BYTE>{std::cout,""});

std::cout << std::endl;

}

/1 Step 5: Cose the connection to a controller.

retval = DTL_Cl P_CONNECTI ON_CLOSE(dwConnl d, 10000L);

if (retval != DTL_SUCCESS)

{

char szError[256];

DTL_ERROR S(retval, szError, 256);

std::cout << "Failed to close connection, error: " << retval << " with " << szError << "\n";
}

if (Wit ForSingleObject(g_objData. mhEvent, 10000) != WAl T_OBJECT_0)
{

std::cout << "Tinmed out while waiting for closing connection.\n";
destroy(pDtsa);

return retval;

}

Il Step 6: Release the DTSA and uninitialize the SDK
destroy(pDtsa);

return retval ;

Example: Send the PCCC request to the ControlLogix, SLC, or PLC controllers in a synchronized method

Rockwell Automation, Inc.

Add Global Header on page 67 to the beginning of this example.

/1 This sanple can be used to send the PCCC request to the Control Logi x or SLC/PLC controllers

under the ethernet direct driver or DH+ direct driver.

DTL_RETVAL SyncSendPCCCToDevi ce()
{

//step 1: Initialize the SDK.
DTL_RETVAL retval = DTL_INI T(0);
if (retval != DTL_SUCCESS)

{

char szError[256]{ 0 };

DTL_ERROR S(retval, szError, 256);

LNXSDK-RMOO1A-EN-E - November 2023 93

Chapter 4

Overview of SDK reference calls

94

Logi x

std::cout << "DTL INIT fail, error:
return retval ;

}

<< retval <<

wth "

//step 2: Create a DTSA before connecting to a controler.

DWORD dwError = 0;
/1if send PCCC conmand to Control Logi X,
Desi gner,

/1if send PCCC conmand to device under

"W N- OA4J4R7RIS8! DHH\\ 3" ;

<< szError << "\n";

like 1756-L85, meke sure configure PLC5/SLC mapping in

DH+ dri ver,

so that the address in PCCC cnd can be recgnized by the Control Logi x.

Harnony Path shoul d be |ike this:

const char* szHarnonyPath = " APCNSDALPYSF62! AB_ETH- 5\\ 10. 224. 82. 214";

DTSA TYPE* pDtsa =

DTL_FLAGS_ROUTE_TYPE_PCCO) ;

if (pDtsa == NULL ||
{

char szError[256]{ O };
DTL_ERROR S(retval,

szError, 256);

std::cout << "Failed to create dtsa, dwerror ="

DTL_UNI NI T(0) ;
return dwerror;

}

//step 3: Proteted Typed Logi cal
/1 Oxa2:
/10x02: size of data to read
/10x07: File Number
//0x89: data type 0x89 neans interger

/10x00: el enent nunber

/10x00: sub-el ement nunber

BYTE readCndReq[]

dwError != DTL_SUCCESS)

FNC code Oxa2 neans Proteted Typed Logi cal

DWORD r eadCnmdReqSi ze = si zeof (readCndReq) ;

BYTE rspRead[10] = { O };

DWORD rspSi ze = si zeof (rspRead);
BYTE cnd = OxOf;
DWORD i ostat = O;

DWORD ti meout = 5000L;

retval = DTL_PCCC MSG W pDt sa,
cnd,
readCndReq,

readCmdReqSi ze,
rspRead,

&rspSi ze,

&i ost at ,

timeout);

LNXSDK-RMOO1A-EN-E - November 2023

<< dwError << "with"

DTL_Cr eat eDt saFr onPat hSt ri ng(szHar nonyPat h, &dwerror,

<< szError << "\n";

Read w 3 address fields N7:0.

Read w 3 address fields

= { Oxa2, 0x02, 0x07, 0x89, 0x00, 0x00 };

Rockwell Automation, Inc.

Chapter 4

Overview of SDK reference calls

Rockwell Automation, Inc.

if (retval != DTL_SUCCESS)

{

std::cout << "read tag failed with error " << retval << "\n";
destroy(pDtsa);

return retval;

}

//copy data to WORD
WORD data = 0;
nmencpy_s(&data, sizeof (WORD), rspRead, rspSize);

std::cout << "tag value: " << data << "\n";

//step 4: Proteted Typed Logical Wite w 3 address fields N7:0.

/1 0xaa: FNC code Oxaa neans Proteted Typed Logical Wite w 3 address fields

/10x02: size of data to wite
/10x07: File Nunber

//0x89: data type is interger
/10x00: el enent nunber
/10x00: sub-el ement nunber

/1 0x0b, 0x00: data,|ow byte first, here is to wite 0x000b

BYTE witeCndReq[] = { Oxaa, 0x02, 0x07, 0x89, 0x00, 0x00, 0x0b, 0x00 };

DWORD wr i t eCndReqSi ze = si zeof (wit eCnuReq) ;
BYTE rspWite[10] = { 0 };
rspSi ze = sizeof (rspWite);
cmd = OxOf ;

iostat = 0;

timeout = 5000L;

retval = DTL_PCCC_MSG W pDx sa,
cnd,

wri t eCndReq,

writeCrdReqSi ze,

rspWite,

&rspSi ze,

& ost at ,

timeout);

if (retval != DTL_SUCCESS)

{

std::cout << "write tag failed with error " << retval << "\n";
destroy(pDtsa);

return retval;

}

destroy(pDtsa);

return retval;

LNXSDK-RMOO1A-EN-E - November 2023

95

Chapter4 Overview of SDK reference calls

Example: Send the PCCC request to the ControlLogix, SLC, or PLC controllers in an asynchronized
method

Add Global Header on page 67 to the beginning of this example.

/1 This sanple can be used to send the PCCC request to the Control Logi x or SLC/ PLC controllers
under the ethernet direct driver or DHt+ direct driver by asynchronized way.

DTL_RETVAL AsyncSendPCCCToDevi ce()

{

/lstep 1: Initialize the SDK.

DTL_RETVAL retval = DTL_INIT(0);

if (retval != DTL_SUCCESS)

{

char szError[256]{ 0 };

DTL_ERROR S(retval, szError, 256);

std::cout << "DTL INIT NOT SUCCESS, error: " << retval << " with " << szError << "\n";

return retval ;

}

//step 2: Create a DTSA before connecting to a controler.

DWORD dwError = 0;

/1if send PCCC command to Control Logi x, |ike 1756-L85, nmke sure configure PLC5/SLC mapping in
Logi x Designer, so that the address in PCCC cnd can be recgnized by the Control Logi x.

/1if send PCCC command to device under DH+ driver, Harnony Path should be like this:
"W N- OA4J4R7ROS8! DH+\ \ 3";

const char* szHarnonyPath = " APCNSDALPYSF62! AB_ETH- 5\\ 10. 224. 100. 39";

DTSA _TYPE* pDtsa = DTL_Creat eDt saFronPat hStri ng(szHar nonyPat h, &dwError,
DTL_FLAGS_ROUTE_TYPE_PCCC) ;

if (pDtsa == NULL || dwError != DTL_SUCCESS)

{

char szError[256]{ 0 };

DTL_ERROR S(retval, szError, 256);

std::cout << "Failed to create dtsa, dweError = " << dwError << "with" << szError << "\n";

DTL_UNI NI T(0) ;

return dwerror;

}

//step 3: Proteted Typed Logical Read w 3 address fields.

/1 0xa2: FNC code Oxa2 neans Proteted Typed Logical Read w 3 address fields
/10x02: size of data to read

/10x07: File Number

/10x89: data type 0x89 neans interger

96 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

/10x00: el enent number

/10x00: sub-el ement nunber

BYTE readCmdReq[] = { Oxa2, 0x02, 0x07, 0x89, 0x00, 0x00 };
DWORD r eadCnmdReqSi ze = si zeof (readCndReq) ;

BYTE rspRead[10] = { 0 };

DWORD rspSi ze = si zeof (rspRead);

BYTE cnd = OxOf ;

DWORD ti meout = 5000L;

retval = DTL_PCCC MSG CB(pDtsa,

cnd,

readCndReq,

readCndReqSi ze,

rspRead,

& spSi ze,

timeout,

(DTL_I O_CALLBACK_PROC) cal | back_pr oc,
(unsi gned | ong) &y_obj Dat a

):

bool bSuccess = true;

if (retval != DTL_SUCCESS)

{

std::cout << "read tag failed with error " << retval << "\n";
bSuccess = fal se;

}

if (Wit ForSinglelbject(g_objData. m hEvent Packet, 5000) != WAl T_OBJECT_0)
{

std::cout << "DTL_ClI P_MESSAGE SEND CB() read tag time out !'\n";

bSuccess = fal se;

}

if (bSuccess)

{

//copy data to WORD

WORD data = 0;

nmencpy_s(&data, sizeof (WORD), rspRead, rspSize);
std::cout << "tag value: " << data << "\n";

}

//step 4: Proteted Typed Logical Wite w 3 address fields.
// 0xaa: FNC code Oxaa nmeans Proteted Typed Logical Wite w 3 address fields
/10x02: size of data to wite

/10x07: File Number

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 97

Chapter4 Overview of SDK reference calls

//0x89: data type is interger
/10x00: el enent nunber
/10x00: sub-el ement nunber
/1 0x0b, 0x00: data,|ow byte first, here is to wite 0x000b
BYTE witeCndReq[] = { Oxaa, 0x02, 0x07, 0x89, 0x00, 0x00, 0x0b, 0x00 };
DWORD wr i t eCndReqSi ze = si zeof (wit eCnuReq) ;
BYTE rspWite[10] = { O };
rspSi ze = sizeof (rspwite);
cmd = OxOf ;
ti meout = 5000L;
retval = DTL_PCCC _MSG CB(pDtsa,
cnd,
wri t eCndReq,
wri t eCndReqSi ze,
rspWite,
&rspSi ze,
ti meout,
(DTL_I O_CALLBACK_PROC) cal | back_pr oc,
(unsi gned | ong) &y_obj Dat a
)i
if (retval != DTL_SUCCESS)
{
std::cout << "write tag failed with error " << retval << "\n";
}
if (Wit ForSingleObject(g_objData. m hEvent Packet, 5000) != WAI T_OBJECT_0)
{
std::cout << "DTL_PCCC M5G CB() wite tag time out !'\n";
}
destroy(pDtsa);
return retval;

}

DTL_RETVAL TryQtherlnterfaces()

{

Il Initialize the SDK.
DTL_RETVAL retval = DTL_SUCCESS;
retval = DTL_I NI T(0);
if (retval != DTL_SUCCESS)

{
char szError[256];
DTL_ERROR S(retval, szError, 256);

98 LNXSDK-RMOOTIA-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

std::cout << "DTL INIT NOT SUCCESS, error: " << retval << " with " << szError << "\n";
return retval ;

}

/1 Get the driver list of the current FTLinx.
DTLDRI VER Dri ver Li st [DTL_MAX_DRI VERS] { };

DWORD dwNunDri vers = DTL_MAX_DRI VERS;

retval = DTL_SetDri verListEntryType((void*)&DriverList, DTL_DVRLI ST_TYPE2) ;
if(retval == DTL_SUCCESS)

retval = DTL_DRI VER LI ST_EX(DriverList, &wNunDri vers, 500000000UL);

if (retval != DTL_SUCCESS)

{

char szError[256];

DTL_ERROR S(retval, szError, 256);

std::cout << "Get driver list failed, error: << retval << " with " << szError << "\n";

}

DWORD dwDr i ver Handl e = 0, dwst ati on=0;

char *pszDriverNane = nul | ptr, *pszServer Name= nul | ptr,* pszDriverAlias=nullptr;

WORD wDri ver | DOFFTLi nx = 0, wDstDriverlI DOfFTLinx = 0, wDriver| DOXDTL = 0, wDstDriverl DOfDTL =
0, wDri ver Type = 0, WNet wor kType = 0, wMru=0;

PDTLDRI VER pDriver = nullptr;

char szRet Nane[DTL_DRI VER_ NAVE_MAX] = {0};

for (DWORD dwi ndx = 0; dw ndx < dwNunDrivers; dw ndx++)

{

pDriver = (PDTLDRI VER) DTL_Get Dri verLi st EntryFronDri verLi stlndex(DriverList, dw ndx);
if (pDriver)

{

dwDr i ver Handl e = DTL_Get Handl eByDri ver Name(pDri ver->szDri ver Nane) ;

wDst Dri ver | DOfF FTLi nx = DTL_Get Dst Dri ver | DByDri ver Nane(pDri ver->szDri ver Name) ;
wNet wor kType = DTL_Get Net wor kTypeByDri ver Name(pDri ver - >szDri ver Nane) ;

whr i ver | DOfF FTLi nx = DTL_Get Dri ver | DByDri ver Name(pDriver->szDri ver Nane) ;
std::cout << "FTLinx Driver ID " << wDriver| DX FTLi nx

<< "; Driver Alias Name: " << pDriver->szDriverName

<< "; FTLinx Destinate Driver ID. " << wDstDriverl| DO FTLi nx

<< ": Driver Handle: " << dwDriverHandl e

<< "; Network Type: " << wNetworkType

<< "\n";

retval = DTL_DRI VER_OPEN(WDrx i ver | DOf FTLi nx, pDriver->szDriver Name, 5000L);

if (retval != DTL_SUCCESS)

{

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 99

Chapter4 Overview of SDK reference calls

char szError[256];
DTL_ERROR S(retval, szError, 256);
std::cout << "Can not open this driver, error: " << retval << " with " << szError << "\n";
}
el se
{
retval = DTL_Get NameByDri ver|d(wDri ver| DOf FTLi nx, szRet Nane);
if (retval != DTL_SUCCESS)
{
char szError[256];
DTL_ERROR S(retval, szError, 256);
std::cout << “Can not get name fromthis driver ID, error: " << retval << " with " << szError

<< "\n";
}
el se
{
std::cout << "Got name (" << szRetNane << ") fromDriver ID (" << wDriverlDOf FTLi nx << ")\n";
}
retval = DTL_DRI VER CLOSE(wDri ver | DOf FTLi nx, 5000L);
}
}
pszDriver Name = DTL_Get Dri ver NaneFronDri ver Li st Entry(&Dri verLi st[dw ndx]);
whr i ver Type = DTL_Get TypeFronDri ver Li st Entry(&Dri verLi st[dw ndx]);
dwDr i ver Handl e = DTL_Get Handl eFronDri ver Li st Entry(&Dri verLi st[dw ndx]);
wNet wor kType = DTL_Get Net wor kTypeFr onDri verLi st Entry(&Dri verList[dw ndx]);
whr i ver | DOfDTL = DTL_Get Dri ver | DFronDri ver Li st Entry(&DriverList[dw ndx]);
wDst Dri ver | DOfF DTL = DTL_Get Dst Dri ver | DFronDri verLi st Entry(&Dri verLi st[dw ndx]);
dwStation = DTL_Get Stati onFronDri verListEntry(&DriverList[dw ndx]);
WMIU = DTL_Get MTUFr onDri ver Li st Entry(&Dri verList[dw ndx]);
pszDriverAlias = DIL_GetDriverAliasFronDriverListEntry(&DriverList[dw ndx]);
std::cout << "Driver Name: " << pszDriverNane
<< "; Driver Alias Name: " << pszDriverAlias
<< ":; Driver ID " << wDriverl| DOf DTL
<< "; Destinate Driver ID " << wDstDriverl DO DTL
<< "; Driver Type: " << wDriverType
<< "; Driver Handle: " << dwDriverHandl e
<< "; Network Type: " << wNetworkType
<< "; Station Name: " << dwStation
<< "; Maxi mum Transmission Unit: " << wMIU
<< "\n";
}

100 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

Il Get the extended driver list of the current FTLinx

dwNunDri vers = 0;

PDTLDRI VER_EX pDri ver ExLi st = (PDTLDRI VER_EX) DTL_Cr eat eDri ver Li st (&wNunDri vers, 5000L);
PDTLDRI VER _EX pDriverEx = null ptr;

if (pDriverExList)

{

for (DWORD dwi ndx = 0; dw ndx < dwNunDrivers; dw ndx++)

{

pDriverEx = (PDTLDRI VER EX) DTL_Get Dri ver Li st EntryFronDri verLi st | ndex(pDri ver ExLi st, dw ndx);

pszServer Name = DTL_Get Ser ver NaneFr onDri ver Li st Entry(&Dri ver ExLi st [dwl ndx]) ;

std::cout << "Driver ID " << pDriverEx->wDriverlD
<< "; Driver Nane: " << pDriverEx->szDriver Nane

<< "; Server Nane: " << pszServerNane

<< "; Destinate Driver ID: " << pDriverEx->wDstDriverlD
<< "; Driver Handle: " << pDriverEx->dwHandl e
<< "; Network Type: " << pDriverEx->wNet wor kType

<< "; Max Station: " << pDriver Ex- >dwiaxSt at i on

<< "; Station: " << pDriverEx->dwStation
<< "; Driver Alias Name: " << pDriverEx->szDriverAlias
<< "; Maxinum Transnission Unit: " << pDriver Ex- >wMru

<< "; Driver struct Type: " << pDriverEx->wType

<< "\n“;

}

DTL_DestroyDri verLi st (pDriver ExLi st, 5000L);

}

DWORD dwiaxDrivers = DTL_MaxDrivers();
long I DriverlD = DTL_Get RSLi nxDriver!lD();
std::cout << “The fixed max count of drivers: " << dw\vaxDrivers
<< "; Driver IDof FTLinx: " << IDriverlD
<< "\n";
DWORD dwError = 0;
DTSA TYPE* pDtsa = DTL_Creat eDt saFronPat hSt ri ng(HARMONY_PATH, &dwError,
DTL_FLAGS_ROUTE_TYPE_CI P);
if (pDtsa)
{
retval = DTL_OpenDtsa(pDtsa);
if (retval != DTL_SUCCESS)
{
char szError[256];

DTL_ERROR S(retval, szError, 256);

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 101

Chapter4 Overview of SDK reference calls

std::cout << "Open the DTSA failed, error: " << retval << " with " << szError << "\n";
}

el se

{

dwDr i ver Handl e = ((DTSA_AB_DH LOCAL*) pDt sa) - >dri ver _i d;

retval = DTL_Get NameByDri ver|d(dwDriver Handl e, szRet Nane);

if (retval != DTL_SUCCESS)

{

char szError[256];

DTL_ERROR S(retval, szError, 256);

std::cout << "Can not get name fromthis driver ID, error: " << retval << " with " << szError

<< "\n";

el se

{

std::cout << "Got name (" << szRetNane << ") from Driver handle (" << dwDriverHandle << ")\n";

}

retval = DTL_Cl oseDt sa(pDtsa);

}

DTL_DestroyDt sa(pDt sa) ;

}

el se

{

std::cout << "Create DTSA failed." << "\n";

DTL_UNI NI T(0);

return retval;

int main()
{

DTL_RETVAL retval = DTL_SUCCESS;

retval = RequestCl PService();
std::cout << "RequestCl PService Returned: " << retval << "\n";

:: Sl eep(1000);
retval = ReadWiteTagOnUnconnect edConnection();
std::cout << "ReadWiteTagOnUnconnect edConnecti on Returned: " << retval << "\n";

:: Sl eep(1000);

retval = ReadTagOnConnect edConnection();

std::cout << "ReadTagOnConnectedConnection Returned: " << retval << "\n";

102 LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter4 Overview of SDK reference calls

:: Sl eep(1000) ;

retval = Opend oseCl PNor nal Connection();
std::cout << "OpenC oseCl PNor nal Connecti on Returned: " << retval << "\n";

:: Sl eep(1000) ;

retval = Opend oseCl PLar geConnection();

std::cout << "Opend oseCl PLar geConnection Returned: << retval << "\n";

:: Sl eep(1000) ;

retval = Request Ml ti Packet sOnceOnConnect edConnection();
std::cout << "Request Ml ti Packet sOnceOnConnect edConnection Returned: " << retval << "\n";

:: Sl eep(1000) ;

retval = Request Ml ti Packet sOnceOnUnconnect edConnection();
std::cout << "Request Ml ti Packet sOnceOnUnconnect edConnection Returned: " << retval << "\n";

:: Sl eep(1000) ;

retval = AsyncSendPCCCToDevi ce();
std::cout << "AsyncSendPCCCToDevice() returned: " << retval << "\n";

:: Sl eep(1000) ;

retval = SyncSendPCCCToDevi ce();
std::cout << "SyncSendPCCCToDevice() returned: " << retval << "\n";

:: Sl eep(1000) ;

retval = TryQtherlnterfaces();

std::cout << "TryQtherlnterfaces Returned: << retval << "\n";

:: Sl eep(1000) ;

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 103

Chapter 5

FactoryTalk Linx SDK Test Client

Test the SDK Interface

104

FactoryTalk Linx SDK Test Client can be used to verify the operation of the FactoryTalk Linx SDK Interface. It can
help connect to a CIP device to get the device information or read a tag value from a Logix controller. After the SDK

installation, find:

« C:\Program Files (x86)\Rockwell Software\RSOPC Gateway/FTLinxSDKTestClient.exe.

NOTE: C: is the installation drive, and you can change it as need.

Supported tag and data type
The supported tag and tag's data type are listed as follows:

Tag

* Global tag on page 104

» Tagunder a program on page 104

Data type

« DINT
o INT

« SINT
« UDINT
o UINT
e USINT
e REAL
- BOOL

NOTE: FactoryTalk Linx SDK Test Client can access bits with integers in Logix controllers.

Use these steps to test the SDK Interface.

Prerequisites

» Activate FactoryTalk Linx Gateway
» Enable access to the SDK API

To test the SDK Interface

1. Inthe Device Path box, enter a device path in the FactoryTalk Linx topology.

O Tip: You can right-click a device in the FactoryTalk Linx Network Browser and then select Device
Properties to get the path. For example, APCNSDATPYSF62!AB_ETH-5\\10.224.82.10.

2. Select Connect.

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

Chapter5 FactoryTalk Linx SDK Test Client

Device information appears, such as the product name and serial number, when the FactoryTalk Linx SDK
Interface works.
3. When connected to a Logix controller, the tool can access a tag. In the Tag ID box, enter the tag ID.

If the tag is under a global scope, the name format is:

o Scalar: GlobalTagName

o Structure: GlobalStructureTagName.ElementName

o Array: GlobalArrayTagName[Index]
The [Index] means the array ID, for example, 01, 02, and so on. You can customize it as needed.
If the tag is under a program, the name format is:

o Scalar: Program:ProgramName.TagName

o Structure: Program:ProgramName.StructureTagName.ElementName

o Array: Program:ProgramName.ArrayTagName[Index]

The [Index] means the array ID, for example, 01, 02, and so on. You can customize it as needed.

Q Tip: Copy a tag's Item ID:

a. Select a tag being monitored in the FactoryTalk Live Data Test client.

b. Right-click the selected tag, and then select Copy Item ID.
c. Paste the ID into the Tag ID box, and then remove the FactoryTalk area and shortcut,

for example, "Data_Area:[Filler]". The name will be "AlarmFillerConvJam".

4. Select Read to get the tag ID's value.

Items in the FactoryTalk Linx SDK Test Client dialog

The following table shows the items in the FactoryTalk Linx SDK Test Client dialog.

Items Descriptions

Device Path Shows the entered device path in the FactoryTalk Linx topology.
You can right-click a device in the FactoryTalk Linx Network

Browser and then select Device Properties to get the path.

Device Information Shows the device information, such as the product name and

serial number, when the FactoryTalk Linx SDK Interface works.

Tag ID Shows the entered device's tag ID.

Tag Value Shows the tag ID's value when you select Read.
Connect Connects to the device to show the device information.
Read Reads the tag value.

?

Shows the copyright information and license agreement of

FactoryTalk Linx SDK Test Client.

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 105

Chapter5 FactoryTalk Linx SDK Test Client

Troubleshoot the FactoryTalk Linx SDK Test Client

When you have these situations, verify the corresponding potential causes to troubleshoot.

Verify whether the SDK Interface is activated.

If the SDK Interface is not activated, a warning message appears indicating that the SDK Interface is not
activated. Use the proper FactoryTalk Linx Gateway license to activate the SDK Interface.

o FactoryTalk Linx Gateway Basic edition does not support the SDK.

o FactoryTalk Linx Gateway Standard edition will permit communications to a single device at a time.

o FactoryTalk Linx Gateway Extended, Distributed, and Professional will permit communications to

multiple devices simultaneously.
For more information, see SDK Interface Activation in the FactoryTalk Linx Gateway Help.

Verify whether the multiple device connections are approved when connecting to multiple devices using the
SDK Interface.
The detailed information shows whether connecting to single or multiple devices is supported under
Activation Status on the SDK Interface tab. If you want to connect to multiple devices using the SDK
Interface at the same time, use the proper FactoryTalk Linx Gateway license to activate the SDK Interface.
For more information, see SDK Interface Activation in the FactoryTalk Linx Gateway Help.
Verify whether the SDK Interface is enabled.

If the SDK Interface is not enabled, the Enable access to the FactoryTalk Linx SDK API checkbox on the
SDK Interface tab is not selected. Select the Enable access to the FactoryTalk Linx SDK API checkbox to
enable the SDK Interface. For mare information, see Items on the SDK Interface tab in the FactoryTalk Linx
Gateway Help.
Verify whether the application signature is included and enabled in the list when you select the Listed Client
option on the SDK Interface tab.
You can search for the application signature in the list and verify whether it is enabled. Otherwise, add the
application signature to the listed client and then enable it. For more information, see Items on the SDK
Interface tab in the FactoryTalk Linx Gateway Help.
See How to: Sign application and deployment manifests - Visual Studio (Windows) | Microsoft Learn for
additional information.
Verify whether the device path is correct.
If the device path is not correct, a warning message appears indicating that the path is incorrect. You can
right-click the device in the FactoryTalk Linx Network Browser and then select Device Properties to get the
path. For example, APCNSDATPYSF62!AB_ETH-5\10.224.82.10.
The connection or response has timed out.
Restart the device and try again.
Verify whether the tag ID is correct.
If the tag ID is not correct, a warning message appears indicating that the tag ID is not correct. Enter the

correct tag ID. For more information, refer to the tag ID's name format in Test the SDK Interface on page 104.

FactoryTalk Linx SDK Test Client's sample codes

Rockwell Automation provides FTLinxSDKTestClient.exe with the digital signature Rockwell Automation Inc. It is an

open-source application, and you can get the sample codes from the Rockwell Automation Sample Code Library for

reference.

106

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

https://learn.microsoft.com/en-us/visualstudio/ide/how-to-sign-application-and-deployment-manifests?view=vs-2022
https://www.rockwellautomation.com/search/ra-en-US;keyword=FactoryTalk%2520Linx%2520SDK%2520Test%2520Client;startIndex=0;activeTab=Sample_Code;spellingCorrect=true;facets=;languages=en;locales=en_GLOBAL,en-US;sort=bma;isPLS=false;sessionID=1c4ae045-5f57-d041-4306-dc0775b54ce7;deepLinking=false

Chapter5 FactoryTalk Linx SDK Test Client

Tip: The newly built application with these sample codes will not contain the Rockwell Automation digital signature.

You can get your signature as needed.

Rockwell Automation, Inc. LNXSDK-RMOO1A-EN-E - November 2023 107

Appendix A

Legal Notices

Legal Notices

108

Rockwell Automation publishes legal notices, such as privacy policies, license agreements, trademark disclosures,

and other terms and conditions on the Legal Notices page of the Rockwell Automation website.

Software and Cloud Services Agreement

Review and accept the Rockwell Automation Software and Cloud Services Agreement here.

Open Source Software Licenses

The software included in this product contains copyrighted software that is licensed under one or more open source

licenses.

You can view a full list of all open source software used in this product and their corresponding licenses by opening
the oss_license.txt file located in your product's OPENSOURCE folder on your hard drive. This file is divided into these

sections:

* Components
Includes the name of the open source component, its version number, and the type of license.
» Copyright Text
Includes the name of the open source component, its version number, and the copyright declaration.
» Licenses
Includes the name of the license, the list of open source components citing the license, and the terms of the

license.
The default location of this file is:

C:\Program Files (x86)\Common Files\Rockwell\Help\<product name>\Release Notes\ENU\OPENSOURCE

\oss_licenses.txt.

You may obtain Corresponding Source code for open source packages included in this product from their respective
project web site(s). Alternatively, you may obtain complete Corresponding Source code by contacting Rockwell
Automation via the Contact form on the Rockwell Automation website: http://www.rockwellautomation.com/global/

about-us/contact/contact.page. Please include "Open Source" as part of the request text.

The following table lists the commercially licensed software components in FactoryTalk Linx Gateway.

Component Copyright

Softing OPC UA C++ Server SDK for Windows version 6.20.1 Copyright Softing Industrial Automation GmbH 2009 - 2023

LNXSDK-RMOO1A-EN-E - November 2023 Rockwell Automation, Inc.

https://www.rockwellautomation.com/global/legal-notices/overview.page
https://www.rockwellautomation.com/en-us/company/about-us/legal-notices/software-cloud-services-agreement.html
http://www.rockwellautomation.com/global/about-us/contact/contact.page
http://www.rockwellautomation.com/global/about-us/contact/contact.page

Rockwell Automation Support

Use these resources to access support information.

Technical Support Center Find help with how-to videos, FAQs, chat, user forums, and product notification updates. rok.auto/support
Knowledgebase Access Knowledgebase articles. rok.auto/knowledgebase
Local Technical Support Phone Numbers Locate the telephone number for your country. rok.auto/phonesupport
Literature Library Find installation instructions, manuals, brochures, and technical data publications. rok.auto/literature
Product Compatibility and Download Center | Get help determining how products interact, check features and capabilities, and find rok.auto/pcdc

(PCDC) associated firmware.

°
Documentation feedback
Your comments help us serve your documentation needs better. If you have any suggestions an how to improve our content, complete the form at rok.auto/docfeedback.

Waste Electrical and Electronic Equipment (WEEE)

| At the end of life, this equipment should be collected separately from any unsorted municipal waste.

Rockwell Automation maintains current product environmental information on its website at rok.auto/pec.

Rockwell Otomasyon Ticaret A.S. Kar Plaza i Merkezi E Blok Kat:6 34752 icerenkﬁy, istanbul, Tel: +90 (216) 5698400 EEE Yonetmeligine Uygundur

Connect with us. n m

rockwellautomation.com expanding human possibility”

AMERICAS: Rockwell Automation, 1201 South Second Street, Milwaukee, W1 53204-2436 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
EUROPE/MIDDLE EAST/AFRICA: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
ASIA PACIFIC: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

LNXSDK-RMOO1A-EN-E - November 2023

Copyright ® 2023, Rockwell Automation Technologies, Inc. All rights reserved. Printed in the U.S.A.

http://rok.auto/support
http://rok.auto/knowledgebase
http://rok.auto/phonesupport
http://rok.auto/literature
http://rok.auto/pcdc
http://rok.auto/docfeedback
http://rok.auto/pec

	FactoryTalk Linx SDK Reference Manual
	Important User Information
	Contents
	1 - SDK Interface
	SDK Interface Installation
	SDK Interface Activation
	Items on the SDK Interface tab
	Troubleshoot the SDK Interface

	2 - Use case: CIP communications
	Connect to a message router in a CIP device to send messages
	Send unconnected messages

	3 - Use case: PCCC communications
	Send the PCCC messages

	4 - Overview of SDK reference calls
	DTL_INIT
	DTL_CreateDtsa
	DTL_CreateDtsaFromPathString
	DTL_PCCC_MSG_W
	DTL_PCCC_MSG_CB
	DTL_ASA_OPEN
	DTL_ASA_CLOSE
	DTL_ASA_MSG_W
	DTL_ASA_MSG_CB
	DTL_CIP_CONNECTION_OPEN
	DTL_CIP_CONNECTION_CLOSE
	DTL_CIP_LARGE_CONNECTION_OPEN
	DTL_CIP_LARGE_CONNECTION_CLOSE
	DTL_CIP_MESSAGE_SEND_CB
	DTL_CIP_MESSAGE_SEND_W
	DTL_OpenDtsa
	DTL_CloseDtsa
	DTL_DestroyDtsa
	DTL_UNINIT
	DTL_ERROR_S
	DTL_DRIVER_OPEN
	DTL_DRIVER_CLOSE
	DTL_GetRSLinxDriverID
	DTL_GetDriverIDByDriverName
	DTL_GetHandleByDriverName
	DTL_GetDstDriverIDByDriverName
	DTL_GetNetworkTypeByDriverName
	DTL_MaxDrivers
	DTL_DRIVER_LIST_EX
	DTL_SetDriverListEntryType
	DTL_GetTypeFromDriverListEntry
	DTL_GetHandleFromDriverListEntry
	DTL_GetDriverNameFromDriverListEntry
	DTL_GetNetworkTypeFromDriverListEntry
	DTL_GetDriverIDFromDriverListEntry
	DTL_GetDstDriverIDFromDriverListEntry
	DTL_GetStationFromDriverListEntry
	DTL_GetMTUFromDriverListEntry
	DTL_GetServerNameFromDriverListEntry
	DTL_GetDriverAliasFromDriverListEntry
	DTL_GetDriverListEntryFromDriverListIndex
	DTL_CreatetDriverList
	DTL_DestroyDriverList
	DTL_GetNameByDriverId
	DTL_CIP_CONNECTION_SEND
	DTL_CIP_CONNECTION_PACKET_PROC
	DTL_CIP_CONNECTION_STATUS_PROC
	DTL_IO_CALLBACK _PROC
	Global Header
	Example: Open a normal connection
	Example: Open a large connection
	Example: Read tag value using a connected connection
	Example: Read and write tag value using an unconnected connection
	Example: Multiple packets in one request using a connected connection
	Example: Multiple packets in one request using an unconnected connection
	Example: Request the service
	Example: Send the PCCC request to the ControlLogix, SLC, or PLC controllers in a synchronized method
	Example: Send the PCCC request to the ControlLogix, SLC, or PLC controllers in an asynchronized method

	5 - FactoryTalk Linx SDK Test Client
	Test the SDK Interface
	Items in the FactoryTalk Linx SDK Test Client dialog
	Troubleshoot the FactoryTalk Linx SDK Test Client
	FactoryTalk Linx SDK Test Client's sample codes

	A - Legal Notices
	Legal Notices

	Back cover

