Kinetix Safe Torque-off Feature

Original Instructions
Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell Automation® sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING:	Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.
ATTENTION:	Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.
SHOCK HAZARD:	Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.
BURN HAZARD:	Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

IMPORTANT | Identifies information that is critical for successful application and understanding of the product.

Allen-Bradley, GuardLogix, GuardPLC, Kinetix, Logix5000, RSLogix, TechConnect, Rockwell Automation, and Rockwell Software are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.
Summary of Changes

This manual contains new and updated information.

This revision includes changes for the Kinetix 6000 series C servo drives.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated references to safe-off (SO) as safe torque-off (STO), per EN 61800-5-2.</td>
<td>Throughout this manual</td>
</tr>
<tr>
<td>Replaced references to EN 954-1 with EN ISO 13849-1.</td>
<td></td>
</tr>
<tr>
<td>Updated safe torque-off descriptive text, including certification, description of operation, and PFD/PFH definitions and data.</td>
<td>9…12</td>
</tr>
<tr>
<td>Updated European Union Directives and moved from chapter 3 to chapter 1.</td>
<td>10</td>
</tr>
<tr>
<td>Updated Safe Torque-off Interface Cables table with 1202-C30, 3 m (9.8 ft) cable.</td>
<td>20</td>
</tr>
<tr>
<td>Added Safe Torque-off Headers table.</td>
<td></td>
</tr>
<tr>
<td>Added safe torque-off specifications for Kinetix 6000 (series C) drives.</td>
<td>30</td>
</tr>
<tr>
<td>Added EC Certifications appendix that includes examination certificate and declaration of conformity for Kinetix 6000 and Kinetix 7000 drives.</td>
<td>43</td>
</tr>
</tbody>
</table>
Summary of Changes

Notes:
Table of Contents

Preface
- About This Publication ... 7
- Audience ... 7
- Conventions Used in This Manual .. 7
- Terminology ... 7
- Additional Resources ... 8

Chapter 1

Safety Concept and Troubleshooting
- Certification .. 9
 - Important Safety Considerations 9
 - Category 3 Requirements According to EN ISO 13849-1 10
 - Stop Category Definition 10
- European Union Directives ... 10
 - CE Conformity ... 10
 - EMC Directive .. 10
 - Low Voltage Directive 11
- Description of Operation .. 11
- PFD and PFH Specifications .. 11
- PFD and PFH Data ... 12
- Troubleshooting ... 12
 - Understanding the Safe Torque-off Condition vs Drive Fault 13

Chapter 2

Safe Torque-off Connector Data
- Safe Torque-off Connector Pinout 15
- Safe Torque-off Header Configurations 17
- Safe Torque-off Accessories 20

Chapter 3

Wiring Your Kinetix Safe Torque-off Drive
- Wire the Safe Torque-off Circuit 21
- Safe Torque-off Wiring Requirements 22
- Safe Torque-off Feature ... 23
 - Safe Torque-off Feature Bypass 23
 - Safe Torque-off Connection Examples 24
 - Safe Torque-off Wiring Examples for SIL 3 Applications 27

Appendix A

Specifications
- Safe Torque-off Response Time Specifications 29
 - Safe Torque-off Signal Specifications 29
 - Kinetix 6000 (series A and B) and Kinetix 7000 Servo Drives ... 29
 - Kinetix 6000 (series C) Servo Drives 30
Table of Contents

Appendix B

Kinetix Safe Torque-off/Safety Relay Configurations 32
Kinetix Safe Torque-off/GuardLogix Configurations 35
Kinetix Safe Torque-off/GuardPLC Configurations 39

Appendix C

EC Type - Examination Certificate 43
EC Declaration of Conformity 45

Index
Preface

About This Publication

This manual provides detailed installation instructions for wiring and troubleshooting your Kinetix 6000 and Kinetix 7000 safe torque-off drives. Included are interconnect diagrams with Allen-Bradley safety relays, GuardLogix controllers, and GuardPLC controllers.

Audience

This manual is intended for engineers or technicians directly involved in the installation and wiring of the Kinetix 6000 and Kinetix 7000 drives, and programmers directly involved in the operation, field maintenance, and integration of the Kinetix 6000 and Kinetix 7000 drives in a safe torque-off application.

If you do not have a basic understanding of the Kinetix 6000 and Kinetix 7000 drives, contact your local Rockwell Automation sales representative for information on available training courses.

Conventions Used in This Manual

The following conventions are used throughout this manual:

- Bulleted lists such as this one provide information, not procedural steps.
- Numbered lists provide sequential steps or hierarchical information.
- Bold type is used for emphasis.

Terminology

This table defines acronyms used throughout this manual.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>European Norm</td>
<td>European Standards (EN specifications) developed by the European Committee for Standardization for the European Union.</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
<td>Voluntary organization whose members are recognized authorities on standards, each one representing a different country.</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
<td>Non-profit, non-governmental international standards organization that prepares and publishes international standards for all electrical, electronic, and related technologies, collectively known as electrotechnology.</td>
</tr>
<tr>
<td>PL</td>
<td>Performance Level</td>
<td>EN ISO 13849-1 safety rating.</td>
</tr>
<tr>
<td>SIL</td>
<td>Safety Integrity Level</td>
<td>The measure of a product's ability to lower the risk that a dangerous failure could occur.</td>
</tr>
<tr>
<td>PFD</td>
<td>Probability of Failure on Demand</td>
<td>The average probability of a system to fail to perform its design function on demand.</td>
</tr>
<tr>
<td>PFH</td>
<td>Probability of Failure per Hour</td>
<td>The probability of a system to have a dangerous failure occur per hour.</td>
</tr>
<tr>
<td>HFT</td>
<td>Hardware Fault Tolerance</td>
<td>Equals N, where N+1 faults could cause the loss of the safety function. A hardware fault tolerance of 1 means that 2 faults are required before safety is lost.</td>
</tr>
<tr>
<td>STD</td>
<td>Safe Torque-off</td>
<td>Functional safety feature that complies with IEC 61800-5-2.</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated Gate Bi-polar Transistors</td>
<td>Typical power switch used to control main current.</td>
</tr>
</tbody>
</table>
Additional Resources

These documents contain additional information concerning related Rockwell Automation products.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetix 6000 Multi-axis Servo Drive User Manual, publication 2094-UM001</td>
<td>Detailed mounting, wiring, setup with RSLogix 5000 software, applying power, and troubleshooting information, with appendices to support firmware upgrades, common bus applications, and Bulletin 2090 resistive brake module (RBM) applications.</td>
</tr>
<tr>
<td>Kinetix 7000 High Power Servo Drive User Manual, publication 2099-UM001</td>
<td>Detailed mounting, wiring, setup with RSLogix 5000 software, applying power, and troubleshooting information, with an appendix to support firmware upgrades.</td>
</tr>
<tr>
<td>DeviceNet Safety User Manual, publication 1791DS-UM001</td>
<td>Information on installing and configuring the 1791DS Series modules.</td>
</tr>
<tr>
<td>System Design for Control of Electrical Noise Reference Manual, publication GMC-RM001</td>
<td>Information, examples, and techniques designed to minimize system failures caused by electrical noise.</td>
</tr>
<tr>
<td>EMC Noise Management DVD, GMC-SP004</td>
<td></td>
</tr>
<tr>
<td>Rockwell Automation Configuration and Selection Tools website, website http://ab.com/e-tools</td>
<td>Online product selection and system configuration tools, including AutoCAD (DXF) drawings.</td>
</tr>
<tr>
<td>Rockwell Automation Product Certification, website http://rockwellautomation.com/products/certification</td>
<td>For declarations of conformity (DoC) currently available from Rockwell Automation.</td>
</tr>
<tr>
<td>Application Considerations for Solid-State Controls, publication SGI-1.1</td>
<td>A description of important differences between solid-state programmable controller products and hard-wired electromechanical devices.</td>
</tr>
<tr>
<td>Safety of Machinery - Safety Related Parts of Control Systems, standard EN 954-1</td>
<td>Safety requirements and guidance on the principles for the design of safety related parts of control systems.</td>
</tr>
<tr>
<td>Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems, standard IEC 61508</td>
<td>Aspects to be considered when electrical/electronic/programmable electronic systems are used to carry out safety functions.</td>
</tr>
<tr>
<td>National Electrical Code, published by the National Fire Protection Association of Boston, MA</td>
<td>An article on wire sizes and types for grounding electrical equipment.</td>
</tr>
<tr>
<td>Rockwell Automation Industrial Automation Glossary, publication AG-7.1</td>
<td>A glossary of industrial automation terms and abbreviations.</td>
</tr>
</tbody>
</table>

You can view or download publications at http://literature.rockwellautomation.com. To order paper copies of technical documentation, contact your local Rockwell Automation distributor or sales representative.
Chapter 1

Safety Concept and Troubleshooting

This chapter introduces you to how the safe torque-off feature meets the requirements of Performance Level e (PLe) and safety category 3 (CAT 3) per EN ISO 13849-1 and SIL 3 per IEC 61508, EN 61800-5-2 and EN 62061.

This chapter also provides a troubleshooting table and flowchart for understanding the Safe Torque-off mode.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certification</td>
<td>9</td>
</tr>
<tr>
<td>European Union Directives</td>
<td>10</td>
</tr>
<tr>
<td>Description of Operation</td>
<td>11</td>
</tr>
<tr>
<td>PFD and PFH Specifications</td>
<td>11</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>12</td>
</tr>
</tbody>
</table>

Certification

The TÜV Rheinland group has approved the Kinetix 6000 and Kinetix 7000 servo drives for use in safety-related applications up to EN ISO 13849-1 Performance Level e (PLe) and category 3, SIL 3 per IEC 61508, EN 61800-5-2 and EN 62061, in which removing the motion-producing power is considered to be the safe state.

To view the certificate, refer to EC Type - Examination Certificate on page 43.

Important Safety Considerations

You are responsible for the following:

- Validation of any sensors or actuators connected to the system
- Completing a machine-level risk assessment
- Certification of the machine to the desired EN ISO 13849-1 performance level or EN 62061 SIL level
- Project management and proof testing
Category 3 Requirements According to EN ISO 13849-1

Safety-related parts are designed with these attributes:

- A single fault in any of these parts does not lead to the loss of the safety function.
- A single fault is detected whenever reasonably practicable.
- Accumulation of undetected faults can lead to the loss of the safety function, which results in failure to remove motion-producing power from the motor.

Stop Category Definition

Stop category 0 as defined in EN 60204 or Safe Off as defined by EN 61800-5-2 is achieved with immediate removal of motion-producing power to the actuator.

IMPORTANT In the event of a malfunction, the most likely stop category is category 0. When designing the machine application, timing and distance should be considered for a coast-to-stop. For more information regarding stop categories, refer to EN 60204-1.

European Union Directives

If this product is installed within the European Union or EEC regions and has the CE mark, the following regulations apply.

CE Conformity

Conformity with the Low Voltage Directive and Electromagnetic Compatibility (EMC) Directive is demonstrated by using harmonized European Norm (EN) standards published in the Official Journal of the European Communities. The safe torque-off circuit complies with the EN standards when installed according instructions found in this manual.

EMC Directive

This unit is tested to meet Council Directive 2004/108/EC Electromagnetic Compatibility (EMC) by using these standards, in whole or in part:

- EN 61800-3 - Adjustable Speed Electrical Power Drive Systems, Part 3 - EMC Product Standard including specific test methods
- EN 61326-3-1 EMC - Immunity requirements for safety-related systems

The product described in this manual is intended for use in an industrial environment.

CE Declarations of Conformity are available online at http://www.rockwellautomation.com/products/certification and in EC Declaration of Conformity on page 178.
Low Voltage Directive

Refer to the Kinetix Servo Drives Specifications Technical Data, publication GMC-TD003, for environmental and mechanical specifications.

Description of Operation

The safe torque-off feature provides a method, with sufficiently low probability of failure, to force the power-transistor control signals to a disabled state. When disabled, or any time power is removed from the safety enable inputs, all of the drive output-power transistors are released from the On-state. This results in a condition where the drive is coasting (stop category 0). Disabling the power transistor output does not provide mechanical isolation of the electrical output, which may be required for some applications.

Under normal operation, the safe torque-off inputs are energized. If either of the safety-enable inputs are de-energized, then all of the output power transistors will turn off. The safe torque-off response time is less than 25 ms.

ATTENTION: Permanent magnet motors can, in the event of two simultaneous faults in the IGBT circuit, result in a rotation of up to 180 electrical degrees.

PFD and PFH Specifications

Safety-related systems can be classified as operating in either a Low Demand mode, or in a High Demand/Continuous mode:

- Low Demand mode: where the frequency of demands for operation made on a safety-related system is no greater than one per year or no greater than twice the proof-test frequency.
- High Demand/Continuous mode: where the frequency of demands for operation made on a safety-related system is greater than once per year.

The SIL value for a low demand safety-related system is directly related to order-of-magnitude ranges of its average probability of failure to satisfactorily perform its safety function on demand or, simply, average probability of failure on demand (PFD). The SIL value for a High Demand/Continuous mode safety-related system is directly related to the probability of a dangerous failure occurring per hour (PFH).
PFD and PFH Data

These PFD and PFH calculations are based on the equations from IEC 61508 and show worst-case values. Table 1 provides test data and demonstrates the worst-case effect of various configuration changes on the data.

Table 1 - PFD and PFH Proof Test Interval

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Kinetix 6000 Drives</th>
<th>Kinetix 7000 Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFH</td>
<td>0.26 (e-9)</td>
<td>0.38 (e-9)</td>
</tr>
<tr>
<td>PFD</td>
<td>0.045 (e-3)</td>
<td>0.027 (e-3)</td>
</tr>
<tr>
<td>Proof test interval (years)</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

Determination of safety parameters is based on the assumption that the system operates in High Demand mode and that the safety function is requested at least once a year.

PFH and PFD determination was performed without considering external wiring failure modes, as described in EN ISO 13849-2. Depending on the application, consider taking measures to exclude these failure modes.

To proof test the safe torque-off function, you must interrupt power to the safe torque-off function inputs (STO-5 and STO-7) and verify the drive is in the disabled state. Refer to the Safe Torque-off Connector Pinout on page 15, for signal descriptions and pinouts.

Troubleshooting

The safe-off fault (E49) is detected upon demand of the safe-off function.

Table 2 - Kinetix 6000 and Kinetix 7000 Safe Torque-off Troubleshooting

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Fault Message RSLogix (HIM)</th>
<th>Problem or Symptom</th>
<th>Potential Cause</th>
<th>Possible Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>E49</td>
<td>DriveHardFault (Safe-off HW Fmt)</td>
<td>Safe-off function mismatch. Drive will not allow motion.</td>
<td>• Loose wiring at safe torque-off (STO) connector. • Cable/header not seated properly in safe torque-off (STO) connector. • Safe-off circuit missing +24V DC.</td>
<td>• Verify wire terminations, cable/header connections, and +24V. • Reset error and run proof test. • If error persists, return the drive to Rockwell Automation.</td>
</tr>
</tbody>
</table>

ATTENTION: After troubleshooting, a proof test must be performed to verify correct operation.
Understanding the Safe Torque-off Condition vs Drive Fault

When both inputs de-energize within 100 ms, a fault does not occur (E49 is not displayed), however, a safe torque-off state is entered within the 25 ms response time. The safe torque-off condition occurs through normal drive operation.

A mismatch occurs when one input is de-energized while the other input is energized after 100 ms. This causes the E49 error code to display and the drive begins a shutdown sequence. Causes for a mismatch include:

- wiring anomalies at the Safe Torque-off (STO) connector, pins STO-5 and STO-7, or the external monitoring relay.
- input anomalies associated with the Safe Torque-off (STO) connector, pins STO-5 and STO-7.
- sequencing errors in the program.
- EMI interference.

To determine if you have a safe torque-off fault or condition, you must examine the Axis_Servo_Drive status bit in RSLogix 5000 software.

- If bit status is 0, then no safe torque-off condition or fault exists.
- If bit status is 1, then a safe torque-off condition or fault does exist.

In the RSLogix 5000, version 15 example, the `axis.DriveStatus.14` bit is set to 0, indicating the drive is not in Safe Torque-off mode. No safe torque-off condition or fault exists.

In the RSLogix 5000, version 16 example, the `axis.SafeOffModeActiveStatus` bit is set to 0, indicating the drive is not in Safe Torque-off mode. No safe torque-off condition or fault exists.
Figure 3 - Advanced Safe Torque-off Troubleshooting Flowchart

(1) This is a safe torque-off condition because the safe torque-off status bit is set to 1 without an E49 error code. After the condition is fixed, the motion planner must be signaled that the position loop has opened in the condition state with a Motion Servo Off (MSF) instruction before the next Motion Servo On (MSO) instruction can take place. The MSF instruction is necessary because the drive is enabled and running.

(2) This is also a safe torque-off condition (the safe torque-off status bit is set to 1 without an E49 error code). The safe torque-off condition must be resolved, but because the drive is not enabled and running the MSF instruction is not necessary.
Safe Torque-off Connector Data

This chapter provides safe torque-off (STO) connector, header, and interface cable information for the Kinetix 6000 and Kinetix 7000 safe torque-off drives.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe Torque-off Connector Pinout</td>
<td>15</td>
</tr>
<tr>
<td>Safe Torque-off Header Configurations</td>
<td>17</td>
</tr>
<tr>
<td>Safe Torque-off Accessories</td>
<td>20</td>
</tr>
</tbody>
</table>

Safe Torque-off Connector Pinout

Headers are available to extend the 9-pin safe torque-off (STO) connector signals for use in wiring single and multiple safe torque-off drive configurations, or to defeat (not use) the safe torque-off function.

Table 3 - 9-pin Safe Torque-off (STO) Connector

<table>
<thead>
<tr>
<th>Safe Torque-off (STO) Connector Pin</th>
<th>Also Applies to These STO Connector Headers</th>
<th>Description</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wiring plug header used in single-drive applications</td>
<td>One side of the normally-closed monitoring contact of relay 2</td>
<td>FDBK2+</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Other side of the normally-closed monitoring contact of relay 2</td>
<td>FDBK2-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>One side of the normally-closed monitoring contact of relay 1</td>
<td>FDBK1+</td>
</tr>
<tr>
<td>4</td>
<td>First-drive wiring header (2090-XNSM-W) used in multiple-drive applications</td>
<td>Other side of the normally-closed monitoring contact of relay 1</td>
<td>FDBK1-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Safety enable 2 input</td>
<td>SAFETY ENABLE2+</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Return for safety enable power (both inputs)</td>
<td>SAFETY ENABLE-</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Safety enable 1 input</td>
<td>SAFETY ENABLE1+</td>
</tr>
<tr>
<td>8</td>
<td>Wiring plug header</td>
<td>Output power for continuous enable of the safety function, 500 mA, max</td>
<td>24V+</td>
</tr>
<tr>
<td>9</td>
<td>Motion-allowed jumper</td>
<td>Output power return used for continuous enable of safety function</td>
<td>24V_COM</td>
</tr>
</tbody>
</table>

IMPORTANT Pins STO-8 (internal 24V+ supply) and STO-9 (24V_COM) are used only by the motion-allowed jumper to defeat the safe torque-off function. When the safe torque-off function is in operation, the 24V supply must come from an external source.
Figure 4 - 9-pin Safe Torque-off (STO) Connector - Kinetix 6000 Drive

Figure 5 - 9-pin Safe Torque-off (STO) Connector - Kinetix 7000 Drive
Safe Torque-off Header Configurations

The safe torque-off function can be implemented in a single-drive or extended in up to eight drives in a multiple safety-drive configuration. The connector can also be jumpered to effectively remove the safe torque-off function.

In this example, the Kinetix 6000 axis module is shown with the motion-allowed jumper installed in the wiring plug header. This header/jumper combination (default configuration) ships with each Kinetix 6000 and Kinetix 7000 drive and enables drive operation without external safety-circuit connections.

Figure 6 - Motion-allowed Jumper

In this example, the Kinetix 6000 axis module is shown with a wiring plug header. The motion-allowed jumper has been removed. Use the wiring plug header alone for wiring Kinetix 6000 and Kinetix 7000 single drive safe torque-off applications.

Figure 7 - Single Drive Wiring Header
In this example, the Kinetix 6000 axis module is shown with a first-drive wiring header (catalog number 2090-XNSM-W). Kinetix 6000 and Kinetix 7000 first-drive modules use this header in multiple safe torque-off drive configurations for wiring to a safety control circuit and extending the safe torque-off circuitry to another drive.

Figure 8 - First-drive Wiring Header (2090-XNSM-W)

- **Kinetix 6000 or Kinetix 7000 Drive** (Kinetix 6000 axis module is shown)
- **Safe Torque-off terminals for input wiring (STO-1…STO-7).**
- **Cable connector to second drive in safety circuit.**

IMPORTANT Do not use the first-drive (2090-XNSM-W) wiring header in single-drive applications.

Figure 9 - First-drive Wiring Header Pin Assignment
In this example, the Kinetix 6000 axis module is shown with a drive-to-drive middle header (catalog number 2090-XNSM-M). Kinetix 6000 and Kinetix 7000 drive modules, in safe torque-off drive configurations of three or more, use this header for making the safe torque-off connections between drives.

Figure 10 - Middle Drive Header (2090-XNSM-M)

![Middle Drive Header](image)

IMPORTANT Next and previous drive cable connection to the middle header (catalog number 2090-XNSM-M) is arbitrary. Input and output is not specified.

In this example, the Kinetix 6000 axis module is shown with a last-drive terminating header (catalog number 2090-XNSM-T). Kinetix 6000 and Kinetix 7000 drive modules use this header in multiple safe torque-off drive configurations for making safe torque-off connections to the last drive.

Figure 11 - Last Drive Header (2090-XNSM-T)

![Last Drive Header](image)
Safe Torque-off Accessories

An assortment of headers, when wired and plugged into the safe torque-off (STO) connector, make implementation possible, as described in this table.

Table 4 - Safe Torque-off Headers

<table>
<thead>
<tr>
<th>Description</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe Torque-off wiring header for the first drive in multiple safety drive configurations (optional).</td>
<td>2090-XNSM-W</td>
</tr>
<tr>
<td>Safe Torque-off middle header for drive-to-drive connections in multiple safety drive configurations with three or more drives (optional).</td>
<td>2090-XNSM-M</td>
</tr>
<tr>
<td>Safe Torque-off terminating header for the last drive in multiple safety drive configurations (optional).</td>
<td>2090-XNSM-T</td>
</tr>
</tbody>
</table>

Table 5 - Safe Torque-off Interface Cables

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1202-C02</td>
<td>Drive-to-drive safety cable, 200 mm (7.9 in.) for connecting single-wide Kinetix 6000 axis modules.</td>
</tr>
<tr>
<td>1202-C03</td>
<td>Drive-to-drive safety cable, 350 mm (13.8 in.) for connecting double-wide Kinetix 6000 axis modules.</td>
</tr>
</tbody>
</table>
| 1202-C10 | Drive-to-drive safety cable, 1050 mm (41.3 in.) for connections between:
- Kinetix 6000 power rail and Kinetix 7000 drive.
- Two Kinetix 6000 power rails.
- Two Kinetix 7000 drives. |
| 1202-C30 | Drive-to-drive safety cable, 3 m (9.8 ft) for any connections requiring additional cable length within the system enclosure. |

IMPORTANT Due to the current capacity limitation of the safe torque-off interface cable connectors, multiple safe torque-off drive configurations must not exceed eight Kinetix 6000 and Kinetix 7000 drive modules.

A replacement (STO) header with jumper is included in connector sets for the Kinetix 6000 and Kinetix 7000 safe torque-off drives.

Table 6 - Replacement Connector Sets

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Drive Module</th>
<th>Drive Cat. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2094-XNINV-1</td>
<td>Kinetix 6000 IAM and AM Modules</td>
<td>2094-AC05-Mxx-S, 2094-AC09-M02-S, 2094-AMP5-S, 2094-AM01-S, 2094-AM02-S</td>
<td>Includes motor power (MP), motor/resistive brake (BC), and safe torque-off (STO) replacement connectors for the IAM (inverter) and AM modules.</td>
</tr>
<tr>
<td>2094-ANINV-2</td>
<td>Kinetix 6000 IAM and AM Modules</td>
<td>2094-AC16-M03-S, 2094-AC32-M05-S, 2094-AM03-S, 2094-AM05-S, 2094-BC04-M03-S, 2094-BM03-S</td>
<td>Includes motor power (MP), motor/resistive brake (BC), and safe torque-off (STO) replacement connectors for the IAM (inverter) and AM modules.</td>
</tr>
<tr>
<td>2094-XNINV-1</td>
<td>Kinetix 7000 High Power Drives</td>
<td>2094-BC01-Mxx-S, 2094-BC02-M02-S, 2094-BMPS-S, 2094-BM01-S, 2094-BM02-S</td>
<td>Includes safe torque-off (STO), general purpose I/O (GPIO), general purpose relay (GPR), and control power (CP) replacement connectors for Kinetix 7000 drives.</td>
</tr>
<tr>
<td>2094-BNINV-2</td>
<td>Kinetix 7000 High Power Drives</td>
<td>2094-BC07-M05-S, 2094-BM05-S</td>
<td>Includes safe torque-off (STO), general purpose I/O (GPIO), general purpose relay (GPR), and control power (CP) replacement connectors for Kinetix 7000 drives.</td>
</tr>
</tbody>
</table>
Chapter 3

Wiring Your Kinetix Safe Torque-off Drive

This chapter provides guidelines for wiring your Kinetix 6000 and Kinetix 7000 safe torque-off drive connections.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire the Safe Torque-off Circuit</td>
<td>21</td>
</tr>
<tr>
<td>Safe Torque-off Wiring Requirements</td>
<td>22</td>
</tr>
<tr>
<td>Safe Torque-off Feature</td>
<td>23</td>
</tr>
</tbody>
</table>

Wire the Safe Torque-off Circuit

This section provides guidelines for wiring your Kinetix 6000 and Kinetix 7000 safe torque-off drive connections.

IMPORTANT The National Electrical Code and local electrical codes take precedence over the values and methods provided.

IMPORTANT To improve system performance, run wires and cables in the wireways as established in Establishing Noise Zones beginning on page 33.

IMPORTANT Pins STO-8 (internal 24V+ supply) and STO-9 (24V_COM) are used only by the motion-allowed jumper to defeat the safe torque-off function. When the safe torque-off function is in operation, the 24V supply must come from an external source.
Safe Torque-off Wiring
Requirements

These are the safe torque-off (STO) wiring requirements. Wire should be copper with 75 °C (167 °F) minimum rating.

IMPORTANT The National Electrical Code and local electrical codes take precedence over the values and methods provided.

<table>
<thead>
<tr>
<th>Safe Torque-off (STO) Connector</th>
<th>Recommended Wire Size</th>
<th>Strip Length (mm (in.))</th>
<th>Torque Value (N•m (lb•in))</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDBK2+</td>
<td>FDBK2-</td>
<td>FDBK1+</td>
<td>FDBK1-</td>
</tr>
<tr>
<td>Stranded Wire with Ferrule</td>
<td>mm² (AWG)</td>
<td>mm² (AWG)</td>
<td>mm² (AWG)</td>
</tr>
<tr>
<td>0.75 (18)</td>
<td>1.5 (16)</td>
<td>7.0 (0.275)</td>
<td>0.235 (2.0)</td>
</tr>
</tbody>
</table>

IMPORTANT Pins STO-8 (internal 24V+ supply) and STO-9 (24V_COM) are used only by the motion-allowed jumper to defeat the safe torque-off function. When the safe torque-off function is in operation, the 24V supply must come from an external source.

IMPORTANT To be sure of system performance, run wires and cables in the wireways as established in the user manual for your drive. Refer to Additional Resources on page 8 for the appropriate publication.

Refer to Appendix B beginning on page 31 for Kinetix 6000 and Kinetix 7000 interconnect diagrams with other Allen-Bradley safety products.
Safe Torque-off Feature

The safe torque-off circuit, when used with suitable safety components, provides protection according to EN ISO 13849-1 (PLc), Cat3 or according to EN 62061 (SIL3). The safe torque-off option is just one safety control system. All components in the system must be chosen and applied correctly to achieve the desired level of operator safeguarding.

The safe torque-off circuit is designed to safely turn off all of the output-power transistors. You can use the safe torque-off circuit in combination with other safety devices to achieve the stop and protection-against-restart as specified in IEC 60204-1.

ATTENTION: This option may be suitable for performing mechanical work on the drive system or affected area of a machine only. It does not provide electrical safety.

SHOCK HAZARD: In Safe Torque-off mode, hazardous voltages may still be present at the drive. To avoid an electric shock hazard, disconnect power to the system and verify that the voltage is zero before performing any work on the drive.

The Kinetix 6000 and Kinetix 7000 drives do not operate without a safety circuit or safety bypass wiring. For applications that do not require the safe torque-off feature you must install jumper wires to bypass the safe torque-off circuitry.

Safe Torque-off Feature Bypass

Each Kinetix 6000 and Kinetix 7000 safe torque-off drive ships with the (9-pin) wiring plug header and motion-allowed jumper. With this wiring header/jumper combination installed in the safe torque-off (STO) connector (default configuration), the safe torque-off feature is not used.

Figure 12 - Wiring Plug Header with Motion-allowed Jumper
Safe Torque-off Connection Examples

Typical safe torque-off connections for the Kinetix 6000 and Kinetix 7000 drives are shown in the figures below.

In this example, a single Kinetix 6000 safe torque-off drive is shown using the wiring plug header. The second and third drives do not use the safe torque-off feature, so the motion-allowed jumpers remain installed.

Figure 13 - Typical Single Drive Safe Torque-off Configuration

![Diagram of typical single drive safe torque-off configuration](image-url)
In this example, system 1 contains two (single-wide) Kinetix 6000 drives using the safe torque-off feature wired with two (double-wide) Kinetix 6000 drives in system 2. The wiring headers with motion-allowed jumpers have been replaced as shown. The third axis in system 1 does not use the safe torque-off feature, so the wiring header and motion-allowed jumper remain installed.

Figure 14 - Typical Kinetix 6000 Safe Torque-off Configuration

Cable connections to middle-drive headers (catalog number 2090-XNSM-M) can be made to either connector. Input and output is not specified.

IMPORTANT Due to the current capacity limitation of the safe torque-off cable connectors, multiple safe torque-off drive configurations must not exceed eight Kinetix 6000 or Kinetix 7000 drive modules.
In this example, the Kinetix 6000 power rail contains three (single-wide) drives using the safe torque-off feature and wired with one Kinetix 7000 drive. The wiring headers and motion-allowed jumpers have been replaced as shown.

Figure 15 - Typical Kinetix 6000 to Kinetix 7000 Safe Torque-off Configuration

IMPORTANT Due to the current capacity limitation of the safe torque-off cable connectors, multiple safe torque-off drive configurations must not exceed eight Kinetix 6000 or Kinetix 7000 drive modules.

Cable connections to middle-drive headers (catalog number 2090-XNSM-M) can be made to either connector. Input and output is not specified.
Safe Torque-off Wiring Examples for SIL 3 Applications

The following illustrations show typical wiring diagrams for the Kinetix 6000 and Kinetix 7000 safe torque-off drives:

- Typical single drive (stop category 0) configuration
- Typical single drive (stop category 1) configuration

ATTENTION: Category 1 (controlled stop) must be used and zero speed verified, prior to engaging the motor holding (parking) brake. Disabling the output by any means and engaging the holding brake with the motor in motion will result in premature failure of the brake.

Figure 16 - Single Drive (Stop Category 0) with Safety Relay Configuration

IMPORTANT Pins STO-8 (internal 24V+ supply) and STO-9 (24V_COM) are used only by the motion-allowed jumper to defeat the safe torque-off function. When the safe torque-off function is in operation, the 24V supply must come from an external source.
Figure 17 - Single Drive (Stop Category 1) with Safety Relay Configuration

IMPORTANT Pins STO-8 (internal 24V+ supply) and STO-9 (24V_COM) are used only by the motion-allowed jumper to defeat the safe torque-off function. When the safe torque-off function is in operation, the 24V supply must come from an external source.
Specifications

This chapter provides safe torque-off feature specifications for your Kinetix 6000 and Kinetix 7000 drives.

Safe Torque-off Response Time Specifications

The system reaction time is the amount of time from a safety-related event as input to the system until the system is in the safe state. Faults within the system can also have an effect upon the reaction time of the system. The safe torque-off response time for the Kinetix 6000 and Kinetix 7000 safe torque-off drives is 25 ms. This is the time from change of state at the drive input to change of state at the drive output.

ATTENTION: The safe torque-off response time is typical of drive performance. Actual system response time will vary depending on your application.

Safe Torque-off Signal Specifications

To maintain safety rating, Kinetix 6000 and Kinetix 7000 drives must be installed inside protected control panels or cabinets appropriate for the environmental conditions of the industrial location. The protection class of the panel or cabinet should be IP54 or higher.

Kinetix 6000 (series A and B) and Kinetix 7000 Servo Drives

Table 8 - Relay Coil Specifications for the ENABE Signals

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Nom</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull-in Voltage</td>
<td>24V</td>
<td>18V</td>
<td>26.4V</td>
</tr>
<tr>
<td>Drop-out Voltage</td>
<td>—</td>
<td>0V</td>
<td>2.4V</td>
</tr>
<tr>
<td>Coil Resistance</td>
<td>720 Ω</td>
<td>648 Ω</td>
<td>792 Ω</td>
</tr>
<tr>
<td>Coil Current</td>
<td>33.3 mA</td>
<td>—</td>
<td>55.0 mA</td>
</tr>
<tr>
<td>Pull-in Time</td>
<td>25 ms</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Drop-out Time</td>
<td>20 ms</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Appendix A Specifications

Table 9 - Relay Contact Specifications for the FDBK Signals

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Resistance (1 A, 24V DC)</td>
<td>≤ 100 mΩ</td>
</tr>
<tr>
<td>Contact Resistance (10 mA, 5V DC)</td>
<td>≤ 20 Ω</td>
</tr>
<tr>
<td>Contact Load (min)</td>
<td>10 mA, 5V DC</td>
</tr>
<tr>
<td>Rated Current</td>
<td>5 A</td>
</tr>
<tr>
<td>Rated Voltage</td>
<td>240V ac</td>
</tr>
<tr>
<td>Breaking Capacity, ac (max) for resistive loads</td>
<td>1250VA</td>
</tr>
</tbody>
</table>

Kinetix 6000 (series C) Servo Drives

Table 10 - Safe Torque-off Signal Specifications

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input current</td>
<td>< 10 mA</td>
</tr>
<tr>
<td>Input ON voltage range</td>
<td>18...26.4V DC</td>
</tr>
<tr>
<td>Input OFF voltage, max</td>
<td>5V DC</td>
</tr>
<tr>
<td>Input OFF current</td>
<td>2 mA @ V in < 5V DC</td>
</tr>
<tr>
<td>Pulse rejection width</td>
<td>700 µs</td>
</tr>
<tr>
<td>External power supply</td>
<td>SELV/PELV</td>
</tr>
<tr>
<td>Input type</td>
<td>Optically isolated and reverse voltage protected</td>
</tr>
</tbody>
</table>

For additional information regarding Allen-Bradley safety products, including safety relays, light curtain, and gate interlock applications, refer to the Safety Products Catalog, website http://www.ab.com/catalogs.
Kinetix Safe Torque-off Wiring Diagrams

This appendix provides typical wiring diagrams for the Kinetix 6000 and Kinetix 7000 safe torque-off drives with other Allen-Bradley safety products.

For additional information regarding Allen-Bradley safety products, including safety relays, light curtains, and gate interlock applications, refer to the Safety Products Catalog, website http://ab.com/catalogs.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetix Safe Torque-off/Safety Relay Configurations</td>
<td>32</td>
</tr>
<tr>
<td>Kinetix Safe Torque-off/GuardLogix Configurations</td>
<td>35</td>
</tr>
<tr>
<td>Kinetix Safe Torque-off/GuardPLC Configurations</td>
<td>39</td>
</tr>
</tbody>
</table>

ATTENTION: Category 1 (controlled stop) must be used and zero speed verified, prior to engaging the motor holding (parking) brake. Disabling the output by any means and engaging the holding brake with the motor in motion will result in premature failure of the brake.
Kinetix Safe Torque-off/Safety Relay Configurations

In the diagrams beginning below, the Kinetix 6000 and Kinetix 7000 drive safe torque-off connector is shown wired to an Allen-Bradley safety relay.

Figure 18 - Single-axis Relay Configuration (Stop Category 0)

Figure 19 - Single-axis Relay Configuration (Stop Category 1)
Figure 20 - Multi-axis Relay Configuration (Stop Category 0)
Figure 21 - Multi-axis Relay Configuration (Stop Category 1)

Allen-Bradley Monitoring Safety Relay
MSR138.1DP (440R-M23088)

External +24V DC

Safe Torque-off Demand

Reset

External 24V COM

Kinetix 6000 IAM/AM Module or
Kinetix 7000 Drive

1. FDBK2+
2. FDBK2-
3. FDBK1+
4. FDBK1-
5. SAFETY ENABLE2+
6. SAFETY ENABLE -
7. SAFETY ENABLE1+

I/O (IOD) Connector

I/O (IOD) Connector

Safe Torque-off Interface Cable 1202-Cxx

Safe Torque-off Demand

Safe Torque-off Interface Cable 1202-Cxx

Safe Torque-off Demand

Safe Torque-off Interface Cable 1202-Cxx

Safe Torque-off Demand

Safe Torque-off Interface Cable 1202-Cxx

External 24V COM

Safe Torque-off Demand

External 24V COM
Kinetix Safe Torque-off/GuardLogix Configurations

In these diagrams, the Kinetix 6000 and Kinetix 7000 drive safe torque-off connector is shown wired to an Allen-Bradley GuardLogix controller.

Figure 22 - Single-axis GuardLogix Configuration (Stop Category 0)

IMPORTANT
IMPORTANT Proper logic and commissioning of the safety controller must be configured.

IMPORTANT
Figure 25 - Multi-axis GuardLogix Configuration (Stop Category 1)

IMPORTANT

Kinetix Safe Torque-off/GuardPLC Configurations

In these diagrams, the Kinetix 6000 and Kinetix 7000 drive safe torque-off connector is shown wired to an Allen-Bradley GuardPLC controller.

Figure 26 - Single-axis GuardPLC Configuration (Stop Category 0)
Figure 27 - Single-axis GuardPLC Configuration (Stop Category 1)
Figure 28 - Multi-axis GuardPLC Configuration (Stop Category 0)
Figure 29 - Multi-axis GuardPLC Configuration (Stop Category 1)
Appendix C

EC Certifications

This appendix provides Kinetix 6000 and Kinetix 7000 servo drive certification information.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC Type - Examination Certificate</td>
<td>43</td>
</tr>
<tr>
<td>EC Declaration of Conformity</td>
<td>45</td>
</tr>
</tbody>
</table>

EC Type - Examination Certificate

For complete product certifications currently available from Rockwell Automation, go to http://www.rockwellautomation.com/products/certification.

Figure 30 - Kinetix 6000 Servo Drives Certificate
Figure 31 - Kinetix 7000 Servo Drives Certificate

ZERTIFIKAT
CERTIFICATE

EC Type-Examination Certificate
Registration No.: 01/208/0637/09

Kinetix 7000 Servo Drives Certificate

TÜV Rheinland

The safety function “Safe Torque Off” complies with the requirements of the harmonized standard EN 61800-2-62 and with the EC directive 2006/42/EC.

This certificate is valid until 2021-12-29 and 2018/99/EU (valid from 2009-12-29).

Certified by:
TÜV Rheinland

Certification Body/Disciplinarily, MD 0031
Dr.-Ing. Christian Franck
EC Declaration of Conformity

The undersigned, representing the manufacturer and the authorized representative established within the Community

Rockwell Automation, Inc.
6400 W. Enterprise Drive
Mequon, WI 53092
U.S.A.

herewith declare that the Products

Digital Servo Drives and Accessories Kinetix 6000/6200/6500/6000M

Product identification (brand and catalogue number/part number):

Allen-Bradley Bulletin 2094

(reference the attached list of catalogue numbers)

Product Safety Function:

Safe Standstill (Kinetix6000-S products)
Safe Torque-Off (Kinetix6200/6500-S0, Kinetix6000M-S products)
Safe Speed Monitor Option (Kinetix6200/6500-S1 products)

are in conformity with the essential requirements of the following EC Directive(s) when installed in accordance with the installation instructions contained in the product documentation:

2006/95/EC Low Voltage Directive
2004/108/EC EMC Directive
2006/42/EC Machinery Directive

and that the standards and/or technical specifications referenced below have been applied:

EN 50178:1997 Electronic equipment for use in power installations
EN 61800-5-1:2007 Adjustable speed electrical power drive system – Part 5-1: Safety requirements – Electrical, thermal and energy.
EN 61800-5-2:2007 Adjustable speed electrical power drive systems – Part 5-2: Safety requirements – Functional
EN 61800-3:2004 Adjustable speed electrical power drive systems – Part 3: EMC requirements and specific test methods
EN 60034-1:2004 Rotating electrical machines – Part 1: Rating and performance (TL, MPF, MPG, MPL, MPM, MPS, MPAS and RD only)
EN ISO 13849-1:2008 Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design

Year of CE Marking: 2002

Manufacturer: Rockwell Automation, Inc.
Authorized Representative in the Community: Rockwell Automation B.V.

Signature
Name: Thomas Van Groll
Position: Director Engineering
Date: 14-May-2012

Signature
Name: Viktor Schiffer
Position: Engineering Manager
Date: 15-May-2012
Appendix C

EC Certifications

<table>
<thead>
<tr>
<th>Catalogue number</th>
<th>Description</th>
<th>Directive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EMC</td>
</tr>
<tr>
<td>Bulletin 2094 Servo Drives</td>
<td>460 Volt Integrated Axis Module 6 kW Inverter 2.8 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-BC01-M05</td>
<td>460 Volt Integrated Axis Module 6 kW Inverter 6.1 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-BC02-M02</td>
<td>460 Volt Integrated Axis Module 15 kW Inverter 10.3 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-BC04-M03</td>
<td>460 Volt Integrated Axis Module 28 kW Inverter 21.3 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-BC07-M05</td>
<td>460 Volt Integrated Axis Module 45 kW Inverter 34.6 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-AC05-M05</td>
<td>2.0 Volt Integrated Axis Module 3 kW Inverter 3.7 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-AC05-M01</td>
<td>2.0 Volt Integrated Axis Module 3 kW Inverter 6.0 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-AC09-M02</td>
<td>2.0 Volt Integrated Axis Module 6 kW Inverter 10.6 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-AC16-M03</td>
<td>2.0 Volt Integrated Axis Module 11 kW Inverter 17.3Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-AC32-M05</td>
<td>2.0 Volt Integrated Axis Module 23 kW Inverter 34.6 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-BM05</td>
<td>460 Volt Axis Module 2.8 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-BM01</td>
<td>460 Volt Axis Module 6.1 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-BM02</td>
<td>460 Volt Axis Module 10.3 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-BM03</td>
<td>460 Volt Axis Module 21.2 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-BM05</td>
<td>460 Volt Axis Module 34.6 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-AMP5</td>
<td>2.0 Volt Axis Module 3.7 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-AM01</td>
<td>2.0 Volt Axis Module 6.0 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-AM02</td>
<td>2.0 Volt Axis Module 10.6 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-AM03</td>
<td>2.0 Volt Axis Module 17.3Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-AM05</td>
<td>2.0 Volt Axis Module 34.6 Amp</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-SE02F-M00-S0</td>
<td>Kinetix 6200, CM, SERCOS, safe torque-off</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-SE02F-M00-S1</td>
<td>Kinetix 6200, CM, SERCOS, safe speed monitoring</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-EN02D-M01-S0</td>
<td>Kinetix 6500, CM, CIP, safe torque-off</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-EN02D-M01-S1</td>
<td>Kinetix 6500, CM, CIP, safe speed monitoring</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-SEPMB24-S</td>
<td>Kinetix 6000M, SERCOS, 460 Volt IDM Power Interface Module, safe torque-off</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PRF</td>
<td>Power Rail Slot Filler, no electrical ratings apply</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PR1</td>
<td>1 Axis Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PR2</td>
<td>2 Axis Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PR4</td>
<td>4 Axis Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PR6</td>
<td>6 Axis Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PR8</td>
<td>8 Axis Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PRS1</td>
<td>1 Axis Slim Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PRS2</td>
<td>2 Axis Slim Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PRS3</td>
<td>3 Axis Slim Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PRS4</td>
<td>4 Axis Slim Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PRS5</td>
<td>5 Axis Slim Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PRS6</td>
<td>6 Axis Slim Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PRS7</td>
<td>7 Axis Slim Power Rail</td>
<td>Yes</td>
</tr>
<tr>
<td>2094-PRS8</td>
<td>8 Axis Slim Power Rail</td>
<td>Yes</td>
</tr>
</tbody>
</table>
EC Declaration of Conformity

The undersigned, representing the manufacturer and the authorised representative established within the Community

Rockwell Automation, Inc.
6400 W. Enterprise Drive
Mequon, Wisconsin 53092 – USA

Rockwell Automation BV
Rivium 1e Straat, 23
2999 LE Capelle aan den IJssel
Netherlands

hereby declare that the Products

Digital Servo Drive and accessories Kinetix 7000

Allen-Bradley Bulletin 2099

(allocate the attached list of catalogue numbers)

Product identification (brand and catalogue number/part number):

Allen-Bradley Bulletin 2099

Product Safety Function: Safe Torque Off

are in conformity with the essential requirements of the following EC Directive(s) when installed in accordance with the installation instructions contained in the product documentation:

2006/95/EC Low Voltage Directive

2004/108/EC EMC Directive

2006/42/EC Machinery Directive

and that the standards and/or technical specifications referenced below have been applied:

EN 60034-1:2004 Rotating electrical machines – Part 1: Rating and performance

EN 60204-1:2006 Safety of machinery – Electrical equipment of machines – Part 1: General requirements

EN 61800-3:2004 Adjustable speed electrical power drive systems – Part 3: EMC requirements and specific test methods

EN 50178:1997 Electronic equipment for use in power installations

EN ISO 13849-1:2008 Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design

Year of CE Marking 2006

Manufacturer: Rockwell Automation, Inc.

Authorised Representative in the Community: Rockwell Automation BV

Signature

Name: Tom Van Groll
Position: Director Engineering
Date: 16-Dec-2010

Signature

Name: Viktor Schiffer
Position: Engineering Manager
Date: 17-Dec-2010

Document Control Number: IMC-0018-H-EN
### Catalogue number	Series	Description
2099-BM06-S | 30 HP Servo drive | Bulletin 2099 Drives:
2099-BM07-S | 40 HP Servo drive |
2099-BM08-S | 50 HP Servo drive |
2099-BM09-S | 75 HP Servo drive |
2099-BM10-S | 100 HP Servo drive |
2099-BM11-S | 150 HP Servo drive |
2099-BM12-S | 200 HP Servo drive |

Bulletin 2099 and Bulletin 2090 Filters and Accessories

Catalogue number	Description
2090-XXLF-TC336 | Line filter, 3 phase, 36 Ampere |
2090-XXLF-TC350 | Line filter, 3 phase, 50 Ampere |
2090-XXLF-TC365 | Line filter, 3 phase, 65 Ampere |
2090-XXLF-TC3100 | Line filter, 3 phase, 100 Ampere |
2090-XXLF-TC3150 | Line filter, 3 phase, 150 Ampere |
2090-XXLF-TC3200 | Line filter, 3 phase, 200 Ampere |
2090-XXLF-TC3250 | Line filter, 3 phase, 250 Ampere |

Cables

Catalogue number	Description
2090-XXNFMP-Sxx | Motor feedback cable, for MPL motors or 1326AB motors or 8720SM motors using the MP connector system |
2090-UXNFBMP-Sxx | Motor feedback cable, for MPL motors or 1326AB motors or 8720SM motors using the MP connector system |
2090-XXNPMP-zzSxx | Motor power cable, for MPL motors or 1326AB motors or 8720SM motors using the MP connector system |
2090-MCNMPF-zzSxx | Motor power cable for MPL-B960D or -B980D motors |
2090-UXNBFMP-18Sxx | Motor brake cable |
2090-XXTFMP-Sxx | Continuous Flex Motor feedback cable, for MPL motors or 1326AB motors or 8720SM motors using the MP connector system |
2090-XXTPMP-YYSSL | Continuous Flex Motor Power cable, for MPL motors or 1326AB motors or 8720SM motors using the MP connector system, YY = wire gauge, LL = length in meters |
2090-UXTBMP-18SLL | Continuous Flex Motor brake cable, using the MP connector system, LL = length in meters |
2090-XXNFMF-Sxx | Motor feedback cable, for MPL motors or 1326AB motors or 8720SM motors using the MP connector system |
2090-XXNPMPF-zzSxx | Motor power cable, for MPL motors or 1326AB motors or 8720SM motors using the MP connector system |
Index

A
about this publication 7

C
cables
 drive-to-drive 20, 25, 26
catalog, safety products 31
category 3
 requirements 10
 stop category definitions 10
CE
 comply with CE 10
 conformity 10
 meet requirements 11
certification
EC Declaration of Conformity
 Kinetix 6000 45
 Kinetix 7000 47
EC Type - Examination Certificate
 Kinetix 6000 43
 Kinetix 7000 44
TÜV Rheinland 9
 user responsibilities 9
connector
 location 16
 pinout 15
 sets 20
conventions 7

D
drive-to-drive cables 25, 26

E
EC Declaration of Conformity
 Kinetix 6000 45
 Kinetix 7000 47
EC Type - Examination Certificate
 Kinetix 6000 43
 Kinetix 7000 44
EMC directive 10
EN ISO 13849-1 CAT 3
 requirements 10
 stop category definitions 10
enable signal specifications 29

F
feedback signal specifications 30
first-drive wiring header 18

G
GuardLogix examples 35
GuardPLC examples 39

H
headers 20
 first-drive wiring 18
 last-drive 19
 middle-drive 19
 motion allowed jumper 17
 wiring plug 17
HFT 7

L
last-drive header 19
low voltage directive 11

M
middle-drive header 19
motion allowed jumper 17

P
PFD 7
PFD and PFH definition 11
PFH 7

R
related documentation 8
response time
 specifications 29

S
safe torque-off 22
 bypass wiring 23
 condition 13
 drive fault 13
 operation 11
 PFD and PFH 11
 PFD and PFH definition 11
safe torque-off feature
 connector location 16
 connector pinout 15
 connector sets 20
 GuardLogix examples 35
 GuardPLC examples 39
 headers 20
 interface cables 20
 safety relay examples 32
 STD connector 23
 wiring example, stop cat. 0 27
 wiring example, stop cat. 1 28
 wiring requirements 22
safety products catalog 30, 31
safety relay examples 32
specifications
 safe torque-off enable signals 29
 safe torque-off feedback signals 30
 safe-off response time 29
Index

STO connector 23
 wiring 22

T
 terminology 7
 training 7
 troubleshooting 12
 error code E49 12
 flowchart 14
 safe torque-off condition 13
 safe torque-off drive fault 13

W
 wiring
 GuardLogix examples 35
 GuardPLC examples 39
 plug header 17
 requirements 22
 safe torque-off bypass 23
 safety relay examples 32
 STO connector 22
 stop cat. 0 example 27
 stop cat. 1 example 28
Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products. At http://www.rockwellautomation.com/support, you can find technical manuals, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools. You can also visit our Knowledgebase at http://www.rockwellautomation.com/knowledgebase for FAQs, technical information, support chat and forums, software updates, and to sign up for product notification updates.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnect™ support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/support/.

Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

<table>
<thead>
<tr>
<th>Location</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States or Canada</td>
<td>1.440.646.3434
Use the Worldwide Locator at http://www.rockwellautomation.com/rockwellautomation/support/overview.page, or contact your local Rockwell Automation representative.</td>
</tr>
<tr>
<td>Outside United States or Canada</td>
<td>Use the Worldwide Locator at http://www.rockwellautomation.com/rockwellautomation/support/overview.page, or contact your local Rockwell Automation representative.</td>
</tr>
</tbody>
</table>

New Product Satisfaction Return

Rockwell Automation tests all of its products to help ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

<table>
<thead>
<tr>
<th>Location</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.</td>
</tr>
<tr>
<td>Outside United States</td>
<td>Please contact your local Rockwell Automation representative for the return procedure.</td>
</tr>
</tbody>
</table>

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication RA-DU002, available at http://www.rockwellautomation.com/literature/.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com