Minotaur Safety Relay (MSR) to Guardmaster Safety Relay (GSR) Conversion (Phases 1...4)

Bulletin Number 440R

Allen-Bradley
by ROCKWELL AUTOMATION

Reference Manual

Original Instructions
Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

![WARNING:](image) Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

![ATTENTION:](image) Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

![IMPORTANT](image) Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

![SHOCK HAZARD:](image) Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

![BURN HAZARD:](image) Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

![ARC FLASH HAZARD:](image) Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).

The following icon may appear in the text of this document.

![Identifies information that is useful and can help to make a process easier to do or easier to understand.](image)
Table of Contents

Who Should Use this Manual ... 8
Additional Resources .. 8

Chapter 1

Product Overview .. 9
GSR Benefits .. 10
Conversion Concerns .. 10
 - Panel Space .. 10
 - Wiring Terminal Location 10
 - Wiring Change ... 10
 - Response Time .. 10
 - Output Load Capability .. 10
 - Interposing Relays ... 11
 - Monitored Reset Operation 12

Phase 1 (April 2015)

MSR8T Safety Relay .. 13
 - Terminal Locations and Panel Space 13
 - Example Wiring Schematics 14
 - Response Time .. 15
 - Output Load Capability .. 15
MSR10RD Safety Relay .. 16
 - Terminal Locations and Panel Space 16
 - Example Wiring Schematics 17
 - Response Time .. 18
 - Output Load Capability .. 19
MSR11R Safety Relay .. 19
 - Terminal Locations and Panel Space 19
 - Example Wiring Schematic 20
 - Response Time .. 20
 - Output Load Capability .. 20
MSR12T Safety Relay .. 21
 - Terminal Locations and Panel Space 21
 - Example Wiring Schematics 22
 - Response Time .. 22
 - Output Load Capability .. 23
MSR14T Safety Relay .. 23
 - Terminal Locations and Panel Space 23
 - Example Wiring Schematic 24
 - Response Time .. 24
 - Output Load Capability .. 24
MSR15D Safety Relay .. 25
 - Terminal Locations and Panel Space 25
 - Example Wiring Schematic 26
 - Response Time .. 26
 - Output Load Capability .. 26
MSR16R/T Safety Relay ... 27
<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Terminal Locations and Panel Space</th>
<th>Example Wiring Schematics</th>
<th>Response Time</th>
<th>Output Load Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR23M</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR123RT</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR178DP</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU1</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR6R/T</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR17T</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR18T</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR19E</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 2 (June 2016)

<table>
<thead>
<tr>
<th>Control Unit</th>
<th>Terminal Location and Panel Space</th>
<th>Example Wiring Schematics</th>
<th>Response Time</th>
<th>Output Load Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU2</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR6R/T</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR17T</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR18T</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR19E</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phase 3 (July 2018)

Chapter 4

MSR30RT/RTP Safety Relay .. 61
Terminal Locations and Panel Space 61
Example Wiring Schematics ... 61
Response Time .. 64
Output Load Capability .. 64
MSR38DP Safety Relay ... 64
Terminal Locations and Panel Space 64
Example Wiring Schematics ... 65
Response Time .. 67
Output Load Capability .. 67
MSR121RT Safety Relay ... 67
Terminal Locations and Panel Space 67
Example Wiring Schematics ... 72
Response Time .. 72
Output Load Capability .. 72
MSR122E Safety Relay ... 72
Terminal Locations and Panel Space 72
Example Wiring Schematics ... 73
Response Time .. 75
Output Load Capability .. 75
MSR144 Safety Relay .. 76
Terminal Locations and Panel Space 76
Example Wiring Schematics ... 77
Response Time .. 81
Output Load Capability .. 82
MSR200 Safety Relay .. 82
Terminal Locations and Panel Space 82
Example Wiring Schematics ... 84
Response Time .. 89
Output Load Capability .. 89

CU2 Control Unit ... 91
Terminal Location and Panel Space 91
Example Wiring Schematics ... 92
Output Load Capability .. 94
MSR7R and MSR7C Safety Relays 94
Terminal Location and Panel Space 95
Example Wiring Schematics ... 95
Maximum Input Impedance .. 96
Response Time .. 96
Output Load Capability .. 97
MSR9T Safety Relay .. 97
Terminal Location and Panel Space 97
Example Wiring Schematics ... 98
Maximum Input Impedance .. 99
Input Simultaneity ... 99
Response Time .. 99
Output Load Capability .. 100
MSR33 Safety Relay .. 100
 Terminal Location and Panel Space 100
 Example Wiring Schematics 101
 Input Simultaneity .. 102
 Response Time .. 102
 Output Load Capability 103
MSR35 Safety Relay .. 103
 Terminal Location and Panel Space 103
 Example Wiring Schematics 104
 Response Time .. 105
 Output Load Capability 105
MSR121RT Safety Relay .. 105
 Terminal Location and Panel Space 106
 Example Wiring Schematics 106
 Response Time .. 109
 Output Load Capability 109
MSR124RT Safety Relay .. 110
 Terminal Location and Panel Space 110
 Example Wiring Schematics 111
 Response Time .. 113
 Output Load Capability 113

Chapter 5

CU3 Control Unit .. 115
 Feature Comparison ... 115
 Power Supply and Thresholds 115
 Threshold and Delay Settings 116
 Terminal Locations and Panel Space 116
 Threshold Settings ... 117
 Example Wiring Schematics 118
 Output Load Capability 119
 Feedback Monitoring .. 119
MSR300 Safety Relay .. 120
 Terminal Locations and Panel Space 120
 Example Wiring Schematics 122
 Muting with E-stop ... 136
 Response Time .. 136
 Output Load Capability 136

Index ... 139
A number of older Allen-Bradley Guardmaster® safety relays are discontinued and no longer available for sale. This publication suggests examples for how to convert these existing safety relay applications to safety relays with the latest technologies.

The products that are described in this publication can be used in various ways. Therefore, you must verify that each application and use of this control equipment meets all performance and safety requirements. Designers must consider applicable laws, regulations, codes, and standards.

The wiring diagrams in this publication are intended as examples. Because many variables and requirements are associated with any particular installation, Rockwell Automation does not assume responsibility or liability for actual use that is based on these examples.

IMPORTANT The following MSR safety relays will continue to be offered for the foreseeable future.
Who Should Use this Manual

This publication is intended for those machine safeguard system designers who have been adequately trained in the design and use of safeguard systems and risk assessments.

This manual provides guidance on the differences between the features of the safety relays to help you select an appropriate solution for your application. You must perform a risk assessment of your converted design to confirm it meets your safeguarding requirements.

Additional Resources

These documents contain additional information concerning related products from Rockwell Automation.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guardmaster EtherNet/IP Network Interface User Manual, publication 440R-UM009</td>
<td>Provides detailed information to install, wire, configure, troubleshoot, and use the EtherNet/IP module.</td>
</tr>
<tr>
<td>Guardmaster Safety Relays User Manual, publication 440R-UM013</td>
<td>Provides detailed information to install, wire, configure, troubleshoot, and use Guardmaster safety relays.</td>
</tr>
<tr>
<td>Minotaur Safety Relay User Manual, publication 440R-UM014</td>
<td>Provides detailed information to install, wire, configure, troubleshoot, and use the Minotaur™ MSR55P safety relay.</td>
</tr>
<tr>
<td>Guardmaster Configurable Safety Relay, Publication 440C-UM001</td>
<td>Provides detailed information to install, wire, configure, troubleshoot, and use the Guardmaster configurable safety relay.</td>
</tr>
<tr>
<td>System Design for the Control of Electrical Noise Reference Manual, publication GMC-RM001</td>
<td>Provides a thorough review of the installation and grounding of noisy components and what can be done to minimize their potential to inject noise into the system.</td>
</tr>
<tr>
<td>Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1</td>
<td>Provides general guidelines for installing a Rockwell Automation® industrial system.</td>
</tr>
<tr>
<td>Product Certifications website, rok.auto/certifications</td>
<td>Provides declarations of conformity, certificates, and other certification details.</td>
</tr>
</tbody>
</table>

You can view or download publications at rok.auto/literature.
Chapter 1

Introduction

Product Overview

The next generation Guardmaster® safety relay (GSR) family is a high-quality replacement for most of the Minotaur™ safety relay (MSR) family.

The narrow housing design of 22.5 mm (0.88 in.) and configurable reset and logic functions, GSR safety relays can consolidate various functions of MSR safety relays with fewer models.

The MSR product line of safety relay modules typically offers one dedicated safety function for one safety circuit and actuator. MSR safety relays have less connectivity to each other than GSR safety relays. To add a second or third safety circuit requires more safety relay modules and safety contacts for cascading to maintain PLd or PLe safety ratings according to EN ISO 13849-1, respectively, SIL 2 or SIL 3 according to IEC 62061.

The GSR safety relay offers configurable safety functions and consolidates safety circuits, which result in fewer units, less space, and fewer costs. Due to the unique SWS cascading capability, logic combinations and zones can be constructed quickly.

Replacement with a GSR safety relay is more than a one-by-one swap out.

New Machinery Directives, changes of harmonized standards, and demands of safety solutions drove past designs of machines and contributed to productivity and flexibility.

This publication offers detailed assistance in the conversion of legacy MSR safety relay solutions to a smarter, cost-effective design of machines. Compliance with the latest requirements of Machinery Directive and harmonized standards have also been addressed.

For further assistance in replacing those devices contact Rockwell Automation Support, your local Allen-Bradley distributor, or Rockwell Automation sales office.
GSR Benefits

The GSR family of safety relays provides the following benefits:

- One or two (dual-channel) inputs
- Single wire safety (SWS) expansion
- Narrow package (less panel space)
- Configurable operation
- Cat 4 PLe and SIL 3 rating on most models
- RoHS compliance

Conversion Concerns

Product obsolescence is a part of the industrial business cycle. This publication provides cost-effective recommendations for converting your MSR family of safety relays to the state-of-the-art GSR family, and considers the following major concerns.

Panel Space

Many control panel designers leave space in their panels for future expansion and improvements. Panel space can become tight as the extra space is used. With panel space in mind, the recommended conversion is intended to maintain, or even reduce, panel space.

Wiring Terminal Location

The need to move a wire from the top of the old device to the bottom of the new device in a control panel cannot be taken lightly. Each of the recommended conversions shows the terminal locations of the previous and new devices, so you can plan the conversion appropriately.

Wiring Change

Example schematics that are provided compare the older device and the recommended newer device for each of the applications that the older device can provide.

Response Time

Response time is the time that is required to perform the safety function. For each conversion, the comparable response time is provided. An increase in the response time requires you to adjust the safety distance. This increase is not as much of an issue when a safety gate must be opened manually. However, this additional response time is likely to be an issue when presence-sensing devices like light curtains and safety mats are used.
Output Load Capability

Every safety relay has limitations on the amount of current the relay can switch or carry. When the load exceeds the rating of the safety relay, you can use relays that interpose, as shown in Figure 1.

Figure 1 - Output Load Capability Using Interposing Relays

Interposing Relays CR1 and CR2 consist of:
- 700-HPSXZ24 (relay)
- 700-HN123 (base)
- 700-AD1LR (diode and status indicator)
- 700-HN119 (retainer)

Interposing Relays

Every safety relay has limitations on the amount of current the relay can switch or carry. When the load exceeds the rating of the safety relay, interposing relays can be used as shown Figure 2.

Figure 2 - Interposing Relays

CR1 and CR2 consist of:
- 700-HPSXZ24 (relay)
- 700-HN123 (base)
- 700-AD1LR (diode and status indicator)
- 700-HN119 (retainer)
Monitored Reset Operation

The reset operation of the GSR relays is slightly different from the operation of the MSR relays. The reset operation of the MSR relays occurs on the trailing edge of the signal; for example, when the reset button is released. The reset on the GSR relays must see that the reset signal is released within the range of 0.25...3 seconds.

Figure 3 - Reset Operation Signal
Phase 1 (April 2015)

The preferred migration for the MSR8T safety relay is to the GSR CI safety relay.

The GSR CI safety relay has a switch to configure the reset to automatic or monitored manual. The wiring determines the single or dual-channel operation.

Terminal Locations and Panel Space

The MSR8T safety relay has a row of terminals at the top and bottom. The width is 45 mm (1.77 in.). The GSR CI safety relay has two rows of terminals at the top and bottom, with a smaller 22.5 mm (0.88 in.) width.

The MSR8T safety relay has an option for 115V AC and 230V AC. Since the GSR CI safety relay is powered by 24V DC, catalog number 1606-XLP15E, can be used to convert the AC supply to 24V DC, while still occupying the same amount of space.
The power, safety inputs, and outputs are similar. The reset/monitoring circuit is slightly different. Figure 6...Figure 8 on page 15 show comparisons of the typical ways a MSR8T safety relay can be applied and the GSR CI safety relay equivalent.

Example Wiring Schematics

Figure 6 - DC Powered

A catalog number 1606 power supply converts 100/240V AC to 24V DC to power the GSR CI safety relay. The outputs of the GSR CI safety relay can switch up to 240V AC loads.

The MSR8T safety relay has an internal switch that sets the power to either 115V or 230V AC.

Figure 7 - AC Powered

...
As an alternative, an equivalent MSR127 safety relay can replace the AC powered MSR8 safety relay. Select the appropriate MSR127 safety relay.

Figure 8 - AC Powered Alternative

Response Time

Table 1 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR8T</td>
<td>90</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35</td>
</tr>
</tbody>
</table>

Since the GSR CI safety relay has a faster response time, the safety distance for the GSR CI safety relay is shorter than the MSR8T safety relay. No further action is required.

Output Load Capability

The MSR8T safety relay has a higher current capability than the GSR CI safety relay, see Table 2. See Interposing Relays on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR CI safety relay capability.

Table 2 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR8T</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>C300, AC-15</td>
</tr>
<tr>
<td></td>
<td>4 A</td>
<td>1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>P300, DC-13</td>
<td>2 A at 24V DC</td>
</tr>
<tr>
<td></td>
<td>3 A at 24V DC</td>
<td></td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>2 A</td>
</tr>
</tbody>
</table>
The MSR10RD safety relay has eight immediate safety outputs and one delayed safety output, plus an immediate auxiliary output and a delayed auxiliary output. The preferred migration for the MSR10RDT safety is to the GSR CI safety relay with two EM expansion relays and one EMD expansion relay.

The MSR10RD safety relay has an option for 24V DC, 115V AC, and 230V AC. For AC powered applications, a catalog number 1606 power supply can be used to provide 14V to the GSR safety relays.

Terminal Locations and Panel Space

The MSR10RD safety relay has a row of terminals at the top and bottom. Its width is 152 mm (5.98 in.).

For 24V DC powered applications, a GSR CI safety relay, two EM expansion relays, and one EMD expansion relay are needed; these occupy only 90 mm (3.54 in.) of panel space.

For applications powered by 115V AC or 230V AC, the 1606-XLP15E power supply can be used to convert the AC supply to 24V DC, while still occupying less than the amount of panel space required by the MSR10RD safety relay.
The MSR10RD safety relay has an internal switch that sets the power to either 115V or 230V AC.
The GSR safety relay solution requires a power supply. The 1606-XLP15E power supply provides 15 W, enough to power the four GSR safety relays. Each GSR safety relay consumes a maximum 3.5 W.

Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR10RD</td>
<td>50</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35</td>
</tr>
<tr>
<td>EM</td>
<td>70 (35 from the GSR CI + 35 from the safety wire input)</td>
</tr>
<tr>
<td>EMD</td>
<td>70 (35 from the GSR CI + 35 from the safety wire input)</td>
</tr>
</tbody>
</table>

Since the GSR CI safety relay has a faster response time, the safety distance for the GSR CI safety relay is shorter than the MSR10RD safety relay. The response time of the loads that are connected to the EM and EMD expansion relays are longer and must be evaluated for adequate safety distance.

ATTENTION: Since the MSR10RD safety relay is faster than the EM and EMD expansion relays, the safety distance must be examined closely and adjusted if necessary.
Output Load Capability

The MSR10RD safety relay has a higher current capability than the GSR CI safety relay, EM, and EMD expansion relays as shown in Table 4. See Interposing Relays on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR safety relay capability.

Table 4 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR10RD</th>
<th>GSR CI</th>
<th>EM</th>
<th>EMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15 4 A</td>
<td>C3000, AC-15 1.5 A</td>
<td>B300, AC-15 1.5 A/250V AC</td>
<td>B300, AC-15 1.5 A/250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>P3000, DC-13 3 A at 24V DC</td>
<td>DC-13 2 A at 24V DC</td>
<td>DC-13 2 A at 24V DC</td>
<td>DC-13 2 A at 24V DC</td>
</tr>
<tr>
<td>Thermal</td>
<td>4 A</td>
<td>2 A</td>
<td>6 A on 1 circuit</td>
<td>6 A on 1 circuit</td>
</tr>
<tr>
<td>(non-switching)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The preferred migration for the MSR11R safety relay is to the GSR CI relay. The MSR11R safety relay is only available with one dual-channel and monitored manual reset.

Currently, only the 24V version is available. The 110V AC and 230V AC versions were obsoleted earlier.

The GSR CI safety relay has one switch to configure the reset to automatic or monitored manual. Wiring determines the dual-channel operation.

Terminal Locations and Panel Space

The MSR11R safety relay has a row of terminals at the top and bottom. Its width is 45 mm (1.77 in.). The GSR CI safety relay has two rows of terminals at the top and bottom, allowing a smaller 22.5 mm (0.88 in.) width.

Figure 16 - Terminals and Panel Space [mm (in.)]

```
A1 S13 S24 X1 41 13 23 33
MSR11R
440R-J23044
A2 S14 S23 X2 42 14 24 34

13 23 33 41
A1 S11 S12 L11

GSR CI
440R-S13R2
S21 S22 S34 A2
14 24 34 42
```

The power, safety inputs, and outputs are similar. The reset/monitoring circuit is slightly different. The schematics below show comparisons of the four different ways an MSR11R safety relay can be applied and the GSR CI safety relay equivalent.
Example Wiring Schematic

Figure 17 - DC Powered

Response Time

Table 5 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR11R</td>
<td>50</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35</td>
</tr>
</tbody>
</table>

Since the GSR CI safety relay has a faster response time, the safety distance for the GSR CI safety relay is shorter than the MR11R safety relay. No further action is required.

Output Load Capability

The MSR11R safety relay has a higher current capability than the GSR CI safety relay, see Table 6. See Interposing Relays on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR CI safety relay capability.

Table 6 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR11R</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15 4 A</td>
<td>C300, AC-15 1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>P300, DC-13 3 A at 24V DC</td>
<td>2 A at 24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>2 A</td>
</tr>
</tbody>
</table>
The preferred migration for the MSR12T safety relay is to the GSR CI safety relay. The MSR12T safety relay is only available with one dual-channel and automatic reset.

Currently, only the 24V DC and 110V AC versions are available. The 230V AC version is obsolete.

The GSR CI safety relay has one switch to configure the reset to automatic or monitored manual. Wiring determines dual-channel operation.

Terminal Locations and Panel Space

The MSR12T safety relay has a row of terminals at the top and bottom. Its width is 45 mm (1.77 in.). The GSR CI safety relay has two rows of terminals at the top and bottom, allowing a smaller 22.5 mm (0.88 in.) width.

![Figure 18 - DC Powered [mm (in.)]](image)

The MSR12T safety relay also has an option for 110V AC. Since the GSR CI safety relay is powered by 24V DC, the 1606-XLP15E power supply can be used to convert the AC supply to 24V DC, while still occupying the same amount of space.

![Figure 19 - AC Powered [mm (in.)]](image)
Example Wiring Schematics

Figure 20 - DC Powered

![DC Powered Wiring Schematic](image1)

Figure 21 - AC Powered

![AC Powered Wiring Schematic](image2)

As an alternative, an equivalent MSR127 safety relay can replace the AC powered MSR12 safety relay. Select the appropriate MSR127 safety relay.

Figure 22 - AC Powered

![AC Powered Wiring Schematic](image3)

Response Time

Table 7 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR12T</td>
<td>50</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35</td>
</tr>
</tbody>
</table>

Since the GSR CI safety relay has a faster response time, the safety distance for the GSR CI safety relay is shorter than the MR12T. No further action is required.
Output Load Capability

The MSR12T safety relay has a higher current capability than the GSR CI safety relay, see Table 8. See Interposing Relays on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR CI safety relay capability.

Table 8 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR12T</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>C300, AC-15</td>
</tr>
<tr>
<td></td>
<td>4 A at 250V AC</td>
<td>1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>N300, DC-33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 A at 30V DC</td>
<td>2 A at 24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>2 A</td>
</tr>
</tbody>
</table>

The preferred migration for the MSR14T safety relay is to the GSR CI safety relay. The MSR14T safety relay is only available with 24V DC power, one dual-channel input, and automatic reset. It has two normally open (N.O) outputs and one normally closed (N.C.) output.

The GSR CI safety relay has one switch to configure the reset to automatic or monitored manual. The wiring determines the dual-channel operation.

Terminal Locations and Panel Space

The MSR14T safety relay has a 22.5 mm (0.88 in.) wide body, with two rows of terminals at the top and bottom. The GSR CI safety relay also has two rows of terminals at the top and bottom in a 22.5 mm (0.88 in.) width.

Figure 23 - Terminals and Panel Space [mm (in.)]
Example Wiring Schematic

Figure 24 – DC Powered

Response Time

Table 9 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR14T</td>
<td>90</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35</td>
</tr>
</tbody>
</table>

Since the GSR CI safety relay has a faster response time, the safety distance for the GSR CI safety relay is shorter than the MR12T safety relay. No further action is required.

Output Load Capability

The MSR14T has a higher current capability than the GSR CI safety relay, see Table 10. See Interposing Relays on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR CI safety relay capability.

Table 10 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR14T</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15, 4 A at 250V AC</td>
<td>C300, AC-15, 1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>N300, DC-13, 2 A at 30V DC</td>
<td>2 A at 24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>2 A</td>
</tr>
</tbody>
</table>
The MSR15D is a safety relay with two immediate safety outputs and one off-delayed safety output. There are two models, which have different delay time ranges. The preferred migration for the MSR15D safety relay is to the GSR CI safety relay with the EMD expansion relay. The MSR15D safety relay is only available with 24V DC power, one dual-channel input, and automatic reset.

The GSR CI safety relay has one switch to configure the reset to automatic or monitored manual. The EMD expansion relay has two rotary switches that can accommodate the delay ranges of both MSR15D safety relay models.

Terminal Locations and Panel Space

The MSR15D safety relay has a 45 mm (1.77 in.) wide body, with a row of terminals at the top and bottom. The combination the GSR CI safety relay and EMD expansion relay also occupy 45 mm (1.77 in.) of panel space. They each have two rows of terminals at the top and bottom.

For off-delay operation, the Range switch on the EMD expansion relay must be set to values 1, 2, 3 or 4. Use a jumper between B1 and B2 if a retrigerable operation is desired.
Example Wiring Schematic

Figure 26 - DC Powered

Response Time

Table 11 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR15D</td>
<td>90 (Immediate Outputs), 0.1...35 s (delayed output)</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35 (Immediate Outputs), 0.1...35 s (delayed output)</td>
</tr>
</tbody>
</table>

Since the GSR CI safety relay has a faster response time, the safety distance for the GSR CI safety relay is shorter than the MR15Dsafety relay. No further action is required.

Output Load Capability

The MSR15D safety relay has a higher current capability than the GSR CI safety relay, as shown in **Table 12**. See **Interposing Relays on page 11** for a wiring example of using interposing relays for applications where the load exceeds the GSR CI safety relay capability.

Table 12 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR15T</th>
<th>GSR CI</th>
<th>EMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>C300, AC-15</td>
<td>B300, AC-15</td>
</tr>
<tr>
<td></td>
<td>4 A at 250V AC</td>
<td>1.5 A</td>
<td>1.5 A, 250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>N300, DC-13</td>
<td>2 A at 24V DC</td>
<td>DC-13</td>
</tr>
<tr>
<td></td>
<td>3 A at 30V DC</td>
<td></td>
<td>2 A at 24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>2 A</td>
<td>6 A on 1 circuit</td>
</tr>
</tbody>
</table>
The preferred migration for the MSR16R/T safety relay is to the GSR CI safety relay. The MSR16T safety relay is only available with 24V AC/DC power, one dual-channel input. By setting an internal switch, the MSR16R/T safety relay can be set for monitored manual or automatic reset. It has three N.O. outputs.

The GSR CI safety relay has one switch to configure the reset to automatic or monitored manual. Wiring determines the dual-channel operation.

Terminal Locations and Panel Space

The MSR16R/T safety relay has a 22.5 mm (0.88 in.) wide body, with two rows of terminals at the top and bottom. The GSR CI safety relay is similar in that it also has two rows of terminals at the top and bottom in a 22.5 mm (0.88 in.) width.

Figure 27 - Terminals and Panel Space [mm (in.)]

![Diagram of terminals and panel space](image)

Inside the MSR16R/T safety relay cover, set the internal switch to T. On the GSR CI safety relay, configure the rotary switch on its front face to AM.

Example Wiring Schematics

Figure 28 - Automatic Reset

![Diagram of automatic reset](image)

Inside the MSR16R/T safety relay cover, set the internal switch to R. On the GSR CI safety relay, configure the rotary switch on its front face to MM.
Response Time

Table 13 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR16R/T</td>
<td>90</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35</td>
</tr>
</tbody>
</table>

Since the GSR CI safety relay has a faster response time, the safety distance for the GSR CI safety relay is shorter than the MR16T safety relay. No further action is required.

Output Load Capability

The MSR16R/T safety relay has a higher current capability than the GSR CI safety relay, see Table 14. See Interposing Relays on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR CI safety relay capability.

Table 14 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR16R/T</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>A300, AC-15 6 A at 250V AC</td>
<td>C300, AC-15 1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>N300, DC-13 6 A at 30V DC</td>
<td>2 A at 24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>6 A</td>
<td>2 A</td>
</tr>
</tbody>
</table>
The MSR23M is a safety relay that is designed to interface with safety mats. The MSR23M safety relay is available in narrow housing for 24V DC applications and wider housing for applications requiring 110V AC.

Each unit has an internal switch that sets the relay for automatic reset or monitored manual reset.

The recommended conversion is to a GSR CI safety relay for the DC powered unit and a GSR CI safety relay with a catalog number 1606 power supply for the MSR23M safety relay, which is powered at 110V AC.

Terminal Locations and Panel Space

Figure 30 - DC Powered [mm (in.)]

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>S33</td>
<td>S34</td>
<td>13</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>MSR23M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440R-P23073</td>
<td></td>
<td></td>
<td>(24V DC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>S11</td>
<td>S12</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S21</td>
<td>S22</td>
<td>A2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For those applications where the MSR23M safety relay is powered by 110V AC, a 1606-XLP15E power supply can be used. With the additional power supply, the panel space by the replacement design occupies a smaller space than one MSR18RT power supply.

Figure 31 - AC Powered [mm (in.)]

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>S33</td>
<td>S34</td>
<td>13</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>MSR23M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440R-P23074 (110V AC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>S11</td>
<td>S12</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S21</td>
<td>S22</td>
<td>A2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24V, 15W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.54...0.63 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR23M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440R-P23074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1606-XLP15E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSR CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440R-S13R2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>34</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S21</td>
<td>S22</td>
<td>S34</td>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example Wiring Schematics

Figure 32 - 24V DC with Automatic Reset

Figure 33 - 110V AC with Monitored Reset

Response Time

ATTENTION: Since the MSR23M safety relay is faster than the GSR CI safety relay, the safety distance must be examined closely and adjusted if necessary.

Table 15 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR23M</td>
<td>15</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35</td>
</tr>
</tbody>
</table>

Output Load Capability

The outputs of the GSR CI safety relay can require interposing relays, depending on the load being switched by the MSR23M safety relay. See [Interposing Relays on page 11](#) for a wiring example of using interposing relays for applications where the load exceeds the GSR CI safety relay capability.
The current through the contacts in the MSR23M safety relay must be adjusted to its current limit curves:

Table 16 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR16R/T</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>C300, AC-15</td>
</tr>
<tr>
<td></td>
<td>3 A</td>
<td>1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>P300, DC-13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 A at 24V DC</td>
<td>2 A at 24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>1 circuit at 8 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 circuits at 7 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Figure 34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 A</td>
</tr>
</tbody>
</table>

![Figure 34 - Current Limit Curves](image)

MSR123RT Safety Relay

The MSR123RT safety relay has the following key design characteristics:

- Single or dual-channel inputs
- Accommodates mechanical and OSSD (light curtain) inputs
- Two electromechanical safety outputs
- One solid-state auxiliary output
- Reset can operate automatically or monitored manual

The recommended conversion is to a GSR SI safety relay.
For those applications where the MSR123RT safety relay is powered by 115V AC or 230V AC, a 1606-XLP15E power supply can be used. With the additional power supply, the panel space by the replacement design occupies a smaller space than one MSR123RT safety relay.
Figure 38 - DC Powered, Dual-channel, Automatic Reset

Figure 39 - Single-channel, Monitored Reset

Figure 40 - Single-channel, Automatic Reset

Figure 41 - Light Curtain, Monitored Reset
A 1606-XLP15E power supply can be used to provide the 24V DC to power the GSR SI safety relay.

Figure 42 - AC Powered, Monitored Reset

As an alternative, an equivalent MSR126 safety relay can replace the AC powered MSR123 safety relay. Select the appropriate MSR126 safety relay. The MSR126 safety relay does not have an auxiliary output.

Figure 43 - AC Powered Alternative

Response Time

The safety outputs of the GSR CI safety relay has a 35 ms response time, whereas the single wire safety output of the GSR CI safety relay is 25 ms.

ATTENTION: Since the MSR123RT safety relay is faster than the GSR SI safety relay, the safety distance must be examined closely and adjusted if necessary.

Table 17 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR123RT</td>
<td>15</td>
</tr>
<tr>
<td>GSR SI</td>
<td>35</td>
</tr>
</tbody>
</table>
Output Load Capability

The outputs of the GSR SI safety relay can require interposing relays, depending on the load being switched by the MSR123RT safety relay. See Interposing Relays on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR SI capability.

Table 18 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR123RT</th>
<th>GSR SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>A300, AC-15</td>
<td>C300, AC-15</td>
</tr>
<tr>
<td></td>
<td>6 A</td>
<td>1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>N300, DC-33</td>
<td>2 A at 24V DC</td>
</tr>
<tr>
<td></td>
<td>3 A at 24V DC</td>
<td></td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>10 A (max in one circuit)</td>
<td>2 A</td>
</tr>
<tr>
<td></td>
<td>See Figure 44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The current through the contacts in the MSR123RT safety relay must be adjusted to its current limit curve.

Figure 44 - Current Limit Curve
The preferred migration for the MSR178DP safety relay is to the GSR SI safety relay and EMD expansion relay combination. This migration covers most of the applications.

The MSR178DP safety relay is available with 24V DC, 115V AC and 230V AC all included in the same catalog number. A catalog number 1606 power supply converts the AC supply to DC.

The MSR178DP safety relay function can also be initiated with a two-hand control requirement. An MSR125HP safety relay provides the replacement two-hand operation.

Use a combination of jumpers and an analog potentiometer to set the MSR178 safety relay timing range of 0.1 seconds to 30 minutes. The EMD expansion relay can also be set between 0.1 seconds and 30 minutes, by setting two multi-position switches.

Terminal Locations and Panel Space

The MSR178DP safety relay has a 35 mm (1.38 in.) wide body, with two rows of terminals at the top and bottom. The GSR CI safety relay and EMD expansion relay are similar in that they also two rows of terminals at the top and bottom in a 22.5 mm (0.88 in.) width.

For AC operation, the 1606-XLP15E power supply can be used to supply 24V to the GSR SI and MSR125 safety relays and the EMD expansion relay. The MSR125HP safety relay is also available in 115V AC or 230V AC. In the worst case scenario, the panel space that is required to replace the MSR178DP safety relay is 90 mm (3.54 in.).
Shown in Figure 48, when you press and hold the GSR S1 safety relay, the status indicators on both examples flash to indicate that the timing has started. On the MSR178 safety relay, the CH1 IN and CH2 IN status indicators flashes. On the EMD expansion relay, the Logic IN status indicator flashes.

After the time expires, the outputs turn on.
When you release switch S1, the outputs turn off immediately.

If you release GSR S1 safety relay in the middle of the timing cycle, and then reapply the GSR S1 safety relay, the timer starts from zero.

Figure 49 - Off-delay, Retriggerable

Shown in Figure 49, the MSR178 safety relay off-delay is retriggerable. To achieve similar result, the EMD expansion relay requires a jumper from B1 to B2.

When you press GSR S1 safety relay, K1 and K2 turn on immediately. You can release the GSR S1 safety relay immediately; it does not need to be held closed.

Both systems have a status indicator that flashes to indicate that the timing cycle is in process. On the MSR178 safety relay, it is the CH1 IN and CH2 IN status indicators. On the EMD expansion relay, it is the Logic IN status indicator.

After the time expires, the outputs turn off (and all four status indicators turn off).

If you repress the GSR S1 safety relay during the timing cycle, K1 and K2 remain on, the timing cycle is retriggered and starts again from zero.

If you have used the auxiliary signal to the Programmable Logic Controller (PLC), you can use one of the N.O. contacts of the EMD expansion relay and reverse the logic in the PLC.

The PLC monitors K1 and K2 (N.C.) to achieve the same retriggerable performance as the MSR178 safety relay.

Figure 50 - Off Delay, Non-Retriggerable
Shown in Figure 50 on page 38, although the MSR178 safety relay does not have a specific setting for non-retriggerable off delay, the control system can help prevent a retriggerable input. In this case, the GSR SI safety relay can monitor the contactors K1 and K2.

When you press the GSR SI safety relay switch, the K1 and K2 contactors turn ON immediately.

When you release the GSR SI safety relay, the timing cycle starts. The EMD expansion relay timing cycle runs to its conclusion and turn off K1 and K2. If the GSR SI safety relay is repressed and held during the timing cycle, K1 and K2 will turn back on immediately after the completion of the timing cycle (they turn off momentarily and then turn back on).

Figure 51 - Single Shot Jog

Shown in Figure 51, when the jog switch is pressed and held, the K1 and K2 contactors turn on during the timing cycle.

If the jog switch is released before the end to the timing cycle, the K1 and K2 contactors turn off immediately. The jog function cannot be restarted until after completion of the timing cycle.

If you have use of the MSR178 safety relay auxiliary signal to the PLC, you can use one of the N.O. contacts of the EMD expansion relay and reverse the logic in the PLC.

Figure 52 - Single Shot Two-hand Control

Shown in Figure 52, the MSR178 safety relay can generate a shot output with a two hand control operation. Switches S1 and S2 must be actuated within 0.5 s of each other and the K1 and K2 outputs turn on for the specified duration.
To accomplish the combination of features, a two-hand control must be used and the GSR SI safety relay and EMD expansion relay. The MSR125 safety relay is recommended, but it requires that S1 and S2 to be converted to N.O., N.C. switches.

Figure 53 - On-delay, AC Powered

Shown in Figure 53, a 1606-XLP15E power supply can be used in applications where the MSR178 safety relay is powered by either 115V AC or 230V AC.

Response Time

ATTENTION: Since the MSR178DP safety relay has a faster response time than all combinations of GSR SI and MSR125 safety relays, and EMD expansion relay, the safety distance must be examined closely and adjusted if necessary.

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR178DP</td>
<td>20</td>
</tr>
<tr>
<td>GSR SI</td>
<td>25 (single wire safety output)</td>
</tr>
<tr>
<td>EMD</td>
<td>35</td>
</tr>
<tr>
<td>MSR125</td>
<td>20</td>
</tr>
</tbody>
</table>

Output Load Capability

The MSR178DP safety relay has a higher current capability than the GSR CI safety relay, as shown in Table 20. See Interposing Relays on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR CI safety relay capability.

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR123RT</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15 6 A at 250V AC</td>
<td>B300, AC-15 1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>DC-13 3 A at 30V DC</td>
<td>DC-13 2 A at 24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>6 A on 1 circuit</td>
</tr>
</tbody>
</table>
The preferred migration for the CU1 safety relay is to the GSR SI safety relay and EMD expansion relay combination.

The CU1 safety relay is available with 24V DC, 115V AC and 230V AC all included in the same catalog number. A catalog number 1606 power supply is required to convert the AC supply to DC.

The CU1 safety relay on-delay can be adjusted from 0.1 seconds to 40 minutes. The EMD expansion relay can be adjusted from 0.1 seconds to 30 minutes. For applications that require longer than 30 minutes, use the Single Wire Safety signal to cascade two EMD expansion relays.

The CU1 safety relay has a Remote Indication accessory. This device contains two status indicators—red to indicate that the timing cycle is in process and green to indicate that the output is on (the timing cycle is completed).

Terminal Locations and Panel Space

The CU1 safety relay has a 45 mm (1.77 in.) wide body, with one row of terminals at the top and bottom. The combination of the GSR SI safety relay and EMD expansion relay also occupies 45 mm (1.77 in.) of panel space.

Figure 54 - AC Powered [mm (in.)]

For those applications powered by AC, a 1606-XPL15E power supply can be used to provide the 24V DC for the GSR CI safety relay and EMD expansion relay. This configuration increases the panel space by 22.5 mm (0.88 in.) to a total of 67.5 mm (2.66 in.).
Example Wiring Schematics

Timing begins when switch S1 is pressed, provided the reset loop X1-X2 on the CU1 safety relay is made. Switch S1 must be maintained closed for the full duration of the timing cycle.

The Remote Indication unit can be replaced with two status indicators.

For applications where the timing cycle is greater than 30 minutes and less than 60 minutes, two EMD expansion relays must be used. The Single Wire Safety signal is cascaded (L11 to L12 and then again from L11 to L12). Set the Range switch to 4 and the Time switch to 10, on the first EMD expansion relay to achieve a 30 minute delay. At the end of its cycle, it signals the second EMD expansion relay to start its timing cycle. Set the Range and Time of the second EMD expansion relay to achieve the desired extra time (up to a total of 60 minutes).
For AC powered applications, a 1606-XLP15E power supply is recommended to provide the 24V DC supply to the GSR CI safety relay and EMD expansion relays.

Figure 58 - AC Powered

<table>
<thead>
<tr>
<th>L1</th>
<th>115V AC</th>
<th>230V AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24V DC</td>
<td>To PLC</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>K1</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>K2</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>440R-T0714</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>24V Com</td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>To PLC</td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>To PLC</td>
<td></td>
</tr>
</tbody>
</table>

Table 21 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU1</td>
<td>Set by the timer selection</td>
</tr>
<tr>
<td>EMD</td>
<td>Set by the timer selection</td>
</tr>
</tbody>
</table>

For most applications, no further action is required, as the timings can be made equivalent.
Output Load Capability

The CU1 safety relay has a higher current capability than the GSR CI safety relay, as shown in Table 22. See Interposing Relays on page 11 or a wiring example of using interposing relays for applications where the load exceeds the GSR CI safety relay capability.

Table 22 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>CU1</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>C300, AC-15</td>
</tr>
<tr>
<td></td>
<td>4 A at 250V AC</td>
<td>1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>N300, DC-13</td>
<td>2 A at 24V DC</td>
</tr>
<tr>
<td></td>
<td>2 A at 30V DC</td>
<td>2 A</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>2 A</td>
</tr>
</tbody>
</table>
Phase 2 (June 2016)

We recommend that you replace the CU2 control unit with a GLP safety relay.

Both the CU2 control unit and the GLP safety relay use two proximity sensors to sense the motion of the hazard. The CU2 control unit uses one proximity sensor with an NPN output and the second proximity sensor with a PNP output. The GLP safety relay requires PNP outputs for both proximity sensors.

The GLP safety relay has a multi-position switch that lets you configure the GLP safety relay functionality. Switch positions 5, 6, 7, and 8 reflect the functionality of the CU2 control unit. Additional functionalities (Cat 1 stop, Safely-limited Speed, single wire safety expansion, unlock request, reset, and lock request) are achieved with logic settings 1, 2, 3, and 4.

The CU2 control unit offers automatic/manual reset with the Y1/Y2 terminals. When the GLP safety relay is configured for logic settings 5, 6, 7, or 8, the GLP safety relay ignores the S44 reset input and operates in automatic mode.

Terminal Location and Panel Space

The CU2 control unit is 45 mm (1.8 in.) wide and has one row of terminals at the top and bottom. The GLP safety relay is only 22.5 mm (0.9 in.) wide and has two rows of terminals at the top and bottom.

![CU2 Control Unit and GLP Safety Relay Diagram](image)

The CU2 control unit can also be ordered with a 110/230V AC power supply. Since the GLP safety relay is DC powered, a 1606-XLP15E power supply must be used to convert the AC supply to 24V DC. This configuration occupies the same amount of space as one CU2 control unit.
Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application.

Figure 60 - AC Powered [mm (in.)]

A1 N P N Y1 13 23 31
A2 P N P Y2 14 24 32

CU2
440R-S07140
110/230V AC

2W, 15W
0.54…0.63 A

45 (1.8)

+ -

24V, 15W
0.54…0.63 A

100…240V AC

GLP
440R-GL2S2P

Figure 61 - DC Powered

To PLC

K2 (aux)

Guard Closed
and Locked

Start

Stop

Guard Closed
and Locked

Proximity Sensor

L1 L2 L3

To PLC

Figure 62 - AC Powered

To PLC

K2 (aux)

Guard Closed
and Locked

Start

Stop

Guard Closed
and Locked

Proximity Sensor

L1 L2 L3

To PLC

Proximity Sensor

Guard Closed
and Locked
Output Load Capability

The CU2 control unit has a higher current capability than the GLP safety relay, as shown in Table 23. See Output Load Capability on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GLP capability or the EM safety relay can be used for easy expansion.

Table 23 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>CU2</th>
<th>GLP</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15 5 A/120,250V</td>
<td>—</td>
<td>B300 AC-15 1.5 A / 250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>DC-13 3 A/24V DC</td>
<td>0.5 A/24V DC</td>
<td>DC13 2 A/24V DC (0.1 Hz)</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>0.5 A</td>
<td>1 x 6 A</td>
</tr>
</tbody>
</table>

MSR6R/T Safety Relay

We recommend replacing the MSR6R/T safety relay with a GSR CI safety relay.

The GSR CI safety relay has one switch to configure the reset to automatic or monitored manual. Wiring determines whether the operation is single or dual-channel.

Terminal Locations and Panel Space

The MSR6R/T safety relay is 45 mm (1.8 in.) wide and has one row of terminals at the top and bottom. The GSR CI safety relay is 22.5 mm (0.9 in.) wide and has two rows of terminals at the top and bottom.
The MSR6R/T safety relay also has the option for a 115V AC and 230V AC power supply connection. Since the GSR CI safety relay is DC powered, a 1606-XLP15E power supply must be used to convert the AC supply to 24V DC. This configuration occupies the same amount of space as one MSR6R/T safety relay.

Example Wiring Schematics

The power, safety inputs, and outputs of the two safety relays are similar while the reset/monitoring circuit is slightly different. The following schematics compare the typical ways an MSR6R/T safety relay can be applied and the GSR CI safety relay equivalent.

Safety standards require that interlock closure or release of E-stops must not initiate hazards. Therefore, a start-stop circuit is included.
A catalog number 1606 power supply converts 100/240V AC to 24V DC to power the GSR CI safety relay. The outputs of the GSR CI safety relay can switch up to 240V AC loads.

The MSR6R/T safety relay has an internal switch that sets the power to either 115V AC or 230V AC.

Figure 70 - AC Powered

Response Time

The GSR CI safety relay has a faster response time, therefore the safety distance is shorter than the MSR6R/T safety relay. You do not need to adjust the safety distance.

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>MSR6R/T</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Time [ms]</td>
<td>50</td>
<td>35</td>
</tr>
</tbody>
</table>

Output Load Capability

The MSR6R/T safety relay has a higher current capability than the GSR CI safety relay, as shown in **Table 25 on page 50**. See **Output Load Capability on page 11** for a wiring example of using interposing relays for applications where the load exceeds the GSR CI safety relay capability.

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR6R/T</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>C300, AC-15</td>
</tr>
<tr>
<td></td>
<td>4 A</td>
<td>1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>P300, DC-13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3A/24V DC</td>
<td>2 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>2 A</td>
</tr>
</tbody>
</table>
MSR17T Safety Relay

We recommend replacing the MSR17T safety relay with a GSR CI safety relay. The MSR17T safety relay is only available with a 24V DC power supply.

Terminal Locations and Panel Space

The MSR17T safety relay is 45 mm (1.8 in.) wide and has one row of terminals at the top and bottom. The GSR CI safety relay is 22.5 mm (0.9 in.) wide and has two rows of terminals at the top and bottom.

![Figure 71 - Terminals and Panel Space [mm (in.)]]

Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.

Safety standards require that interlock closure or release of E-stops must not initiate hazards. Therefore, a start-stop circuit is included.

![Figure 72 - DC Powered, Single-channel, Auto Reset]
Response Time

ATTENTION: The response time of the MSR17T safety relay is faster than the GSR CI safety relay, so the safety distance must be examined closely and adjusted if necessary.

Table 26 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR17T</td>
<td>13</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35</td>
</tr>
</tbody>
</table>
Output Load Capability

The GSR CI safety relay has the same DC current rating and a higher AC current capability than the MSR17T safety relay as shown in Table 27.

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR17</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15 0.75 A</td>
<td>C300, AC-15 1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>P300, DC-33 2 A/24V DC</td>
<td>DC-13 2 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>-</td>
<td>2 A</td>
</tr>
</tbody>
</table>

The MSR18T safety relay accommodates four different input functions. The GSR relay family can replace two functions. The other two functions must be replaced with other MSR safety relays.

<table>
<thead>
<tr>
<th>Function</th>
<th>Recommended Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 N.C.</td>
<td>GSR CI and EM safety relays</td>
</tr>
<tr>
<td>2 N.C.</td>
<td>GSR CI and EM safety relays</td>
</tr>
<tr>
<td>1 N.O. and 1 N.C.</td>
<td>MSR9 safety relay and up to two MSR132E expansion relays</td>
</tr>
<tr>
<td>Two-hand control</td>
<td>MSR125 safety relay and up to two MSR132E expansion relays</td>
</tr>
</tbody>
</table>

The MSR18T safety relay is available with a 24V DC/120V AC or a 24V DC/240V AC supply input. If your application is AC powered, a 1606-XLP15E power supply must be used to convert the AC supply to 24V DC for the recommended GSR relays.

Terminal Locations and Panel Space

The MSR18T safety relay is 90 mm (3.5 in.) wide and has one row of terminals at the top and bottom. The GSR CI and EM safety relays are each 22.5 mm (0.9 in.) wide and have two rows of terminals at the top and bottom.
For applications where the MSR18T safety relay is configured for 1 N.C. and 1 N.O. with automatic reset, an MSR9 safety relay with MSR132 expansion relays is the recommended replacement.

Figure 77 - 1 N.C. and 1 N.O. DC Powered [mm (in.)]

For two-hand control applications, we recommend the MSR125 safety relay as the replacement for the MSR18T safety relay. If additional outputs are needed, you can expand the MSR125 safety relay with the MSR132E expansion relay.

Figure 78 - Two-hand DC Powered [mm (in.)]

For applications where the MSR18T safety relay power is 120V or 240V AC, you must use a 24V DC power supply (catalog number 1606-XLP15E) to power the newer safety relays.
The power, safety inputs, and safety outputs of the MSR18T and GSR CI safety relays are similar. The reset/monitoring circuit is slightly different. The following schematics show comparisons of the four ways that an MSR18RT safety relay can be applied and the GSR CI safety relay equivalent.

Example Wiring Schematics

Figure 79 - AC Powered [mm (in.)]

- **MSR18T**
 - 440R-ZBR520AZ1 (24V AC/DC and 120V AC)
 - 440R-ZBR520AZ2 (24V AC/DC and 240V AC)
 - (either model powered by AC)

- **GSR CI**
 - 440R-S13R2

Figure 80 - Dual-channel, Manual Reset

Figure 81 - Single-channel, Manual Reset
Figure 82 - 1 N.C. and 1 N.O., Automatic Reset

![Diagram of 1 N.C. and 1 N.O., Automatic Reset]

Figure 83 - Two-hand Control

![Diagram of Two-hand Control]
Figure 84 - AC Powered

120V or 240V AC

Table 29 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR18T</td>
<td>20</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35</td>
</tr>
<tr>
<td>MSR9T</td>
<td>60</td>
</tr>
<tr>
<td>MSR132E</td>
<td>50</td>
</tr>
<tr>
<td>MSR125H</td>
<td>20</td>
</tr>
</tbody>
</table>

ATTENTION: The response time of the MSR18T safety relay is faster than each of the replacements, so the safety distance must be examined closely and adjusted if necessary.
Output Load Capability

Table 30 compares the output load capability of the MSR18T safety relay to the replacement safety relays. See Output Load Capability on page 11 for a wiring example of that uses interposing relays for applications where the load exceeds the capability of the replacements.

Table 30 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR18T</th>
<th>GSR CI</th>
<th>EM</th>
<th>MSR9</th>
<th>MSR132</th>
<th>MSR125</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>C300, AC-15 0.75 A/250V AC 1.5 A/120V AC</td>
<td>C300, AC-15 1.5 A/250V AC</td>
<td>2 x B300, AC-15 4 A/250V AC</td>
<td>A300, AC-15 3 A/250V AC</td>
<td>AC-15 6 A/250V AC 6 A/120V AC</td>
<td>AC-15 6 A/250V AC 6 A/120V AC</td>
</tr>
<tr>
<td>DC</td>
<td>0300, DC-13 2 A/24V DC</td>
<td>DC-13 2 A/24V DC</td>
<td>P300, DC-13 2 A/24V DC</td>
<td>P300, DC-13 3 A/24V DC</td>
<td>DC-13 3 A/24V DC</td>
<td>DC-13 3 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>1 x 8 A, 2 x 7 A, 3 x 5.5 A, 4 x 5 A, 5 x 4.5 A</td>
<td>1 x 6 A</td>
<td>2 A</td>
<td>2 A</td>
<td>2 A</td>
<td>2 A</td>
</tr>
</tbody>
</table>

MSR19E Safety Relay

We recommend replacing the MSR19E safety relay with two EM safety relays. The MSR19E safety relay has two input channels. When driven by a host safety relay, the host safety relay must devote two safety outputs to drive the MSR19E safety relay. With the GSR safety relays, the Single Wire Safety (SWS) output lets the host safety relay communicate with the EM safety relay over one wire and saves the safety outputs of the host for other uses.

Terminal Locations and Panel Space

The MSR19E safety relay is 90 mm (3.5 in.) wide and has one row of terminals at the top and bottom. The EM safety relay is 22.5 mm (0.9 in.) wide and has two rows of terminals at the top and bottom. Two EM safety relays use half of the panel space as one MSR19E safety relay.

Figure 85 - DC Powered [mm (in.)]

Each MSR19E safety relay also has an option for 120V or 240V AC power. Since the EM safety relay is DC powered, a 1606-XLP15E power supply must be used to convert the AC supply to 24V DC. This configuration occupies less panel space than one MSR19E safety relay.
Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.

Figure 87 - DC Powered
Figure 88 – AC Powered

The two EM safety relays must have the SWS inputs (terminals L12) connected in parallel to activate all outputs simultaneously.

Output Load Capability

The MSR19E safety relay has a higher current capability than the EM safety relay as shown in Table 32 on page 61. See Output Load Capability on page 11 for a wiring example of using interposing relays for applications where the load exceeds the EM safety relay capabilities.
We recommend replacing the MSR30RT/RTP safety relay with a DIS safety relay. The MSR30 safety relay is only available with 24V DC power and can be wired for either single or dual-channel inputs. The MSR30 safety relay can also be wired for automatic or monitored reset. It has two normally open (N.O) solid-state outputs and one normally closed (N.C.) solid-state output.

The DIS safety relay has one multi-position rotary switch to configure the reset as automatic or monitored manual and the logic that is applied to the two inputs. The wiring of the relay determines single or dual-channel inputs.

The MSR30 safety relay has a feature that is called Startup Test. The wiring of the relay configures Startup Test. Upon initial power-up, the input device must be cycled once to energize the safety outputs. The DIS safety relay does not support this feature.

Terminal Locations and Panel Space

The MSR30 safety relay and DIS safety relay are both 22.5 mm (0.9 in.) wide and have two rows of terminals at the top and bottom.

Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.
ATTENTION: In Figure 90, when the safety inputs close the safety outputs energize automatically. You must design the safety system such that an additional manual action is required to initiate the hazard.

ATTENTION: In Figure 91, when the safety inputs close the safety outputs energize automatically. You must design the safety system such that an additional manual action is required to initiate the hazard.

ATTENTION: In Figure 92 on page 63, when the safety inputs close the safety outputs energize automatically. You must design the safety system such that an additional manual action is required to initiate the hazard.
Chapter 3 Phase 2 (June 2016)

Figure 93 - Single-channel, Automatic Reset

Figure 94 - Safety Mat, Monitored Reset

ATTENTION: In Figure 95, when you step off the safety mat the safety outputs energize automatically. You must design the safety system such that an additional manual action is required to initiate the hazard.

Figure 95 - Safety Mat, Automatic Reset
Response Time

ATTENTION: The response time of the MSR30RT/RTP safety relay is faster than the DIS safety relay, so the safety distance must be examined closely and adjusted if necessary.

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR30RT/RTP</td>
<td>15</td>
</tr>
<tr>
<td>DIS</td>
<td>25 (mechanical switches) 30 (safety mats)</td>
</tr>
</tbody>
</table>

Output Load Capability

The MSR30RT/RTP safety relay has a higher current capability than the DIS safety relay as shown in **Table 34**. See **Output Load Capability on page 11** for a wiring example of using interposing relays for applications where the load exceeds the GSR capability.

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR30RT/RTP</th>
<th>DIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>2 A/24V DC</td>
<td>14, 2A/1.5 A/24V DC</td>
</tr>
</tbody>
</table>

MSR38DP Safety Relay

We recommend replacing the MSR38D safety relay with the GLT safety relay for most applications. The MSR38D safety relay has two delayed safety outputs and one immediate auxiliary output. The inputs accommodate applications that require dual-channel, single-channel mechanical devices or safety mats.

When safety mats are used with the MSR38D safety relay, we recommend replacing with SI and EMD safety relays.

Terminal Locations and Panel Space

The MSR38D and GLT safety relays are both 22.5 mm (0.9 in.) wide and have two rows of terminals at the top and bottom. The terminal locations are different.

<table>
<thead>
<tr>
<th>Figure 96 - Terminals and Panel Space [mm (in.)]</th>
<th>22.5 (0.9)</th>
<th>22.5 (0.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S21 Y11 Y12 Y13 A1 Y41 S11 S34 MSR38D/DP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440R-M23203 440R-M23204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 S12 S22 Y32 18 28 S21 Y2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S12 S22 B2 S54 A1 A2 S11 S21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSR GLT 440R-GL2S2T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L12 L11 Y32 S44 L14 24 S1 51 L61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For safety mat applications, the combination of an SI and EMD safety relay uses 45 mm (1.8 in.) of panel space as compared to the 22.5 mm (0.9 in.) use by the MSR38D safety relay.

Figure 97 - Safety Mat Applications [mm (in.)]

22.5 (0.9)
S21 Y11 Y12 Y13
A1 Y41 S11 S34
MSR38D/DP
440R-M23203
440R-M23204
A2 S12 S22 Y32
18 28 S21 Y2

45 (1.8)
S12 S22
A1 A2 S11 S21
37 38 47 48
GSR SI
440R-S12R2
GSR EMD
440R-EM4R2D
L12 L11 Y32 S34
T3 24 23 24
L12 L11 X32
17 18 27 28

Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.

Figure 98 - Dual-channel Input, Monitored Reset, 1.5 s Off-delay

Figure 99 - Dual-channel Input, Automatic Reset, 15 s Off-delay

ATTENTION: In Figure 99, when the safety inputs close the safety outputs energize automatically. You must design the safety system such that an additional manual action is required to initiate the hazard.
ATTENTION: In Figure 101, when the safety inputs close the safety outputs energize automatically. You must design the safety system such that an additional manual action is required to initiate the hazard.

ATTENTION: In Figure 103 on page 67, when you step off the safety mat the safety outputs energize automatically. You must design the safety system such that an additional manual action is required to initiate the hazard.
The MSR38D safety relay has a higher current capability than the GLT safety relay as shown in Table 36. See Output Load Capability on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR capability.

Output Load Capability

The MSR38D safety relay has a higher current capability than the GLT safety relay as shown in Table 36. See Output Load Capability on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR capability.

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR38D</th>
<th>GLT</th>
<th>EMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>2 A/24V DC</td>
<td>0.3 A/24V DC</td>
<td>2 A/24V DC</td>
</tr>
</tbody>
</table>

We recommend replacing the MSR121RT safety relay with the GSR CI safety relay. The MSR121RT safety relay can be wired for automatic or monitored reset. The GSR CI safety relay is configured for automatic or monitored reset by a rotary switch on its front face.

The MSR121RT safety relay is in models that are supplied by 24V AC/DC, 115V AC, or 230V AC power. For the DC power units, a 1606-X15E power supply must be used to convert the power to 24V DC.

The GSR CI safety relay has one switch to configure the reset to automatic or monitored manual. The wiring of the relay determines dual-channel operation.
Terminal Locations and Panel Space

The MSR121RT safety relay is 55 mm (2.2 in.) wide with one row of terminals at the top and bottom. The GSR CI safety relay is 22.5 mm (0.9 in.) wide with two rows of terminals at the top and bottom.

Figure 104 - DC Powered [mm (in.)]

For the AC powered applications, a 1606-XLP15E power supply must be used to convert the AC supply to 24V DC for the GSR CI safety relay. The combination of power supply and GSR CI safety relay uses 45 mm (1.8 in.) of panel space, which is less than one MSR121RT safety relay.

Figure 105 - AC Powered [mm (in.)]

Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.
Figure 112 - Safety Mat Input, Monitored Reset, DC Powered

Figure 113 - Safety Mat Input, Automatic Reset, DC Powered

Figure 114 - Dual-channel Input, Monitored Reset, AC Powered
Response Time

ATTENTION: The response time of the MSR121RT safety relay is faster than the GSR CI safety relay, so the safety distance must be examined closely and adjusted if necessary.

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR121RT</td>
<td>15 (24V AC/DC)</td>
</tr>
<tr>
<td></td>
<td>20 (124, 115, and 230V AC)</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35 (mechanical and OSSD inputs)</td>
</tr>
<tr>
<td></td>
<td>45 (safety mat inputs)</td>
</tr>
</tbody>
</table>

Output Load Capability

The MSR121RT safety relay has a higher current capability than the GSR CI safety relay as shown in Table 38. See Output Load Capability on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR capability.

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR121RT</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>C300, AC-15</td>
</tr>
<tr>
<td></td>
<td>6 A/250V AC</td>
<td>1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>R300, DC-13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 A/240V DC</td>
<td>2 A at 24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>6 A</td>
<td>2 A</td>
</tr>
</tbody>
</table>

We recommend replacing the MSR122E safety relay with two EM safety relays. The MSR122E safety relay has two input channels. When driven by a host safety relay, the host relay must devote two safety outputs to drive the MSR122E safety relay. With the EM safety relays, the Single Wire Safety (SWS) output lets the host relay communicate with the EM safety relay over one wire and saves the safety outputs of the host for other uses.

Terminal Locations and Panel Space

The MSR122E safety relay is 100 mm (3.9 in.) wide with one row of terminals at the top and bottom. The EM safety relay is 22.5 mm (0.9 in.) wide with two rows of terminals at the top and bottom. Two EM safety relays occupy 45 mm (1.8 in.) of panel space, which is half the panel space as one MSR122E safety relay.
For applications where the MSR122E safety relay power supply is 110V AC, a 1606-XLP15E power supply must be used to convert the AC supply to 24V DC. With the additional power supply, the panel space by the replacement design still occupies less space than one MSR122E safety relay.

Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.
The outputs of the EM safety relay can require interposing relays, depending in the load the MSR122E safety relay switches. See **Output Load Capability on page 11** for a wiring example of using interposing relays for applications where the load exceeds the EM safety relay capability.
We recommend replacing the MSR1244 safety relay with a GSR CI safety relay. If the application does not use the N.C. outputs of the MSR144 safety relay, an SI safety relay can replace the MSR144 safety relay.

The outputs of the MSR144 safety relay can be expanded with the MSR230 safety relay immediate operating outputs and the MSR238 safety relay delayed operating output modules. GSR modules use the EM and EMD safety relays to expand its outputs.

Terminal Locations and Panel Space

The MSR144 safety relay is 45 mm (1.8 in.) wide while the GSR CI safety relay is only 22.5 mm (0.9 in.) wide.

The MSR230P safety relay expands outputs with four immediately operating outputs. The EM safety relay is the equivalent immediately operating outputs in the GSR family. Both modules are 22.5 mm (0.9 in.) wide.
The MSR238P safety relay has two delayed outputs. You can replace this module with the EMD safety relay. Both modules are 22.5 mm (0.9 in.) wide.

Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.
Figure 122 - Dual-channel, Monitored Reset Schematic, DC Powered

- +24V DC
- 24V Com

Figure 123 - Dual-channel, Automatic Reset Schematic, DC Powered

- +24V DC
- 24V Com

Chapter 3 Phase 2 (June 2016)
Figure 124 - Light Curtain, Monitored Reset Schematic, DC Powered

Light curtain
SafeZone, SC300
SensaGuard

Reset

To PLC

6 s Delay
Shown

+24V DC

24V Com

-24V DC

24V Com

Light curtain
SafeZone, SC300
SensaGuard

Reset

To PLC

6 s Delay
Shown

+24V DC

24V Com

-24V DC

24V Com
Response Time

ATTENTION: You must evaluate the response time of your existing system and compare it to the new system. Based on the difference, you can adjust the safety distance.

Table 41 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR144RTP</td>
<td>15</td>
</tr>
<tr>
<td>MSR230P</td>
<td></td>
</tr>
<tr>
<td>MSR238P</td>
<td>Delay determined by wiring jumpers</td>
</tr>
<tr>
<td>GSR CI safety output</td>
<td>35 (45 for safety mats)</td>
</tr>
<tr>
<td>GSR CI SWS output</td>
<td>25 (35 for safety mats)</td>
</tr>
<tr>
<td>EM</td>
<td>35 (40 for safety mats)</td>
</tr>
<tr>
<td>EMD</td>
<td>35 + delay determined by switch setting</td>
</tr>
</tbody>
</table>
Output Load Capability

Table 42...Table 44 compare the output switching capabilities of the MSR144RTP safety relay to the suggested replacements. In some cases, an interposing relay is required. See Output Load Capability on page 11 for a wiring example of using interposing relays.

Table 42 - Current Capability (MSR144)

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR144RTP</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>C300, AC-15</td>
</tr>
<tr>
<td></td>
<td>5 A/250V AC</td>
<td>3 A/250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>DC-13</td>
<td>DC-13</td>
</tr>
<tr>
<td></td>
<td>3 A/24V DC</td>
<td>4 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>1 x 6 A or 2 x 5 A</td>
<td>4 A on 1 circuit</td>
</tr>
</tbody>
</table>

Table 43 - Current Capability (MSR230P)

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR230P</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>B300, AC-15</td>
</tr>
<tr>
<td></td>
<td>6 A/250V AC</td>
<td>1.5 A/250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>DC-13</td>
<td>DC-13</td>
</tr>
<tr>
<td></td>
<td>3 A/24V DC</td>
<td>2 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>2 x 6 A, 3 x 5 A, or 4 x 4 A</td>
<td>6 A on 1 circuit</td>
</tr>
</tbody>
</table>

Table 44 - Current Capability (MSR238DP)

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR238DP</th>
<th>EMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>B300, AC-15</td>
</tr>
<tr>
<td></td>
<td>5 A/250V AC</td>
<td>1.5 A/250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>DC-13</td>
<td>DC-13</td>
</tr>
<tr>
<td></td>
<td>2.5 A/24V DC</td>
<td>2 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>1 x 6 A, 2 x 4 A</td>
<td>6 A on 1 circuit</td>
</tr>
</tbody>
</table>

MSR200 Safety Relay

We recommend replacing the MSR200 safety relay with a DI safety relay. When output expansion is needed, use an EM and EMD safety relay.

The MSR200 safety relay also has a communication module (catalog number MSR240P). The module generates messages that meet the requirements for RS-232 and RS-485. There is no direct replacement for both. The recommended alternative is to use the EtherNet/IP™ module (catalog number 440R-ENETR).

Terminal Locations and Panel Space

The MSR210P and MSR211P safety relays have identical terminal locations. The MSR210 safety relay is designed for mechanically operated safety devices; the MSR211 safety relay is designed for safety devices with OSSD outputs. We recommend replacing these safety relays with a DI safety relay.
The MSR200 safety relay family is able to add additional input modules: one is the MSR220P safety relay and the other is the MSR221P safety relay. We recommend replacing these safety relays with a DI safety relay.

The MSR200 safety relay family can also expand output modules. The MSR230P safety relay has Immediate Outputs. We recommend replacing this safety relay with an EM safety relay.

The MSR238P safety relay has delayed outputs. We recommend replacing this safety relay with an EMD safety relay.
The MSR240 safety relay also has communications options. Relay status is communicated using an RS-232 or RS-485 output module. There is no direct replacement, however we recommend replacing this safety relay with an EtherNet/IP module (catalog number 440R-ENETR).

Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.

Safety standards require that interlock closure or release of E-stops must not initiate hazards.
Figure 132 - MSR210, Dual-channel, Monitored Reset, DC Powered

Figure 133 - MSR210, Dual-channel, Automatic Reset, DC Powered

Figure 134 - MSR210, Single-channel, Monitored Reset, DC Powered
Figure 138 - MSR211, OSSD Inputs, Automatic Reset, DC Powered

- +24V DC
- 24V Com

Figure 139 - MSR220 Input Expansion

- +24V DC
- 24V Com

Figure 140 - MSR221 Input Expansion

- +24V DC
- 24V Com
Chapter 3 Phase 2 (June 2016)

Figure 141 - MSR230 Output Expansion

Figure 142 - MSR238 Output Delayed Expansion

Figure 143 - MSR240 Communication
Response Time

ATTENTION: You must evaluate the response time of your existing system and compare it to the new system. Based on the difference, you can adjust the safety distance.

Table 45 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR210P, MSR211P</td>
<td>32</td>
</tr>
<tr>
<td>MSR230P</td>
<td>34 + 6 ms per module (with input expansion modules)</td>
</tr>
<tr>
<td>MSR238P</td>
<td>35</td>
</tr>
<tr>
<td>DI</td>
<td>25 (single wire safety output)</td>
</tr>
<tr>
<td>EM</td>
<td>35 (40 for mats)</td>
</tr>
<tr>
<td>EMD</td>
<td>35 + delay determined by switch settings</td>
</tr>
</tbody>
</table>

Output Load Capability

Table 46...**Table 48** compare the output switching capabilities of the MSR200 safety relay family to the suggested replacements. In some cases, an interposing relay can be required. See Output Load Capability on page 11 for a wiring example of using interposing relays.

Table 46 - Current Capability (MSR210P and MSR211P)

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR210P and MSR211P</th>
<th>DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>C300, AC-15</td>
</tr>
<tr>
<td></td>
<td>3 A/250V AC</td>
<td>3 A/250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>DC-13</td>
<td>DC-13</td>
</tr>
<tr>
<td></td>
<td>2.5 A/24V DC</td>
<td>4 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>1 x 6 A or 2 x 4 A</td>
<td>4 A on 1 circuit</td>
</tr>
</tbody>
</table>

Table 47 - Current Capability (MSR230P)

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR230P</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>B300, AC-15</td>
</tr>
<tr>
<td></td>
<td>6 A/250V AC</td>
<td>1.5 A/250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>DC-13</td>
<td>DC-13</td>
</tr>
<tr>
<td></td>
<td>3 A/24V DC</td>
<td>2 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>2 x 6 A, 3 x 5 A, or 4 x 4 A</td>
<td>6 A on 1 circuit</td>
</tr>
</tbody>
</table>

Table 48 - Current Capability (MSR238DP)

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR238DP</th>
<th>EMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>B300, AC-15</td>
</tr>
<tr>
<td></td>
<td>3 A/250V AC</td>
<td>1.5 A/250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>DC-13</td>
<td>DC-13</td>
</tr>
<tr>
<td></td>
<td>2.5 A/24V DC</td>
<td>2 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>1 x 6 A, 2 x 4 A</td>
<td>6 A on 1 circuit</td>
</tr>
</tbody>
</table>
Notes:
We recommend replacing the CU2 control unit with a GLP (Series A 205 or later) safety relay.

Both the CU2 control unit and the GLP safety relay use two proximity sensors to sense the motion of the hazard. The CU2 control unit uses one proximity sensor with an NPN output, and the second proximity sensor with a PNP output. The GLP safety relay requires PNP outputs for both proximity sensors.

The GLP safety relay has a multi-position switch that lets you configure the GLP safety relay functionality. Switch positions 5, 6, 7, and 8 reflect the functionality of the CU2 control unit. Additional functionalities (Cat 1 stop, Safely-limited Speed, single wire safety expansion, unlock request, reset, and lock request) are achieved with logic settings 1, 2, 3, and 4.

The CU2 control unit offers automatic/manual reset with the Y1/Y2 terminals. When the GLP safety relay is configured for logic settings 5, 6, 7, or 8, the GLP safety relay ignores the S44 reset input and operates in automatic mode.

Table 49 shows the recommended conversions. With 110/230V AC supply voltages, many other catalog number 1606 power supplies can be used. If voltage-free contacts are needed, the single wire safety signal from the GLP safety relay can drive the EM safety relay.

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>CU2 Cat. No.</th>
<th>GLP Cat. No.</th>
<th>EM Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24V AC/DC</td>
<td>440R-S07139</td>
<td>440R-GL2S2P</td>
<td>440R-EM4R2</td>
</tr>
<tr>
<td>110/230V AC</td>
<td>440R-S07140</td>
<td>440R-GL2S2P with 1606-XLP15E</td>
<td>440R-EM4R2</td>
</tr>
</tbody>
</table>

Terminal Location and Panel Space

The CU2 control unit is 45 mm (1.8 in.) wide and has one row of terminals at the top and bottom. The GLP safety relay is 22.5 mm (0.9 in.) wide and has two rows of terminals at the top and bottom.
The CU2 control unit can also be ordered with a 110/230V AC power supply. Because the GLP safety relay is DC powered, a power supply (catalog number 1606-XLP15E) must be used to convert the AC supply to 24V DC. This configuration occupies the same amount of space as one CU2 control unit.

Example Wiring Schematics

Figure 146...Figure 148 on page 93 compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.
Output Load Capability

The CU2 control unit has voltage-free output contacts, while the GLP safety relay has solid-state outputs. The GLP safety relay can easily expand its output capability with the single wire safety connection to an EM expansion relay, which has voltage-free contacts. Use an interposing relay if additional current capability is needed. Table 50 shows the current capability of the three relays.

<table>
<thead>
<tr>
<th>Load Type</th>
<th>CU2</th>
<th>GLP</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>–</td>
<td>B300 AC-15</td>
</tr>
<tr>
<td></td>
<td>5 A, 120-250V</td>
<td></td>
<td>1.5 A / 250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>DC-13</td>
<td>0.5 A / 24V DC</td>
<td>DC13</td>
</tr>
<tr>
<td></td>
<td>3 A / 24V DC</td>
<td></td>
<td>2 A / 24V DC (0.1 Hz)</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>0.5 A</td>
<td>1 x 6 A</td>
</tr>
</tbody>
</table>

We recommend replacing both the MSR7R and MSR7C safety relays with the MSR125H/HP safety relay. The replacement catalog numbers are shown in Table 51. The MSR125H/HP safety relay is one of the MSR safety relays that remain available for five or more years.

The MSR7R and MSR7C safety relays are logic units for monitoring and interfacing two-hand control devices with a safety-related circuit. The MSR7R safety relay is for use with mechanical switches and 800Z Zero-Force Touch Buttons™. The MSR7C safety relay is for use with electronic-sensing (for example, capacitive or photoelectric) palm buttons because the MSR7C safety relay does not turn on its output if a power interruption occurs while hands are on the buttons.

ATTENTION: A risk assessment must be performed when converting a MSR7C safety relay to an MSR125 safety relay. The risk assessment must include an evaluation of a hands-on-the-buttons during a power interruption.
Terminal Location and Panel Space

The MSR7 safety relay is 45 mm (1.8 in.) wide and has one row of terminals at the top and bottom. The MSR125 safety relay is 22.5 mm (0.9 in.) wide with two rows of terminals on the top and bottom.

The MSR125 safety relay is available with either fixed or removable terminals; the MSR7 safety relay only has fixed terminals.

Example Wiring Schematics

The MSR7 and MSR125 safety relays are available in the following power supplies:

- 24V AC
- 24V DC
- 110V AC
- 230V AC

The wiring schematics are the same for each voltage supply.
Maximum Input Impedance

The MSR7 safety relay can tolerate up to 500 Ω of resistance on its input circuits. The MSR125 safety relay is limited to 40 Ω. This difference is not likely to be an issue as the typical cable resistance of 18 AWG (0.75 mm²) wire is 20.95 Ω/1000 meters (6.4 Ω/1000 feet).

Response Time

Response time applies when at least one hand is removed from the two-hand controls and the operator reaches towards the hazard.

If the MSR132 expansion relay is not used, the response time of the MSR125 safety relay is faster than the MSR7 safety relay, and the distance from the two-hand controls to the hazard can remain unchanged.

If the MSR132 expansion relay is used, the response time of the relay is 20 ms longer; the safety distance must be recalculated and the two-hand controls must be moved further away from the hazard. When you use the standard speed constant of 1600 mm/sec (63 in./sec), the additional 20 ms requires an additional 32 mm (1.25 in.) of spacing from the hazard.
Output Load Capability

The MSR125 safety relay has a higher current capability than the MSR7 safety relay.

Table 53 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR7</th>
<th>MSR125</th>
<th>MSR132</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive (BC300, AC-15)</td>
<td>4 A</td>
<td>6 A</td>
<td>6 A</td>
</tr>
<tr>
<td>DC (P300, DC-13)</td>
<td>2 A/24V DC</td>
<td>3 A/24V DC</td>
<td>3 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>1 x 6 A</td>
<td>2 x 6 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 x 4 A</td>
<td>4 x 4 A</td>
</tr>
</tbody>
</table>

We recommend replacing the MSR9T safety relay with a Sipha™ 2 controller. The replacement catalog numbers are shown in Table 54.

The MSR9T safety relay was used in older applications, where the input device employed the diversity concept of one normally closed (N.C) contact and one normally open (N.O.) contact. The Sipha 2 controller employs the same diversity approach and can easily be applied to contact-type switches and the Sipha controller non-contact switches.

These controllers are similar in the type of inputs and the number of outputs.

Table 54 - Conversion Table

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>MSR9T Cat. No.</th>
<th>Sipha 2 Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24V AC/DC</td>
<td>440R-F23027</td>
<td>440N-S32021</td>
</tr>
<tr>
<td>110/230V AC</td>
<td>440R-F23028</td>
<td></td>
</tr>
</tbody>
</table>

(1) For 24V, the Sipha 2 controller can only operate at 24V DC. When the MSR9T safety relay is powered by 115/230V AC, you must provide an AC/DC converter.

Terminal Location and Panel Space

The MSR9T safety relay and Sipha 2 controller are both 45 mm (1.8 in.) wide and have one row of terminals at the top and bottom.

There is a significant difference in the location of the terminals for the power, inputs, outputs, and monitoring. Numerous wires must be moved from the top of the relay to the bottom and vice versa.
Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.

When powered by 24V AC/DC, the power supply connections are made to + and – terminals of the Sipha controller; the A1 and A2 terminals must have no connections.

An internal, user-selectable switch is used to set the input voltage of both the MSR9 safety relay and the Sipha 2 controller. Remove the front cover and set the switch to either 110/115V or 230V AC. Figure 155 on page 99 shows the conversion schematics; in this case, the power to the relay is connected to A1 and A2.
Maximum Input Impedance

The MSR9T safety relay tolerates up to 500 Ω of resistance on its input circuits. The Sipha 2 controller tolerates 200 Ω on terminals 1...4 and 150 Ω on terminals 2...3. This difference is not likely to be an issue as the typical cable resistance of 18 AWG (0.75 mm²) wire is 20.95 Ω/1000 meters (6.4 Ω/1000 feet).

Input Simultaneity

Input simultaneity is a measure of the difference in time between the change in state of the two channels to enable the relay to energize its outputs.

The MSR9T safety relay is specified to have input simultaneity of 500 ms; the dual-inputs must change state with 500 ms of each other. The Sipha 2 controller has historically been specified with a minimum approach speed of 17 mm/s (0.67 in./s).

The following describes how a Sipha 2 controller works:

- If the N.O. contact opens first, then the N.C. contact can close at any time afterwards.
- If the N.C. contact closes first, then the N.O. contact must open within 1.4 seconds.

Response Time

Because the response time of the Sipha 2 controller is faster than the MSR9T safety relay, the safety distance calculation does not require recalculation.

Table 55 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR9T</td>
<td>50</td>
</tr>
<tr>
<td>Sipha 2</td>
<td>40</td>
</tr>
</tbody>
</table>
Output Load Capability

Table 56 compares the output load capability of the MSR9T safety relay to the replacement relays. See Output Load Capability on page 11 for a wiring example of using interposing relays for applications where the load exceeds the capability of the replacements.

Table 56 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR9T</th>
<th>Sipha 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>B300, AC-15</td>
</tr>
<tr>
<td></td>
<td>4 A/250V AC</td>
<td>4 A/250V AC</td>
</tr>
<tr>
<td></td>
<td>4 A/120V AC</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>P300, DC-13</td>
<td>P300, DC-15</td>
</tr>
<tr>
<td></td>
<td>3 A/24V DC</td>
<td>2 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>—</td>
</tr>
</tbody>
</table>

MSR33 Safety Relay

We recommend replacing the MSR33 safety relay with a Sipha 2 controller.

The MSR33 safety relay is offered with either fixed or removable terminals. The Sipha 2 controller only has fixed terminals. The MSR33 safety relay has solid-state outputs, while the Sipha 2 controller has electromechanical outputs.

The MSR33 safety relay has a feature that is called Startup Test. The wiring configures the startup test. Upon initial power-up, the input device must be cycled once to energize the safety outputs. The Sipha 2 controller does not support this feature.

Table 57 - Conversion Table

<table>
<thead>
<tr>
<th>Terminals</th>
<th>MSR33 Cat. No.</th>
<th>Sipha 2 Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>440R-F23199</td>
<td>440N-S32021</td>
</tr>
<tr>
<td>Removable</td>
<td>440R-F23200 (only fixed terminals)</td>
<td>—</td>
</tr>
</tbody>
</table>
Example Wiring Schematics

Figure 157 and Figure 158 on page 102 compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.

In Figure 157, the MSR33 safety relay has monitored reset, where the Reset button must be pressed and released. The reset action occurs when the button is released. With the Sipha 2 controller, the reset occurs when the button is pressed.
The auxiliary output of the MSR33 safety relay is N.O. When the safety outputs are off, the auxiliary output is off.

The Sipha 2 controller auxiliary output is N.C. When the safety outputs are open (off), the auxiliary output is closed (on).

Input Simultaneity

Input simultaneity is a measure of the difference in time between the changes in state of the two channels to enable the relay to energize its outputs.

The MSR33 safety relay allows an infinite amount of time between the changes of state of the two inputs. The Sipha 2 controller has historically been specified with a minimum approach speed of 17 mm/s (0.67 in./s).

The following describes how a Sipha 2 controller works:

- If the N.O. contact opens first, then the N.C. contact can close at any time afterwards.
- If the N.C. contact closes first, then the N.O. contact must open with 1.4 seconds.

Response Time

ATTENTION: Because the response time of the MSR33 safety relay is 25 ms faster than the Sipha 2 controller, the safety distance must be examined closely and adjusted, if necessary.

Table 58 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR33</td>
<td>15</td>
</tr>
<tr>
<td>Sipha 2</td>
<td>40</td>
</tr>
</tbody>
</table>
Output Load Capability

Table 59 only compares DC loads because the MSR33 safety relay can only accommodate DC loads.

Table 59 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR33</th>
<th>Sipha 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>2 A/24V DC</td>
<td>2 A/24V DC</td>
</tr>
</tbody>
</table>

We recommend replacing the MSR35 safety relay with an MSR125 safety relay. The MSR125H/HP safety relay is one of the MSR safety relays that remain available for five or more years.

The MSR35H/HP safety relay is an electronic two-hand control relay that is offered with either fixed or removable terminals. It is only available with 24V DC power.

Table 60 - Conversion Table

<table>
<thead>
<tr>
<th>Terminals</th>
<th>MSR35 Cat. No.</th>
<th>MSR125 Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>440R-D23201</td>
<td>440R-D23171</td>
</tr>
<tr>
<td>Removable</td>
<td>440R-D23202</td>
<td>440R-D23166</td>
</tr>
</tbody>
</table>

Terminal Location and Panel Space

The MSR35RT safety relay has a 22.5 mm (0.9 in.) wide body, with two rows of terminals at the top and bottom. The MSR125 safety relay also has two rows of terminals at the top and bottom and is 22.5 mm (0.9 in.) wide.
Example Wiring Schematics

The output is a significant difference between the two relays. The MSR35 safety relay has solid-state outputs, while the MSR125 safety relay has voltage-free contacts.
Chapter 4 Phase 3 (July 2018)

Figure 161 - Category IIIA Per EN574

Response Time

ATTENTION: Because the response time of the MSR35RT safety relay is faster than the MSR125 safety relay, the safety distance must be examined closely and adjusted if necessary.

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR35</td>
<td>15</td>
</tr>
<tr>
<td>MSR125</td>
<td>20</td>
</tr>
</tbody>
</table>

Output Load Capability

The MSR125 safety relay has a higher current capability than the MSR35H/HP safety relay, as shown in Table 62 on page 105.

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR35</th>
<th>MSR125</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>2 A/24V DC</td>
<td>3 A/24V DC</td>
</tr>
</tbody>
</table>

MSR121RT Safety Relay

We recommend replacing the MSR121RT safety relay with a GSR CI safety relay.

The MSR121RT safety relay can be wired for automatic or monitored reset. The GSR CI safety relay is configured for automatic or monitored reset by a rotary switch on its front face.

The MSR121RT safety relay is only available with a 24V AC/DC power supply.

Table 63 - Conversion Table

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>MSR121RT Cat. No.</th>
<th>GSR CI Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24V AC/DC (1)</td>
<td>440R-J23102</td>
<td>440R-S13R2</td>
</tr>
</tbody>
</table>

(1) For 24V, the GSR CI safety relays can only operate at 24V DC. When the MSR121RT safety relay is powered by 24V AC, you must provide an AC/DC converter.
Terminal Location and Panel Space

The MSR121RT safety relay has a 55 mm (2.17 in.) wide body, with one row of terminals at the top and one at the bottom. The GSR CI safety relay has a 22.5 mm (0.9 in.) wide body with two rows of terminals at the top and bottom.

Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.
Figure 164 - Dual-channel Input Automatic Reset

Figure 165 - Single-channel Input Monitored Reset

Figure 166 - Single-channel Input Automatic Reset
Figure 167 - OSSD Input Monitored Reset

Figure 168 - OSSD Input Automatic Reset

Figure 169 - Safety Mat Input Monitored Reset
Response Time

ATTENTION: Because the response time of the MSR121RT safety relay is faster than the GSR CI safety relay, the safety distance must be examined closely and adjusted if necessary.

Table 64 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR121RT</td>
<td>15 (24V AC/DC)</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35 (mechanical and OSSD inputs) 45 (safety mat inputs)</td>
</tr>
</tbody>
</table>

Output Load Capability

The MSR121RT safety relay has a higher current capability than the GSR CI safety relay, as shown in Table 65. See Output Load Capability on page 11 for a wiring example of using interposing relays for applications where the load exceeds the GSR CI safety relay capability.

Table 65 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR121RT</th>
<th>GSR CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15 6 A/250V AC</td>
<td>C300, AC-15 1.5 A</td>
</tr>
<tr>
<td>DC</td>
<td>R300, DC-13 6 A/240V DC</td>
<td>2 A at 24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>6 A</td>
<td>2 A</td>
</tr>
</tbody>
</table>
We recommend replacing the MSR124RT safety relay with a GSR CI and EM safety relay.

The MSR124RT safety relay has the following design characteristics:

- Single- or dual-channel inputs
- Can accommodate mechanical and OSSD (light curtain) inputs
- Five electromechanical safety outputs
- One solid-state auxiliary output
- Reset can operate automatically or monitored manual.

The MSR124RT safety relay is a safety monitoring relay that provides versatile inputs and monitoring capability with many safety outputs in a 100 mm (3.93 in.) package.

The MSR124RT safety relay can be connected as either a single or dual-channel safety gate or E-stop. It can also be connected to a light curtain that provides cross fault detection.

The wiring configuration determines the reset and output monitoring. Automatic/manual reset can use a jumper or can be used to check the operation of the contacts. Monitored manual requires the use of a manually operated N.O. momentary switch to activate the outputs.

The outputs include five N.O. safety rated outputs and one auxiliary output. The safety outputs have independent and redundant internal contacts to help verify the safety function. The auxiliary output is not safety rated and must only be used for indication purposes.

Table 66 - Conversion Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24V AC/DC (1)</td>
<td>440R-G23110</td>
<td>440R-S13R2</td>
<td>440R-EM4R2</td>
<td>—</td>
</tr>
<tr>
<td>115V AC/24V DC</td>
<td>440R-G23108</td>
<td>440R-S13R2</td>
<td>440R-EM4R2</td>
<td>1606-XLP15E</td>
</tr>
<tr>
<td>230V AC/24V DC</td>
<td>440R-G23107</td>
<td>440R-S13R2</td>
<td>440R-EM4R2</td>
<td>—</td>
</tr>
</tbody>
</table>

(1) For 24V, the GSR CI and EM safety relays can only operate at 24V DC. When the MSR124RT safety relay is powered by 24V AC, you must provide an AC/DC converter.

Terminal Location and Panel Space

For DC applications, the combination of the GSR CI and EM safety relays is smaller than the MSR124RT safety relay. For AC applications, a catalog number 1606-XLP15E power supply can be used; this combination still occupies less panel space than an MSR124RT safety relay.
Example Wiring Schematics

The following schematics compare the wiring of your existing MSR safety relay module to the recommended newer devices for each application that the existing device provides.

Figure 172 - Dual-channel Monitored Reset, DC Powered

Figure 173 - Dual-channel Automatic Reset, DC Powered
Figure 174 - Single-channel Monitored Reset, DC Powered

Figure 175 - Single-channel Automatic Reset, DC Powered

Figure 176 - OSSD Inputs Monitored Reset, DC Powered

Figure 177 - OSSD Inputs Automatic Reset, DC Powered

Light curtain SafeZone, SC300 SensaGuard OSSD1 OSSD2

Light curtain SafeZone, SC300 SensaGuard OSSD1 OSSD2
A 1606-XLP15E power supply can be used to provide the 24V DC to power the GSR CI and EM safety relays.

Response Time

ATTENTION: Because the MSR124RT safety relay is faster than the GSR CI and EM safety relays, the safety distance must be examined closely and adjusted if necessary.

Table 67 - Response Time

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR124RT</td>
<td>20</td>
</tr>
<tr>
<td>GSR CI</td>
<td>35 for the inputs</td>
</tr>
<tr>
<td></td>
<td>25 for the SWS to the EM</td>
</tr>
<tr>
<td>EM</td>
<td>35</td>
</tr>
</tbody>
</table>

For example, the total response time of the EM safety relay is $25 + 35 = 60$ ms.

Output Load Capability

The outputs of the GSR CI safety relay can require interposing relays, depending in the load being switched by the MSR124RT safety relay. See **Output Load Capability on page 11** for a wiring example of using interposing relays for applications where the load exceeds the capability of the GSR CI or EM safety relay.

Table 68 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR124RT</th>
<th>GSR CI</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>A300, AC-15</td>
<td>C300, AC-15</td>
<td>2 x B300, AC-15</td>
</tr>
<tr>
<td></td>
<td>5 A/250V AC</td>
<td>1.5 A/250V AC</td>
<td>4 A/250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>N300, DC-13</td>
<td>DC-13</td>
<td>P300, DC-13</td>
</tr>
<tr>
<td></td>
<td>4 A at 24V DC</td>
<td>2 A/24V DC</td>
<td>2 A/24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>10 A (max in one circuit)</td>
<td>See current limit curve in Figure 179.</td>
<td>1 x 6 A</td>
</tr>
</tbody>
</table>
The current through all contacts in the MSR124RT safety relay must be adjusted to its current limit curve, which is shown in Figure 179.

Figure 179 - Current Limit Curve
Chapter 5

Phase 4 (July 2021)

In late 2019, Rockwell Automation launched the MSR55P safety relay to provide additional features for monitoring the speed of a motor as the motor spins down to a stopped condition by sensing the back EMF of the motor. The MSR55P safety relay has been well accepted, and the CU3 control unit is now being obsoleted.

Feature Comparison

Table 69 compares the key feature differences between the CU3 control unit and the MSR55P safety relay. The MSR55P safety relay has several features that the CU3 control unit does not.

Table 69 - Key Feature Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>CU3</th>
<th>MSR55P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel space</td>
<td>45 mm (1.77 in.)</td>
<td>45 mm (1.77 in.)</td>
</tr>
<tr>
<td>Single-phase motor monitoring</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Three-phase motor monitoring</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Output monitoring</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fault output reporting</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Monitors induction motors</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Monitors servo motors</td>
<td>Not recommended</td>
<td>Yes</td>
</tr>
<tr>
<td>Adjustable threshold</td>
<td>Yes</td>
<td>Wider range</td>
</tr>
<tr>
<td>Delayed output capability</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Safety rating</td>
<td>Cat 1</td>
<td>Cat 4 PLe, SIL 3</td>
</tr>
</tbody>
</table>

Power Supply and Thresholds

The power supplies for the CU3 control unit and the MSR55P safety relay are similar, however, 24V AC cannot power the MSR55P safety relay. If the CU3 control unit is powered by 24V AC, you must provide an AC to DC converter to use the MSR55P safety relay.

Table 70 on page 116 lists the CU3 control unit catalog numbers, threshold voltage range, and typical applications. Table 71 on page 116 lists the MSR55P safety relay catalog numbers, threshold voltage range, and typical applications.
Threshold and Delay Settings

Both the CU3 control unit and the MSR55P safety relay have a potentiometer for adjusting the back EMF threshold setting. To access the threshold setting adjustment in the CU3 control unit, you must open the front cover. The MSR55P safety relay has the threshold setting adjustment on the front face.

In addition, the MSR55P safety relay has a second potentiometer on the front face. This potentiometer is for adjusting a delay time from when standstill is detected to when the outputs are energized. This feature provides additional assurance that the motor has achieved a steady state speed that is considered safe.

Terminal Locations and Panel Space

Table 70 - CU3 Catalog Options

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Supply Voltage</th>
<th>Standstill Monitoring Voltage Threshold</th>
<th>Typical Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>440R-S35001</td>
<td>24V AC/DC</td>
<td>Up to 2.5V</td>
<td>Induction motors</td>
</tr>
<tr>
<td>440R-S35002</td>
<td>110V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440R-S35002</td>
<td>230V AC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 71 - MSR55P Catalog Options

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Supply Voltage</th>
<th>Standstill Monitoring Voltage Threshold</th>
<th>Typical Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>440R-S35011</td>
<td>24V DC</td>
<td>20...400 mV</td>
<td>Induction motors</td>
</tr>
<tr>
<td>440R-S35012</td>
<td>115V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440R-S35013</td>
<td>230V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440R-S35014</td>
<td>24V DC</td>
<td>200 mV...4V</td>
<td>Servo (permanent magnet) motors</td>
</tr>
<tr>
<td>440R-S35015</td>
<td>115V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440R-S35016</td>
<td>230V AC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Threshold and Delay Settings

Both the CU3 control unit and the MSR55P safety relay have a potentiometer for adjusting the back EMF threshold setting. To access the threshold setting adjustment in the CU3 control unit, you must open the front cover. The MSR55P safety relay has the threshold setting adjustment on the front face.

In addition, the MSR55P safety relay has a second potentiometer on the front face. This potentiometer is for adjusting a delay time from when standstill is detected to when the outputs are energized. This feature provides additional assurance that the motor has achieved a steady state speed that is considered safe.

Terminal Locations and Panel Space

Figure 180 on page 117 shows the relay sizes and terminal locations. The CU3 control unit has one row of terminals at the top and bottom. The MSR55P safety relay has two rows of terminals at the top and bottom to accommodate the features that the CU3 control unit does not have.

Both control units are 45 mm (1.77 in.) wide. The MSR55P safety relay is taller. To achieve optimal heat dissipation, 50 mm (2 in.) of spacing is recommended above and below each control unit.
Threshold Settings

Figure 181 on page 118 shows the adjustment locations.

To access the voltage threshold adjustment on the CU3 control unit, use a screwdriver to pop open the cover. Use a screwdriver to rotate the potentiometer to the desired setting.

The MSR55P safety relay potentiometers are on the front face. Use a screwdriver to adjust both the voltage threshold and the desired time delay so the motor can achieve a safe standstill motion.
Figure 181 - Threshold and Delay Settings

Example Wiring Schematics

Figure 182 and *Figure 183 on page 119* show a direct comparison of schematics between the CU3 control unit and the MSR55P safety relay with Power to Release guard locking interlocks.
Output Load Capability

The following table compares the output load capabilities of the CU3 control unit and MSR55P safety relay. The output switching capability of the two relays is similar. For AC loads, the MSR55P safety relay is derated when operating at higher ambient temperatures.

The MSR55P safety relay has a higher DC current rating than the CU3 control unit.

<table>
<thead>
<tr>
<th>Load Description</th>
<th>CU3</th>
<th>MSR55P</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-1S B300</td>
<td>5 A at 250V AC</td>
<td>5 A at 250V AC at 40 °C (104 °F)</td>
</tr>
<tr>
<td></td>
<td>5 A at 120V AC</td>
<td>2 A at 250V AC at 60 °C (140 °F)</td>
</tr>
<tr>
<td>DC</td>
<td>3 A at 24V DC</td>
<td>4 A at 24V DC</td>
</tr>
</tbody>
</table>

Feedback Monitoring

As shown in Figure 184 on page 120, both the CU3 control unit and the MSR55P safety relay are able to monitor their respective output devices with automatic/manual monitoring on terminals X1 and X2.

Automatic monitoring is accomplished by connecting the monitored contacts in series to X1 and X2. Manual reset is accomplished by adding a momentary normally open (N.O.) push button in series with the monitored contacts.

Upon manual reset, the MSR55P displays a fault code 4.
The best modernization for the MSR300 safety relay is to the GSR relays. This modernization can use many of the GSR relays due to the various relay configurations of the MSR300 safety relay.

Alternatively, you can modernize the MSR300 safety relay to the CR30 safety relay. The CR30 safety relay requires a computer that runs Connected Components Workbench™ software to accomplish the configuration. The Connected Components Workbench software is a free download from Rockwell Automation.

Terminal Locations and Panel Space

Host Module

The host module for the MSR300 safety relay is either an MSR310P or an MSR312P host module. You can replace both of these modules with either a DI or DIS safety relay. The MSR3xx module has a 35 mm (1.38 in.) wide body as compared to the 22.5 mm (0.89 in.) for the GSR relays.

If communications are used in the application, you must convert from RS-232 or DeviceNet® to EtherNet/IP™ and add the GSR ENTER module.
Input Module

Each MSR300 safety relay system must have at least one MSR320P safety relay input module and can have up to 10 input modules. An equivalent GSR module is the DI or DIS safety relay. The MSR320P safety relay occupies slightly less panel space at 17.5 mm (0.69 in.) compared to 22.5 mm (0.89 in.) for the GSR relays.

Output Module

Each MSR300 safety relay system must have at least one output module and can have up to six output modules. Equivalent modules in the GSR family are the EM safety relay for Immediate Outputs and the EDM safety relay for delayed outputs.

The significant difference is that the EM and EMD safety relays require power, ground and SWS connections, whereas the MSR330P and MSR338P safety relays get their power through the ribbon cable.
Muting Lamp Module

The MSR300 safety relay family has a separate MSR329 muting lamp module. The GSR family has no equivalent; the machine control system can provide a muting lamp function.

Example Wiring Schematics

Single Input Module, Single Output Module

At the basic level, the MSR300 safety relay system has one input module and one output module. You can replace the MSR300 safety relay system with one DI safety relay.
Three Input Modules and Three Output Modules

Figure 190 and *Figure 191 on page 125* show that the MSR300 safety relay has three input modules and three output modules. Each input module is set to another type of device (OSSD, single-channel, and dual-channel) and different output group (groups 1, 2, and 3). The equivalent GSR system is three DI safety relays. Both systems monitor the output contactors and one reset button resets the safety system.
Figure 190 - Three Input Modules/Three Output Modules

Two Zones, Global E-stop

In Figure 191 and Figure 193 on page 127, the MSR300 safety relay has a global E-stop that turns off outputs groups 1, 2, and 3. Group 2 and 3 inputs control their respective outputs.

The GSR relays can use the Single Wire Safety signals on terminals L11 and L12 to perform the same global E-stop function. For the GSR system, the reset button must be pressed twice: the first press turns on the DI safety relay with dual-channel E-stop, the second press turns on the other two DI safety relays.
Chapter 5 Phase 4 (July 2021)

Figure 191 - Two Zones, Global E-stop

In Figure 192 and Figure 195 on page 128, the first MSR320P safety relay input module provides a global E-stop, which stops groups 1, 2 and 3. The middle MSR320P safety relay input modules stop groups 2 and 3. The third input module only stops the outputs in group 3. The GSR solution stops outputs with the Single Wire Safety connections on terminals L11 and L12.

For the GSR solution, you must press the reset button three times:

- First press turns on the DI safety relay with the dual-channel E-stops.
- Second press turns on the DI safety relay with the single-channel E-stop.
- Third press turns on the DI safety relay with the OSSD devices.
Figure 192 - Global E-stop, Local E-stop

Shown in Figure 193, if one of the MSR300 safety relay input modules is set to 8, the MSR300 safety relay treats the safety system as a two-zone robot cell. While the robot is present in one danger zone, the safeguard devices in the other zone are muted.

Safety rated limit switches with one N.O. and one N.C. contact detect the position of the robot. To convert the GSR solution, the limit switches must be changed to two N.C. plus one N.O. contacts.
When the group 8 robot In1 status indicator is red, the robot is in danger zone 1. If the group 1 E-stop is pressed or the light curtain is blocked, both group 1 and robot power turn off (group 2 hazards remain energized). If the group 2 E-stop is pressed or the light curtain is blocked, only the group 2 outputs turn off. After the E-stop is released and the light curtain is cleared, the reset must be pressed to turn the group 2 hazards outputs back on.

The CR30 safety relay with a 2080-IQ4OB4 plug-in module can replicate the robot zone function 8. Figure 195 and Figure 196 on page 129 show the robot in zone 1.
Figure 195 - CR30 Safety Relay with Plug-in

[Diagram showing the CR30 Safety Relay with Plug-in connections and labels]
Figure 198 shows an equivalent circuit that uses the GSR relays. DIS safety relays are recommended as their solid-state outputs are pulse-tested. EM expansion relays provide voltage-free contacts to control the local hazards. The DI safety relay is suggested for robot power because it has electromechanical outputs.

Upon startup with the robot in zone 1, E-stops are released, and light curtains are clear; press reset once to energize the DIS safety relays 1, 3 and 4.

Press reset gain to energize the DIS safety relay 2.

Press reset once more to energize the DI safety relay (robot power).

While the robot is in zone 1, if the E-stop is pressed or the light curtain is blocked in zone 1, the hazards in zone 1 and the robot power are de-energized. Zone 2 hazards remain energized.

After the E-stop is released and the light curtain is cleared, press the reset button three times to energize the hazards in zone 1 and robot power.

While the robot is in zone 1, if the E-stop is pressed or the light curtain is blocked in zone 2, the loads are de-energized in zone 2. The hazards in zone 1 and robot power remain energized. After the E-stop is released and the light curtain is cleared, press the reset button once to energize the hazards in zone 2.
Robot Zone with Additional Safe Area (Function 9)

Shown in Figure 199 and Figure 200, function 9 of the MSR300 safety relay adds an additional safe area to the robot cell. When the robot is in the Additional Safe Area, both light curtains are muted.

Figure 199 - Robot Zone with Additional Safe Area (Function 9)

Figure 200 - Function 9 Schematic
Two CR30 safety relays, one with a 2080-IQ4OB4 plug-in module, can replicate the robot zone function 9. Figure 201 on page 134 show the robot in the safe area.

Figure 201 - CR30 Safety Relays with Plug-in

Figure 202 - Logic Diagram (1 of 3)
Figure 204 - Logic Diagram (3 of 3)

Figure 205 shows an equivalent circuit that uses the GSR relays. DIS safety relays are recommended as their solid-state outputs are pulse-tested. EM expansion relays provide voltage-free contacts to control the local hazards. The DI safety relay is suggested for robot power because it has electromechanical outputs.

Figure 205 - GSR relays

Upon power-up with the robot in the safe area, press the reset three times to energize the local hazards and robot power.

The E-stops and light curtains de-energize their respective local hazards, and the robot remains powered. Press the reset button once to re-energize the local hazards. The GSR solution cannot accommodate the muting lamps.

One N.C. and One N.O. Input

Shown in Figure 206 on page 135, the dual-channel input has a definite simultaneity when the input for the MSR300 safety relay is sourced from S11. When the dual-channel input is sourced from S21, the dual-channel inputs must change state within 3 seconds. The Sipha™ 2 controller supports the 3-second requirement.
Two-hand Control Input

For simple applications, the MSR300 safety relay can be replaced with the MSR125 safety relay. A typical example is shown in Figure 207.

For more complex applications, the CR30 can couple two-hand control with other safety-related functions. See publication 440C-UM001 for more details.

Figure 207 - Two-hand Control Input
Three-channel Input

Figure 208 shows the input wiring where no simultaneity is required.

Figure 208 - Three-channel Input

Muting with E-stop

Muting is accomplished with one safety monitor function. The muting function turns on the output with automatic reset and feedback monitoring. The E-stop turns off the outputs and requires a monitored manual reset. The E-stop turns off the outputs with the Output Loop block, which takes the E-stop output and logically ANDs it with the light curtain output.

Response Time

ATTENTION: You must evaluate the response time of your existing system and compare it to the new system. Based on the difference, you must adjust the safety distance.

<table>
<thead>
<tr>
<th>Safety Relay</th>
<th>Response Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR310P</td>
<td>26 + 6 per connected input</td>
</tr>
<tr>
<td>DIS</td>
<td>Inputs: 25 Mat operation: 30 SWS fault: 45</td>
</tr>
<tr>
<td>DI</td>
<td>Inputs: 35 Mat operation: 40 SWS fault: 45</td>
</tr>
<tr>
<td>EM</td>
<td>35 SWS output: 25</td>
</tr>
<tr>
<td>EMD</td>
<td>35 plus the timer selection SWS output: 25</td>
</tr>
</tbody>
</table>

Output Load Capability

The MSR300 safety relay has a higher current capability than the EM and EDM safety relays as shown in the following table. See
Output Load Capability on page 11 for a wiring example of how to use relays that interpose for applications where the load exceeds the EM and the EDM safety relay capabilities.

Table 73 - Current Capability

<table>
<thead>
<tr>
<th>Load Type</th>
<th>MSR330P</th>
<th>MSR330P</th>
<th>EM and EMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inductive</td>
<td>B300, AC-15</td>
<td>B300, AC-15</td>
<td>B300, AC-15</td>
</tr>
<tr>
<td></td>
<td>2x6 A or 3 x 5 A/250V AC</td>
<td>5 A/250V AC</td>
<td>1.5 A / 250V AC</td>
</tr>
<tr>
<td>DC</td>
<td>P300, DC-13</td>
<td>P300, DC-13</td>
<td>DC-13</td>
</tr>
<tr>
<td></td>
<td>2x6 A or 3 x 5 A/24V DC</td>
<td>3A/30V DC</td>
<td>2 A / 24V DC</td>
</tr>
<tr>
<td>Thermal (non-switching)</td>
<td>4 A</td>
<td>2 x 5 A, 3 x 4 A</td>
<td>6 A on 1 circuit</td>
</tr>
</tbody>
</table>
Index

B
benefit
GSR 10

C
capability
output load 11
catalog number
1606-XLP15E 91
1606-XLPSE 67
1606-XLPISE 13, 16, 18, 21, 29, 32, 34, 36, 40, 43, 48, 53, 54, 58, 68, 73, 92, 110, 113
1606-XLPSE 41
2080-I04084 127, 132
440R-S23021 97, 100
440R-B23020 7
440R-B23021 7
440R-C23136 7
440R-C23137 7
440R-C23139 7
440R-C23139S 7
440R-D23021 94
440R-D23022 94
440R-D23023 94
440R-D23024 94
440R-D23025 94
440R-D23026 94
440R-D23163 7, 94
440R-D23164 7, 94
440R-D23165 7, 94
440R-D23166 7, 94, 103
440R-D23168 7, 94
440R-D23169 7, 94
440R-D23170 7, 94
440R-D23171 7, 94, 103
440R-D23201 103
440R-D23202 103
440R-E23097 7
440R-E23098 7
440R-E23159 7
440R-E23160 7
440R-E23161 7
440R-E23162 7
440R-E23191 7
440R-E23192 7
440R-E23193 7
440R-E23194 7
440R-E23195 7
440R-EM4R2 91, 110
440R-ENETR 82, 84
440R-F23027 97
440R-F23028 97
440R-F23109 100
440R-F23200 100
440R-G23107 7, 110
440R-G23108 7, 110
440R-G23110 7, 110
440R-G23214 7
440R-G23215 7
440R-G23216 7
440R-GL2S2P 91
440R-J23102 105
440R-M23080 7
440R-M23081 7
440R-M23082 7
440R-M23084 7
440R-M23085 7
440R-M23086 7
440R-M23088 7
440R-M23090 7
440R-M23092 7
440R-M23140 7
440R-M23141 7
440R-M23143 7
440R-M23143S 7
440R-M23144 7
440R-M23145 7
440R-M23146 7
440R-M23147 7
440R-M23148 7
440R-M23149 7
440R-M23151 7
440R-M23171 7
440R-M23172 7
440R-M23173 7
440R-M23174 7
440R-M23175 7
440R-M23176 7
440R-M23177 7
440R-M23178 7
440R-M23179 7
440R-M23180 7
440R-M23181 7
440R-M23182 7
440R-M23183 7
440R-M23184 7
440R-M23185 7
440R-M23186 7
440R-M23187 7
440R-M23188 7
440R-M23189 7
440R-M23190 7
440R-M23191 7
440R-M23192 7
440R-M23193 7
440R-M23194 7
440R-M23195 7
440R-M23196 7
440R-M23197 7
440R-M23198 7
440R-M23199 7
440R-M23200 7
440R-M23201 7
440R-M23202 7
440R-M23203 7
440R-M23204 7
440R-M23205 7
440R-M23206 7
440R-M23207 7
440R-M23208 7
440R-M23209 7
440R-M23210 7
440R-M23211 7
440R-M23212 7
440R-M23213 7
440R-M23214 7
440R-M23215 7
440R-M23216 7
440R-M23217 7
440R-M23218 7
440R-M23219 7
440R-M23220 7
440R-M23221 7
440R-M23222 7
440R-M23223 7
440R-M23224 7
440R-M23225 7
440R-M23226 7
440R-M23227 7
440R-M23228 7
440R-M23229 7
440R-M23230 7
440R-M23231 7
440R-M23232 7
440R-M23233 7
440R-M23234 7
440R-M23235 7
440R-M23236 7
440R-M23237 7
440R-M23238 7
440R-M23239 7
440R-S0739 91
440R-S0740 91
440R-S13R2 105, 110
440R-S35001 116
440R-S35002 116
440R-S35011 116
440R-S35012 116
440R-S35013 116
440R-S35014 116
440R-S35015 116
440R-S35016 116
MSR240P 82
RS-232 82, 84, 120
RS-485 82, 84
change
wiring 10
Index

concern
conversion 10

Connected Components Workbench
muting 136

control unit
CU2 45, 91
CU3 115

conversion
concern 10

CU1
safety relay 41

CU2
control unit 45, 91

CU3
control unit 115

current capability
CU2 47
CU3 119
MSR122E 75
MSR144 82
MSR17T 53
MSR18T 58
MSR212RT 72
MSR220P 136
MSR230P 82
MSR2380P 82
MSR300 136
MSR30RT/RTP 64
MSR38D 67

F
function 8 126

G
GSR
benefit 10

I
input impedance
MSR7C 96
MSR7R 96

introduction 9

L
location
wiring terminal 10
CU1 41
CU2 45, 91
CU3 119
MSR10RD 16
MSR121RT 68, 106
MSR122E 72
MSR124RT 110
MSR12T 21
MSR144 76
MSR14T 23
MSR15D 25
MSR16R/T 27
MSR178DP 36
MSR17T 51
MSR18T 53
MSR19E 58
MSR200 82
MSR23M 29
MSR300 120
MSR30RT/RTP 61
MSR33 100
MSR35 103
MSR380P 64
MSR6R/T 47
MSR7C 95
MSR7R 95
MSR8T 13
MSR9T 97

M
MSR10RD
safety relay 16

MSR121RT
safety relay 67, 105
MSR122E
safety relay 72
MSR123RT
safety relay 31
MSR124RT
safety relay 110
MSR144
safety relay 76
MSR14T
safety relay 23
MSR15D
safety relay 25
MSR16R/T
safety relay 27
MSR178DP
safety relay 36
MSR17T
safety relay 51
MSR18T
safety relay 53
MSR19E
safety relay 58
MSR200
safety relay 82
MSR23M
safety relay 29
MSR300
safety relay 120
MSR30RT/RTP
safety relay 61
MSR33
safety relay 100
MSR35
safety relay 103
MSR380P
safety relay 64
MSR6R/T
safety relay 47
MSR7C
input impedance 96
safety relay 94
MSR7R
input impedance 96
safety relay 94

140
Rockwell Automation Publication 440R-RM004A-EN-P - March 2022
Index

MSR8T
safety relay 13

MSR9T
safety relay 97

O
output load capability 11
CU 47
CU3 119
MSR121RT 72
MSR122E 75
MSR144 82
MSR17T 53
MSR18T 58
MSR19E 60
MSR230P 82
MSR238DP 82
MSR30D 136
MSR30RT/RTP 64
MSR330P 136
MSR38D 67

P
panel space 10
CU 41
CU 45, 91
CU3 116
MSR10RD 16
MSR121RT 68, 106
MSR122E 72
MSR124RT 110
MSR12T 21
MSR144 76
MSR14T 23
MSR15D 25
MSR16R/T 27
MSR178DP 36
MSR17DP 51
MSR18T 53
MSR19E 58
MSR200 82
MSR23M 29
MSR30D 120
MSR30RT/RTP 61
MSR33 100
MSR35 103
MSR38DP 64
MSR6R/T 47
MSR7C 95
MSR7R 95
MSR8T 13
MSR8T 97

R
response time 10
CU 43
DI 99, 136
DIS 84, 136
EDM 43
EM 16, 60, 75, 81, 89, 113, 136
EMD 16, 40, 67, 81, 89, 136
GLT 67
GSR CI 15, 18, 20, 22, 24, 26, 28, 30, 50, 52,
57, 72, 81, 109, 113
GSR SI 34, 40, 67
MSR10RD 18
MSR11R 20
MSR121RT 72, 109
MSR122E 75
MSR123RT 34
MSR124RT 113
MSR125 40, 96, 105
MSR125H 57
MSR12T 22
MSR132 96
MSR132E 57
MSR144RT 81
MSR14T 24
MSR15D 26
MSR16R/T 28
MSR17DP 40
MSR17T 52
MSR18T 57
MSR19E 60
MSR210P 89
MSR211P 89
MSR230P 81, 89
MSR238P 81, 89
MSR23M 30
MSR30RT/RTP 64
MSR310P 136
MSR33 102
MSR35 105
MSR38D 67
MSR6R/T 50
MSR7 96
MSR8T 15
MSR9T 57, 99
Sipha 2 99, 102
robot zone 126
S

safety relay
- CUI 41
- MSR10RD 16
- MSR121RT 67, 105
- MSR122E 72
- MSR123RT 31
- MSR124RT 110
- MSR144 76
- MSR14T 23
- MSR15D 25
- MSR16R/T 27
- MSR178DP 36
- MSR17T 51
- MSR18T 53
- MSR19E 58
- MSR200 82
- MSR23M 29
- MSR300 120
- MSR30RT/RTP 61
- MSR33 100
- MSR35 103
- MSR38DP 64
- MSR6R/T 47
- MSR7C 94
- MSR7R 94
- MSR8T 13
- MSR9T 97

schematic
- wiring
 - CUI 42
 - CU2 46
 - CU3 118
 - MSR10RD 17
 - MSR11R 20
 - MSR121RT 68
 - MSR122E 73
 - MSR123RT 32
 - MSR12T 22
 - MSR144 77
 - MSR14T 24
 - MSR15D 26
 - MSR16R/T 27
 - MSR17T 51
 - MSR187DP 37
 - MSR18T 55
 - MSR19E 59
 - MSR200 84
 - MSR23M 30
 - MSR300 122
 - MSR30RT/RTP 61
 - MSR38DP 64
 - MSR6R/T 48
 - MSR8T 14

space
- panel 10
 - CUI 41
 - CU2 45, 91
 - CU3 116
 - MSR10RD 16
 - MSR121RT 68, 106
 - MSR122E 72
 - MSR124RT 110
 - MSR12T 21
 - MSR144 76
 - MSR14T 23
 - MSR15D 25
 - MSR16R/T 27

terminal location
- CUI 41
- CU2 45, 91
- CU3 116
- MSR10RD 16
- MSR121RT 68, 106
- MSR122E 72
- MSR124RT 110
- MSR12T 21
- MSR144 76
- MSR14T 23
- MSR15D 25
- MSR16R/T 27
- MSR17C 95
- MSR17R 95
- MSR18T 13
- MSR18T 97

time
- response 10

W

wiring
- change 10
- terminal location 10
wiring schematic
CU1 42
CU2 46
CU3 118
MSR10RD 17
MSR11R 20
MSR121RT 68
MSR122E 73
MSR123RT 32
MSR12T 22
MSR14W4 77
MSR14T 24
MSR15D 26
MSR16R/T 27
MSR17T 51
MSR187DP 37
MSR18T 55
MSR19E 59
MSR200 84
MSR23M 30
MSR300 122
MSR30RT/RTP 61
MSR38DP 65
MSR6R/T 48
MSR6T T4
Rockwell Automation Support

Use these resources to access support information.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Support Center</td>
<td>Find help with how-to videos, FAQs, chat, user forums, and product notification updates.</td>
<td>rok.auto/support</td>
</tr>
<tr>
<td>Knowledgebase</td>
<td>Access Knowledgebase articles.</td>
<td>rok.auto/knowledgebase</td>
</tr>
<tr>
<td>Local Technical Support Phone Numbers</td>
<td>Locate the telephone number for your country.</td>
<td>rok.auto/phonesupport</td>
</tr>
<tr>
<td>Literature</td>
<td>Find installation instructions, manuals, brochures, and technical data publications.</td>
<td>rok.auto/literature</td>
</tr>
<tr>
<td>Product Compatibility and Download Center (PCDC)</td>
<td>Download firmware, associated files (such as AOP, EDS, and DTM), and access product release notes.</td>
<td>rok.auto/pcdc</td>
</tr>
</tbody>
</table>

Documentation Feedback

Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form at rok.auto/docfeedback.

Waste Electrical and Electronic Equipment (WEEE)

At the end of life, this equipment should be collected separately from any unsorted municipal waste.

Rockwell Automation maintains current product environmental information on its website at rok.auto/pec.

Allen-Bradley, expanding human possibility, Connected Components Workbench, Guardmaster, Minotaur, Rockwell Automation, SafeZone, SensaGuard, Sipha, and Zero-Force Touch Buttons are trademarks of Rockwell Automation, Inc.
DeviceNet and EtherNet/IP are trademarks of ODVA, Inc.
Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş. Kar Plaza İş Merkezi E Blok Kat:6 34752, İcerenköy, İstanbul, Tel: +90 (216) 5688400 EEE Yönetmeliğine Uygundur

Connect with us.
rockwellautomation.com