SLC 500 Hardware Migration

Bulletins 1746, 1747, 1769, 5069

Reference Manual

Original Instructions

Allen-Bradley
by ROCKWELL AUTOMATION
Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).
Preface
About This Publication ... 7
Audience ... 7
Required Software .. 7
Summary of Changes ... 8
Additional Resources .. 9

Chapter 1
Overview
Product Lifecycle Status Website 11
SLC 500 System .. 12
CompactLogix 5370 Controllers 12
CompactLogix 5380 Controllers 12
Compact I/O Modules .. 13
Compact 5000 I/O Modules .. 13
Power Considerations .. 14
SLC 500 Controllers .. 14
CompactLogix 5380 Controllers 14
Sensor Actuator Power for CompactLogix 5380 15
Other Considerations .. 16

Chapter 2
Replace an SLC 500 Controller
Upgrade to a CompactLogix 5370 Controller 17
Upgrade to a CompactLogix 5380 Controller 18

Chapter 3
Replace an SLC 500 I/O Module
Upgrade an SLC I/O Installation by Replacing it with Compact I/O . . 19
Upgrade an SLC I/O Installation by Replacing it with Compact 5000 I/O ... 23
SLC I/O Installation Using a Conversion Kit 25

Appendix A
Wiring Diagram Comparisons
Replace an SLC 5 Processor Serial Port with a Compact I/O Serial Module ... 27
SLC 5/03, SLC 5/04, or SLC 5/05 to 5069-SERIAL 27
Replace an SLC 500 I/O with a Compact I/O 28
1746-IA4 to 1769-IA8I ... 28
1746-IA8 to 1769-IA8I ... 28
1746-IA16 to 1769-IA16 .. 29
1746-IB8 to 1769-IQ16 .. 29
1746-IB16 to 1769-IQ16 .. 30
1746-IG16 to 1769-IG16 .. 30
1746-IM4 to 1769-IM12 .. 31
1746-IM8 to 1769-IM12 .. 31
1746-IM16 to 1769-IM12 ... 32
Table of Contents

1746-ITB16 to 1769-IQ16F ... 32
1746-ITV16 to 1769-IQ16F ... 33
1746-IV8 to 1769-IQ16 ... 33
1746-IV16 to 1769-IQ16 .. 34
1746-OA8 to 1769-OA8 ... 34
1746-OA16 to 1769-OA16 .. 35
1746-OB8 to 1769-OB8 ... 35
1746-OB16 to 1769-OB16 .. 36
1746-OB16E to 1769-OB16 .. 36
1746-OBP8 to 1769-OB8 ... 37
1746-OG16 to 1769-OG16 .. 37
1746-OV8 to 1769-OV16 ... 38
1746-OV16 to 1769-OV16 .. 38
1746-OW4 to 1769-OW8 ... 39
1746-OW8 to 1769-OW8 ... 39
1746-OW16 to 1769-OW16 .. 40
1746-IO12DC to 1769-IQ6X0W4 .. 40
1746-NI4 to 1769-IF4 ... 41
1746-NI4I to 1769-IF4XOF2 ... 41
1746-NI4V to 1769-IF4XOF2 ... 42
1746-NI8 to 1769-IF8 ... 42
1746-NO4I to 1769-OF4 ... 43
1746-NO4V to 1769-OF4 ... 43
Replace an SLC 500 I/O with a Compact 5000 I/O 44
1746-IA16 to 5069-IA16 .. 44
1746-IM16 to 5069-IA16 .. 44
1746-IB16 to 5069-IB16 .. 45
1746-ITB16 to 5069-IB16 ... 45
1746-OA8 to 5069-OA16 .. 46
1746-OA16 to 5069-OA16 ... 46
1746-OB8 to 5069-OB8 ... 47
1746-OBP8 to 5069-OB8 .. 47
1746-OBP16 to 5069-OB16 .. 48
1746-OB16 to 5069-OB16 .. 48
1746-OB16E to 5069-OB16 .. 49
1746-OW4 to 5069-OW4I ... 49
1746-OW8 to 5069-OW4I ... 50
1746-OW16 to 5069-OW16 .. 50
1746-OX8 to 5069-OX4I ... 51
1746-NI4 to 5069-IY4 ... 51
1746-NI8 to 5069-IF8 ... 52
1746-NO4I to 5069-OF4 ... 53
1746-NO4V to 5069-OF4 ... 53
Replace an SLC 500 I/O with Combinations of Compact 5000 I/O 54
Indirect Wiring Migration for 1746-IA4 to 5069-IA16 54
Indirect Wiring Migration for 1746-IA8 to 5069-IA16 56
Indirect Wiring Migration for 1746-IB8 to 5069-IB16 57
Indirect Wiring Migration for 1746-IM4 to 5069-IA16 59
Indirect Wiring Migration for 1746-IM8 to 5069-IA16 60
Indirect Wiring Migration for 1746-IO4 to 5069-IA16 and 5069-OW16 ... 62
Indirect Wiring Migration for 1746-IO8 to 5069-IA16 and 5069-OW16 ... 64
Indirect Wiring Migration for 1746-IO12 to 5069-IA16 and 5069-OW16 ... 66
Indirect Wiring Migration for 1746-NI16I to 5069-IF8 68
Indirect Wiring Migration for 1746-NI16V to 5069-IF8 69
Indirect Wiring Migration for 1746-NIO4I to 5069-OF4 and 5069-IY4 ... 70
Indirect Wiring Migration for 1746-NIO4V to 5069-OF4 and 5069-IY4 ... 72
Indirect Wiring Migration for 1746-NR8 to 5069-IY4 74
Indirect Wiring Migration for 1746-OB8 to 5069-OB16 75
Indirect Wiring Migration for 1746-OBP8 to 5069-OB16 77
Indirect Wiring Migration for 1746-OW4 to 5069-OW16 78
Preface

About This Publication

This document serves as a guide for replacing your existing SLC™ 500 modules with other products such as Compact I/O™ modules, or Compact 5000™ I/O modules.

The SLC 500 Control system hardware was redesigned to be RoHS compliant. As a result, several of the products will continue to be available for years to come, however, some products, such as less capable controllers and lower density I/O, have been discontinued.

The SLC™ control platform in general is in the Active Mature lifecycle state, as the newer CompactLogix™ and Compact 5000 platforms provide greater functionality and connectivity.

The following chapters of this document describe the many SLC, CompactLogix, and I/O options available for active management of your installed base of control products. You have the option of maintaining, migrating, or replacing that installed base in a phased manner to meet your needs.

This document focuses on hardware migration. For more detailed information, including instructions for converting an SLC program to a Logix program, see SLC to CompactLogix Programming Migration Guide, publication 5069-AP001.

Audience

This document is intended for users of SLC 500 controllers and I/O modules who are familiar with the RSLogix 500® programming software.

Required Software

If the replacement is an SLC 500 controller or I/O module, no additional software is required.

If the replacement is a CompactLogix 5370 controller, CompactLogix 5380 controller, Compact I/O module, or Compact 5000 I/O module, the following are required:

- **Studio 5000 environment**

 The Studio 5000® environment combines elements of design into one standard framework that optimizes productivity and reduces time to commission.

 With the Studio 5000 Applications you can:
 - Build and maintain a system layout in a central place with **Studio 5000 Architect®**
 - Configure, program, and maintain your Logix 5000™ family of controllers with **Studio 5000 Logix Designer®**
 - Create intuitive, modern screens for the PanelView™ 5000 graphic terminals with **Studio 5000 View Designer®**
- Create and leverage reusable libraries of content for rapid project development with Application Code Manager

The following CompactLogix controllers are compatible with Studio 5000 Applications:

<table>
<thead>
<tr>
<th>Controllers</th>
<th>Cat. No.</th>
<th>Studio 5000 Logix Designer Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompactLogix 5370</td>
<td>For CompactLogix 5370 controllers using firmware revision 21.00.00 or later</td>
<td>Version 21.00.00 or later</td>
</tr>
<tr>
<td>1769-L19ER-BB1B</td>
<td>Version 28.00.00 or later</td>
<td></td>
</tr>
</tbody>
</table>

- RSLogix 500/RSLogix Micro version 12 or RSLogix Project Migrator

The RSLogix 500/RSLogix™ Micro version 12 software includes an integrated SLC to CompactLogix program converter tool. To convert, simply perform a Save Program As, then select file type as *.ACD, and fill out the menu prompts.

For older versions of RSLogix 500/RSLogix Micro, the RSLogix™ Project Migrator tool is a free, standalone software tool for converting an RSLogix 5 or RSLogix 500 project export file for import into Studio 5000 Logix Designer application.

The standalone converter tool is available for download at: rok.auto/pedc.

Summary of Changes

This publication contains the following new or updated information. This list includes substantive updates only and is not intended to reflect all changes.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated Recommended Compact 5000 I/O Replacement modules</td>
<td>23...24</td>
</tr>
<tr>
<td>Added indirect wiring solutions with combinations of Compact 5000 I/O modules</td>
<td>54...80</td>
</tr>
</tbody>
</table>
Additional Resources

These documents contain additional information concerning related products from Rockwell Automation.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC 500 Analog Input Module Installation Instructions, publication 1746-IN006</td>
<td>Installation instructions for the SLC 500 Analog Input Module (Cat. No. 1746-NI8).</td>
</tr>
<tr>
<td>SLC 500 RTD/Resistance Input Module Installation Instructions, publication 1746-IN007</td>
<td>Installation instructions for the SLC 500 RTD/Resistance Input Module (Cat. No. 1746-NR8).</td>
</tr>
<tr>
<td>SLC 500 RTD/Resistance Input Module Installation Instructions, publication 1746-IN012</td>
<td>Installation instructions for the SLC 500 RTD/Resistance Input Module (Cat. No. 1746-NR4).</td>
</tr>
<tr>
<td>SLC 500 Thermocouple/mV Analog Input Module Installation Instructions, publication 1746-IN015</td>
<td>Installation instructions for the SLC 500 Thermocouple/mV Analog Input Module.</td>
</tr>
<tr>
<td>SLC 500 8-Point Analog Output Module Installation Instructions, publication 1746-IN026</td>
<td>Installation instructions for SLC 500 8-point analog output modules.</td>
</tr>
<tr>
<td>SLC 500 Digital I/O Modules Installation Instructions, publication 1746-IN027</td>
<td>Installation Instructions for SLC 500 digital I/O modules.</td>
</tr>
<tr>
<td>SLC 500 4-Channel Analog I/O Modules User Manual, publication 1746-UM005</td>
<td>A more detailed description on how to configure the SLC 500 analog I/O modules.</td>
</tr>
<tr>
<td>SLC 500 4-Channel Thermocouple/mV Input Module User Manual, publication 1746-UM007</td>
<td>A more detailed description on how to configure the SLC 500 4-Channel Thermocouple/mV Input Module.</td>
</tr>
<tr>
<td>SLC to CompactLogix Programming Migration Guide, publication 5069-AP001</td>
<td>Provides information on converting an SLC program to a Logix program and migrating the existing SLC I/O to an Ethernet network.</td>
</tr>
<tr>
<td>CompactLogix Controllers Specifications Technical Data, publication 1769-TD005</td>
<td>Provides CompactLogix controllers specifications.</td>
</tr>
<tr>
<td>Compact I/O Modules Specifications Technical Data, publication 1769-TD006</td>
<td>Provides Compact I/O Modules specifications.</td>
</tr>
<tr>
<td>CompactLogix 5380, Compact GuardLogix 5380, and CompactLogix 5480 Controllers Specifications Technical Data, publication 5069-TD002</td>
<td>Provides CompactLogix, Compact GuardLogix, and CompactLogix controllers specifications.</td>
</tr>
<tr>
<td>CompactLogix 5370 Controllers User Manual, publication 1769-UM021</td>
<td>Describes how to install, use, and troubleshoot CompactLogix 5370 controllers.</td>
</tr>
<tr>
<td>CompactLogix 5380 Controllers User Manual, publication 5069-UM001</td>
<td>Describes how to install, use, and troubleshoot CompactLogix 5380 controllers and Compact GuardLogix 5380 controllers.</td>
</tr>
<tr>
<td>Compact 5000 I/O Modules and EtherNet/IP Adapters Technical Data, publication 5069-TD001</td>
<td>Provides Compact 5000 I/O and EtherNet/IP adapter specifications.</td>
</tr>
<tr>
<td>Compact 5000 I/O Serial Module User Manual, publication 5069-UM003</td>
<td>Describes how to install, use, and troubleshoot a Compact 5000 I/O serial module.</td>
</tr>
</tbody>
</table>

You can view or download publications at rok.auto/literature.
Overview

Product Lifecycle Status Website

The Rockwell Automation Product Lifecycle Status website allows you to proactively plan and manage the transition from existing equipment to leading-edge products and technologies. Using the search tool, you can view up-to-date product lifecycle status and identify the most contemporary Rockwell Automation products.

The product lifecycle status may be Active, Active Mature, End of Life, or Discontinued.

To view the lifecycle information for a product:

2. In the Catalog Number field, enter the catalog number of the product.
3. Click Search.

The product lifecycle data displays.

If the lifecycle status of the product is End of Life or Discontinued, you can view the recommended replacement.
SLC 500 System

The SLC 500 system is a small chassis-based family of programmable controllers, discrete, analog, and specialty I/O, and peripheral devices. The SLC 500 family delivers power and flexibility with a wide range of communication configurations, features, and memory options.

SLC 500 programmable controllers provide value with extensive capabilities to address a broad range of applications including material handling, HVAC control, high-speed assembly operations, small process control, simple motion control, and SCADA. With SLC 500 Modular Hardware Style controllers, you select the processor, power supply, and I/O modules to fit your application. Modular style chassis are available in 4, 7, 10, and 13-slot versions.

Digital I/O modules, analog I/O modules, and specialty temperature, counting, and process control modules are available to help you create a custom solution for your application.

CompactLogix 5370 Controllers

CompactLogix 5370 controllers provide scalable controller solutions to address a wide variety of applications. All CompactLogix 5370 controllers provide the following functionality:

- Two EtherNet/IP™ ports
- One USB port
- Support for local expansion modules
- Control of local and distributed I/O modules
- Use of 1784-SD1 or 1784-SD2 Secure Digital (SD) card for nonvolatile memory
- A battery is no longer necessary because of the internal energy-storage solution

Some CompactLogix 5370 controllers provide the following functionality:

- Built-in power supply
- Some combination of embedded digital, analog, and high-speed counter modules
- Support for Integrated Motion over an EtherNet/IP network

CompactLogix 5380 Controllers

CompactLogix 5380 controllers can operate in various applications that range from standalone systems or in more complex systems with devices that are connected to the controller via an EtherNet/IP network. All CompactLogix 5380 controllers provide the following functionality:

- Two EtherNet/IP ports
- One USB port
- Support for local expansion modules
- Control of local and distributed I/O modules
- Support Device Level Ring (DLR), Star, and Linear EtherNet/IP network topologies.
- Support up to 180 EtherNet/IP nodes, depending on catalog number.
- Support Linear/DLR and Dual-IP EtherNet/IP modes.
• Support Generic ASCII, Modbus RTU/ASCII, and legacy DF1 and DH-485 protocols.

Some CompactLogix 5380 controllers provide the following functionality:
• Support for Integrated Motion up to 32 axes over an EtherNet/IP network

Compact I/O Modules

The Compact I/O modules can be used in the following applications:
• With a CompactLogix controller
• In an assembly with a 1769-ADN DeviceNet adapter
• In an assembly with a 1769-AENTR Ethernet adapter.

Each I/O module includes a built-in removable terminal block with fingersafe cover for connections to I/O sensors and actuators. The terminal block is behind a door at the front of the module. I/O wiring can be routed from beneath the module to the I/O terminals.
• Once the modules are locked together, the system becomes a rugged assembly.
• Upper and lower tongue-and-groove slots guide the module during installation and secure the module within the system.
• Removable terminal blocks help ease the wiring task.
• Self-lifting, field-wire pressure plates cut installation time.
• The patented bus connector with the lock function enables consistent system communication.
• A color bar is provided on the front of the module.
• Digital and field circuits are optically isolated.

Compact 5000 I/O Modules

The Compact 5000 I/O architecture provides a wide range of input and output modules to span many applications, from high-speed digital to process control. The architecture uses Producer/Consumer technology that allows input information and output status to be shared among multiple Logix 5000 controllers.

Compact 5000 I/O systems are used as local I/O modules in CompactLogix 5380 controller systems or as remote I/O modules with CompactLogix 5380 controllers and some other Logix 5000 controllers. The modules are configured with the Studio 5000 Logix Designer application.

The serial module provides two independent channels that function as network interface using RS232C, RS422, or RS485 to serial devices communicating on Generic ASCII, Modbus RTU/ASCII, DF1, or DH-485 protocol.

The I/O module requires a removable terminal block (RTB) to connect field-side wiring. RTBs are not included with the I/O modules. You must order RTBs separately.
Power Considerations

SLC 500 Controllers

The SLC 500 controllers require an SLC power supply module on the leftmost slot to provide power to all modules on the chassis. This powers up the controller and the I/O modules. This also facilitates communication through the backplane.

Though all 1746 input modules and most 1746 output modules receive the necessary power that they need from the backplane, some 1746 output modules, such as relay modules and AC modules, require additional power to be supplied to the module terminal block.

CompactLogix 5380 Controllers

The CompactLogix 5380 controllers require a 24V DC source supply that is connected to the MOD power terminal to provide power to all modules. Unlike the SLC 500 controller, the CompactLogix 5380 controller does not require a chassis.

Backplane connection is at the side of each module and it is necessary to cover the side with a 5069-ECR end cap (shipped with the CompactLogix 5380 controllers and Compact 5000 EtherNet/IP adapters) to help prevent electrical hazards.

The 24V DC source to MOD power terminal can be from any external power supply. You do not require additional power supply connections to each I/O module\(^{(1)}\) if connecting field devices are in the same operating voltage range.

For more information about MOD power and SA power considerations, see chapter 2 of the CompactLogix 5380 and Compact GuardLogix® 5380 Controllers User Manual, 5069-UM001.

\(^{(1)}\) Except for 5069-OB8, 5069-OB16 and 5069-OB16F.
Sensor Actuator Power for CompactLogix 5380

The CompactLogix 5380 I/O power system has a common sensor actuator (SA) bus where a single power source can be shared among all attaching I/O modules using the backplane. This helps reduce wiring effort and is convenient if all I/O devices operate at the same operating voltage. If the SA has two different operating voltages (see following figures), the SA power bus can be separated with a Field Potential Distributor Module, such as the 5069-FPD.

IMPORTANT The 5069-OW16 module uses DC SA power. You must connect DC power to the component, that is, controller, adapter, or field potential distributor, that provides SA power to the module.
Other Considerations

The SLC 500 system was designed more than 30 years ago and electronic components have evolved over time. To help avoid potential electromagnetic interference (EMI) and transient EMI that could cause problems in your existing system conversion, see the Industrial Automation Wiring and Grounding Guidelines, publication 1770-1IN041.

To fully migrate your SLC 500 systems you also need to convert your SLC 500 application code. For more information on software conversion, see the SLC to CompactLogix Programming Migration Guide, publication 5069-AP001.
Chapter 2

Replace an SLC 500 Controller

This chapter provides information about the recommended replacement for your existing SLC 500 controller.

Due to the discontinuation of SLC 5/01 and SLC 5/02 controllers in January 2017, a replacement CompactLogix controller is recommended.

You can view the lifecycle status of your SLC product on the Rockwell Automation Product Lifecycle Status website:

Upgrade to a CompactLogix 5370 Controller

Table 1 lists the recommended replacement CompactLogix 5370 controller to your existing SLC 500 controller. These recommendations exclude Motion and Safety applications, consult your local sales office for more info.

For technical specifications of the recommended CompactLogix 5370 controller, see CompactLogix Controllers Specifications Technical Data, publication 1769-TD005.
Table 2 lists the recommended replacement CompactLogix 5380 controller to your existing SLC 500 controller. These recommendations exclude Motion applications, consult your local sales office for more information.

Table 2 - Recommended CompactLogix 5380 Replacement Controllers

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>SLC Controller Description</th>
<th>Recommended CompactLogix 5380 Controller Replacement</th>
<th>CompactLogix 5380 Controller Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1747-L511</td>
<td>SLC 5/01 1K Controller</td>
<td>5069-L306ED(1)(2)</td>
<td>CompactLogix 5380 Controller, 600 KB, 8 I/O, 16 nodes, Standard</td>
</tr>
<tr>
<td>1747-L514</td>
<td>SLC 5/01 4K Controller</td>
<td>5069-L306ER</td>
<td>CompactLogix 5380 Controller, 600 KB, 8 I/O, 16 nodes, Standard</td>
</tr>
<tr>
<td>1747-L524</td>
<td>SLC 5/02 4K Controller</td>
<td>5069-L306ER</td>
<td>CompactLogix 5380 Controller, 600 KB, 8 I/O, 16 nodes, Standard</td>
</tr>
<tr>
<td>1747-L531</td>
<td>SLC 5/03 8K Controller</td>
<td>5069-L306ER</td>
<td>CompactLogix 5380 Controller, 600 KB, 8 I/O, 16 nodes, Standard</td>
</tr>
<tr>
<td>1747-L532</td>
<td>SLC 5/03 16K Controller</td>
<td>5069-L306ER</td>
<td>CompactLogix 5380 Controller, 600 KB, 8 I/O, 16 nodes, Standard</td>
</tr>
<tr>
<td>1747-L533</td>
<td>SLC 5/03 32K Controller</td>
<td>5069-L306ER</td>
<td>CompactLogix 5380 Controller, 600 KB, 8 I/O, 16 nodes, Standard</td>
</tr>
<tr>
<td>1747-L541</td>
<td>SLC 5/04 16K Controller</td>
<td>5069-L306ER</td>
<td>CompactLogix 5380 Controller, 600 KB, 8 I/O, 16 nodes, Standard</td>
</tr>
<tr>
<td>1747-L542</td>
<td>SLC 5/04 32K Controller</td>
<td>5069-L306ER</td>
<td>CompactLogix 5380 Controller, 600 KB, 8 I/O, 16 nodes, Standard</td>
</tr>
<tr>
<td>1747-L543</td>
<td>SLC 5/04 64K Controller</td>
<td>5069-L310ER</td>
<td>CompactLogix 5380 Controller, 1 MB, 8 I/O, 24 nodes, Standard</td>
</tr>
<tr>
<td>1747-L551</td>
<td>SLC 5/05 16K Controller</td>
<td>5069-L306ER</td>
<td>CompactLogix 5380 Controller, 600 KB, 8 I/O, 16 nodes, Standard</td>
</tr>
<tr>
<td>1747-L552</td>
<td>SLC 5/05 32K Controller</td>
<td>5069-L306ER</td>
<td>CompactLogix 5380 Controller, 600 KB, 8 I/O, 16 nodes, Standard</td>
</tr>
<tr>
<td>1747-L553</td>
<td>SLC 5/05 64K Controller</td>
<td>5069-L310ER</td>
<td>CompactLogix 5380 Controller, 1 MB, 8 I/O, 24 nodes, Standard</td>
</tr>
</tbody>
</table>

(1) To include safety on the control, you can upgrade any recommended CompactLogix 5380 replacement controller to Compact GuardLogix 5380 SIL 2 and Compact GuardLogix 5380 SIL 3 safety controllers.

(2) The general rule of thumb for memory estimation can be found under “SLC to Logix Memory Comparison” in the SLC to CompactLogix Programming Migration Guide, publication 5069-AP001. Alternatively, you can validate the controller based on memory estimation by the code conversion tool (RSLogix Project Migrator).

For technical specifications of the recommended CompactLogix 5380 controller, see CompactLogix Controllers Specifications Technical Data, publication 5069-TD002.
Chapter 3

Replace an SLC 500 I/O Module

This chapter provides information about the recommended replacement for your existing SLC 500 I/O module.

Upgrade an SLC I/O Installation by Replacing it with Compact I/O

Table 3 lists the recommended replacement Compact I/O module to your existing SLC 500 I/O module.

Before upgrading, take note of the following:

- When replacing an SLC I/O with a Compact I/O, a CompactLogix 5370 controller must be used.
- There might be technical differences between the SLC I/O and Compact I/O. Verify the specifications to meet your application needs.

For wiring diagrams and technical specifications of Compact I/O modules, see Compact I/O Modules Specifications Technical Data, publication 1769-TD006.

Table 3 - Recommended Compact I/O Replacement

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Catalog Number (1)</th>
<th>SLC Module Description</th>
<th>Recommended Compact I/O Replacement(2)</th>
<th>Compact I/O Module Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital input</td>
<td>1746-IA4</td>
<td>100/120V AC, 4 120V AC input module</td>
<td>1769-IA8I</td>
<td>8 inputs, individually isolated, 100/120V AC input module</td>
</tr>
<tr>
<td></td>
<td>1746-IA8</td>
<td>100/120V AC, 8 120V AC input module</td>
<td>1769-IA8I</td>
<td>8 inputs, individually isolated, 100/120V AC input module</td>
</tr>
<tr>
<td></td>
<td>1746-IA16</td>
<td>100/120V AC, 16 120V AC input module</td>
<td>1769-IA16</td>
<td>16 inputs, 100/120V AC input module</td>
</tr>
<tr>
<td></td>
<td>1746-IB8</td>
<td>24V DC, 8 current sinking DC input module</td>
<td>1769-IQ16</td>
<td>16 inputs, 24V DC sink/source input module</td>
</tr>
<tr>
<td></td>
<td>1746-IB16</td>
<td>24V DC, 16 current sinking DC input module</td>
<td>1769-IQ16</td>
<td>16 inputs, 24V DC sink/source input module</td>
</tr>
<tr>
<td></td>
<td>1746-IB32</td>
<td>24V DC, 32 current sinking DC input module</td>
<td>1769-IQ32</td>
<td>32 inputs, 24V DC sink/source input module</td>
</tr>
<tr>
<td></td>
<td>1746-IC16</td>
<td>48V DC, 16 current sinking DC input module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-ITB16</td>
<td>24V DC, 16 fast response DC sinking input module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-IB16</td>
<td>5V DC, 16 current sourcing TTL input module</td>
<td>1769-IT2</td>
<td>16 inputs, 5V DC TTL input module</td>
</tr>
<tr>
<td></td>
<td>1746-IN16</td>
<td>125V DC, 16 current sinking DC input module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-IM4</td>
<td>200/240V AC, 4 240V AC input module</td>
<td>1769-IM2</td>
<td>12 inputs, 200/240V AC input module</td>
</tr>
<tr>
<td></td>
<td>1746-IM8</td>
<td>200/240V AC, 8 240V AC input module</td>
<td>1769-IM2</td>
<td>12 inputs, 200/240V AC input module</td>
</tr>
<tr>
<td></td>
<td>1746-IM16</td>
<td>200/240V AC, 16 240V AC input module</td>
<td>1769-IM2</td>
<td>12 inputs, 200/240V AC input module</td>
</tr>
<tr>
<td></td>
<td>1746-IN16</td>
<td>24V AC/DC, 16 24V AC/DC input module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-ITB16</td>
<td>24V DC, 16 fast response DC sinking input module</td>
<td>1769-IQ16F</td>
<td>16 inputs, high-speed 24V DC sink/source digital input module</td>
</tr>
<tr>
<td>Module Type</td>
<td>Catalog Number (1)</td>
<td>SLC Module Description</td>
<td>Recommended Compact I/O Replacement(2)</td>
<td>Compact I/O Module Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Digital input (cont.)</td>
<td>1746-ITV16</td>
<td>24V DC, 16 fast response DC sourcing input module</td>
<td>1789-IQ16F</td>
<td>16 inputs, high-speed 24V DC sink/source digital input module</td>
</tr>
<tr>
<td></td>
<td>1746-IV8</td>
<td>24V DC, 8 current sourcing DC input module</td>
<td>1789-IQ16</td>
<td>16 inputs, 24V DC sink/source input module</td>
</tr>
<tr>
<td></td>
<td>1746-IV16</td>
<td>24V DC, 16 current sourcing DC input module</td>
<td>1789-IQ16</td>
<td>16 inputs, 24V DC sink/source input module</td>
</tr>
<tr>
<td></td>
<td>1746-IV32</td>
<td>24V DC, 32 current sourcing DC input module</td>
<td>1789-IQ32</td>
<td>32 inputs, 24V DC sink/source input module</td>
</tr>
<tr>
<td></td>
<td>1746-IV8</td>
<td>24V DC, 8 current sourcing DC input module</td>
<td>1746-OA8</td>
<td>8 outputs, 100/240V AC input module</td>
</tr>
<tr>
<td></td>
<td>1746-IV16</td>
<td>24V DC, 16 current sourcing DC input module</td>
<td>1746-OA16</td>
<td>16 outputs, 100/240V AC input module</td>
</tr>
<tr>
<td></td>
<td>1746-IV32</td>
<td>24V DC, 32 current sourcing DC input module</td>
<td>1746-OA16</td>
<td>16 outputs, 100/240V AC input module</td>
</tr>
<tr>
<td></td>
<td>1746-IV32E</td>
<td>24V DC, 32 electronically protected current sourcing DC output module</td>
<td>1746-OB32</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB8</td>
<td>24V DC, 8 current sourcing DC output module</td>
<td>1746-OB8</td>
<td>8 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16</td>
<td>24V DC, 16 current sourcing DC output module</td>
<td>1746-OB16</td>
<td>16 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16E</td>
<td>24V DC, 16 electronically protected current sourcing DC output module</td>
<td>1746-OB16P</td>
<td>16 outputs, protected, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32</td>
<td>24V DC, 32 current sourcing DC output module</td>
<td>1746-OB32</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32E</td>
<td>24V DC, 32 electronically protected current sourcing DC output module</td>
<td>1746-OB32E</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB8P</td>
<td>24V DC, 8 high current sourcing DC output module</td>
<td>1746-OB8P</td>
<td>8 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16P</td>
<td>24V DC, 16 high current sourcing DC output module</td>
<td>1746-OB16P</td>
<td>16 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16E</td>
<td>24V DC, 16 electronically protected current sourcing DC output module</td>
<td>1746-OB16E</td>
<td>16 outputs, protected, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32</td>
<td>24V DC, 32 current sourcing DC output module</td>
<td>1746-OB32</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32E</td>
<td>24V DC, 32 electronically protected current sourcing DC output module</td>
<td>1746-OB32E</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB8</td>
<td>24V DC, 8 current sourcing DC output module</td>
<td>1746-OB8</td>
<td>8 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16</td>
<td>24V DC, 16 current sourcing DC output module</td>
<td>1746-OB16</td>
<td>16 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16E</td>
<td>24V DC, 16 electronically protected current sourcing DC output module</td>
<td>1746-OB16P</td>
<td>16 outputs, protected, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32</td>
<td>24V DC, 32 current sourcing DC output module</td>
<td>1746-OB32</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32E</td>
<td>24V DC, 32 electronically protected current sourcing DC output module</td>
<td>1746-OB32E</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB8</td>
<td>24V DC, 8 current sourcing DC output module</td>
<td>1746-OB8</td>
<td>8 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16</td>
<td>24V DC, 16 current sourcing DC output module</td>
<td>1746-OB16</td>
<td>16 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16E</td>
<td>24V DC, 16 electronically protected current sourcing DC output module</td>
<td>1746-OB16E</td>
<td>16 outputs, protected, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32</td>
<td>24V DC, 32 current sourcing DC output module</td>
<td>1746-OB32</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32E</td>
<td>24V DC, 32 electronically protected current sourcing DC output module</td>
<td>1746-OB32E</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB8</td>
<td>24V DC, 8 current sourcing DC output module</td>
<td>1746-OB8</td>
<td>8 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16</td>
<td>24V DC, 16 current sourcing DC output module</td>
<td>1746-OB16</td>
<td>16 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16E</td>
<td>24V DC, 16 electronically protected current sourcing DC output module</td>
<td>1746-OB16E</td>
<td>16 outputs, protected, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32</td>
<td>24V DC, 32 current sourcing DC output module</td>
<td>1746-OB32</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32E</td>
<td>24V DC, 32 electronically protected current sourcing DC output module</td>
<td>1746-OB32E</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB8</td>
<td>24V DC, 8 current sourcing DC output module</td>
<td>1746-OB8</td>
<td>8 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16</td>
<td>24V DC, 16 current sourcing DC output module</td>
<td>1746-OB16</td>
<td>16 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16E</td>
<td>24V DC, 16 electronically protected current sourcing DC output module</td>
<td>1746-OB16E</td>
<td>16 outputs, protected, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32</td>
<td>24V DC, 32 current sourcing DC output module</td>
<td>1746-OB32</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32E</td>
<td>24V DC, 32 electronically protected current sourcing DC output module</td>
<td>1746-OB32E</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB8</td>
<td>24V DC, 8 current sourcing DC output module</td>
<td>1746-OB8</td>
<td>8 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16</td>
<td>24V DC, 16 current sourcing DC output module</td>
<td>1746-OB16</td>
<td>16 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16E</td>
<td>24V DC, 16 electronically protected current sourcing DC output module</td>
<td>1746-OB16E</td>
<td>16 outputs, protected, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32</td>
<td>24V DC, 32 current sourcing DC output module</td>
<td>1746-OB32</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32E</td>
<td>24V DC, 32 electronically protected current sourcing DC output module</td>
<td>1746-OB32E</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB8</td>
<td>24V DC, 8 current sourcing DC output module</td>
<td>1746-OB8</td>
<td>8 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16</td>
<td>24V DC, 16 current sourcing DC output module</td>
<td>1746-OB16</td>
<td>16 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16E</td>
<td>24V DC, 16 electronically protected current sourcing DC output module</td>
<td>1746-OB16E</td>
<td>16 outputs, protected, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32</td>
<td>24V DC, 32 current sourcing DC output module</td>
<td>1746-OB32</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32E</td>
<td>24V DC, 32 electronically protected current sourcing DC output module</td>
<td>1746-OB32E</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB8</td>
<td>24V DC, 8 current sourcing DC output module</td>
<td>1746-OB8</td>
<td>8 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16</td>
<td>24V DC, 16 current sourcing DC output module</td>
<td>1746-OB16</td>
<td>16 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB16E</td>
<td>24V DC, 16 electronically protected current sourcing DC output module</td>
<td>1746-OB16E</td>
<td>16 outputs, protected, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32</td>
<td>24V DC, 32 current sourcing DC output module</td>
<td>1746-OB32</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
<tr>
<td></td>
<td>1746-OB32E</td>
<td>24V DC, 32 electronically protected current sourcing DC output module</td>
<td>1746-OB32E</td>
<td>32 outputs, 24V DC source output module</td>
</tr>
</tbody>
</table>
Table 3 - Recommended Compact I/O Replacement (Continued)

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Catalog Number (1)</th>
<th>SLC Module Description</th>
<th>Recommended Compact I/O Replacement(2)</th>
<th>Compact I/O Module Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1746-INI4</td>
<td>4-channel thermocouple (J, K, T, E, R, S, B, N, C)/mV input module</td>
<td>1769-ITBI</td>
<td>Isolated thermocouple or millivolt input module</td>
</tr>
<tr>
<td></td>
<td>1746-NI4</td>
<td>High resolution analog input module</td>
<td>1769-IF4</td>
<td>4 inputs, differential or single-ended, ±10V/0…10V/0…5V/1…5V/0…20 mA/4…20 mA analog input module</td>
</tr>
<tr>
<td></td>
<td>1746-NI8</td>
<td>High resolution analog input module</td>
<td>1769-IF8</td>
<td>8 inputs, differential or single-ended, ±10V/0…10V/0…5V/1…5V/0…20 mA/4…20 mA analog input module</td>
</tr>
<tr>
<td></td>
<td>1746-NTI8</td>
<td>-20 mA…+20 mA, high resolution analog input module</td>
<td>1769-IF16C</td>
<td>16 inputs, single-ended, 0…20 mA/4…20 mA analog input module</td>
</tr>
<tr>
<td></td>
<td>1746-NI8V</td>
<td>-10V DC…+10V DC, high resolution analog input module</td>
<td>1769-IF16V</td>
<td>16 inputs, single-ended, ±10V/0…10V/0…5V/1…5V analog input module</td>
</tr>
<tr>
<td></td>
<td>1746-NR4</td>
<td>4-channel RTD/resistance input module</td>
<td>1769-IR6</td>
<td>6 RTD inputs, 100, 200, 500, 1000 Platinum 385/3916, 120 ohm Nickel 618/672, 10 ohm Nickel-Iron, 0…150/500/1000/3000 ohm module</td>
</tr>
<tr>
<td></td>
<td>1746-NR8</td>
<td>8-channel RTD/resistance input module</td>
<td>1769-IR8</td>
<td>6 RTD inputs, 100, 200, 500, 1000 Platinum 385/3916, 120 ohm Nickel 618/672, 10 ohm Nickel-Iron, 0…150/500/1000/3000 ohm module</td>
</tr>
<tr>
<td></td>
<td>1746-N14</td>
<td>4-channel thermocouple (J, K, T, E, R, S, B, N)/mV input module</td>
<td>1769-IT6</td>
<td>6 thermocouple, thermocouple types B, C, E, J, K, N, R, S, T/±50V/±100V module</td>
</tr>
<tr>
<td></td>
<td>1746-N18</td>
<td>8-channel thermocouple (J, K, T, E, R, S, B, N)/mV input module</td>
<td>1769-IT6</td>
<td>6 thermocouple, thermocouple types B, C, E, J, K, N, R, S, T/±50V/±100V module</td>
</tr>
<tr>
<td></td>
<td>1746-MO4I</td>
<td>High resolution, 2 analog input, 2 analog current output module</td>
<td>1769-IF4OF2</td>
<td>4 inputs, differential or single-ended, 2 outputs, single-ended analog module</td>
</tr>
<tr>
<td></td>
<td>1746-MO4V</td>
<td>High resolution, 2 analog input, 2 analog voltage output module</td>
<td>1769-IF4OF2</td>
<td>4 inputs, differential or single-ended, 2 outputs, single-ended analog module</td>
</tr>
<tr>
<td></td>
<td>1746-NO4I</td>
<td>0…20 mA, 4 analog current output module</td>
<td>1769-OF4</td>
<td>4 outputs, single-ended, ±10V/0…10V/0…5V/1…5V/0…20 mA/4…20 mA analog output module</td>
</tr>
<tr>
<td></td>
<td>1746-NO4V</td>
<td>0…20 mA, 8 analog current output module</td>
<td>1769-OF8C</td>
<td>8 outputs, single-ended, 0…20 mA/4…20 mA analog output module</td>
</tr>
<tr>
<td></td>
<td>1746-NO8I</td>
<td>-10V…+10V DC, 4 analog current output module</td>
<td>1769-OF8V</td>
<td>8 outputs, single-ended, ±10V/0…10V/0…5V/1…5V analog output module</td>
</tr>
<tr>
<td></td>
<td>1746-NO8V</td>
<td>-10V…+10V DC, 8 analog current output module</td>
<td>1769-OF8V</td>
<td>8 outputs, single-ended, ±10V/0…10V/0…5V/1…5V analog output module</td>
</tr>
<tr>
<td>Analog combination</td>
<td>1746-F104I</td>
<td>2 fast analog input, 2 analog current output module</td>
<td>1769-IF4OF2</td>
<td>4 inputs, differential or single-ended, 2 outputs, single-ended analog module</td>
</tr>
<tr>
<td></td>
<td>1746-F104V</td>
<td>2 fast analog input, 2 analog voltage output module</td>
<td>1769-IF4OF2</td>
<td>4 inputs, differential or single-ended, 2 outputs, single-ended analog module</td>
</tr>
</tbody>
</table>

1. (1) Catalog numbers correspond to the Compact I/O module numbers listed in Table 3.
2. (2) For more information on the recommended replacement modules, refer to the detailed specifications provided in the Rockwell Automation documentation.
Table 3 - Recommended Compact I/O Replacement (Continued)

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Catalog Number</th>
<th>SLC Module Description</th>
<th>Recommended Compact I/O Replacement(2)</th>
<th>Compact I/O Module Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialty</td>
<td>1747-ACN15</td>
<td>ControlNet® adapter</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1747-ACNR15</td>
<td>ControlNet adapter, redundant</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1747-ASB</td>
<td>SLC 500 remote I/O adapter</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-BAS</td>
<td>Basic module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-BAS-T</td>
<td>High-speed basic module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-BLM</td>
<td>Blow molding module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-BTM</td>
<td>Barrel temperature module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-HS</td>
<td>IMC 110 motion module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-HSCE</td>
<td>High-speed counter encoder module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-HSCE2</td>
<td>Multi-channel high-speed counter encoder module</td>
<td>1789-HSC</td>
<td>High-speed counter module</td>
</tr>
<tr>
<td></td>
<td>1746-HSTP1</td>
<td>1-axis stepper module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-N2</td>
<td>Empty slot filler</td>
<td>1789-ARM</td>
<td>Compact address reserve module</td>
</tr>
<tr>
<td></td>
<td>1746-QS</td>
<td>Synchronized axis module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-QV</td>
<td>Open loop velocity control module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1747-SCNR</td>
<td>ControlNet scanner</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1747-SDN</td>
<td>DeviceNet scanner</td>
<td>1789-SDN</td>
<td>Compact I/O DeviceNet scanner</td>
</tr>
<tr>
<td></td>
<td>1746-SIM</td>
<td>16-point input simulator module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1747-SN</td>
<td>Remote I/O scanner</td>
<td>No replacement</td>
<td>—</td>
</tr>
</tbody>
</table>

(1) The product may be in Active Mature, End of Life, or Discontinued state. To view the most up-to-date product lifecycle status, search for the catalog number on the Product Lifecycle Status website.

(2) The recommended replacements that are indicated in this table are for reference only. There may be slight differences in specifications between the existing 1746 SLC I/O module and recommended 1789 Compact I/O module. Consult your local sales team for further assistance.
Upgrade an SLC I/O Installation by Replacing it with Compact 5000 I/O

Table 4 lists the recommended replacement Compact 5000 I/O module to your existing SLC 500 I/O module.

Before upgrading, take note of the following:

- When replacing an SLC I/O with a Compact 5000 I/O, a CompactLogix 5380, CompactLogix 5480, or ControlLogix® 5580 controller must be used.
- There might be technical differences between the SLC I/O and Compact 5000 I/O. Verify the specifications to meet your application needs. For wiring diagrams and technical specifications of Compact 5000 I/O modules, see Compact 5000 I/O Modules Specifications Technical Data, publication 5069-TD001.

Table 4 - Recommended Compact 5000 I/O Replacement

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Catalog Number(1)</th>
<th>SLC Module Description</th>
<th>Recommended Compact 5000 I/O Module Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA6-IA4</td>
<td>100/120V AC, 4 120V AC input module</td>
<td>5069-IA16, 16-point, 120/240V AC digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-IA8</td>
<td>100/120V AC, 8 120V AC input module</td>
<td>5069-IA16, 16-point, 120/240V AC digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-IA16</td>
<td>100/120V AC, 16 120V AC input module</td>
<td>5069-IA16, 16-point, 120/240V AC digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-IB16</td>
<td>24V DC, 16 current sinking DC input module</td>
<td>5069-IB16, 16-point, 24V DC sinking digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-IB16</td>
<td>24V DC, 16 current sinking DC input module</td>
<td>5069-IB16, 16-point, 24V DC sinking digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-IB32</td>
<td>24V DC, 32 current sinking DC input module</td>
<td>5069-IB16 x 2(3), 16-point, 24V DC sinking digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-IC16</td>
<td>48V DC, 16 current sinking DC input module</td>
<td>No replacement —</td>
</tr>
<tr>
<td></td>
<td>TA6-ICS16</td>
<td>5V DC, 16 current sourcing TTL input module</td>
<td>No replacement —</td>
</tr>
<tr>
<td></td>
<td>TA6-IH16</td>
<td>125V DC, 16 current sinking DC input module</td>
<td>No replacement —</td>
</tr>
<tr>
<td></td>
<td>TA6-IM4</td>
<td>20/240V AC, 4 240V AC input module</td>
<td>5069-IA16, 16-point, 120/240V AC digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-IM8</td>
<td>20/240V AC, 8 240V AC input module</td>
<td>5069-IA16, 16-point, 120/240V AC digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-IM16</td>
<td>20/240V AC, 16 240V AC input module</td>
<td>5069-IA16, 16-point, 120/240V AC digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-IN16</td>
<td>24V AC/DC, 16 24V AC/DC input module</td>
<td>No replacement —</td>
</tr>
<tr>
<td></td>
<td>TA6-ITB16</td>
<td>24V DC, 16 fast response DC sinking input module</td>
<td>5069-IB16, 16-point, 24V DC sinking digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-ITV16</td>
<td>24V DC, 16 fast response DC sourcing input module</td>
<td>No replacement —</td>
</tr>
<tr>
<td></td>
<td>TA6-IV8</td>
<td>24V DC, 8 current sourcing DC input module</td>
<td>5069-IV16F-SC, 16-point, 24V DC sourcing digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-IV16</td>
<td>24V DC, 16 current sourcing DC input module</td>
<td>5069-IV16F-SC, 16-point, 24V DC sourcing digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-IV32</td>
<td>24V DC, 32 current sourcing DC input module</td>
<td>5069-IV16F-SC x 2, 16-point, 24V DC sourcing digital input module</td>
</tr>
<tr>
<td></td>
<td>TA6-OA8</td>
<td>120/240V AC, 8 120/240V AC output module</td>
<td>5069-OA16, 16-point, 120/240V AC digital output module</td>
</tr>
<tr>
<td></td>
<td>TA6-OA16</td>
<td>120/240V AC, 16 120/240V AC output module</td>
<td>5069-OA16, 16-point, 120/240V AC digital output module</td>
</tr>
<tr>
<td></td>
<td>TA6-OAP12</td>
<td>120/240V AC, 12 high current 120/240V AC output module</td>
<td>No replacement —</td>
</tr>
<tr>
<td></td>
<td>TA6-OBE16</td>
<td>24V DC, 6 electronically protected isolated sourcing DC output module</td>
<td>No replacement —</td>
</tr>
<tr>
<td></td>
<td>TA6-OBB16</td>
<td>24V DC, 8 current sourcing DC output module</td>
<td>5069-OB16, 8-point, 24V DC, high current digital output module</td>
</tr>
<tr>
<td></td>
<td>TA6-OBBX2</td>
<td>24V DC, 8 current sourcing DC output module</td>
<td>5069-OB16, 16-point, 24V DC, sourcing digital output module</td>
</tr>
<tr>
<td></td>
<td>TA6-OBB16E</td>
<td>24V DC, 16 current sourcing DC output module</td>
<td>5069-OB16, 16-point, 24V DC, sourcing digital output module</td>
</tr>
<tr>
<td></td>
<td>TA6-OBB16E</td>
<td>24V DC, 16 electronically protected isolated sourcing DC output module</td>
<td>5069-OB16, 16-point, 24V DC sourcing digital output module</td>
</tr>
<tr>
<td></td>
<td>TA6-OBB32E</td>
<td>24V DC, 32 current sourcing DC output module</td>
<td>5069-OB16 x 2(3), 16-point, 24V DC sourcing digital output module</td>
</tr>
<tr>
<td></td>
<td>TA6-OBB32E</td>
<td>24V DC, 32 electronically protected isolated sourcing DC output module</td>
<td>5069-OB16 x 2(3), 16-point, 24V DC sourcing digital output module</td>
</tr>
<tr>
<td></td>
<td>TA6-OBB32</td>
<td>24V DC, 32 current sourcing DC output module</td>
<td>5069-OB16 x 2(3), 16-point, 24V DC sourcing digital output module</td>
</tr>
<tr>
<td></td>
<td>TA6-OBB32</td>
<td>24V DC, 32 electronically protected isolated sourcing DC output module</td>
<td>5069-OB16 x 2(3), 16-point, 24V DC sourcing digital output module</td>
</tr>
<tr>
<td></td>
<td>TA6-OBB16</td>
<td>24V DC, 8 high current sourcing DC output module</td>
<td>5069-OB16, 8-point, 24V DC, high current digital output module</td>
</tr>
<tr>
<td></td>
<td>TA6-OBB16X2</td>
<td>24V DC, 8 high current sourcing DC output module</td>
<td>5069-OB16, 16-point, 24V DC, sourcing digital output module</td>
</tr>
</tbody>
</table>
Table 4 - Recommended Compact 5000 I/O Replacement (Continued)

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Catalog Number</th>
<th>SLC Module Description</th>
<th>Recommended Compact 5000 I/O Replacement</th>
<th>Compact 5000 I/O Module Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital output (cont.)</td>
<td>1746-OBP16</td>
<td>24V DC, 16 high current sourcing DC output module</td>
<td>5069-OB8 x 2<sup>4</sup></td>
<td>16-point, 24V DC, high current digital output module</td>
</tr>
<tr>
<td></td>
<td>1746-OF16</td>
<td>5V DC, 16 current sourcing TTL output module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-0Y8</td>
<td>24V DC, 8 current sinking DC output module</td>
<td>5069-0V16F-SC (Spectrum module)</td>
<td>16-point, 24V DC, sinking digital output module</td>
</tr>
<tr>
<td></td>
<td>1746-0Y16</td>
<td>24V DC, 16 current sinking DC output module</td>
<td>5069-0V16F-SC (Spectrum module)</td>
<td>16-point, 24V DC, sinking digital output module</td>
</tr>
<tr>
<td></td>
<td>1746-OY2</td>
<td>24V DC, 32 current sinking DC output module</td>
<td>5069-0V16F-SC x 2 (Spectrum module)</td>
<td>16-point, 24V DC, sinking digital output module</td>
</tr>
<tr>
<td></td>
<td>1746-OY16</td>
<td>24V DC, 16 high current sinking DC output module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-0W4</td>
<td>AC/DC relay, 4 relay (hard contact) output module</td>
<td>5069-0W4<sup>RI</sup></td>
<td>4-point, normally-open, isolated relay output module</td>
</tr>
<tr>
<td></td>
<td>1746-0W4 x 4</td>
<td>AC/DC relay, 4 relay (hard contact) output module</td>
<td>5069-0W4<sup>RI</sup></td>
<td>4-point, normally-open, isolated relay output module</td>
</tr>
<tr>
<td></td>
<td>1746-0W8</td>
<td>AC/DC relay, 8 relay (hard contact) output module</td>
<td>5069-0W8<sup>RI</sup></td>
<td>8-point, non-isolated, high-density relay output module</td>
</tr>
<tr>
<td></td>
<td>1746-0W16</td>
<td>AC/DC relay, 16 relay (hard contact) output module</td>
<td>5069-0W16<sup>RI</sup></td>
<td>16-point, non-isolated, high-density relay output module</td>
</tr>
<tr>
<td></td>
<td>1746-OX8</td>
<td>AC/DC relay, 8 relay (hard contact) output module</td>
<td>5069-0X4<sup>RI</sup></td>
<td>4-point, normally-open/normally-closed, isolated relay output module</td>
</tr>
<tr>
<td>Digital combination</td>
<td>1746-IO4</td>
<td>120V AC (inputs), 100/120V AC (relay contact outputs), 2-in, 2-out combination input/output module</td>
<td>5069-IA16 + 5069-OW16</td>
<td>16-point, 120/240V AC digital input module + 16-point, 120/240V AC digital output module</td>
</tr>
<tr>
<td></td>
<td>1746-IO8</td>
<td>120V AC (inputs), 100/120V AC (relay contact outputs), 4-in, 4-out combination input/output module</td>
<td>5069-IA16 + 5069-OW16</td>
<td>16-point, 120/240V AC digital input module + 16-point, 120/240V AC digital output module</td>
</tr>
<tr>
<td></td>
<td>1746-IO12</td>
<td>120V AC (inputs), 100/120V AC (relay contact outputs), 6-in, 6-out combination input/output module</td>
<td>5069-IA16 + 5069-OW16</td>
<td>16-point, 120/240V AC digital input module + 16-point, 120/240V AC digital output module</td>
</tr>
<tr>
<td></td>
<td>1746-IO12DC</td>
<td>240V DC (inputs), 100/120V AC (relay contact outputs), 6-in, 6-out combination input/output module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td>Analog input</td>
<td>1746-0N4</td>
<td>4-channel thermocouple U, K, T, E, R, S, B, N, C, D/mV input module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-N/4</td>
<td>4 high resolution analog input module</td>
<td>5069-IF4</td>
<td>4-channel, universal analog input module, differential inputs only</td>
</tr>
<tr>
<td></td>
<td>1746-N/8</td>
<td>4 high resolution analog input module</td>
<td>5069-IF8</td>
<td>4-channel, analog input module, differential inputs only</td>
</tr>
<tr>
<td></td>
<td>1746-N/16</td>
<td>20 mA…-20 mA, 16 high resolution analog input module</td>
<td>5069-IF16</td>
<td>8-channel, analog input module, differential inputs only</td>
</tr>
<tr>
<td></td>
<td>1746-N/18</td>
<td>-10V DC…+10V DC, 16 high resolution analog input module</td>
<td>5069-IF18</td>
<td>8-channel, analog input module, differential inputs only</td>
</tr>
<tr>
<td></td>
<td>1746-N/04</td>
<td>4-channel RTD/resistance input module</td>
<td>5069-IF<sup>4</sup></td>
<td>4-channel, universal analog input module, differential inputs only</td>
</tr>
<tr>
<td></td>
<td>1746-N/R8</td>
<td>8-channel RTD/resistance input module</td>
<td>5069-IF<sup>4</sup></td>
<td>4-channel, universal analog input module, differential inputs only</td>
</tr>
<tr>
<td></td>
<td>1746-N/14</td>
<td>4-channel thermocouple U, K, T, E, R, S, B, N/mV input module</td>
<td>5069-1F4</td>
<td>4-channel, universal analog input module, differential inputs only</td>
</tr>
<tr>
<td></td>
<td>1746-N/8</td>
<td>8-channel thermocouple U, K, T, E, R, S, B, N/mV input module</td>
<td>5069-1F4</td>
<td>4-channel, universal analog input module, differential inputs only</td>
</tr>
<tr>
<td>Analog output</td>
<td>1746-N04I</td>
<td>High resolution, 2 analog input, 2 analog current output module</td>
<td>5069-IF4<sup>/</sup> + 5069-OF4<sup>/</sup></td>
<td>4-channel, universal analog input, differential inputs only + 4-channel, analog output module</td>
</tr>
<tr>
<td></td>
<td>1746-N04V</td>
<td>High resolution, 2 analog input, 2 analog voltage output module</td>
<td>5069-IF4<sup>/</sup> + 5069-OF4<sup>/</sup></td>
<td>4-channel, universal analog input, differential inputs only + 4-channel, analog output module</td>
</tr>
<tr>
<td></td>
<td>1746-N04</td>
<td>0…20 mA, 4 analog current output module</td>
<td>5069-OF4</td>
<td>4-channel, analog output module</td>
</tr>
<tr>
<td></td>
<td>1746-N04V</td>
<td>0…20 mA, 4 analog current output module</td>
<td>5069-OF4</td>
<td>4-channel, analog output module</td>
</tr>
<tr>
<td></td>
<td>1746-N08</td>
<td>0…20 mA, 8 analog current output module</td>
<td>5069-OF8</td>
<td>8-channel, analog output module</td>
</tr>
<tr>
<td></td>
<td>1746-N08V</td>
<td>0…20 mA, 8 analog current output module</td>
<td>5069-OF8</td>
<td>8-channel, analog output module</td>
</tr>
<tr>
<td>Analog combination</td>
<td>1746-FI04</td>
<td>2 fast analog input, 2 analog current output module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-FI04V</td>
<td>2 fast analog input, 2 analog voltage output module</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td>Specialty</td>
<td>1747-ACN15</td>
<td>ControlNet adapter</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1747-ACN15</td>
<td>ControlNet adapter, redundant</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1747-ASB</td>
<td>SLC 500 remote I/O adapter</td>
<td>No replacement</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1746-BAS</td>
<td>Basic module</td>
<td>No replacement</td>
<td>—</td>
</tr>
</tbody>
</table>
You can use a conversion system to connect the existing SLC I/O wiring to the Compact 5000 I/O modules without disturbing the field wiring connections, reducing labor time and eliminating downtime that could result from wiring mistakes during the migration. With a conversion system I/O can be swapped one rack at a time, giving you the option to run both new and old I/O networks simultaneously.

SLC I/O to Compact 5000 I/O Conversion System Selection

<table>
<thead>
<tr>
<th>SLC I/O Module Catalog Number (To be converted)</th>
<th>Compact 5000 I/O Modules Catalog Number (To be used)</th>
<th>Conversion Module Catalog Number</th>
<th>Conversion Module Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1746-IA16</td>
<td>5069-IA16</td>
<td>1462-CM1746-M01</td>
<td>120VAC Input Module</td>
</tr>
<tr>
<td>1746-IM16</td>
<td>5069-IA16</td>
<td>1462-CM1746-M01</td>
<td>120VAC Input Module</td>
</tr>
<tr>
<td>1746-IB16</td>
<td>5069-IB16</td>
<td>1462-CM1746-M02</td>
<td>120/240V AC Output Module</td>
</tr>
<tr>
<td>1746-IT16</td>
<td>5069-IB16</td>
<td>1462-CM1746-M03</td>
<td>Current Sourcing DC Output Module</td>
</tr>
<tr>
<td>1746-IB16</td>
<td>5069-IB16</td>
<td>1462-CM1746-M03</td>
<td>Current Sourcing DC Output Module</td>
</tr>
<tr>
<td>1746-OB16</td>
<td>5069-IB16</td>
<td>1462-CM1746-M03</td>
<td>Current Sourcing DC Output Module</td>
</tr>
<tr>
<td>1746-OB16</td>
<td>5069-IB16</td>
<td>1462-CM1746-M03</td>
<td>Current Sourcing DC Output Module</td>
</tr>
<tr>
<td>1746-OB16</td>
<td>5069-IB16</td>
<td>1462-CM1746-M03</td>
<td>Current Sourcing DC Output Module</td>
</tr>
<tr>
<td>1746-OB16</td>
<td>5069-IB16</td>
<td>1462-CM1746-M03</td>
<td>Current Sourcing DC Output Module</td>
</tr>
<tr>
<td>1746-IT16</td>
<td>5069-IB16</td>
<td>1462-CM1746-M03</td>
<td>Current Sourcing DC Output Module</td>
</tr>
<tr>
<td>1746-N18</td>
<td>5069-IF18</td>
<td>1462-CM1746-M05</td>
<td>High Resolution (B) Analog Input Module</td>
</tr>
<tr>
<td>1746-N18</td>
<td>5069-IF18</td>
<td>1462-CM1746-M05</td>
<td>High Resolution (B) Analog Input Module</td>
</tr>
<tr>
<td>1746-NT16</td>
<td>5069-IF18</td>
<td>1462-CM1746-M05</td>
<td>SLC 500 RTD/Resistance Input Module</td>
</tr>
<tr>
<td>1746-NT16</td>
<td>5069-IF18</td>
<td>1462-CM1746-M05</td>
<td>4-Channel Thermocouple/mV Input Module</td>
</tr>
<tr>
<td>1746-NO4</td>
<td>5069-OF4</td>
<td>1462-CM1746-M10</td>
<td>4 Point Analog Output Module (Current)</td>
</tr>
<tr>
<td>1746-NO4</td>
<td>5069-OF4</td>
<td>1462-CM1746-M10</td>
<td>4 Point Analog Output Module (Voltage)</td>
</tr>
</tbody>
</table>
Chapter 3 Replace an SLC 500 I/O Module

For more information on choosing the appropriate conversion chassis and conversion system for your system, see 1746 SLC I/O to Compact 5000 I/O Conversion System Selection Guide, publication 1492-SG010.

For more information on installing the 1492 conversion system chassis, see 1746-to-5069 I/O Conversion System Instruction Sheet, publication 1492-IN132.
Appendix A

Wiring Diagram Comparisons

This appendix provides wiring diagram comparisons of the recommended replacement for your existing SLC 500 I/O module.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace an SLC 5 Processor Serial Port with a Compact I/O Serial Module</td>
<td>27</td>
</tr>
<tr>
<td>Replace an SLC 500 I/O with a Compact I/O</td>
<td>28</td>
</tr>
<tr>
<td>Replace an SLC 500 I/O with a Compact 5000 I/O</td>
<td>44</td>
</tr>
<tr>
<td>Replace an SLC 500 I/O with Combinations of Compact 5000 I/O</td>
<td>54</td>
</tr>
</tbody>
</table>

Replace an SLC 5 Processor Serial Port with a Compact I/O Serial Module

See the installations instructions and technical data of the associated catalogs for the detailed wiring instructions.

SLC 5/03, SLC 5/04, or SLC 5/05 to 5069-SERIAL
Replace an SLC 500 I/O with a Compact I/O

See the installations instructions and technical data of the associated catalogs for the detailed wiring instructions.

1746-IA4 to 1769-IA8I

1746-IA4
100/120V AC

1769-IA8I
100/200V AC Input Module

100/120V AC Input Module
Appendix A Wiring Diagram Comparisons

1746-IA16 to 1769-IA16

1746-IA16 100/120V AC

1769-IA16 100/120V AC Input Module

Internally Connected Commons

1746-IB8 to 1769-IQ16

1746-IB8 24V DC Sinking

1769-IQ16 24V DC Sink/Source Input Module

Internally Connected Commons
Appendix A Wiring Diagram Comparisons

1746-IB16 to 1769-IQ16

1746-IB16
24V DC Sinking

1769-IQ16
24V DC Sink/Source Input Module

1746-IG16 to 1769-IG16

1746-IG16
TTL Input (Low = True)

1769-IG16
5V DC TTL Input Module
1746-IM4 to 1769-IM12

Do not use the NC terminals as a connection.

200/240V AC Input Module

Internally Connected Commons

1746-IM8 to 1769-IM12

Do not use the NC terminals as a connection.

200/240V AC Input Module
Appendix A Wiring Diagram Comparisons

1746-IM16 to 1769-IM12

1746-IM16

- 200/240V AC
- Internally Connected Commons
- Do not use the NC terminals as a connection.

1769-IM12

- 200/240V AC Input Module
- Internally Connected Commons
- Connected internally.

1746-ITB16 to 1769-IQ16F

1746-ITB16

- 24V DC Sinking
- Internally Connected Commons

1769-IQ16F

- 24V DC Sink/Source Input Module
- +DC (sinking)
- -DC (sourceing)

32 Rockwell Automation Publication 1746-RM003F-EN-E - January 2022
Appendix A Wiring Diagram Comparisons

1746-ITV16 to 1769-IQ16F

1746-ITV16 24V DC Sourcing

+DC

24V dc

-DC

Internally Connected V DC

1769-IQ16F 24V Sink/Source Input Module

+DC (sinking)

-DC (sourcing)

24V DC

1746-IV8 to 1769-IQ16

1746-IV8 24V DC Sourcing

+DC

24V dc

-DC

Internally Connected V DC

1769-IQ16 24V Sink/Source Input Module

+DC (sinking)

-DC (sourcing)

24V DC
1746-IV16 to 1769-IQ16

1746-IV16
24V DC Sourcing

1769-IQ16
24V DC Sink/Source Input Module

1746-OA8 to 1769-OA8

1746-OA8
100...240V AC Triac Output

1769-OA8
100/240V AC Input Module
Appendix A
Wiring Diagram Comparisons

1746-OA16 to 1769-OA16

1746-OA16

100...240V AC Triac Output

- L1 connects to VAC 1 and OUT 1
- L2 connects to OUT 2 and OUT 3
- OUT 4 connects to OUT 5
- OUT 6 connects to OUT 7
- OUT 8 connects to OUT 9
- OUT 10 connects to OUT 11
- OUT 12 connects to OUT 13
- OUT 14 connects to OUT 15

1746-OB8 to 1769-OB8

1746-OB8

10...50V DC Transistor Output-sourcing

- VDC connects to OUT 0
- OUT 1 connects to OUT 2
- OUT 3 connects to OUT 4
- OUT 5 connects to OUT 6
- OUT 7 connects to OUT 8

1769-OA16

100/240V AC Input Module

- L1 connects to VAC 1 and OUT 0
- L2 connects to OUT 1
- OUT 2 connects to OUT 3
- OUT 4 connects to OUT 5
- OUT 6 connects to OUT 7

1769-OB8

24V DC Source Output Module

- VDC connects to OUT 0
- OUT 1 connects to OUT 2
- OUT 3 connects to OUT 4
- OUT 5 connects to OUT 6
- OUT 7 connects to OUT 8
Appendix A Wiring Diagram Comparisons

1746-OB16 to 1769-OB16

1746-OB16
10...50V DC Transistor Output-sourcing

1769-OB16
24V DC Source Output Module

1746-OB16E to 1769-OB16P

1746-OB16E
10...30V DC Transistor Output-sourcing

1769-OB16P
24V DC Source Output Module
Appendix A Wiring Diagram Comparisons

1746-OBP8 to 1769-OB8

1746-OBP8
20.4...26.4V DC Transistor Output-sourcing

1746-OBP8
+DC
20.4...26.4V DC
-DC

1769-OB8
24V DC Source Output Module

1769-OB8
+VDC1
DC+
OUT 0
OUT 2
OUT 3
DC COM 1
OUT 1
OUT 4
OUT 5
DC COM 2
OUT 6
OUT 7

1746-OG16 to 1769-OG16

1746-OG16
TTL Output (Low = True)

1746-OG16
+DC
+5V DC
-DC

1769-OG16
5V DC TTL Output Module

1769-OG16
+VDC1
DC+
OUT 0
OUT 2
OUT 3
DC COM 1
OUT 1
OUT 4
OUT 5
DC COM 2
OUT 6
OUT 7

Appendix A Wiring Diagram Comparisons
Appendix A Wiring Diagram Comparisons

1746-OV8 to 1769-OV16

1746-OV8
10...50V DC Transistor
Output Sinking

1769-OV16
24V DC Sink Output Module

1746-OV16 to 1769-OV16

1746-OV16
10...50V DC Transistor
Output Sinking

1769-OV16
24V DC Sink Output Module
1746-NI4 to 1769-IF4

1746-NI4 to 1769-IF4 Single-ended Sensor/Transmitter Inputs

0 IN 0 +
1 IN 0 –
2 ANL COM
3 IN 1 +
4 IN 1 –
5 ANL COM
6 IN 2 +
7 IN 2 –
8 ANL COM
9 IN 3 +
10 IN 3 –
11 ANL COM

+ analog source
–
earth ground

Jumper unused inputs.

1769-IF4 Single-ended Sensor/Transmitter Inputs

Current
+ Signal

Voltage
+ Ground
Signal

+24V DC
DC NEUT

External 24V DC
Power Supply

1746-NI4I to 1769-IF4XOF2

1746-NI4I Analog Current Output Module

0 IN 0 +
1 IN 0 –
2 ANL COM
3 IN 1 +
4 IN 1 –
5 ANL COM
6 IN 2 +
7 IN 2 –
8 ANL COM
9 IN 3 +
10 IN 3 –
11 ANL COM

+ analog source
–
earth ground

Jumper unused inputs.

Sensor/Transmitter
Supply

Current
+ Signal

Voltage
+ Ground
Signal

Sensor/Transmitter
Supply

Current
+ Signal

Voltage
+ Ground
Signal

+24V DC
DC NEUT

External 24V DC
Power Supply

1769-IF4XOF2 Single-ended Sensor/Transmitter Inputs

Current
+ Signal

Voltage
+ Ground
Signal

+24V DC
DC NEUT

External 24V DC
Power Supply

The sensor power supply must be rated Class 2.
Appendix A Wiring Diagram Comparisons

1746-NIO4V to 1769-IF4XOF2

1746-NIO4V
Analog Voltage Output Module

+ Analog source

0 IN 0 +
1 IN 0 –
2 ANLG Com
3 IN 1 +
4 IN 1 –
5 ANLG Com
6 Not used
7 OUT 0
8 ANLG Com
9 Not used
10 OUT 1
11 ANLG Com

Earth ground
Jumper unused inputs

Load

Earth ground
Do not jumper unused outputs

1769-IF4XOF2
Single-ended Sensor/Transmitter Inputs

Sensor/Transmitter Supply
Current + Signal

Voltage + Signal

The sensor power supply must be rated Class 2.

1746-NI8 to 1769-IF8

1746-NI8
Analog Input Module

+ Power Supply Connection

Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Channel 7

Shield

Shield

Single end signal source
Single end signal source
Single end signal source
Single end signal source
Differential signal source
Differential signal source
Differential signal source
Differential signal source

1769-IF8
Single-ended Sensor/Transmitter Inputs

Sensor/Transmitter Supply
Current + Signal

Voltage + Signal

The sensor power supply must be rated Class 2.

Wiring for channels 4…7 are identical.
Appendix A Wiring Diagram Comparisons

1746-NO4I to 1769-OF4

1769-OF4
Analog Output Module

V Out 3+
I Out 3+
V Out 2+
I Out 2+
ANLG COM
ANLG COM
V Out 0+
I Out 0+
V Out 1+
I Out 1+

0
1
2
3
4
5
6
7

Analog Voltage Output Wiring

+24V DC
DC COM
OUT 0
ANL COM
OUT 1
ANL COM
OUT 2
ANL COM
OUT 3
ANL COM

1746-NO4V to 1769-OF4

1769-OF4
Analog Output Module

V Out 3+
I Out 3+
V Out 2+
I Out 2+
ANLG COM
ANLG COM
V Out 0+
I Out 0+
V Out 1+
I Out 1+

0
1
2
3
4
5
6
7

Analog Voltage Output Wiring

+24V DC
DC COM
OUT 0
ANL COM
OUT 1
ANL COM
OUT 2
ANL COM
OUT 3
ANL COM

0
1
2
3
4
5
6
7

Analog Voltage Output Wiring

+24V DC
DC COM
OUT 0
ANL COM
OUT 1
ANL COM
OUT 2
ANL COM
OUT 3
ANL COM
Replace an SLC 500 I/O with a Compact 5000 I/O

See the installations instructions and technical data of the associated catalogs for the detailed wiring instructions.

IMPORTANT

The 5069-IA16 module inputs use a shared common. The inputs have a return through internal module circuitry to the SA(–) terminal on the SA power RTB.

If you install modules in a Compact 5000 I/O system that use AC SA power and DC SA power, you must install them on separate SA power buses.

1746-IA16 to 5069-IA16

1746-IM16 to 5069-IA16
Appendix A Wiring Diagram Comparisons

1746-IB16 to 5069-IB16

<table>
<thead>
<tr>
<th>DC (+)</th>
<th>2-wire sensor</th>
<th>3-wire sensor</th>
<th>DC (–)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>1-7</td>
<td>1-7</td>
<td>1-7</td>
</tr>
<tr>
<td>8-15</td>
<td>8-15</td>
<td>8-15</td>
<td>8-15</td>
</tr>
</tbody>
</table>

Input Channels:
- Input Channel 0 (I00)
- Input Channel 1 (I01)
- Input Channel 2 (I02)
- Input Channel 3 (I03)
- Input Channel 4 (I04)
- Input Channel 5 (I05)
- Input Channel 6 (I06)
- Input Channel 7 (I07)
- Input Channel 8 (I08)
- Input Channel 9 (I09)
- Input Channel 10 (I10)
- Input Channel 11 (I11)
- Input Channel 12 (I12)
- Input Channel 13 (I13)
- Input Channel 14 (I14)
- Input Channel 15 (I15)

No Connect: 16

1746-ITB16 to 5069-IB16

<table>
<thead>
<tr>
<th>DC (+)</th>
<th>2-wire sensor</th>
<th>3-wire sensor</th>
<th>DC (–)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>1-7</td>
<td>1-7</td>
<td>1-7</td>
</tr>
<tr>
<td>8-15</td>
<td>8-15</td>
<td>8-15</td>
<td>8-15</td>
</tr>
</tbody>
</table>

Input Channels:
- Input Channel 0 (I00)
- Input Channel 1 (I01)
- Input Channel 2 (I02)
- Input Channel 3 (I03)
- Input Channel 4 (I04)
- Input Channel 5 (I05)
- Input Channel 6 (I06)
- Input Channel 7 (I07)
- Input Channel 8 (I08)
- Input Channel 9 (I09)
- Input Channel 10 (I10)
- Input Channel 11 (I11)
- Input Channel 12 (I12)
- Input Channel 13 (I13)
- Input Channel 14 (I14)
- Input Channel 15 (I15)

No Connect: 16

Rockwell Automation Publication 1746-RM003F-EN-E - January 2022
1746-OA8 to 5069-OA16

IMPORTANT If the modules in the 5069 rack require more than one type of SA bus, for example 24V DC and 240V AC, use a 5069-FPD (field potential distributor) to separate the bus and these modules.

![Diagram of 1746-OA8 to 5069-OA16 Wiring Diagram Comparisons](image)

1746-OA16 to 5069-OA16

IMPORTANT If the modules in the 5069 rack require more than one type of SA bus, for example 24V DC and 240V AC, use a 5069-FPD (field potential distributor) to separate the bus and these modules.

![Diagram of 1746-OA16 to 5069-OA16 Wiring Diagram Comparisons](image)
Appendix A Wiring Diagram Comparisons

IMPORTANT
The 5069-OB8 and 5069-OB16 modules Local Actuator (LA+ and LA–) connections are used to supply field-side power to the module. The module does not draw current from the SA power bus that is internal to the system. For the 5069-OB8 module, output channels 0…3 use LA0 +/-, and output channels 4…7 use LA1 +/-.

1746-OB8 to 5069-OB8

1746-OB8
10...50V DC Transistor Output-sourcing

5069-OB8
24V DC Sourcing Output Module

1746-OBP8 to 5069-OB8

1746-OBP8
20.4…26.4V DC Transistor Output-sourcing

5069-OB8
24V DC Sourcing Output Module

Appendix A Wiring Diagram Comparisons

1746-OBP16 to 5069-OB16

1746-OBP16 20.4…26.4V DC
Transistor Output-sourcing

1746-OB16 10…50V DC
Transistor Output-sourcing

5069-OB16 24V DC Sourcing Output Module

Output Channel 0 (O00)
Output Channel 1 (O01)
Output Channel 2 (O02)
Output Channel 3 (O03)
Output Channel 4 (O04)
Output Channel 5 (O05)
Output Channel 6 (O06)
Output Channel 7 (O07)
Output Channel 8 (O08)
Output Channel 9 (O09)
Output Channel 10 (O10)
Output Channel 11 (O11)
Output Channel 12 (O12)
Output Channel 13 (O13)
Output Channel 14 (O14)
Output Channel 15 (O15)

DC (–)
1746-OB16E to 5069-OB16

Output Channel 0 (O00)
Output Channel 1 (O01)
Output Channel 2 (O02)
Output Channel 3 (O03)
Output Channel 4 (O04)
Output Channel 5 (O05)
Output Channel 6 (O06)
Output Channel 7 (O07)
Output Channel 8 (O08)
Output Channel 9 (O09)
Output Channel 10 (O10)
Output Channel 11 (O11)
Output Channel 12 (O12)
Output Channel 13 (O13)
Output Channel 14 (O14)
Output Channel 15 (O15)

5069-OB16
24V DC Sourcing Output Module

IMPORTANT The 5069-OW4I module does not use SA power. That is, it does not draw current from the SA power bus. The module passes it through to the next Compact 5000 I/O module in the system.

1746-OW4 to 5069-OW4I

1746-OW4
Relay Output

5069-OW4I
Isolated Relay Output Module

Terminals are unused
Appendix A Wiring Diagram Comparisons

1746-OW8 to 5069-OW4I

1746-OW8
Relay Output

- L1 or +DC
- V AC/DC
- L2 or -DC

5069-OW4I
Isolated Relay Output Module

- Power Supply
- Load
- Terminals are unused

- OUT 0
- OUT 1
- OUT 2
- OUT 3
- OUT 4
- OUT 5
- OUT 6
- OUT 7

IMPORTANT
The 5069-OW4I module requires an external surge suppressor for inductive loads. For more information on adding surge suppressors, see the Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1.

1746-OW16 to 5069-OW16

1746-OW16
Relay Output

- L1 or +DC
- V AC/DC
- L2 or -DC

5069-OW16
Digital 16-point Relay Output Module

- Power Supply

- OUT 0
- OUT 1
- OUT 2
- OUT 3
- OUT 4
- OUT 5
- OUT 6
- OUT 7
- OUT 8
- OUT 9
- OUT 10
- OUT 11
- OUT 12
- OUT 13
- OUT 14
- OUT 15

IMPORTANT
The 5069-OW16 module requires an external surge suppressor for inductive loads. For more information on adding surge suppressors, see the Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1.
1746-OX8 to 5069-OX4I

1746-OX8
Channel-to-channel Isolated Relay Output

<table>
<thead>
<tr>
<th>1746-OX8</th>
<th>5069-OX4I</th>
</tr>
</thead>
<tbody>
<tr>
<td>V80 L1</td>
<td>V80 L2</td>
</tr>
<tr>
<td>V81 L1</td>
<td>V81 L2</td>
</tr>
<tr>
<td>V82 VDC</td>
<td>V82 DC COM</td>
</tr>
<tr>
<td>V83 VDC</td>
<td>V83 DC COM</td>
</tr>
<tr>
<td>NOT USED</td>
<td>NOT USED</td>
</tr>
</tbody>
</table>

5069-OX4I
Digital 4-point Isolated Normally-open/Normally-closed Output Module

Important **Channel Connections**: The diagram shows devices that are connected to channels 0, 1, 2, and 3. You are not restricted to using only this channel. You can connect devices to any channel or combination of channels as needed.

1746-NI4 to 5069-IY4

1746-NI4
Analog Input Module

<table>
<thead>
<tr>
<th>1746-NI4</th>
<th>5069-IY4</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ analog source</td>
<td></td>
</tr>
<tr>
<td>— analog source</td>
<td></td>
</tr>
</tbody>
</table>

5069-IY4
Analog Voltage Input Module

Note: 5069-IY4 modules only support differential input.
Appendix A Wiring Diagram Comparisons

1746-NI8 to 5069-IF8

IMPORTANT Channel Connections: The diagram shows a device that is connected to channel 0. You are not restricted to using only this channel. You can connect devices to any channel or combination of channels as needed.

IMPORTANT Place additional loop devices, for example, strip chart recorders, at either A location in the current loop.

IMPORTANT
- This example shows separate power supplies for each device. We recommend that you use separate power supplies to help improve the noise immunity. However, if you use separate power supplies, you must verify that the common mode voltage between any two power supplies does not exceed 10V DC.
- This module has only two shield terminals. Compact 5000 I/O module RTBs only support one wire per terminal. If you connect more than two devices to the module, you can ground two devices at the shield terminals. You must ground the remaining devices somewhere else, such as, to the DIN rail via a terminal strip.

IMPORTANT

The diagram shows a device that is connected to channel 0. You are not restricted to using only this channel. You can connect devices to any channel or combination of channels as needed.

Note: 5069-IF8 modules only support differential input.
1746-N04I to 5069-OF4

1746-N04I
Analog Voltage Output Wiring

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+24V DC</td>
</tr>
<tr>
<td>1</td>
<td>DC COM</td>
</tr>
<tr>
<td>2</td>
<td>OUT 0</td>
</tr>
<tr>
<td>3</td>
<td>OUT 1</td>
</tr>
<tr>
<td>4</td>
<td>OUT 2</td>
</tr>
<tr>
<td>5</td>
<td>OUT 3</td>
</tr>
<tr>
<td>6</td>
<td>ANL COM</td>
</tr>
<tr>
<td>7</td>
<td>ANL COM</td>
</tr>
</tbody>
</table>

5069-OF4
Analog Current/Voltage Output Module

Output 0 +
Output 0 –
Output 1 +
Output 1 –
Output 2 +
Output 2 –
Output 3 +
Output 3 –

1746-N04V to 5069-OF4

1746-N04V
Analog Voltage Output Wiring

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+24V DC</td>
</tr>
<tr>
<td>1</td>
<td>DC COM</td>
</tr>
<tr>
<td>2</td>
<td>OUT 0</td>
</tr>
<tr>
<td>3</td>
<td>OUT 1</td>
</tr>
<tr>
<td>4</td>
<td>OUT 2</td>
</tr>
<tr>
<td>5</td>
<td>OUT 3</td>
</tr>
<tr>
<td>6</td>
<td>ANL COM</td>
</tr>
<tr>
<td>7</td>
<td>ANL COM</td>
</tr>
</tbody>
</table>

5069-OF4
Analog Current/Voltage Output Module

Output 0 +
Output 0 –
Output 1 +
Output 1 –
Output 2 +
Output 2 –
Output 3 +
Output 3 –
Replace an SLC 500 I/O with Combinations of Compact 5000 I/O

See the installations instructions and technical data of the associated catalogs for the detailed wiring instructions.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect Wiring Migration for 1746-IA4 to 5069-IA16</td>
<td>54</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IA8 to 5069-IA16</td>
<td>56</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IB8 to 5069-IB16</td>
<td>57</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-PM4 to 5069-IA16</td>
<td>59</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IM8 to 5069-IA16</td>
<td>60</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IO4 to 5069-IA16 and 5069-OW16</td>
<td>62</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IO8 to 5069-IA16 and 5069-OW16</td>
<td>64</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IO12 to 5069-IA16 and 5069-OW16</td>
<td>66</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IM8I to 5069-IF8</td>
<td>68</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IM8V to 5069-IF8</td>
<td>69</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IM4 to 5069-IF4 and 5069-IF4</td>
<td>70</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IM8V to 5069-IF4 and 5069-IF4</td>
<td>72</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IM8 to 5069-IF4</td>
<td>74</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IM8I to 5069-IF8</td>
<td>75</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IM8V to 5069-IF8</td>
<td>77</td>
</tr>
<tr>
<td>Indirect Wiring Migration for 1746-IO8 to 5069-IO16I and 5069-OW16</td>
<td>78</td>
</tr>
</tbody>
</table>

Indirect Wiring Migration for 1746-IA4 to 5069-IA16

The solution allows for indirect wiring migration for up to four SLC 1746-IA4 modules to a single CompactLogix 5069-IA16 module. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:

- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.

There are no uninsulated wires that could cause danger for user or installer.
Wiring is transferred to the 1746-RT25R terminal block and installed on the 1492-CN1746-M01 conversion module.

Figure 2 illustrates the correlating pinouts to use when moving installation wiring.

IMPORTANT You need to rewire AC POWER from the AC COM terminal to the 5069-FPD module. The L2 wire is transferred to SA- on the 5069-FPD module.
Indirect Wiring Migration for 1746-IA8 to 5069-IA16

The solution allows for indirect wiring migration for up to two SLC 1746-IA8 modules to a single CompactLogix 5069-IA16 module. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:
- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.

IMPORTANT You need to rewire AC POWER from the AC COM terminal to the 5069-FPD module. The L2 wire is transferred to SA- on the 5069-FPD module.
Wiring is transferred to the 1746-RT25R terminal block and installed on the 1492-CN1746-M01 conversion module.

Figure 5 illustrates the correlating pinouts to use when moving installation wiring.

Figure 5 - 2 x 1746-IA8 to 5069-IA16

<table>
<thead>
<tr>
<th>1746-IA8 (1)</th>
<th>1746-IA8 (2)</th>
<th>1746-RT25R</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN 0</td>
<td>IN 0</td>
<td>IN 0 (1)</td>
</tr>
<tr>
<td>IN 1</td>
<td>IN 1</td>
<td>IN 2 (1)</td>
</tr>
<tr>
<td>IN 2</td>
<td>IN 2</td>
<td>IN 3 (1)</td>
</tr>
<tr>
<td>IN 3</td>
<td>IN 3</td>
<td>IN 4 (1)</td>
</tr>
<tr>
<td>IN 4</td>
<td>IN 4</td>
<td>IN 6 (1)</td>
</tr>
<tr>
<td>IN 5</td>
<td>IN 5</td>
<td>IN 0 (2)</td>
</tr>
<tr>
<td>IN 6</td>
<td>IN 6</td>
<td>IN 2 (2)</td>
</tr>
<tr>
<td>IN 7</td>
<td>IN 7</td>
<td>IN 4 (2)</td>
</tr>
<tr>
<td>AC COM</td>
<td>AC COM</td>
<td>IN 6 (2)</td>
</tr>
</tbody>
</table>

Figure 6 - Conversion Module - 1492-CM1746-M01

Indirect Wiring Migration for 1746-IB8 to 5069-IB16

The solution allows for indirect wiring migration for up to two SLC 1746-IB8 modules to a single CompactLogix 5069-IB16 module. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:

- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.
Figure 7 - 1746-IB8 to 5069-IB16

Wiring is transferred to the 1746-RT25R terminal block and installed on the 1492-CN1746-M01 conversion module.

Figure 8 illustrates the correlating pinouts to use when moving installation wiring.

Figure 8 - 2 x 1746-IB8 to 5069-IB16

IMPORTANT The DC COM wire is transferred to DC- of the 24V DC source.
Indirect Wiring Migration for 1746-IM4 to 5069-IA16

The solution allows for indirect wiring migration for up to four SLC 1746-IM4 modules to a single CompactLogix 5069-IA16 module. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:
- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.

IMPORTANT You need to rewire AC POWER from the AC COM terminal to the 5069-FPD module. The L2 wire is transferred to SA- on the 5069-FPD module.
Wiring is transferred to the 1746-RT25R terminal block and installed on the 1492-CN1746-M01 conversion module.

Figure 11 illustrates the correlating pinouts to use when moving installation wiring.

Figure 11 - 4 x 1746-IM4 to 5069-IA16

<table>
<thead>
<tr>
<th>1746-IM4 (1)</th>
<th>1746-IM4 (2)</th>
<th>1746-IM4 (3)</th>
<th>1746-IM4 (4)</th>
<th>1746-RT25R</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN 0</td>
<td>IN 0</td>
<td>IN 0</td>
<td>IN 0</td>
<td>IN 1 (1)</td>
</tr>
<tr>
<td>IN 1</td>
<td>IN 1</td>
<td>IN 1</td>
<td>IN 1</td>
<td>IN 1 (2)</td>
</tr>
<tr>
<td>IN 2</td>
<td>IN 2</td>
<td>IN 2</td>
<td>IN 2</td>
<td>IN 1 (3)</td>
</tr>
<tr>
<td>IN 3</td>
<td>IN 3</td>
<td>IN 3</td>
<td>IN 3</td>
<td>IN 1 (4)</td>
</tr>
<tr>
<td>AC COM</td>
<td>AC COM</td>
<td>AC COM</td>
<td>AC COM</td>
<td>IN 3 (4)</td>
</tr>
</tbody>
</table>

Figure 12 - Conversion Module - 1492-CN1746-M01

Indirect Wiring Migration for 1746-IM8 to 5069-IA16

The solution allows for indirect wiring migration for up to two SLC 1746-IM8 modules to a single CompactLogix 5069-IA16 module. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:

- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.
Figure 13 - 1746-IM8 to 5069-IA16

Wiring is transferred to the 1746-RT25R terminal block and installed on the 1492-CN1746-M01 conversion module.

Figure 14 illustrates the correlating pinouts to use when moving installation wiring.

Figure 14 - 2 x 1746-IM8 to 5069-IA16

IMPORTANT You need to rewire AC POWER from the AC COM terminal to the 5069-FPD module. The L2 wire is transferred to SA- on the 5069-FPD module.

Wiring is transferred to the 1746-RT25R terminal block and installed on the 1492-CN1746-M01 conversion module.
Appendix A Wiring Diagram Comparisons

Figure 15 - Conversion Module - 1492-CM1746-M01

Indirect Wiring Migration for 1746-IO4 to 5069-IA16 and 5069-OW16

The solution allows for indirect wiring migration for up to eight SLC 1746-IO4 modules to a combination of CompactLogix 5069-IA16 and 5069-OW16 modules. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:
- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.

Figure 16 - 1746-IO4 to 5069-IA16 and 5069-OW16

IMPORTANT You need to rewire AC POWER from the AC COM terminal to the 5069-FPD module. The L2 wire is transferred to SA- on the 5069-FPD module. The L1 wire is transferred to SA+ and V AC - V DC on the 5069-OW16 module.
AC Input wiring is transferred to the 1746-RT25R terminal block and installed on the 1492-CN1746-M01 conversion module.

AC Output wiring is transferred to the 1746-RT25C terminal block and installed on the 1492-CM1746-M04 conversion module.

Figure 17 illustrates the correlating pinouts to use when moving installation wiring.

Figure 17 - 8 x 1746-IO4 to 5069-IA16 and 5069-OW16

Figure 18 - Conversion Module - 1492-CM1746-M01
Indirect Wiring Migration for 1746-IO8 to 5069-IA16 and 5069-OW16

The solution allows for indirect wiring migration for up to four SLC 1746-IO8 modules to a combination of CompactLogix 5069-IA16 and 5069-OW16 modules. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:

- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.

IMPORTANT You need to rewire AC POWER from the AC COM terminal to the 5069-FPD module. The L2 wire is transferred to SA- on the 5069-FPD module. The L1 wire is transferred to SA+ and V AC - V DC on the 5069-OW16 module.
AC Input wiring is transferred to the 1746-RT25R terminal block and installed on the 1492-CN1746-M01 conversion module.

AC Output wiring is transferred to the 1746-RT25C terminal block and installed on the 1492-CM1746-M04 conversion module.

Figure 21 illustrates the correlating pinouts to use when moving installation wiring.

Figure 21 - 4 x 1746-IO8 to 5069-IA16 and 5069-OW16

<table>
<thead>
<tr>
<th>1746-IO8 (1)</th>
<th>1746-IO8 (2)</th>
<th>1746-IO8 (3)</th>
<th>1746-IO8 (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT 0</td>
<td>OUT 0</td>
<td>OUT 0</td>
<td>OUT 0</td>
</tr>
<tr>
<td>OUT 1</td>
<td>OUT 1</td>
<td>OUT 1</td>
<td>OUT 1</td>
</tr>
<tr>
<td>OUT 2</td>
<td>OUT 2</td>
<td>OUT 2</td>
<td>OUT 3</td>
</tr>
<tr>
<td>OUT 3</td>
<td>OUT 3</td>
<td>OUT 3</td>
<td>OUT 4</td>
</tr>
<tr>
<td>AC COM</td>
<td>AC COM</td>
<td>AC COM</td>
<td>AC COM</td>
</tr>
<tr>
<td>IN 0</td>
<td>IN 0 (1)</td>
<td>IN 0 (2)</td>
<td>IN 0 (3)</td>
</tr>
<tr>
<td>IN 1</td>
<td>IN 1 (1)</td>
<td>IN 1 (2)</td>
<td>IN 1 (3)</td>
</tr>
<tr>
<td>IN 2</td>
<td>IN 2 (1)</td>
<td>IN 2 (2)</td>
<td>IN 2 (3)</td>
</tr>
<tr>
<td>IN 3</td>
<td>IN 3 (1)</td>
<td>IN 3 (2)</td>
<td>IN 3 (3)</td>
</tr>
<tr>
<td>1746-RT25R</td>
<td>5069-IA16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUT 0 (1)</td>
<td>IN 1 (1)</td>
<td>IN 1 (2)</td>
<td>IN 1 (3)</td>
</tr>
<tr>
<td>OUT 0 (2)</td>
<td>IN 1 (4)</td>
<td>IN 1 (5)</td>
<td>IN 1 (6)</td>
</tr>
<tr>
<td>OUT 0 (3)</td>
<td>IN 1 (7)</td>
<td>IN 1 (8)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 22 - Conversion Module - 1492-CM1746-M01
Indirect Wiring Migration for 1746-IO12 to 5069-IA16 and 5069-OW16

The solution allows for indirect wiring migration for up to two SLC 1746-IO12 modules to a combination of CompactLogix 5069-IA16 and 5069-OW16 modules. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:
- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.

IMPORTANT You need to rewire AC POWER from the AC COM terminal to the 5069-FPD module. The L2 wire is transferred to SA+ on the 5069-FPD module. The L1 wire is transferred to SA+ and V AC - V DC on the 5069-OW16 module.
AC Input wiring is transferred to the 1746-RT25R terminal block and installed on the 1492-CN1746-M01 conversion module.

AC Output wiring is transferred to the 1746-RT25C terminal block and installed on the 1492-CM1746-M04 conversion module.

Figure 25 illustrates the correlating pinouts to use when moving installation wiring.

Figure 25 - 2 x 1746-IO12 to 5069-IA16 and 5069-OW16

Figure 26 - Conversion Module - 1492-CM1746-M01
Indirect Wiring Migration for 1746-NI16I to 5069-IF8

The solution allows for indirect wiring migration for a single SLC 1746-NI16I module to a combination of two CompactLogix 5069-IF8 modules. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:

- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.

Analog input wiring is transferred to the 1746-RT25B terminal block and installed on the 1492-CN1746-M05 conversion module. The SLC module allows for a group analog common return where the CompactLogix allows for a single return per channel.

Figure 27 - Conversion Module - 1492-CN1746-M04

Figure 28 illustrates the correlating pinouts to use when moving installation wiring.
Appendix A Wiring Diagram Comparisons

Figure 28 - 1746-NI16I to 2 x 5069-IF8

Figure 29 - Conversion Module - 1492-CN1746-M05

Indirect Wiring Migration for 1746-NI16V to 5069-IF8

The solution allows for indirect wiring migration for a single SLC 1746-NI16V module to a combination of two CompactLogix 5069-IF8 modules. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:

- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.

Analog input wiring is transferred to the 1746-RT25B terminal block and installed on the 1492-CN1746-M05 conversion module. The SLC module allows for a group analog common return where the CompactLogix allows for a single return per channel.
Figure 30 illustrates the correlating pinouts to use when moving installation wiring.

Figure 30 - 1746-NI16V to 2 x 5069-IF8

![Pinout Diagram](image)

Figure 31 - Conversion Module - 1492-CM1746-M05

![Conversion Module Diagram](image)

Indirect Wiring Migration for 1746-NIO4I to 5069-OF4 and 5069-IY4

The solution allows for indirect wiring migration for a single SLC 1746-NIO4I module to a combination of one CompactLogix 5069-OF4 module and one CompactLogix 5069-IY4 module. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:

- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.
Analog input wiring is transferred to the 1746-RT27 terminal block and installed on the 1492-CN1746-M06 conversion module.

Analog output wiring is transferred to the 1746-RT28 terminal block and installed on the 1492-CN1746-M10 conversion module.

Figure 33 illustrates the correlating pinouts to use when moving installation wiring.

Figure 33 - 2 X 1746-NIO4I to 5069-OF4 and 5069-IY4
Figure 34 - Conversion Module - 1492-CM1746-M06

Figure 35 - Conversion Module - 1492-CM1746-M10

Indirect Wiring Migration for 1746-NIO4V to 5069-OF4 and 5069-IY4

The solution allows for indirect wiring migration for up to two SLC 1746-NIO4V modules to a combination of one CompactLogix 5069-OF4 module and one CompactLogix 5069-IY4 module. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:

- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.
Analog input wiring is transferred to the 1746-RT27 terminal block and installed on the 1492-CN1746-M06 conversion module.

Analog output wiring is transferred to the 1746-RT28 terminal block and installed on the 1492-CN1746-M10 conversion module.

Figure 37 illustrates the correlating pinouts to use when moving installation wiring.

Figure 37 - 2 x 1746-NIO4V to 5069-OF4 and 5069-IY4
Indirect Wiring Migration for 1746-NR8 to 5069-IY4

The solution allows for indirect wiring migration for a single SLC 1746-NR8 module to a combination of two CompactLogix 5069-IY4 modules. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:
- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.

Analog input wiring is transferred to the 1746-RT28 terminal block and installed on the 1492-CN1746-M07 conversion module.

The 5069-IY4 module allows for each channel to be shielded on the module itself compared to the 1746-NR8.

Figure 40 illustrates the correlating pinouts to use when moving installation wiring.
Indirect Wiring Migration for 1746-OB8 to 5069-OB16

The solution allows for indirect wiring migration for up to two SLC 1746-OB8 modules to a single CompactLogix 5069-OB16 module. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:
- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.

Figure 42 - 1746-OB8 to 5069-OB16

Wiring is transferred to the 1746-RT25B terminal block and installed on the 1492-CN1746-M03 conversion module.

Figure 43 illustrates the correlating pinouts to use when moving installation wiring.

Figure 43 - 2 x 1746-OB8 to 5069-OB16
Indirect Wiring Migration for 1746-OBP8 to 5069-OB16

The solution allows for indirect wiring migration for up to two SLC 1746-OBP8 modules to a single CompactLogix 5069-OB16 module. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:
- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.

Wiring is transferred to the 1746-RT25B terminal block and installed on the 1492-CN1746-M03 conversion module.
Appendix A Wiring Diagram Comparisons

Figure 46 illustrates the correlating pinouts to use when moving installation wiring.

Figure 46 - 2 X 1746-OBP8 to 5069-OB16

| 1746-OBP8 (1) | 1746-OBP8 (2) | 1746-RT25B
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V DC1</td>
<td>V DC1</td>
<td>V DC</td>
</tr>
<tr>
<td>OUT 0</td>
<td>OUT 0</td>
<td>OUT 0 (1)</td>
</tr>
<tr>
<td>OUT 1</td>
<td>OUT 1</td>
<td>OUT 2 (1)</td>
</tr>
<tr>
<td>OUT 2</td>
<td>OUT 2</td>
<td>OUT 3 (1)</td>
</tr>
<tr>
<td>OUT 3</td>
<td>OUT 3</td>
<td>OUT 4 (1)</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>OUT 5 (1)</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>OUT 6 (1)</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>OUT 7 (1)</td>
</tr>
<tr>
<td>OUT 4</td>
<td>OUT 4</td>
<td>OUT 0 (2)</td>
</tr>
<tr>
<td>OUT 5</td>
<td>OUT 5</td>
<td>OUT 2 (2)</td>
</tr>
<tr>
<td>OUT 6</td>
<td>OUT 6</td>
<td>OUT 3 (2)</td>
</tr>
<tr>
<td>OUT 7</td>
<td>OUT 7</td>
<td>OUT 4 (2)</td>
</tr>
<tr>
<td>DC COM1</td>
<td>DC COM1</td>
<td>DC COM</td>
</tr>
<tr>
<td>DC COM2</td>
<td>DC COM2</td>
<td></td>
</tr>
</tbody>
</table>

Figure 47 - Conversion Module - 1492-CM1746-M03

Indirect Wiring Migration for 1746-OW4 to 5069-OW16

The solution allows for indirect wiring migration for up to four SLC 1746-OW4 modules to a single CompactLogix 5069-OW16 module. The wiring is a manual transfer process from the SLC terminal block to the CompactLogix conversion terminal block.

Before installation make sure that:

- The PLC system is turned off.
- The conversion module is matched correctly to the specific I/O modules.
- There are no uninsulated wires that could cause danger for user or installer.
Wiring is transferred to the 1746-RT25C terminal block and installed on the 1492-CN1746-M04 conversion module.

IMPORTANT If you are using AC power as output, you must connect to SA+ and SA- on the 5069-FPD module.

Figure 49 illustrates the correlating pinouts to use when moving installation wiring.

Figure 49 illustrates the correlating pinouts to use when moving installation wiring.
Figure 50 - Conversion Module - 1492-CM1746-M04
Rockwell Automation Support

Use these resources to access support information.

<table>
<thead>
<tr>
<th>Technical Support Center</th>
<th>Find help with how-to videos, FAQs, chat, user forums, and product notification updates.</th>
<th>rok.auto/support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledgebase</td>
<td>Access Knowledgebase articles.</td>
<td>rok.auto/knowledgebase</td>
</tr>
<tr>
<td>Local Technical Support Phone Numbers</td>
<td>Locate the telephone number for your country.</td>
<td>rok.auto/phonesupport</td>
</tr>
<tr>
<td>Literature Library</td>
<td>Find installation instructions, manuals, brochures, and technical data publications.</td>
<td>rok.auto/literature</td>
</tr>
<tr>
<td>Product Compatibility and Download Center (PCDC)</td>
<td>Download firmware, associated files (such as AOP, EDS, and DTM), and access product release notes.</td>
<td>rok.auto/pcdc</td>
</tr>
</tbody>
</table>

Documentation Feedback

Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form at rok.auto/docfeedback.

Waste Electrical and Electronic Equipment (WEEE)

![WEEE symbol]

At the end of life, this equipment should be collected separately from any unsorted municipal waste.

Rockwell Automation maintains current product environmental information on its website at rok.auto/pec.