

# Micro800 Programmable Controllers: Getting Started with Motion Control Using a Simulated Axis

Catalog Numbers Bulletin 2080-LC30, 2080-LC50





#### **Important User Information**

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication <u>SGI-1.1</u> available from your local Rockwell Automation sales office or online at <u>http://www.rockwellautomation.com/literature/</u>) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.



Allen-Bradley, Micro800, Micro830, Micro850, Connected Components Workbench, PanelView, Rockwell Software, Rockwell Automation, and TechConnect are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

#### **About This Publication**

This quick start is designed to provide instructions for implementing a motion control project using Connected Components Workbench<sup>TM</sup> software and a Micro830<sup>TM</sup>/Micro850<sup>TM</sup> programmable logic controller (PLC). It makes use of a sample project to illustrate the basic steps that a user needs to perform to use the motion control feature in Micro830 and Micro850 controllers.

To assist in the design and installation of your system, refer to the Micro830 and Micro850 Programmable Controllers User Manual, publication 2080-UM002.

The beginning of each chapter contains the following information. Read these sections carefully before beginning work in each chapter.

- **Before You Begin** This section lists the steps that must be completed and decisions that must be made before starting that chapter. The chapters in this quick start do not have to be completed in the order in which they appear, but this section defines the minimum amount of preparation required before completing the current chapter.
- What You Need This section lists the tools that are required to complete the steps in the current chapter. This includes, but is not limited to, hardware and software.
- Follow These Steps This illustrates the steps in the current chapter and identifies which steps are required to complete the examples using specific networks.

To be able to use the motion control feature effectively, you need to be familiar with programming in function block diagram, structured text, and ladder programming.

This quick start works hand-in-hand with Micro830 and Micro850 Programmable Controllers User Manual, publication <u>2080-UM002</u>.

#### **Required Software**

Audience

To complete this quick start, the following software is required:

#### • Connected Components Workbench revision 2 and later

Connected Components Workbench is the main programming software for Micro800 systems. It provides a choice of IEC 61131-3 programming languages (ladder diagram, function block diagram, structured text) with user defined function block support that optimizes machine control.

You will need the Connected Components Workbench software to configure your axis parameters, write your motion control function block programs, execute your function blocks, and monitor your axis status.

### **Additional Resources**

| Resource                                                                                                    | Description                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Micro830 and Micro850 User Manual, publication 2080-UM002                                                   | A detailed description of how to install and use your Micro830 and Micro850 programmable controller and expansion I/O system.                                                                                                                          |
| Micro800 Programmable Controller External AC Power Supply Installation Instructions, publication 2080-IN001 | Information on wiring and installing the optional AC power supply.                                                                                                                                                                                     |
| Kinetix 3 Motion Control Indexing Application, publication <u>CC-OS025</u>                                  | Quick start instructions designed to provide instructions for implementing a Kinetix® 3 component-class drive motion control indexing application by using Connected Components Workbench software and a Micro830 programmable logic controller (PLC). |
| Industrial Automation Wiring and Grounding Guidelines, publication <u>1770-4.1</u>                          | More information on proper wiring and grounding techniques.                                                                                                                                                                                            |
| Connected Components Workbench Online Help                                                                  | Online Help that provides a description of the different elements of the Connected Components Workbench software.                                                                                                                                      |

|                                  | Important User Information                                 | ii            |
|----------------------------------|------------------------------------------------------------|---------------|
|                                  | Preface                                                    |               |
|                                  | About This Publication                                     | iii           |
|                                  | Audience                                                   | iii           |
|                                  | Required Software                                          | iii           |
|                                  | Additional Resources                                       | iv            |
|                                  | Where to Start                                             |               |
|                                  | Overview of Sample Project                                 | vii           |
|                                  | Optional: PanelView Component                              | vii           |
|                                  | Hardware and Software Compatibility<br>Follow These Steps  | viii<br>ix    |
|                                  | Chapter 1                                                  |               |
| Create a Micro800 Project        | Introduction                                               | 1             |
|                                  | Before You Begin                                           | 1             |
|                                  | What You Need                                              | 1             |
|                                  | Create a Micro800 Project in Connected Components Workbenc | :h2           |
|                                  | Chapter 2                                                  |               |
| Configure Motion Axis Properties | Introduction                                               | 5             |
|                                  | Before You Begin                                           | 5             |
|                                  | What You Need                                              | 5             |
|                                  | Follow These Steps                                         | 6             |
|                                  | Configure General Properties                               | /             |
|                                  | Configure Limits Properties                                | 10            |
|                                  | Configure Dynamics Properties                              | 10            |
|                                  | Configure Homing Properties                                | 11            |
|                                  | Configure Embedded I/O Properties                          | 13            |
|                                  | Chapter 3                                                  |               |
| Write Your Motion Control        | Introduction                                               | 15            |
| Programs                         | Before You Begin                                           | 15            |
| 5                                | What You Need                                              | 15            |
|                                  | Follow These Steps                                         | 16            |
|                                  | Create Axis_PowerUp Program                                | 17            |
|                                  | Create Homing Program                                      | 21            |
|                                  | Create Program for MC_MoveRelative                         |               |
|                                  | Create Program for MC_MoveAbsolute Function Block          |               |
|                                  | Create Program for MC_Move Velocity Function Block         |               |
|                                  | Build and Download Programs                                | ····.43<br>40 |
|                                  |                                                            |               |

Wire Your Controller for Motion Control

Execute Your Motion Control Function Blocks

#### Chapter 4

| Introduction        |    |
|---------------------|----|
| What You Need       |    |
| Wire the Controller | 50 |

#### **Chapter 5**

#### **Overview of Sample Project**

This quick start instruction serves to enable users to the use the motion control feature on Micro830 and Micro850 controllers. It uses a sample simulation program to familiarize the user with motion control instructions and related parameter and wiring configurations. In particular, this project lets the user enable an axis, home an axis, move an axis, and use touch probe to capture current position in a simulated environment.

The project uses the minimum components to use motion control. It does not require a servo drive. The PTO output is wired directly to the high speed counter input. It makes use of high speed counter inputs to count the pulse train output (PTO) for the current position.

The following diagram illustrates how this project simulates motion control. The elements of this project are shown in the following diagram.



TIP HSC wiring for PTO feedback is not shown and is for simulation purposes only.

#### **Download the Simulation Project**

You can also download the code for the complete simulation project from the following link:

#### http://www.rockwellautomation.com/go/scmicro800

The downloadable code includes an optional PanelView Component (PVc) program, which allows the user to easily update and monitor different axis parameters through a PVc screen.

If you opt not to use a PanelView Component, use the Connected Components Workbench software to toggle variable input values and trigger motion instructions. Axis monitoring can also be done through the same software through the Axis Monitor feature.

To get started, check that your Micro800 controller supports motion control.

#### Hardware and Software Compatibility

The motion control feature on Micro830 and Micro850 controller is implemented through Pulse Train Outputs (PTOs) and motion axes, which are summarized in the following table.

| Controller                                                                                   | PTO (built-in) | Number of Axes Supported |
|----------------------------------------------------------------------------------------------|----------------|--------------------------|
| <b>10/16 Points</b><br>2080-LC30-10QVB<br>2080-LC30-16QVB                                    | 1              | 1                        |
| <b>24 Points</b><br>2080-LC30-24QVB<br>2080-LC30-24QBB<br>2080-LC50-24QVB<br>2080-LC50-24QBB | 2              | 2                        |
| <b>48 Points</b><br>2080-LC30-48QVB<br>2080-LC30-48QBB<br>2080-LC50-48QVB<br>2080-LC50-48QBB | 3              | 3                        |

PTO and Motion Axis Support on Micro830 and Micro850 Controllers

| IMP | DRT | ANT |
|-----|-----|-----|
|-----|-----|-----|

#### Software and Firmware Requirements

- For programming, motion control is supported on Connected Components Workbench software revision 2 and later.
- Micro830 controllers require firmware revision 2 and later.

ATTENTION: To use the Micro800 motion control feature effectively, users need to have a basic understanding of the following:
 PTO components and parameters
 Sone the Micro830 and Micro850 User Manual publication 2080 UM002, for a general evenue

- See the Micro830 and Micro850 User Manual, publication <u>2080-UM002</u>, for a general overview of Motion components and their relationships.
- Programming and working with elements in the Connected Components Workbench software The user needs to have a working knowledge of ladder diagram, structured text, or function block diagram programming to be able to work with motion function blocks, variables, and axis configuration parameters.



**ATTENTION:** To learn more about Connected Components Workbench and detailed descriptions of the variables for the Motion Function Blocks, you can refer to Connected Components Workbench Online Help that comes with your Connected Components Workbench installation.

#### **Follow These Steps**

The major subsections for this quick start project are outlined in the following flowchart. Follow the steps under each subsection to become familiar with the required procedure to configure your controller and set up a simulation project for motion control.



#### Notes:

# **Create a Micro800 Project**

## Introduction

In this chapter, you will create a sample Micro830/Micro850 controller project through the Connected Components Workbench.

# **Before You Begin**

Ensure that you have Connected Components Workbench revision 2 properly installed.

## What You Need

- Connected Components Workbench revision 2 or later
- Firmware revision 2 and later for Micro830 controllers

## **Create a Micro800 Project in Connected Components Workbench**

Launch the Connected Components Workbench software.

1. On the Device Toolbox, expand the list of Controllers by clicking the + sign.

| Device Toolbox    | <b>-</b> 4 | × |
|-------------------|------------|---|
| E Discover        |            |   |
| 🗆 Catalog         |            |   |
| 2080-LC50         | -24QBB     | ^ |
| 2080-LC50         | -24QVB     |   |
| 2080-LC50         | -24QWB     |   |
| 2080-LC50         | -48AWB     |   |
| 2080-LC50         | -48QBB     |   |
| 2080-LC50         | -48QVB     |   |
| 2080-LC50         | -48QWB     |   |
| Expansion Module: | 5 8        |   |
| Drives            |            | Y |

| TIP       | If your controller is online, use the Discover feature to automatically discover your controller. |
|-----------|---------------------------------------------------------------------------------------------------|
| IMPORTANT | Make sure that your controller is one of the following compatible controllers:                    |
|           | • 2080-LC30-24QBB                                                                                 |
|           | • 2080-LC30-24QVB                                                                                 |
|           | • 2080-LC30-48QBB                                                                                 |
|           | • 2080-LC30-48QVB                                                                                 |
|           | • 2080-LC50-24QBB                                                                                 |
|           | • 2080-LC50-24QVB                                                                                 |
|           | • 2080-LC50-48QBB                                                                                 |
|           | • 2080-LC50-48QVB                                                                                 |
|           |                                                                                                   |
| IMPORTANT | Motion control on Micro830 controllers require firmware revision 2 or later.                      |

2. Select major revision 2 when manually adding a Micro830 controller.

| 001000100101110 | add to project |                 |               |
|-----------------|----------------|-----------------|---------------|
| 2080-1          | C30-24QBB      |                 |               |
| Maior           | Revision: 2    | •               |               |
|                 |                |                 |               |
| Chook this h    | ox to always u | se latest firmw | are revision. |
| Crieck this L   |                |                 |               |
| Crieck this t   |                |                 |               |

3. Drag your controller onto the Project Organizer pane.

| Name: Project40*                   |  |
|------------------------------------|--|
| Micro850 Programs Global Variables |  |
| DataTypes                          |  |

- Go to File → Save Project As. Then, provide a project name for your project.
- 5. Click OK.

| ł | Co   | nnect | ed Co     | npone | nts |
|---|------|-------|-----------|-------|-----|
| ļ | File | Edit  | View      | Build | De  |
|   |      | New   |           |       |     |
|   |      | Open  |           |       |     |
| ĺ |      | Close |           |       |     |
| l |      | Recer | nt Projec | ts    | F   |
| l |      | Save  |           |       |     |
| l |      | Save  | Project   | As    |     |
|   |      | Exit  |           |       |     |

| Name:     | Simulator                                            |        |
|-----------|------------------------------------------------------|--------|
| Location: | C:\Documents and Settings\My Documents\CCW\Simulator | Browse |
|           |                                                      |        |

#### TIP Optional PanelView Component Program

This simulation project can also include a PanelView Component program to allow for easier monitoring and toggling of axis parameter values through a PVc screen. The code for this optional program is downloadable from the following link, along with the complete code for this project:

http://www.rockwellautomation.com/go/scmicro800

#### Notes:

# **Configure Motion Axis Properties**

### Introduction

In this chapter, you will configure the axis parameters through Connected Components Workbench.

| Торіс                               | Page |
|-------------------------------------|------|
| Configure General Properties        | 7    |
| Configure Motor and Load Properties | 9    |
| Configure Limits Properties         | 10   |
| Configure Dynamics Properties       | 11   |
| Configure Homing Properties         | 12   |

# **Before You Begin**

Acquire a basic understanding of the different motion axis parameters by referring to the Micro830 and Micro850 Programmable Controllers User Manual, publication <u>2080-UM002</u> and/or the Connected Components Workbench Online Help.

## What You Need

- Connected Components Workbench revision 2 or later
- Firmware revision 2 and later for Micro830 controllers

## **Follow These Steps**

To configure your axis, follow these steps.



### **Configure General Properties**

Launch the Connected Components Workbench software.

- 1. Open the project you have created in the previous chapter.
- 2. On the Project Organizer pane, double-click the controller name to bring up the Device Properties pane.



- 3. Under the Controller properties tree, go to Motion. Right-click <New Axis> and choose Create.
- **4.** Provide the name "Simulator" for the axis. Alternatively, you can press F2 to name the axis.



5. Click General to bring up the General properties tab.

| Simulator - General   |             |        |                   |             |   |
|-----------------------|-------------|--------|-------------------|-------------|---|
| Axis Name:            | Simulator   |        |                   |             |   |
| PTO Channel:          | EM_0        | ×      |                   |             |   |
| Pulse Output:         | IO_EM_DO_00 |        |                   |             |   |
| Direction Output:     | IO_EM_DO_03 |        |                   |             |   |
| ✓ Drive Enable Output |             |        | In-Position Input |             |   |
| Output:               | IO_EM_DO_06 | ~      | Input:            | IO_EM_DI_10 | V |
| Active Level          | High        | ~      | Active Level:     | High        | ~ |
| Drive Ready Input     |             |        | Touch Probe Input |             |   |
| Input:                | IO_EM_DI_09 | $\sim$ | Input:            | IO_EM_DI_03 |   |
| Active Level:         | High        | ~      | Active Level:     | High        | ~ |

6. Configure the general properties as shown in the table.

#### **General Properties Parameters**

| Parameter                        | Value                     |
|----------------------------------|---------------------------|
| Axis Name                        | Simulator                 |
| PTO Channel                      | EM_0                      |
| Enable Drive Enable Output       | Tick option box to enable |
| Drive Enable Output              | IO_EM_DO_06               |
| Drive Enable Output Active Level | High                      |
| Enable Touch Probe Input         | Tick option box to enable |
| Touch Probe Input                | IO_EM_DI_03               |
| Touch Probe Input Active Level   | High                      |

# **Configure Motor and Load Properties**

 On the Controller Configuration tree, under Motion, click Motor and Load to bring up the Motor and Load tab.

| mm                        | <b>v</b>                                                                                     |
|---------------------------|----------------------------------------------------------------------------------------------|
| sec                       |                                                                                              |
|                           |                                                                                              |
| olution parameters may ca | use Axis runaway.                                                                            |
| 10000                     | 2.0                                                                                          |
| 10000                     |                                                                                              |
| 10                        | 0.0 mm                                                                                       |
|                           |                                                                                              |
| Inverted                  | ▼                                                                                            |
| Bi-Directional            | ~                                                                                            |
| 10 🔵 ms                   |                                                                                              |
|                           |                                                                                              |
|                           | mm<br>sec<br>olution parameters may ca<br>10000<br>11<br>Inverted<br>Bi-Directional<br>10 ms |

2. Configure Motor and Load parameters as follows.

#### **Motor and Load Properties**

| Parameter             | Value          |
|-----------------------|----------------|
| Position              | mm             |
| Steps per revolution  | 10000          |
| Travel per revolution | 10 mm          |
| Polarity              | Inverted       |
| Mode                  | Bi-directional |
| Change delay time     | 10 ms          |

### **Configure Limits Properties**

 On the Controller Configuration tree, under Motion, click Limits to bring up the Limits properties tab.

| - Simulator - Limits              |                    |                                   |             |  |  |  |  |
|-----------------------------------|--------------------|-----------------------------------|-------------|--|--|--|--|
| Hard Limits                       |                    |                                   |             |  |  |  |  |
| When hard limit is reach          | hed, apply:        | Emergency Stop Profile            |             |  |  |  |  |
| Lower Hard Limit<br>Active Level: | High               | Upper Hard Limit<br>Active Level: | High        |  |  |  |  |
| Switch Input.                     | 10_11_01_00        | Switch Input.                     | 10_01_01_01 |  |  |  |  |
| Soft Limits                       |                    |                                   |             |  |  |  |  |
| (i) When soft limit is            | reached, Emergency | Stop Profile will be applied.     |             |  |  |  |  |
| Lower Soft Limit:                 | 0.0                | mm Upper Soft Limit:              | 0.0 mm      |  |  |  |  |
|                                   |                    |                                   |             |  |  |  |  |

**2.** Configure Limits parameters as shown in the table.

#### **Limits Properties**

| Parameter                          | Value                     |  |  |
|------------------------------------|---------------------------|--|--|
| When hard limits is reached, apply | Emergency Stop Profile    |  |  |
| Lower Hard Limit                   | Tick option box to enable |  |  |
| Lower Hard Limit Active Level      | High                      |  |  |
| Upper Hard Limit                   | Tick option box to enable |  |  |
| Upper Hard Limit Active Level      | High                      |  |  |

## **Configure Dynamics Properties**

 Under Motion, click Dynamics to bring up the Dynamics properties tab.



2. Configure Dynamics parameters as shown in the table.

#### **Dynamics Properties**

| Parameter           | Value                     |
|---------------------|---------------------------|
| Start/Stop Velocity | 20.0 mm/sec<br>120.0 rpm  |
| Max Velocity        | 100.0 mm/sec<br>600.0 rpm |
| Max Acceleration    | 1000 mm/sec <sup>2</sup>  |
| Max Deceleration    | 1000 mm/sec <sup>2</sup>  |
| Max Jerk            | 10000 mm/sec <sup>3</sup> |

### **Configure Homing Properties**

 Under Motion, click Homing to bring up the Homing properties tab.



2. Configure homing parameters as shown in the table.

| Parameter                      | Value                     |
|--------------------------------|---------------------------|
| Homing Direction               | Negative                  |
| Homing Velocity                | 20 mm/sec                 |
| Homing Acceleration            | 100 mm/sec <sup>2</sup>   |
| Homing Deceleration            | 100 mm/sec <sup>2</sup>   |
| Homing Jerk                    | 400 mm/sec <sup>3</sup>   |
| Creep Velocity                 | 1.0 mm/sec                |
| Home Offset                    | 0.0 mm                    |
| Home Switch Input              | Tick option box to enable |
| Home Switch Input Active Level | High                      |

#### **Configure Embedded I/O Properties**

Controller - Embedded I/O General . Memory Serial Port Input Filters USB Port . Ethernet Inputs Input Filter Internet Protocol Default ÷ • Ξ - Port Settings DC 5 µs ÷ 2 - 3 Port Diagnostics 4 - 5 DC 5 µs Ŧ Date and Time Ξ DC 5 µs ÷ Interrupts 6 - 7 Startup/Faults Default ÷ 8 - 9 Modbus Mapping 10 - 11 Default ÷ Embedded I/O Default 12 - 13 • - Motion

Go to Controller Properties  $\rightarrow$  Embedded I/O, and update the input filter values as shown below.

Input filters are configured so that high speed pulse from the PTO is properly captured. When High Speed Counters and Touch Probe are used, input filters need to be configured to match the high speed input.

#### Notes:

# Write Your Motion Control Programs

### Introduction

In this chapter, you will write movement function block programs that will allow you to control the movement profile of your axis.

| Торіс                                             | Page |
|---------------------------------------------------|------|
| Create Axis_PowerUp Program                       | 17   |
| Create Homing Program                             | 21   |
| Create Program for MC_MoveRelative                | 28   |
| Create Program for MC_MoveAbsolute Function Block | 31   |
| Create Program for MC_MoveVelocity Function Block | 36   |
| Create Program for MC_TouchProbe Function Block   | 43   |

# **Before You Begin**

Learn about motion control function blocks by referring to the Micro830 and Micro850 Programmable Controllers User Manual, publication <u>2080-UM002</u>, and the Connected Components Workbench Online Help.

## What You Need

- Connected Components Workbench revision 2 or later
- Firmware revision 2 and later for Micro830 controllers

### **Follow These Steps**

To write your motion control function blocks, follow these steps.





#### Create Axis\_PowerUp Program

- 1. Open the project for your controller in Connected Components Workbench.
- 2. On the Project Organizer pane, right-click Programs, select Add New LD: Ladder Diagram. Press F2 to rename the program to Axis\_PowerUp. Press Enter.
- 3. Right-click Axis\_PowerUp program, choose Open.





4. From the Toolbox, double-click Block to add it to the rung. Alternatively, you can drag and drop Block onto the rung. Your ladder rung should appear as shown.



5. On the Instruction Block Selector window that appears, type MC\_Power on the default entry field to filter the MC\_Power function block. Choose MC\_Power. Click OK.

| The Instruction Block Selector; MC_Power |              |     |        |          |                  |        |                  |
|------------------------------------------|--------------|-----|--------|----------|------------------|--------|------------------|
| Controller : 2                           | 080LC5024QBE | В   |        |          |                  |        |                  |
|                                          | Name         | 2   | Catego | огу      | 1 Туре           |        |                  |
| MC.                                      | _Power       |     |        | •        | • dt* ▼ dt       | 1      |                  |
| MC_Po                                    | wer          | Mot | ion    |          | C.               | Contri | ols the power st |
|                                          |              |     |        |          |                  |        |                  |
|                                          |              |     |        |          |                  |        |                  |
| <                                        |              |     |        |          |                  |        | >                |
|                                          |              |     |        |          |                  |        |                  |
| - Parameters -                           |              |     |        |          |                  |        |                  |
|                                          |              |     |        |          |                  |        |                  |
|                                          | Name         |     | Data   | Туре     | Directio         | n 🗼    | Dimensic 📥       |
|                                          |              | - a | A*     | * A*     |                  | * A*   | - (=             |
| En                                       | able         |     | BOOL   | •        | VarInput         | •      |                  |
| Sta                                      | atus         |     | BUUL   | •        | VarUutput        | •      |                  |
| Err                                      | oriD         |     | UINI   | -        | VarUutput        | -      |                  |
| 1                                        | III          |     | RIUU   |          | O SRI II IPSI IP |        | •                |
|                                          |              |     |        |          |                  |        |                  |
| nstance:                                 | MC_Power_1   |     | *      | . 🗹 🤅    | Show Paramet     | ers    |                  |
| nputs:                                   | \$ 4         |     |        | <b>V</b> | EN ZENO          |        |                  |
| Scope:                                   | UntitledLD1  |     |        |          |                  |        |                  |
|                                          |              |     |        |          | OK               |        | Cancel           |

Your ladder rung should appear as follows.



6. From the Toolbox, double-click Block to add it to the rung. Alternatively, you can drag and drop Block onto the rung.

| -®- Pulse Falling Edge Coil       |                                   |
|-----------------------------------|-----------------------------------|
| ⊣⊢ Direct Contact                 |                                   |
| -//⊢ Reverse Contact              |                                   |
| ⊣P⊢ Pulse Rising Edge Contact     |                                   |
| ⊣¤⊢ Pulse Falling Edge Contact    |                                   |
| Elock                             |                                   |
| 🖃 General                         |                                   |
| There are no usable controls in t | nis group. Drag an item onto this |

text to add it to the toolbox.

7. On the Instruction Block Selector window that appears, type MC\_Reset on the default entry field. Choose MC\_Reset and click OK.

| _      | ridille                              | <u> </u> | Catego                       | ry          | 1 Тур                                     | e           |                   | Com                 |
|--------|--------------------------------------|----------|------------------------------|-------------|-------------------------------------------|-------------|-------------------|---------------------|
| h      | MC_Reset                             | - de     |                              |             | 01 + 0                                    | e*          |                   |                     |
| MC_    | Reset                                | Motion   |                              |             | Ē.                                        | Rese        | ts all internal a | kis-related errors  |
| 1      |                                      |          |                              |             |                                           |             |                   |                     |
| ramete | ers<br>Name                          | e        | Data                         | [vpe        | Directi                                   | on 1        | Dimension         | Alia                |
|        |                                      | - A*     |                              | - A⁺        |                                           | × #*        | - A*              |                     |
| _      | ErrorID                              |          | UINT                         |             | VarOutput                                 |             |                   | ErID                |
|        | LINGING                              |          |                              | _           | 1 Care                                    |             |                   |                     |
|        | ExecEdge                             |          | BOOL                         | × .         | vai                                       |             |                   |                     |
|        | ExecEdge<br>Execute                  |          | BOOL                         | ÷           | Val<br>VarInput                           | *           |                   | Exec                |
|        | ExecEdge<br>Execute<br>Error         |          | BOOL<br>BOOL<br>BOOL         | *           | VarInput<br>VarOutput                     | *           |                   | Exec<br>Err         |
|        | ExecEdge<br>Execute<br>Error<br>Done |          | BOOL<br>BOOL<br>BOOL<br>BOOL | *           | Val<br>Varlnput<br>VarOutput<br>VarOutput | *           |                   | Exec<br>Err<br>Done |
|        | ExecEdge<br>Execute<br>Error<br>Done | 1        | BOOL<br>BOOL<br>BOOL<br>BOOL | *<br>*<br>* | Vailnput<br>VarDutput<br>VarDutput        | *           |                   | Exec<br>Err<br>Done |
| (      | ExecEdge<br>Execute<br>Error<br>Done | 1        | BOOL<br>BOOL<br>BOOL<br>BOOL | ·<br>·<br>· | Vailnput<br>Vai0utput<br>Vai0utput        | *<br>*<br>* |                   | Exec<br>Err<br>Done |

Your ladder rung should appear as follows.



Create and Assign Variables and Values for the Axis\_PowerUp Program

 On the Project Organizer pane, double-click Global Variables to bring up the Variables window. Add the following variables with these corresponding data types and initial values.

#### Variables and Initial Values for Axis\_PowerUp Program

| Variable Name | Data Type | Initial Value |
|---------------|-----------|---------------|
| Simulator     | AXIS_REF  |               |
| PowerUpAxis   | BOOL      | TRUE          |
| PowerDone     | BOOL      |               |
| SWReset       | BOOL      | False         |

2. Assign the variables to the function block elements as shown.



#### 1 MC\_Han MC\_Ha ENO Simulator Axis SWhome Execute Don HomeSetPos Position Bus 0 Homin BFMD BufferMode Erre ErrorID 2 SW/home SWrstEncode 4 F Simulator. AxisHomed - H SWhome Homing 3 Homing - P 4 Simulator.AxisHomed • -IPH TON\_1 TON R TRIG 1 R\_TRIG CLK Q IN t#1ms ET PT

### **Create Homing Program**

 Click Programs, select Add → New LD: Ladder Diagram. Press F2 and rename the program to Action\_Homing.



2. From the Toolbox, double-click Block to add it to the rung. Alternatively, you can drag and drop Block onto the rung.

| -®- Pulse Falling Edge Coil    |  |
|--------------------------------|--|
| +⊢ Direct Contact              |  |
| - ∕ - Reverse Contact          |  |
| -IP는 Pulse Rising Edge Contact |  |
| 네바는 Pulse Falling Edge Contact |  |
| Ellock                         |  |
| 🗆 General                      |  |
|                                |  |

3. On the Instruction Block Selector window that appears, type MC\_Home on the default entry field to filter out MC\_Home.



4. Choose MC\_Home. Click OK. Your ladder rung should appear as follows.



5. Create a second rung. From the Toolbox, select Rung and drag it onto the space just below the first rung.

| Toolbox   | × |  |  |
|-----------|---|--|--|
| 🖃 LD      |   |  |  |
| R Pointer |   |  |  |
|           |   |  |  |
| 🗢 Return  |   |  |  |
| →>> Jump  |   |  |  |

- 6. Select Branch from the Toolbox and drag it onto the second rung.
- Toolbox
   Image: Constraint of the second second

-®- Reset Coil

-®- Pulse Rising Edge Coil

- 7. Select Direct Contact from the Toolbox and drag it onto the second rung as shown.
- 8. Select Direct Contact from the Toolbox and drag it onto the branch on the second rung as shown.
- 9. Create a third rung. From the Toolbox, select rung and drag it onto the space just below the second rung.
- **10.** Select Pulse Rising Edge Direct Contact from the Toolbox and drag it onto the third rung.
- Select Set Coil from the Toolbox and drag it onto the third rung. Your third rung should appear as follows.



| Toolbox  | × |
|----------|---|
| 🗆 LD     |   |
| Revinter |   |
| Hod Rung |   |
| 🗢 Return |   |
| -≫ Jump  |   |
| 🗂 Branch |   |

| 0 50.00                        |
|--------------------------------|
| -®- Reset Coil                 |
| -@- Pulse Rising Edge Coil     |
| -®- Pulse Falling Edge Coil    |
| ⊣ ⊢ Direct Contact             |
| +/- Reverse Contact            |
| -IP⊢ Pulse Rising Edge Contact |
| ⊣N⊢ Pulse Falling Edge Contact |
| Eleck                          |



- **12.** Create a fourth rung. From the Toolbox, select rung and drag it onto the space just below the third rung.
- **13.** Select Branch from the Toolbox and drag it onto the fourth rung.

| Toolbox          | X |
|------------------|---|
| 🖃 LD             |   |
| Review Pointer   |   |
| ├                |   |
| 🗢 Return         |   |
| -» Jump          |   |
| 🗂 Branch         |   |
| -O- Direct Coil  |   |
| -Ø- Reverse Coil |   |

14. Select Pulse Rising Edge Direct Contact from the Toolbox and drag it onto the fourth rung as shown.



**15.** Select Block from the Toolbox and drag it onto the branch on fourth rung as shown.

| -//− Reverse Contact                                                |
|---------------------------------------------------------------------|
| -IP- Pulse Rising Edge Contact                                      |
| ⊣ฟ⊢ Pulse Falling Edge Contact                                      |
| E Block                                                             |
| 🖃 General                                                           |
| There are no usable controls in this aroun. Durg an item enter this |

There are no usable controls in this group. Drag an item onto this

16. On the Instruction Block Selector window that appears, type TON to filter out the TON function block. Choose TON. Click OK



- 17. Select Block from the Toolbox and drag it onto the branch on the fourth rung as shown.
- 18. On the Instruction Block Selector window that appears, type R\_TRIG to filter out the R\_TRIG function block. Choose R\_TRIG. Click OK

| +  - Direct Contact             |
|---------------------------------|
| -1/1- Reverse Contact           |
| -IPI- Pulse Rising Edge Contact |
| ⊣N⊢ Pulse Falling Edge Contact  |
| Ellock                          |
| 🗆 General                       |
|                                 |

| 🔤 Instruction Block Selector: R_TRIG |            |            |            |          |                  |        |                  |
|--------------------------------------|------------|------------|------------|----------|------------------|--------|------------------|
| Controller : 2080LC5024QBBB          |            |            |            |          |                  |        |                  |
|                                      | Name       | 2          | Catego     | ry       | 1 Туре           |        |                  |
|                                      | R_TRIG 🗸 🗸 | <b>4</b> ° |            | •        | A* ▼A            | 1      |                  |
| ▶ <u>R_</u> 1                        | IRIG       | Boolea     | in operati | ons      | SB               | Rising | g edge detection |
|                                      |            |            |            |          |                  |        |                  |
| 2                                    |            |            |            |          |                  |        | >                |
|                                      |            |            |            |          |                  |        |                  |
| Paramete                             | ers        |            |            |          |                  |        |                  |
|                                      | Name       |            | Data       | Гуре     | Directio         | n 1    | Dimensic 🔶       |
|                                      |            | - A*       |            | • A*     |                  | - A*   |                  |
|                                      | CLK        |            | BOOL       | •        | VarInput         | *      | =                |
|                                      | Redge<br>0 |            | BOOL       | *<br>*   | Var<br>VarDutout | *<br>* |                  |
| *                                    |            |            | DOOL       | Ŧ        | Varbacpat        | *      | ×                |
|                                      |            |            |            |          |                  |        |                  |
| Instance:                            | R_TRIG_2   |            | *          | <b>?</b> | Show Paramet     | ers    |                  |
| Inputs:                              | ⇒ 1        |            |            | <b></b>  | EN / ENO         |        |                  |
| Scope:                               | UntitledLD |            |            |          |                  |        |                  |
|                                      |            |            |            |          | 01               | _      | Consel           |
|                                      |            |            |            |          |                  |        | Lancer           |

**19.** Select Reset Coil from the Toolbox and drag it onto the fourth rung as shown.



#### Create and Assign Variables and Values for the MC\_Home Function Block

 Create the following Global Variables with the data types and initial values (if any) as shown in the table.

| Variable Name       | Data Type | Initial Value |
|---------------------|-----------|---------------|
| SWHome              | BOOL      |               |
| HomeSetPos          | Real      | 110           |
| BFMD                | SInt      |               |
| t#1ms               | time      |               |
| Simulator.AxisHomed | BOOL      |               |
| SWrstEncoder        | BOOL      |               |
|                     |           |               |

2. On the first rung, assign the variables for the MC\_Home function block elements as shown.


# **3.** On the second rung, assign the variables as shown below.



**4.** On the third rung, assign the variables as shown below.



5. On the fourth rung, assign the variables as shown below.

| Simulator.AxisHome | d     |          | Homing |
|--------------------|-------|----------|--------|
|                    |       |          |        |
|                    | TON 1 | R TRIG 1 | U U    |
|                    | TON   | R_TRIG   |        |
|                    |       | (CLK Q)  |        |
| t#1ms              |       |          |        |
|                    | OT ET |          |        |

| 1 |                      |                      |                              |  |        |
|---|----------------------|----------------------|------------------------------|--|--------|
|   | Simulator Axis Homed |                      |                              |  |        |
|   |                      |                      |                              |  | Return |
| 2 |                      | MC_MoveR<br>MC_Movel | elative_1<br>Relative<br>ENO |  |        |
|   | Simulator            |                      |                              |  |        |
|   |                      | - Axisln             | Axis —                       |  |        |
|   | SWrelative           |                      |                              |  |        |
|   |                      | Execute              | Done -                       |  |        |
|   | Rel_Distance_Input   |                      |                              |  |        |
|   |                      | Distance             | Busy -                       |  |        |
|   | Rel_Velocity         |                      |                              |  |        |
|   | L                    | Velocity             | Active -                     |  |        |
|   | Rel_Acc              |                      |                              |  |        |
|   |                      | Acceleration (       | Commanda                     |  |        |
|   | Rel_Decc             |                      |                              |  |        |
|   |                      | Deceleration         | Error                        |  |        |
|   | Rel_Jerk             |                      |                              |  |        |
|   |                      | Jerk                 | ErrorID                      |  |        |
|   | BFMD                 |                      |                              |  |        |
|   |                      | BufferMode           |                              |  |        |

# Create Program for MC\_MoveRelative

- Click Programs, select Add → New LD: Ladder Diagram. Press F2 and rename the program to Action\_MoveRelative.
- 2. From the Toolbox, select Reverse Contact and drag and drop it onto the rung.



| -®- Reset Coil                 |
|--------------------------------|
| -@- Pulse Rising Edge Coil     |
| -®- Pulse Falling Edge Coil    |
| H Direct Contact               |
| -I∕I- Reverse Contact          |
| - Pի Pulse Rising Edge Contact |
| HN- Pulse Falling Edge Contact |

 From the Toolbox, select Return and drag and drop it onto the rung. Your first ladder rung should appear as shown.



- 4. Create a second rung. From the Toolbox, select Rung and drag and drop it just below the first rung.
- 5. From the Toolbox, select Block and drag and drop it onto the second rung.

| OOIDOX   |  |
|----------|--|
| 🖃 LD     |  |
| Revinter |  |
| Hod Rung |  |
| - Return |  |
| -≫ Jump  |  |
| 🗂 Branch |  |
|          |  |

| -I∕I− Reverse Contact                                                                             |
|---------------------------------------------------------------------------------------------------|
| -IP는 Pulse Rising Edge Contact                                                                    |
| ⊣¤⊢ Pulse Falling Edge Contact                                                                    |
| E Block                                                                                           |
| 🖃 General                                                                                         |
| There are no usable controls in this group. Drag an item onto this text to add it to the toolbox. |

6. On the Instruction Block Selector window that appears, type MC\_MoveRelative to filter out the MC\_MoveRelative function block. Choose MC\_MoveRelative. Click OK. Your second rung should appear as shown.



Create and Assign Variables and Values to the MC\_MoveRelative Function Block

1. Create the following Global Variables with these data types and initial values.

| Name 🔺             |                     | Data | Туре | Initial Value |  |
|--------------------|---------------------|------|------|---------------|--|
|                    | <ul> <li></li></ul> | REAL |      | * A*          |  |
| Rel_Acc            | R                   | EAL  | +    | 1000.0        |  |
| Rel_Decc           | R                   | EAL  | •    | 1000.0        |  |
| Rel_Distance_Input | R                   | EAL  | *    |               |  |
| Rel_Jerk           | R                   | EAL  | *    | 10000.0       |  |
| Rel_Velocity       | R                   | EAL  | +    | 100.0         |  |
|                    |                     |      | _    |               |  |
| Name               |                     | Data | Туре | Initial Value |  |
| 2000               | - A                 | 1    | - A* | - A           |  |
| <br>SWrelative     |                     | BOOL | -    |               |  |

2. On the first rung, assign the variables as shown.



3. On the second rung, assign the variables as shown in the picture.





# Create Program for MC\_MoveAbsolute Function Block

 Click Programs, select Add → New LD: Ladder Diagram. Press F2 and rename the program to Action\_MoveAbsolute.



2. From the Toolbox, select Reverse Contact and drag and drop it onto the rung.

| ⊣⊢ Direct Contact              |  |
|--------------------------------|--|
| -∦- Reverse Contact            |  |
| ⊣P⊢ Pulse Rising Edge Contact  |  |
| ⊣∾⊢ Pulse Falling Edge Contact |  |
| E Block                        |  |

3. From the Toolbox, select Return and drag and drop it onto the rung. Your first ladder rung should appear as shown.



4. Create a second rung. From the Toolbox, select Rung and drag and drop it just below the first rung.

| Toolbox  |  |
|----------|--|
| 🖃 LD     |  |
| Revinter |  |
|          |  |
| - Return |  |
| -≫ Jump  |  |

5. From the Toolbox, select Block and drag and drop it onto the second rung.

| ⊣⊢ Direct Contact              |  |
|--------------------------------|--|
| - ∕ - Reverse Contact          |  |
| -IP는 Pulse Rising Edge Contact |  |
| ⊣№⊢ Pulse Falling Edge Contact |  |
| Ellock                         |  |
| 🗆 General                      |  |

 On the Instruction Block Selector window that appears, type MC\_MoveAbsolute to filter out the MC\_MoveAbsolute function block. Choose MC\_MoveAbsolute. Click OK. Your second rung should appear as shown in the picture.



- 7. Create a third rung. From the Toolbox, select Rung and drag and drop it just below the second rung.
- 8. From the Toolbox, select Block and drag and drop it onto the third rung.

| Toolbox  | X |
|----------|---|
| 🖃 LD     |   |
| Revinter |   |
|          |   |
| - Return |   |
| -≫ Jump  |   |

| ⊢ Direct Contact                |  |
|---------------------------------|--|
| - ∕ - Reverse Contact           |  |
| ⊣P⊢ Pulse Rising Edge Contact   |  |
| - 에는 Pulse Falling Edge Contact |  |
| 🔁 Block                         |  |
| 😑 General                       |  |

9. On the Instruction Block Selector window that appears, type MC\_MoveAbsolute to filter out the MC\_MoveAbsolute function block. Choose MC\_MoveAbsolute. Click OK. Your third rung should appear as shown in the picture.



Create and Assign Variables and Values to the MC\_MoveAbsolute Function Block

1. Create the following Global Variables with these data types and initial values.

| Name               | Data | Туре | Initial Value |
|--------------------|------|------|---------------|
| + A                |      | - A* | * A           |
| SWabs2             | BOOL | -    |               |
| AB51_Velocity      | REAL |      | 100.0         |
| ABS1_Acc           | REAL | *    | 1000.0        |
| AB51_Decc          | REAL | +    | 1000.0        |
| ABS1_Jerk          | REAL |      | 10000.0       |
| ABS2_Velocity      | REAL | *    | 100.0         |
| AB52_Acc           | REAL | ÷    | 1000.0        |
| AB52_Decc          | REAL |      | 1000.0        |
| ABS2_Jerk          | REAL | *    | 10000.0       |
|                    |      |      |               |
| Name               | Data | Туре | Initial Value |
| - A                | 1    | · A  | - A           |
| SWabsolute         | BOOL | +    |               |
| Abs Distance Input | REAL | +    |               |

# 2. On the first rung, assign the variables as shown.

| Simulator.AxisHomed |  |        |
|---------------------|--|--------|
|                     |  | Return |

**3.** On the second rung, assign the variables as shown.



**4.** On the third rung, assign the variables as shown.





# **Create Program for MC\_MoveVelocity Function Block**

 Click Programs, select Add → New LD: Ladder Diagram. Press F2 and rename the program to Action\_MoveVelocity.

| Micro850            |            | 2         | Home_1                           |
|---------------------|------------|-----------|----------------------------------|
|                     | Add 🔸      | 2         | New ST : Structured Text         |
| ₽ <mark>FJ</mark> C | A Paste    | <b>#O</b> | New LD : Ladder Diagram          |
|                     | Properties |           | New FBD : Function Block Diagram |

2. From the Toolbox, select Reverse Contact and drag and drop it onto the rung.

| -®- Pulse Falling Edge Coil    |
|--------------------------------|
| ⊣ ⊢ Direct Contact             |
| +∕⊢ Reverse Contact            |
| 내라 Pulse Rising Edge Contact   |
| ⊣∾⊢ Pulse Falling Edge Contact |
| Block                          |

3. From the Toolbox, select Return and drag and drop it onto the rung. The first rung should appear as shown.



- 4. Create a second rung. From the Toolbox, select Rung and drag and drop it onto the space just below the first rung.
- **5.** From the Toolbox, select Block and drag and drop it onto the second rung.

| Toolbox   | X |
|-----------|---|
| 🖃 LD      |   |
| Pointer   |   |
|           |   |
| -🔿 Return |   |
| -≫ Jump   |   |

| -19- Pulse Falling Edge Coll   |  |
|--------------------------------|--|
| ⊣ ⊢ Direct Contact             |  |
| +//- Reverse Contact           |  |
| -IP는 Pulse Rising Edge Contact |  |
| ⊣¤⊢ Pulse Falling Edge Contact |  |
| Elock                          |  |
| -                              |  |

6. On the Instruction Block Selector window that appears, type ANY\_TO\_SINT to filter out the function block. Choose ANY\_TO\_SINT. Click OK.

| Instruction Block Selector: ANY_TO_SINT                  |              |
|----------------------------------------------------------|--------------|
| Controller : 2080LC5024QBBB                              |              |
| Name 💁 Category 🗼 Type                                   |              |
|                                                          |              |
| ANT_IU_SINT Data conversion 300 Conversion or an         | <u>y v</u> a |
|                                                          |              |
|                                                          |              |
|                                                          | >            |
| Parameters                                               |              |
| raiaileteis                                              |              |
| Name Data Type Direction 1 Dimension                     | on           |
| $\tau \sigma t^* = \sigma t^* + \sigma t^* + \sigma t^*$ | A*           |
| o1 SINT VarOutput V                                      |              |
| *                                                        |              |
|                                                          | _            |
|                                                          |              |
| Instance: Show Parameters                                |              |
| Inputs:                                                  |              |
| Scope: Untitled D                                        |              |
|                                                          |              |
| OK Cance                                                 | <u>ا او</u>  |

Your second rung should appear as follows:



7. Create a third rung. From the Toolbox, select Rung and drag and drop it onto the space just below the second rung.

| Toolbox  | × |
|----------|---|
| 🖃 LD     |   |
| Revinter |   |
|          |   |
| 🗢 Return |   |
| -≫ Jump  |   |

8. On the Instruction Block Selector window that appears, type MC\_MoveVelocity to filter out the MC\_MoveVelocity function block. Choose MC\_MoveVelocity. Click OK.

| MoveVelocity |                          |        |          |          |           |        |      |             |          |
|--------------|--------------------------|--------|----------|----------|-----------|--------|------|-------------|----------|
| Con          | troller : 2080LC5024QBBB |        |          |          |           |        |      |             |          |
|              | Name 💡                   |        | Category |          | 1 T       | уре    |      |             | ^        |
|              | <b>▼</b> A               |        |          |          | A* -      | A.     |      |             |          |
|              | MC_Halt                  | Motion |          |          | 1         | ē.     | Comn | nands a cor |          |
|              | MC_Home                  | Motion |          |          | 1         | 5      | Comn | nands the a |          |
|              | MC_MoveAbsolute          | Motion |          |          | 1         | 5      | Comn | nands a cor |          |
|              | MC_MoveRelative          | Motion |          |          | 1         | ēt.    | Comn | hands a cor |          |
|              |                          |        |          |          |           |        |      |             |          |
| Para         | neters<br>Name           |        | Data Tj  | pe       | Dire      | ction  | 1    | Dimensio    |          |
|              |                          |        | *        | Æ        |           |        | A*   |             |          |
|              | CommandAborted           |        | BOOL     | •        | VarOutpu  | ut 👘   | •    |             |          |
|              | InVelocity               |        | BOOL     | •        | VarOutpu  | ut 👘   | •    |             |          |
|              | ErrorID                  |        | UINT     |          | VarOutpu  | ut     | -    |             | <b>.</b> |
| •            | Active                   |        | RUUI     | *        | VarDutor  | ił.    | *    | ►           |          |
|              |                          |        |          |          |           |        |      |             |          |
| Instanc      | e: MC_MoveVelocity_1     |        | ~        | •        | Show Para | ameter | rs   |             |          |
| Inputs:      | 3                        |        |          | <b>V</b> | EN ZENO   |        |      |             |          |
| Scope:       | UntitledLD               |        |          |          |           |        |      |             |          |
|              |                          |        |          |          |           | OK     |      | Cance       |          |

Your third rung should appear as follows:



9. Create a fourth rung. From the Toolbox, select Rung and drag and drop it onto the space just below the second rung.

| Toolbox   | X |
|-----------|---|
| 🖃 LD      |   |
| R Pointer |   |
|           |   |
| - Return  |   |
| -≫ Jump   |   |

- **10.** From the Toolbox, select Block and drag and drop it onto the fourth rung.
- +Ulse Falling Edge Coll

   +I F Direct Contact

   +/- Reverse Contact

   -IP Fulse Rising Edge Contact

   -IM Fulse Falling Edge Contact

   -IM Fulse Falling Edge Contact
- On the Instruction Block Selector window that appears, type MC\_Halt to filter out the MC\_Halt function block. Choose MC\_Halt. Click OK.

| Name             | 0      | Category   | 1 Tune                              |      |                |
|------------------|--------|------------|-------------------------------------|------|----------------|
| MC Halt          | ▼ d* 2 | Guiugoij   | ▼ dt <sup>*</sup> ▼ dt <sup>*</sup> |      |                |
| MC_Halt          | Motio  | เ<br>า     | 5                                   | Comm | iands a contro |
|                  |        |            |                                     |      |                |
| <                |        |            |                                     |      | >              |
|                  |        |            |                                     |      |                |
| Parameters       |        |            |                                     |      |                |
| Name             |        | Data Type  | Direction                           | 1    | Dimensic       |
|                  | - A    | - A        | •                                   | - A* |                |
| CommandAborted   |        | BOOL 🔹     | VarOutput                           | -    | 1              |
| ErrorID          |        | UINT 🚽 👻   | VarOutput                           | -    |                |
| Active           |        | BOOL 🔹 🔻   | VarOutput                           | •    |                |
| ExecEdge         |        | BOOL 🔹 🔻   | Var                                 | •    |                |
|                  |        | AXIS_REF 🔻 | Var                                 | •    |                |
| Error            |        | BOOL 🔹 🔻   | VarOutput                           | •    |                |
|                  |        | 2001       | 0.1                                 |      |                |
|                  |        |            |                                     |      |                |
| tance: MC_Halt_1 |        | ✓          | Show Paramete                       | ers  |                |
| uts:             |        |            | EN / ENO                            |      |                |
| ope: UntitledLD  |        |            |                                     |      |                |

Your fourth rung should appear as shown:



Create and Assign Variables and Values to the MC\_MoveVelocity Function Block

1. Create the following Global variables with these data types and initial values.

| Name             | Data | Туре | Initial Value |
|------------------|------|------|---------------|
| - A*             |      | - A* | - A*          |
| SWvelocity       | BOOL | *    |               |
| Vel_Input        | REAL |      | 50.0          |
| Vel_Direct_Input | SINT | Ψ.   | 1             |
| Vel_Acc_Input    | REAL | -    | 1000.0        |
| Vel_Dir_INT      | INT  |      |               |
| Vel_Decc_Input   | REAL | *    | 1000.0        |
| Vel_Jerk_Input   | REAL | *    | 10000.0       |
| Halt_Dece_Input  | REAL | *    | 1000.0        |
| Halt_Jerk_Input  | REAL | Ŧ    | 10000.0       |

2. On the first rung, assign the variables as shown in the following picture.

|   | 5 | imulator AxisHomed |        |  |
|---|---|--------------------|--------|--|
| - |   |                    | Return |  |
| 4 | - |                    | Hotan  |  |

3. On the second rung, assign the variables as shown.

|   |             |      | ANY_TO_SINT |                  |
|---|-------------|------|-------------|------------------|
| ≻ | Vel_Dir_INT | • EN | ENO -       | Vel_Direct_Input |
|   |             | ui1  | 01          | -                |

**4.** On the third rung, assign the variables as shown.



5. On the fourth rung, assign the variables as shown.



| 1    |                       |                    |           |        |                |
|------|-----------------------|--------------------|-----------|--------|----------------|
|      | Simulator Avis Homed  |                    |           |        |                |
|      |                       |                    |           |        | Return         |
| 2    | 1/1                   |                    |           |        |                |
| 2604 |                       |                    |           |        |                |
|      | MC_TouchProbe_1.Done  |                    |           |        | TP_EXE         |
|      | 1/1                   |                    |           |        | _0             |
| 3    |                       |                    |           |        |                |
|      | MC TouchProbe         | 1                  |           |        |                |
|      | MC_TouchProbe         | ENO                |           |        |                |
|      | Simulator             |                    |           |        |                |
|      | AxisIn                | Axis -             |           |        |                |
|      | NotUsingInThisRelease |                    |           |        |                |
|      | TP EXE                | rinput             |           |        |                |
|      | Execute               | Done -             |           |        |                |
|      | TP_windowonly         |                    |           |        |                |
|      | WindowOnly            | Busy               |           |        |                |
|      | TP_FirstPos           |                    |           |        |                |
|      | TP_LastPos            | andA               |           |        |                |
|      | - LastPosition        | Error -            |           |        |                |
|      |                       |                    |           |        |                |
|      | Er                    |                    |           |        |                |
|      | Becord                |                    |           |        |                |
| 4    |                       |                    |           |        |                |
| 57.  |                       |                    |           |        |                |
|      | MC_TouchProbe_1.Done  | R TRIG 1<br>R_TRIG | ſ         | 1 gain |                |
|      |                       | CLK Q              | TP POSNOW | N ENÔ  | TP recordedPos |
|      |                       |                    |           | 01     |                |

# **Create Program for MC\_TouchProbe Function Block**

 Click Programs, select Add → New LD: Ladder Diagram. Press F2 and rename the program to Action\_TouchProbe.



2. From the Toolbox, select Reverse Contact and drag and drop it onto the rung.

| TOT Puise Failing Euge Coll    |
|--------------------------------|
| ⊣⊢ Direct Contact              |
| -//⊢ Reverse Contact           |
| ⊣P⊢ Pulse Rising Edge Contact  |
| ⊣∾⊢ Pulse Falling Edge Contact |
| Ellock                         |

 From the Toolbox, select Return and drag and drop it onto the rung. Your first ladder rung should appear as shown.



- 4. Create a second rung. From the Toolbox, select Rung and drag and drop it below the first rung.
- 5. From the Toolbox, select Reverse Contact and drag and drop it onto the second rung.

| O box com                       |
|---------------------------------|
| -®- Reset Coil                  |
| -@- Pulse Rising Edge Coil      |
| -®- Pulse Falling Edge Coil     |
| +⊢ Direct Contact               |
| -I/- Reverse Contact            |
| -IP- Pulse Rising Edge Contact  |
| -IN- Pulse Falling Edge Contact |
| Deck                            |

6. From the Toolbox, select Direct Coil and drag and drop it onto the second rung.



7. Create a third rung. From the Toolbox, select Rung and drag and drop it below the second rung.

| Toolbox         |  |
|-----------------|--|
| 🖃 LD            |  |
| R Pointer       |  |
|                 |  |
| -🔿 Return       |  |
| -≫ Jump         |  |
| 🗂 Branch        |  |
| -O- Direct Coil |  |
| 0 parrow C-1    |  |

8. From the Toolbox, select Block and drag and drop it onto the third rung.

 On the Instruction Block Selector window that appears, type MC\_TouchProbe to filter out the MC\_TouchProbe function block. Choose MC\_TouchProbe. Click OK.

| 🔤 Instruction Block Selector: M | C_TouchPr | obe          |              |              |                  |
|---------------------------------|-----------|--------------|--------------|--------------|------------------|
| Controller : 2080LC5024QBBB     |           |              |              |              |                  |
| Name 🔒                          | Catego    | ry.          | 1 Туре       |              |                  |
| MC_touchprobe 💌 🗨               |           | -            | A* 🔻 A*      |              |                  |
| MC_TouchProbe                   | lotion    |              | ō            | Reco         | rds an axis posi |
|                                 |           |              |              |              |                  |
|                                 |           |              |              |              |                  |
|                                 |           |              | )            |              | 2                |
| Parameters                      |           |              |              |              |                  |
| Name                            | Data      | уре          | Direction    | 1            | Dimensic         |
| -                               | A*        | • <b>A</b> * |              | • <b>A</b> * | ~ .              |
| CommandAborted                  | BOOL      | × 1          | √arOutput    | •            |                  |
| ErrorID                         | UINT      | - 1          | √arOutput    | •            |                  |
| WindowOnly                      | BOOL      | × )          | √arInput     | •            |                  |
|                                 | RUUI      | ~ 1          | Jar          | *            |                  |
| NC TauakDaka 1                  |           |              |              |              |                  |
| Instance: MC_TouchHobe_T        | ~         | <b>V</b> 51  | now Paramete | ers.         |                  |
| Inputs:                         |           | EI 💟         | N / ENO      |              |                  |
| Scope: UntitledLD               |           |              |              |              |                  |
|                                 |           |              | ОК           |              | Cancel           |

Your third rung should appear as shown.



10. Create a fourth rung. From the Toolbox, select Rung and drag and drop it below the third rung.

| Toolbox   | × |
|-----------|---|
| 🖃 LD      |   |
| Revinter  |   |
|           |   |
| -O Return | 1 |
| ->> Jump  |   |

- From the Toolbox, select Block and drag and drop it onto the fourth rung.
- Image: Point of the second second
- 12. On the Instruction Block Selector window that appears, type R\_TRIG to filter out the R\_TRIG function block. Choose R\_TRIG. Click OK.

|                  | 0     | Calassa       | 1 7           |        |               |
|------------------|-------|---------------|---------------|--------|---------------|
| Nam              |       | Lategory      | lype          |        |               |
|                  | Boole | an operations |               | Bising | edae detectio |
|                  |       |               | 75257         | g      |               |
|                  |       |               |               |        |               |
|                  |       |               |               |        |               |
|                  |       |               |               |        | >             |
| Deservations     |       |               |               |        |               |
| - Parameters     |       |               |               |        |               |
|                  | Name  | Data Type     | Direction     | 1      | Dimensic 🔶    |
|                  | - A   | - A           |               | A*     | - 6           |
| CLK              |       | BOOL 🔹 🔻      | VarInput      | •      |               |
| Redge            |       | BOOL 🔹        | Var           | •      |               |
| Q                |       | BOOL 🔹        | VarOutput     | •      |               |
|                  |       | *             |               | *      | •             |
|                  |       |               |               |        |               |
|                  | 1     |               | Show Paramete | rs     |               |
| nstance: R_TRIG_ |       |               |               |        |               |
| nstance: R_TRIG_ |       |               | EN / ENO      |        |               |
| nstance: R_TRIG_ |       |               | EN / ENO      |        |               |

 From the Toolbox, select Block and drag and drop it onto the fourth rung.

| -1/1- Reverse Contact          |  |
|--------------------------------|--|
| -IP는 Pulse Rising Edge Contact |  |
| 니아는 Pulse Falling Edge Contact |  |
| 🔁 Block                        |  |
| 🖃 General                      |  |
|                                |  |

14. On the Instruction Block Selector window that appears, type 1 gain to filter out 1 gain. Choose 1 gain. Click OK.

| Instruction Block Selector: | 1 gai   | n         |               |              |                 |
|-----------------------------|---------|-----------|---------------|--------------|-----------------|
| Controller : 2080LC5024QBBB |         |           |               |              |                 |
| Name 🔒                      |         | Category  | 1 Туре        |              |                 |
| 1 • #                       |         |           | A* ▼ A*       |              |                 |
| ▶ 1 gain                    | Arithme | etic      | 0P            | Assign       | nment of one va |
|                             |         |           |               |              |                 |
|                             |         |           |               |              |                 |
|                             |         |           |               |              |                 |
| Parameters                  |         |           |               |              |                 |
|                             |         |           |               |              |                 |
| Name                        |         | Data Type | Direction     |              | Dimension       |
| a                           | * A*    | * A**     | Varlinout     | • <i>A</i> * | - A*            |
| 01                          |         |           | VarDutput     | -            |                 |
| *                           |         | *         |               | -            |                 |
|                             |         |           |               |              | <b></b>         |
|                             |         |           |               |              |                 |
| Instance:                   |         | Y ≤ 1     | Show Paramete | rs           |                 |
| Inputs:                     |         | <b>V</b>  | EN ZENO       |              |                 |
| Scope: UntitledLD           |         |           |               |              |                 |
|                             |         |           | OK            |              | Canaal          |
|                             |         |           |               |              | Laricel         |

Your fourth rung should appear as follows.

| R TRIG 1<br>R_TRIG | EN EN |   |
|--------------------|-------|---|
|                    |       | 1 |

### Create and Assign Variables and Values to the Action\_TouchProbe program

1. Create the following Global Variables with these data types and initial values.

| Name           |      | Data Type |      | Initial Value |                                            |
|----------------|------|-----------|------|---------------|--------------------------------------------|
|                | - A* |           | - A* |               | <ul> <li> <i>A</i><sup>+</sup> </li> </ul> |
| TP_windowonly  |      | BOOL      | *    | FALSE         |                                            |
| TP_FirstPos    |      | REAL      |      | 110.0         |                                            |
| TP_LastPos     |      | REAL      |      | 900.0         |                                            |
| TP_recordedPos |      | REAL      | *    |               |                                            |

2. Assign variables to the elements on the first rung as shown.

| 1                   |  |  |        |
|---------------------|--|--|--------|
| Simulator.AxisHomed |  |  |        |
| 1/1                 |  |  | Deturn |
| 1/1                 |  |  | Return |
|                     |  |  |        |

**3.** Assign variables to the elements on the second rung as shown.



**4.** Assign variables to the elements on the third rung as shown.



**5.** Assign variables to the elements on the fourth rung as shown.

| MC_TouchProbe_1.Done |      | <i>R TRIG 1</i><br>R_TRIG |           |      | 1 gain |                |
|----------------------|------|---------------------------|-----------|------|--------|----------------|
|                      | (CLK | <u> </u>                  | TP_POSNOW | • EN | ENO -  | TP_recordedPos |
|                      |      |                           | -         | ei1  | 01     | -              |

6. Save the program.

### **Build and Download Programs**

After writing the programs, build and download the user program into the controller.

# Wire Your Controller for Motion Control

### Introduction

In this chapter, you will wire your controller based on the sample project wiring configuration.

**IMPORTANT** The wiring diagram presented in this chapter serves the purpose of a simulation project only. To help you wire your controller to an actual servo drive for motion control, refer to the chapter, "Positioning with Embedded Pulse Train Outputs" in the Micro830 and Micro850 Programmable Controllers User Manual, <u>2080-UM002</u>.

### What You Need

- 2080-LC30-xxQVB, 2080-LC30-xxQBB, 2080-LC50-xxQBB, 2080-LC50-xxQVB controller
- PanelView Component (optional)

### Wire the Controller

Wire the controller based on the wiring configuration indicated in the following drawing and table.



#### **Input Terminal Block**

**Output Terminal Block** 

| Input<br>Channel | Logical Variable<br>Name in Software | Description |
|------------------|--------------------------------------|-------------|
| 2                | _I0_EM_DI_00                         | Limit_L     |
| 3                | _I0_EM_DI_01                         | Limit_R     |
| 4                | _I0_EM_DI_02                         | Home        |
| 5                | _I0_EM_DI_03                         | Probe       |
| 6                | _I0_EM_DI_04                         | PTO0-IN     |
| 7                | _I0_EM_DI_05                         | DIRO-IN     |
| 8                | _I0_EM_DI_06                         |             |
| 9                | _I0_EM_DI_07                         |             |
| 11               | _I0_EM_DI_08                         |             |
| 12               | _I0_EM_DI_09                         | DriverReady |
| 13               | _I0_EM_DI_10                         |             |
| 14               | _I0_EM_DI_11                         |             |
| 15               | _I0_EM_DI_12                         |             |
| 16               | _I0_EM_DI_13                         |             |

| Output<br>Channel | Logical Variable Name<br>in Software | Description         |
|-------------------|--------------------------------------|---------------------|
| 4                 | _I0_EM_D0_00                         | PTOO                |
| 5                 | _I0_EM_D0_01                         |                     |
| 8                 | _I0_EM_D0_02                         |                     |
| 9                 | _I0_EM_D0_03                         | DIRO                |
| 10                | _I0_EM_D0_04                         | Driver Ready Sensor |
| 11                | _I0_EM_D0_05                         | Touch Probe Sensor  |
| 12                | _I0_EM_D0_06                         | Drive Enable        |
| 13                | _I0_EM_D0_07                         | Home Sensor         |
| 14                | _I0_EM_D0_08                         | L Limit Sensor      |
| 15                | _I0_EM_D0_09                         | R Limit Sensor      |

# **Execute Your Motion Control Function Blocks**

### Introduction

In this chapter, you will use the different motion function blocks to control the movement and direction of the axis. At the end of the chapter, you should be more familiar with the movement function blocks and their operation.

| Торіс                               | Page |
|-------------------------------------|------|
| Power Up the Motion Axis            | 54   |
| Execute MC_Home                     | 55   |
| Execute MC_MoveRelative             | 58   |
| Execute MC_MoveAbsolute             | 61   |
| Execute MC_MoveVelocity and MC_Halt | 66   |
| Execute MC_TouchProbe               | 69   |

# **Before You Begin**

Familiarize yourself with the motion control function blocks by referring to the Micro830 and Micro850 Programmable Controllers User Manual, publication <u>2080-UM002</u> and/or the Connected Components Workbench Online Help.

### What You Need

- Connected Components Workbench revision 2 or later
- Firmware revision 2 and later for Micro830 controllers

### **Follow These Steps**



To execute the motion function blocks, perform the following steps.

### Go to Remote RUN Mode

Before you execute your motion control function blocks, go to Remote RUN mode, and enable Debug mode through the Connected Components Workbench software.

# **Axis Monitoring**

Note that while in DEBUG mode, you can always check the status of your axis and access diagnostic information through the Axis Monitor feature in Connected Components Workbench.

| 💐 (Running) - Connected Componen | ts Workbench                                                                                                                                                       |     |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| File Edit View Build Debug Tools | Communications Window Help                                                                                                                                         |     |
| 1 🛅 🗁 🔠 - 🔙 🕹 🖻 🛍 🔊 - 1          | 🔍 - 🚇 - 🖳 🔒 inExeStop1 🔹 - 🚰 🎌 🖕 🔛 🕨 🖕 🖓 🖓                                                                                                                         | · ) |
| · · · B I                        | <u>u</u> ∗   A   ≡ ≡ ≡   Ξ ,                                                                                                                                       |     |
| Project Organizer 🛛 🗸 🕂 🗙        | Micro850 - Axis Monitor Micro850 Motion-POU                                                                                                                        |     |
| Name: PTO-pulse                  | Axis Name:       Axis0         Axis State:       Discrete Motion         Axis Homed:       No         Movement:       Constant Velocity         Error Description: | _   |
| DataTypes                        | Command Position: 946.363 mm Command Velocity: 80.0 mm/se                                                                                                          | c   |
| User-Defined Function Blocks     | Target Position: 2345.678 mm Target Velocity: 80.0 mm/se                                                                                                           | c   |

### **Power Up the Motion Axis**

The MC\_Power function block controls the power stage of the axis, whether ON or OFF. The MC\_Reset function block transitions the axis state from ErrorStop to StandStill by resetting all internal axis-related errors. The outputs of the function block instances are not changed.

The Axis\_PowerUp variable has an initial value of TRUE so the axis powers up as soon as the controller enters RUN mode. When the axis is powered up, the DriveEnable output is TRUE.



The SWReset variable is set to initial value of False so that the MC\_Reset function block does not execute until thePanelView Component sets it to True (or SWReset is set to True in Debug mode in Connected Components Workbench using the Variable Monitor). Setting the SWReset variable to True clears any errors.

To use this sample project with the PanelView Component, you can download the PanelView Component program code for the project from the following link:

http://www.rockwellautomation.com/go/scmicro800

### Execute MC\_Home

The MC\_Home function block commands the axis to perform the "search home" sequence. The Home Sensor is connected to the configured Home Switch input (see <u>Configure Homing Properties on page 12</u> for the configuration).

For this simulation, the initial position is initialized to 300 mm so that when the homing sequence starts in the negative direction, the axis moves to the left until the Home Sensor is reached. The axis then reverses direction and creeps back until the Home Sensor is encountered again and the Home Sensor input transitions from True to False. The negative edge is used to mark the Home position.



The following sequence describes the homing method used in this simulation project:

- 1. Moving part moves to its left side (in negative direction);
- 2. When home switch is detected, the moving part decelerates to a stop;
- **3.** Moving part moves back (in positive direction) in creep velocity to detect Home Switch  $On \rightarrow Off$  edge.
- **4.** Once Home Switch On  $\rightarrow$  Off is detected, record the position as mechanical home position, and decelerate to stop;
- **5.** Move to the configured home position (the mechanical home position recorded during moving back sequence, plus the home offset configured in axis configuration in Connected Components Workbench.

The function block completes at "StandStill" if the homing sequence is successful.

MC\_Home can only be aborted by the function blocks MC\_Stop or MC\_Power. Any abort attempt from other moving function blocks will result in function block failure with Error ID = MC\_FB\_ERR\_STATE. However, homing operation is not interrupted, and can be executed as usual.



The MC\_Home function block should initially appear as follows.

 Set the SWHome variable input to True to trigger the MC\_Home function block.

When the Homing sequence is complete with no error, the Done output will be True and the Home position will be set to 110 mm.

(The Home Sensor is at position 100 mm and the width of the pulse is 10 mm.)



|                     |                                         | MC Home 1<br>MC Home                                 |                              |  |                             |
|---------------------|-----------------------------------------|------------------------------------------------------|------------------------------|--|-----------------------------|
|                     | Simulator                               |                                                      |                              |  |                             |
|                     | 0                                       | -AxisIn Ax                                           | cis <b>—</b> 0               |  |                             |
|                     | SWhome                                  |                                                      |                              |  |                             |
|                     | True                                    | Execute Dor                                          | True                         |  |                             |
|                     | HomeSetPos                              |                                                      | Entre                        |  |                             |
|                     | 110.0                                   | Position Bus                                         | sy <b>False</b>              |  |                             |
|                     | 0                                       |                                                      | False                        |  |                             |
|                     | BEMD                                    | Homina Mo Activ                                      |                              |  |                             |
|                     | 0                                       | -BufferMode CommandA                                 | False                        |  |                             |
|                     |                                         |                                                      |                              |  |                             |
|                     |                                         | Em                                                   | or False                     |  |                             |
|                     |                                         | Error                                                | 0                            |  |                             |
|                     |                                         | LIOI                                                 |                              |  |                             |
| 2                   | Trigger for Encoder to initia           | lise                                                 |                              |  |                             |
| 2                   | Trigger for Encoder to initia           | lise                                                 |                              |  |                             |
| 2                   | Trigger for Encoder to initia           | SWhome                                               |                              |  |                             |
| 2                   | Trigger for Encoder to initia           | SWhome                                               |                              |  |                             |
| 2                   | Trigger for Encoder to initia           | SWhome<br>Simulator,AxisHomed                        |                              |  |                             |
| 2                   | Trigger for Encoder to initia           | SWhome<br>Simulator.AxisHomed                        |                              |  |                             |
| 2                   | Trigger for Encoder to initia<br>SWhome | SWhome<br>Simulator.AxisHomed                        |                              |  |                             |
| 2                   | Trigger for Encoder to initia<br>SWhome | SWhome<br>Simulator.AxisHomed<br>Simulator.AxisHomed |                              |  |                             |
| 2                   | Trigger for Encoder to initia<br>SWhome | SWhome<br>Simulator.AxisHomed<br>Simulator.AxisHomed |                              |  |                             |
| 2<br><br>3<br><br>4 | Trigger for Encoder to initia SWhome    | SWhome<br>Simulator.AxisHomed<br>Simulator.AxisHomed | 70W 1<br>TON                 |  | R TRIG 1<br>R TRIG          |
| 2<br><br>3<br><br>4 | Trigger for Encoder to initia SWhome    | SWhome<br>Simulator.AxisHomed<br>Simulator.AxisHomed | <i>TDN 1</i><br>TON 1<br>TON |  | R TRIG 1<br>R TRIG<br>CLK 0 |
| 2<br><br>3<br><br>4 | Trigger for Encoder to initia SWhome P  | SWhome<br>Simulator.AxisHomed<br>Simulator.AxisHomed | 7 <i>DN</i> 1<br>TON<br>IN   |  | R TRIG 1<br>R TRIG<br>CLK 0 |

After execution, the MC\_Home function block should appear as shown. When SWHome becomes False, the Done and Error bits gets cleared.

### Execute MC\_MoveRelative

The MC\_MoveRelative function block commands an axis of a specified distance relative to the current position at the time of the execution.



In this section, you will use the MC\_MoveRelative function block to move your axis towards a positive or negative direction. The initial state of your MC\_MoveRelative program (that is, before execution) is shown below.

| Action_MoveRelative-Pl | DU Action_MoveVelocity-VAR | R Micro850     | Action_MoveVeloc       | ity-POU |  |        |
|------------------------|----------------------------|----------------|------------------------|---------|--|--------|
| 1                      |                            |                |                        |         |  |        |
|                        |                            |                |                        |         |  |        |
|                        | Simulator.AxisHomed        |                |                        |         |  |        |
|                        | <u></u> //                 |                |                        |         |  | Return |
| 2                      |                            | MC_MoveF       | Relative_1<br>Relative |         |  |        |
|                        |                            | EN EN          | ENO                    |         |  |        |
|                        | Simulator                  |                |                        | _       |  |        |
|                        | 0                          | AxisIn         | Axis 🗕                 | 0       |  |        |
|                        | SWrelative                 |                |                        | _       |  |        |
|                        | False                      | Execute        | Done -                 | False   |  |        |
|                        | Rel_Distance_Input         |                |                        | _       |  |        |
|                        | 0.0                        | Distance       | Busy -                 | False   |  |        |
|                        | Rel_Velocity               |                |                        | _       |  |        |
|                        | 0.0                        | Velocity       | Active                 | False   |  |        |
|                        | Rel_Acc                    |                |                        | _       |  |        |
|                        | 0.0                        | Acceleration ( | Commanda 🗕             | False   |  |        |
|                        | Rel_Decc                   |                |                        | _       |  |        |
|                        | 0.0                        | Deceleration   | Error                  | False   |  |        |
|                        | Rel_Jerk                   |                |                        | _       |  |        |
|                        | 0.0                        | Jerk           | ErrorID                | 0       |  |        |
|                        | BFMD                       |                |                        |         |  |        |
|                        | 0                          | BufferMode     |                        |         |  |        |

Before execution, the value of inputs such as distance, velocity, acceleration, jerk, deceleration, and buffer mode is 0. Execute is False as the application has not been run yet. Outputs such as Done, Busy, Active, CommandAborted, Error, are False.

1. Update the values of the input *MC\_MoveRelative\_1* MC\_MoveRelative variables as shown and set 2 SWRelative to True to trigger EN ENO the MC\_MoveRelative Simulator 0 function block. AxisIn Axis SWrelative True Execute Done Rel\_Distance\_Input 200.0 False Distance Busy Rel\_Velocity 100.0 Velocity Active Rel\_Acc 1000.0 False Acceleration Commanda. Rel\_Decc 1000.0 False Error Deceleration Rel\_Jerk 10000.0 ErrorID - Jerk BFMD 0 BufferMode

These values move your axis to a positive (right) direction by a distance of 200 mm, relative to the initial distance input (which is 0). The axis moves at a velocity of 100 mm/sec<sup>2</sup>, an acceleration of 1000 mm/sec<sup>3</sup>, and deceleration of  $10000 \text{ mm/sec}^3$ .

| IMPORTANT | Deceleration or acceleration inputs should have a positive value. If deceleration or acceleration is set to be a non-positive value, an error is reported.                                                                    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IMPORTANT | The Jerk input should have a non-negative value. If Jerk is set to be a negative value, error will be reported.                                                                                                               |
|           | If maximum jerk is configured as zero in Connected Components Workbench motion configuration, all jerk parameters for the motion function block has to be configured as zero. Otherwise, the function block reports an error. |

Action\_MoveRelative-VAR Action\_MoveRelative-POU Micro850 1 ator AxisHo 1/1 Return 2 *MC\_MoveRelative\_1* MC\_MoveRelative ENO EN Simulator 0 AxisIn Axis SWrelative True Execute Rel\_Distance\_Input 200.0 Busy - Distance Rel\_Velocity 100.0 - Velocity Active Rel\_Acc 1000.0 - Acceleration Comm nanda. Rel\_Decc 1000.0 - Deceleration Error Rel\_Jerk 10000.0 ErrorID 🗕 Jerk BFMD 0 BufferMode

While the axis is moving, note the Busy output is True.

### Execute MC\_MoveAbsolute

The MC\_MoveAbsolute function block allows you to command an axis to a specified absolute position at the rate of Velocity, Acceleration, Deceleration, and Jerk inputs specified.



2. Specify a distance value of  $200 \text{ mm.}^{(1)}$  Then, set the Simulator.AxisHomed SWAbsolute variable to True to ╢ 2 trigger the function block. ENO Simulator 0 SWabsolute False Execute Don Abs Distance Input 200.0 Position Busy ABS1\_Velocity 100.0 Active Velocity ABS1 Acc 1000.0 Acceleratio andA ABS1\_Decc 1000.0 Error Deceleration ABS1\_Jerk 10000.0 Jerk ErrorID ABSMoveDirection 0 Dire BFMD 0 uffermo 3

The objective is to move the axis to an absolute position of 200 mm at the end of execution, regardless of the initial value of the position input. The move will be at the velocity rate of 100 mm/sec<sup>2</sup>, acceleration rate of 1000 mm/sec<sup>3</sup>, deceleration rate of 1000 mm/sec<sup>3</sup>, and jerk rate of 10000 mm/sec<sup>3</sup>.

| TIP       | For MC_MoveAbsolute, direction input is ignored.                                                                                                                                                                              |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IMPORTANT | Deceleration or acceleration inputs should have a positive value. If deceleration or acceleration is set to be a non-positive value, an error will be reported.                                                               |
| IMPORTANT | The Jerk input should have a non-negative value. If Jerk is set to be a negative value, error will be reported.                                                                                                               |
|           | If maximum jerk is configured as zero in Connected Components Workbench motion configuration, all jerk parameters for the motion function block has to be configured as zero. Otherwise, the function block reports an error. |

<sup>(1)</sup> The PanelView Component can be used to set the inputs and monitor the outputs. For non-PVc users, you can refer to the Connected Components Workbench to monitor the state of your outputs.
#### Abort a Movement Function Block

1. Set the MC\_MoveAbsolute1 distance input to 600.



2. To perform an aborted move, set the MC\_MoveAbsolute2 function block distance input to 700.



3. Trigger MC\_MoveAbsolute1. Before the function block finishes executing, trigger MC\_MoveAbsolute2. In this case, MC\_MoveAbsolute2 will abort MC\_MoveAbsolute1.

Note that all MC\_MoveAbsolute1 output bits will be set to False, while CommandAborted goes True.

All output bits for the aborting function block MC\_MoveAbsolute2 will be set to False, while Done output is True.



For the aborted function block MC\_MoveAbsolute1, all output bits will be set to False, and CommandAborted is set to True.

| MC_MoveAbsolute_1<br>MC_MoveAbsolute |                 |          |       |
|--------------------------------------|-----------------|----------|-------|
|                                      | EN              | ENO      |       |
| Simulator                            |                 |          |       |
| 0                                    | AxisIn          | Axis     | 0     |
| SWabsolute                           |                 |          |       |
| False                                | Execute         | Done     | True  |
| Abs_Distance_Input                   |                 |          |       |
| 600                                  | Position        | Busy     | False |
| ABS1_Velocity                        |                 |          |       |
| 100.0                                | Velocity        | Active   | False |
| ABS1_Acc                             |                 |          |       |
| 1000.0                               | Acceleration Co | ommandA• | False |
| ABS1_Decc                            |                 |          |       |
| 1000.0                               | Deceleration    | Error    | False |
| ABS1_Jerk                            |                 |          |       |
| 10000.0                              | Jerk            | ErrorID  | 0     |
| ABSMoveDirection                     |                 |          |       |
| 0                                    | Direction       |          |       |
| BFMD                                 |                 |          |       |
| 0                                    | Buffermode      |          |       |

For the aborting function block MC\_MoveAbsolute1, all output bits will be set to False, and CommandAborted is set to True. While executing, notice that outputs Busy and Active are True. After successful execution, Done should be True. If any error occurs during execution, the Error output will be True. You can check the status of your axis through the Axis Monitoring page of the Connected Components Workbench software.



# Execute MC\_MoveVelocity and MC\_Halt

The MC\_MoveVelocity function block commands a never ending axis to move at a specified velocity until the hard or soft limit is reached.

**TIP** Velocity can be a signed value. Users are advised to use positive velocity.

Direction input for the MC\_MoveVelocity function block can be used to define the direction of the move (that is, negative velocity x negative direction = positive velocity).

Before execution, the MC\_MoveVelocity program should appear as shown.



For MC\_MoveVelocity, direction input value can be 1 (positive direction), 0 (current direction) or -1 (negative direction).

For any other value, only the sign is taken into consideration. For example, -3 denotes negative direction, +2 denotes positive direction, and so on.

For MC\_MoveVelocity, the resulting sign of the product value derived from velocity x direction decides the motion direction, if the value is not 0. For example, if velocity x direction = +300, then direction is positive.

TIP

- **1.** Update the MC\_MoveVelocity 2 input variables as shown. ANY\_TO\_SINT EN ENO Vel\_Dir\_INT Vel\_Direct\_Input 0 0 ₩i1 01 3 MC N ENO ΕN Simulator 0 Axis SWvelocity False InVeloci Vel\_Input 50.0 Busy Vel\_Acc\_Input 1000.0 Ac Vel\_Decc\_Input 1000.0 Directio Vel\_Jerk\_Input 10000.0 CommandA. Vel\_Direct\_Input 0 Erro BFMD 0 ErrorID
- 2. To move the axis to the right, set the direction input value to 1.

| 3 |                           |                                    |       |
|---|---------------------------|------------------------------------|-------|
|   |                           | MC_MoveVeloaty_1<br>MC_MoveVeloaty |       |
|   | Simulator<br>0            | Avirla Avir                        | 0     |
|   | SWvelocity<br>False       | - Execute InVelocity -             | False |
|   | Vel_Input<br>50.0         | Velocity Busy                      | False |
|   | Vel_Acc_Input<br>1000.0   | - Acceleration Active -            | False |
|   | Vel_Decc_Input<br>1000.0  | - Deceleration Direction -         | 1     |
|   | Vel_Jerk_Input<br>10000.0 | -Jerk CommandA                     | False |
|   | Vel_Direct_Input<br>1     | Direction In Error                 | False |
|   | BFMD<br>0                 | BufferMode ErrorID                 | 0     |

# IMPORTANT

Once an axis is flagged with error, and the error ID is not zero, the user needs to reset the axis (using MC\_Reset) before issuing any other movement function block.

#### IMPORTANT

The update for axis status is performed at the end of one program scan cycle, and the update is aligned with the update of Motion Axis status.

3. To move the axis to the left, set the direction input to -1.

| 3 |                           |                                              |       |
|---|---------------------------|----------------------------------------------|-------|
|   |                           | MC_MoveVeloaiy_1<br>MC_MoveVeloaiy<br>EN ENO |       |
|   | Simulator<br>0            | AxisIn Axis                                  | 0     |
|   | SWvelocity<br>False       | Execute InVelocity                           | False |
|   | Vel_Input<br>50.0         | -Velocity Busy-                              | False |
|   | Vel_Acc_Input<br>1000.0   | Acceleration Active                          | False |
|   | Vel_Decc_Input<br>1000.0  | Deceleration Direction                       | -1    |
|   | Vel_Jerk_Input<br>10000.0 | Jerk CommandA.                               | False |
|   | Vel_Direct_Input<br>-1    | DirectionIn Error                            | False |
|   | BFMD<br>0                 | BufferMode ErrorID                           | 0     |

# Execute MC\_TouchProbe

The MC\_TouchProbe function block records the current position when the touchprobe input becomes True. This function block is useful for registering the absolute position of the asynchronous object, for example, the registration mark of a film for a vertical form fill seal machine.

To record the current position while an axis is moving, set TP\_EXE variable to True to trigger the function block. Then, you have to manually trigger the touchprobe input from the hardware.

To do so, refer to <u>Wire the Controller on page 50</u>. The output \_IO\_EM\_DO\_05 is connected to the touchprobe input. To trigger it, you can use Connected Components Workbench to force turn on \_IO\_EM\_DO\_05.



## **Implementing Motion Control in an Actual Environment**

While this quickstart allowed you to become more familiar with the different motion control function blocks and enabled you to power up, home, and move a simulated axis, you will need to implement a different wiring configuration for an actual environment (that is, with a Servo drive, motor).

To do this, you need to refer to the following publications for wiring and supporting configuration information:

- Micro830 and Micro850 Programmable Controllers User Manual, <u>2080-UM002</u> (see the chapter, "Positioning with Embedded Pulse Train Outputs")
- Kinetix 3 Motion Control Indexing Application, <u>CC-QS025</u>

### **Rockwell Automation Support**

Rockwell Automation provides technical information on the Web to assist you in using its products. At <u>http://www.rockwellautomation.com/support/</u>, you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnect support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit <u>http://www.rockwellautomation.com/support/</u>.

#### Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

| United States or Canada            | 1.440.646.3434                                                                                                                                                          |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outside United States or<br>Canada | Use the <u>Worldwide Locator</u> at <u>http://www.rockwellautomation.com/support/americas/phone_en.html</u> , or contact your local Rockwell Automation representative. |

#### **New Product Satisfaction Return**

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

| United States         | Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process. |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outside United States | Please contact your local Rockwell Automation representative for the return procedure.                                                                                    |

### **Documentation Feedback**

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication <u>RA-DU002</u>, available at <u>http://www.rockwellautomation.com/literature/</u>.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

#### www.rockwellautomation.com

#### Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Rockwell Automation Publication 2080-QS001A-EN-E - January 2013