AADvance Safety System

Scalable Safety Instrumented System (SIS)

Benefits

Scalable Architecture
- Distributed processor architecture
- Flexible controller redundancy configurations
- Flexible I/O fault tolerant configurations
- Can mix fail safe & fault tolerant architectures in the same architecture
- Black channel communications

Feature Rich Hardware
- Comprehensive diagnostics
- Integrated HART communications (AI & AO)
- Channel isolation
- Electronically protected outputs
- Online replaceable

Comprehensive Programming Environment
- Supports all five IEC 61131 programming languages
- Online programming changes
- Online debugging
- Offline simulation
- Built in version control
- T3 compliant online modifications and expansion
- Single programming environment to manage multiple controllers for distributed safety applications

Communications Options
- EtherNet/IP™ (with CIP™) communications to ControlLogix® Programmable Automation Controllers
- OPC DA (Data Access) & A&E (Alarm & Event) communications
- Modbus communications
- Integrated with PlantPAx®
- Can be deployed standalone

AADvance System

The AADvance® system consists of processor modules, I/O modules and field termination assemblies that can easily be assembled and configured. You can build a system from one or more controllers, a combination of I/O modules, power sources, communications networks and user workstations. The system can be used for many different applications based on how you configure it. All of the configurations are readily achieved by combining modules and assemblies without using special cables or interface units.

As a highly flexible system, the following aspects of the AADvance system are all configurable by you, the user:
- System architectures – can be changed without major system modifications
- Processor and I/O redundancy – choose between fail-safe and fault tolerant
- Scalability – there is no change to the complexity of operations or programming if you choose to add redundant capacity to create a fault tolerant solution

Communications Options
- EtherNet/IP™ (with CIP™) communications to ControlLogix® Programmable Automation Controllers
- OPC DA (Data Access) & A&E (Alarm & Event) communications
- Modbus communications
- Integrated with PlantPAx®
- Can be deployed standalone

AADvance® Workbench

Ethernet based Safety Network

SIL3 - 3 Fail Safe
SIL1 - 3 Fault Tolerant
SIL3 Fault Tolerant Redundant
SIL3 Triple Modular Redundant

Allen-Bradley • Rockwell Software

LISTEN. THINK. SOLVE.
AADvance Workbench Engineering Configuration Software

AADvance Workbench Software is a complete design, configuration and maintenance software environment that enables you to design the complete multi controller safety strategy as a single project, then to target parts of the strategy for each controller.

The software supports five of the IEC 61131 languages and produces validated code for use in safety applications, regardless of the language used.

This leading-edge programming environment is comprised of a powerful set of features:

- Offline simulation of the entire distributed controller environment, including controller to controller communications
- Centralized repository for archiving of application source, which provides automatic archiving whenever a change is made to a running controller.
- Collaborative programming environment, allowing controlled multiple user access to a single project.
- Online monitoring (also a collaborative environment) of applications across multiple controllers.
- Online updates of changes, including the addition of new controllers into the distributed network.

<table>
<thead>
<tr>
<th>Typical Applications</th>
<th>SIL Target</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Shutdown (ESD)</td>
<td>2 & 3</td>
<td>Low / High</td>
</tr>
<tr>
<td>Fire and Gas (F&G)</td>
<td>2</td>
<td>Low</td>
</tr>
<tr>
<td>High Integrity Pressure System (HIPPS)</td>
<td>3</td>
<td>Low</td>
</tr>
<tr>
<td>Burner Management Systems (BMS)</td>
<td>2</td>
<td>High</td>
</tr>
<tr>
<td>Subsea Blowout Prevention (BoP)</td>
<td>2</td>
<td>Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance Characteristics</th>
<th>IEC 61508 SIL 2, SIL 3 (depending on processor and I/O module configuration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Integrity Level</td>
<td></td>
</tr>
<tr>
<td>Safety Degradation Modes</td>
<td>Simplex 1-0, Dual 2-1-0, TMR 3-2-1-0</td>
</tr>
<tr>
<td>Processor Modules supported</td>
<td>Three</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TÜV Rhineland Certification</th>
<th>EN 61000-6-4:2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 50178:1997</td>
<td>EN 50156-1:2004</td>
</tr>
<tr>
<td>EN 61000-6-2:2005</td>
<td>NFPA 86:2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AADvance Certification</th>
<th>UL508, CSA22.2 (142-M1987), EN 60079</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Area Location</td>
<td></td>
</tr>
</tbody>
</table>