Allen-Bradley® Integrated Linear Thruster
An Iron Core Linear Motor Actuator with a Built-in Linear Guide

To produce a high-speed, load-bearing linear actuator today, many machine builders invest a lot of time and money to design a mechanism with rotary-to-linear motion conversion. With the Allen-Bradley Integrated Linear Thruster, machine builders can get high-speed, load-bearing linear motion out-of-the-box. The LDAT-Series Integrated Linear Thruster is a reliable, high-speed linear actuator with an integrated linear guide that is capable of pushing, pulling or carrying a load.

Features
A precise, high-speed linear actuator with an integrated linear guide, the Integrated Linear Thruster provides:

- High velocity (to 5 m/s) and acceleration (5 g standard, higher with review)
- Direct drive technology that increases reliability by eliminating wear items associated with rotary to linear motion conversion
- Integrated linear bearing providing the ability to carry a load without having to mount and align external bearings
- A pre-engineered solution that can reduce engineering, design and documentation time
- Multiple mounting surfaces and methods for ease of mounting into your machine
- Selection software, Motion Analyzer 6.0, that allows for quick and easy sizing to optimize the actuator and drive selection to minimize energy consumption
- Optional strip cover that provides added protection for bearings, maximizing life
- Standard rotating SpeedTec DIN connectors that integrate with standard Allen-Bradley extension cables

With five frame sizes, the Linear Thruster offers a variety of peak and continuous force to meet your needs.

Technical Specifications

<table>
<thead>
<tr>
<th>Frame Size</th>
<th>Motor Length</th>
<th>Peak Force N (lbf)</th>
<th>Continuous Force N (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>1</td>
<td>168 (38)</td>
<td>81 (18)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>336 (75)</td>
<td>126 (28)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>540 (113)</td>
<td>190 (43)</td>
</tr>
<tr>
<td>05</td>
<td>1</td>
<td>279 (63)</td>
<td>119 (27)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>558 (125)</td>
<td>251 (56)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>836 (188)</td>
<td>378 (85)</td>
</tr>
<tr>
<td>07</td>
<td>1</td>
<td>1115 (251)</td>
<td>509 (115)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1324 (275)</td>
<td>554 (122)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1632 (367)</td>
<td>730 (164)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2448 (550)</td>
<td>1122 (252)</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1010 (231)</td>
<td>456 (102)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1544 (347)</td>
<td>702 (158)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2059 (463)</td>
<td>929 (209)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2689 (594)</td>
<td>1403 (316)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2153 (484)</td>
<td>978 (220)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2882 (648)</td>
<td>1306 (294)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4305 (968)</td>
<td>1997 (449)</td>
</tr>
</tbody>
</table>

With five frame sizes, the Linear Thruster offers a variety of peak and continuous force to meet your needs.

Features

- A precise, high-speed linear actuator with an integrated linear guide, the Integrated Linear Thruster provides:
 - High velocity (to 5 m/s) and acceleration (5 g standard, higher with review)
 - Direct drive technology that increases reliability by eliminating wear items associated with rotary to linear motion conversion
 - Integrated linear bearing providing the ability to carry a load without having to mount and align external bearings
 - A pre-engineered solution that can reduce engineering, design and documentation time
 - Multiple mounting surfaces and methods for ease of mounting into your machine
 - Selection software, Motion Analyzer 6.0, that allows for quick and easy sizing to optimize the actuator and drive selection to minimize energy consumption
 - Optional strip cover that provides added protection for bearings, maximizing life
 - Standard rotating SpeedTec DIN connectors that integrate with standard Allen-Bradley extension cables

To produce a high-speed, load-bearing linear actuator today, many machine builders invest a lot of time and money to design a mechanism with rotary-to-linear motion conversion. With the Allen-Bradley Integrated Linear Thruster, machine builders can get high-speed, load-bearing linear motion out-of-the-box. The LDAT-Series Integrated Linear Thruster is a reliable, high-speed linear actuator with an integrated linear guide that is capable of pushing, pulling or carrying a load.

The linear thruster combines high velocity, up to five meters per second, high levels of acceleration and peak thrust forces ranging from 168 to 4,305 Newtons to help maximize performance. Ideal applications are those which currently use a custom-designed belt actuator or linkage device that converts rotary into linear motion, including cartoners, stackers, case packers, case and tray formers, in-out feeds, diverters, ejectors, drop gates and horizontal conveyors.

Using direct drive technology, the linear thruster helps improve reliability and makes maintenance easier by reducing the number of wear items. Eliminating power transmission components such as couplings, gear boxes, belts, pulleys and other motion conversion mechanisms also saves energy by avoiding frictional losses attributed to these components.
A High-Performance, Highly Reliable Guided Linear Actuator Designed to Simplify Your Machine

As a pre-engineered solution, the Integrated Linear Thruster can help reduce engineering, design and documentation time, decrease the amount of mechanisms and components needed to build a custom solution and reduce the time to install the axis into a machine.

Use the mechanical design software, Motion Analyzer (version 6.0 or higher), to select and simulate the most efficient drive-actuator combination to optimize performance and minimize energy consumption.

To minimize installation time, the Integrated Linear Thruster can be used with any Allen-Bradley servo drive, and it uses the same innovative SpeedTEC® DIN connectors as the rest of the Allen-Bradley servo motor family, for a quick, secure assembly.

Simplification

Using an Integrated Linear Thruster instead of designing your own custom linear axis saves time to:
- Select all the components that go into a custom actuator
- Develop all the parts drawings
- Create the bill of materials
- Develop the assembly drawings and work instructions
- Assemble the custom actuator into the machine

Energy Efficient

With the LDAT-Series Integrated Linear Thruster, machine builders can often find a more efficient solution that consumes less energy because the linear thruster:
- Has no loss of efficiency as a result of converting rotary motion into linear motion
- Is coupled directly to the item that needs to be moved, eliminating the structure often required in custom actuators and mass associated with it

Reliability

The Integrated Linear Thruster provides increased reliability and requires less maintenance as a result of:
- Using a single linear guide that eliminates induced loading due to misaligned multi-guide systems
- Having only one wear item versus several found in custom actuators
- Using caged ball linear bearings that require less maintenance
- Caged ball linear guide provides long life and load-carrying capability
- High-performance iron-core linear motor for high speed and acceleration
- Two mounting surfaces for ease of installation
- Incremental or absolute linear encoder
- Rotatable DIN (SpeedTEC) Connectors for flexible installation
- Optional stainless steel strip cover to protect the linear guide in highly contaminated environments
- Four tapped mounting holes to attach your payload
- Foot mounting brackets affix here
As a pre-engineered solution, the Integrated Linear Thruster can help reduce engineering, design and documentation time, decrease the amount of mechanisms and components needed to build a custom solution and reduce the time to install the axis into a machine.

Use the mechanical design software, Motion Analyzer (version 6.0 or higher), to select and simulate the most efficient drive-actuator combination to optimize performance and minimize energy consumption.

To minimize installation time, the Integrated Linear Thruster can be used with any Allen-Bradley servo drive, and it uses the same innovative SpeedTEC® DIN connectors as the rest of the Allen-Bradley servo motor family, for a quick, secure assembly.

A High-Performance, Highly Reliable Guided Linear Actuator Designed to Simplify Your Machine

Simplification
Using an Integrated Linear Thruster instead of designing your own custom linear axis saves time to:
- Select all the components that go into a custom actuator
- Develop all the parts drawings
- Create the bill of materials
- Develop the assembly drawings and work instructions
- Assemble the custom actuator into the machine

Reliability
The Integrated Linear Thruster provides increased reliability and requires less maintenance as a result of:
- Using a single linear guide that eliminates induced loading due to misaligned multi-guide systems
- Having only one wear item versus several found in custom actuators
- Using caged ball linear bearings that require less maintenance

Energy Efficient
With the LDAT-Series Integrated Linear Thruster, machine builders can often find a more efficient solution that consumes less energy because the linear thruster:
- Has no loss of efficiency as a result of converting rotary motion into linear motion
- Is coupled directly to the item that needs to be moved, eliminating the structure often required in custom actuators and mass associated with it
Allen-Bradley® Integrated Linear Thruster

An Iron Core Linear Motor Actuator with a Built-in Linear Guide

To produce a high-speed, load-bearing linear actuator today, many machine builders invest a lot of time and money to design a mechanism with rotary-to-linear motion conversion. With the Allen-Bradley Integrated Linear Thruster, machine builders can get high-speed, load-bearing linear motion out-of-the-box. The LDAT-Series Integrated Linear Thruster is a reliable, high-speed linear actuator with an integrated linear guide that is capable of pushing, pulling or carrying a load.

To produce a high-speed, load-bearing linear actuator today, many machine builders invest a lot of time and money to design a mechanism with rotary-to-linear motion conversion. With the Allen-Bradley Integrated Linear Thruster, machine builders can get high-speed, load-bearing linear motion out-of-the-box. The LDAT-Series Integrated Linear Thruster is a reliable, high-speed linear actuator with an integrated linear guide that is capable of pushing, pulling or carrying a load. Ideal applications are those which currently use a custom-designed belt actuator or linkage device that converts rotary into linear motion, including carriages, stackers, case packers, case and tray formers, in-out feeds, diverters, ejectors, drop gates and horizontal conveyors.

Using direct drive technology, the linear thruster combines high velocity, up to five meters per second, high levels of acceleration and peak thrust forces ranging from 168 to 4,305 Newtons to help maximize performance. Ideal applications are those which currently use a custom-designed belt actuator or linkage device that converts rotary into linear motion, including carriages, stackers, case packers, case and tray formers, in-out feeds, diverters, ejectors, drop gates and horizontal conveyors.

To produce a high-speed, load-bearing linear actuator today, many machine builders invest a lot of time and money to design a mechanism with rotary-to-linear motion conversion. With the Allen-Bradley Integrated Linear Thruster, machine builders can get high-speed, load-bearing linear motion out-of-the-box. The LDAT-Series Integrated Linear Thruster is a reliable, high-speed linear actuator with an integrated linear guide that is capable of pushing, pulling or carrying a load. Ideal applications are those which currently use a custom-designed belt actuator or linkage device that converts rotary into linear motion, including carriages, stackers, case packers, case and tray formers, in-out feeds, diverters, ejectors, drop gates and horizontal conveyors.

Using direct drive technology, the linear thruster combines high velocity, up to five meters per second, high levels of acceleration and peak thrust forces ranging from 168 to 4,305 Newtons to help maximize performance. Ideal applications are those which currently use a custom-designed belt actuator or linkage device that converts rotary into linear motion, including carriages, stackers, case packers, case and tray formers, in-out feeds, diverters, ejectors, drop gates and horizontal conveyors.

Using direct drive technology, the linear thruster combines high velocity, up to five meters per second, high levels of acceleration and peak thrust forces ranging from 168 to 4,305 Newtons to help maximize performance. Ideal applications are those which currently use a custom-designed belt actuator or linkage device that converts rotary into linear motion, including carriages, stackers, case packers, case and tray formers, in-out feeds, diverters, ejectors, drop gates and horizontal conveyors.

Using direct drive technology, the linear thruster combines high velocity, up to five meters per second, high levels of acceleration and peak thrust forces ranging from 168 to 4,305 Newtons to help maximize performance. Ideal applications are those which currently use a custom-designed belt actuator or linkage device that converts rotary into linear motion, including carriages, stackers, case packers, case and tray formers, in-out feeds, diverters, ejectors, drop gates and horizontal conveyors.

Using direct drive technology, the linear thruster combines high velocity, up to five meters per second, high levels of acceleration and peak thrust forces ranging from 168 to 4,305 Newtons to help maximize performance. Ideal applications are those which currently use a custom-designed belt actuator or linkage device that converts rotary into linear motion, including carriages, stackers, case packers, case and tray formers, in-out feeds, diverters, ejectors, drop gates and horizontal conveyors.