Logix 5000 Controllers Program Parameters

1756 ControlLogix, 1756 GuardLogix, 1769 CompactLogix, 1769 Compact GuardLogix, 1789 SoftLogix, 5069 CompactLogix, 5069 Compact GuardLogix, Studio 5000 Logix Emulate
Important user information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice. If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

Important: Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).
Summary of changes

This manual includes new and updated information. Use these reference tables to locate changed information.

Grammatical and editorial style changes are not included in this summary.

Global changes

This table identifies changes that apply to all information about a subject in the manual and the reason for the change. For example, the addition of new supported hardware, a software design change, or additional reference material would result in changes to all of the topics that deal with that subject.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated screen shots throughout.</td>
<td>The Studio 5000 Logix Designer® interface has been modified in versions 31 and later.</td>
</tr>
</tbody>
</table>

New or enhanced features

This table contains a list of topics changed in this version, the reason for the change, and a link to the topic that contains the changed information.

<table>
<thead>
<tr>
<th>Topic Name</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>Added 5069 CompactGuardLogix to the list of supported controllers.</td>
</tr>
</tbody>
</table>
Table of contents

Preface
- Studio 5000 environment... 7
- Additional resources... 8
- Important terminology ... 8
- Legal notices .. 9

Chapter 1
- Introduction .. 13
- Program parameters .. 13
 - Program parameter connection methods 14
 - Program parameter connection syntax 17
 - User-defined type sub-element connection considerations 18
- Input parameters ... 18
 - Input parameter connection types and uses 18
 - General rules for using Input parameters 18
 - Connect an Input parameter to a controller scope tag 19
- Output parameters .. 21
 - Output parameter connection types and uses 22
 - General rules for using Output parameters 22
 - Connect an Output parameter to a controller scope tag 23
 - Connect an Output parameter to another program 24
- InOut parameters .. 26
 - InOut parameter connection types and uses 26
 - General rules for using InOut parameters 27
 - Connect an InOut parameter to a controller scope tag 27
- Public parameters .. 29
 - Public parameter connection types and uses 29
 - General rules for using Public parameters 29
 - Connect a Public parameter to another program 30
- Safety program parameters .. 32
 - General rules for connecting parameters for safety programs 32
- Program parameter connection rules ... 33
 - Standard program to standard program connection rules 33
 - Safety program to safety program connection rules 34
 - Safety program to standard program connection rules 35
Chapter 2

Directly accessing program parameters

Introduction .. 37
Direct access .. 37
Behavior of direct access in logic ... 37
Access program parameters when editing ladder logic................................. 38

Index
Preface

This manual shows how to create and configure program parameters. This manual is one of a set of related manuals that show common procedures for programming and operating Logix 5000™ controllers.

For a complete list of common procedures manuals, refer to the Logix 5000 Controllers Common Procedures Programming Manual, publication 1756-PM001.

The term Logix 5000 controller refers to any controller that is based on the Logix 5000 operating system.

The Studio 5000 Automation Engineering & Design Environment® combines engineering and design elements into a common environment. The first element is the Studio 5000 Logix Designer® application. The Logix Designer application is the rebranding of RSLogix 5000® software and will continue to be the product to program Logix 5000™ controllers for discrete, process, batch, motion, safety, and drive-based solutions.

The Studio 5000 environment is the foundation for the future of Rockwell Automation® engineering design tools and capabilities. The Studio 5000 environment is the one place for design engineers to develop all elements of their control system.
Additional resources

These documents contain additional information concerning related Rockwell Automation products.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1</td>
<td>Provides general guidelines for installing a Rockwell Automation industrial system.</td>
</tr>
</tbody>
</table>

You can view or download publications at http://www.rockwellautomation.com/literature. To order paper copies of technical documentation, contact your local Rockwell Automation distributor or sales representative.

Important terminology

This table defines the terms that are important to understanding the concepts described in this manual.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Argument | An argument is assigned to a parameter and contains the specification of the data used by an instruction in a user program. An argument can contain the following:
 - A simple tag (for example, L101)
 - A literal value (for example, 5)
 - A tag structure reference (for example, Recipe.Temperature)
 - A direct array reference (for example, Buffer[1])
 - An indirect array reference (for example, Buffer[Index+1])
 - A combination (for example, Buffer[Index+1].Delay) |
| InOut parameter | An InOut parameter is a special usage program parameter that represents a reference to data that can be used both as input and output during the execution of a program. Because InOut parameters pass by reference rather than by value, they are merely a pointer to the original data and closely resemble the behavior of an alias tag. With that in mind, it is possible that the InOut parameter values could change during the execution of a program. Depending on your task structure, this behavior may be necessary. |
| Input parameter | An Input parameter is a parameter that defines the data that is passed by value into an executing program. Since Input parameters are passed by value, their values cannot change from external sources during the execution of the program. An Input parameter supports a maximum of one sourcing connection. |
Output parameter
An Output parameter is a parameter that defines the data that is produced as a direct result of executing a program. Since Output parameters are always passed by value, their values only change at the end of the scan of a program when the copy of the parameters has executed.

Tip: If using direct access another program can be a source for an Output parameter.

<table>
<thead>
<tr>
<th>Passed by reference</th>
<th>When an argument is passed to a parameter by reference, the logic directly reads or writes the value that the tag uses in controller memory. External code or HMI interaction that changes the argument’s value can change the value during execution of a program.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passed by value</td>
<td>When an argument is passed to a parameter by value, the value is copied in or out of the parameter during execution of a program. The value of the argument does not change from external code or HMI interaction.</td>
</tr>
<tr>
<td>Public parameter</td>
<td>A Public parameter is an encapsulated version of a controller scope tag, and typically it is used for large data structures that need to be shared among programs.</td>
</tr>
</tbody>
</table>

Legal notices

Copyright notice

Copyright © 2018 Rockwell Automation Technologies, Inc. All Rights Reserved. Printed in USA.

This document and any accompanying Rockwell Software products are copyrighted by Rockwell Automation Technologies, Inc. Any reproduction and/or distribution without prior written consent from Rockwell Automation Technologies, Inc. is strictly prohibited. Please refer to the license agreement for details.

End User License Agreement (EULA)

You can view the Rockwell Automation End-User License Agreement ("EULA") by opening the License.rtf file located in your product’s install folder on your hard drive.

Other Licenses

The software included in this product contains copyrighted software that is licensed under one or more open source licenses. Copies of those licenses are included with the software. Corresponding Source code for open source packages included in this product can be located at their respective web site(s).
Preface

You may alternately obtain complete Corresponding Source code by contacting Rockwell Automation via our Contact form on the Rockwell Automation website: http://www.rockwellautomation.com/global/about-us/contact/contact.page.

Please include "Open Source" as part of the request text.

The following open source software is used in this product:

<table>
<thead>
<tr>
<th>Software</th>
<th>Copyright</th>
<th>License Name</th>
<th>License Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>AngularJS</td>
<td>Copyright 2010-2017 Google, Inc.</td>
<td>MIT License</td>
<td>AngularJS 1.5.9 License</td>
</tr>
<tr>
<td>Bootstrap</td>
<td>Copyright 2011-2017 Twitter, Inc. Copyright 2011-2017 The Bootstrap Authors</td>
<td>MIT License</td>
<td>Bootstrap 3.3.7 License</td>
</tr>
<tr>
<td>jQuery</td>
<td>Copyright 2005, 2014 JS Foundation and other contributors</td>
<td>MIT License</td>
<td>jQuery 2.1.1 License</td>
</tr>
<tr>
<td>OpenSans</td>
<td>Copyright 2017 Google, Inc.</td>
<td>Apache License, Version 2.0</td>
<td>OpenSans License</td>
</tr>
</tbody>
</table>

Trademark Notices

Any Rockwell Automation logo, software or hardware product not mentioned herein is also a trademark, registered or otherwise, of Rockwell Automation, Inc.

Other Trademarks

CmFAS Assistant, CmDongle, CodeMeter, CodeMeter Control Center, and WIBU are trademarks of WIBU-SYSTEMS AG in the United States and/or other countries. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. ControlNet is a trademark of ControlNet International. DeviceNet is a trademark of the Open DeviceNet Vendors Association (ODVA). Ethernet/IP is a trademark of ControlNet International under license by ODVA.
All other trademarks are the property of their respective holders and are hereby acknowledged.

Warranty

This product is warranted in accordance with the product license. The product’s performance may be affected by system configuration, the application being performed, operator control, maintenance, and other related factors. Rockwell Automation is not responsible for these intervening factors. The instructions in this document do not cover all the details or variations in the equipment, procedure, or process described, nor do they provide directions for meeting every possible contingency during installation, operation, or maintenance. This product’s implementation may vary among users.

This document is current as of the time of release of the product; however, the accompanying software may have changed since the release. Rockwell Automation, Inc. reserves the right to change any information contained in this document or the software at any time without prior notice. It is your responsibility to obtain the most current information available from Rockwell when installing or using this product.

Environmental compliance

Contact Rockwell Automation

Customer Support Telephone — 1.440.646.3434

Connecting program parameters

Introduction

This chapter provides an overview of program parameters and then further defines each type of program parameter. Explanations are provided on when to use each type of program parameter and the general rules to follow, and example procedures are provided for connecting each type of program parameter.

Program parameters

A program parameter is an argument that is exposed for external access by a program. Unlike local tags, all program parameters are publicly accessible outside of the program. Additionally, HMI external access can be specified for each parameter. Data sharing between programs can be achieved either through pre-defined connections between parameters or directly accessed through a special notation.

There are four types of program parameters.

- Input
- Output
- InOut
- Public

Among other benefits, program parameters allow you to clearly define the inputs to the routines in a program, and the outputs from those routines. Input and Output parameters also automatically buffer data, so that you do not need to create separate tags to buffer IO data (although if desired, you can still buffer data using the Synchronous Copy File [CPS] instruction).
You can use any of the following methods to connect program parameters in the Logix Designer application.

- **Connections** column on the **Program Parameters and Local Tags** dialog box

Tip: To show the **Connections** column click **View > Toggle Columns > Connections**.
• Ellipses button (...) in the **Connections** cell on the **Program Parameters and Local Tags** dialog box
• **Properties** pane on the *Program Parameters and Local Tags* dialog box

![Properties pane screenshot]

- **Parameters** tab on the *Program Properties* dialog box

![Parameters tab screenshot]
• **New Parameter or Tag** dialog box

![New Parameter or Tag dialog box](image)

Program parameter connection syntax

The syntax \{x:y\} is used to connect program parameters where:

- \(x\) = the number of full connections, meaning connections at the word or user-defined type level
- \(y\) = the number of partial connections, meaning connections at the bit or member level
User-defined type sub-element connection considerations

User-defined types (UDTs) used as parameters can contain member-specific connections. To ensure proper data flow, the base Usage can only be specified at the base of the UDT, and not at the member level, as the following example shows.

![Program Parameters and Local Tags - Safety_02](image)

Input parameters

An Input parameter is a parameter that defines the data that is passed by value into an executing program. Since Input parameters are passed by value, their values cannot change from external sources during the execution of the program. An Input parameter supports a maximum of one sourcing connection.

Input parameter connection types and uses

Input parameters can be connected to Output parameters, Public parameters, InOut parameters, and controller scope tags. This makes Input parameters a great option for connecting input card data to a code module or object. It also is a good option for code module or object commands that are point-to-point.

General rules for using Input parameters

The following are general rules when using Input parameters.

- Input parameters (including members) can only support one sourcing connection. This means that only one source can be delivering the value to the input parameter.
- Input parameter values are refreshed before each scan of a program. The values do not change during the logic execution, so you do not need to write code to buffer inputs.
- A program can write to its own Input parameters.
- Data values for Output parameters that are connected to controller scope tags or Public parameters are copied after the scan of a program. In a project with multiple tasks, the data copy for a parameter that is of type BOOL, SINT, INT, DINT, LINT, or REAL will not be interrupted. The data copy from an Output parameter to a controller scope tag or Public parameter or any other predefined or user-defined data type may be interrupted by a task switch.

For more information on the Input parameter connections that can be made, see Program parameter connection rules on page 33.
A parameter can be connected to another parameter or controller scope tag. As an example, connecting an Input parameter to an Output parameter ensures that data is copied to the Input parameter from the Output parameter on every scan. The following procedure explains how to connect an Input parameter to a controller scope tag.

Tip: This procedure demonstrates the use of the Properties pane on the Program Parameters and Local Tags dialog box. You can alternatively connect parameters using any of the other methods shown in Program parameter connection methods on page 14.

1. In the Controller Organizer, expand the folder for the program for which you are connecting an Input parameter, and double-click Parameters and Local Tags.

2. On the Program Parameters and Local Tags dialog box, choose the Input parameter that you want to connect.
3. On the right, in the Properties pane, expand Parameter Connections.

4. Click New Connection.

5. Click the Browse (...) button.

6. In the Tag box, choose the drop-down arrow.
7. In the Tag Browser, locate and expand the desired controller scope tag.

8. Click to the right of the desired tag, and click the drop-down arrow.

9. Click the bit that you want to associate with this Input parameter.

10. In the Tag box, verify that the resulting information is correct, and click OK. Notice that the first number in the brackets next to Parameter Connections has incremented by one, indicating that the number of connections to the parent tag have increased by one.

Output parameters

An Output parameter is a parameter that defines the data that is produced as a direct result of executing a program. Since Output parameters are always passed by value, their values only change at the end of the scan of a program when the copy of the parameters has executed.

Tip: If using direct access another program can be a source for an Output parameter.
Output parameter connection types and uses

Output parameters can be connected to one or more Input parameters, Public parameters, InOut parameters (constants), and controller scope tags, which makes Output parameters a great option for connecting a code module or object to an output card. It also is a good option for configuring a code module or object to invoke operations (such as commands and settings) in other code modules or objects. Additionally, multiple connections can be configured for an Output parameter (known as fanning), which allows one code module or object to send multiple commands to multiple modules or objects using one Output parameter.

The following are general rules when using Output parameters.

- Output parameters, including members, can support multiple connections. For example, assume you have a BOOL Input parameter in Program_A named Input1a, and a BOOL Input parameter in Program_B named Input1b. You are allowed to connect a single Output parameter in Program_C to both Input1a and Input1b. This is known as fanout.

- Output parameter values are refreshed after each scan of a program. They maintain the value from the previous scan until the program execution is complete.

- Output parameters connected to Public parameters or controller scope tags are copied (pushed) at the end of the program execution.

- An Output parameter can only be connected to an InOut parameter if the InOut parameter is configured as a constant.

 Tip: InOut parameters are passed by reference, which means they point to the base tag. That is, when an InOut parameter is used in logic, the current value of the parameter connected to the InOut parameter is used.

For more information on the Output parameter connections that can be made, see Program parameter connection rules on page 33.
The following procedure explains how to connect an Output parameter to a controller scope tag.

Tip: This procedure demonstrates the use of the **Parameters** tab on the **Program Properties** dialog box. You can alternatively connect parameters using any of the other methods shown in **Program parameter connection methods** on page 14.

1. In the **Controller Organizer**, double-click the folder for the program for which you are creating an Output parameter connection.

2. On the **Program Properties** dialog box, click the **Parameters** tab.

3. In the **Name** box, click the name of the Output parameter for which you want to add a connection.

4. In the **Connections** area, click **New Connection**.
5. In the **New Connection** box, type the tag to which you want to connect this Output parameter, and click **Apply**.

![Connections dialog box](image)

6. Click **OK** to close the **Program Properties** dialog box.

Connect an Output parameter to another program

The following procedure explains how to connect an Output parameter to another program.

Tip: This procedure demonstrates the use of the **Properties** pane on the **Program Parameters and Local Tags** dialog box. You can alternatively connect parameters using any of the other methods shown in Program parameter connection methods on page 14.

1. In the **Controller Organizer**, expand the folder for the program for which you are creating an Output parameter connection, and double-click **Parameters and Local Tags**.

![Controller Organizer](image)

2. On the **Program Parameters and Local Tags** dialog box, choose the Output parameter that you want to connect.

![Program Parameters and Local Tags](image)
3. On the right, in the Properties pane, expand Parameter Connections.

4. Click New Connection.

5. Click the Browse (…) button.

6. In the Tag box, choose the drop-down arrow.
7. (optional) On the Tag Browser, clear one or more of the check boxes to limit the number of available parameters that appear in the list.

8. In the **Show parameters from other program** list, choose the program to which you want to connect this Output parameter.

9. In the list of available parameters, double-click the desired parameter.

10. Click **OK**.

InOut parameters

An InOut parameter is a special usage program parameter that represents a reference to data that can be used both as input and output during the execution of a program. Because InOut parameters pass by reference rather than by value, they are merely a pointer to the original data and closely resemble the behavior of an alias tag. With that in mind, it is possible that the InOut parameter values could change during the execution of a program. Depending on your task structure, this behavior may be necessary.

InOut parameter connection types and uses

InOut parameters can be connected to Input parameters, Public parameters, Output parameters (if InOut is constant), and controller scope tags.

An example of how InOut parameters are advantageous is an application that contains multiple tasks with different priority assignments. In this scenario, a lower priority task is interrupted by a higher priority task. If the higher priority task is referencing data in the lower priority task, the InOut parameter allows the higher priority task to point directly to a tag’s value in the lower priority task. This ensures that the higher priority task is using the most up-to-date value of a tag.

Another useful scenario for InOut parameters is for instructions whose tags can only be placed at the controller scope, such as the Message (MSG) instruction. InOut parameters can connect directly to the MSG instruction tags in the controller scope.
Finally, InOut parameters are useful for programs that have a large data structure, and you do not want to pass the whole structure by value.

General rules for using InOut parameters

The following are general rules when using InOut parameters.

- InOut parameters can only support one connection. You cannot configure connections to any member of an InOut parameter.
- An InOut parameter can only be connected to an Output parameter if the InOut parameter is configured as a constant.
- InOut parameters are passed by reference, which means they point to the base tag. In other words, when an InOut parameter is used in logic, the current value of the parameter connected to the InOut parameter is used.
- Connections to InOut parameters cannot be changed online, unless using the Partial Import Online (PIO) functionality.

For more information on the InOut parameter connections that can be made, see [Program parameter connection rules](#) on page 33.

Connect an InOut parameter to a controller scope tag

The following procedure explains how to connect an InOut parameter to a controller scope tag.

Tip: This procedure demonstrates the use of the Properties pane on the Program Parameters and Local Tags dialog box. You can alternatively connect parameters using any of the other methods shown in [Program parameter connection methods](#) on page 14.

1. In the Controller Organizer, expand the folder for the program for which you are creating an InOut parameter connection, and double-click Parameters and Local Tags.

2. On the Program Parameters and Local Tags dialog box, choose the InOut parameter that you want to connect.
3. On the right, in the **Properties** pane, expand **Parameter Connections**, and click **New Connection**.

4. Click the **Browse (..) button**.

5. In the **Tag** box, choose the drop-down arrow.

6. (optional) On the Tag Browser, clear all but the **Show controller tags** check box to limit the number of available parameters that appear in the list.

7. In the list of available parameters, double-click the desired parameter.

8. Click **OK**.
Public parameters

A Public parameter is an encapsulated version of a controller scope tag, and typically it is used for large data structures that need to be shared among programs.

Public parameters can be connected to Input parameters, Output parameters, and InOut parameters. Public parameters function like controller scope tags, but are at the program level. The key benefit to using Public parameters over controller scope tags is better encapsulation. It is an excellent option for code modules or objects that contain data that must be globally available to other code modules.

Public parameters are updated as the source updates, so higher priority tasks that interrupt a program during execution have access to any updated values in the lower priority task. Additionally, fan-in is supported with Public parameters, which is useful in situations where a code module or object could receive a command from many modules or objects. Input parameters can be used, but an individual Input parameter is required for each connection. In other words, if a code module or object had a command that could be invoked by 10 different code modules or objects then 10 input parameters are required. However, if the command is configured as a Public parameter, then all 10 code modules or objects could have an Output parameter connected to a single Public parameter.

The following are general rules when using Public parameters.

- Public parameters can support multiple connections. You can configure connections to the base Public parameter or any member of a Public parameter, including User-defined structures.

- Public parameters are updated when the source is updated. In other words, when a Public parameter value updates, it is immediately available to any higher priority tasks that are connected to that parameter.

- While Public parameters cannot be connected to controller scope tags, they can be aliased to controller scope tags. If this functionality is desired, it is important to remember that the alias updates asynchronous to program execution. The Public parameter contains the real-time value of the controller scope tag.

For more information on the Public parameter connections that can be made, see Program parameter connection rules on page 33.
Connect a Public parameter to another program

The following procedure explains how to change an existing tag to a Public parameter, and then connect a Public parameter to another program.

Tip: This procedure demonstrates the use of the Properties pane on the Program Parameters and Local Tags dialog box. You can alternatively connect parameters using any of the other methods shown in Program parameter connection methods on page 14.

1. In the Controller Organizer, expand the folder for the program for which you are creating an Public parameter connection, and double-click Parameters and Local Tags.

2. On the Program Parameters and Local Tags dialog box, click the Edit Tags tab.

3. Locate the tag you want to change to a Public parameter, and in the Usage box, choose Public Parameter.
4. On the right, in the Properties pane, expand Parameter Connections, and click New Connection.

5. Click the Browse (…) button.

6. In the Tag box, choose the drop-down arrow.

7. On the Tag Browser, in the Show parameters from other program list, choose the program to which you want to connect this Public parameter.

8. In the list of available parameters, double-click the desired parameter.

9. Click OK.
Special considerations apply when using program parameters within safety programs.

The following are general rules when connecting parameters for safety programs:

- A safety parameter cannot connect to a standard parameter or controller scoped tag of standard class; the controller scope must be of class safety.
- A safety parameter can source a standard parameter, as shown in the following image.
- Safety Output parameters cannot connect to a standard class InOut parameter.
- Safety local tags can alias safety class controller scope tags.
- Safety Public parameters can alias safety class controller scope tags.
The following tables summarize the program parameter connection rules.

Program parameter connection rules

Standard program to standard program connection rules

The following table summarizes the rules for using program parameters to connect two standard programs.

Tip: The connection rules for programs also apply to Equipment Phases.

<table>
<thead>
<tr>
<th>Program_A (Standard)</th>
<th>Program_B (Standard)</th>
<th>Input</th>
<th>Output</th>
<th>InOut</th>
<th>Public</th>
<th>Controller Scope Tag (Standard Class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Output</td>
<td>Yes</td>
<td>—</td>
<td>Yes*</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>InOut</td>
<td>—</td>
<td>Yes*</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Public</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>Alias</td>
<td>Alias</td>
</tr>
<tr>
<td>Controller Scope Tag (Standard Class)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Alias</td>
<td>Alias</td>
<td></td>
</tr>
</tbody>
</table>

- * An InOut parameter can only be connected to an Output parameter if the InOut parameter is configured as a constant.
- An Input parameter from Program_A can connect to an Output parameter of Program_A (wrap around).
- Parameters of the same type cannot be connected together.
- Public tags can only bind to controller scope tags using an alias.
Safety program to safety program connection rules

The following table summarizes the rules for using program parameters to connect two safety programs.

Tip: The connection rules for programs also apply to Equipment Phases.

<table>
<thead>
<tr>
<th>Program_A (Safety)</th>
<th>Input</th>
<th>Output</th>
<th>InOut</th>
<th>Public</th>
<th>Controller Scope Tag (Safety Class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Output</td>
<td>Yes</td>
<td>—</td>
<td>Yes*</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>InOut</td>
<td>—</td>
<td>Yes*</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Public</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>Alias</td>
</tr>
<tr>
<td>Controller Scope Tag (Safety Class)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Alias</td>
<td>Alias</td>
</tr>
</tbody>
</table>

- * An InOut parameter can only be connected to an Output parameter if the InOut parameter is configured as a constant.
- An Input parameter from Program_A can connect to an Output parameter of Program_A (wrap around).
- Safety mapping must be used to connect standard class tags to safety class tags/parameters.
- Standard class tags cannot alias safety class tags.
The following table summarizes the rules for using program parameters to connect a safety program to a standard program.

Tip: The connection rules for programs also apply to Equipment Phases.

<table>
<thead>
<tr>
<th>Program_A (Safety)</th>
<th>Input</th>
<th>Output</th>
<th>InOut</th>
<th>Public</th>
<th>Controller Scope Tag (Safety Class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Output</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>InOut</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Public</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Controller Scope Tag (Safety Class)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Alias</td>
<td>Alias</td>
</tr>
</tbody>
</table>

- An Input parameter from Program_A can connect to an Output parameter of Program_A (wrap around).
- Safety mapping must be used to connect standard class tags to safety class tags/parameters.
- Standard class tags cannot alias safety class tags.
Directly accessing program parameters

Introduction

This chapter provides an overview of direct access and an example procedure for directly accessing program parameters when working within code editors.

Direct access

Direct access lets you reference the program parameters from another program in logic without configuring parameters in the local program. The syntax used for direct access is \ProgramName.ParameterName. For example, assume Program_A has an output parameter called Tank_Level. Without creating a corresponding input parameter to connect to Program_A, Program_B can reference the Tank_Level parameter in logic using the syntax \A.Tank_Level.

Program local tags cannot be accessed using direct access.

Behavior of direct access in logic

Input, Output, and Public parameters can all be directly accessed in logic.

- When direct access is implemented in Output parameters, values are updated when the program that contains the Output parameter completes execution.
- When direct access is implemented in Input and Public parameters, the values of the referenced parameters are updated in real time. This means that higher priority tasks are using parameter values that are up to date, thus minimizing the risk of performing actions on stale data.
- Direct access to an Input parameter counts toward fan-in. You cannot have both a connection and a direct access sourcing an Input parameter. You can however still use direct access to read the value.
- Using direct access of Input parameters is a good way to circumvent the one connection limit of Input parameters. If you create an Input parameter but do not configure any connections for that Input parameter, you can directly reference it from multiple programs.
The following procedure explains how to access program parameters when editing ladder logic.

Tip: While this example is specific to ladder logic, the notation is the same for all programming languages.

1. In the **Controller Organizer**, expand the folder for the program that contains the ladder logic routine that contains instructions for which you are configuring direct access, and double-click the routine.

![Controller Organizer](image)

2. In the **Ladder Editor Routine**, locate the instruction for which you want to add a reference to a program parameter that is in another program.

3. Double-click the existing tag name (it appears as '?' if currently unassigned), and choose the drop-down arrow.

![Ladder Editor Routine](image)

4. (optional) On the Tag Browser, clear or select the check boxes to focus the list of available parameters that appear to what you need.

![Tag Browser](image)
5. In the Show parameters from other program list, choose the program to which you want to connect this instruction.

6. In the list of available parameters, double-click the desired parameter.
Index

A
argument 8

C
connect
 InOut parameter 27
 Input parameter 18
 Output parameter 22, 23
 Public parameter 29
 connection methods 14

D
direct access
 behavior 35
 overview 35
 use 35

I
InOut parameter
 connect to a controller scope tag 27
 connection types and uses 26
 general connection rules 27
 overview 26
Input parameter
 connect to a controller scope tag 18
 connection types and uses 18
 general connection rules 18
 overview 18

O
Output parameter
 connect to a controller scope tag 22
 connect to another program 23
 connection types and uses 21
 general connection rules 22
 overview 21

P
passed by reference 8
passed by value 8

program parameter
 connect 13
 connection methods 14
 connection of UDT sub-elements 18
 connection syntax 17
Public parameter
 connect to another program 29
 connection types and uses 29
 general connection rules 29
 overview 28

S
safety program parameters
 general connection rules 31
 overview 31

U
UDT sub-elements 18
Rockwell Automation support

Rockwell Automation provides technical information on the web to assist you in using its products. At http://www.rockwellautomation.com/support you can find technical and application notes, sample code, and links to software service packs. You can also visit our Support Center at https://rockwellautomation.custhelp.com for software updates, support chats and forums, technical information, FAQs, and to sign up for product notification updates.

In addition, we offer multiple support programs for installation, configuration, and troubleshooting. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/services/online-phone.

Installation assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

<table>
<thead>
<tr>
<th>United States or Canada</th>
<th>1.440.646.3434</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside United States or Canada</td>
<td>Use the Worldwide Locator available at http://www.rockwellautomation.com/locations, or contact your local Rockwell Automation representative.</td>
</tr>
</tbody>
</table>

New product satisfaction return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

<table>
<thead>
<tr>
<th>United States</th>
<th>Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside United States</td>
<td>Please contact your local Rockwell Automation representative for the return procedure.</td>
</tr>
</tbody>
</table>

Documentation feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the feedback form, publication RA-DU002.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş. Merkezi E Blok Kat:6 34752 İcerenköy, İstanbul, Tel: +90 (216) 5698 400

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0800, Fax: (32) 2 663 0640

Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Copyright © 2018 Rockwell Automation Technologies, Inc. All Rights Reserved. Printed in the U.S.A.