Universal Frequency Converter
Symbols Used

This symbol warns of possible danger. Failure to heed this warning may result in personal injury or death, or property damage, including destruction.

This symbol warns the user of a possible fault. Failure to heed this warning can lead to total failure of the device and any other connected equipment.

This symbol draws attention to important information.
Safety Notes

The Frequency Converter with Trip Values must only be operated by trained personnel in accordance with this handbook.

The protection of operating personnel and of the system is only ensured if the devices are used in accordance with their intended purpose. Any other type of operation than that described in this manual places the safety and functionality of the devices and systems connected to them in question.

The devices may only be installed, connected, and adjusted by electrical professionals outside the hazardous area.

If faults cannot be eliminated, the devices must be taken out of operation and protected from being placed in service again inadvertently. Tampering with or making changes to the devices is dangerous and therefore not permitted. They render the warranty void.

The responsibility for the adherence to local safety standards lies with the operator.

Note

Attention

Attention

Attention

Warning

Stop

Note
Installation and Connection

Application Information

Bulletin 937 Intrinsically Safe Converters transmit signals between field devices and a process control system/ control system.

They are suitable for the connection of field devices used in potentially explosive atmospheres. Safe field circuits for these devices are intrinsically safe and are galvanically isolated from non-intrinsically safe circuits. Establish an electromagnetic separation between the potentially explosive atmospheres and the safe areas in a system.

Typical applications for the Bulletin 937 universal frequency converter are flow and RPM measurements.

The universal frequency converter accomplishes this by converting an input frequency into a frequency-proportional current which can, for example, then be redirected to a display device or the analog input of the process control system/control system.

Moreover, the universal frequency converter can be used universal frequency converter as a signal divider and as a rotational speed controller (limit-value display for MAX alarm and for MIN alarm).
Catalog Number Explanation

The following versions of the universal frequency converter are available:

937CU-DIFRQ-__1

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>Supply Voltage: 24 VDC or via Power Rail (24 VDC) Interface</td>
</tr>
<tr>
<td>BC</td>
<td>Universal Supply voltage:</td>
</tr>
<tr>
<td></td>
<td>From 20 VDC up to 90 VDC</td>
</tr>
<tr>
<td></td>
<td>From 48 VAC up to 253 VAC</td>
</tr>
</tbody>
</table>

Installation

The Universal Frequency Converter (UFC) can be mounted on a 35 mm standard rail corresponding to DIN EN 60175. The devices must be snapped onto the rail vertically, and never slanted or tipped to the side.
Connection

The removable terminals of the Bulletin 937 Converters simplify the connection and the switch cabinet assembly. They make it possible to replace devices quickly and without error if a customer service becomes necessary.

Terminals are equipped with screws, are self-opening, have a large connection area for a wire cross-section up to 2.5 mm²/14 AWG and coded plugs, making it impossible to mix them up.

The intrinsically safe field circuit is connected to the blue terminals 1 and 3. These may be guided into the potentially explosive areas with connector cables in accordance with DIN EN 60079-14. Terminal 2 is always left unconnected.

The non-intrinsically safe field circuit is connected to terminals 1 through 3.

You can connect:
- A sensor corresponding to DIN EN 60947-5-6 (NAMUR)
- A mechanical contact

For sensors that do not have the appropriate internal resistors, you can add the following externally (as close as possible to the sensor):
- A series resistor for short circuit monitoring

In reference to these monitoring options, please see also Units.
Terminals

Terminals 4 ... 6 do not exist for the universal frequency converter.

The functions of the other black terminals are as follows:

- Terminals 7/8: current output (9 unused)
- Terminals 10 ... 12: relay 1
- Terminals 13/14: start-up override or pulse suppression input (15 unused)
- Terminals 16 ... 18: relay 2
- Terminals 19/20: transistor output (21 unused)
- Terminals 23/24: power supply (22 unused)
- On the exact terminal assignments, please see also the data sheet.
Display Modes and Operation

Front side of the Universal Frequency Converter

LED Indicators

IN CHK 1
- Flashing yellow cyclically - indicates input pulses
- Flashes red - indicates input malfunction
- Continuous red - indicates device malfunction

PWR (green)
- For displaying the supply voltage

LED OUT 1 (yellow)
- Indicates relay 1 active

LED OUT 2 (yellow)
- Indicates relay 2 active

LED OUT 3 (yellow)
- Indicates transistor active

RS 232 serial interface
- For connection to a PC for configuration and diagnosis of the universal frequency converter using **FDT**

Display
- Shows measurement values and malfunctions and for parameterization mode
- ▲ (Up) ▼ (Down) ESC (Escape) OK
- Four keys for parameterization on the universal frequency converter
Display modes and error messages

The current measurement value is shown on the display in normal operating mode. On selecting the unit, Refer to Units.

If restart inhibit (Refer to Restart inhibit) has been triggered, but the device is still working in normal mode, a message to that effect appears in the second line of the display.

If a malfunction occurs, one of the following messages is displayed (during appropriate parameterization) until the malfunction is eliminated:

- Err Device error
- Err LB for a lead breakage
- Err SC for a short circuit

On selecting error messages Refer to Display modes and error messages. The switch outputs always revert to a no-current state when there is a malfunction.

Configuring Device Data

WARNING: A change in device data will change the operation of the device!
WARNING: Before entering new data into the device, you should therefore as certain that no danger to the installation will result.

FDT Interface

This manual describes Parameterization mode of the universal frequency converter using the control panel. parameterization mode for the universal frequency converter is more convenient with a PC using Field Device Tool (FDT) software.

Some specialized functions can only be selected using the FDT, for instance, pulse suppression as an alternative to the start-up override.

The FDT interface is the specification describing the standardized data exchange between devices and control system or engineering or asset management tools. Examples include: PACTware™, FieldCare, FactoryTalk AssetCentre, and Process Device Configuration. FDT frame software can be downloaded from the web: www.pactware.com www.fdtgroup.org. PACTware™ is trademark of PACTware Consortium
Parameterization mode control panel

Programming

You can return to display mode from any point in the menu in parameterization mode by pressing the ESC key (possibly multiple times). If you do not press any key for 10 minutes in parameterization mode, the device automatically switches back into display mode.
Password

You can protect the current configuration from unauthorized changes by using a password (See Service; inactive when universal frequency converter is delivered).

If password protection is active, the various settings in parameterization mode are visible before entry of the password, but may not be changed. The first time an attempt is made to change a setting, the device automatically displays a window for entering the password.

- You must enter the password once each time after switching from display mode to parameterization mode.
- The password cannot be changed and is 1234.

How to enter the password:

*If the ▲ or ▼ keys are pressed, the value changes stepwise; if the ▲ or ▼ keys are held down for a longer period, the value "rolls" to higher or lower values.
Navigation Method

The following illustration shows the navigation method in parameterization mode using the ▲, ▼, OK, and ESC keys:
Lowest menu level

Choose Values, Enter Numbers

At the lowest level of the menus, you can either choose between particular possible values for individual parameters, or enter a numeric value.

When entering numeric values, please note:
- If you press the ▲ or ▼ key, the value changes stepwise.
- If you hold the ▲ or ▼ key for a longer time, the value "rolls" to higher or lower values.
- The sign switches automatically.
- The decimal point is moved automatically.
- The factor of the measurement units will be switched automatically, for example from Hz to kHz.
Units

The following illustration shows the units menu. Menu items on the lowest level are outlined in bold.

The **Unit** is used for display of measured values and for all corresponding settings in parameterization mode. The universal frequency converter always works internally in Hz (actually in mHz = 0.001 Hz).
Bul. 937C Universal Frequency Converter Installation Instructions

The **Unit** is used for display of measured values and for all corresponding settings in parameterization mode. The universal frequency converter always works internally in Hz (actually in mHz = 0.001 Hz).

If you want the measurement value to be displayed in rpm or r/sec, the number of input pulses per revolution must be specified. Units are then converted as follows:

- \(\text{rpm} = \frac{(\text{Hz} \cdot 60)}{\text{Pulses per revolution}} \)
- \(\text{r/sec} = \frac{\text{Hz}}{\text{Pulses per revolution}} \)

If you want the measurement value to be displayed in l/min, l/h or m³/h, m/s, km/h the number of input pulses per liter, per m³, per m or per km must be specified. The units are then converted as specified:

- \(\text{l/min} = \frac{\text{Hz} \cdot 60}{\text{Pulses per liter}} \)
 (Measurement range restricted: 0.001 Hz ... 550 Hz)

- \(\text{l/h} = \frac{\text{Hz} \cdot 3600}{\text{Pulses per liter}} \)
 (Measurement range restricted: 0.001 Hz ... 550 Hz)

- \(\text{m³/h} = \frac{\text{Hz} \cdot 3600}{\text{Pulses per m³}} \)
 (Measurement range restricted: 0.001 Hz ... 550 Hz)

- \(\text{m/s} = \frac{\text{Hz} \cdot 1000}{\text{Pulses per km}} \)
 (Measurement range restricted: 0.001 Hz ... 2 kHz)

- \(\text{km/h} = \frac{\text{Hz} \cdot 3600}{\text{Pulses per km}} \)
 (Measurement range restricted: 0.001 Hz ... 550 Hz)
Input

The following illustration shows the menus for the input parameters. Menu items on the lowest level are outlined in bold. Menu items which only appear under certain conditions are marked in grey.

- For **lead fault** monitoring, terminal 3 is watched to see whether no current is flowing (lead break(LB)/open circuit) or the input current is too high (short circuit-SC).
Bul. 937C Universal Frequency Converter Installation Instructions

- For lead break monitoring, an appropriate parallel resistor must be present in the sensor or externally. For short-circuit monitoring, an appropriate series resistor must be present in the sensor or externally (See Display Modes and operation). No lead break monitoring is possible for NPN sensors and push-pull output stages. If you are using a sensor of this type, you should always select OFF for LB.
- In the case of strongly varying measurement values, you can use **smoothing** to influence how quickly an output will react to a change in input:
 0 sec = no smoothing, 255 sec = maximum smoothing.
- A **bounce filter** may be necessary when mechanical contacts are used. You can use the bounce filter of the universal frequency converter if the frequencies to be processed are always lower than 10 Hz.
Pulses/unit

The menu option *Pulses/unit* only appears if you have selected a unit other than Hz for the measurement value display (See Units).

Depending on the unit chosen, you must enter the number of pulses per revolution, per liter, per m³, or per km. Pulses per km should also be entered for the unit m/s. For conversions, please consult section.

Examples:

- The speed of a stirring mechanism will be displayed in rpm (or r/sec). The stirring mechanism consists of 8 stirring blades that are detected by the sensor. The number of pulses to enter per unit (revolution) is therefore 8.
- Flow through a water meter will be displayed in l/min (or l/h). The meter returns 20 pulses per liter. This value should be entered. For a display in m³/h, 20,000 pulses per unit (m³) should be entered.
- The speed of a conveyor belt will be displayed in m/s (or km/h). The sensor detects 8 pulses per revolution on the drive wheel. The drive wheel has a diameter of 0.4 m, thus its circumference is 1.256 m. Therefore, you should enter $8 \cdot \frac{1000}{1.256} = 6369$ pulses per unit (m).
Start-up override

Activation of start-up override and its effect:

- You can activate start-up override with a signal to terminals 13/14 (at least 100 ms).
- Start-up override prevents switch outputs from signalling a limit violation during the configured override period (start-up phase).
- Start-up override affects only those switch outputs with the MIN switching direction (Refer to Limit switch). If a switch output has active as its mode of operation, it will remain de-energized during the override period. If its mode of operation is passive, it will be forced to remain energized during the override period (on the mode of operation, Limit switch).
- The start-up override is edge triggered: before it can be triggered again, the signal must be turned off on terminals 13/14 for at least 200 ms. If a signal interruption occurs and a new signal arrives during the override period, the timer is restarted.

Pulse suppression:

Using the FDT software (this is not possible with the control panel), you can alternatively select pulse suppression instead of start-up override.

- If pulse suppression is selected, the universal frequency converter will ignore all incoming pulses, as long as a signal is present on terminals 13/14. It then behaves for all evaluations as though the start value of the measurement range is constantly applied.
- If pulse suppression has been selected, start-up override is deactivated. Restart inhibit is also not possible (Refer to Restart inhibit).

If problems should occur with the start-up override, use the FDT software to check whether pulse suppression may have been selected.
Output

The following illustrations show the menus for the output parameters.

Switching outputs

From the Rel1, Rel2 and OT1 menu options, the OK key takes you to a menu in which you can enter parameters for the selected switch output. The three menus are completely identical and will therefore be described only once.

When the function of a switch output is activated (Limit switch, Serial switching, Pulse divider or Error switch), this is indicated by On. If you want to activate a different function, first select the function with the ▲ and ▼ keys. Then press the OK key twice. After the first OK you can still cancel with ESC.
Limit switch

The following illustration shows the menu levels which are accessible through the Limit switch menu option. Menu items on the lowest level are outlined in bold.

If the Limit switch function is activated (On), the OK key takes you from the Limit switch menu option to the MIN/MAX menu option. If you activate the Limit switch function (See Switching outputs), then after the second time you press the OK key, the MIN/MAX menu option will immediately be shown.
Operating Behavior

Either \textit{Max} or \textit{Min} may be selected as operating behavior; either \textit{Active} or \textit{Passive} may be selected as operating mode (See Limit switch). Range of application:

- Switching direction \textit{MAX}, mode of operation \textit{Active}: Alarm if trip value exceeded, for example buzzer on
- Switching direction \textit{MAX}, mode of operation \textit{Passive}: Overfill protection, monitoring of excessive RPM, for example pump/drive off; in case of large hysteresis MIN-MAX mode (on/off)
- Switching direction \textit{MIN}, mode of operation \textit{Active}: Alarm if trip value exceeded, for example buzzer on
- Switching direction \textit{MIN}, mode of operation \textit{Passive}: Overload protection, monitoring for low speed, for example pump off if there is no more flow

The exact operating behavior of the UFC is shown in the following figure:
Measuring value Max

Max - Hysteresis

Min + Hysteresis

Min

Switching direction Max, operating mode Active:
- energized
- de-energized

Switching direction Max, operating mode Passive:
- energized
- de-energized

Switching direction Min, operating mode Active:
- energized
- de-energized

Switching direction Min, operating mode Passive:
- energized
- de-energized
Switching Point and Hysteresis

When entering values for the switching point and hysteresis, please note:

- Both values should be entered in the unit that was selected under Unit (Refer to Units). Values can be entered between 0.001 Hz and 5000 Hz (for non-ex devices: 12 kHz). You can determine the input limits for a unit other than Hz by using the conversions given in Units.
- Since the Universal Frequency Converter internally converts all values into whole mHz (= 0.001 Hz), rounding errors may occur in values which you enter in rpm, r/sec, l/min, l/h, m³/h, km/h or m/s. If your application cannot tolerate these small variations in exceptional cases, then select the unit Hz.
- The hysteresis should selected to be > 1 % of the switching point to prevent the relay from fluttering.
- As shown in the illustration of operational behavior in section , in MAX operating mode, the switching point - hysteresis value must be > 0, while in the MIN operating mode, the value switching point + hysteresis ≤ upper limit switching point entry.

All these input limits are automatically assigned by the Universal Frequency Converter.
Restart inhibit

Restart inhibit prevents temporary trip value violations or line faults (Err LB, Err SC; Refer to Display modes and error messages and Input) from not being noticed by operations personnel.

- If Alarm freeze On has been selected, the new state is retained after an output is switched until one of the following actions takes place:
 - Device is restarted
 - Signal on terminals 13/14
 - ESC key pressed.

Each of these actions will cause the switch output to be reset unless the trip value has been violated or the lead fault is still present.

- If you have selected restart inhibit for an output with the switching direction MIN, start-up override must have been initiated when the device started up (See Start-up override). The Universal Frequency Converter always starts with a 0 measurement value. This will immediately trigger a MIN alarm. Without start-up override, the output would then be blocked by restart inhibit.

Using the FDT parameterization software, pulse suppression can be selected as an alternative to start-up override (See Start-up override). If pulse suppression is selected in this manner, no restart inhibit is possible. If problems occur with the restart inhibit, please use the software to check whether pulse suppression has been selected.
Serial Switching

To select this function, in the *serial switching* menu option, press the *OK* key twice. You can cancel after the first *OK* with *ESC*.

When serial switching is selected, input pulses are switched 1:1 to the switch output. Pulses can then be evaluated in the process control system/in the control unit. So in this function, the Bul. 937 device is only an isolator between intrinsically safe and non-intrinsically safe circuits.

The maximum switching frequency at the transistor output is 5 kHz; at the relay < 2 Hz. The relays are thus only suitable as serial switching outputs in exceptional cases.
Pulse Divider

The following illustration shows the menu levels which follow the Pulse divider menu option. Menu items on the lowest level are outlined in bold.

If the Pulse divider function is activated (On), the OK key takes you from the Pulse divider menu options to the Divider ratio menu. When you first activate the Pulse divider function, after the second press on the OK key, the Divider ratio is immediately shown.

The number of input pulses is divided by the divider ratio and switched to the output. The relays can only be used in certain cases as signal divider outputs due to the maximum switching frequency < 2 Hz.

Meaning of pulse length: The switch output does not generate a constant frequency. Rather it generates a potentially irregularly occurring number of pulses per unit of time, a maximum of 10 pulses per second.

where the following must hold:

\[
Pulse\ length < \frac{1}{4} \cdot \frac{Pulse\ divider}{max.\ input\ frequency}
\]

Example:

- Maximum input frequency 4 kHz, pulse divider 2000
- The following must be true: Pulse length < 0.25 x 0.5 s = 0.125 s.
- Therefore 25 ms should be entered as pulse length.
Error switch

The following illustration shows the menu levels which are accessible through the Error switch menu option. Menu items at the lowest level are outlined in bold.

If the Error switch function is activated (On), the OK key takes you from the Error switch menu option to the Alarm freeze menu option. When you activate the Error switch function (See Switching outputs), then after the OK key is pressed the second time, the menu option Alarm freeze is immediately shown.

Error switch (On) —— Alarm freeze () —— On —— Off

A switch output with the Error switch function is energized in normal operation. If the device encounters an error condition (See Display modes and error messages), the switch output is switched off.
Current output

The following illustration shows the menu levels which are accessible from the Iout menu option. Menu items on the lowest level are outlined in bold.
Current path characteristic

The various settings have the following meaning (for setting the starting value and final value, see Start value and final value; if you select the inverted characteristic, the conversion of starting value and final value will be exchanged):

Setting 0 mA ... 20 mA

For this setting, the start value is converted to 0 mA and the final value to 20 mA. Intermediate values are converted proportional.

Values less than the start value cannot be evaluated (output 0 mA). With values greater than the end value, the output current increases linearly up to maximum 20.5 mA (102.5 % of the measuring range). Additional overranges cannot be evaluated (output 20.5 mA).

Setting 4 mA ... 20 mA, acc. NAMUR NE 43

For this setting, the initial value is converted to 4 mA and the final value to 20 mA. Intermediate values are converted proportional.

If the value falls lower than the start value, the output current falls linearly to a minimum of 3.8 mA (-1.25 % of the measurement range). Additional underranges cannot be evaluated (output 3.8 mA). If the final value is exceeded, the output current rises linearly to a maximum of 20.5 mA (roughly 103 % of the measurement range). Additional overranges cannot be evaluated (output 20.5 mA).
For this setting, the initial value is converted to 4 mA and the final value to 20 mA. Intermediate values are converted proportional.

If the value falls below the start value, the output current falls linearly to 0 mA (-25% of the measurement range). Additional underranges cannot be evaluated (output 0 mA). If the final value is exceeded, the output current rises linearly to about 21.5 mA (roughly 110% of the measurement range). Additional overranges cannot be evaluated (output 21.5 mA).
Fault current

<table>
<thead>
<tr>
<th>Setting</th>
<th>Current path characteristic 0 mA ... 20 mA</th>
<th>Current path characteristic 4 mA ... 20 mA, acc. NAMUR NE 43</th>
<th>Characteristic 4 mA ... 20 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>hold</td>
<td>last measured value before fault occurred</td>
<td>approx. 21.5 mA (indistinguishable from overlimit of final value)</td>
<td>approx. 21.5 mA (indistinguishable from overlimit of final value)</td>
</tr>
<tr>
<td>Max (upscale)</td>
<td>approx. 21.5 mA</td>
<td>approx. 21.5 mA</td>
<td></td>
</tr>
<tr>
<td>Min (downscale)</td>
<td>0 mA (indistinguishable from underlimit of starting value)</td>
<td>2.0 mA</td>
<td>2.0 mA (indistinguishable from overlimit of final value)</td>
</tr>
</tbody>
</table>

Start value and final value

During entry of start and final value, please note:

- Values should be entered in the selected units.
- Values can be entered between 0.001 Hz and 5000 Hz (for non-Ex devices: 12 kHz). You can determine the input limits for a unit other than Hz by using the conversions that are given in Units.
- Since the Universal Frequency Converter converts all values into whole mHz (= 0.001 Hz), rounding errors may occur in values which you enter in rpm, r/sec, l/min, l/h, m³/h, km/h or m/s. If your application cannot tolerate this small variance in exceptional cases, please select the unit Hz.
- The difference between the final value and the start value should be greater then 1% of the end value.
Service

The following illustration shows the menus for the service parameters. Menu items on the lowest level are outlined in bold.

Reset: If the value *yes* is shown flashing and you press the OK key, all parameters in the Universal Frequency Converter will be reset to their factory settings. All entries you have ever made in parameterization mode will be lost.