
Using Event T

E
Log

more ef

withou
as

v
ix
f
h
t

ks with Logix5000� Controllers

ent-based tasks give
5000� controllers a

ective way of gaining
igh-speed processing
 compromising CPU

performance.



2

Using Event Tasks with Logix5000� Controllers

Whether it is material handling, packaging, or a myriad of other manufacturing
operations, routine and non-routine tasks are a common occurrence. Handling
them appropriately within the control system means the difference between
smooth, error-free production and unnecessary downtime and waste. For
example, a shipping company moves thousands of packages along a maze of
conveyors toward their destination. Executing a task at the wrong time
instantly sends a package down a wrong path and delays the delivery of the
package.

One step toward smooth, error-free production is to execute code when
needed without burdening the controller with unnecessary execution. With
event tasks, a new feature of Allen-Bradley Logix5000 controllers, this has
become much easier.

In a Logix5000 controller, a task defines how and when the controller executes
the various sections of application code. With support for 32 different tasks, a
Logix5000 controller provides flexibility when constructing your application. It
also lets you prioritize the task so that you can tune the controller�s execution
to meet the problem at hand. Before event tasks, Logix5000 users relied on
continuous and periodic tasks.

A continuous task is what normally comes to mind when you think about how
a programmable controller traditionally operates: The controller scans the
code from top to bottom. When it completes, it goes back to the top and
restarts the process.

Event Tasks Take
Controllers to the Next
Level

Logix5000 Controllers
Support Multiple
Tasks

Using the Continuous
Task



3

Using Event Tasks with Logix5000� Controllers

In a Logix5000 controller, the continuous task operates as a background task
at the lowest priority. It uses any CPU time that remains after the controller
executes the other tasks.

Like the continuous task, a periodic task executes all of its code from top to
bottom. However, when a periodic task completes its scan, it waits a pre-
configured time interval before restarting.

Because you can have multiple periodic tasks that can be triggered at the
same time, the controller needs to determine which tasks it can or cannot
interrupt. This is accomplished by way of a priority setting for each period task. 

• Tasks with higher priority cause lower priority tasks (and the continuous
task) to be suspended so that they can take control and perform their
operation.

• Tasks with lower priority wait for higher priority tasks to complete before
being given an opportunity to execute.

• Tasks configured at the same priority level are automatically time-sliced
back and forth on a 1millesecond basis till one of the tasks completes.

Using a Periodic Task



4

Using Event Tasks with Logix5000� Controllers

Because the scan time required to execute a continuous task can be quite
lengthy, periodic tasks let you move a small amount of code into a separate
execution thread and trigger its execution at a higher rate.
• In the past the function of a periodic task was accomplished by placing

multiple copies of some select code within the continuous task. The code
was placed at appropriate intervals so that the input would be detected and
outputs controlled.

• The periodic task simplifies the creation and management of this high-
speed code. This lets you control a process that might occur at a
significantly faster rate than the normal scan of the continuous task can
attain.

One downside of a periodic task is that it always executes regardless of
whether or not the input that it is monitoring changes state. This over-
execution burdens the controller and lowers the performance of the remaining
tasks. To alleviate this situation, event tasks provide a more effective way of
balancing the need for high-speed processing with CPU performance.

Initially supported by ControlLogix® and SoftLogix5800 controllers, event
tasks let you execute a piece of code based on the detection of some incident
that occurs in the control system.

The types of incidents (triggers) that can initiate the event task include:
• traditional input point trigger
• receipt of produced/consumed tags
• certain motion operations
• instruction in another task on the controller

Using an Event Task



5

Using Event Tasks with Logix5000� Controllers

Similar to periodic tasks, you assign a priority to each event task. This lets the
event task either immediately take control at a high priority or wait at a low
priority for other tasks to complete. Because event tasks only execute when
their trigger is initiated, they reduce the amount of code a controller must scan
on a regular basis. This frees up additional controller bandwidth to perform
other operations or improve the overall performance of the application. This
additional performance coupled with ability of an event task to respond to high
speed inputs gives the control system extra capacity to increase production
output.

ControlLogix and SoftLogix controllers can use event tasks in a variety of
scenarios. Event tasks are valuable for applications such as packaging and
material handling, where detection of a package by an input sensor must be
processed quickly to drive an output solenoid to manipulate or divert product. 

With Logix5000 controllers, much of the burden for event detection is
offloaded from the controller to the input module. 

Applying an Event
Task



6

Using Event Tasks with Logix5000� Controllers

ControlLogix input modules let you configure �Change-Of-State� detection on
the module.

When configured, the module continually monitors the state of the inputs,
looking for state changes.
• You have full control over which bits and even which transition (off-to-on, or

on-to-off) will be used to initiate the event task.
• Based on this configuration, the ControlLogix module detects and

communicates the occurrence to the controller.

Upon receipt of the information from the module, the controller initiates the
event task and executes the application code configured in the programs and
routines within the task. This saves valuable execution time by avoiding the
need for the controller to poll the inputs and perform change-of-state
detection. An added benefit is that you can easily capture and process
multiple events without additional CPU overhead.
 
You can apply the basic execution model of an event task to a variety of
scenarios, depending on what you are controlling and how you have to handle
it. For example, use ControlLogix input event tasks for:
• quick-response events
• short-duration input events
• synchronized-execution events.



7

Using Event Tasks with Logix5000� Controllers

In a quick-response event, you want to minimize the latency (delay) between
the input changing state and the control of an output.

An application that might use this is a packaging line where each time the
product is detected you want to apply a label. Because of the speed with
which product moves by the labeler, an event task is the only way to
guarantee that you detect and label every load.

A short-duration input event is an input whose duration is shorter than the
normal scan of the controller but the event does not occur very often. In this
case the input could change state (on/off) and then change back (off/on) faster
than the normal scan of the continuous or periodic task.

Once the module�s Change-Of-State detection captures the input, the module
sends this information to the controller. The controller responds and executes
the event task even though the input may have turned back off by the time the
code in the event task executes.

An example of this type of scenario is a bottling line where a sensor detects an
improperly capped bottle that must be rejected. Because of the high speed of
the line, an event task is the only way to detect the reject and respond to it. 

Short-Duration Input
Events

Quick Response
Events



8

Using Event Tasks with Logix5000� Controllers

A synchronized-execution event is typically used with analog data, where the
arrival of new data triggers an operation.

Because each analog module has its own internal sample period for
converting analog input signals to digital floating values, an asynchronous loop
can exist between the receipt of new input values and the execution of the
code for the loop. This discrepancy means that PID calculations execute with
stale data, which could result in calculation errors. With an event task, you can
easily synchronize the PID calculation to the arrival of flow transmitter data
and avoid this potential error.

Logix5000 controllers let you use both local and remote locations for the input
module that triggers an event task.
• Because of application performance constraints, input modules being used

to initiate and event task will generally be located in the same chassis as
the controller that needs to respond to the event.

• You can also place ControlLogix input modules in a remote chassis
connected via a ControlNet� or EtherNet/IP network. Each network adds
some additional delays but for many applications the benefit of reducing
the CPU loading overrides the need for speed.

The SoftLogix5800 controller lets you initiate events from its virtual backplane.
A toolkit is available to configure a specialized software process such as a
barcode ID search algorithm into the virtual backplane. This lets you trigger
code to execute within the SoftLogix5800 application

Synchronized-
Execution Events

Local and Remote I/O
Locations

Using the
SoftLogix5800 Virtual
Backplane



9

Using Event Tasks with Logix5000� Controllers

Before applying input-driven event tasks, there are some key design aspects
to consider. Here are some tips to help ease the configuration process and
ensure the best performance:
• Keep in mind that the throughput of the operation depends on a number of

factors, including module type, input voltage, module temperature, module
filter and response time settings, backplane size and loading, and
processor type.

• Place the module that triggers an event in the same chassis as the
Logix5000 controller. Placing it in a remote chassis adds to response times
and requires additional communication and processing.

• Limit the number of modules that are in the chassis with the event module
and controller. Additional modules increase the potential for backplane
delays.

• For digital inputs, restrict the triggering input to a single point on the
module. When you enable change-of-state, all inputs on a module trigger a
single event. Multiple points increase the chance of a task overlap. (Task is
triggered while it is already executing, resulting in a minor fault.) 

• Set the priority of your event task as the highest priority task on the
controller. Selecting a lower priority forces the event to wait for the periodic
task to complete its execution.

• Limit the number of event tasks. A high number of event tasks reduces the
available CPU bandwidth and increases the chance of a task overlap.

• Choose modules with the best response times.
• If you perform motion control with the controller, keep in mind that the

motion planner may slow down the execution of event and periodic tasks.

Logix5000 controllers provide a highly integrated motion solution capable of
controlling multiple servo axes in addition to conventional control. Event tasks
extend this capability by letting you initiate an event task based on various
motion-related triggers, including:
• registration input
• watch point
• completion of the motion planner

Getting Started with
Input-Driven Events

Motion Events



10

Using Event Tasks with Logix5000� Controllers

The registration input lets you execute specific application code when a
motion axis reaches a specific location. A physical device determines the
location and triggers the task.

A watch point also lets you execute specific application code when a motion
axis reaches a specific location. However, a watch point is a software-based
position that serves as the trigger for the event.

Both registration inputs and watch points are valuable for packing applications
where you want to synchronize an operation to the position of some servo axis
as it moves product through a machine.

Finally, the completion of the motion planner can trigger an event task. This
lets you use specialized control algorithms to override the normal motion loop
processing.



11

Using Event Tasks with Logix5000� Controllers

The produced and consumed tag capability of Logix5000 controllers provides
an easy way to exchange data between controllers with minimal programming.

Because a controller produces (transmits) and consumes (receives) data
asynchronous to the execution of its control program, the program may begin
processing with a mixture of old and new data. Event tasks provide an easy
way synchronize the data exchange to ensure that a consuming controller
receives all of the data before processing begins.
• After the producing controller loads the data into its produced tag, the

controller initiates an immediate output (IOT) instruction.
• The consuming controller simply configures an event task to look for the

trigger via the consumed tag.

This technique provides the following advantages:
• automates the data detection processing on the consumer
• eliminates complex handshaking code
• improves the transfer rate

Produced/Consumed
Tag Events



12

Using Event Tasks with Logix5000� Controllers

In addition to exchanging data between controllers, produced and consumed
tags let you use event tasks to coordinate the operations of multiple controllers
in a distributed system.
• You can use the produced/consumed tag as a proxy to initiate code in the

distributed controllers (consumers) based on something occurring in a
master controller (producer).

• Multiple controllers can simultaneously consume the same produced tag.

This technique lets you use smaller, more modular controllers in flexible
manufacturing cells. You can reconfigure the cells while avoiding the interlock-
wiring issues that would otherwise exist.

Synchronize
Controllers



13

Using Event Tasks with Logix5000� Controllers

To estimate the throughput time from input to output (screw to screw), use the
following worksheet:

Consideration: Value:
1. What is the input filter time of the module that triggers the event task?

This is typically shown in milliseconds. Convert it to microseconds (µs). µs
2. What is the hardware response time for the input module that triggers the event task?

Make sure you use the appropriate type of transition (Off → On or On → Off). µs
3. What is the backplane communication time?

If the chassis size is: Use this value (worst case):
4 slot 13 µs
7 slot 22 µs
10 slot 32 µs
13 slot 42 µs
17 slot 54 µs µs

4. What is the total execution time of the programs of the event task? µs
5. What is the backplane communication time? (Same value as step 3.) µs
6. What is the hardware response time of the output module. µs
7. Add steps 1 through 6. This is the minimum estimated throughput, where execution of the

motion planner or other tasks do not delay or interrupt the event task. µs
8. What is the scan time of the motion group? µs
9. What is the total scan time of the tasks that have a higher priority than this event task (if

any)? µs
10. Add steps 7 through 9. This is the nominal estimated throughput, where execution of the

motion planner or other tasks delay or interrupt the event task. µs

Estimating Event
Throughput



14

Using Event Tasks with Logix5000� Controllers

As you design an event task, consider the following factors that also effect the
speed at which the task can respond to the input signal.

Consideration: Description:
motion planner The motion planner interrupts all your tasks, regardless of their priority.

• The number of axes and coarse update period for the motion group effects how
long and how often the motion planner executes.

• If the motion planner is executing when a task is triggered, the task waits until
the motion planner is done.

• If the coarse update period occurs while a task is executing, the task pauses to
let the motion planner execute.

Each active trend (histogram) interrupts all your tasks, regardless of their priority.
• The trend interrupts your tasks at the sample period that you define for the

trend.
• You can have up to 32 trends active at one time.
• The worst case is when all trends capture data at the same sample period.
To estimate the length of time that trends interrupt your tasks, use the following
formula:
If the controller type is: Then the interrupt is:
1756-L55Mxx (100 µs / trend) + (20 µs / tag)

trends

1756-L63 (75 µs / trend) + (15 µs / tag)
amount of code in the
event task

Each logic element (rung, instruction, structured text construct, etc�) adds scan
time to the task.

task priority If the event task is not the highest priority task, a higher priority task may delay or
interrupt the execution of the event task.

CPS and UID instructions If one of these instructions is active, the event task cannot interrupt the currently
executing task. (The task with the CPS or UID.)

communication interrupts The following actions of the controller interrupt a task, regardless of the priority of
the task
• communication with I/O modules

Modules that have large data packets have a greater impact, such as the 1756-
DNB module.

• serial port communication

Additional Design
Considerations



15

Using Event Tasks with Logix5000� Controllers

The following example shows the timing relationship between three user
tasks, the motion planner, and system overhead.

Task Configuration Execution Time Duration
Motion Planner 8 ms assumes 1 ms 1 ms
Event Trigger = Input

Priority = 1
1 ms 1 to 2 ms

Periodic Trigger = 12 ms period
Priority = 2

4 ms 4 to 6 ms

CPU Overhead 20% of continuous task (i.e., 1 ms out of
every 5 ms)

assumes 1 ms worst case 1 to 7 ms

Continuous n/a 20 ms ≈ 46 to 48 ms

Motion
Planner

Event

Periodic

Continuous

CPU
Overhead

Event Task Delayed by
Motion

Periodic Task Delayed
2 ms by Motion and Event

Task

10 20 30 40 50 60 70 80 90 100

Overhead Delayed 2 ms by
Motion and Event Task

= Suspended Task
Continuous Task

Restarts
Continuous Task

Restarts



By incorporating the suggestions that we have outlined, you can use event
tasks to get the following significant benefits:
• Faster performance and reduced costs by executing tasks only when

needed. This frees up CPU time for other operations and improves the
efficiency of the controller.

• Increase in output due to improved loop closure times.
• Reduction in development and maintenance costs because programs are

more modular.

For detailed, step-by-step information on how to configure and program an
event task, see Logix5000� Controllers Common Procedures, publication
1756-PM001.

ControlNet is a trademark of ControlNet International, Ltd.

Reaping the BenefitsReaping the Benefits

For More Information
Publication LOGIX-WP003A-EN-P � June, 2003 Copyright © 2003 Rockwell Automation, Inc. All rights reserved. Printed in USA.
Supersedes Publication 000-0000-0000 � Month, Year


