

PowerFlex 700L
Active Converter Power Module

USER MANUAL

Firmware Version 3.xxx

Rockwell

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/ literature) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc. is prohibited.

Throughout this manual, when necessary we use notes to make you aware of safety considerations.
WARNING: Identifies information about practices or
circumstances that can cause an explosion in a hazardous
environment, which may lead to personal injury or death, property
damage, or economic loss.

Important: Identifies information that is critical for successful application and understanding of the product.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequences.

Shock Hazard labels may be located on or inside the equipment (e.g., drive or motor) to alert people that dangerous voltage may be present.

Burn Hazard labels may be located on or inside the equipment (e.g., drive or motor) to alert people that surfaces may be at dangerous temperatures.

The information below summarizes the changes resulting from the firmware v3.001 upgrade to this manual since its last release (June, 2006):

Description of New or Updated Information	Page(s)
To all pages, added a new footer containing: - Publication description (1st line). - Publication number hyperlink underlined in blue (2nd line) linking to the date of the publication on the back cover. The back cover publication date line hyperlinks to the newest version of the publication on Rockwell Automation's Literature Library web site.	Throughout Manual
Added new information about the Active Converter operating as a Coupled unit (DPI SLAVE) or as a Stand Alone unit (DPI MASTER).	1-6
Changed the following for Parameter 051 - [Option Select]: - Bit 6 changed from "Reserved" to "VC Inverter." - Bit 7 changed from "Reserved" to "Prechg Cntrl." - The default changed from "xxxx xxxx xx00 0001" to "xxxx xxxx 00000001 ."	3-6
Added new Parameter 105 - [Regen I Lmt].	3-9
Changed Parameter 153 - [CML Bandwidth] maximum value from " 3000 Rad/sec" to "4000 Rad/sec."	3-11
Changed the description for Parameter 157 - [PF Bandwidth] to include that it should be used only when unbalanced voltage compensation is enabled in Parameter 051 [Option Select].	3-11
Changed Parameter 162 - [Capacitance] maximum value from " $32767 \mu \mathrm{~F}$ " to "65535 $\mu \mathrm{F}$."	3-12
Added new Parameter 170 - [Bus Capacitance].	3-12
Added new Bit 11 (High DC Link) to Parameter 214 - [Start Inhibit].	3-14
Changed Parameter 238 - [Fault Config] default from "xxxx xxx1 1110 1100" to "xxxx xxx1 0110 1100."	3-15
Added two new parameter groups which are only displayed and available in the Communication File when the Converter is operated as a Stand Alone unit: - Masks and Owners Group - Parameter 340 - [Logic Mask] - Parameter 341 - [Start Mask] - Parameter 342 - [Fault Clr Mask] - Parameter 343 - [Stop Owner] - Parameter 344 - [Start Owner] - Parameter 345 - [Fault Clr Owner] - Security Group - Parameter 346 - [Port Mask Act] - Parameter 347 - [Write Mask Cfg] - Parameter 348 - [Write Mask Act] - Parameter 349 - [Logic Mask Act]	3-18
Added the following new fault codes: - 70 - FiltCap Contactr - 71 - Port 1 Adapter - 72 - Port 2 Adapter - 73 - Port 3 Adapter - 74 - Port 4 Adapter - 75 - Port 5 Adapter - 76 - Port 6 Adapter - 81 - Port 1 DPI Loss - 82 - Port 2 DPI Loss - 83 - Port 3 DPI Loss - 84 - Port 4 DPI Loss - 85 - Port 5 DPI Loss - 86 - Port 6 DPI Loss	4-3

Preface Overview
Who Should Use this Manual? P-1
What Is Not in this Manual P-1
LPM20 Liquid-Cooled AC Drive Installation P-1
PowerFlex 700L Liquid-Cooled AC Drive Information P-1
PowerFlex 700 Vector Control Information (standard) P-1
PowerFlex 700S Phase II Control Information (optional) P-2
Reference Materials P-2
Publications P-2
Allen-Bradley Drives Technical Support P-2
Manual Conventions P-2
General Precautions P-3
Chapter 1 Installation/Wiring
Removing the Active Converter Power Module Covers 1-2
Removing the Active Converter Control Cassette 1-2
Frame 2 and 3A Drives 1-2
Frame 3B Drives 1-3
Wiring the Active Converter Control Cassette I/O Terminals 1-4
I/O Terminal Blocks 1-5
Using the Active Converter as a Coupled Unit vs. Standalone Unit 1-6
Setting the DPI MASTER/SLAVE Switch (SW1) 1-8
Connecting an Active Converter Power Module to an Inverter Power Module 1-8
Frame 2 and 3A Drives 1-8
Frame 3B Drives 1-8
Chapter 2 Start Up
Establishing Communication as a Coupled Unit 2-1
Accessing Active Converter Power Module Parameters 2-1
Verifying Feedback Parameters 2-4
Exchanging Data 2-5
CIP Messages 2-7
Establishing Communication as a Stand Alone Unit 2-8
Accessing Active Converter Power Module Parameters 2-8
Verifying Feedback Parameters 2-9
Converter Sequencing 2-12
Run On Start 2-12
Run On PwrUp 2-13
Manual Cntrl 2-13
Start Inhibit 2-13
Sequencing Precautions 2-13
Control Setup 2-14
Current Limits 2-14
Line Voltage Limits 2-14
Frequency Limits 2-15
Voltage Loop 2-15
Current Loop 2-16
PWM Carrier Synchronization 2-16
Converter Faults 2-17
Converter Faults as a Coupled Unit (DPI SLAVE) 2-17
Displaying the Fault Text 2-17
Resetting Converter Faults 2-18
Chapter 3 Programming and Parameters
About Parameters. 3-1
How Parameters are Organized 3-2
File-Group-Parameter Order 3-2
Numbered List View 3-3
Monitor File 3-4
Command File 3-6
Limit Config File 3-9
Dynamic Control File 3-11
Utility File 3-13
Communication File 3-17
Inputs \& Outputs File 3-20
Parameter Cross Reference - by Name 3-22
Parameter Cross Reference - by Number 3-23
Chapter 4 Troubleshooting
Faults and Alarms 4-1
Manually Clearing Faults. 4-1
Fault Descriptions 4-1
Clearing Alarms. 4-4
Alarm Descriptions 4-4
Index

Overview

The purpose of this manual is to provide you with the basic information needed to wire and operate the PowerFlex 700 Active Converter Power Module.

For information on ...	See page ...
Who Should Use this Manual?	$\mathrm{P}-1$
What Is Not in this Manual	$\mathrm{P}-1$
Reference Materials	$\mathrm{P}-2$
Manual Conventions	$\mathrm{P}-2$
General Precautions	$\mathrm{P}-3$

Who Should Use this Manual?

This manual is intended for qualified personnel. You must be able to wire and operate Adjustable Frequency AC Drive devices. In addition, you must have an understanding of the parameter settings and functions.

This manual is designed to provide only basic active converter I/O wiring, start-up, programming, and other related information.

LPM20 Liquid-Cooled AC Drive Installation

For information on installing LPM20 Liquid-Cooled AC drives, please refer to LPM20 Liquid-Cooled Adjustable Frequency AC Drive Installation Manual - (Publication No. 20N-IN001...).

PowerFlex 700L Liquid-Cooled AC Drive Information

For information on installing PowerFlex 700L Liquid-Cooled AC drives, please refer to PowerFlex 700L Liquid-Cooled Adjustable Frequency AC Drive User Manual - (Publication No. 20L-UM001...).

PowerFlex 700 Vector Control Information (standard)

For PowerFlex Liquid-Cooled AC drives equipped with standard PowerFlex 700 Vector Control, please refer to the PowerFlex 700 Adjustable Frequency AC Drive User Manual - Series B (Publication No. 20B-UM002...) which provides I/O wiring, start-up, programming, and vector control encoder information.

PowerFlex 700S Phase II Control Information (optional)

For PowerFlex Liquid-Cooled AC drives equipped with optional PowerFlex 700S Phase II Control, please refer to the PowerFlex 700S High
Performance AC Drive - Phase II Control User Manual (Publication No. 20D-UM006...) which provides I/O wiring, start-up, programming, and other related information.

Reference Materials

Publications

Publications can be obtained online at http://www.rockwellautomation.com/literature.

The following manuals are recommended for general drive information:

Title	Publication
Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives	DRIVES-IN001...
Preventive Maintenance of Industrial Control and Drive System Equipment	DRIVES-TD001...
Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control	SGI-1.1
A Global Reference Guide for Reading Schematic Diagrams	$0100-2.10$
Guarding Against Electrostatic Damage	$8000-4.5 .2$

Allen-Bradley Drives Technical Support

Online: www.ab.com/support/abdrives

Manual Conventions

- In this manual we refer also to the PowerFlex 700 Active Converter Power Module as Active Converter, converter or PowerFlex 700AC.
- To help differentiate parameter names and LCD display text from other text, the following conventions will be used:
- Parameter Names will appear in [brackets]. For example: [DC Bus Voltage].
- Display Text will appear in "quotes." For example: "Enabled."
- The following words are used throughout the manual to describe an action:

Word	Meaning
Can	Possible, able to do something
Cannot	Not possible, not able to do something
May	Permitted, allowed
Must	Unavoidable, you must do this
Shall	Required and necessary
Should	Recommended
Should Not	Not recommended

General Precautions

今ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors, such as, undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system.

ATTENTION: Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, start-up, and subsequent maintenance of the system. Failure to comply may result in personal injury and/ or equipment damage.

\triangle
ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before performing any work on the drive. After removing power to the drive, wait 5 minutes for the bus capacitors to discharge. Refer to the:

- LPM20 Liquid-Cooled Adjustable Frequency AC Drive Installation Manual (Publication No. 20N-IN001...), Figure 4.2, and measure the DC bus voltage at the locations shown. The voltage must be zero.
- PowerFlex 700L Liquid-Cooled Adjustable Frequency AC Drive User Manual (Publication No. 20L-UM001...), and measure the DC bus voltage at the DC POSITIVE and DC NEGATIVE test point sockets located on the front of the power module. The voltage must be zero.

ATTENTION: Risk of injury or equipment damage exists. DPI host products must not be directly connected together via 1202 cables. Unpredictable behavior can result if two or more devices are connected in this manner.

Notes:

Installation/Wiring

This chapter provides information on installing and wiring the PowerFlex 700 Active Converter Power Module.

For information on...	See page...
Removing the Active Converter Power Module Covers	$1-2$
Removing the Active Converter Control Cassette	$\underline{1-2}$
Wiring the Active Converter Control Cassette I/O Terminals	$\underline{1-4}$

Most start-up difficulties are the result of incorrect wiring. Every precaution must be taken to assure that the wiring is done as instructed. All items must be read and understood before the actual installation begins.

ATTENTION: The following information is merely a guide for proper installation. Rockwell Automation, Inc. cannot assume responsibility for the compliance or the noncompliance to any code, national, local or otherwise for the proper installation of this drive or associated equipment. A hazard of personal injury and/or equipment damage exists if codes are ignored during installation.

Removing the Active Converter Power Module Covers

Removing the Active Converter Control Cassette

All converter covers, regardless of drive frame size, are similarly removed by unfastening the screws. A Frame 3B converter is shown as an example.

Regenerative PowerFlex 700L Liquid-Cooled AC drives use an Active Converter Power Module equipped with a converter control cassette.

Frame 2 and 3A Drives

PowerFlex 700L Liquid-Cooled Frame 2 and 3A drives combine the Active Converter and Inverter into a single Power Module. Figure 1.1 shows the location and removal of the Active Converter control cassette to access its terminal blocks for control wiring. (The Inverter control cassette is located just above the Active Converter control cassette.)

Figure 1.1 Removing the Frame 2 and 3A Active Converter Control Cassette

Frame 3B Drives

Figure 1.2 shows the location and removal of the Active Converter control cassette to access its terminal blocks for control wiring. Frame 3B drives have separate Converter Power Modules and Inverter Power Modules.

Figure 1.2 Removing the Frame 3B Active Converter Control Cassette

Wiring the Active Converter Control Cassette I/O Terminals

All wiring should be installed in conformance with the applicable local, national, and international codes (e.g., NEC/CEC). Signal wiring, control wiring, and power wiring must be routed in separate conduits to prevent interference with drive operation. Use grommets, when hubs are not provided, to guard against wire chafing.

ATTENTION: Do not route signal and control wiring with power wiring in the same conduit. This can cause interference with drive operation. Failure to observe this precaution could result in damage to, or destruction of, the equipment.

Important points to remember about I/O wiring:

- Use Copper wire only. Wire gauge requirements and recommendations are based on 75 degrees C. Do not reduce wire gauge when using higher temperature wire.
- Wire with an insulation rating of 600 V or greater is recommended.
- Control and signal wires should be separated from power wires by at least 0.3 meters (1 foot).

Important: I/O terminals labeled "(-)" or "Common" are not referenced to earth ground and are designed to greatly reduce common mode interference. Grounding these terminals can cause signal noise.

Terminal blocks P1 and P2, shown in Figure 1.1 and Figure 1.3, contain connection points for all inputs, outputs, and power connections to the Active Converter control cassette.

1. Remove the terminal block plug from the socket, and make connections.
2. Reinstall the terminal block plug when wiring is complete. The terminal blocks have keys, which make it difficult to insert a terminal block plug into the wrong socket.

Figure 1.3 Active Converter Control Cassette I/O Terminal, Cable Connection, and DPI SLAVE/MASTER Switch SW1 Locations

I/O Terminal Blocks

Table 1.A Active Converter Control Board I/O Terminal Block Specifications

Name	Description	Wire Size Range $^{(1)}$		Torque	
		Maximum	Minimum	Maximum	Recommended
I/O Blocks	Signal and power connections	$1.5 \mathrm{~mm}^{2}$	$0.14 \mathrm{~mm}^{2}$	$0.25 \mathrm{~N}-\mathrm{m}$	$0.22 \mathrm{~N}-\mathrm{m}$
	$(16 \mathrm{AWG})$	$(28 \mathrm{AWG})$	$(2.2 \mathrm{lb} .-\mathrm{in})$.	$(1.9 \mathrm{lb} .-\mathrm{in})$.	

[^0]Table 1.B Active Converter Control PCB Assembly P1 Terminal Descriptions

Pin	Description
1	Comm Out +
2	Comm Out -
3	SOC Out +
4	SOC Out -
5	Comm In +
6	Comm In -
7	SOC In +
8	SOC In -
9	Aux Out N.O.
10	Aux Out Common
11	Analog In Signal
12	Analog In Common
13	Gate Enable
14	24 Vdc
15	Aux Input

Table 1.C Voltage Feedback Resistor PCB Assembly P2 Terminal Descriptions

Pin	Description
7	L 3
4	L 2
1	L 1

Specific pins on P1 and P2 terminals require control wiring connections to the Input Filter Bay. For wiring information, please refer to the PowerFlex 700L Liquid-Cooled Adjustable Frequency AC Drive User Manual (Publication No. 20L-UM001...).

Using the Active Converter as a Coupled Unit vs. Standalone Unit

Frame 3B converter power structures may be ordered as a unit Coupled to an inverter (DPI SLAVE), or as a Stand Alone unit (DPI MASTER). Frame 2 and Frame 3A power structures are always wired for the converter to be a Coupled unit.

Coupled

Figure 1.4 shows the Active Converter wired to operate as a Coupled unit (DPI SLAVE). In this configuration, the Converter is connected to a PowerFlex 700L Inverter through DPI Port 6. When configured for "Run On Start," the Converter is able to start and stop automatically as the Inverter is started and stopped.

Figure 1.4 Active Converter Operating as a Coupled Unit (DPI SLAVE)

Stand Alone

Figure 1.5 shows the Active Converter wired to operate as a Stand Alone unit (DPI MASTER). In this configuration, the Converter may have a HIM or any PowerFlex 7-Class network communication adapter (20-COMM-x) connected. This may be preferred when the converter is to supply the DC bus for a set of common bus inverters. When configured for "Run On Start," the precharge bypass contactor may be configured to close when the power is turned on and the DC Bus voltage is stable (see Parameter 51 - [Option Select]). The Converter starts and stops with commands from the HIM, the 1203-USB or 1203-SSS serial converter, or a 20-COMM-x network communication adapter.

Figure 1.5 Active Converter Operating as a Stand Alone Unit (DPI MASTER)

The Frame 3B Active Converter power module is ordered as a Stand Alone unit (DPI SLAVE) by specifying equipment type P in the catalog number (refer to the catalog number explanation in the PowerFlex 700L User Manual).

The Stand Alone (DPI SLAVE) Active Converter is supported with Active Converter firmware revision 3.001 (or higher).

To operate the Frame 3B Active Converter as a Stand Alone unit (DPI SLAVE) the DPI MASTER/SLAVE switch (SW1) on the Active Converter control board must be properly set. Refer to Setting the DPI MASTER/ SLAVE Switch (SW1) below for details.

Setting the DPI MASTER/SLAVE Switch (SW1)

Active Converters with version 2.006 (or lower) firmware are always operated as a peripheral on DPI port 6. In this case, switch SW1 on the Active Converter control PCB assembly (Figure 1.3) is set to OFF (DPI SLAVE). Do not use the ON setting. For Active Converters with version 3.001 (or higher) firmware, switch SW1 is used to select between converter operation as a Coupled unit (DPI SLAVE position) or as a Stand Alone unit (DPI MASTER position).

Connecting an Active Converter Power Module to an Inverter Power Module

Frame 2 and 3A Drives

Coupling a Frame 2 or 3A Power Module is achieved by using two cables: a DPI cable and a control synchronization cable. These cables are factory installed.

Frame 3B Drives

Coupling a Frame 3B Active Converter Power Module to a Frame 3B Inverter Power Module is achieved by using two cables: a DPI cable and a control synchronization cable. For the Complete Drive equipment type, these cables are factory installed. When Power Modules are purchased separately, these cables are user installed. For information regarding these cables and their installation, please refer to the PowerFlex 700L
Liquid-Cooled Adjustable Frequency AC Drive User Manual (Publication No. 20L-UM001...), Chapter 3 in the "Synchronization Connections for Frame B" section.

Start Up

The start-up procedure built into the HIM addresses only the start up of the inverter. This chapter describes how to start up the PowerFlex 700 Active Converter Power Module.

For information on...	See page...
Establishing Communication as a Coupled Unit	$\underline{2-1}$
Establishing Communication as a Stand Alone Unit	$\underline{2-8}$
Converter Sequencing	$\underline{2-12}$
Control Setup	$\underline{\underline{-14}}$
Converter Faults	$\underline{\underline{2-17}}$

Establishing Communication as a Coupled Unit

When the Converter is set to operate as a Coupled unit (DPI SLAVE), the first step after turning on power is to verify that you are able to communicate with the unit and that it properly displays selected data.

Data is exchanged between the Inverter Power Module and Active Converter Power Module to pass control and status information.

An example is given for how to communicate with the Active Converter Power Module using a CIP message from a ControlLogix controller.

Accessing Active Converter Power Module Parameters

The Active Converter operates as a DPI peripheral on port 6. This section describes how to access parameters in the Active Converter.

Using the HIM

1. On power up, the HIM displays the main menu and communicates with the Inverter.

F->	Stopped
\|	Auto
0.0	RPM
Main Menu:	
Diagnostics	
Parameter	
Device Select	

2. As you scroll down to "Device Select," the HIM shows the following indication. With "Device Select" highlighted, press the Enter key.

F->	Stopped	Auto
0.0	RPM	
Main Menu:		
Parameter		
Device Select		
Memory Storage		

3. The HIM displays that it is currently communicating with the Inverter on DPI Port 0 .

F->	Stopped	Auto
0.0		RPM
Device: Port 0		
PowerFlex 700S 2		
PowerFlex 700 AC		

4. Press the Down arrow to scroll to "PowerFlex 700 AC."

F->	Stopped	Auto
0.0	RPM	
Device: \quad Port 6		
PowerFlex 700S 2		
PowerFlex 700 AC		

5. With "PowerFlex 700 AC" highlighted as shown in Step 4, press the Enter key to start communicating with the Active Converter on DPI Port 6.

Port 6 Device
PowerFlex 700AC
Main Menu:
\quad Diagnostics
Parameter
Device Select

- To examine the fault queue in the Active Converter, press the Up Arrow to scroll to "Diagnostics" and press the Enter key.
- To begin examining parameters (with "Parameters" highlighted), press the Enter key.
- To resume communication with the Inverter, press the Down Arrow to scroll to "Device Select" and press the Enter key.

6. After accessing the Parameter menu, the display shows the File menu. Press the Up or Down Arrow to select the desired file and press the Enter key.

Port 6 Device PowerFlex 700AC
FGP: File
Monitor
Command Limit Config

7. The display then shows the groups of parameters in the selected file. Press the Up or Down Arrow to select the desired group and press the Enter key.

Port 6 Device
PowerFlex 700AC
FGP: Group
Current
Voltage
Power \& Time

8. The display then shows the parameters in the selected group. Press the Up or Down Arrow to select the desired parameter and press the Enter key.

Port 6 Device PowerFlex 700AC
FGP: Parameter
Rated Amps
Input Current R Input Current S

9. The display then shows the value of the selected parameter and allows for entry of a new value for parameters that are read/write.

Port 6 Device PowerFlex 700AC	
FGP: Par $\quad 1$	
Rated Amps	
705.0 Amps	
$[$ Alt] [View] - > Limits	

Using DriveExplorer

When using DriveExplorer, the window shows the files and groups for the Active Converter (left pane) and the parameters for the selected group (right pane). Double-click a parameter in the right pane to edit it

Using DriveExecutive

When using DriveExecutive, the Active Converter parameters are displayed in a linear list. Uploading reads parameter values from all DPI peripherals but downloading parameters only write to the Inverter. To download parameter values to the Active Converter, you must first select the Converter.

Verifying Feedback Parameters

Using the HIM, DriveExplorer or DriveExecutive, verify that reasonable values are displayed for the following parameters in the Active Converter Power Module:

- Line to Line Voltage - Verify converter parameters 11 - [Input Voltage RS], 12 - [Input Voltage ST], and 13 - [Input Voltage TR] display a reasonable Line to Line RMS Voltage. Verify the voltage imbalance displayed in parameter 16 - [V Imbalance] does not exceed 5.0%.
- DC Link Voltage - Verify converter parameter 14 - [DcLink Voltage] displays a reasonable DC Link Voltage.
- AC Line Frequency - Verify converter parameter 40 - [Line Frequency] displays a reasonable AC Line Frequency.
- Ambient Temperatures - Verify converter parameter 30-[Ambient Temp] displays a reasonable ambient temperature. Verify parameter 32 [IGBT Junction Temp] displays the temperature of the liquid being pumped through the coldplate.

Exchanging Data

DPI Type 3 communication is used to exchange control and status information between the Inverter and the Converter. This provides a mechanism to start and stop the Converter as the Inverter is started and stopped. It also transfers the minimum DC Link voltage required for the given motor voltage to the Converter, and any Converter fault codes back to the Inverter so all faults are maintained in the Inverter's fault queue. The data exchanged is displayed in these Active Converter parameters:

- 70 - [Converter Control]
- 72 - [Converter Min Vdc]
- 71 - [Converter Status]
- 73 - [Converter Fault]

No setup is required to configure the Type 3 communication. The Converter requests a Type 3 connection at power up and, when the connection is complete, Converter parameter 320-[Connect Status] shows which communication types are active. The use of Type 3 communication for exchange of data is important in that none of the normal data links are used for this communication. By default, all four sets of DPI data links remain available for use in a $20-\mathrm{COMM}$-* adapter.

The automatic starting and stopping of the Active Converter requires the Converter to be configured for " $0=$ Run On Start" using Converter parameter 50 - [Start Config]. In this case, when the Inverter is started or jogged, the Converter is enabled and the Inverter sequencing delays running the Inverter for up to 500 milliseconds, allowing the Converter to close the precharge bypass contactor. When the Inverter is stopped, the Converter continues to run for the time configured in Converter parameter 53- [Turn Off Delay]. On a subsequent start or jog, the Inverter does not need to wait for the precharge to close if the Converter is still running.

In addition to Type 3 communication, the 700 S may optionally use DPI data links to control the sequencing of the Converter from a Logix processor as shown below. This requires the Converter to be configured for Manual Control in Converter parameter 50 - [Start Config]. The reference for the voltage loop may also be controlled by a Logix processor when Converter parameter 160 - [Voltage Loop Sel] is set to Manual Ref.

The DPI data links between the Inverter and Converter are enabled by setting Converter parameters 300 - [Data In A1] through 317 - [Data Out D2] to the parameter number of the data to send or receive. When a DPI data link is used by the Converter, that channel cannot be used by a different communication card. The following example illustrates using DPI data links between the Inverter and Converter.

Suppose Inverter parameter 666 is linked to Converter parameter 52 [Manual Control], Inverter parameter 667 is linked to Converter parameter 60 - [DcLink Reference], and Converter parameter 71 - [Converter Status] is linked to Inverter parameter 657. This requires Converter data links to be configured as follows:

- Active Converter parameter 306 [Data In D1] = 52
- Active Converter parameter 307 [Data In D2] = 60
- Active Converter parameter 316 [Data Out D1] = 71

This example shows Data Link D being used to communicate with the Converter. The Converter supports DPI Data Links A, B, C, and D so any group could be used as needed.

All the options for starting and stopping the Converter are explained in greater detail in Converter Sequencing on page 2-12.

CIP Messages

Parameters in the Converter may be accessed by a Logix processor using a CIP message block. To read or write a parameter value you must respectively perform a Get Attribute Single or Set Attribute Single message to the DPI Parameter Object (Class 0x93). The Converter is in DPI Port 6, so the instance is 22528 plus the parameter number. The value of the parameter is accessed through Attribute 0×9 or $0 x A$. The example shown below reads the value of Converter parameter 30 - [Ambient Temp].

Class Code

Hexadecimal	Decimal
0×93	147

Instances

Instances (Hex.)	(Dec.)	Device
$0 \times 0000-0 \times 3$ FFF	$0-16383$	Host
$0 \times 4000-0 \times 43$ FF	$16384-17407$	Adapter
$0 \times 4400-0 \times 47$ FF	$17408-18431$	DPI Port 1
$0 \times 4800-0 \times 4$ BFF	$18432-19455$	DPI Port 2
0×4 C00 - 0x4FFF	$19456-20479$	DPI Port 3
$0 \times 5000-0 \times 53 F F$	$20480-21503$	DPI Port 4
$0 \times 5400-0 \times 57$ FF	$21504-22527$	DPI Port 5
$0 \times 5800-0 \times 5$ BFF	$22528-23551$	DPI Port 6

Attributes

ID	Rule	Name	Data Type	Description
0x9	Get/Set	Parameter Value	Various	Value in NVS
0xA	Get/Set	Parameter Value	Various	Value in RAM

Establishing
 Communication as a Stand Alone Unit

When the Converter is set to operate as a Stand Alone unit (DPI MASTER), the first step after turning on power is to verify that you are able to communicate with the unit and that it properly displays selected data.

Accessing Active Converter Power Module Parameters

Using the HIM

1. On power up, the HIM displays the AC Line Frequency, the Active Current, and the DC Bus Voltage. The status text will display one of five indications: Faulted, Start Inhibit, Ready, Running or Ride Through.

2. Access the parameters of the Converter by selecting Parameter on the Main Menu.

F->	Ready	Auto
59.97 Hz		
Main Menu:		
Diagnostics		
Parameter		
Device Select		

3. Parameters may then be accessed with the File, Group, Parameter menu,

F->	Ready	Auto
59.97 Hz		
FGP: File		
Monitor		
Command		
Limit Config		

F->	Ready	Auto
59.97 Hz		
FGP: File		
Current		
	Voltage	
Power \& Time		

F->	Ready	Auto
59.97 Hz		
FGP: File		
Rated Amps		
Input Current R		
Input Current S		

or with a Numbered List.

The start and stop buttons may start and stop the Converter. The stop button may also be used to reset a fault in the Converter. The speed, jog, forward/ reverse, and auto/manual buttons are not functional.

Using DriveExplorer or DriveExecutive

When using DriveExplorer or DriveExecutive, the Converter parameters are displayed under Port 0 and are organized into the normal menu of Files, Groups, and Parameters. The control bar can be opened to show a stop and start push button.

Verifying Feedback Parameters

Using the HIM, DriveExplorer or DriveExecutive, verify that reasonable values are displayed for the following parameters in the Active Converter Power Module:

- Line to Line Voltage - Verify converter parameters 11 - [Input Voltage RS], 12 - [Input Voltage ST], and 13 - [Input Voltage TR] display a reasonable Line to Line RMS Voltage. Verify the voltage imbalance displayed in parameter 16 - [V Imbalance] does not exceed 5.0%.
- DC Link Voltage - Verify converter parameter 14 - [DcLink Voltage] displays a reasonable DC Link Voltage.
- AC Line Frequency - Verify converter parameter 40 - [Line Frequency] displays a reasonable AC Line Frequency.
- Ambient Temperatures - Verify converter parameter 30 - [Ambient Temp] displays a reasonable ambient temperature. Verify parameter 32 [IGBT Junction Temp] displays the temperature of the liquid being pumped through the coldplate.

Using a 20-COMM-x Adapter
When a 20-COMM-x network communication adapter is connected to the Converter, the Product Logic Command bits may be used to start and stop the Converter and to reset a fault. All other bits are reserved. The Product Logic Status bits may be used to determine the state of the Converter.

Converter Logic Command Word

Logic Bits																	Command	Description
15	14	13	12	11	10	9	8	7	6			4	3	2	1			
																X	Stop	$\begin{aligned} & 0=\text { Not Stop } \\ & 1=\text { Stop } \end{aligned}$
															X		Start	$\begin{aligned} & 0=\text { Not Start } \\ & 1=\text { Start } \end{aligned}$
														X			Reserved	
													X				Fault Reset	$\begin{aligned} & 0=\text { Not Fault Reset } \\ & 1=\text { Fault Reset } \end{aligned}$
												X					Reserved	
										X							Reserved	
									X								Reserved	
								X									Reserved	
							X										Reserved	
						X											Reserved	
					X												Reserved	
				X													Reserved	
			X														Reserved	
		X															Reserved	
	X																Reserved	
X																	Reserved	

Converter Logic Status Word

Logic Bits																	Status	Description
15	14	13	12	11	10	9	8	7	6		5	4	3	2	1	0		
																X	Ready	$\begin{aligned} & 0=\text { Not Ready } \\ & 1=\text { Ready } \end{aligned}$
															X		Running	$\begin{aligned} & 0=\text { Not Running } \\ & 1=\text { Running } \end{aligned}$
														X			Reserved	
													X				Reserved	
												x					Reserved	
											x						Reserved	
									X								Alarm	$\begin{aligned} & 0=\text { No Alarm } \\ & 1=\text { Alarm } \end{aligned}$
								X									Fault	$\begin{aligned} & 0=\text { No Fault } \\ & 1=\text { Fault } \end{aligned}$
							X										Reserved	
						x											Reserved	
					x												Reserved	
				x													Reserved	
			x														Reserved	
		X															Reserved	
	X																Reserved	
X																	Reserved	

The reference value from the 20-COMM-x adapter that is often used to select the speed is not used in the Converter. The Converter is always
synchronized to the AC line frequency and does not have a speed reference. The feedback value sent to the 20-COMM-x adapter is the measured AC line frequency, where a value of 32767 corresponds to 100.00 Hz .

The Converter supports 16-bit data links so if all data links are configured in the 20-COMM-x then the Connection Parameters in the Logix Processor must be setup as shown here. This defines twelve 16 -bit words sent from the 20 -COMM-x to the Logix, and ten 16-bits words sent from the Logix to the 20-COMM-x.

The data is utilized as shown below:

Logix to 20-COMM-x	
Word	Output I/O
1	Logic Command
2	Reference (not used)
3	Datalink \ln A1
4	Datalink \ln A2
5	Datalink \ln B1
6	Datalink \ln B2
7	Datalink $\ln \mathrm{C} 1$
8	Datalink $\ln \mathrm{C} 2$
9	Datalink \ln D1
10	Datalink \ln D2

20-COMM-x to Logix	
Word	Input I/O
1	Not Used
2	Not Used
3	Logic Status
4	Feedback (AC line frequency)
5	Datalink Out A1
6	Datalink Out A2
7	Datalink Out B1
8	Datalink Out B2
9	Datalink Out C1
10	Datalink Out C2
11	Datalink Out D1
12	Datalink Out D2

Converter Sequencing

The condition when to start and stop the Converter must be configured in parameter 50 - [Start Config]. There are three ways to operate the Converter: Run On Start, Run On Power Up, and Manual Control. This also configures how the precharge bypass contactor operates.

Run On Start

When Converter parameter 50 - [Start Config] is set to " $0=$ Run On Start," the operation changes when the Converter is set as a Coupled unit (DPI SLAVE) or a Stand Alone unit (DPI MASTER) using SW1 (Figure 1.3).

Coupled Unit (DPI SLAVE Setting)

When set as a Coupled unit (DPI SLAVE) and Run on Start is selected, then starting and stopping the Converter is coordinated with starting and stopping the Inverter. When the Inverter is started or jogged, the Converter is enabled to turn on. When the Inverter is stopped or jog is released, the Converter is stopped.

Stand Alone Unit (DPI MASTER Setting)

When set as a Stand Alone unit (DPI MASTER) and Run on Start is selected, then the Converter may be started and stopped from the buttons on a HIM, or by the Logic Command bits transmitted by a $20-$ COMM-x adapter or 1203-USB or 1203-SSS device. The logic masks determine which DPI ports are allowed to take control.

Precharge Bypass Operation

In Run On Start, the precharge can be configured to operate in one of two ways as selected by parameter 51 - [Option Select], Bit 7 (Precharge Control). By default, this option bit is turned off so the precharge bypass contactor will be commanded to close at the time the Converter is commanded to start, and the bypass contactor opens after the Converter is commanded to stop. If the option bit is set, then the bypass contactor is closed at power up after the DC bus is at steady state.

If there is a fault in the Converter, the precharge bypass contactor will open. If the option bit is set, the bypass contactor is closed when the fault is reset.

The option bit also selects how long the Converter continues to run after it is commanded to stop. If the option bit is turned off, then parameter 53 - [Turn Off Delay] selects the time delay between the stop command and the time when the converter is stopped and the bypass is opened. If the option bit is turned on, then the Converter stops without a delay.

As a Coupled unit (DPI SLAVE), Run On Start with the precharge option bit turned off is recommended for applications where the drive is left powered up but the drive is not run for extended periods of time. With the precharge bypass contactor open, the fan cooling the input reactor is turned off.

Run On PwrUp

When Converter parameter 50 - [Start Config] is set to " $1=$ Run On PwrUp," the precharge bypass contactor is automatically closed and the Converter is enabled shortly after power is turned on.

The precharge will close as soon as the DC Link voltage is above the minimum required level and it has reached steady state. The precharge will remain closed when there is a fault in the Converter. When the fault is reset, the Converter will go back into run. In this configuration, the coolant circulating loop must be enabled when the Converter is enabled, even if the Inverter is not in run. The auxiliary contacts on the precharge bypass could be used to enable the circulating pump.

This mode of operation is recommended for applications where the drive is powered down when it is to be stopped for an extended period of time.

Manual Cntrl

When Converter parameter 50 - [Start Config] is set to " 2 = Manual Cntrl," the operation of the precharge bypass contactor and enabling of the Converter is controlled by two bits in Converter parameter 52 - [Manual Control]. The bits are normally level sensitive. Turning the bits on closes the bypass contactor and enables the Converter. Turning the bits off opens the bypass contactor and disables the Converter.

The exception is that if there is a fault, the bypass contactor is not allowed to close. After a fault, the fault must be reset, and then a rising edge on bit 1 in parameter 52 - [Manual Control] is required to re-enable the Converter. The value in parameter 52 is not retentive; it is reset to zero on power up.

When operating as a Coupled unit (DPI SLAVE), the Inverter is not allowed to start with the precharge open and the Inverter will fault if it started with the Converter stopped. When operating as a Stand Alone unit (DPI MASTER), the value in parameter 52 - [Manual Control] may be written by a datalink and the value in parameter 72 - [Converter Status] may be read with a datalink and used as part of the interlocks with Inverters.

Start Inhibit

If the Converter does not start when expected, refer to Converter parameter 214 - [Start Inhibit] to display the Start Inhibit conditions.

Sequencing Precautions

When operating as a Coupled unit (DPI SLAVE) that is supplying power to a single Inverter, the built-in interlocks will not allow the Inverter to start unless the Converter is running, and the Converter will not stop when the Inverter is running. However, when the Converter is operated as a Stand

Alone unit (DPI MASTER) and is supplying power to a common bus, extra precaution must be taken.
ATTENTION: When operating as a Stand Alone unit (DPI
MASTER) or supplying power to a common bus, external logic
must be used to make sure the precharge bypass contactor is
closed and the Converter is running before running an Inverter.
Likewise, all Inverters must stop if the precharge opens or the
Converter stops.

Operating an Inverter with the precharge bypass open will overheat the precharge resisters. Operating an Inverter with the Converter stopped will draw non-sinusoidal current with peak current greater than rated and will have significant harmonic distortion.

Control Setup

The following topics discuss parameters that should be reviewed when starting up an Active Converter.

Current Limits

Converter parameter 100-[Active I Lmt] defines the limit on active current. This parameter defaults to 150% of Converter rated current. Current limit for regeneration is set in parameter 105 - [Regen I Lmt]. This defaults to -150% of Converter rated current. When in current limit, the Converter is unable to regulate the DC link voltage. If the drive is motoring and the Converter is in current limit, then the DC link will drop to the peak of the AC line. If the drive is regenerating and the Converter is in current limit, the DC link will rise and it is up to the Inverter to limit its regenerating current to avoid a high bus fault.

The Converter parameter 71 - [Converter Status] word bit 4 (Bus Reg Ena) turns on when the Converter is in current limit to command the Inverter to enable its bus voltage regulators. When the Converter is active and Bus Reg Ena is turned off, the bus voltage regulators in the Inverter are turned off.

Line Voltage Limits

The limits on line voltage may need to be adjusted to indicate abnormal conditions. At low line voltages, the Converter will deliver greater amps to produce the same power. If the possible range of input voltage would result in a condition that would exceed the rated current, then the voltage limits must be set to guard against this condition. The low voltage and high voltage limits have timers associated with each limit to allow brief excursions outside of normal operating conditions. See Converter parameters 112 -[Low Vac Lmt] through 115 - [High Vac Time].

Frequency Limits

The PWM Carrier Frequency is fixed at 4 kHz and cannot be changed.
If operating on a generator, the normal range of acceptable AC line frequencies may need to be expanded. The limit of the rate of change may also need to be adjusted to allow the line synchronization to properly track the changes in frequency. See Converter parameters 131 - [AC Low Freq Lmt] through 135 - [AC Maximum dF/dt].

Voltage Loop

The voltage major loop uses Vdc Reference and Vdc Feedback to calculate the required active current to maintain a constant DC bus voltage.

Voltage Reference Selection

Converter parameter 160 - [Voltage Loop Sel] selects the value used for the DC Link voltage reference. One of two values may be chosen at this time; " $0=$ Optimized Ref" and " $1=$ Manual Ref." The Regen Only option is reserved for future enhancements, and the Open Loop option is reserved for manufacturing tests. A password must be entered to use the Open Loop option.

When " $0=$ Optimize Ref" is selected, the value for the DC Link reference is calculated as the minimum value for the given operating condition to reduce switching losses and increase efficiency. The base value for DC Link reference is 1.44 times the RMS AC line. For a 480 volt line, the DC link reference starts at 692 Vdc . This is 2% above the peak of the AC line. In applications where the maximum motor voltage is greater than the AC line, the Converter can boost the DC link to a higher level. The Inverter calculates the minimum required DC link for the present motor voltage and transmits that value to Converter parameter 72 - [Converter Min Vdc]. As the line voltage goes up and down and as the Inverter's motor voltage goes up and down, the DC Link reference goes up and down to match the operating conditions.

This option is most useful when there are significant changes in the line voltage. This option is not recommended for common bus applications where multiple Inverters operate at different speeds.

When " 1 = Manual Ref" is selected, the value for DC Link reference is the value in parameter 60 - [DcLink Reference]. If the peak of the AC line becomes greater than the entered value, then the AC line will over-ride to keep the DC link reference at least 1.44 times the RMS AC line. This option is intended for operating at a specific DC Link voltage, or in situations were the Converter is regulating a common bus for multiple Inverters and an external controlling device is calculating the required DC Link voltage.

The currently commanded DC Link voltage is displayed in parameter 161 [DcLink Command].

Voltage Loop Tuning
The tuning of the voltage loop is a function of Converter parameter 162 [Capacitance], parameter 163 - [VML bandwidth], and parameter 164 [VML Damping]. In most cases, the default values for these three parameters should not need to be adjusted. When multiple Inverters are on a common bus, the combined DC link capacitance of the additional inverters must be entered into parameter 170-[Bus Capacitance].

Current Loop

The current minor loops regulate the active current as requested by the voltage major loop, and the reactive current to produce the desired kVAR.

kVAR Control

KVAR Control can be used for power factor compensation.
When parameter 61- [kVAR Reference] is set to zero, the Converter will regulate reactive current to maintain unity power factor. When a nonzero value is entered, it requests the amount of kVAR to command. Negative values are a lagging power factor and positive values are a leading power factor. When no real current is being delivered by the Converter, the full current rating of the Converter may be used to produce kVAR. As real current increases, motoring or regenerating, the reactive current limit is automatically reduced. The reactive current limit is displayed in parameter 158- [Reactive I Lmt]. The reactive current that is being commanded is displayed in parameter 159- [Reactive I Cmd].

Current Loop Tuning

The tuning of the current loop is a function of Converter parameter 152 [Inductance], parameter 153 - [CML Bandwidth], and parameter 154 [CML Damping]. In most cases, the default values for these three parameters should not need to be adjusted. If a non-standard input filter is used, the new inductance needs to be entered. When the AC line voltage has greater than 5% impedance, the CML bandwidth may need to be reduced.

PWM Carrier Synchronization

The converter has the option to synchronize its PWM carrier frequency to the PWM carrier frequency of the inverter to reduce the common mode voltage on the motor. This requires the Inverter carrier frequency to be set to 4 kHz .

PWM carrier synchronization is enabled by setting parameter 51- [Option Select] bit 3 (PWM SyncRecv). After carrier synchronization is completed, the Converter sets parameter 71 - [Converter Status] bit 9 (PWM SyncLock). When PWM SyncRecv is set and sync is not locked, the Converter is inhibited from starting. If sync is lost while the Converter is in
run, a fault is generated. This fault can be disabled in parameter 238 - [Fault Config] bit 7 (PWM SyncLost).

When operating as a Stand Alone unit (DPI MASTER) and PWM Carrier Synchronization is enabled, the Converter needs to know if it should synchronize to a 700 VC or a 700 S . This selection is done in parameter $51-$ [Option Select] Bit 6 (700 VC Invtr). This bit must be set for a 700 VC and cleared for a 700S. PWM carrier synchronization can only be done with one inverter, so any other inverters on the common bus will have higher common mode voltage.

Converter Faults

When set to operate as a Coupled unit (DPI SLAVE), any fault in the Converter is passed to the Inverter so all the faults are recorded in the Inverter fault queue. When set to operate as a Stand Alone unit (DPI MASTER), the Converter maintains its own fault queue.

Converter Faults as a Coupled Unit (DPI SLAVE)

When using PowerFlex 700 Vector Control, the fault from the Converter is added to a base number of 300 , so all the Converter faults are numbered 301 to 399. The pop-up window on the HIM alerts the user to look at the fault \log in the PF700AC to get the specific fault text.

```
- Fault - F 340
F340 See PF700AC
Time Since Fault
    00000:00:01
```

When using PowerFlex 700S Phase II Control, the faults from the Converter are all combined into one fault code (F110) in the Inverter. The pop-up window on the HIM alerts the user to look at the fault log in the PF700AC to get the specific fault text.

```
    - Fault - F 110
700L Cnv Faulted
    Time Since Fault
        00000:00:01
```

For a complete listing of Converter faults, descriptions, and actions, please refer to Fault Descriptions on page 4-1.

Displaying the Fault Text

To view the fault queue in the Converter with a HIM, begin by using the Device Select menu as described in Accessing Active Converter Power Module Parameters on page 2-1.

1. Rather than selecting Parameters, use the Up arrow to select "Diagnostics" and press the Enter key.
```
Port 6 Device
PowerFlex 700AC
Main Menu:
    Diagnostics
    Parameter
    Device Select
```

2. The HIM then displays the Diagnostics menu. With "Events" selected, press the Enter key.

Port 6 Device
PowerFlex 700AC
Diagnostics:
Events
Status Info
Device Version

3. The HIM then displays the Diag: Events menu. With "View Event Queue" selected, press the Enter key.

Port 6 Device
PowerFlex 700AC
Diag: Events
View Event Queue
Clear Events
Clr Event Queue

4. The HIM then displays the Event queue where the specific fault text is displayed. In this example screen, the Converter faulted because the AC was lost and power dip ride through was not enabled.

Port 6 Device	
PowerFlex 700AC	
EvtQ\#1: E\# AC Line Lost Accum: $0: 00: 00.001$	

Resetting Converter Faults

In most cases, faults in the Converter are reset by resetting the Inverter. If the condition causing the fault is still present, then a second fault is generated and recorded in the fault queue. The only exception is a checksum fault in the Converter. A checksum fault in the Converter is reset by doing a reset defaults in the Converter, and then reset the fault in the Inverter.

Clearing the fault queue in the Inverter does not affect the event queue in the Converter. The Converter event queue is cleared independently of the Inverter fault queue.

Programming and Parameters

This chapter provides a complete listing and description of the Active Converter Power Module parameters. The parameters can be configured (viewed/edited) using an LCD HIM (Human Interface Module). As a convenient alternative, programming can also be performed using DriveExecutive ${ }^{\mathrm{TM}}$ or DriveExplorer ${ }^{\mathrm{TM}}$ software and a personal computer.

For information on...	See page...
About Parameters	$3-1$
How Parameters are Organized	$\frac{3-2}{3-4}$
Monitor File	-3
Command File	$3-6$
Limit Config File	$3-9$
Dynamic Control File	$3-11$
Utility File	$3-13$
Communication File	$3-17$
Inputs \& Outputs File	$3-20$

About Parameters

To configure the Active Converter Power Module to operate in a specific way, parameters may have to be set. Three types of parameters exist:

- ENUM Parameters

ENUM parameters allow a selection from 2 or more items. The LCD HIM will display a text message for each item.

- Bit Parameters

Bit parameters have individual bits associated with features or conditions. If the bit is 0 , the feature is off or the condition is false. If the bit is 1 , the feature is on or the condition is true.

- Numeric Parameters

These parameters have a single numeric value (i.e. 0.1 Volts).
The example on the following page shows how each parameter type is presented in this manual.

No. Description

(1) File - Lists the major parameter file category.
(2) Group - Lists the parameter group within a file.

3 No. - Parameter number. O = Parameter value cannot be changed until Converter is stopped.
(4) Parameter Name \& Description - Parameter name as it appears on an LCD HIM, with a brief description of the parameters function.
(5) Values - Defines the various operating characteristics of the parameter. Three types exist.

ENUM	Default: Options:	Lists the value assigned at the factory. "Read Only" $=$ no default. Displays the programming selections available.
Bit	Bit:	Lists the bit place holder and definition for each bit.
Numeric	Default: Min/Max: Units:	Lists the value assigned at the factory. "Read Only" = no default. The range (lowest and highest setting) possible for the parameter. Unit of measure and resolution as shown on the LCD HIM.

How Parameters are Organized

The LCD HIM displays parameters in a File-Group-Parameter or Numbered
List view order. To switch display mode, access the Main Menu, press ALT, then Sel while cursor is on the parameter selection.

File-Group-Parameter Order

This simplifies programming by grouping parameters that are used for similar functions. The parameters are organized into 7 files. Each file is divided into groups, and each group contains a set of parameters related to a specific purpose.

Numbered List View

All parameters are in numerical order.

Monitor File

으플	응	No.	Parameter Name \& Description	Values	
$\begin{aligned} & \text { 응 } \\ & \text { 을 } \end{aligned}$		024	[Life Time kWh] Displays the lifetime accumulated kWh. This parameter cannot be reset.	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & 0.0 / 429496729.5 \\ & 0.1 \mathrm{kWh} \end{aligned}$
		025	[Elapsed Run Time] Displays the accumulated amount of time the Converter has been in run. This parameter can be reset with parameter 200 - [Reset Meters].	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only/Reset } \\ & 0.0000 / 429496.7295 \\ & 0.0001 \mathrm{Hr} \end{aligned}$
		026	[Life Run Time] Displays the accumulated amount of time the Converter has been in run. This parameter cannot be reset.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & 0.0000 / 429496.7295 \\ & 0.0001 \mathrm{Hr} \end{aligned}$
		027	[Life Power Time] Displays the accumulated amount of time the Converter has been powered up. This parameter cannot be reset to zero.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & 0.0000 / 429496.7295 \\ & 0.0001 \mathrm{Hr} \end{aligned}$
		028	[Life Pwr Cycles] Displays the accumulated number of times the Converter has been powered up. This parameter cannot be reset to zero.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & \text { o/4294967295 } \\ & \text { None } \end{aligned}$
		030	[Ambient Temp] Displays the measured ambient temperature of the Converter.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -40.0 /+150.0 \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$
		031	[IGBT Base Temp] Displays the measured IGBT base temperature.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -40.0 /+150.0 \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$
		032	[IGBT Junction Temp] Displays the calculated IGBT junction temperature.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -40.0 /+150.0 \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$
		040	[Line Frequency] Displays the measured line frequency.	Default: Min/Max Units:	Read Only 0.0/90.0 0.1 Hz
		041	[Min Line Freq] Latches and displays the minimum measured line frequency. The minimum is held for the time set with parameter 43 - [Min Max Persist].	Default: Min/Max: Units:	Read Only 0.0/90.0 0.1 Hz
		042	[Max Line Freq] Latches and displays the maximum measured line frequency. The maximum is held for the time set with parameter 43 - [Min Max Persist].	Default: Min/Max: Units:	Read Only 0.0/90.0 0.1 Hz
		043	[Min Max Persist] Sets the persistence time of the minimum and maximum measured line frequency. A value of zero results in the minimum and maximum never being reset.	Default: Min/Max: Units:	$\begin{aligned} & 10.0 \mathrm{Sec} \\ & 0.0 / 60.0 \mathrm{Sec} \\ & 0.1 \mathrm{Sec} \end{aligned}$
		044	[Change Line Freq] Displays the measured change in line frequency in $\mathrm{Hz} /$ sec.	Default: Min/Max: Units:	Read Only 0.0/20.0 $0.1 \mathrm{~Hz} / \mathrm{s}$

Command File

- Bit 0 (AutoPhaseRot) - Enables the Converter to adapt to ABC or ACB phase rotation. When this bit is cleared the Converter requires ABC rotation.
- Bit 1 (Unbal V Comp) - Enables unbalanced voltage compensation.
- Bit 2 (PWM SyncXmit) - Enables the Converter to transmit its PWM synchronization signal to other Converters.
- Bit 3 (PWM SyncRecv) - Enables the Converter to receive a PWM synchronization signal. This bit must be turned off if no PWM synchronization cable is installed. When synchronization is completed, a bit is set in parameter 071 - [Converter Status]. If synchronization is not completed, a bit is set in parameter 214 - [Start Inhibit]. If synchronization is ever lost, an alarm is turned on in parameter 211 - [Alarm Status]. Loss of synchronization may be configured to result in a fault if enabled in parameter 238 [Fault Config].
- Bit 4 (Sim Modlndex) - Enables the Converter modulation test. This feature requires a password to operate.
- Bit 5 (Sim Mod Freq) - Enables the Converter frequency simulator. This feature requires a password to operate.
- Bit 6 (VC Inverter) - This bit is used only when the Converter is operating as a Stand Alone unit and Bit 3 (PWM SyncRecv) is enabled. This bit selects between synchronizing to an inverter with PowerFlex 700 Vector Control or PowerFlex 700 S Phase II Control. This bit must be set if the inverter has PowerFlex 700 Vector Control or must remain off if the inverter has PowerFlex 700S Phase II Control. This bit is not used when the Converter is operating as a Coupled unit.
- Bit 7 (Prechg Cntrl) - When Run On Start is selected in parameter 50 [Start Config] and this bit is turned off, then the precharge bypass contactor is closed when the unit is put into run. When Run On Start is selected and this bit is turned on, then the precharge bypass contactor is closed at power up after the DC link has reached steady state. This reduces the time delay between putting the unit in run and the DC link reaching its regulated level.
052 [Manual Control]
A set of bits to manual start and stop the Converter. These bits are used only when parameter 50 - [Start Config] is set to "2" (Manual Cntrl).

Bit Definition																	
Default	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0		$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		x = Reserved

- Bit 0 (Close Prechg) - Closes the precharge bypass contactor.
- Bit 1 (Enable Cnvtr) - Enables the converter voltage and current loops.

Limit Config File

읖	응	No.	Parameter Name \& Description	Values	
$\begin{aligned} & \text { O} \\ & \text { 를 } \\ & 0 \\ & \text { 들 } \end{aligned}$		100	[Active I Lmt] Sets the current limit used when the IGBT overload is less than 90% of the IT fault threshold.	Default: Min/Max: Units:	Rated * 1.5 Amps Rated $\div 4 /$ Rated ${ }^{*} 1.5$ Amps 0.1 Amps
		101	[Active OL I Lmt] Sets the current limit used when the IGBT overload is more than 90% of the IT fault threshold, and parameter 150 - [Reduce llmt Sel] is set to "1" (enabled).	Default: Min/Max: Units:	Rated * 0.9 Amps Rated $\div 4 /$ Rated ${ }^{\star} 1.5$ Amps 0.1 Amps
		102	[Reactive RateLmt] Sets how fast reactive current will change.	Default: Min/Max: Units:	$\begin{aligned} & 100.0 \mathrm{~A} / \mathrm{sec} \\ & 10.0 / 3000.0 \mathrm{~A} / \mathrm{sec} \\ & 0.1 \mathrm{~A} / \mathrm{sec} \end{aligned}$
	H	103	[I Imbalance Lmt] Sets the limit on phase current imbalance. A fault is generated if the calculated imbalance is greater than this limit for the time defined in parameter 104 [I Imbalance Time].	Default: Min/Max: Units:	$\begin{aligned} & \text { 30.0\% } \\ & 1.0 / 90.0 \% \\ & 0.1 \% \end{aligned}$
		104	[I Imbalance Time] Sets the time delay in faulting on current imbalance between phases. A fault is generated if the calculated imbalance is greater than the limit set by parameter 103 - [I Imbalance Lmt] for this amount of time.	Default: Min/Max: Units:	$\begin{aligned} & 10.0 \mathrm{Sec} \\ & 1.0 / 10.0 \mathrm{Sec} \\ & 0.1 \mathrm{Sec} \end{aligned}$
		105	[Regen I Lmt] Sets the maximum phase current the unit will request when regenerating. Values are entered as a percent of converter rated current. When the converter goes into current limit while regenerating, the DC link will go up and the unit may fault on DC Over Voltage if the condition is not externally corrected.	Default: Min/Max: Units:	$\begin{aligned} & -150.0 \% \\ & -150.0 / 0.0 \% \\ & 0.1 \% \end{aligned}$
		110	[Ride Through Ena] Selects the options for power dip ride through. "Disabled" = The Converter will fault on loss of AC line voltage and will not automatically attempt to restart when power returns. "Enabled" = The Converter will enter Standby Mode, and wait for the AC line voltage to return, and then automatically resume operation. If power is not restored within the time defined in parameter 111 - [Ride Through Sec], a fault is generated.	Default: Options:	0 "Disabled" 0 "Disabled" 1 "Enabled"
		111	[Ride Through Sec] Selects the longest power dip that will be allowed providing DC link voltage can be maintained.	Default: Min/Max: Units:	$\begin{aligned} & 10.0 \mathrm{Sec} \\ & 0.1 / 600.0 \mathrm{Sec} \\ & 0.1 \mathrm{Sec} \end{aligned}$
		112	[Low Vac Lmt] Sets the low limit on AC Line voltage. A fault or alarm may be generated when the AC Line voltage is less than this limit for the time set by parameter 113 - [Low Vac Time].	Default: Min/Max: Units:	$\begin{aligned} & 340.0 \mathrm{Vac} \\ & 200.0 / 800.0 \mathrm{Vac} \\ & 0.1 \mathrm{Vac} \end{aligned}$
		113	[Low Vac Time] Sets the time delay in detecting low AC Line voltage. A fault or alarm may be generated when the AC Line voltage is less than the limit set by parameter 112 [Low Vac Lmt] for this amount of time.	Default: Min/Max: Units:	$\begin{aligned} & 5.0 \mathrm{Sec} \\ & 0.1 / 30.0 \mathrm{Sec} \\ & 0.1 \mathrm{Sec} \end{aligned}$
		114	[High Vac Lmt] Sets the high limit on AC Line voltage. A fault or alarm may be generated when the AC Line voltage is greater than this limit for the time set by parameter 115 [High Vac Time].	Default: Min/Max: Units:	Rated*1.1 Vac 400.0/810.0 Vac 0.1 Vac
		115	[High Vac Time] Sets the time delay in detecting high AC Line voltage. A fault or alarm may be generated when the AC Line voltage is greater than the limit set by parameter 114 - [High Vac Lmt] for this amount of time.	Default: Min/Max: Units:	$\begin{aligned} & 5.0 \mathrm{Sec} \\ & 0.1 / 30.0 \mathrm{Sec} \\ & 0.1 \mathrm{Sec} \end{aligned}$
		116	[V Imbalance Lmt] Sets the limit on voltage imbalance between phases. A fault or alarm may be generated if the calculated imbalance is greater than this limit for the time set by parameter 117 - [V Imbalance Time].	Default: Min/Max: Units:	$\begin{aligned} & 10.0 \% \\ & 1.0 / 20.0 \% \\ & 0.1 \% \end{aligned}$

읓	은	No.	Parameter Name \& Description	Values	
		117	[V Imbalance Time] Sets the time delay in detecting a voltage imbalance between phases. A fault or alarm may be generated if the calculated imbalance is greater than the limit set by parameter 116 -[V Imbalance Limit] for this amount of time.	Default: Min/Max: Units:	$\begin{aligned} & \hline 1.0 \mathrm{Sec} \\ & 1.0 / 10.0 \mathrm{Sec} \\ & 0.1 \mathrm{Sec} \end{aligned}$
		120	[Ambnt Temp Alrm] Sets the alarm threshold for the maximum ambient temperature.	Default: Min/Max: Units:	$\begin{aligned} & 60.0^{\circ} \mathrm{C} \\ & 30.0 / 105.0^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$
		121	[Ambnt Temp Trip] Displays the fault threshold for the maximum ambient temperature.	Default: Min/Max: Units:	Read Only 40.0/150.0 $0.1^{\circ} \mathrm{C}$
		122	[Base Temp Alrm] Sets the alarm threshold for the maximum IGBT base temperature.	Default: Min/Max Units:	$\begin{aligned} & 70.0^{\circ} \mathrm{C} \\ & 30.0 / 125.0^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$
		123	[Base Temp Trip] Displays the fault threshold for the maximum IGBT base temperature.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & 75.0 / 160.0 \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$
		124	[Junct Temp Alrm] Sets the alarm threshold for the maximum IGBT junction temperature.	Default: Min/Max: Units:	$\begin{aligned} & 85.0^{\circ} \mathrm{C} \\ & 75.0 / 150.0^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$
		125	[Junct Temp Trip] Displays the fault threshold for the maximum IGBT junction temperature.	Default: Min/Max: Units:	Read Only 75.0/175.0 $0.1^{\circ} \mathrm{C}$
		126	[CldPIt Temp Alrm] Sets the alarm threshold for the minimum coldplate temperature.	Default: Min/Max: Units:	$\begin{aligned} & 40.0^{\circ} \mathrm{C} \\ & 10.0 / 80.0^{\circ} \mathrm{C} \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$
		130	[PWM Frequency] Sets the PWM carrier frequency. The value is entered in kHz . When the power structure allows more than one setting for the carrier frequency, the power must be cycled off/on to have the new value take effect.	Default: Min/Max: Units:	Rated kHz Set by the power structure 1 kHz
		131	[AC Low Freq Lmt] Sets the low frequency limit used by parameter 132 - [AC Low Freq Time].	Default: Min/Max: Units:	$\begin{aligned} & 29.0 \mathrm{~Hz} \\ & 27.0 / 93.0 \mathrm{~Hz} \\ & 0.1 \mathrm{~Hz} \end{aligned}$
		132	[AC Low Freq Time] Sets how long the line frequency must be less than the limit set by parameter 131 - [AC Low Freq Lmt] before a fault is generated.	Default: Min/Max: Units:	$\begin{aligned} & 5.0 \mathrm{Sec} \\ & 0.1 / 10.0 \mathrm{Sec} \\ & 0.1 \mathrm{Sec} \end{aligned}$
		133	[AC High Freq Lmt] Sets the high frequency limit used by parameter 134 - [AC High Freq Time].	Default: Min/Max: Units:	$\begin{aligned} & \hline 91.0 \mathrm{~Hz} \\ & 27.0 / 93.0 \mathrm{~Hz} \\ & 0.1 \mathrm{~Hz} \end{aligned}$
		134	[AC High Freq Time] Sets how long the line frequency must be greater than the limit set by parameter 133 - [AC High Freq Lmt] before a fault is generated.	Default: Min/Max: Units:	$\begin{aligned} & \text { 5.0 Sec } \\ & 0.1 / 10.0 \mathrm{Sec} \\ & 0.1 \mathrm{Sec} \end{aligned}$
		135	[AC Maximum dF/dt] Sets the maximum $\mathrm{dF} / \mathrm{dt}$ that the AC converter will allow. A change in frequency greater than this may generate a fault.	Default: Min/Max: Units:	$10.0 \mathrm{~Hz} / \mathrm{sec}$ $0.1 / 30.0 \mathrm{~Hz} / \mathrm{sec}$ $0.1 \mathrm{~Hz} / \mathrm{sec}$

Dynamic Control File

은	을	No.	Parameter Name \& Description	Values	
운ㄴ0002222		150	[Reduce IImt Sel] Enables the use of a reduced current limit when in overload. "Disabled" = The Converter current limit is always the value in parameter 100 [Active I Lmt]. "Enabled" = The Converter current limit will switch to the value set by parameter 101 - [Active OL I Lmt] when in overload.	Default: Options:	1 "Disabled" 0 "Disabled" 1 "Enabled"
		151	[Active I Cmd] Displays the commanded active current.	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & -3276.7 /+3276.7 \\ & 0.1 \text { Amps } \end{aligned}$
		152	[Inductance] Sets the input filter inductance. When set to non-zero, this value is used to calculate the tuning coefficients for the current loop CML Ki and Kp.	Default: Min/Max Units:	$\begin{aligned} & \text { Rated } \mu \mathrm{H} \\ & 0 / 32767 \mu \mathrm{H} \\ & 1 \mu \mathrm{H} \end{aligned}$
		153	[CML Bandwidth] Sets the Current Minor Loop bandwidth. When set to non-zero, this value is used to calculate the tuning coefficients for the current loop CML Ki and Kp.	Default: Min/Max Units:	$1500 \mathrm{Rad} / \mathrm{sec}$ 0/4000 Rad/sec 1 Rad/sec
		154	[CML Damping] Sets the Current Minor Loop damping. When set to non-zero, this value is used to calculate the tuning coefficients for the current loop CML Ki and Kp.	Default: Min/Max Units:	$\begin{aligned} & \hline 1.6 \\ & 0.5 / 5.0 \\ & \text { None } \\ & \hline \end{aligned}$
		155	[CML Ki] Tunes the integral gain of the current loop.	Default: Min/Max Units:	Drive Size Dependent 0/32767 None
		156	[CML Kp] Tunes the proportional gain of the current loop.	Default: Min/Max Units:	Drive Size Dependent 0/32767 None
		157	[PF Bandwidth] Sets the bandwidth of the current regulator maintaining the desired power factor. This is used only when parameter 051 - [Option Select] Bit 1 (Unbal V Comp) is set to "1" to enable unbalanced voltage compensation.	Default: Min/Max: Units:	Drive Size Dependent 0/4000 None
		158	[Reactive I Lmt] Displays the calculated reactive current limit.	Default: Min/Max: Units:	Read Only 0.0/3000.0 0.1 Amps
		159	[Reactive I Cmd] Displays the commanded reactive current.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -3000.0 /+3000.0 \\ & 0.1 \mathrm{Amps} \end{aligned}$
		160	[Voltage Loop Sel] Selects the operation of the voltage loop. "Optimize Ref" = Vdc reference is calculated to minimize switching losses, based on the measured AC Line voltage and the minimum voltage required by the Inverter. "Manual Ref" = The value set by parameter 060 - [DcLink Reference] is used for Vdc reference. "Regen Only" = Reserved for future. "Open Loop" = The Converter outputs a sinusoidal voltage synchronized to the AC line with an amplitude set by parameter 063 - [Modulation Index]. This feature requires a password to operate.	Default: Options:	0 "Optimize Ref" 0 "Optimize Ref" 1 "Manual Ref" 2 "Regen Only" 3 "Open Loop"
		161	[DcLink Command] Displays the commanded DC Link voltage.	Default: Min/Max Units:	Read Only 0.0/1225.0 0.1 Vdc

$\stackrel{\text { 은 }}{\text { In }}$	$\begin{array}{\|l\|l\|} \hline \text { 을 } \\ \text { 응 } \end{array}$	No.	Parameter Name \& Description	Values	
은20000222		162	[Capacitance] Sets the DC Link capacitance. When set to non-zero, this value is used to calculate the tuning coefficients for the voltage loop VML Ki and Kp. In the case of a Frame 2 or Frame 3A drive, this is the capacitance inside the drive. In the case of a Frame 3B drive, it is the capacitance in the Converter and one Inverter. The capacitance of any additional Inverters connected to a common bus must be entered in parameter 170 - [Bus Capacitance].	Default: Min/Max Units:	$\begin{aligned} & \text { Rated } \mu F \\ & 0 / 65535 \mu \mathrm{~F} \\ & 1 \mu \mathrm{~F} \end{aligned}$
		163	[VML Bandwidth] Sets the Voltage Major Loop bandwidth. When set to non-zero, this value is used to calculate the tuning coefficients for the voltage loop VML Ki and Kp.	Default: Min/Max: Units:	$400 \mathrm{Rad} / \mathrm{sec}$ 0/800 Rad/sec 1 Rad/sec
		164	[VML Damping] Sets the Voltage Major Loop damping. When set to non-zero, this value is used to calculate the tuning coefficients for the voltage loop VML Ki and Kp.	Default: Min/Max Units:	$\begin{aligned} & 1.6 \\ & 0.5 / 5.0 \\ & \text { None } \end{aligned}$
		165	[VML Ki] Tunes the integral gain of the voltage loop.	Default: Min/Max Units:	Drive Size Dependent 0/32767 None
		166	[VML Kp] Tunes the proportional gain of the voltage loop.	Default: Min/Max Units:	Drive Size Dependent 0/32767 None
		167	[VML Kf] Tunes the feed forward gain of the voltage loop.	Default: Min/Max Units:	$\begin{aligned} & 0 \\ & \text { 0/32767 } \\ & \text { None } \end{aligned}$
		168	[VML Reset Level] Sets the voltage error when to reset the integrator.	Default: Min/Max Units:	$\begin{aligned} & 60.0 \mathrm{Vdc} \\ & 10.0 / 300.0 \mathrm{Vdc} \\ & 0.1 \mathrm{Vdc} \end{aligned}$
		$\begin{gathered} 169 \\ 0 \end{gathered}$	[Parallel Config] Reserved for future.	Default: Options:	0 "Stand Alone" 0 "Stand Alone" 1 ""Master of 1" 2 "Master of 2" 3 "Master of 3" 4 "Follower"
		170	[Bus Capacitance] Sets the additional capacitance connected to the DC link in a common bus application. This value, in addition to the value of parameter 162 - [Capacitance], sets the tuning coefficient for the voltage loop VML Ki and Kp.	Default: Min/Max Units:	$\begin{aligned} & 0 \mu \mathrm{~F} \\ & 0 / 2000000000 \mu \mathrm{~F} \\ & 1 \mu \mathrm{~F} \end{aligned}$

Utility File

A set of bits displaying the alarms active in the Converter.

Bit Definition												$\begin{array}{\|c} \hline \stackrel{\rightharpoonup}{0} \\ \frac{1}{0} \\ \stackrel{\rightharpoonup}{5} \\ \hline \bar{T} \\ \hline \mathbf{c} \\ \hline \end{array}$					
Default	0	X	X	0	0	0	0	0	0	0	0	0	0	0	0		$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \\ & x=\text { Reserved } \end{aligned}$
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		

- Bit 0 (Ac Low Volt) is set when the average AC line voltage is less than the limit in parameter 112 - [Low Vac Lmt].
- Bit 1 (Ac High Volt) is set when the average AC line voltage exceeds the limit in parameter 114 - [High Vac Lmt].
- Bit 2 (Ac Low Freq) is set when the AC line frequency is less than the limit in parameter 131 - [AC Low Freq Lmt].
- Bit 3 (Ac High Freq) is set when the AC line frequency exceeds the limit in parameter 133 - [AC High Freq Lmt].
- Bit 4 (Ac High dFdt) is set when the AC line frequency is changing faster than the limit in parameter 135 - [AC Maximum dF/dt].
- Bit 5 (I Imbalance) is set when the phase current imbalance exceeds the limit in parameter 103 - [I Imbalance Lmt].
- Bit 6 (V Imbalance) is set when the phase voltage imbalance is greater than the limit in parameter 116 - [V Imbalance Lmt].
- Bit 7 (IT Overload) is set when the overload counter is greater than 90%.
- Bit 8 (Ambient Temp) is set when the ambient temperature exceeds the limit in parameter 120 - [Ambnt Temp Alrm].
- Bit 9 (Base Temp) is set when the IGBT base temperature exceeds the limit in parameter 122 - [Base Temp Alrm].
- Bit 10 (Junction Temp) is set when the IGBT junction temperature exceeds the limit in parameter 124 - [Junct Temp Alrm].
- Bit 11 (Coldplate Temp) is set when the coldplate temperature is less than the limit in parameter 126 - [CldPIt Temp Alrm].
- Bit 12 (PWM SyncLoss) is set when PWM carrier synchronization is lost.
- Bit 15 (Start Inhibit) is set when one or more start inhibits are present.

Communication File

${ }^{(1)}$ The parameters in the Masks \& Owners group and the Security group are displayed only when the Active Converter is operating as a Stand Alone unit. When the Active Converter is operating as a Coupled unit, these parameters are reserved.

Inputs \& Outputs File

361 [Dig Out Frc Mask]
A set of bits to select which output bits are forced.

Bit Definition																¢		$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \\ & x=\text { Reserved } \end{aligned}$
Default	X	X	X	X	X	X	X	X	X		x	X	X	X	X	0		
Bit		4	13	12	11	10	9	8	7	6	6	5	4	3	2	1		

- Bit 0 (Aux Output) - Enables forcing of the Aux Output signal. This feature requires a password to operate.
- Bit 1 (Cls Bypass) - Enables forcing of the Cls Bypass signal. This feature requires a password to operate.

362 [Dig Out Frc Data]
A set of bits to select the state of the output bits that are forced.

Bit Definition																		
Default	X	X	X	x	X	x	X	x	x	x	x	X	X	X	0		$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \\ & x=\text { Reserved } \end{aligned}$	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1			

- Bit 0 (Aux Output) sets the state of the Aux Output signal when forcing is enabled. This feature requires a password to operate.
- Bit 1 (Cls Bypass) sets the state of the Cls Bypass signal when forcing is enabled. This feature requires a password to operate.

Parameter Cross Reference by Name

Parameter Name	Number	Group	Page
AC High Freq Lmt	133	Frequency	3-10
AC High Freq Time	134	Frequency	3-10
AC Line kW	021	Power \& Time	3-4
AC Low Freq Lmt	131	Frequency	3-10
AC Low Freq Time	132	Frequency	3-10
AC Maximum dF/dt	135	Frequency	3-10
Active Current	006	Current	3-4
Active I Cmd	151	Current Loop	3-11
Active I Lmt	100	Current	3-9
Active OL I Lmt	101	Current	3-9
Alarm Config	260	Fault Queue	3-16
Alarm Status	211	Diagnostics	3-13
Ambient Temp	030	Temperature	3-5
Ambnt Temp Alrm	120	Temperature	3-10
Ambnt Temp Trip	121	Temperature	3-10
Base Temp Alrm	122	Temperature	3-10
Base Temp Trip	123	Temperature	3-10
Bus Capacitance	170	Voltage Loop	3-12
CAN Bus Off Cnt	329	DPI Status	3-18
Capacitance	162	Voltage Loop	3-12
Change Line Freq	044	Frequency	3-5
CldPlt Temp Alrm	126	Temperature	3-10
CML Bandwidth	153	Current Loop	3-11
CML Damping	154	Current Loop	3-11
CML Ki	155	Current Loop	3-11
CML Kp	156	Current Loop	3-11
Coldplate Temp1	334	Mux'ed Temps	3-20
Coldplate Temp2	339	Mux'ed Temps	3-20
Connect Status	320	DPI Status	3-17
Control SW Ver	204	Drive Memory	3-13
Converter Contrl	070	Data Exchange	3-7
Converter Fault	073	Data Exchange	3-8
Converter MinVdc	072	Data Exchange	3-8
Converter Status	071	Data Exchange	3-8
CS Msg Bad Cnt	325	DPI Status	3-18
CS Msg Rx Cnt	322	DPI Status	3-17
CS Msg Tx Cnt	323	DPI Status	3-17
CS Timeout Cnt	324	DPI Status	3-17
Data In A1	300	Datalinks	3-17
Data In A2	301	Datalinks	3-17
Data In B1	302	Datalinks	3-17
Data In B2	303	Datalinks	3-17
Data In C1	304	Datalinks	3-17
Data In C2	305	Datalinks	3-17
Data In D1	306	Datalinks	3-17
Data In D2	307	Datalinks	3-17
Data Out A1	310	Datalinks	3-17
Data Out A2	311	Datalinks	3-17
Data Out B1	312	Datalinks	3-17
Data Out B2	313	Datalinks	3-17
Data Out C1	314	Datalinks	3-17
Data Out C2	315	Datalinks	3-17
Data Out D1	316	Datalinks	3-17
Data Out D2	317	Datalinks	3-17
DcLink Command	161	Voltage Loop	3-11
DcLink Reference	060	Setpoints	3-7
DcLink Ripple	015	Voltage	3-4
DcLink Voltage	014	Voltage	3-4
Dig In Frc Data	352	Digital Inputs	3-21
Dig In Frc Mask	351	Digital Inputs	3-20
Dig In Status	350	Digital Inputs	3-20
Dig Out Frc Data	362	Digital Outputs	3-21
Dig Out Frc Mask	361	Digital Outputs	3-21
Dig Out Status	360	Digital Outputs	3-21
DPI Error Out	321	DPI Status	3-17
Drive Checksum	203	Drive Memory	3-13
Elapsed Run Time	025	Power \& Time	3-5
Extern Cml Ref	062	Setpoints	3-7
Fault 1 Code	243	Fault Queue	3-15
Fault 1 Time	244	Fault Queue	3-15
Fault 2 Code	245	Fault Queue	3-15
Fault 2 Time	246	Fault Queue	3-15

Parameter Name	Number	Group	Page
Fault 3 Code	247	Fault Queue	3-16
Fault 3 Time	248	Fault Queue	3-16
Fault 4 Code	249	Fault Queue	3-16
Fault 4 Time	250	Fault Queue	3-16
Fault Amps D	225	Diagnostics	3-14
Fault Amps Q	224	Diagnostics	3-14
Fault Amps R	221	Diagnostics	3-14
Fault Amps S	222	Diagnostics	3-14
Fault Amps T	223	Diagnostics	3-14
Fault Base Temp	230	Diagnostics	3-15
Fault Clear	239	Fault Queue	3-15
Fault Clr Mask	342	Masks \& Owners	3-18
Fault Clr Owner	345	Masks \& Owners	3-18
Fault Config	238	Fault Queue	3-15
Fault Frequency	220	Diagnostics	3-14
Fault Volts RS	226	Diagnostics	3-14
Fault Volts ST	227	Diagnostics	3-14
Fault Volts TR	228	Diagnostics	3-14
Fault Volts Vdc	229	Diagnostics	3-14
Ground Current	005	Current	3-4
High Vac Lmt	114	AC Line Voltage	3-9
High Vac Time	115	AC Line Voltage	3-9
I Imbalance	008	Current	3-4
1 Imbalance Lmt	103	Current	3-9
I Imbalance Time	104	Current	3-9
IGBT Base Temp	031	Temperature	3-5
IGBT Junct Temp	032	Temperature	3-5
IGBT NTC Temp1	330	Mux'ed Temps	3-20
IGBT NTC Temp2	331	Mux'ed Temps	3-20
IGBT NTC Temp3	332	Mux'ed Temps	3-20
IGBT NTC Temp4	333	Mux'ed Temps	3-20
IGBT NTC Temp5	335	Mux'ed Temps	3-20
IGBT NTC Temp6	336	Mux'ed Temps	3-20
IGBT NTC Temp7	337	Mux'ed Temps	3-20
IGBT NTC Temp8	338	Mux'ed Temps	3-20
Inductance	152	Current Loop	3-11
Input Current R	002	Current	3-4
Input Current S	003	Current	3-4
Input Current T	004	Current	3-4
Input Voltage RS	011	Voltage	3-4
Input Voltage ST	012	Voltage	3-4
Input Voltage TR	013	Voltage	3-4
IT Overload	009	Current	3-4
Junct Temp Alrm	124	Temperature	3-10
Junct Temp Trip	125	Temperature	3-10
kVAR Ref	061	Setpoints	3-7
Language	201	Drive Memory	3-13
Life Power Time	027	Power \& Time	3-5
Life Pwr Cycles	028	Power \& Time	3-5
Life Run Time	026	Power \& Time	3-5
Life Time kWh	024	Power \& Time	3-5
Line Frequency	040	Frequency	3-5
Logic Mask	340	Masks \& Owners	3-18
Logic Mask Act	349	Security	3-19
Low Vac Lmt	112	AC Line Voltage	3-9
Low Vac Time	113	AC Line Voltage	3-9
Manual Sequence	052	Start/Stop	3-6
Max Line Freq	042	Frequency	3-5
Min Line Freq	041	Frequency	3-5
Min Max Persist	043	Frequency	3-5
Modulation Freq	064	Setpoints	3-7
Modulation Index	063	Setpoints	3-7
Motoring kWh	022	Power \& Time	3-4
Option Select	051	Start/Stop	3-6
Parallel Config	169	Voltage Loop	3-12
Param Access Lvl	196	Drive Memory	3-13
Password	205	Drive Memory	3-13
PC Msg Rx Cnt	326	DPI Status	3-18
PC Msg Timeout Cnt	328	DPI Status	3-18
PC Msg Tx Cnt	327	DPI Status	3-18
PF Bandwidth	157	Current Loop	3-11
Port Mask Act	346	Security	3-18
Power Up Marker	242	Fault Queue	3-15
PWM Frequency	130	Frequency	3-10
Rated Amps	001	Current	3-4
Rated Power	020	Power \& Time	3-4
Rated Volts	010	Voltage	3-4

Parameter Name	Number	Group	Page
Reactive Current	007	Current	$\underline{3-4}$
Reactive I Cmd	159	Current Loop	$\underline{3-11}$
Reactive I Lmt	158	Current Loop	$\underline{3-11}$
Reactive RateLmt	102	Current	$\underline{3-9}$
Reduce IImt Sel	150	Current Loop	$\underline{3-11}$
Regen I Lmt	105	Current	$\underline{3-9}$
Regen kWh	023	Power \& Time	$\underline{3-4}$
Reset Meters	200	Drive Memory	$\underline{3-13}$
Reset to Defaults	197	Drive Memory	$\underline{3-13}$
Ride Through Ena	110	AC Line Voltage	$\underline{3-9}$
Ride Through Sec	111	AC Line Voltage	$\underline{3-9}$
Start Config	050	Start/Stop	$\underline{3-6}$
Start Inhibits	214	Diagnostics	$\underline{3-14}$
Start Mask	341	Masks \& Owners	$\underline{3-18}$
Start Owner	344	Masks \& Owners	$\underline{3-18}$
Stop Owner	343	Masks \& Owners	$\underline{3-18}$
Testpoint 1 Data	235	Diagnostics	$\underline{3-15}$
Testpoint 1 Sel	234	Diagnostics	$\underline{3-15}$
Testpoint 2 Data	237	Diagnostics	$\underline{3-15}$
Testpoint 2 Sel	236	Diagnostics	$\underline{3-15}$
Turn Off Delay	053	Start/Stop	$\underline{3-7}$
V Imbalance	016	Voltage	$\underline{3-4}$
V Imbalance Lmt	116	AC Line Voltage	$\underline{3-9}$
V Imbalance Time	117	AC Line Voltage	$\underline{3-10}$
VML Bandwidth	163	Voltage Loop	$\underline{3-12}$
VML Damping	164	Voltage Loop	$\underline{3-12}$
VML Kf	167	Voltage Loop	$\underline{3-12}$
VML Ki	165	Voltage Loop	$\underline{3-12}$
VML Kp	166	Voltage Loop	$\underline{3-12}$
VML Reset Level	168	Voltage Loop	$\underline{3-12}$
Voltage Loop Sel	160	Voltage Loop	$\underline{3-11}$
Write Mask Act	348	Security	$\underline{3-19}$
Write Mask Cfg	347	Security	$\underline{3-19}$

Parameter Cross Reference by Number

Number	Parameter Name	Group	Page
001	Rated Amps	Current	3-4
002	Input Current R	Current	3-4
003	Input Current S	Current	3-4
004	Input Current T	Current	3-4
005	Ground Current	Current	3-4
006	Active Current	Current	3-4
007	Reactive Current	Current	3-4
008	I Imbalance	Current	3-4
009	IT Overload	Current	3-4
010	Rated Volts	Voltage	3-4
011	Input Voltage RS	Voltage	3-4
012	Input Voltage ST	Voltage	3-4
013	Input Voltage TR	Voltage	3-4
014	DcLink Voltage	Voltage	3-4
015	DcLink Ripple	Voltage	3-4
016	V Imbalance	Voltage	3-4
020	Rated Power	Power \& Time	3-4
021	AC Line kW	Power \& Time	3-4
022	Motoring kWh	Power \& Time	3-4
023	Regen kWh	Power \& Time	3-4
024	Life Time kWh	Power \& Time	3-5
025	Elapsed Run Time	Power \& Time	3-5
026	Life Run Time	Power \& Time	3-5
027	Life Power Time	Power \& Time	3-5
028	Life Pwr Cycles	Power \& Time	3-5
030	Ambient Temp	Temperature	3-5
031	IGBT Base Temp	Temperature	3-5
032	IGBT Junct Temp	Temperature	3-5
040	Line Frequency	Frequency	3-5
041	Min Line Freq	Frequency	3-5
042	Max Line Freq	Frequency	3-5
043	Min Max Persist	Frequency	3-5
044	Change Line Freq	Frequency	3-5
050	Start Config	Start/Stop	3-6
051	Option Select	Start/Stop	3-6
052	Manual Sequence	Start/Stop	3-6
053	Turn Off Delay	Start/Stop	3-7
060	DcLink Reference	Setpoints	3-7
061	kVAR Ref	Setpoints	3-7
062	Extern Cml Ref	Setpoints	3-7
063	Modulation Index	Setpoints	3-7
064	Modulation Freq	Setpoints	3-7
070	Converter Contrl	Data Exchange	3-7
071	Converter Status	Data Exchange	3-8
072	Converter MinVdc	Data Exchange	3-8
073	Converter Fault	Data Exchange	3-8
100	Active I Lmt	Current	3-9
101	Active OL I Lmt	Current	3-9
102	Reactive RateLmt	Current	3-9
103	I Imbalance Lmt	Current	3-9
104	I Imbalance Time	Current	3-9
105	Regen I Lmt	Current	3-9
110	Ride Through Ena	AC Line Voltage	3-9
111	Ride Through Sec	AC Line Voltage	3-9
112	Low Vac Lmt	AC Line Voltage	3-9
113	Low Vac Time	AC Line Voltage	3-9
114	High Vac Lmt	AC Line Voltage	3-9
115	High Vac Time	AC Line Voltage	3-9
116	V Imbalance Lmt	AC Line Voltage	3-9
117	V Imbalance Time	AC Line Voltage	3-10
120	Ambnt Temp Alrm	Temperature	3-10
121	Ambnt Temp Trip	Temperature	3-10
122	Base Temp Alrm	Temperature	3-10
123	Base Temp Trip	Temperature	3-10
124	Junct Temp Alrm	Temperature	3-10
125	Junct Temp Trip	Temperature	3-10
126	CldPlt Temp Alrm	Temperature	3-10
130	PWM Frequency	Frequency	3-10
131	AC Low Freq Lmt	Frequency	3-10
132	AC Low Freq Time	Frequency	3-10
133	AC High Freq Lmt	Frequency	3-10
134	AC High Freq Time	Frequency	3-10

Number	Parameter Name	Group	Page
135	AC Maximum dF/dt	Frequency	3-10
150	Reduce llimt Sel	Current Loop	3-11
151	Active I Cmd	Current Loop	3-11
152	Inductance	Current Loop	3-11
153	CML Bandwidth	Current Loop	3-11
154	CML Damping	Current Loop	3-11
155	CML Ki	Current Loop	3-11
156	CML Kp	Current Loop	3-11
157	PF Bandwidth	Current Loop	3-11
158	Reactive I Lmt	Current Loop	3-11
159	Reactive I Cmd	Current Loop	3-11
160	Voltage Loop Sel	Voltage Loop	3-11
161	DcLink Command	Voltage Loop	3-11
162	Capacitance	Voltage Loop	3-12
163	VML Bandwidth	Voltage Loop	3-12
164	VML Damping	Voltage Loop	3-12
165	VML Ki	Voltage Loop	3-12
166	VML Kp	Voltage Loop	3-12
167	VML Kf	Voltage Loop	3-12
168	VML Reset Level	Voltage Loop	3-12
169	Parallel Config	Voltage Loop	3-12
170	Bus Capacitance	Voltage Loop	3-12
196	Param Access Lvl	Drive Memory	3-13
197	Reset to Defaults	Drive Memory	3-13
200	Reset Meters	Drive Memory	3-13
201	Language	Drive Memory	3-13
203	Drive Checksum	Drive Memory	3-13
204	Control SW Ver	Drive Memory	3-13
205	Password	Drive Memory	3-13
211	Alarm Status	Diagnostics	3-13
214	Start Inhibits	Diagnostics	3-14
220	Fault Frequency	Diagnostics	3-14
221	Fault Amps R	Diagnostics	3-14
222	Fault Amps S	Diagnostics	3-14
223	Fault Amps T	Diagnostics	3-14
224	Fault Amps Q	Diagnostics	3-14
225	Fault Amps D	Diagnostics	3-14
226	Fault Volts RS	Diagnostics	3-14
227	Fault Volts ST	Diagnostics	3-14
228	Fault Volts TR	Diagnostics	3-14
229	Fault Volts Vdc	Diagnostics	3-14
230	Fault Base Temp	Diagnostics	3-15
234	Testpoint 1 Sel	Diagnostics	3-15
235	Testpoint 1 Data	Diagnostics	3-15
236	Testpoint 2 Sel	Diagnostics	3-15
237	Testpoint 2 Data	Diagnostics	3-15
238	Fault Config	Fault Queue	3-15
239	Fault Clear	Fault Queue	3-15
242	Power Up Marker	Fault Queue	3-15
243	Fault 1 Code	Fault Queue	3-15
244	Fault 1 Time	Fault Queue	3-15
245	Fault 2 Code	Fault Queue	3-15
246	Fault 2 Time	Fault Queue	3-15
247	Fault 3 Code	Fault Queue	3-16
248	Fault 3 Time	Fault Queue	3-16
249	Fault 4 Code	Fault Queue	3-16
250	Fault 4 Time	Fault Queue	3-16
260	Alarm Config	Fault Queue	3-16
300	Data In A1	Datalinks	3-17
301	Data In A2	Datalinks	3-17
302	Data In B1	Datalinks	3-17
303	Data In B2	Datalinks	3-17
304	Data In C 1	Datalinks	3-17
305	Data In C2	Datalinks	3-17
306	Data In D1	Datalinks	3-17
307	Data In D2	Datalinks	3-17
310	Data Out A1	Datalinks	3-17
311	Data Out A2	Datalinks	3-17
312	Data Out B1	Datalinks	3-17
313	Data Out B2	Datalinks	3-17
314	Data Out C1	Datalinks	3-17
315	Data Out C2	Datalinks	3-17
316	Data Out D1	Datalinks	3-17
317	Data Out D2	Datalinks	3-17
320	Connect Status	DPI Status	3-17
321	DPI Error Out	DPI Status	3-17
322	CS Msg Rx Cnt	DPI Status	3-17

Number	Parameter Name	Group	Page
323	CS Msg Tx Cnt	DPI Status	$\underline{3-17}$
324	CS Timeout Cnt	DPI Status	$\underline{3-17}$
325	CS Msg Bad Cnt	DPI Status	$\underline{3-18}$
326	PC Msg Rx Cnt	DPI Status	$\underline{3-18}$
327	PC Msg Tx Cnt	DPI Status	$\underline{3-18}$
328	PC Msg Timeout Cnt	DPI Status	$\underline{3-18}$
329	CAN Bus Off Cnt	DPI Status	$\underline{3-18}$
330	IGBT NTC Temp1	Mux'ed Temps	$\underline{3-20}$
331	IGBT NTC Temp2	Mux'ed Temps	$\underline{3-20}$
332	IGBT NTC Temp3	Mux'ed Temps	$\underline{3-20}$
333	IGBT NTC Temp4	Mux'ed Temps	$\underline{3-20}$
334	Coldplate Temp1	Mux'ed Temps	$\underline{3-20}$
335	IGBT NTC Temp5	Mux'ed Temps	$\underline{3-20}$
336	IGBT NTC Temp6	Mux'ed Temps	$\underline{3-20}$
337	IGBT NTC Temp7	Mux'ed Temps	$\underline{3-20}$
338	IGBT NTC Temp8	Mux'ed Temps	$\underline{3-20}$
339	Coldplate Temp2	Mux'ed Temps	$\underline{3-20}$
340	Logic Mask	Masks \& Owners	$\underline{3-18}$
341	Start Mask	Masks \& Owners	$\underline{3-18}$
342	Fault CIr Mask	Masks \& Owners	$\underline{3-18}$
343	Stop Owner	Masks \& Owners	$\underline{3-18}$
344	Start Owner	Masks \& Owners	$\underline{3-18}$
345	Fault CIr Owner	Masks \& Owners	$\underline{3-18}$
346	Port Mask Act	Security	$\underline{3-18}$
347	Write Mask Cfg	Security	$\underline{3-19}$
348	Write Mask Act	Security	$\underline{3-19}$
349	Logic Mask Act	Security	$\underline{3-19}$
350	Dig In Status	Digital Inputs	$\underline{3-20}$
351	Dig In Frc Mask	Digital Inputs	$\underline{3-20}$
352	Dig In Frc Data	Digital Inputs	$\underline{3-21}$
360	Dig Out Status	Digital Outputs	$\underline{3-21}$
361	Dig Out Frc Mask	Digital Outputs	$\underline{3-21}$
362	Dig Out Frc Data	Digital Outputs	$\underline{3-21}$
3			

Notes:

Troubleshooting

This chapter provides information to guide you in troubleshooting the PowerFlex 700L Active Converter Power Module. Included is a listing and description of faults (with possible solutions, when applicable) and alarms.

For information on ...	See page...
Faults and Alarms	$4-1$
Manually Clearing Faults	$4-1$
Fault Descriptions	$4-1$
Clearing Alarms	$4-4$
Alarm Descriptions	$4-4$

Faults and Alarms

Manually Clearing Faults

A fault is a condition that stops the Converter. There are two fault types.

Type	Fault Description	
(1)	Reserved for future.	
(2)	Non-Resettable	This type of fault normally requires drive or motor repair. The cause of the fault must be corrected before the fault can be cleared. The fault will be reset on power up after repair.
(3)	User Configurable	These faults can be enabled/disabled to annunciate or ignore a fault condition.

An alarm is a condition that, if left untreated, may stop the Converter. All alarms are configurable using parameter 260 - [Alarm Config].

Step	Key(s)
1. Press Esc to acknowledge the fault. The fault information will be removed so that	
you can use the HIM.	Esc
2. Address the condition that caused the fault.	
The cause must be corrected before the fault can be cleared.	
3. After corrective action has been taken, clear the fault by one of these methods.	
- Press Stop	
- Cycle drive power	
- Set parameter 239 - [Fault Clear] to " 1 = Clear Faults."	
- "Clear Faults" on the HIM Diagnostic menu.	

The PowerFlex 700L Active Converter Power Module tests for many different conditions to detect abnormal operation. The following Active Converter faults are listed by name, fault code number, type, description of the condition, and corrective action required by the user where applicable.

With the ability to connect larger frame size power structures in parallel, each structure has independent fault detection to indicate the source of the problem (for example, PS1 for Primary Converter and PS2 for Secondary Converter).

Table 4.A Fault Types, Descriptions, and Actions

Fault	No.	Type ${ }^{(1)}$	Description	Action
Converter Control Board Hardware Faults				
HW Over Current	1		Control board detected excessive phase current.	Verify AC line power quality.
HW Over Voltage	2		Control board detected excessive phase DC Link voltage.	Verify regenerating current limit is not being exceeded.
HW Ground Fault	3		Control board detected a ground fault.	Verify motor insulation.
HW Disabled	4		Control board detected phase current that did not sum to 0 .	Verify control board enable is present.
HW Latch Error	5		Control board detected excessive an unidentified fault.	Contact Technical Support.
Sequencing Faults				
Precharge Open	6		The precharge contactor opened when it was commanded closed.	Verify operation of the precharge contactor.
Precharge Closed	7		The precharge contactor closed when it was commanded open.	Verify operation of the precharge contactor.
Communication Faults				
DPI Mstr ComLoss	8		DPI communication with the Inverter was lost.	Verify DPI cable installation.
Inverter Flt	9		Inverter detected a fault.	
Power Structure Faults				
PS1 DSAT Phase R	10		Power Structure 1 detected a Dsat fault on phase R. ${ }^{(2)}$	Contact Technical Support.
PS1 DSAT Phase S	11		Power Structure 1 detected a Dsat fault on phase S. ${ }^{(2)}$	Contact Technical Support.
PS1 DSAT Phase T	12		Power Structure 1 detected a Dsat fault on phase T. ${ }^{(2)}$	Contact Technical Support.
PS1 Over Current	13		Power Structure 1 detected excessive phase current. ${ }^{(2)}$	Verify AC line power quality.
PS1 Over Voltage	14		Power Structure 1 detected excessive DC Link voltage. ${ }^{(2)}$	Verify regenerating current limit is not being exceeded.
PS1 Asym DC Link	15		Power Structure 1 detected an asymmetrical DC Link voltage. ${ }^{(2)}$	Verify load balance resistors.
PS1 Power Supply	16		Power Structure 1 detected power supply out of tolerance. ${ }^{(2)}$	Replace power supply if problem persists.
PS1 HW Disable	17		Power Structure 1 detected excessive phase current. ${ }^{(2)}$	Verify drive enable is present.
PS1 Latch Error	18		Power Structure 1 detected an unidentified fault. ${ }^{(2)}$	Contact Technical Support.
PS2 DSAT Phase R	20		Power Structure 2 detected a Dsat fault on phase R. ${ }^{(3)}$	Contact Technical Support.
PS2 DSAT Phase S	21		Power Structure 2 detected a Dsat fault on phase S. ${ }^{(3)}$	Contact Technical Support.
PS2 DSAT Phase T	22		Power Structure 2 detected a Dsat fault on phase T. ${ }^{(3)}$	Contact Technical Support.
PS2 Over Current	23		Power Structure 2 detected excessive phase current. ${ }^{(3)}$	Verify AC line power quality.
PS2 Over Voltage	24		Power Structure 2 detected excessive DC Link voltage. ${ }^{(3)}$	Verify regenerating current limit is not being exceeded.
PS2 Asym DC Link	25		Power Structure 2 detected an asymmetrical DC Link voltage. ${ }^{(3)}$	Verify load balance resistors.
PS2 Power Supply	26		Power Structure 2 detected power supply out of tolerance. ${ }^{(3)}$	Replace power supply if problem persists.
PS2 HW Disable	27		Power Structure 1 detected excessive phase current. ${ }^{(3)}$	Verify drive enable is present.
PS2 Latch Error	28		Power Structure 1 detected an unidentified fault. ${ }^{(3)}$	Contact Technical Support.
Non-Volatile Storage Faults				
PwrBd Incompat	30	(2)	Power board incompatible with control board.	Load new file into power board.
PB Ver Corrupted	31	(2)	Power board version number is corrupted.	Load new file into power board.
Default Corruptd	32	(2)	Power board parameter default data file is corrupted.	Load new file into power board.
Rating Corrupted	33	(2)	Power board rating data file is corrupted.	Load new file into power board.
New ControlBoard	34		New Converter control board was detected.	Reset to defaults is required.
Elapsed CheckSum	35		Elapsed operation data checksum is invalid at power up.	Reset to defaults is required.
Param CheckSum	36		Parameter data checksum is invalid at power up.	Reset to defaults is required.
Param CheckSum B	37		Parameter data checksum error when writing a BYTE value.	Reset to defaults is required.
Param CheckSum W	38		Parameter data checksum error when writing a WORD value.	Reset to defaults is required.
Param CheckSum L	39		Parameter data checksum error when writing a LONG value.	Reset to defaults is required.
AC Line Synchronization Faults				
Ac Line Lost	40		AC line synchronization was lost when power turned off.	Verify proper input line voltage is present.
Ac Phase Lost	41		AC line synchronization was lost when phase was lost.	Verify proper input line voltage is present.
Ac Sync Low Vac	42		AC line synchronization was lost because voltage was low.	Verify proper input line voltage is present.
Ac Sync Low Freq	43		AC line synchronization was lost because frequency was low.	Verify proper input line voltage is present.
Ac Sync High Freq	44		AC line synchronization was lost because frequency was high.	Verify proper input line voltage is present.
Ac Sync Conflict	45		Conflict in AC line synchronization state machine.	Contact Technical Support.

Fault	No.	Type ${ }^{(1)}$	Description	Action
PWM Sync Lost	46	(3)	PWM Carrier synchronization was lost.	Verify wiring of carrier synchronization cable.
Variations in the AC Line Faults				
Ac Low Voltage	50	(3)	AC line voltage was below the configured limit for the configured time.	Verify proper input line voltage is present.
Ac High Voltage	51	(3)	AC line voltage exceeded the configured limit for the configured time.	Verify proper input line voltage is present.
Ac Low Frequency	52	(3)	AC line frequency was below the configured limit for the configured time.	Verify proper input line voltage is present.
Ac HighFrequency	53	(3)	AC line frequency exceeded the configured limit for the configured time.	Verify proper input line voltage is present.
Ac High dFdt	54	(3)	Change in line frequency exceeded the configured limit.	Verify proper input line voltage is present.
Ac I Imbalance	55	(3)	AC current balance exceeded the configured limit for the configured time.	Verify proper input line voltage is present.
Ac V Imbalance	56	(3)	AC voltage balance exceeded the configured limit for the configured time.	Verify proper input line voltage is present.
DcLink Low Volt	57		DC link voltage was below the precharge open level.	Verify proper input line voltage is present.
Ride Thru Expire	58		Power dip ride through expired with precharge open.	Verify proper input line voltage is present.
Ride Thru Expire	59		Power dip ride through expired with precharge closed.	Verify proper input line voltage is present.
Overload Faults				
IT Over Load	60		Operating current levels exceeded the rated overload.	Verify proper input line voltage is present.
Ambnt Over Temp	61		Measured ambient temperature exceeded the maximum limit.	
Base Over Temp	62		IGBT base temperature exceeded the maximum limit.	Verify required drive cooling is present.
Junct Over Temp	63		IGBT junction temperature exceeded the maximum limit.	Verify required drive cooling is present.
Ntc Range Low	64		NTC temperature outside below rated temperature range.	Check for open or shorted NTC device.
Ntc Range High	65		NTC temperature outside above rated temperature range.	Check for open or shorted NTC device.
PS1 Fan Loss	66		Power Structure 1 detected a circulating fan was lost. ${ }^{(2)}$	Verify internal circulating fans are turning.
PS1 Reactor Temp	67		Power Structure 1 detected the reactor thermal switch opened. ${ }^{(2)}$	Verify reactor cooling fans are turning.
PS2 Fan Loss	68		Power Structure 2 detected a circulating fan was lost. ${ }^{(3)}$	Verify internal circulating fans are turning.
PS2 Reactor Temp	69		Power Structure 2 detected the reactor thermal switch opened. ${ }^{(3)}$	Verify reactor cooling fans are turning.
Input Filter Fault				
FiltCap Contactr	70		The detected state (open/closed) of the input filter capacitor bank contactor does not match the commanded state.	Verify wiring of filter capacitor contactor.
Stand Alone Unit (DPI MASTER) Faults				
Port 1 Adapter	71		The communication card has detected a fault on the network. ${ }^{(4)}$	Check DPI device event queue and corresponding fault information for the device.
Port 2 Adapter	72		The communication card has detected a fault on the network. ${ }^{(4)}$	
Port 3 Adapter	73		The communication card has detected a fault on the network. ${ }^{(4)}$	
Port 4 Adapter	74		The communication card has detected a fault on the network. ${ }^{(4)}$	
Port 5 Adapter	75		The communication card has detected a fault on the network. ${ }^{(4)}$	
Port 6 Adapter	76		The communication card has detected a fault on the network. ${ }^{(4)}$	
Port 1 DPI Loss	81		The DPI communication to a peripheral was lost. ${ }^{(4)}$	1. If adapter was not intentionally disconnected, check wiring to the port. Replace wiring, port expander, adapters, Main Control Board, or complete Converter as required. 2. Check HIM connection. 3. If an adapter was intentionally disconnected and the [Logic Mask] bit for that adapter is set to "1," this fault will occur. To disable this fault, set the [Logic Mask] bit for the adapter to "0."
Port 2 DPI Loss	82		The DPI communication to a peripheral was lost. ${ }^{(4)}$	
Port 3 DPI Loss	83		The DPI communication to a peripheral was lost. ${ }^{(4)}$	
Port 4 DPI Loss	84		The DPI communication to a peripheral was lost. ${ }^{(4)}$	
Port 5 DPI Loss	85		The DPI communication to a peripheral was lost. ${ }^{(4)}$	
Port 6 DPI Loss	86		The DPI communication to a peripheral was lost. ${ }^{(4)}$	

[^1]Table 4.B Fault Cross Reference - By Number

No. ${ }^{(1)}$	Fault	No. ${ }^{(1)}$	Fault	No. ${ }^{11}$	Fault
1	HW Over Current	22	PS2 DSAT Phase T	43	Ac Sync Low Freq
2	HW Over Voltage	23	PS2 Over Current	44	Ac Sync High Freq
3	HW Ground Fault	24	PS2 Over Voltage	45	Ac Sync Conflict
4	HW Disabled	25	PS2 Asym DC Link	46	PWM Sync Lost
5	HW Latch Error	26	PS2 Power Supply	50	Ac Low Voltage
6	Precharge Open	27	PS2 HW Disable	51	Ac High Voltage
7	Precharge Closed	28	PS2 Latch Error	52	Ac Low Frequency
8	DPI Mstr ComLoss	30	PwrBd Incompat	53	Ac HighFrequency
9	Inverter Flt	31	PB Ver Corrupted	54	Ac High dFdt
10	PS1 DSAT Phase R	32	Default Corruptd	55	Ac I Imbalance
11	PS1 DSAT Phase S	33	Rating Corrupted	56	Ac V Imbalance
12	PS1 DSAT Phase T	34	New ControlBoard	57	DcLink Low Volt
13	PS1 Over Current	35	Elapsed CheckSum	58	Ride Thru Expire
14	PS1 Over Voltage	36	Param CheckSum	59	Ride Thru Expire
15	PS1 Asym DC Link	37	Param CheckSum B	60	IT Over Load
16	PS1 Power Supply	38	Param CheckSum W	61	Ambnt Over Temp
17	PS1 HW Disable	39	Param CheckSum L	62	Base Over Temp
18	PS1 Latch Error	40	Ac Line Lost	63	Junct Over Temp
20	PS2 DSAT Phase R	41	Ac Phase Lost	64	Ntc Range Low
21	PS2 DSAT Phase S	42	Ac Sync Low Vac	65	Ntc Range High

No. $^{(1)}$	Fault
66	PS1 Fan Loss
67	PS1 Reactor Temp
68	PS2 Fan Loss
69	PS2 Reactor Temp
70	FiltCap Contactr
71	Port 1 Adapter
72	Port 2 Adapter
73	Port 3 Adapter
74	Port 4 Adapter
75	Port 5 Adapter
76	Port 6 Adapter
81	Port 1 DPI Loss
82	Port 2 DPI Loss
83	Port 3 DPI Loss
84	Port 4 DPI Loss
85	Port 5 DPI Loss
86	Port 6 DPI Loss

Clearing Alarms

Alarms are automatically cleared when the condition that caused the alarm is no longer present.

Alarm Descriptions

All Active Converter alarms are configurable using parameter 260 - [Alarm Config]. The status of the alarms can be viewed using parameter 211 [Alarm Status].

Table 4.C Alarm Descriptions for Parameter 211 - [Alarm Status] Bits

Bit	Bit Definition	Description
0	Ac Low Volt	Bit 0 is set when the average AC Line Voltage is less than the limit in parameter 112 - [Low Vac Lmt].
1	Ac High Volt	Bit 1 is set when the average AC Line Voltage exceeds the limit in parameter 114 - [High Vac Lmt].
2	Ac Low Freq	Bit 2 is set when the AC Line Frequency is less than the limit in parameter 131 - [AC Low Freq Lmt].
3	Ac High Freq	Bit 3 is set when the AC Line Frequency exceeds the limit in parameter 133 - [AC High Freq Lmt].
4	Ac High dFdt	Bit 4 is set when the AC Line Frequency is changing faster than the limit in parameter $135-$ [AC Maximum dF/dt].
5	I Imbalance	Bit 5 is set when the phase current imbalance exceeds the limit in parameter 103 - [I Imbalance Lmt].
6	V Imbalance	Bit 6 is set when the phase voltage imbalance is greater than the limit in parameter 116 - [V Imbalance Lmt].
7	IT Overload	Bit 7 is set when the Overload counter is greater than 90%.
8	Ambient Temp	Bit 8 is set when the ambient temperature exceeds the limit in parameter 120 - [Ambnt Temp Alrm].
9	Base Temp	Bit 9 is set when the IGBT base temperature exceeds the limit in parameter 122 - [Base Temp Alrm].
10	Junction Temp	Bit 10 is set when the IGBT junction temperature exceeds the limit in parameter 124 - [Junct Temp Alrm].
11	Coldplate Temp	Bit 11 is set when the coldplate temperature is less than the limit in parameter 126 -[CldPIt Temp Alrm].
12	PWM SyncLoss	Bit 12 is set when PWM carrier synchronization is lost.
13	Reserved	
14	Reserved	
15	Start Inhibit	Bit 15 is set when one or more start inhibits are present.

Numerics

700 Vector Control (standard) information reference, P-1
700S Phase II Control (optional) information reference, P-2

A

AC High Freq Lmt parameter, 3-10
AC High Freq Time parameter, 3-10
AC Line kW parameter, 3-4
AC Line Voltage Parameter Group, 3-9
AC Low Freq Lmt parameter, 3-10
AC Low Freq Time parameter, 3-10
Active Converter Power Module fault descriptions, 4-1
parameters, 3-1
removing control cassette, 1-2
removing covers, 1-2
wiring control board I/O terminals, 1-4
Active Current parameter, 3-4
Active I Cmd parameter, 3-11
Active I Lmt parameter, 3-9
Active OL I Lmt parameter, 3-9
alarm
clearing, 4-4
descriptions, 4-4
Alarm Config parameter, 3-16
Alarm Status parameter, 3-13
Ambient Temp parameter, 3-5
Ambnt Temp Alrm parameter, 3-10
Ambnt Temp Trip parameter, 3-10

B

Base Temp Alrm parameter, 3-10
Base Temp Trip parameter, 3-10
Bus Capacitance parameter, 3-12
bus capacitors, discharging, P-3

C

CAN Bus Off Cnt parameter, 3-18
Capacitance parameter, 3-12
capacitors - bus, discharging, P-3
Change Line Freq parameter, 3-5
CldPIt Temp Alrm parameter, 3-10
clearing
alarms, 4-4
faults, 4-1
CML Bandwidth parameter, 3-11
CML Damping parameter, 3-11
CML Ki parameter, 3-11
CML Kp parameter, 3-11
Coldplate Temp1 parameter, 3-20
Coldplate Temp2 parameter, 3-20
Command File, 3-6
common mode interference, 1-4
Communication File, 3-17
configuring parameters, 3-1
Connect Status parameter, 3-17
Control SW Ver parameter, 3-13
conventions used in this manual, P-2
Converter Control parameter, 3-7
Converter Fault parameter, 3-8
Converter Min Vdc parameter, 3-8
Converter Status, 3-8
cross-reference of parameters
by name, 3-22
by number, 3-23
CS Msg Bad Cnt parameter, 3-18
CS Msg Rx Cnt parameter, 3-17
CS Msg Tx Cnt parameter, 3-17
CS Timeout Cnt parameter, 3-17
Current Lmt Gain parameter, 3-9
Current Lmt Val parameter, 3-9
Current Loop Parameter Group, 3-11
Current Parameter Group, 3-4, 3-9

D

Data Exchange Parameter Group, 3-7
Data In A1 parameter, 3-17
Data In A2 parameter, 3-17
Data In B1 parameter, 3-17
Data In B2 parameter, 3-17
Data In C1 parameter, 3-17
Data In C2 parameter, 3-17
Data In D1 parameter, 3-17
Data In D2 parameter, 3-17
Data Out A1 parameter, 3-17
Data Out A2 parameter, 3-17

Data Out B1 parameter, 3-17
Data Out B2 parameter, 3-17
Data Out C1 parameter, 3-17
Data Out C2 parameter, 3-17
Data Out D1 parameter, 3-17
Data Out D2 parameter, 3-17
Datalinks Parameter Group, 3-17
DcLink Command parameter, 3-11
DcLink Reference parameter, 3-7
DcLink Ripple parameter, 3-4
DcLink Voltage parameter, 3-4
Diagnostic Parameter Group, 3-13
Dig In Frc Data parameter, 3-21
Dig In Frc Mask parameter, 3-20
Dig In Status parameter, 3-20
Dig Out Frc Data parameter, 3-21
Dig Out Frc Mask parameter, 3-21
Dig Out Status parameter, 3-21
Digital Inputs Parameter Group, 3-20
Digital Outputs Parameter Group, 3-20
DPI Error Out parameter, 3-17
DPI Status Parameter Group, 3-17
Drive Checksum parameter, 3-13
Drive Memory Parameter Group, 3-13
Dynamic Control File, 3-11

E

editing parameters, 3-1
Elapsed Run Time parameter, 3-5
Electrostatic Discharge (ESD), P-3
Extern Cml Ref parameter, 3-7

F

Fault 1 Code parameter, 3-15
Fault 1 Time parameter, 3-15
Fault 2 Code parameter, 3-15
Fault 2 Time parameter, 3-15
Fault 3 Code parameter, 3-16
Fault 3 Time parameter, 3-16
Fault 4 Code parameter, 3-16
Fault 4 Time parameter, 3-16
Fault Amps D parameter, 3-14
Fault Amps Q parameter, 3-14
Fault Amps R parameter, 3-14

Fault Amps S parameter, 3-14
Fault Amps T parameter, 3-14
Fault Clear parameter, 3-15
Fault Clr Mask parameter, 3-18
Fault Clr Owner parameter, 3-18
Fault Config parameter, 3-15
fault descriptions for active converter, 4-1
Fault Frequency parameter, 3-14
Fault Queue Parameter Group, 3-15
Fault Volts RS parameter, 3-14
Fault Volts ST parameter, 3-14
Fault Volts TR parameter, 3-14
Fault Volts Vdc parameter, 3-14, 3-15
File
Command, 3-6
Communication, 3-17
Dynamic Control, 3-11
Inputs \& Outputs, 3-20
Limit Config, 3-9
Monitor, 3-4
Utility, 3-13
File-Group-Parameter, 3-2
Frequency Parameter Group, 3-5, 3-10

G

general precautions, $\mathrm{P}-3$
Ground Current parameter, 3-4
Group - Parameter
AC Line Voltage, 3-9
Current, 3-4, 3-9
Current Loop, 3-11
Data Exchange, 3-7
Datalinks, 3-17
Diagnostic, 3-13
Digital Inputs, 3-20
Digital Outputs, 3-20
DPI Status, 3-17
Drive Memory, 3-13
Fault Queue, 3-15
Frequency, 3-5, 3-10
Masks \& Owners, 3-18
Mux'ed Temps, 3-20
Power \& Time, 3-4
Security, 3-18
Setpoints, 3-7
Start/Stop, 3-6
Temperature, 3-5, 3-10
Voltage, 3-4

Voltage Loop, 3-11

H

High Vac Lmt parameter, 3-9
High Vac Time parameter, 3-9

I

I Imbalance Lmt parameter, 3-9
I Imbalance parameter, 3-4
IGBT Base Temp parameter, 3-5
IGBT Junction Temp parameter, 3-5
IGBT NTC Temp1 parameter, 3-20
IGBT NTC Temp2 parameter, 3-20
IGBT NTC Temp3 parameter, 3-20
IGBT NTC Temp4 parameter, 3-20
IGBT NTC Temp5 parameter, 3-20
IGBT NTC Temp6 parameter, 3-20
IGBT NTC Temp7 parameter, 3-20
IGBT NTC Temp8 parameter, 3-20
Inductance parameter, 3-11
Input Current R parameter, 3-4
Input Current S parameter, 3-4
Input Current T parameter, 3-4
Input Voltage RS parameter, 3-4
Input Voltage ST parameter, 3-4
Input Voltage TR parameter, 3-4
Inputs \& Outputs File, 3-20
IT Overload parameter, 3-4

J

Junct Temp Alrm parameter, 3-10
Junct Temp Trip parameter, 3-10

K

kVAR Reference parameter, 3-7

L

Language parameter, 3-13
Life Power Time parameter, 3-5
Life Pwr Cycles parameter, 3-5
Life Run Time parameter, 3-5
Life Time kWh parameter, 3-5
Limit Config File, 3-9

Line Frequency parameter, 3-5
linear list of parameters, 3-23
Logic Mask Act parameter, 3-19
Logic Mask parameter, 3-18
Low Vac Limit parameter, 3-9
Low Vac Time parameter, 3-9
LPM20 liquid-cooled AC drive installation information reference, P-1

M

Manual Control parameter, 3-6
manual conventions, P-2
Masks \& Owners Parameter Group, 3-18
Min Line Freq parameter, 3-5
Min Max Persist parameter, 3-5
Modulation Freq parameter, 3-7
Modulation Index parameter, 3-7
Monitor File, 3-4
Motoring kWh parameter, 3-4
Mux'ed Temps Parameter Group, 3-20

0

Option Select parameter, 3-6
Output Powr Fctr parameter, 3-4

P

Parallel Config parameter, 3-12
Param Access Lvl parameter, 3-13
parameter cross-reference
by name, 3-22
by number, 3-23
parameter linear list, 3-23
Parameters
AC High Freq Lmt, 3-10
AC High Freq Time, 3-10
AC Line kW, 3-4
AC Low Freq Lmt, 3-10
AC Low Freq Time, 3-10
Active Current, 3-4
Active I Cmd, 3-11
Active I Lmt, 3-9
Active OL I Lmt, 3-9
Alarm Config, 3-16
Alarm Status, 3-13
Ambient Temp, 3-5

Ambnt Temp Alrm, 3-10
Ambnt Temp Trip, 3-10
Base Temp Alrm, 3-10
Base Temp Trip, 3-10
Bus Capacitance, 3-12
CAN Bus Off Cnt, 3-18
Capacitance, 3-12
Change Line Freq, 3-5
CldPIt Temp Alrm, 3-10
CML Bandwidth, 3-11
CML Damping, 3-11
CML Ki, 3-11
CML Kp, 3-11
Coldplate Temp1, 3-20
Coldplate Temp2, 3-20
Connect Status, 3-17
Control SW Ver, 3-13
Converter Control, 3-7
Converter Fault, 3-8
Converter Min Vdc, 3-8
Converter Status, 3-8
CS Msg Bad Cnt, 3-18
CS Msg Rx Cnt, 3-17
CS Msg Tx Cnt, 3-17
CS Timeout Cnt, 3-17
Current Lmt Gain, 3-9
Current Lmt Val, 3-9
Data In A1, 3-17
Data \ln A2, 3-17
Data In B1, 3-17
Data In B2, 3-17
Data \ln C1, 3-17
Data In C2, 3-17
Data In D1, 3-17
Data In D2, 3-17
Data Out A1, 3-17
Data Out A2, 3-17
Data Out B1, 3-17
Data Out B2, 3-17
Data Out C1, 3-17
Data Out C2, 3-17
Data Out D1, 3-17
Data Out D2, 3-17
DcLink Command, 3-11
DcLink Reference, 3-7
DcLink Ripple, 3-4
DcLink Voltage, 3-4
Dig In Frc Data, 3-21
Dig In Frc Mask, 3-20
Dig In Status, 3-20
Dig Out Frc Data, 3-21

Dig Out Frc Mask, 3-21
Dig Out Status, 3-21
DPI Error Out, 3-17
Drive Checksum, 3-13
Elapsed Run Time, 3-5
Extern Cml Ref, 3-7
Fault 1 Code, 3-15
Fault 1 Time, 3-15
Fault 2 Code, 3-15
Fault 2 Time, 3-15
Fault 3 Code, 3-16
Fault 3 Time, 3-16
Fault 4 Code, 3-16
Fault 4 Time, 3-16
Fault Amps D, 3-14
Fault Amps Q, 3-14
Fault Amps R, 3-14
Fault Amps S, 3-14
Fault Amps T, 3-14
Fault Clear, 3-15
Fault Clr Mask, 3-18
Fault Clr Owner, 3-18
Fault Config, 3-15
Fault Frequency, 3-14
Fault Volts RS, 3-14
Fault Volts ST, 3-14
Fault Volts TR, 3-14
Fault Volts Vdc, 3-14, 3-15
Ground Current, 3-4
High Vac Lmt, 3-9
High Vac Time, 3-9
I Imbalance, 3-4
I Imbalance Lmt, 3-9
IGBT Base Temp, 3-5
IGBT Junction Temp, 3-5
IGBT NTC Temp1, 3-20
IGBT NTC Temp2, 3-20
IGBT NTC Temp3, 3-20
IGBT NTC Temp4, 3-20
IGBT NTC Temp5, 3-20
IGBT NTC Temp6, 3-20
IGBT NTC Temp7, 3-20
IGBT NTC Temp8, 3-20
Inductance, 3-11
Input Current R, 3-4
Input Current S, 3-4
Input Current T, 3-4
Input Voltage RS, 3-4
Input Voltage ST, 3-4
Input Voltage TR, 3-4
IT Overload, 3-4

Junct Temp Alrm, 3-10
Junct Temp Trip, 3-10
kVAR Reference, 3-7
Language, 3-13
Life Power Time, 3-5
Life Pwr Cycles, 3-5
Life Run Time, 3-5
Life Time kWh, 3-5
Line Frequency, 3-5
Logic Mask, 3-18
Logic Mask Act, 3-19
Low Vac Limit, 3-9
Low Vac Time, 3-9
Manual Control, 3-6
Min Line Freq, 3-5
Min Max Persist, 3-5
Modulation Freq, 3-7
Modulation Index, 3-7
Motoring kWh, 3-4
Option Select, 3-6
Output Powr Fctr, 3-4
Parallel Config, 3-12
Param Access Lvl, 3-13
Password, 3-13
PC Msg Rx Cnt, 3-18
PC Msg Tx Cnt, 3-18
PC Timeout Cnt, 3-18
PF Bandwidth, 3-11
Port Mask Act, 3-18
Power Up Marker, 3-15
PWM Frequency, 3-10
Rated Amps, 3-4
Rated Power, 3-4
Reactive Current, 3-4
Reactive I Cmd, 3-11
Reactive I Lmt, 3-11
Reactive RateLmt, 3-9
Reduce llmt Sel, 3-11
Regen I Lmt, 3-9
Regen kWh, 3-4
Reset Meters, 3-13
Reset to Defaults, 3-13
Ride Through Sec, 3-9
Speed Mode, 3-6
Start Inhibit, 3-14
Start Mask, 3-18
Start Owner, 3-18
Stop Owner, 3-18
Testpoint 1 Data, 3-15
Testpoint 1 Sel, 3-15
Testpoint 2 Data, 3-15

Testpoint 2 Sel, 3-15
Turn Off Delay, 3-7
V Imbalance, 3-4
V Imbalance Lmt, 3-9
V Imbalance Time, 3-10
VML Bandwidth, 3-12
VML Damping, 3-12
VML Kf, 3-12
VML Ki, 3-12
VML Kp, 3-12
VML Reset Level, 3-12
Voltage Loop Sel, 3-11
Write Mask Act, 3-19
Write Mask Cfg, 3-19
Password parameter, 3-13
PC Msg Rx Cnt parameter, 3-18
PC Msg Tx Cnt parameter, 3-18
PC Timeout Cnt parameter, 3-18
PF Bandwidth parameter, 3-11
Port Mask Act parameter, 3-18
Power \& Time Parameter Group, 3-4
Power Up Marker parameter, 3-15
PowerFlex 700 Vector Control (standard) information reference, P-1
PowerFlex 700S Phase II Control (optional) information reference, P-2
PowerFlex Liquid-Cooled AC Drive installation information reference, P-1
precautions, general, P-3
PWM Frequency parameter, 3-10

R

Rated Amps parameter, 3-4
Rated Power parameter, 3-4
Reactive Current parameter, 3-4
Reactive I Cmd parameter, 3-11
Reactive I Lmt parameter, 3-11
Reactive RateLmt parameter, 3-9
Reduce Ilmt Sel parameter, 3-11
reference literature, P-2
Regen I Lmt parameter, 3-9
Regen kWh parameter, 3-4
removing active converter control cassette, 1-2
removing active converter power module covers, 1-2
Reset Meters parameter, 3-13

Reset to Defaults parameter, 3-13
Ride Through Sec parameter, 3-9

S

Security Parameter Group, 3-18
Setpoints Parameter Group, 3-7
Speed Mode parameter, 3-6
Start Inhibit parameter, 3-14
Start Mask parameter, 3-18
Start Owner parameter, 3-18
Start/Stop Parameter Group, 3-6
static discharge (ESD), P-3
Stop Owner parameter, 3-18

T

technical support, P-2
Temperature Parameter Group, 3-5, 3-10
terminal block wire size
I/O - Active Converter Control Board, 1-5
Testpoint 1 data parameter, 3-15
Testpoint 1 Sel parameter, 3-15
Testpoint 2 data parameter, 3-15
Testpoint 2 Sel parameter, 3-15
troubleshooting, 4-1
Turn Off Delay parameter, 3-7

U

Utility File, 3-13

V

V Imbalance Lmt parameter, 3-9
V Imbalance parameter, 3-4
V Imbalance Time parameter, 3-10
Vector Control (standard) information reference, P-1
VML Bandwidth parameter, 3-12
VML Damping parameter, 3-12
VML Kf parameter, 3-12
VML Ki parameter, 3-12
VML Kp parameter, 3-12
VML Reset Level parameter, 3-12
Voltage Loop Parameter Group, 3-11
Voltage Loop Sel parameter, 3-11

Voltage Parameter Group, 3-4

W

web site for reference literature, P-2
wiring active converter control cassette I/O terminals, 1-4
Write Mask Act parameter, 3-19
Write Mask Cfg parameter, 3-19
U.S. Allen-Bradley Drives Technical Support - Tel: (1) 262.512.8176, Fax: (1) 262.512 .2222 , Email: support@drives.ra.rockwell.com, Online: www.ab.com/support/abdrives

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA,Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444 Europe/Middle East/Africa: Rockwell Automation,Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium,Tel: (32) 2663 0600, Fax: (32) 26630640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong,Tel: (852) 2887 4788, Fax: (852) 25081846

[^0]: ${ }^{(1)}$ Maximum/minimum that the terminal block will accept - these are not recommendations.

[^1]: ${ }^{(1)}$ See page 4-1 for a description of fault types.
 (2) These faults only apply to Frame 3 power structures.
 ${ }^{(3)}$ These faults are reserved for future use.
 ${ }^{(4)}$ These faults only apply when operating the Active Converter as a Stand Alone unit (DPI Master).

