
DriveLogix System
5720

User Manual

Important User Information

Solid state equipment has operational characteristics differing from those of
electromechanical equipment. �Safety Guidelines for the Application, Installation and
Maintenance of Solid State Controls� (Publication SGI-1.1 available from your local
Rockwell Automation Sales Office or online at http://www.ab.com/manuals/gi)
describes some important differences between solid state equipment and
hard-wired electromechanical devices. Because of this difference, and also
because of the wide variety of uses for solid state equipment, all persons
responsible for applying this equipment must satisfy themselves that each
intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect
or consequential damages resulting from the use or application of this
equipment.

The examples and diagrams in this manual are included solely for illustrative
purposes. Because of the many variables and requirements associated with any
particular installation, Rockwell Automation, Inc. cannot assume responsibility
or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to
use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without
written permission of Rockwell Automation, Inc. is prohibited.

Throughout this manual we use notes to make you aware of safety
considerations.

ATTENTION

!
Identifies information about practices or circumstances
that can lead to personal injury or death, property damage,
or economic loss.

IMPORTANT Identifies information that is critical for successful
application and understanding of the product.

Rockwell Automation
Support

Before you contact Rockwell Automation for technical assistance, we suggest
you please review the troubleshooting information contained in this
publication first.

If the problem persists, call your local distributor or contact Rockwell
Automation in one of the following ways:

Be prepared to furnish the following information when you contact support:

• Product Catalog Number

• Product Serial Number

• Firmware Revision Level

Your Questions or Comments on this Manual

If you find a problem with this manual, please notify us of it on the enclosed
How Are We Doing form.

Phone United
States/Canada

1.262.512.8176 (7 AM - 6 PM CST)
1.440.646.5800 (24 hour support)

Outside United
States/Canada

You can access the phone number for your
country via the Internet:
1. Go to http://www.ab.com

2. Click on Support
(http://support.automation.rockwell.com)

3. Under Contact Customer Support, click on
Phone Support

Internet ⇒ Go to http://ab.com/support/abdrives

Email ⇒ support@drives.ra.rockwell.com

Table of Contents
Rockwell Automation Support . 3

Summary of Changes
Introduction . 1

Preface
Purpose of this Manual . 1
Who Should Use This Manual . 2
When to Use This Manual. 2
How to Use this Manual . 2
Controller Firmware Revision. 2

Chapter 1 Getting Started
Introduction . 1
Connecting Battery . 2
Creating and Downloading a Project . 3
Creating a project . 4
Changing project properties . 5
Configuring the host PowerFlex 700S Drive . 6
Configuring the host PowerFlex 700S Drive (continued) . 7
Adding a local input module1 . 8
Adding a local input module (continued) . 9
Adding a local output module . 10
Adding a local output module (continued) . 11
Adding a local analog module. 12
Adding a local analog module (continued) . 13
Changing module properties . 14
Viewing I/O tags . 15
Creating other tags . 16
Documenting I/O with alias tags. 17
Entering logic . 18
Entering logic (continued). 19
Downloading a project . 20
Viewing program scan time. 21
Viewing controller memory usage . 22
What To Do Next . 22

Chapter 2 What Is DriveLogix?
Using This Chapter . 1
Developing programs . 2
Using the Event Task. 6
How the DriveLogix System Uses Connections . 9
Determining Connections for Produced and Consumed Tags . 10
Determining Connections for Messages . 11
Determining Connections for I/O Modules . 12
Determining Total Connection Requirements. 17
Downloading Projects . 20
Selecting a System Overhead Percentage . 22

2 Table of Contents

Chapter 3 Placing and Configuring the Drive
Using This Chapter . 1
Understanding the Interface to the Drive. 1
Determining When the Controller Updates the Drive . 3
Placing and Configuring the Drive . 4
Inhibiting the Drive Connection . 13
Using DriveExecutive Lite. 15
Accessing Drive Data . 23
Monitoring Drive Data. 23

Chapter 4 Placing and Configuring Local I/O
Using This Chapter . 1
Placing Local I/O Modules . 2
Determining When the Controller Updates I/O. 3
Configuring a DIN Rail . 5
Configuring Local I/O Modules . 6
Inhibiting I/O Module Operation. 10
Accessing I/O Data . 13
Monitoring I/O Modules . 16

Chapter5 Configuring DriveLogix Motion
Using This Chapter . 1
Configuring the Drive . 2
Programming the Controller . 5
Supported Motion Commands . 12

Chapter 6 Communicating with Devices on an EtherNet/IP Link
Using This Chapter . 1
Configuring Your System for a EtherNet/IP Link . 1
Configuring Remote I/O . 8
Sending Messages . 13
Producing and Consuming Data . 20
Guidelines for Configuring Connections. 23
Example 1: DriveLogix Controller and Remote I/O . 23
Example 2: DriveLogix Controller to DriveLogix Controller . 25
Example 3: DriveLogix Controller to Other Devices . 29

Chapter 7 Communicating with Devices on a ControlNet Link
Using This Chapter . 1
Configuring Your System for a ControlNet Link . 1
Configuring Remote I/O . 5
Scheduling the ControlNet Network . 10
Sending Messages . 11
Producing and Consuming Data . 17
Guidelines for Configuring Connections. 21
Example 1: DriveLogix Controller and Remote I/O . 22
Example 2: DriveLogix Controller to DriveLogix Controller . 24
Example 3: DriveLogix Controller to Other Devices . 28

Table of Contents 3

Chapter 8 Communicating with Devices on a DeviceNet Link
Using This Chapter . 1
Configuring Your System for a DeviceNet Link. 1
Placing DeviceNet Devices . 5
Accessing DeviceNet Devices. 6
Placing the Communication Card in Run Mode . 9
Example 1: DriveLogix Controller and DeviceNet Devices . 10
Example 2: Using a 1788-CN2DN Linking Device . 11

Chapter 9 Communicating with Devices on a Serial Link
Using This Chapter . 1
Configuring Your System for a Serial Link . 1
Example 1: Workstation Directly Connected to a DriveLogix Controller 8
Example 2: Workstation Remotely Connected to a DriveLogix Controller 9
Example 3: DriveLogix Controller to a Bar Code Reader . 14

Chapter 10 Communicating with Devices on a DH-485 Link
Using This Chapter . 1
Configuring Your System for a DH-485 Link. 1
Planning a DH-485 Network. 4
Installing a DH-485 Network . 6
Example: DriveLogix Controller, ControlLogix Controller, and SLC Controller on the Same
DH-485 Network. 9

Chapter11 Communicating with Devices on a Third-Party Link
Using This Chapter . 1
Configuring Your System for a Third-Party Link . 1

Chapter12 DriveLogix Back-Up on DeviceNet
Using This Chapter . 1
How the Back-up Works . 2
Power-Up and System Start-up . 4
Developing the DriveLogix Back-Up Application . 6
Using Indicators to Check Status . 13
Development and Debugging Tips . 13

Appendix A DriveLogix System Specifications
Using This Appendix . 1
DriveLogix Controller. 1
1756-BA1 Battery . 3
DriveLogix Controller Serial Cables. 4
DriveLogix Controller LEDs. 6

Appendix B Installing and Maintaining the Battery
Using this Appendix . 1
Connecting the Battery . 1
Storing Replacement Batteries . 2
Estimating Battery Life . 2
Replacing a Battery . 3

4 Table of Contents

Appendix C Access Procedures
Using this Appendix . 1
Removing Cover(s) . 2
Removing Cover (For High Power Drives) . 3
Replacing Cover(s) . 4
Replacing Cover(s) Continued. 5
Replacing Cover (For High Power Drives) . 6

Index

Summary of Changes

Introduction This version of the DriveLogix System User Manual corresponds to version 11
and later of the controller firmware. Changes made to this manual include:

For this updated information: See:

Using the Event Task 2-6

How the DriveLogix System Uses Connections 2-9

Determining Connections for Produced and Consumed Tags 2-10

Determining Connections for Messages 2-11

Determining Connections for I/O Modules 2-12

Configuring DriveLogix Motion 5-1

Communicating with Devices on a Third-Party Link 11-1

DriveLogix Back-Up on DeviceNet 12-1

Access Procedures C-1
1 Publication 20D-UM002C-EN-P - November 2003

 2

Notes:
Publication 20D-UM002C-EN-P - November 2003

Preface

Purpose of this Manual This manual guides the development of projects for DriveLogix controllers. It
provides procedures on how to establish communications:

• over the following networks
� ControlNet
� DeviceNet
� serial

• with the following devices

� PowerFlex® 700S drive
� controllers
� I/O
� workstations
� PanelView terminals

This manual works together with the Logix5000 Controllers Common Procedures
Programming Manual, publication 1756-PM001, which covers the following
tasks:

• Manage project files
• Organize your logic
• Organize tags
• Program routines
• Test a project
• Handle faults

This manual works together with the Logix Controller Motion Instruction Set,
publication 1756-RM007D, which covers the following aspects of Logix
Motion commands:

• Instruction Names
• Operands
• Structured Text
• Motion Instruction Structure
• Fault Conditions
• Execution
• Error Codes
• Status Bits
1 Publication 20D-UM002C-EN-P - November 2003

 2

Who Should Use
This Manual

This manual is intended for those individuals who program applications that
use DriveLogix controllers, such as:

• software engineers
• control engineers
• application engineers
• instrumentation technicians

When to Use This Manual Use this manual:
• when you are ready to integrate your application with the PowerFlex

700S drive, I/0 devices, controllers, and networks in your system.
• after you perform these actions:

� develop the basic code for your application
� perform isolated tests of your application

How to Use this Manual This manual is divided into the basic tasks that you perform while
programming a DriveLogix controller. Each chapter covers a main task, such
as communicating over a specific network. For each main task, the chapter:

• lists what you need
• describes the steps to follow to accomplish that task
• provides details for each step, as necessary
• includes example system configurations

Controller Firmware
Revision

This revision of the DriveLogix User Manual corresponds to the following:

• version 12 and later of the controller firmware
• version 12 of RSLogix 5000 programming software
• version 2.02 of DriveExecutive programming software
Publication 20D-UM002C-EN-P - November 2003

Chapter 1

Getting Started

Introduction This chapter introduces the DriveLogix controller and provides a quick
overview on creating and downloading a project. The steps in this chapter
introduce the basic aspects of the DriveLogix controller.

The DriveLogix controller offers state-of-art control, communications, and
I/O elements in a embedded control package.

This example DriveLogix system demonstrates:

• Centralized control using a ControlLogix� controller to coordinate
several DriveLogix controllers.

• Distributed control using DriveLogix controllers at several locations.
• DriveLogix controller controlling a maximum of 8 local I/O modules.
• Local RS-232 connection for remote upload/download of a controller

project, for DF1 master/slave communications, or for ASCII
programming.

• Networked DriveLogix controllers using 1788-CNC, -CNCR
communication daugthercards to connect ControlNet links.

• Remote programming over ControlNet and EtherNet/IP.

ControlLogix controller acting as
centralized controller remote workstation

DriveLogix controller using an
RS-232 connection

DriveLogix controllers, each with a 1788-CNC, -CNCR card,
linked over ControlNet link

DriveLogix controller using local I/O
1 Publication 20D-UM002C-EN-P - November 2003

1-2 Getting Started

Connecting Battery Allen-Bradley ships the DriveLogix controller with the battery installed, but
disconnected. You must connect the battary while installing the drive. Refer
to Installing and Maintaining the Battery on page B-1 and Access Procedures
on page C-1.
Publication 20D-UM002C-EN-P - November 2003

Getting Started 1-3

Creating and Downloading
a Project

The following diagram illustrates the steps you follow to create and download
a project. The remainder of this chapter provides examples of each step.

Create a project

go to page 1-4
1

Create tags4

Enter logic5

View status7

Download
a project6

You need:

• RSLogix 5000 programming software

• RSLinx communication software

• DF1 point-to-point, serial connection from the workstation
to the controller (using 1756-CP3 or 1747-CP3 cable)

If you don’t have this hardware, you can still follow these steps.
Substitute the I/O modules you have for the ones listed here and
make the appropriate changes.

System setup for this quick start:

Local

slot 0 1794-IB16

Configure
I/O modules3

Configure
PowerFlex 700S Drive2
Publication 20D-UM002C-EN-P - November 2003

1-4 Getting Started

Creating a project

Create a project1
1. Select File → New.

Select a controller type.

Name the project.

Describe the project (optional).

Select where to store the project
(typically use the default directory).

The software creates the
new controller and displays:

Click OK.

controller organizer

2. Define the project. The software uses the project name you enter with an .ACD extension to store your project.

Select the controller revision.
Publication 20D-UM002C-EN-P - November 2003

Getting Started 1-5

Changing project properties
1. View properties for Controller quick_start.

2. View the General tab.

 The screen defaults to the General tab.

Verify that the controller settings are
correct. Make changes if necessary.

Create a project1

A. Place the cursor over the Controller quick_start folder.

B. Click the right mouse button and select Properties.

Click OK.
Publication 20D-UM002C-EN-P - November 2003

1-6 Getting Started

Configuring the host PowerFlex 700S Drive

Configure2
1. Create the PowerFlex 700S Drive module.

A. Place the cursor over the I/O Configuation folder.

B. Click the right mouse button and select New Module.

2. Select the Drive module.

Select the correct drive type.

Click the OK button

Refer to Chater 3, "Placing and Configuring the
Drive" for more detailed information.
Publication 20D-UM002C-EN-P - November 2003

Getting Started 1-7

Configuring the host PowerFlex 700S Drive (continued)

You should enter a name.

Click Next

Click on Finish to apply and save the changes.

Describe the module (optional).

Select the communication format.

Select the minor revision and

Specify electronic keying.

Configure2

Choose the correct drive rating from the
pull-down menu

TIP If no drive ratings appear, download and install DriveExecutive� Database files from:
http://www.ab.com/drives/data.html

3. Identify the drive module.

4. Use the Create wizard to configure the drive module. Use default values for this example.

If you do not want to go through each screen in the Create wizard, click Finish

Click Next

Click Next
Publication 20D-UM002C-EN-P - November 2003

1-8 Getting Started

Adding a local input module1

Configure3
1. Create a new module.

2. Select an input module to add.

Select a catalog number.

Click OK.

continued

A. Place the cursor over the local DIN rail (FlexBus Local).

B. Click the right mouse button and select New Module.

Refer to Chater 4, "Placing and Configuring Local I/O"
for more detailed information.
Publication 20D-UM002C-EN-P - November 2003

Getting Started 1-9

Adding a local input module (continued)

Configure3
3. Identify the input module.

You should enter a name.

Describe the module (optional).

Specify electronic keying.
Select the communication format.

These screens are specific to the 1794-IB16 input module.

4. Use the Create wizard to configure the input module. Use default values for this example.

If you do not want to go through each screen in the Create wizard, click Finish

Click Finish.

Click Next.

Click Next
Publication 20D-UM002C-EN-P - November 2003

1-10 Getting Started

Adding a local output module

Configure3
1. Create a new module.

2. Select an output module to add.

Select a catalog number.

Click OK.

continued

A. Place the cursor over the local DIN rail (FlexBus Local)

B. Click the right mouse button and select New Module.
Publication 20D-UM002C-EN-P - November 2003

Getting Started 1-11

Adding a local output module (continued)

Configure3
3. Identify the output module.

Click Next.

These screens are specific to the 1794-OB16 output module.

4. Use the Create wizard to configure the output module.

Click Finish.

You should enter a name.

Describe the module (optional).

Specify electronic keying.
Select the communication format.

Use default values for this example.

If you do not want to go through each screen in the Create wizard, click

Click Next.
Publication 20D-UM002C-EN-P - November 2003

1-12 Getting Started

Adding a local analog module

Configure3
1. Create a new module.

2. Select an output module to add.

Select a catalog number.

For this quick start example, select

Click OK.

continued

A. Place the cursor over the local DIN rail (FlexBus Local)

B. Click the right mouse button and select New Module.
Publication 20D-UM002C-EN-P - November 2003

Getting Started 1-13

Adding a local analog module (continued)

Configure3
3. Identify the output module.

Click Next.

These screens are specific to the 1794-OB16 output module.

4. Use the Create wizard to configure the output module.

Click Finish.

You should enter a name.

Describe the module (optional).

Specify electronic keying.
Select the communication format.

Use default values for this example.

If you do not want to go through each screen in the Create wizard, click

Click Next.
Publication 20D-UM002C-EN-P - November 2003

1-14 Getting Started

Changing module properties
1. View properties for the module.

2. View the General tab.

The screen defaults to the General tab.

Verify that the module settings are
correct. Make changes if necessary.

A. Place the cursor over the 1794-IB16 module.

B. Click the right mouse button and select Properties.

Configure3

Click OK.

The tabs that appear depend on the type of module.

Important: If you want to change the communication format of a module, you must
Publication 20D-UM002C-EN-P - November 2003

Getting Started 1-15

Viewing I/O tags

The software displays the module-defined tags for the I/O modules you created.

PowerFlex 700S tags

1794-IB16 module tags

Click the Edit Tags tab.

Place the cursor on the Controller Tags folder and
double-click.

Configure3
1. View the tags for the controller.

Local rail tags

1794-OB16 module tags

1794-IF2XOF2I module tags
Publication 20D-UM002C-EN-P - November 2003

1-16 Getting Started

Creating other tags

Create tags4
1. Create a tag.

Enter the name of the new tag. Tab to this column and select the data type.

2. Select the data type.

Select TIMER.

Click OK.

The software displays the tag.

Click + to display the members
of the TIMER structure.

continued
You might have to resize the column to see the tag extensions.
Publication 20D-UM002C-EN-P - November 2003

Getting Started 1-17

Documenting I/O with alias tags
1. Create an alias tag input_1 for Local:0:I.Data.1.

Enter the name of the tag. Tab here or click in the box.

2. Select an input data word.

Click here to display a grid of
bits and select the input bit.

Create tags4

3. Repeat steps 1 and 2 above to create an alias tag output_1 for Local:1:O.Data.1
Publication 20D-UM002C-EN-P - November 2003

1-18 Getting Started

Entering logic

Enter logic5
1. Use default task, program, and routine.

Double-click MainRoutine.

When you created the project, the software
automatically created a MainTask, MainProgram, and
MainRoutine. Use these defaults for this example.

2. Enter an XIO instruction.

The software displays an empty routine.

Drag and drop the XIO instruction on an empty rung.
Publication 20D-UM002C-EN-P - November 2003

Getting Started 1-19

Entering logic (continued)

Enter logic5
3. Assign a tag to the XIO instruction.

Double-click the tag area of the instruction.

4. Enter this logic.

Use the drop-down menu to select input_1.

The software displays an incomplete rung.

5. To save the project, from the File menu, select Save.
Publication 20D-UM002C-EN-P - November 2003

1-20 Getting Started

Downloading a project

Download
a project6

1. Make a serial connection from the workstation to the controller.

2. Configure an RSLinx communication driver:

A. In RSLinx software, select Communication → Configure Driver.

B. From the Available Driver Types list, select “RS-232 DF1 Devices”
and click Add New.

C. Select the “Logix5550/CompactLogix serial port” and specify the
COM port. Click Autoconfigure to have the software determine the
remaining serial settings.

4. Place the controller in Remote Run mode.

A. In RSLogix 5000 software, select Communication → “Who Active”.

B. Expand the DF1 network and select your controller.

C. Click Download. Confirm the download when prompted.

3. Download the project from the Communications menu:
Publication 20D-UM002C-EN-P - November 2003

Getting Started 1-21

Viewing program scan time

View
status7

1. View properties for the MainProgram.

2. Select the Configuration tab.

The Configuration tab displays the maximum
and last scan times for the program.

A. Place the cursor over the MainProgram folder.

B. Click the right mouse button and select Properties.
Publication 20D-UM002C-EN-P - November 2003

1-22 Getting Started

Viewing controller memory usage

What To Do Next Once your controller is installed and operating, you can use RSLogix� 5000
programming software to develop and test your control application.

Use the remaining chapters in this manual as reference material for how the
DriveLogix controller operates in the Logix environment.

View
status7

2. Select the Advanced tab.

In addition to other information, the Advanced tab
displays controller memory usage.

1. View properties for Controller quick_start.

A. Place the cursor over the Controller quick_start folder.

B. Click the right mouse button and select Properties.

Important: The amount of memory that the software displays includes
both the user available memory and the memory reserved for overhead.
See the specifications for your controller to determine how much memory
you have available for programming. This dialog box might display a higher
number, but the additional memory is required by system overhead and may
not be available for programming.
Publication 20D-UM002C-EN-P - November 2003

Chapter 2

What Is DriveLogix?

Using This Chapter The DriveLogix controller is part of the Logix environment. The DriveLogix
controller provides a distributed control system built on these components:

• DriveLogix controller that supports the Logix instructions.
• RSLogix 5000 programming software that supports every

Logix controller.
• Direct connection to host PowerFlex 700S drive.
• FLEX� I/O modules that provide a compact, DIN-rail mounted

I/O system.
• 1788 communication daughtercard that provides communication over a

standards-based ControlNet, EtherNet/IP or DeviceNet network.

The DriveLogix controller
supports FLEX I/O modules.

1788 communication daughtercard installs
directly in the DriveLogix controller.

The same RSLogix 5000
programming software supports
program development for all Logix

For information about: See page

developing programs 2-2

how the DriveLogix system uses connections 2-9

selecting a system overhead percentage 2-22
1 Publication 20D-UM002C-EN-P - November 2003

2-2 What Is DriveLogix?

Developing programs The controller operating system is a preemptive multitasking system that is
IEC 1131-3 compliant. This environment provides:

• tasks to configure controller execution
• programs to group data and logic
• routines to encapsulate executable code written in a single programming

language

control application

controller fault handler

task 8

task 1
configuration

status

watchdog
program 32

program 1

main routine

fault routine

program (local)
tags

other routines

controller (global) tags I/O data system-shared data
Publication 20D-UM002C-EN-P - November 2003

What Is DriveLogix? 2-3

Defining tasks

A task provides scheduling and priority information for a set of one or more
programs. You can configure tasks as either continuous or periodic. The
DriveLogix controller supports as many as 8 tasks, only one of which can
be continuous.

A task can have as many as 32 separate programs, each with its own executable
routines and program-scoped tags. Once a task is triggered (activated), all the
programs assigned to the task execute in the order in which they are grouped.
Programs can only appear once in the Controller Organizer and cannot be
shared by multiple tasks.

Specifying task priorities

Each task in the controller has a priority level. The operating system uses the
priority level to determine which task to execute when multiple tasks are
triggered. There are 15 configurable priority levels for periodic tasks that range
from 1-15, with 1 being the highest priority and 15 being the lowest priority. A
higher priority task will interrupt any lower priority task. The continuous task
has the lowest priority and is always interrupted by a periodic task.

The DriveLogix controller uses a dedicated periodic task at priority 7 to
process I/O data. This periodic task executes at the fastest RPI (Requested
Packet Interval) you have scheduled for the DriveLogix system. Its total
execution time is as long as it takes to scan the configured I/O modules.

How you configure your tasks affects how the controller receives I/O data.
Tasks at priorities 1-6 can starve the dedicated I/O task; tasks at priority 8-15
can be starved by the dedicated I/O task.

TIP For typical applications, the periodic task priority should be
set at a priority level lower than 7. (Remember, priority
levels are ranked in ascending order�a priority lower than 7
means a priority level of 8-15.) The default priority of 10
should be sufficient for most applications.

If a periodic task must execute without interruption from
the I/O update task, set the priority level higher than 7 (i.e.
1-6).
Publication 20D-UM002C-EN-P - November 2003

2-4 What Is DriveLogix?

The following example shows the task execution order for an application with
periodic tasks and a continuous task.

Notes:

A. The highest priority task interrupts all lower priority tasks.

B. The dedicated I/O task can be interrupted by tasks with priority levels
1-6. The dedicated I/O task interrupts tasks with priority levels 8-15.
This task runs at the fastest RPI rate scheduled for the DriveLogix
system (5ms in this example).

C. The continuous task runs at the lowest priority and is interrupted by all
other tasks.

D. A lower priority task can be interrupted multiple times by a higher
priority task.

E. When the continuous task completes a full scan it restarts immediately,
unless a higher priority task is running.

Task: Priority Level: Task Type: Actual
Execution Time:

Worst Case
Execution Time:

1 5 20ms periodic task 2ms 2ms

2 7 dedicated I/O task

5ms fastest RPI

1ms 3ms

3 10 10ms periodic task 4ms 8ms

4 none (lowest) continuous task 25ms 60ms

0 30252015105 454035 50 656055

Task 1

Task 2

Task 3

Task 4
Publication 20D-UM002C-EN-P - November 2003

What Is DriveLogix? 2-5

Defining programs

Each program contains program tags, a main executable routine, other
routines, and an optional fault routine. Each task can schedule as many as 32
programs.

The scheduled programs within a task execute to completion from first to last.
Programs that aren�t attached to any task show up as unscheduled programs.
You must specify (schedule) a program within a task before the controller can
scan the program.

Defining routines

A routine is a set of logic instructions in a single programming language, such
as ladder logic. Routines provide the executable code for the project in a
controller. A routine is similar to a program file or subroutine in a PLC or
SLC processor.

Each program has a main routine. This is the first routine to execute when the
controller triggers the associated task and calls the associated program. Use
logic, such as the JSR instruction, to call other routines.

You can also specify an optional program fault routine. The controller
executes this routine if it encounters an instruction-execution fault within any
of the routines in the associated program.
Publication 20D-UM002C-EN-P - November 2003

2-6 What Is DriveLogix?

Using the Event Task The event task is available with DriveLogix controllers using firmware version
12.x or greater. Previously, the only tasks available were the continuous task
and periodic task. However, the event task offers DriveLogix controller users a
task that executes a section of logic immediately when an event occurs.

An event task performs a function only when a specific event (trigger) occurs.
Whenever the trigger for the event task occurs, the event task:

• interrupts any lower priority tasks
• executes one time
• returns control to where the previous task left off

For DriveLogix controller, the event task trigger can only be the EVENT
instruction.

Prioritizing Periodic and Event Tasks

Although a DriveLogix project can contain up to 8 tasks, the controller
executes only one task at a time. If a periodic or event task is triggered while
another task is currently executing, the priority of each task tells the controller
what to do.

The DriveLogix controller has 15 priority levels for its tasks. To assign a
priority to a task, use the guidelines described in Table 2.1.

Table 2.1

If you want: Then Notes:

this task to interrupt another
task

Assign a priority number
that is less than (higher
priority) the priority number
of the other task.

• A higher priority task
interrupts all lower
priority tasks.

• A higher priority task
can interrupt a lower
priority task multiple
times.

another task to interrupt this
task

Assign a priority number
that is greater than (lower
priority) the priority number
of the other task.

this task to share controller
time with another task

Assign the same priority
number to both tasks.

The controller switches back
and forth between each task
and executes each one for
1ms.
Publication 20D-UM002C-EN-P - November 2003

What Is DriveLogix? 2-7

Triggering the Event Task

To trigger an event task based on conditions in your logic, use the EVENT
Instruction trigger.

The EVENT Instruction Only trigger requires that you use a Trigger Event Task
(EVENT) instruction to trigger the task. You can use an EVENT instruction
from multiple points in your project. Each time the instruction executes, it
triggers the specified event task.

Let an event trigger this task.

Let an EVENT instruction trigger the task.

No tag is required.

Description:

Program A executes an EVENT instruction.

The event task that is specified by the EVENT instruction executes one time.

Program B executes an EVENT instruction.

The event task that is specified by the EVENT instruction executes one time.

EVENT instruction in program A

EVENT instruction in program B

event task

1 2

1

2

Publication 20D-UM002C-EN-P - November 2003

2-8 What Is DriveLogix?

Programmatically Determine if an EVENT Instruction Triggered
a Task

To determine if an EVENT instruction triggered an event task, use a
Get System Value (GSV) instruction to monitor the Status attribute of the
task.

The controller does not clear the bits of the Status attribute once they are set.

• To use a bit for new status information, you must manually clear the bit.
• Use a Set System Value (SSV) instruction to set the attribute to a

different value.

Checklist for an EVENT Instruction Task

For more information on using the event task, see Logix5000 Controllers
Common Procedures programming manual, publication 1756-PM001.

Table 2.2 Status Attribute of the TASK Object

Attribute: Data Type: Instruction: Description:

Status DINT GSV

SSV

Provides status information about the task. Once the controller sets a bit, you
must manually clear the bit to determine if another fault of that type occurred.

To determine if: Examine this bit:

An EVENT instruction triggered the task (event task
only).

0

A timeout triggered the task (event task only). 1

An overlap occurred for this task. 2

For this: Make sure you:

❑ 1. EVENT instruction Use a Trigger Event Task (EVNT) instruction at each point in your logic that you
want to trigger the event task.

❑ 2. Task priority Configure the event task as the highest priority task.

If a periodic task has a higher priority, the event task may have to wait until the
periodic task is done.

❑ 3. Number of event tasks Limit the number of event tasks.

Each additional task reduces the processing time that is available for other tasks.
This could cause an overlap.

❑ 4. Automatic Output Processing For an event task, you can typically disable automatic output processing (default).
This reduces the elapsed time of the task.
Publication 20D-UM002C-EN-P - November 2003

What Is DriveLogix? 2-9

How the DriveLogix System
Uses Connections

The DriveLogix system uses a connection to establish a communication link
between two devices. The DriveLogix system has enough internal resources to
support a connection to every local I/O module and 32 connections through
the daughtercard (e.g. the 1788-ENBT card). However, the daughtercard�s
connection limit is the limiting factor when sizing a system.

Connections can be:

• controller to local I/O modules or local communication cards
• controller to remote I/O or remote communication modules
• controller to remote I/O (rack optimized) modules
• produced and consumed tags
• messages

You indirectly determine the number of connections the controller uses by
configuring the controller to communicate with other devices in the system.
Connections are allocations of resources that provide more reliable
communications between devices than unconnected messages. The
DriveLogix system supports both scheduled and unscheduled connections and
unconnected messages.

Method: Description:

scheduled connection

• most deterministic

• unique to ControlNet

A scheduled connection is unique to ControlNet communications. A scheduled connection
lets you send and receive data repeatedly at a predetermined rate, which is the requested
packet interval (RPI). For example, a connection to an I/O module is a scheduled connection
because you repeatedly receive data from the module at a specified rate. Other scheduled
connections include connections to:

• communication devices

• produced/consumed tags

On a ControlNet network, you must use RSNetWorx for ControlNet to enable all scheduled
connections and establish a network update time (NUT).

unscheduled connection

• deterministic

• used by both ControlNet and
EtherNet/IP

An unscheduled connection is a message transfer between controllers that is triggered by
the requested packet interval (RPI) or the program (such as a MSG instruction).
Unscheduled messaging lets you send and receive data when needed.

All EtherNet/IP connections are unscheduled.

unconnected message

• least deterministic

An unconnected message is a message that does not require connection resources . An
unconnected message is sent as a single request/response.
Publication 20D-UM002C-EN-P - November 2003

2-10 What Is DriveLogix?

The communication module you select determines the number of connections
you have available for I/O and messages:

How you configure connections determines how many remote devices a
communication card can support. If you have two communication cards, use
one for messaging (e.g. HMI) and the other for control of I/O. While one card
can support both functions, performance can improve by separating these
functions onto separate cards.

Determining Connections
for Produced and
Consumed Tags

The DriveLogix controller supports the ability to produce (broadcast) and
consume (receive) system-shared tags. Produced and consumed tags each
require connections. Over ControlNet, produced and consumed tags are
scheduled connections.

This communication card: Supports this number of connections:

1788-CNx 32 connections–the maiximum number of scheduled
connections is dependent on the RPI:

The remaining connections (or all 32, if you have no
scheduled connections) can be used for unscheduled
connections

1788-ENBT 32 connections - can be used for explicit and implicit
connections

(all 32 connections are any combination of remote
I/O, produce/consume, and messaging connections)

RPI
(with 5 ms NUT)

Max Scheduled
Connections

5 ms 3

10 ms 6

20 ms 13

40 ms 20

This type of tag: Requires these connections:

produced By default, a produced tag allows two other controllers to consume the tag, which means
that as many as two controllers can simultaneously receive the tag data. The local
controller (producing) must have one connection for the produced tag and the first
consumer and one more connection for each additional consumer (heartbeat). The default
produced tag requires as many connections as there are consumers for the produced tag.
For example, if the 3 consumers will consume the produced tag, it requires 3 connections.

As you increase the number of controllers that can consume a produced tag, you also
reduce the number of connections the controller has available for other operations, like
communications and I/O.

consumed Each consumed tag requires one connection for the controller that is consuming the tag.
Publication 20D-UM002C-EN-P - November 2003

What Is DriveLogix? 2-11

DriveLogix controllers can produce and consume tags over:
• a ControlNet network
• an EtherNet/IP network.

The total number of tags that can be produced or consumed is limited by the
number of available connections and memory. If the controller uses all of its
connections for I/O and communication devices, no connections are left for
produced and consumed tags.

Determining Connections
for Messages

Messages transfer data to other devices, such as other controllers or operator
interfaces. Connected messages can leave the connection open (cache) or close
the connection when the message is done transmitting. The following table
shows which messages use a connection:

Connected messages are unscheduled connections on both ControlNet and
EtherNet/IP networks.

If a MSG instruction uses a connection, you have the option to leave the
connection open (cache) or close the connection when the message is done
transmitting.

IMPORTANT For two controllers to share produced or consumed
tags, both controllers must be attached to the same
control network (such as a ControlNet or Ethernet/IP
network). You cannot bridge produced and
consumed tags over two networks.

This type of message: And this communication method: Uses a connection:

CIP data table read or write X

PLC2, PLC3, PLC5, or SLC (all types) CIP

CIP with Source ID

DH+ X

CIP generic CIP Optional(1)

block-transfer read or write X

(1) You can connect CIP generic messages, but for most applications, we recommend you leave CIP generic messages unconnected.

If you: Then:

Cache the connection The connection stays open after the MSG instruction is done.
This optimizes execution time. Opening a connection each time
the message executes increases execution time.

Do not cache the
connection

The connection closes after the MSG instruction is done. This
frees up that connection for other uses.
Publication 20D-UM002C-EN-P - November 2003

2-12 What Is DriveLogix?

The controller has the following limits on the number of connections that you
can cache:

Determining Connections
for I/O Modules

The DriveLogix system uses connections to transmit I/O data. These
connections can either be direct connections or rack-optimized connection.
Over ControlNet, I/O connections are scheduled connections:

Connections for local I/O modules

The DriveLogix controller automatically assigns one rack-optimized
connection for the local DIN rail. You then configure each I/O module on the
DIN rail to either use that rack-optimized connection or to use a direct
connection. The rack-optimized connection for the DIN rail exists whether or
not you configure the I/O modules to use that rack-optimized connection.

The rack-optimized connection lets you organize all the digital I/O modules
on the DIN rail into one connection to the controller. Or you can choose to
configure each I/O module to have a direct connection to the controller.
Analog I/O modules must have a direct connection to the controller.

It is not as critical to manage the number of connections for local I/O
modules as it is for remote devices because the controller supports a direct
connection for each possible local I/O device.

If you have this software
and firmware revision:

Then you can cache:

11.x or earlier • block transfer messages for up to 16 connections

• other types of messages up to 16 connections

12.x or later up to 32 connections

Connection: Description:

direct A direct connection is a real-time, data transfer link between the controller and an I/O
module. The controller maintains and monitors the connection between the controller and
the I/O module. Any break in the connection, such as a module fault or the removal of a
module while under power, causes the controller to set fault status bits in the data area
associated with the module.

rack-optimized For digital I/O modules, you can select rack optimized communication. A rack optimized
connection consolidates connection usage between the controller and all the digital I/O
modules on a rack (or DIN rail). Rather than having individual, direct connections for each
I/O module, there is one connection for the entire rack (or DIN rail).
Publication 20D-UM002C-EN-P - November 2003

What Is DriveLogix? 2-13

Connections for remote devices

To optimize the number of available connections, place remote, digital I/O in
the same location and use a rack-optimized connection to the remote adapter
that connects the remote I/O to the DriveLogix system.

If you have remote analog I/O modules, or want a direct connection to
specific remote I/O modules, you do not have to create the rack-optimized
connection to the remote adapter. To use direct connections to remote I/O,
select �none� for the communication format of the remote communication
device.

Direct connections for I/O modules

In this example, assume that each I/O module is configured for a direct
connection to the controller.

The following table calculates the connections in this example.

IMPORTANT It is vital that you manage your connections to remote
devices because, while the DriveLogix controller allows up
to 250 total connections, the communications cards that
connect to remote devices are limited to far fewer
connections (i.e. 32 connections for ControlNet or
EtherNet/IP).

Connection: Amount:

DriveLogix controller to 3 local I/O modules

rack-optimized connection for the DIN rail

direct connection for each I/O module

1

3

DriveLogix controller to host PowerFlex 700S drive 1

total connections used: 4

! Et
he

rN
et

/IP
Publication 20D-UM002C-EN-P - November 2003

2-14 What Is DriveLogix?

Rack-optimized connections for I/O modules

In this example, assume that each I/O module is configured for a
rack-optimized connection to the controller.

The following table calculates the connections in this example.

Combining direct and rack-optimized connections

A DIN rail can have both a rack-optimized connection and direct connections.
Assume that the I/O modules in slot 0 and slot 1 on the local rail are
configured for a rack-optimized connection and that the I/O module in slot 2
is configured for a direct connection.

The following table calculates the connections in this example.

Connection: Amount:

DriveLogix controller to 3 local I/O modules

rack-optimized connection for the DIN rail 1

DriveLogix controller to host PowerFlex 700S drive 1

total connections used: 2

TIP The rack-optimized connection conserves
connections and lowers controller overhead in the
I/O update task. However, the rack-optimized
connection also limits the status and diagnostic
information that is available from the I/O modules
and is limited to a single RPI.

Connection: Amount:

DriveLogix controller to 3 local I/O modules

rack-optimized connection for the DIN rail

direct connection for one I/O module (slot 2)

1

1

DriveLogix controller to host PowerFlex 700S drive 1

total connections used: 3

! Et
he

rN
et

/IP

! Et
he

rN
et

/IP
Publication 20D-UM002C-EN-P - November 2003

What Is DriveLogix? 2-15

Connections to remote ControlNet or EtherNet/IP devices

A remote device over ControlNet and EtherNet/IP can be configured as
either a rack-optimized connection and direct connection. In this example, the
DriveLogix controller uses one rack-optimized connection to communicate
with the communication adapter to receive data from the digital I/O modules
(two in this example) and uses one direct connection to communicate with the
analog module.

The following table calculates the connections in this example.

Connection: Amount:

DriveLogix controller to 3 local I/O modules

rack-optimized connection for the DIN rail

direct connection for one I/O module (slot 2)

1

1

DriveLogix controller to communication card
(1788-CNx or 1788-ENBT)

0

DriveLogix controller to communication adapter
(rack-optimized connection for digital I/O modules)

1

DriveLogix controller to remote analog I/O module 1

DriveLogix controller to host PowerFlex 700S drive 1

total connections used: 5

total connections through the
communications card:

2 – This number is within the
connection limits of either
the 1788-CNx card (maximum
connections = 9) or the
1788-ENBT card (maximum
connections = 32).

! Et
he

rN
et

/IP
Publication 20D-UM002C-EN-P - November 2003

2-16 What Is DriveLogix?

Connections to DeviceNet devices

In this example the controller uses two connections (one for status and one for
I/O) to communicate with the DeviceNet devices through the 1788-DNBO
module. The 1788-DNBO module uses a rack-optimized connection to the
DeviceNet devices.

The following table calculates the connections in this example.

The 1788-DNBO card does not establish connections to its devices; and
therefore, the controller does not establish connections with DeviceNet
devices. The 1788-DNBO module acts as a scanner that gathers all the data
from its devices and packs that data together into one image that is passed to

Connection: Amount:

DriveLogix controller to 3 local I/O modules

rack-optimized connection for the DIN rail

direct connection for one I/O module (slot 2)

1

1

DriveLogix controller to the 1788-DNBO DeviceNet
communication card(1)

(1) DriveLogix controller connection to remote DeviceNet devices are accounted for in the 2 connections to the
1788-DNBO card.

2

DriveLogix controller to host PowerFlex 700S drive 1

total connections used: 5

PanelView 300

DeviceNet devices

DeviceNet
network

DriveLogix controller
Publication 20D-UM002C-EN-P - November 2003

What Is DriveLogix? 2-17

the controller. However, the controller can use a MSG instruction to get
information directly to or from a DeviceNet device.

Determining Total
Connection Requirements

To calculate the total connection requirements for a DriveLogix controller,
consider the connections to local I/O modules, the host PowerFlex 700S drive
and the connections to remote modules.

Use the following table to tally local connections:

Regardless of how you configure the I/O modules (rack-optimized or direct
connect) on the local rail, the controller establishes a rack-optimized
connection for the rail. The data for any I/O module configured for a
rack-optimized connection is stored in the rack-optimized connection for the
rail. You can have 8 I/O modules, for a maximum of 8 direct connections.

Connection Type: Device
Quantity:

Connections
per Device:

Total
Connections:

connection to host PowerFlex 700S drive 1 1 1

rack-optimized connection for the local DIN rail 2 1 2

I/O module (rack-optimized connection) on local rail 0

I/O module (direct connection) on local rail 1

1788-CNx ControlNet communication card 0 0

1788-DNBO communication card (rack-optimized connection) 2

1788-ENBT Ethernet/IP communication card 0 0

total
Publication 20D-UM002C-EN-P - November 2003

2-18 What Is DriveLogix?

Remote connections depend on the communication card. Use the following
table to tally remote connections:

After calculating the number of remote connections, make sure they do not
exceed the limitations of the communication card:

• each ControlNet communication card supports 32 total connections, 9
of which can be scheduled (such as direct I/O connections and
produced and consumed tags)

• the Ethernet/IP communication card supports 32 total connections of
any type

Even if the total number of connections is within the card limitations, the total
number of messages per second must also be within the card limitations. You
can estimate the number of messages per second for a connection as (2 * 1000
ms) / RPI.

The communication cards support:

• each ControlNet communication card supports 1490 messages/second

• the EtherNet/IP communication card supports 4000 messages/second

Connection Type: Device
Quantity:

Connections
per Device:

Total
Connections:

remote ControlNet communication device (such as a 1794-ACN15,
-ACNR15 or 1756-CNB, -CNBR module) configured as:

direct (none) connection or rack-optimized connection
listen-only rack-optimization (1756-CNB, -CNBR only)

0 or 1
1

remote I/O device over ControlNet (direct connection) 1

remote EtherNet/IP communication device (such as a 1794-AEN
adapter or 1756-ENBT module) configured as:

direct (none) connection or rack-optimized connection
listen-only rack-optimization (1756-ENBT only)

0 or 1
1

remote I/O device over EtherNet/IP (direct connection) 1

produced and consumed tag
produced tag and one consumer
each additional consumer

1

1

consumed tag 1

maximum active message 1

total
Publication 20D-UM002C-EN-P - November 2003

What Is DriveLogix? 2-19

This example system has these details:

• I/O modules on the local rail are digital, so configure each module for a
rack-optimized connection

• I/O modules on the extended-local rail are analog, so configure each
module for a direct connection

• I/O modules on the ControlNet network are 4 digital and 4 analog, so
configure each digital module for a rack-optimized connection and each
analog module for a direct connection

• there are no produced or consumed tags
• the controller sends 2 messages to other devices on the ControlNet

network
• the controller uses 2 connections to the 1788-DNBO module to collect

data from the DeviceNet devices

Local connections

Remote connections

controller

local rail
8 I/O modules

extended-local rail
8 I/O modules

ControlNet network
8 I/O modules

DeviceNet network

4 DeviceNet devices

Connection Type: Device
Quantity:

Connections
per Device:

Total
Connections:

rack-optimized connection to DIN rail 2 1 2

connection to host PowerFlex 700S drive 1 1 1

1788-DNBO communication card (rack-optimized connection) 1 2 2

total 5

Connection Type: Device
Quantity:

Connections
per Device:

Total
Connections:

remote ControlNet communication device

configured as a rack-optimized connection

1 1 1

I/O module over ControlNet (direct connection) 4 1 4

cached message 2 1 2

total 7
Publication 20D-UM002C-EN-P - November 2003

2-20 What Is DriveLogix?

Downloading Projects In general, you use the programming software to download a project from
your programming computer to the controller. The DriveLogix controller,
with expanded memory, supports nonvolatile memory for project storage.

To store a project in nonvolatile memory:

IMPORTANT Nonvolatile memory stores the contents of user memory at
the time that you store the project.

• Changes that you make after you store the project are
not reflected in nonvolatile memory.

• If you want to store changes such as online edits, RPI
changes, tag values, or this particular DriveLogix
controller�s portion of the ControlNet network
schedule (i.e. the portion of the ControlNet schedule
that affects the ControlNet nodes this controller makes
connections to), store the project again after you make
changes.

1. Go online with the controller.

2. View properties for the controller and select the Nonvolatile Memory tab.
Publication 20D-UM002C-EN-P - November 2003

What Is DriveLogix? 2-21

You can select:

After you load or store to or from nonvolatile memory, RSLogix 5000 software
goes offline from the controller.

For details on storing to nonvolatile memory or restoring from nonvolatile
memory, see the Logix5000 Controllers Common Procedures Programming Manual,
publication 1756-PM001.

3. Click the Load/Store button and specify when you want the controller to load the project from nonvolatile memory.

4. Click the Load button to load the project from nonvolatile memory into the controller.

In this field: Select this option: If you want:

Load Image On Power Up to load memory when you turn on or cycle the chassis
power

On Corrupt Memory to load memory whenever there is no project in the
controller and you turn on or cycle the chassis power

User Initiated only use RSLogix 5000 software to load a project

Load Mode Remote Program the controller to go to Remote Program mode after
loading from nonvolatile memory

Remote Run the controller to go to Remote Run mode after loading
from nonvolatile memory
Publication 20D-UM002C-EN-P - November 2003

2-22 What Is DriveLogix?

Selecting a System
Overhead Percentage

The Controller Properties lets you specify a percentage for system overhead.
This percentage specifies the percentage of controller time (excluding the time
for periodic tasks) that is devoted to communication and background
functions

System overhead functions include

• communicating with programming and HMI devices (such as RSLogix
5000 software)

• responding to messages
• sending messages, including block-transfers
• re-establishing and monitoring I/O connections (such as RIUP

conditions); this does not include normal I/O communications that occur
during program execution

• bridging communications from the serial port of the controller to other
communication devices

The controller performs system overhead functions for up to 1 ms at a time. If
the controller completes the overhead functions in less than 1 ms, it resumes
the continuous task.

If communications are not completing fast enough, increase the system
overhead percentage. As you increase the system overhead percentage, the
overall program scan also increases.

1. View properties for the controller and select the Advanced tab.
Publication 20D-UM002C-EN-P - November 2003

What Is DriveLogix? 2-23

The following table shows the ratio between the continuous task and the
system overhead functions:

At the default time slice of 10%, system overhead interrupts the continuous
task every 9ms (of continuous task time).

The interruption of a periodic task increases the elapsed time (clock time)
between the execution of system overhead.

At this time slice: The continuous tasks runs for: And then overhead occurs for up
to:

10% 9 ms 1 ms

20% 4 ms 1 ms

33% 2 ms 1 ms

50% 1 ms 1 ms

Legend:

Task executes.

Task is interrupted (suspended).

1 ms 1 ms

system overhead

9 ms 9 ms

continuous task

5 10 15 20 25

elapsed time (ms)

1 ms 1 ms 1 ms 1 ms

periodic task

1 ms 1 ms

system overhead

9 ms of continuous task time 9 ms of continuous task time

continuous task

5 10 15 20 25

elapsed time (ms)
Publication 20D-UM002C-EN-P - November 2003

2-24 What Is DriveLogix?

If you increase the time slice to 20%, the system overhead interrupts the
continuous task every 4ms (of continuous task time).

If you increase the time slice to 50%, the system overhead interrupts the
continuous task every 1ms (of continuous task time).

If the controller only contains a periodic task (s), the system overhead timeslice
value has no effect. System overhead runs whenever a periodic task is not
running.

1 ms 1 ms 1 ms 1 ms 1 ms

system overhead

4 ms 4 ms 4 ms 4 ms 4 ms

continuous task

5 10 15 20 25

elapsed time (ms)

1 ms

system overhead

1 ms

continuous task

5 10 15 20 25

elapsed time (ms)

periodic task

system overhead

5 10 15 20 25

elapsed time (ms)
Publication 20D-UM002C-EN-P - November 2003

Chapter 3

Placing and Configuring the Drive

Using This Chapter

Understanding the
Interface to the Drive

The DriveLogix controller supports a direct connection to the drive consisting
of 16 inputs and 16 outputs. The tag names and data types associated with the
inputs and outputs are determined by the communication format selection.
Currently, the following three communications formats are available:

• Velocity Control � for typical speed regulated applications
• Position Control � for typical positioning applications
• User-Defined Control � for general use as required.
• Motion Control - for use with Logix motion commands
• Custom User-Defined Control - for general use as required.

Each communication format contains a number of pre-defined tags and
user-defined tags.

The pre-defined tag names and data types correspond to the associated
parameters within the drive necessary to support the selected communications
format. Links must be established in the drive to support the pre-defined tags
and are configured using DriveExecutive software. Linking is a mechanism
within the drive that configures data flow within the drive. The links within the
drive to support the pre-defined tags are protected and must be present. If the
associated links are not present, or are deleted, the communication connection
between the controller and drive will be broken.

The user-defined tags are made up of a fixed number of REAL (floating point)
and DINT (double integer) data types. No links are required within the drive
to support these tags. Therefore, links may be created and deleted as required
with no affect on the communication connection between the controller and
the drive. The user-defined tags may be used to address application specific
data needs not covered by the pre-defined tags.

For Information about: See page
Understanding the Interface to the Drive 3-1
Determining When the Controller Updates the Drive 3-3
Placing and Configuring the Drive 3-4
Inhibiting the Drive Connection 3-13
Using DriveExecutive Lite 3-15
Accessing Drive Data 3-23
Monitoring Drive Data 3-23
1 Publication 20D-UM002C-EN-P - November 2003

3-2 Placing and Configuring the Drive

Mapping for Inputs and Outputs

For each of the 16 inputs or 16 outputs, there are two dedicated parameters
within the drive for a total of 64 parameters. One parameter is a DINT type
and the other is a REAL type. Selecting a communication format defines the
data types for each input and selects the correct parameter for each input and
output in the communication link. The remaining parameter is not utilized.

DriveLogix
Controller

PowerFlex 700S Drive Parameter
Number Name Data Type

Input Word 0
632 Integer Out00 DINT
633 Real Out00 REAL

Input Word 1
634 Integer Out01 DINT
635 Real Out01 REAL

Input Word 2
636 Integer Out02 DINT
637 Real Out02 REAL

Input Word 3
638 Integer Out03 DINT
639 Real Out03 REAL

Input Word 4
640 Integer Out04 DINT
641 Real Out04 REAL

Input Word 5
642 Integer Out05 DINT
643 Real Out05 REAL

Input Word 6
644 Integer Out06 DINT
645 Real Out06 REAL

Input Word 7
646 Integer Out07 DINT
647 Real Out07 REAL

Input Word 8
648 Integer Out08 DINT
649 Real Out08 REAL

Input Word 9
650 Integer Out09 DINT
651 Real Out09 REAL

Input Word 10
652 Integer Out10 DINT
653 Real Out10 REAL

Input Word 11
654 Integer Out11 DINT
655 Real Out11 REAL

Input Word 12
656 Integer Out12 DINT
657 Real Out12 REAL

Input Word 13
658 Integer Out13 DINT
659 Real Out13 REAL

Input Word 14
660 Integer Out14 DINT
661 Real Out14 REAL

Input Word 15
662 Integer Out15 DINT
663 Real Out15 REAL
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-3

Determining When the
Controller Updates the
Drive

The DriveLogix controller follows a producer/consumer model for the drive
connection, similar to the interface to an I/O module. The drive acts as both
an input module, producing data for the controller; and an output module,
consuming data from the controller. Although the producer/consumer model
multi casts data, all data in the drive connection is exclusive to the DriveLogix
controller.

The controller updates the input and output data in the drive connection
asynchronously to the logic scan, consistent with the way it handles other I/O
data. All input data from the drive is read in a single block and all output data is
written to the drive in a single block.

DriveLogix
Controller

PowerFlex 700S Drive Parameter
Number Name Data Type

Output Word 0
600 Integer In00 DINT
601 Real In00 REAL

Output Word 1
602 Integer In01 DINT
603 Real In01 REAL

Output Word 2
604 Integer In02 DINT
605 Real In02 REAL

Output Word 3
606 Integer In03 DINT
607 Real In03 REAL

Output Word 4
608 Integer In04 DINT
609 Real In04 REAL

Output Word 5
610 Integer In05 DINT
611 Real In05 REAL

Output Word 6
612 Integer In06 DINT
613 Real In06 REAL

Output Word 7
614 Integer In07 DINT
615 Real In07 REAL

Output Word 8
616 Integer In08 DINT
617 Real In08 REAL

Output Word 9
618 Integer In09 DINT
619 Real In09 REAL

Output Word 10
620 Integer In10 DINT
621 Real In10 REAL

Output Word 11
622 Integer In11 DINT
623 Real In11 REAL

Output Word 12
624 Integer In12 DINT
625 Real In12 REAL

Output Word 13
626 Integer In13 DINT
627 Real In13 REAL

Output Word 14
628 Integer In14 DINT
629 Real In14 REAL

Output Word 15
630 Integer In15 DINT
631 Real In15 REAL
Publication 20D-UM002C-EN-P - November 2003

3-4 Placing and Configuring the Drive

You must configure the Requested Packet Interval (RPI) rate for the drive.
This setting affects how fast the controller reads and writes the data in the
drive interface.

The Drive consumes data from the DriveLogix controller every 2 milliseconds,
and produces data to the controller every 2 milliseconds. The drive updates the
inputs and outputs to the controller asynchronous to both the program scan
and I/O scan of the controller.

Placing and Configuring the
Drive

When you create a project for the DriveLogix controller in RSLogix 5000, the
Controller Organizer automatically displays the local DIN rail for Flex I/O.
You must add the PowerFlex 700S drive to the configuration, in a manner
similar to adding an I/O module. The Controller Organizer automatically
places the drive in slot two.

TIP If you want data to remain constant throughout one scan,
make a copy of the data at the beginning of the scan and
use the copy throughout the scan.

1. In the Controller Organizer, select the I/O Configuration folder. Right-click the selected
folder and select New Module..

2. Select the drive (PowerFlex 700S-400V
in this example).
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-5

Electronic Keying

Electronic keying has no effect on drive module. However, the default setting
(Compatible Module) is recommended.

Selecting �Compatible Module� allows you to enter the drive firmware minor
revision.

Revision

You must enter the correct drive VPL firmware revision, in order to launch
DriveExecutive Lite and create the appropriate links for the selected
communication format. Determine the firmware revision by viewing
parameter 314 [VPL Firmware Rev] in the drive.

IMPORTANT You must select the correct voltage rating for the drive,
when adding the drive. You can find this on the drive data
nameplate.

The selection you make for the Comm Format
determines the communication format for the
connection to the drive. This determines the tag names
and data types. See page 3-6. Once you complete
adding a module, you cannot change this selection.

3. Configure the drive. Use the module properties wizard to specify characteristics for the module. Click Next

4. Click finish when you are done. The completed module appears in the Controller Organizer.
Publication 20D-UM002C-EN-P - November 2003

3-6 Placing and Configuring the Drive

Communication Formats

The communication format determines the data structure, tag names, and
required links for communication to the drive. Each communication format
has been structured to meet the requirements of a specific type of application
(Speed Control, Position Control, or general purpose), and supports a
different data structure. The links within the PowerFlex 700S required to
support the selected format are also different. Any of the available
communication formats create one direct connection to the drive.

You select the communication format when you configure the drive module.

The default communication format for the drive is Velocity Control. The tags
are created as controller-scoped tags. The following tag structure shows the
Velocity Control format. The tag structure for this example�s drive connection
has the tag name of �drive_module�.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-7

The following tables show the tag names and their relation ship to parameters
in the drive. These examples use a module name of �drive_module�.

Table 3.1 Mapping for the Velocity Control Communication Format

DriveLogix Controller Outputs PowerFlex 700S Inputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:O.LogicCommand DINT 600 Integer In00 Logic Command 151
drive_module:O.SpeedRef1 REAL 603 Real In01 Speed Ref 1 10
drive_module:O.TorqueRef1 DINT 605 Real In02 Torque Ref 1 111
drive_module:O.SpdTorqModeSel DINT 606 Integer In03 Spd/Trq ModeSel 110
drive_module:O.TorqueStep REAL 609 Real In04 Torque Step 116
drive_module:O.SpdRegDroop REAL 611 Real In05 Spd Reg Droop 86
drive_module:O.UserDefinedRealData[0] REAL 613 Real In06
drive_module:O.UserDefinedRealData[1] REAL 615 Real In07
drive_module:O.UserDefinedRealData[2] REAL 617 Real In08
drive_module:O.UserDefinedRealData[3] REAL 619 Real In09
drive_module:O.UserDefinedRealData[4] REAL 621 Real In10
drive_module:O.UserDefinedRealData[5] REAL 623 Real In11
drive_module:O.UserDefinedRealData[6] REAL 625 Real In12
drive_module:O.UserDefinedIntegerData[0] DINT 626 Integer In13
drive_module:O.UserDefinedIntegerData[1] DINT 628 Integer In14
drive_module:O.UserDefinedIntegerData[2] DINT 630 Integer In15

DriveLogix Controller Inputs PowerFlex 700S Outputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:I.LogicStatus DINT 632 Integer Out00 Logic Status 155
drive_module:I.FilteredSpdFdbk REAL 635 Real Out01 Filtered SpdFdbk 71
drive_module:I.MotorTorqueRef REAL 637 Real Out02 Motor Torque Ref 303
drive_module:I.OutputCurrent REAL 639 Real Out03 Output Current 308
drive_module:I.MCStatus DINT 640 Integer Out04 MC Status 555
drive_module:I.LocalIOStatus DINT 642 Integer Out05 Local I/O Status 824
drive_module:I.UserDefinedRealData[0] REAL 645 Real Out06
drive_module:I.UserDefinedRealData[1] REAL 647 Real Out07
drive_module:I.UserDefinedRealData[2] REAL 649 Real Out08
drive_module:I.UserDefinedRealData[3] REAL 651 Real Out09
drive_module:I.UserDefinedRealData[4] REAL 653 Real Out10
drive_module:I.UserDefinedRealData[5] REAL 655 Real Out11
drive_module:I.UserDefinedRealData[6] REAL 657 Real Out12
drive_module:I.UserDefinedIntegerData[0] DINT 658 Integer Out13
drive_module:I.UserDefinedIntegerData[1] DINT 660 Integer Out14
drive_module:I.UserDefinedIntegerData[2] DINT 662 Integer Out15
Publication 20D-UM002C-EN-P - November 2003

3-8 Placing and Configuring the Drive

Table 3.2 Mapping for the Position Control Communication Format

DriveLogix Controller Outputs PowerFlex 700S Inputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:O.LogicCommand DINT 600 Integer In00 Logic Command 151
drive_module:O.SpeedRef1 REAL 603 Real In01 Speed Ref 1 10
drive_module:O.TorqueRef1 REAL 605 Real In02 Torque Ref 1 111
drive_module:O.SpdTorqModeSel DINT 606 Integer In03 Spd/Trq ModeSel 110
drive_module:O.TorqueStep REAL 609 Real In04 Torque Step 116
drive_module:O.SpdRegDroop REAL 611 Real In05 Spd Reg Droop 86
drive_module:O.PositionControl DINT 612 Integer In06 Position Control 740
drive_module:O.CoarsePositTrgt DINT 614 Integer In07 CoarsePosit Trgt 748
drive_module:O.PtPtPositRef DINT 616 Integer In08 Pt-Pt Posit Ref 758
drive_module:O.PositRefSel DINT 618 Integer In09 Posit Ref Sel 742
drive_module:O.PositOffset1 DINT 620 Integer In10 Posit Offset 1 753
drive_module:O.UserDefinedRealData[0] REAL 623 Real In11
drive_module:O.UserDefinedRealData[1] REAL 625 Real In12
drive_module:O.UserDefinedRealData[2] REAL 627 Real In13
drive_module:O.UserDefinedIntegerData[0] DINT 628 Integer In14
drive_module:O.UserDefinedIntegerData[1] DINT 630 Integer In15

DriveLogix Controller Inputs PowerFlex 700S Outputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:I.LogicStatus DINT 632 Integer Out00 Logic Status 155
drive_module:I.FilteredSpdFdbk REAL 635 Real Out01 Filtered SpdFdbk 71
drive_module:I.MotorTorqueRef REAL 637 Real Out02 Motor Torque Ref 303
drive_module:I.OutputCurrent REAL 639 Real Out03 Output Current 308
drive_module:I.MCStatus DINT 640 Integer Out04 MC Status 555
drive_module:I.LocalIOStatus DINT 642 Integer Out05 Local I/O Status 824
drive_module:I.MtrPositFdbk DINT 644 Integer Out06 Mtr Posit Fdbk 762
drive_module:I.ActMotorPosit DINT 646 Integer Out07 Act Motor Posit 763
drive_module:I.PositionStatus DINT 648 Integer Out08 Position Status 741
drive_module:I.PositionError DINT 650 Integer Out09 Position Error 769
drive_module:I.UserDefinedRealData[0] REAL 653 Real Out10
drive_module:I.UserDefinedRealData[1] REAL 655 Real Out11
drive_module:I.UserDefinedRealData[2] REAL 657 Real Out12
drive_module:I.UserDefinedRealData[3] REAL 659 Real Out13
drive_module:I.UserDefinedIntegerData[0] DINT 660 Integer Out14
drive_module:I.UserDefinedIntegerData[1] DINT 662 Integer Out15
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-9

Table 3.3 Mapping for the User-Defined Control Communication Format

DriveLogix Controller Outputs PowerFlex 700S Inputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:O.LogicCommand DINT 600 Integer In00 Logic Command 151
drive_module:O.UserDefinedRealData[0] REAL 603 Real In01
drive_module:O.UserDefinedRealData[1] REAL 605 Real In02
drive_module:O.UserDefinedRealData[2] REAL 607 Real In03
drive_module:O.UserDefinedRealData[3] REAL 609 Real In04
drive_module:O.UserDefinedRealData[4] REAL 611 Real In05
drive_module:O.UserDefinedRealData[5] REAL 613 Real In06
drive_module:O.UserDefinedRealData[6] REAL 615 Real In07
drive_module:O.UserDefinedRealData[7] REAL 617 Real In08
drive_module:O.UserDefinedRealData[8] REAL 619 Real In09
drive_module:O.UserDefinedRealData[9] REAL 621 Real In10
drive_module:O.UserDefinedRealData[10] REAL 623 Real In11
drive_module:O.UserDefinedRealData[11] REAL 625 Real In12
drive_module:O.UserDefinedIntegerData[0] DINT 626 Integer In13
drive_module:O.UserDefinedIntegerData[1] DINT 628 Integer In14
drive_module:O.UserDefinedIntegerData[2] DINT 630 Integer In15

DriveLogix Controller Inputs PowerFlex 700S Outputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:I.LogicStatus DINT 632 Integer Out00 Logic Status 155
drive_module:I.UserDefinedRealData[0] REAL 635 Real Out01
drive_module:I.UserDefinedRealData[1] REAL 637 Real Out02
drive_module:I.UserDefinedRealData[2] REAL 639 Real Out03
drive_module:I.UserDefinedRealData[3] REAL 641 Real Out04
drive_module:I.UserDefinedRealData[4] REAL 643 Real Out05
drive_module:I.UserDefinedRealData[5] REAL 645 Real Out06
drive_module:I.UserDefinedRealData[6] REAL 647 Real Out07
drive_module:I.UserDefinedRealData[7] REAL 649 Real Out08
drive_module:I.UserDefinedRealData[8] REAL 651 Real Out09
drive_module:I.UserDefinedRealData[9] REAL 653 Real Out10
drive_module:I.UserDefinedRealData[10] REAL 655 Real Out11
drive_module:I.UserDefinedRealData[11] REAL 657 Real Out12
drive_module:I.UserDefinedIntegerData[0] DINT 658 Integer Out13
drive_module:I.UserDefinedIntegerData[1] DINT 660 Integer Out14
drive_module:I.UserDefinedIntegerData[2] DINT 662 Integer Out15
Publication 20D-UM002C-EN-P - November 2003

3-10 Placing and Configuring the Drive

Table 3.4 Mapping for the Motion Control Communication Format

DriveLogix Controller Outputs PowerFlex 700S Inputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:O.UserDefinedRealData[0] REAL 601 Real In00
drive_module:O.UserDefinedRealData[1] REAL 603 Real In01
drive_module:O.UserDefinedRealData[2] REAL 605 Real In02
drive_module:O.UserDefinedRealData[3] REAL 606 Real In03
drive_module:O.UserDefinedRealData[4] REAL 609 Real In04
drive_module:O.UserDefinedRealData[5] REAL 611 Real In05
drive_module:O.UserDefinedRealData[6] REAL 613 Real In06
drive_module:O.UserDefinedRealData[7] REAL 615 Real In07
drive_module:O.UserDefinedRealData[8] REAL 617 Real In08
drive_module:O.UserDefinedRealData[9] REAL 619 Real In09
drive_module:O.UserDefinedRealData[10] REAL 621 Real In10
drive_module:O.UserDefinedRealData[11] REAL 623 Real In11
drive_module:O.UserDefinedIntegerData[0] DINT 624 Integer In12
drive_module:O.UserDefinedIntegerData[1] DINT 626 Integer In13
drive_module:O.UserDefinedIntegerData[2] DINT 628 Integer In14
drive_module:O.UserDefinedIntegerData[2] DINT 630 Integer In15

DriveLogix Controller Inputs PowerFlex 700S Outputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:I.LogicStatus DINT 632 Integer Out00 Logic Status 155
drive_module:I.UserDefinedRealData[0] REAL 635 Real Out01
drive_module:I.UserDefinedRealData[1] REAL 637 Real Out02
drive_module:I.UserDefinedRealData[2] REAL 639 Real Out03
drive_module:I.UserDefinedRealData[3] REAL 641 Real Out04
drive_module:I.UserDefinedRealData[4] REAL 643 Real Out05
drive_module:I.UserDefinedRealData[5] REAL 645 Real Out06
drive_module:I.UserDefinedRealData[6] REAL 647 Real Out07
drive_module:I.UserDefinedRealData[7] REAL 649 Real Out08
drive_module:I.UserDefinedRealData[8] REAL 651 Real Out09
drive_module:I.UserDefinedRealData[9] REAL 653 Real Out10
drive_module:I.UserDefinedRealData[10] REAL 655 Real Out11
drive_module:I.UserDefinedRealData[11] REAL 657 Real Out12
drive_module:I.UserDefinedIntegerData[0] DINT 658 Integer Out13
drive_module:I.UserDefinedIntegerData[1] DINT 660 Integer Out14
drive_module:I.UserDefinedIntegerData[2] DINT 662 Integer Out15
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-11

Table 3.5 Mapping for the Custom User-Defined Control Communication Format

For each of the communication formats, drive_module:O.LogicCommand and
drive_module:I.LogicStatus are provided as DINT data types. In addition to
these tags, the control bits for each are also available as Boolean values with tag
names that correspond to the control bits in the drive. This gives you the
option of programming the Logic Command and Status words at the Boolean
level or as an integer value.

DriveLogix Controller Outputs PowerFlex 700S Inputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:O.LogicCommand DINT 600 Integer In00 Logic Command 151
drive_module:O.UserDefinedRealData[0] REAL 603 Real In01
drive_module:O.UserDefinedRealData[1] REAL 605 Real In02
drive_module:O.UserDefinedRealData[2] REAL 607 Real In03
drive_module:O.UserDefinedRealData[3] REAL 609 Real In04
drive_module:O.UserDefinedRealData[4] REAL 611 Real In05
drive_module:O.UserDefinedRealData[5] REAL 613 Real In06
drive_module:O.UserDefinedRealData[6] REAL 615 Real In07
drive_module:O.UserDefinedRealData[7] REAL 617 Real In08
drive_module:O.UserDefinedIntegerData[0] DINT 618 Integer In09
drive_module:O.UserDefinedIntegerData[1] DINT 620 Integer In10
drive_module:O.UserDefinedIntegerData[2] DINT 622 Integer In11
drive_module:O.UserDefinedIntegerData[3] DINT 624 Integer In12
drive_module:O.UserDefinedIntegerData[4] DINT 626 Integer In13
drive_module:O.UserDefinedIntegerData[5] DINT 628 Integer In14
drive_module:O.UserDefinedIntegerData[6] DINT 630 Integer In15

DriveLogix Controller Inputs PowerFlex 700S Outputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:I.LogicStatus DINT 632 Integer Out00 Logic Status 155
drive_module:I.UserDefinedRealData[0] REAL 635 Real Out01
drive_module:I.UserDefinedRealData[1] REAL 637 Real Out02
drive_module:I.UserDefinedRealData[2] REAL 639 Real Out03
drive_module:I.UserDefinedRealData[3] REAL 641 Real Out04
drive_module:I.UserDefinedRealData[4] REAL 643 Real Out05
drive_module:I.UserDefinedRealData[5] REAL 645 Real Out06
drive_module:I.UserDefinedRealData[6] REAL 647 Real Out07
drive_module:I.UserDefinedRealData[7] REAL 649 Real Out08
drive_module:I.UserDefinedIntegerData[0] DINT 650 Integer Out09
drive_module:I.UserDefinedIntegerData[1] DINT 652 Integer Out10
drive_module:I.UserDefinedIntegerData[2] DINT 654 Integer Out11
drive_module:I.UserDefinedIntegerData[3] DINT 656 Integer Out12
drive_module:I.UserDefinedIntegerData[4] DINT 658 Integer Out13
drive_module:I.UserDefinedIntegerData[5] DINT 660 Integer Out14
drive_module:I.UserDefinedIntegerData[6] DINT 662 Integer Out15
Publication 20D-UM002C-EN-P - November 2003

3-12 Placing and Configuring the Drive

Not all 32-bits within parameter 151 [Logic Command], are directly visible in
the PowerFlex 700S. To view all 32-bits, refer to parameter 152 [Applied
LogicCmd].

DriveLogix Controller Outputs PowerFlex 700S Inputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:O.LogicCommand DINT 600 Integer In00 Applied LogicCmd 152
drive_module:O.SpdRampDsbl BOOL bit 0 Integer In00 SpdRamp Dsbl bit 0
drive_module:O.SpdSCrvEn BOOL bit 1 Integer In00 Spd S Crv En bit 1
drive_module:O.TachLossRst BOOL bit 2 Integer In00 TachLoss Rst bit 2
drive_module:O.TimeAxisEn BOOL bit 3 Integer In00 Time Axis En bit 3
drive_module:O.MCAtuneEn BOOL bit 4 Integer In00 MC Atune En bit 4
drive_module:O.DirCtrlEn BOOL bit 6 Integer In00 Dir Sel En bit 6
drive_module:O.PMOffsetEn BOOL bit 7 Integer In00 PM Offset En bit 7
drive_module:O.MtrInertEn BOOL bit 8 Integer In00 Mtr Inert En bit 8
drive_module:O.SysInertEn BOOL bit 9 Integer In00 Sys Inert En bit 9
drive_module:O.InertiaComp BOOL bit 10 Integer In00 Inertia Comp bit 10
drive_module:O.FrictComp BOOL bit 11 Integer In00 Frict Comp bit 11
drive_module:O.ProcsTrimEn BOOL bit 12 Integer In00 ProcsTrim En bit 12
drive_module:O.PositionEnbl BOOL bit 13 Integer In00 PositionEnbl bit 13
drive_module:O.NormalStop BOOL bit 16 Integer In00 Normal Stop bit 16
drive_module:O.Start BOOL bit 17 Integer In00 Start bit 17
drive_module:O.Jog1 BOOL bit 18 Integer In00 Jog 1 bit 18
drive_module:O.ClearFault BOOL bit 19 Integer In00 Clear Fault bit 19
drive_module:O.UnipolFwd BOOL bit 20 Integer In00 Unipol Fwd bit 20
drive_module:O.UnipolRev BOOL bit 21 Integer In00 Unipol Rev bit 21
drive_module:O.Jog2 BOOL bit 23 Integer In00 Jog 2 bit 23
drive_module:O.CurrLimStop BOOL bit 24 Integer In00 CurrLim Stop bit 24
drive_module:O.CoastStop BOOL bit 25 Integer In00 Coast Stop bit 25

DriveLogix Controller Outputs
PowerFlex 700S Inputs

Tag Name
Data
Type

Parameter Linked Parameter
Number Name Name Number

drive_module:I.LogicStatus DINT 600 Integer In00 Logic Status 155
drive_module:I.Enabled BOOL bit 0 Integer In00 Enabled bit 0
drive_module:I.Running BOOL bit 1 Integer In00 Running bit 1
drive_module:I.CommandDir BOOL bit 2 Integer In00 Command Dir bit 2
drive_module:I.ActualDir BOOL bit 3 Integer In00 Actual Dir bit 3
drive_module:I.Accelerating BOOL bit 4 Integer In00 Accelerating bit 4
drive_module:I.Decelerating BOOL bit 5 Integer In00 Decelerating bit 5
drive_module:I.Jogging BOOL bit 6 Integer In00 Jogging bit 6
drive_module:I.Faulted BOOL bit 7 Integer In00 Faulted bit 7
drive_module:I.Alarm BOOL bit 8 Integer In00 Alarm bit 8
drive_module:I.FlashMode BOOL bit 9 Integer In00 Flash Mode bit 9
drive_module:I.RunReady BOOL bit 10 Integer In00 Run Ready bit 10
drive_module:I.AtLimit BOOL bit 11 Integer In00 At Limit bit 11
drive_module:I.TachLossSw BOOL bit 12 Integer In00 Tach Loss Sw bit 12
drive_module:I.AtZeroSpd BOOL bit 13 Integer In00 At Zero Spd bit 13
drive_module:I.AtSetptSpd BOOL bit 14 Integer In00 At Setpt Spd bit 14
drive_module:I.AtSetpt1 BOOL bit 16 Integer In00 At Setpt 1 bit 16
drive_module:I.AboveSetpt2 BOOL bit 17 Integer In00 Above Setpt2 bit 17
drive_module:I.MCEnAck BOOL bit 28 Integer In00 MC En Ack bit 28
drive_module:I.MCCommis BOOL bit 19 Integer In00 MC Commis bit 19
drive_module:I.SpdCommis BOOL bit 20 Integer In00 Spd Commis bit 20
drive_module:I.TorqueMode BOOL bit 22 Integer In00 Torque Mode bit 22
drive_module:I.SpeedMode BOOL bit 23 Integer In00 Speed Mode bit 23
drive_module:I.PositionMode BOOL bit 24 Integer In00 PositionMode bit 24
drive_module:I.StartActive BOOL bit 25 Integer In00 Start Active bit 25
drive_module:I.CommandRun BOOL bit 26 Integer In00 Command Run bit 26
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-13

Inhibiting the Drive
Connection

RSLogix 5000 programming software allows you to inhibit the controller�s
connection to the drive, in the same way you inhibit its connection to an I/O
module. Inhibiting the drive module shuts down the connection from the
controller to the drive. When you create the module you can choose to inhibit
it. After you have created the module you can inhibit or un-inhibit it by
manipulating its properties window.

ATTENTION

!
Inhibiting a drive module breaks the controller�s
connection to the drive. In this situation, the controller can
neither, start/stop the drive nor read the status of the drive.
The drive can continue to operate based on its parameter
settings and inputs. To avoid potential personal injury and
damage to machinery, make sure this does not create unsafe
operation.

If you are: Inhibit the drive module to:

offline put a place holder for the drive module to indicate that configuration is not yet complete.

The inhibit status is stored in the project. When you download the project, the module is still inhibited.

online stop communication to the drive.

If you inhibit the drive while you are connected to the module, the connection to the module is closed. By default, the
PowerFlex 700S drive will fault. The data inputs to the drive will either hold last state, or reset to zero data based on the
setting of parameter 385 [Lgx Comm Loss Data].

If you inhibit the drive but a connection to the module was not established (perhaps due to an error condition or fault), the
module is inhibited. The module status information changes to indicate that the module is inhibited and not faulted.

If you uninhibit the drive (clear the check box), and no fault condition occurs, a connection is made to the drive.

On the Connection tab during creation or in the Properties window

Check the inhibit box to
inhibit the connection to

the drive

When you inhibit the drive module, the Controller Organizer displays

a yellow attention symbol over the module. !
Publication 20D-UM002C-EN-P - November 2003

3-14 Placing and Configuring the Drive

To inhibit a module from logic, you must first read the Mode attribute for the
module using a GSV instruction. Set bit 2 to the inhibit status (1 to inhibit or 0
to uninhibit). Use a SSV instruction to write the Mode attribute back to the
module. For example:
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-15

Using DriveExecutive Lite In order to launch DriveExecutive Lite from within RSLogix 5000, the drives
power rating must be selected. The drive firmware revision must be applied
prior to selecting the power rating.

2. In the Controller Organizer, select the PowerFlex 700S drive. Right-click the drive module and select Properties

3. Select the Power tab.

4. Select the correct Drive Rating. This data can be found on the PowerFlex 700S data nameplate.

1. If not already done, enter the drive firmware revision. Click the Finish button to apply the
revision data
Publication 20D-UM002C-EN-P - November 2003

3-16 Placing and Configuring the Drive

TIP If your drive�s power rating does not appear as a selection,
you do not have the DriveExecutive Lite database file for
your drive. To create a database file, connect to the drive
with DriveExecutive Lite. This will automatically create the
database. You can also download the database file from
http://www.ab.com/drives/data.html

5. Once the power rating is selected, apply your changes by selecting the Apply button.

6. Select the Setup tab.

7. Enter the file name for your DriveExecutive Lite parameter file, then click the Apply button.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-17

DriveExecutive will then launch and
open the newly created file

8. Click the DriveExecutive button to launch DriveExecutive Lite.

9. When asked to create a new DriveExecutive Lite file, select yes.
Publication 20D-UM002C-EN-P - November 2003

3-18 Placing and Configuring the Drive

Viewing the Communication Interface to the Controller

DriveExecutive Lite has a setup screen that details the communication
interface between the controller and drive. From this screen, the relationship
between drive parameters and controller tags is presented for the selected
communication format. You can create additional links within the drive for use
with the user-defined tags in the controller.

1. To view the setup screen select Peer Communication from the Drive drop-down menu. Then select the From Controller

Important: In some revisions of DriveExecutive programming software, the
“From Controller” and “To Controller” tabs may be labled “From
DriveLogix” and “To DriveLogix”.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-19

Configuring the Drive’s Response to a Connection Failure or
Controller Mode Change

The drive contains several parameters that allow you to configure the drive�s
response to communication loss to the controller. From the drive�s
perspective, a communication loss can come in the following two forms.

• The controller closes the connection (for example, the connection is
inhibited).

• A general failure occurs causing the connection to time out.

Parameter 386 [Lgx OutofRunCnfg] configures the drive�s response to the
controller is removed from the Run Mode. Parameter 387 [Lgx Timeout Cnfg]
configures the drive�s response to a general connection failure as detected by
the drive. Parameter 388 [Lgx Closed Cnfg] configures the drive�s response to
the controller closing the connection. All of these parameters configure the
drive�s response to these exception events in the following ways: ignore, alarm,
fault and coast to stop, fault and ramp to stop, fault and stop in current limit.

2. To send additional data from the drive to the controller go to the To Controller tab. Click the To Controller tab.Select the
 desired source for the user-defined tag (Output Voltage in this example).

TIP Use a UserDefinedRealData tag for parameters that
contain floating point data, and use a
UserDefinedIntegerData tag for parameters that contain
integer data.
Publication 20D-UM002C-EN-P - November 2003

3-20 Placing and Configuring the Drive

Parameter 385 [Lgx CommLossData] determines what the drive does with
data from the controller when communication is lost. It determines if the drive
resets the data to zero or holds the data in its last state.

Configure these parameters, using DriveExecutive Lite. Locate them in the
Fault/Alm Config group of the Utility file.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-21

Using Existing DriveExecutive Lite Files

Before using an existing DriveExecutive Lite file, verify the firmware revision,
communication format, and power rating in the drive file match the data
entered in drive module properties in your DriveLogix application.

1. Select Properties from the Drive menu.

2. View revision and ratings on the General tab of the Properties window.

3. Refer to Viewing the Communication Interface to the Controller on page 3-18, to view the communication format.
Publication 20D-UM002C-EN-P - November 2003

3-22 Placing and Configuring the Drive

4. TIn RSLogix 5000, go to the Setup tab of the Properties window. Click the Browse button. Select the existing DriveExecutive file
(Existing Drive.dno in this example). Click the Open button.

5. Click the Apply button and launch DriveExecutive Lite.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-23

Accessing Drive Data Drive data is displayed as structures of multiple tags. The names and data
structures are based on the selected communication format. The programming
software automatically creates the necessary structures and tags when you
configure the drive module. Each tag name follows this format:

ModuleName:Type.MemberName.SubMemberName.Bit

where:

Refer to Communication Formats on page 3-6 for sample tag names.

Monitoring Drive Data The DriveLogix controller offers different levels at which you can monitor the
drive module. You can:

• configure the drive module so that the controller faults if the drive loses
its connection to the controller.

• use the programming software to display fault data
• program logic to monitor fault data so you can take appropriate action

This address
variable:

Is:

ModuleName Identifies the module name entered during the drive module
configuration

Type Type of data

I = input

O = output

MemberName Specific data from the drive; depends on the selected
communication format.

For tags associated with pre-defined data links, this name will
be the same as the corresponding parameter name in the drive.

SubMemberName Specific data related to a MemberName

Bit (optional) Specific bit of a DINT data value
Publication 20D-UM002C-EN-P - November 2003

3-24 Placing and Configuring the Drive

Configuring the Controller’s Response to a Connection Failure

You can configure the drive module to generate a major fault in the controller
if the drive loses its connection to the controller.

If you do not configure the major fault to occur, you should monitor the drive
module status. If the drive loses its connection to the controller:

• Outputs remain in their last
• Inputs remain in their last state
• By default the drive will fault

Configure the drive to generate a controller major fault when the drive loses its
connection to the controller. Or, monitor the status of the drive module.

Check this box to configure the drive
module to generate a major fault if it
loses its connection to the controller

ATTENTION

!
If a drive loses its connection to the controller, the
controller and other I/O modules continue to operate
based on old data from the drive, and the drive can
continue to operate based on old data from the controller.
To avoid potential personal injury and damage to
machinery, make sure this does not create unsafe operation.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring the Drive 3-25

Monitoring the drive module

Each communication format provides a drive status word that will indicate
when a drive fault or alarm occurs. To view this data through the programming
software:

You can write logic to monitor these bits and take appropriate action if a fault
or alarm occurs. For example, you may want a drive alarm to turn on a warning
lamp and a drive fault to sound an alarm and set the motor brake.

1. In the Controller Organizer, select Controller Tags. Right-click the selected icon and select Monitor Tags.

2. Expand the data as necessary.

EXAMPLE Given this configuration, the following logic checks the
fault and alarm drive status bits.
Publication 20D-UM002C-EN-P - November 2003

3-26 Placing and Configuring the Drive

Notes:
Publication 20D-UM002C-EN-P - November 2003

Chapter 4

Placing and Configuring Local I/O

Using This Chapter

The DriveLogix controller supports a local DIN rail of as many as 8 I/O
modules.

For information about: See page

Placing local I/O modules 4-2

Determining when the controller updates local I/O 4-3

Configuring a DIN rail 4-5

Configuring local I/O modules 4-6

Inhibiting I/O module operation 4-10

Accessing I/O data 4-13

Monitoring I/O modules 4-16
1 Publication 20D-UM002C-EN-P - November 2003

4-2 Placing and Configuring Local I/O

Placing Local I/O Modules When you create a project for a DriveLogix controller, the Controller
Organizer for that project automatically displays the local DIN rail.

You must configure an RPI rate for the DIN rail. This rate applies to all the
I/O modules you install on the DIN rail.

.

The DriveLogix controller uses to two services to scan I/O: the FlexBus and
the controller itself.

If you have: The fastest possible RPI is:

one rail of digital I/O modules 30 ms

one rail of analog I/O modules 30 ms

one rail of digital and analog I/O modules mixed 30 ms

Controller scan

FlexBus scan

Slot 0Slot 1Slot 2Slot 3Slot 4Slot 5Slot 6Slot 7

IMPORTANT When installing local I/O with a DriveLogix controller in a
high power drive, the length of the FLEXBUS cable must
not exceed 3 ft.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring Local I/O 4-3

The FlexBus continually scans all the slots (0-7) on the DIN rail. The FlexBus
scans the DIN rail, starting with slot 0, then scanning slot 1, and continuing
with all the slots, and then repeating the cycle. Even if a module is inhibited or
a slot is empty, the FlexBus scans that slot. The FlexBus scan identifies where
modules reside and collects module data for the controller scan.

The controller scans only those modules that are configured in the Control
Organizer. This scan updates the module tags with current data. The RPI for
the DIN rail affects how fast the controller gets data from the FlexBus.

Determining When the
Controller Updates I/O

The DriveLogix system follows a producer/consumer model. Input modules
produce data for the system. Controllers, output modules, and intelligent
modules produce and consume data. The producer/consumer model
multicasts data. This means that multiple nodes can consume the same data at
the same time from a single device.

The controller continually scans the control logic. One scan is the time it takes
the controller to execute the logic once. Input data transfers to the controller
and output data transfers to output modules asynchronous to the logic scan.

TIP If you want data to remain constant throughout one scan,
make a copy of the data at the beginning of the scan and
use the copy throughout the scan.
Publication 20D-UM002C-EN-P - November 2003

4-4 Placing and Configuring Local I/O

Use the following flowchart to determine when a producer (controller, input
module, or ControlNet bridge module) will send data.

input or output data?

input

output

Data is sent to the
backplane at the RPI

remote or local?analog

Data is sent to the
backplane at the RPI and at
the end of every program
scan.

Data is sent to the
backplane at the
RTS and RPI.

Data is sent to the
backplane at the
RTS.

analog or digital?

analog

digital

local

remote

digital

Remote data is sent:
• over the ControlNet

network at the actual
packet interval.

• over the EtherNet/IP
network at the requested
packet interval.

Yes

No
RTS ≤ RPI?

analog or digital?
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring Local I/O 4-5

Configuring a DIN Rail When you create a DriveLogix project, the programming software
automatically creates the DIN rail for the project. You must configure the
DIN rail.

You must specify these characteristics:
• On the General tab, specify the size of the chassis. Enter the number of

modules (1-8) that you plan to install on the rail. The controller uses this
chassis size to determine the size of tag for the rail�s rack-optimized
data.

• On the Connection tab, specify the RPI. The RPI of the DIN rail
applies to all the I/O modules you install on that DIN rail.

1. In the Controller Organizer, select the local (Local) rail of the controller.
Right-click and select Properties.

2. Specify the configuration options for the rail.

IMPORTANT Set the RPI of the DIN rail to a minimum of 30 ms. I/O
function will be intermittent if the value is set lower,

IMPORTANT If there are no modules installed on a rail, make sure to
inhibit that rail.
Publication 20D-UM002C-EN-P - November 2003

4-6 Placing and Configuring Local I/O

The communication format for the DIN rail is automatically set for
rack-optimized. You cannot change this setting because the controller uses one
rack-optimized connection for each DIN rail, whether you configure any I/O
modules for rack-optimized or not.

Configuring Local
I/O Modules

Use the programming software to configure the I/O modules for the
controller. You can configure I/O modules for the local rail. Before you
configure I/O modules, specify the RPI rate for the DIN rail. All the I/O
modules on the DIN rail operate at this RPI. The DIN rail always operates as
rack optimized.

To configure an I/O module:

1. In the Controller Organizer, select either the local or the extended-local rail of the controller.
Right-click the selected rail and select New Module.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring Local I/O 4-7

Electronic keying

Specify electronic keying to ensure that a module being inserted or configured
is the proper revision.

The selection you make for the Comm Format
determines the connections required for the I/O
module. Once you complete adding a module, you
cannot change this selection. See page 4-8.

3. Configure the module. Use the module wizard to specify characteristics for the module. Click Next to continue
through the wizard.

IMPORTANT The DriveLogix controller supports FLEX and FLEX Ex I/O modules, but
these I/O modules do not behave the same. If you have a communication
or program fault with a FLEX I/O module that is configured for �Reset
Outputs,� the outputs of the module go to zero (as expected). If the same
fault occurs with a FLEX Ex module that is configured for �Reset
Outputs,� the adapter goes to its safe state. If the module itself is defined as
�ON,� the outputs actually turn on (don�t reset as expected).
Publication 20D-UM002C-EN-P - November 2003

4-8 Placing and Configuring Local I/O

Communication formats

The communication format determines the data structure the I/O module
uses, as well as the type of connection made to the module and the controller
ownership of the module. Many I/O modules support different formats. Each
format supports a different data structure.

You select the communications format when you configure the I/O module.

The default communication format for an I/O module is for a direct
connection. Each rail for the DriveLogix controller is automatically configured

Keying: Description:

compatible module The module must be compatible with the software
configuration. These characteristics must match:

• module type

• catalog number

disable keying No attributes of the software or hardware are
required to match.

ATTENTION

!
If a module is configured for a direct connection, changing
the RPI and electronic keying selections can cause the
connection to the module to be broken and may result in
loss of data.

Be cautious when using the disable keying option. If used
incorrectly, this option can lead to personal injury, death,
property damage, or economic loss.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring Local I/O 4-9

for a rack-optimized connection, so consider configuring all local I/O
modules for rack-optimized connections.

Use the documentation for the I/O module to determine what data format to
use.

The listen-only communication format works for remote I/O only. Because of
the distributed nature of a DriveLogix system, the DriveLogix controller must
own its local I/O modules. No other Logix-based controller can listen to or
own the local DriveLogix I/O. The DriveLogix controller must produce its
local I/O data for other controller to consume. If you select listen-only for a
local I/O module, the connection to that module will fault.

The following tag structures are possible for a 1794-IA16 module. The
communication format determines the structure that is created for the
module. Assume that the module is in slot 0. The software creates the
appropriate tags using the slot number to differentiate the tags for this
example module from any other module.

communication format: input data (which corresponds to a direct connection for the I/O module)
Publication 20D-UM002C-EN-P - November 2003

4-10 Placing and Configuring Local I/O

communication format: rack optimization (which corresponds to a rack-optimized connection for the I/O module)

The rack-optimized tags are created as aliases into the array tag Local:I, which
is the array for input modules on the local rail. This array contains one element
for each slot on the rail (based on the chassis size you specify when you
configure the rail). You can either address the rack-optimized module by the
alias tag (which uses the slot number) or the array element in the rail tag. If you
enter the alias tag in your logic, the programming software displays the base
tag.

Local:I contains an element for each possible slot on the rail, whether you
actually install an input module there or not. Local:O also contains an element
for each possible slot. If you configure a module on the local rail as a direct
connection, do not use the associated array element in Local:I or Local:O. Use
the tag the software creates for the module (which uses the slot number).

Inhibiting I/O Module
Operation

In some situations, such as when initially commissioning a system, it is useful
to disable portions of a control system and enable them as you wire up the
control system. The controller lets you inhibit individual modules or groups of
modules, which prevents the controller from trying to communicate with the
modules. Inhibiting a module shuts down the connection from the controller
to that module.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring Local I/O 4-11

When you configure an I/O module, it defaults to being not inhibited. You
can change an individual module�s properties to inhibit a module.

Even if you inhibit an I/O module, the FlexBus still scans the module each
scan sequence.

You can only inhibit an I/O module if you configured the module to operate
with a direct connection. On the Connection tab of the module properties in
the programming software, you can select to inhibit that specific module.

To inhibit a rack-optimized connection, you must inhibit the DIN rail, which
in turns inhibits all the modules on that rail, whether configured for
rack-optimized or direct connections.

When you inhibit a communication module, such as a 1788-CNC
communication card, the controller shuts down the connections to the
communication card and to all the modules that depend on that card.
Inhibiting a communication module lets you disable an entire branch of the
I/O network.

ATTENTION

!
Inhibiting a module causes the connection to the module to
be broken and prevents communication of I/O data. The
controller and other I/O modules continue to operate
based on old data from that module. To avoid potential
personal injury and damage to machinery, make sure this
does not create unsafe operation.
Publication 20D-UM002C-EN-P - November 2003

4-12 Placing and Configuring Local I/O

When you select to inhibit a module, the controller organizer displays a yellow
attention symbol over the module. !

If you are: Inhibit a module to:

offline put a place holder for a module you are configuring

The inhibit status is stored in the project. When you download the project, the module is
still inhibited.

online stop communication to a module

If you inhibit a module while you are connected to the module, the connection to the
module is closed. The modules’ outputs go to the last configured program mode.

If you inhibit a module but a connection to the module was not established (perhaps due to
an error condition or fault), the module is inhibited. The module status information changes
to indicate that the module is inhibited and not faulted.

If you uninhibit a module (clear the check box), and no fault condition occurs, a connection
is made to the module and the module is dynamically reconfigured (if the controller is the
owner controller) with the configuration you created for that module.

If you uninhibit the module and a fault condition occurs, a connection is not made to the
module. The module status information changes to indicate the fault condition.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring Local I/O 4-13

To inhibit a module from logic, you must first read the Mode attribute for the
module using a GSV instruction. Set bit 2 to the inhibit status (1 to inhibit or
0 to uninhibit). Use a SSV instruction to write the Mode attribute back to the
module. For example:

Accessing I/O Data The programming software displays I/O data as structures of multiple tags
that depend on the specific features of the I/O module. The names of the data
structures are based on the location of the I/O module. The programming
software automatically creates the necessary structures and tags when you
configure the module. Each tag name follows this format:

Location:SlotNumber:Type.MemberName.SubMemberName.Bit
Publication 20D-UM002C-EN-P - November 2003

4-14 Placing and Configuring Local I/O

where:

This address variable: Is:

Location Identifies network location

LOCAL = local DIN rail or chassis

ADAPTER_NAME = identifies remote adapter or bridge

SlotNumber Slot number of I/O module in its chassis

Type Type of data

I = input

O = output

C = configuration

S = status

MemberName Specific data from the I/O module; depends on the type of
data the module can store

For example, Data and Fault are possible fields of data for an
I/O module. Data is the common name for values the are sent
to or received from I/O points.

SubMemberName Specific data related to a MemberName.

Bit (optional) Specific point on the I/O module; depends on the size of the
I/O module (0-31 for a 32-point module)
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring Local I/O 4-15

The following examples show addresses for data in a DriveLogix system.

Sample tag names for this example:

EXAMPLE I/O module on the local DIN rail

01234567

Location: Example Tag Name:

input module in slot 0 of LOCAL Local:0:I.Data

Local:0:I.Fault

output module in slot 1 of LOCAL Local:1:C.SSData

Local:1:I.Fault

Local:1:O.Data

data for the LOCAL DIN rail Local:I.Data

Local:I.Fault

Local:O.Data

Local:O.Fault
Publication 20D-UM002C-EN-P - November 2003

4-16 Placing and Configuring Local I/O

Using aliases to simplify tag names

An alias lets you create a tag that represents another tag. This is useful for
defining descriptive tag names for I/O values. For example:

Monitoring I/O Modules The DriveLogix controller offers different levels at which you can monitor
I/O modules. You can:

• configure an I/O module so that the controller faults if that I/O
module loses its connection with the controller

• use the programming software to display fault data
• program logic to monitor fault data so you can take appropriate action

Configuring the module’s response to a connection failure

You can configure modules to generate a major fault in the controller if they
lose their connection with the controller.

If you do not configure the major fault to occur, you should monitor the
module status. If a module loses its connection to the controller:

• outputs go to their configured faulted state

Example: Description:

I/O structure Local:0:O.Data.0

Local:0:I.Fault.0

The aliases describe the specific I/O points.

alias light_on = Local:0:O.Data.0

light_off = Local:0:I.Fault.0
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring Local I/O 4-17

• inputs remain in their last, non-faulted state

Configure critical I/O modules to generate a controller major fault when they
lose their connections to the controller. Or, monitor the status of I/O
modules.

Monitoring an I/O module

Most I/O modules have fault bits that indicate when a fault occurs at a specific
point of a module. To view this data through the programming software:

You can write logic to monitor these bits and take appropriate action if a fault
occurs. For example, you may want to shut down the system if a specific point

ATTENTION

!
If a module loses its connection to the controller, the
controller and other I/O modules continue to operate
based on old data from that module. To avoid potential
personal injury and damage to machinery, make sure this
does not create unsafe operation.

1. In the Controller Organizer, select Controller Tags. Right-click to select Monitor Tags.
Publication 20D-UM002C-EN-P - November 2003

4-18 Placing and Configuring Local I/O

experiences a fault. This example assumes a direct connection for the I/O
module.

EXAMPLE Given this I/O configuration, the following logic tests bits
of I/O modules to determine status.
Publication 20D-UM002C-EN-P - November 2003

Placing and Configuring Local I/O 4-19

Monitoring a rack-optimized connection

The controller views the DIN rail as another module in the system. Each DIN
rail has its own data. To view this data through the programming software:

You can write logic to monitor the rack bits and take appropriate action if a
fault occurs. For example, the following logic determines whether an error
occurs on the Local rail. Then, the logic determines whether the error
occurred at the module in slot 0. You can continue this logic to check each
module on the rail.

1. In the Controller Organizer, select Controller Tags. Right-click to display the Data Monitor.
Publication 20D-UM002C-EN-P - November 2003

4-20 Placing and Configuring Local I/O

Notes:
Publication 20D-UM002C-EN-P - November 2003

Chapter5

Configuring DriveLogix Motion

Using This Chapter

This chapter introduces DriveLogix motion. The steps in this chapter provide
the minimum settings required to begin testing of DriveLogix motion.

System Requirements

• PowerFlex 700S Drive with firmware revision 2.03 or higher
• DriveLogix controller with firmware revision 12.XX or higher
• DriveExecutive programming software version 2.02 or higher
• RSLogix 5000 programming software version 12 or higher

For information about: See page

Configuring the Drive 5-1

Programming the Controller 5-5

Supported Motion Commands 5-12
1 Publication 20D-UM002C-EN-P - November 2003

5-2 Configuring DriveLogix Motion

Configuring the Drive In DriveExecutive software, connect to the drive and access the Peer
Communications dialog as shown below:

1. From the File menu, select Peer Communication.

2. Click on the From Controller tab.

3. Select Motion Control from the list of
possible Controller Comm Formats.
Publication 20D-UM002C-EN-P - November 2003

Configuring DriveLogix Motion 5-3

Next link the appropriate parameters to the words being produced and
consumed by the controller.

Parameter 155 [Logic Status] is the source parameter and parameter 632
[Integer Out00] is the destination. The source will produce data and
destination will consume it.

Create the additional links listed Table 5.1.

4. Double click on parameter 632 [Integer Out00], from the
linear list view. This opens a dialog window for the
parameter.

5. Click on the Link Source tab.

6. Type the parameter number (155) into the
Find Parameter Window

or

Use the Select Parameter list
to choose a parameter source.

Table 5.1 Required Parameter Links

Destination
Parameter

Source Parameter Description

748 [CoarsePosit Trgt] 917 [Motn Posit Cmmd] The position interpolator of the
drive receives the coarse position
target from the DriveLogix Motion
Interpolator

750 [Coarse Spd Trgt] 918 [Motn Speed Cmmd] The Speed loop of the drive
receives the coarse velocity target
from the DriveLogix Motion
Interpolator

12 [Speed Ref 2] 751 [Interp Speed] Speed Ref 2 receives the Speed
reference from the Coarse to Fine
Interpolator
Publication 20D-UM002C-EN-P - November 2003

5-4 Configuring DriveLogix Motion

Next set up the parameters in the drive. Double click on the parameter to
change and set the values to those listed in Table 5.2.

1003 [Interp SyncInput] 919 [Motn Posit Sync] The drive receives the
synchronization pulse from the
DriveLogix. This keeps the
interpolators in synch.

632 [Integer Out00] 155 [Logic Status] The DriveLogix controller receives
the status of the drive.

22 [Speed Trim 2] 318 [Posit Spd Output] This is a default link. The speed
loop receives the trim value from
the position regulator.

Table 5.2 Required Parameter Settings

Parameter Value Description

13 [Spd Ref2 Multi] 0.92 Sets the scale value for Speed Ref 2.

16 [Speed Ref Sel] 2 Selects Speed Ref 2 as the Speed Reference.

151 [Logic Command] Bit 13 = 1 This enables the position loop within the drive.

664 [Lgx Comm Format] 19 This selects the format of the commands
coming to and from the DriveLogix processor.

740 [Position Control] Bit 1 = 1
Bit 6 = 0
Bit 8 = 0

This sets up the position regulator to work with
the DriveLogix configuration.

742 [Posit Ref Sel] 0 This configures the drive position loop to
receive position commands from DriveLogix via
the Interpolator input.

1000 [SL Node Cnfg] Bit 0 =1 This sets up the SynchLink as the time keeper.
This is used to synchronize the Drive and the
DriveLogix controller. This must be used when
the drive is a standalone system. If it is
connected to other SynchLink nodes, only one
needs this bit set.

Table 5.1 Required Parameter Links

Destination
Parameter

Source Parameter Description
Publication 20D-UM002C-EN-P - November 2003

Configuring DriveLogix Motion 5-5

Programming the Controller Using RSLogix 5000, create a new project. .

Use Revision 12 or higher

You must enter a name

1. Select File → New.

2. Define the project.

3. Add the drive.

Click OK

Right click on the I/O Configuration
icon Select New

Module

Select the correct drive

The Major Revision
must be 2 or higher

Click OK
Publication 20D-UM002C-EN-P - November 2003

5-6 Configuring DriveLogix Motion

3. Add the drive (continued).

You must enter a name

Select Motion Control
from the list of possible
Communication Formats

Click Next

Click Next

Click Next

Click Next

Select the proper rating
Publication 20D-UM002C-EN-P - November 2003

Configuring DriveLogix Motion 5-7

3. Add the drive (continued).

Browse for the file you
saved in
DriveExecutive

Click Finish
4. Adding a Motion Group.

Right click on the Motion Groups
icon Select New

Motion Group

Enter a name

Click Configure

Set the Coarse Update Period to 8 ms
Set Auto Tag Update to Enabled

Set General Fault Type to Major Fault

Click Finish
Publication 20D-UM002C-EN-P - November 2003

5-8 Configuring DriveLogix Motion

5. Add the Axis

Right click on the Grouped Axis
icon Select New Axis

Select
AXIS_GENERIC

Enter a name

Click Configure

Set the Axis Configuration to Servo

The associated module should be the drive
connection from the I/O configuration and the

encoder channel being used for feedback.

Click Next

Select Channel 0

IMPORTANT Only Channel 0 will function for a Servo axis. Channel 1
may be used for a Feedback Only axis.
Publication 20D-UM002C-EN-P - November 2003

Configuring DriveLogix Motion 5-9

Enter the positioning units.

In this example inches are the units. Degrees, pallets,
widgets, etc. could be used.

The Average Velocity Timebase is the sample rate
that is used for the Average Velocity tag in the
controller tags.

Select the Positioning Mode

Enter the Conversion Constant - this is the
number of feedback counts for each
Positioning Unit. In this example the encoder
is attached to a ball screw with a pitch of 5
turns per inch. The encoder has a resolution
of 1024 pulses per revolution that produces
4096 counts of feedback in quadrature mode.
Therefore the Conversion Constant = 4096 ×
5 = 20480 counts / inch.

5. Adding the Axis (continued)

Determine how many Output Cam execution nodes
(instances) are created for a specific axis.

The value specified for Execution Target in the MAOC
instruction references a specific instance in which a
value of zero selects the first instance.

Click Next

Click Next

Click Next
Publication 20D-UM002C-EN-P - November 2003

5-10 Configuring DriveLogix Motion

5. Adding the Axis (continued)

A

B

C

Homing
Mode

Active - the desired homing sequence is selected by specifying whether a home limit switch and/or the encoder marker are used for this axis. Active
homing sequences always use the trapezoidal velocity profile.

Passive - homing redefines the absolute position of the axis on the occurrence of a home switch or encoder marker event. Passive homing is most
commonly used to calibrate uncontrolled axes, although it can also be used with controlled axes to create a custom homing sequence. Passive
homing, for a given home sequence, works similar to the corresponding active homing sequence, except that no motion is commanded; the controller
just waits for the switch and marker events to occur.

Homing
Position

Type the desired absolute position, in position units, for the axis after the specified homing sequence has been completed. In most cases, this
position will be set to zero, although any value within the software travel limits can be used. After the homing sequence is complete, the axis is left
in this position.

If the Positioning Mode (set in the Conversion tab) of the axis is Linear, then the home position should be within the travel limits, if enabled. If the
Positioning Mode is Rotary, then the home position should be less than the unwind distance in position units.

Offset Type the desired offset (if any) in position units the axis is to move, upon completion of the homing sequence, to reach the home position. In most
cases, this value will be zero.

Homing
Sequence

Select the event that will cause the Home Position to be set:

Sequence Type Description
Immediate Sets the Home Position to the present actual position, without motion.
Switch Sets the Home Position when axis motion encounters a home limit switch.
Marker Sets the Home Position when axis encounters an encoder marker.
Switch-Marker Sets the Home Position when axis first encounters a home limit switch, then encounters

an encoder marker.

Limit Switch If a limit switch is used, indicate the normal state of that switch (i.e., before being engaged by the axis during the homing sequence):
Normally Open
Normally Closed

Direction For active homing sequences, except for the Immediate Sequence type, select the desired homing direction:

Forward Uni-directional The axis jogs in the positive axial direction until a homing event (switch or marker) is encountered, then continues in the
same direction until axis motion stops (after decelerating or moving the Offset distance).

Forward Bi-directional The axis jogs in the positive axial direction until a homing event (switch or marker) is encountered, then reverses
direction until motion stops (after decelerating or moving the Offset distance).

Reverse Uni-directional The axis jogs in the negative axial direction until a homing event (switch or marker) is encountered, then continues in the
same direction until axis motion stops (after decelerating or moving the Offset distance).

Reverse Bi-directional The axis jogs in the negative axial direction until a homing event (switch or marker) is encountered, then reverses
direction until motion stops (after decelerating or moving the Offset distance).

A

B

C

D

Click Next

Referring to the tables below, enter the
Homing Mode, Homing Position, Offset, and
Homing Sequence.
Publication 20D-UM002C-EN-P - November 2003

Configuring DriveLogix Motion 5-11

Click Finish

6. Download the project to the controller.

7. Test the system to determine proper dynamics for the system.

8. Write logic in the controller to move the axis.

ATTENTION

!
Running the system without proper tuning can cause
unstable and unpredictable operation. To avoid potential
personal injury and damage to machinery, determine the
proper values for system dynamics and tune the system
before beginning operation.

Enter the Dymamic Motion variables (Maximum
Speed, Acceleration and Deceleration).

Do not leave zero values in these varibles.

Do not exceed system limits, examine
parameter 9 [Total Inertia].

5. Adding the Axis (continued)

Refer to Supported Motion Commands on page 5-12 and
publication 1756-RM007D, Reference Manual - Logix
Controller Motion Instruction Set.

ATTENTION

!
There is no default Position Error Fault logic in this
system. To avoid potential personal injury and damage to
machinery, detect Postion Error faults, by using parameter
links and ladder logic.
Publication 20D-UM002C-EN-P - November 2003

5-12 Configuring DriveLogix Motion

Supported Motion
Commands

The following Logix Motion Instructions are supported by the DriveLogix
controller:

Motion State

• MSO (Motion Servo On)
• MSF (Motion Servo Off)
• MASD (Motion Axis Shutdown)
• MASR (Motion Axis Shutdown Reset)
• MAFR (Motion Axis Fault Reset)

Motion Move

• MAJ (Motion Axis Jog)
• MAM (Motion Axis Move)
• MAS (Motion Axis Stop)
• MAH (Motion Axis Home)
• MAG (Motion Axis Gearing)
• MCD (Motion Change Dynamics)
• MRP (Motion Redine Position)
• MCCP (Motion Calculate Position Profile)
• MAPC (Motion Axis Position Cam)
• MATC (Motion Axis Time Cam)

Motion Event

• MAW (Motion Arm Watch)
• MDW (Motion Disarm Watch)
• MAR (Motin Arm Registration)
• MDR (Motion Disarm Registration)
• MAOC (Motion Arm Output Cam)
• MDOC (Motion Disarm Output Cam)

Motion Group

• MGS (Motion Group Stop)
• MGSD (Motion Group Shutdown)
• MGSR (Motion Group Shutdown Reset)
• MGSP (Motion Group Strobe Position)
Publication 20D-UM002C-EN-P - November 2003

Chapter 6

Communicating with Devices on an
EtherNet/IP Link

Using This Chapter

Configuring Your System for
a EtherNet/IP Link

For the DriveLogix controller to operate on an Ethernet network, you need:

• a workstation with an appropriate EtherNet/IP
communication daughtercard

• a 1788-ENBT communication daughtercard installed in the DriveLogix
communication slot

• RSLinx software to configure the EtherNet/IP communication driver
• RSLogix 5000 programming software (Version 11 or later) to configure

the 1788-ENBT communication daughtercard as part of the DriveLogix
system

For information about: See page

Configuring Your System for a EtherNet/IP Link 6-1

Configuring Remote I/O 6-8

Sending Messages 6-13

Producing and Consuming Data 6-20

Guidelines for Configuring Connections 6-23

Example 1: DriveLogix Controller and Remote I/O 6-23

Example 1: DriveLogix Controller and Remote I/O 6-25

Example 3: DriveLogix Controller to Other Devices 6-29

IMPORTANT Unlike ControlNet, the EtherNet/IP network requires no
scheduling.
1 Publication 20D-UM002C-EN-P - November 2003

6-2 Communicating with Devices on an EtherNet/IP Link

Step 1: Configure the hardware

Before you can connect the DriveLogix system to the Ethernet network, you
must configure the 1788-ENBT communication daughtercard and make sure
it�s properly installed in the DriveLogix controller. Refer to Access Procedures
on page C-1 to understand how to gain access to the NetLinx daughtercard
slot on the DriveLogix controller.

You�ll need to configure the communication daughtercard slot number to 1 in
the RSLogix 5000 programming software. The DriveLogix controller uses slot
0.

For more information about configuring a 1788-ENBT communication
daughtercard, see:

For this card: See this document:

1788-ENBT 1788-IN054

! Et
he

rN
et

/IP
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-3

Step 2: Configuring the AB_ETH Driver

To configure the AB_ETH Ethernet communication driver perform the
following steps:

1. Start RSLinx.

2. From the Communications menu, select Configure Drivers. The
following window will open.
Publication 20D-UM002C-EN-P - November 2003

6-4 Communicating with Devices on an EtherNet/IP Link

3. Click on the arrow to the right of the Available Driver Types box. The
Available Driver Types list will appear.

4. Select Ethernet Devices and click on Add/New. You will be prompted to
name the driver.

5. Select the default driver name (e.g., AB_ETH-1) or type in your own name
and click on OK.

The Configure driver window will appear with the Station Mapping page
open.

6. Click on Add New.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-5

7. Enter the IP address or Host Name of your 1788-ENBT module (e.g.,
130.130.130.2, �Pump1�, etc.). Use of the IP address on this screen
informs the controller of the daughtercard�s IP address for processes
such ladder logic and I/O data exchange. You can set the IP address in
any of these ways:

• Rockwell BootP Utility
• RSLinx software
• Third-party BootP server
• DHCP network server

For moreinformation on using these tools, see the EtherNet/IP
Communication Daughtercard user manual, publication 1788-UM054.

8. Repeat step 6 for each additional Ethernet module you need to access.

9. When you are done entering the IP addresses, click on Apply.
Publication 20D-UM002C-EN-P - November 2003

6-6 Communicating with Devices on an EtherNet/IP Link

10.Click on OK to close the Configure driver window.

The new driver will appear in the list of configured drivers. (Your list will
display the drivers you have configured on your workstation.)

11. Close RSLinx
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-7

Step 3: Configure the daughtercard as part of the system

Use RSLogix 5000 programming software (Version 11 or later) to map the
1788-ENBT communication daughtercard as part of the DriveLogix system.
In the Controller Organizer, add the communication daughtercard to the I/O
Configuration folder.

Complete your system configuration and develop your program logic. Then
download the project to the DriveLogix controller.

1. In RSLogix 5000 programming software, select the I/O Configuration folder.

2. Right-click to select New Module and add a 1788-ENBT communication daughtercard.

3. Specify the appropriate communication daughtercard settings.

4. Specify (while offline) the IP address of the
communication daughtercard that you installed.
Use of the IP address on this screen informs the
controller of the daughtercard’s IP address for
processes such ladder logic and I/O data exchange.

IMPORTANT: When the project is online, you can
also specify the IP address on the Port
Configuration screen, if you did not already use the
Bootp tool to specify an IP address. When you
specify an IP address on the Port Configuration
screen, you assign the IP address to the device. If
you specify an IP address on the Port Configuration
screen, make sure it matches the IP address on the
General screen.
Publication 20D-UM002C-EN-P - November 2003

6-8 Communicating with Devices on an EtherNet/IP Link

Configuring Remote I/O The DriveLogix controller supports remote I/O over a EtherNet/IP link.
Configuring I/O in a remote chassis is similar to configuring local I/O. The
difference is that you must also configure the communication daughtercard
(1788-ENBT) in the local chassis and the communication module in the
remote chassis.

Add the FLEX I/O Ethernet Adapter to the I/O Configuration

1. In RSLogix 5000 programming software, select 1788-ENBT communication daughtercard.

2. Right-click to select New Module and add a 1794-AENT Ethernet adapter.

4. Specify (while offline) the IP address of the adapter that you installed. Use of the IP
address on this screen informs the controller of the adapter’s IP address for processes
such ladder logic and I/O data exchange.

IMPORTANT: When the project is online, you can also specify the IP address on the Port
Configuration screen, if you did not already use the Bootp tool to specify an IP address.
When you specify an IP address on the Port Configuration screen, you assign the IP
address to the device. If you specify an IP address on the Port Configuration screen, make
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-9

Add FLEX I/O Modules to the I/O Configuration

After you select the appropriate FLEX I/O module, the Module Properties
window opens.

4. Configure the module.
5. Add additional modules as needed.

The local daughtercard becomes the �parent module� to the remote module.
The controller organizer shows this parent/child relationship between local
and remote communication devices.

1. In RSLogix 5000 programming software, select 1794-AENT Ethernet adapter.

2 Right-click to select New Module and add the appropriate FLEX I/O module.

3. Specify the appropriate module settings.
Publication 20D-UM002C-EN-P - November 2003

6-10 Communicating with Devices on an EtherNet/IP Link

Accessing remote I/O

I/O information is presented as a structure of multiple fields, which depend
on the specific features of the I/O module. The name of the structure is based
on the location of the I/O module in the system. Each I/O tag is
automatically created when you configure the I/O module through the
programming software. Each tag name follows this format:

Location:SlotNumber:Type.MemberName.SubMemberName.Bit

where:

This address variable: Is:

Location Identifies network location

LOCAL = local DIN rail or chassis

ADAPTER_NAME = identifies remote adapter or bridge

SlotNumber Slot number of I/O module in its chassis

Type Type of data

I = input

O = output

C = configuration

S = status

MemberName Specific data from the I/O module; depends on the type of data the module can store

For example, Data and Fault are possible fields of data for an I/O module. Data is the common name for
values the are sent to or received from I/O points.

SubMemberName Specific data related to a MemberName.

Bit (optional) Specific point on the I/O module; depends on the size of the I/O module (0-31 for a 32-point module)

EXAMPLE

configured for direct connections

configured for rack-optimized
connections
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-11

Device: Example Tag Names (automatically created by the software):

remote adapter “FLEX_adapter” FLEX_adapter:I

FLEX_adapter:I.SlotStatusBits

FLEX_adapter:I.Data

FLEX_adapter:O

FLEX_adapter:O.Data

remote “input1” in slot 0

direct connection

FLEX_adapter:0:C

FLEX_adapter:0:C.Config

FLEX_adapter:0:C.Filter0_00_11

FLEX_adapter:0:C.Filter1_00_11

FLEX_adapter:0:C.Filter2_00_11

FLEX_adapter:0:C.Filter3_12_15

FLEX_adapter:0:C.Filter4_12_15

FLEX_adapter:0:C.Filter5_12_15

FLEX_adapter:0:C.ResetCounter

FLEX_adapter:0:C.DisableFilter

FLEX_adapter:0:I

FLEX_adapter:0:I.Fault

FLEX_adapter:0:I.Data

FLEX_adapter:0:I.Counter
Publication 20D-UM002C-EN-P - November 2003

6-12 Communicating with Devices on an EtherNet/IP Link

 For examples of local I/O tags, see Chapter 4, Placing and Configuring Local
I/O.

remote “output1” in slot 1

direct connection

FLEX_adapter:1:C

FLEX_adapter:1:C.SSDate

FLEX_adapter:1:I

FLEX_adapter:1:I.Fault

FLEX_adapter:1:O

FLEX_adapter:1:O.Data

remote “input2” in slot 2

rack-optimized connection

These tags are created as aliases into
the FLEX_adapter:I tag

FLEX_adapter:2:C

FLEX_adapter:2:C.Config

FLEX_adapter:2:C.Filter0_00_11

FLEX_adapter:2:C.Filter1_00_11

FLEX_adapter:2:C.Filter2_00_11

FLEX_adapter:2:C.Filter3_12_15

FLEX_adapter:2:C.Filter4_12_15

FLEX_adapter:2:C.Filter5_12_15

FLEX_adapter:2:C.ResetCounter

FLEX_adapter:2:C.DisableFilter

FLEX_adapter:2:I

remote “output2” in slot 3

rack-optimized connection

These tags are created as aliases into
the FLEX_adapter:O tag

FLEX_adapter:3:C

FLEX_adapter:3:C.SSDate

FLEX_adapter:3:O

Device: Example Tag Names (automatically created by the software):
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-13

Sending Messages The DriveLogix controller can send MSG instructions to other controllers
over an EtherNet/IP link. Each MSG instruction requires you to specify a
target and an address within the target. The number of messages that a device
can support depends on the type of message and the type of device:

MSG instructions are unscheduled. The type of MSG determines whether or
not it requires a connection. If the MSG instruction requires a connection, it
opens the needed connection when it is executed. You can configure the MSG
instruction to keep the connection open (cache) or to close it after sending the
message.

This device: Support this many
unconnected messages:

Support this many
connected messages:

1756-ENBT module
(for a Logix5550 controller)

256 128

1788-ENBT daughtercard
(for a DriveLogix controller)

5 32

1794-AENT adapter

(for FLEX I/O)

The 1794-AENT adapter can support a total of 32 messages whether they be
connected, unconnected or some combination of both.

Ethernet PLC-5 controller 32 128

This type of message: And this communication method: Uses a connection:

CIP data table read or write X

PLC2, PLC3, PLC5, or SLC (all types) CIP

CIP with Source ID

DH+ X

CIP generic CIP Optional(1)

block-transfer read or write X

(1) You can connect CIP generic messages, but for most applications, we recommend you leave CIP generic messages unconnected.
Publication 20D-UM002C-EN-P - November 2003

6-14 Communicating with Devices on an EtherNet/IP Link

Connected messages are unscheduled connections on EtherNet/IP.

If a MSG instruction uses a connection, you have the option to leave the
connection open (cache) or close the connection when the message is done
transmitting.

The controller has the following limits on the number of connections that you
can cache:

Communicating with another Logix-based controller

All Logix-based controllers can use MSG instructions to communicate with
each other. The following examples show how to use tags in MSG instructions
between Logix-based controllers.

The source and destination tags:

• must be controller-scoped tags.

• can be of any data type, except for AXIS, MESSAGE, or
MOTION_GROUP.

If you: Then:

Cache the connection The connection stays open after the MSG instruction is done.
This optimizes execution time. Opening a connection each time
the message executes increases execution time.

Do not cache the
connection

The connection closes after the MSG instruction is done. This
frees up that connection for other uses.

If you have this software
and firmware revision:

Then you can cache:

11.x or earlier • block transfer messages for up to 16 connections

• other types of messages for up to 16 connections

12.x or later up to 32 connections

Type of MSG Instruction: Example Source and Destination:

Logix-based controller writes to
Logix-based controller

(CIP Data Table Write)

source tag

destination tag

array_1

array_2

Logix-based controller reads from
Logix-based controller

(CIP Data Table Read)

source tag

destination tag

array_1

array_2
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-15

Communicating with other controllers over EtherNet/IP

The DriveLogix controller also uses MSG instructions to communicate with
PLC and SLC controllers. The MSG instructions differ depending on which
controller initiates the instruction.

For MSG instructions originating from a DriveLogix controller to a PLC or
SLC controller:

Type of MSG
Instruction:

Supported Source File Types: Supported Destination File Types:

DriveLogix writes
to PLC-5 or SLC

In the DriveLogix controller, specify the source data type
based on the destination device:

PLC-5: SINT, INT, DINT, or REAL

SLC: INT, REAL

Example source element: array_1

Specify the destination file type based on the
destination device:

PLC-5 typed write: S, B, N, or F

PLC-5 word-range write: S, B, N, F, I, O, A, or D

SLC: B, N or F

Example destination tag: N7:10
Publication 20D-UM002C-EN-P - November 2003

6-16 Communicating with Devices on an EtherNet/IP Link

DriveLogix writes
to PLC-2

In the DriveLogix controller, select one of these data
types:

SINT, INT, DINT, or REAL

Example source element: array_1

Use the PLC-2 compatibility file.

Example destination tag: 010

DriveLogix reads
from PLC-5 or
SLC

Specify the destination file type based on the destination
device:

PLC-5 typed read: S, B, N, or F

PLC-5 word-range read: S, B, N, F, I, O, A, or D

SLC: B, N or F

Example source element: N7:10

In the DriveLogix controller, specify the destination data
type based on the destination device:

PLC-5: SINT, INT, DINT, or REAL

SLC: INT, REAL

Example destination tag: array_1

DriveLogix reads
from PLC-2

Use the PLC-2 compatibility file.

Example source element: 010

In the DriveLogix controller, select one of these data
types:

SINT, INT, DINT, or REAL

Example destination tag: array_1

Type of MSG
Instruction:

Supported Source File Types: Supported Destination File Types:
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-17

The DriveLogix controller can send typed or word-range commands to PLC-5
controllers. These commands read and write data differently. The following
diagrams show how the typed and word-range commands differ.

The DriveLogix controller can process messages initiated from PLC or SLC
controllers. These messages use data table addresses. In order for these
controllers to access tags within the DriveLogix controller, you map tags to
data table addresses.

16-bit words in
PLC-5 controller

32-bit words in
DriveLogix controller

The typed commands maintain data structure and value.

1

2

3

4

Typed read command

1

2

3

4

16-bit words in
PLC-5 controller

32-bit words in
DriveLogix controller

The word-range commands fill the destination tag contiguously. Data
structure and value change depending on the destination data type.

1

2

3

4

Word-range read command

1

3

2

4

Publication 20D-UM002C-EN-P - November 2003

6-18 Communicating with Devices on an EtherNet/IP Link

Mapping addresses

The programming software includes a PLC/SLC mapping tool which allows
you to make an existing controller array tag in the local controller available to
PLC-2, PLC-3, PLC-5, or SLC controllers.

To map addresses:

1. From the Logic menu, select Map PLC/SLC Messages.

2. Specify this information:

For: In this field: Specify: For example:

PLC-3, PLC-5, and
SLC controllers

File Number Type the file number of the data table in the
PLC/SLC controller.

10

Tag Name Type the array tag name the local controller uses to refer
to the PLC/SLC data table address. The tag must be an
integer array (SINT, INT, or DINT) that is large enough for
the message data.

array_1

PLC-2 controllers Tag Name Type the tag name to be the PLC-2 compatibility file. 200

TIP You can map as many tags as you want to a PLC-3, PLC-5,
or SLC controller. You can map only one tag to a PLC-2
controller.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-19

The following table shows example source and destination tags and elements
for different controller combinations.

When the DriveLogix controller initiates messages to PLC or SLC controllers,
you do not have to map compatibility files. You enter the data table address of
the target device just as you would a tag name.

SLC 5/05 controllers, SLC 5/04 controllers (OS402 and above), and
SLC 5/03 controllers (OS303 and above) support logical ASCII addressing
and support PLC/SLC mapping (see the examples above). For all other SLC
or MicroLogix1000 controllers, you must map a PLC-2 compatibility file (see
the PLC-2 examples above).

Type of MSG Instruction: Example Source and Destination:

PLC-5 writes to DriveLogix

SLC writes to DriveLogix

SLC 5/05

SLC 5/04 OS402 and above

SLC 5/03 OS303 and above

source element N7:10

destination tag “array_1”

The PLC-5, PLC-3, and SLC controllers support logical ASCII addressing so you do not
have to map a compatibility file for MSG instructions initiated by a PLC-5, PLC-3, or SLC
controller. Place the DriveLogix tag name in double quotes (“).

You could optionally map a compatibility file. For example, if you enter 10 for the
compatibility file, you enter N10:0 for the destination tag.

PLC-2 writes to DriveLogix source element 010

destination tag 200

The destination tag is the three-digit PLC-2 address you specified for PLC-2 mapping.

PLC-5 reads from DriveLogix

SLC reads from DriveLogix

SLC 5/05
SLC 5/04 OS402 and above

SLC 5/03 OS303 and above

source tag “array_1”

destination element N7:10

The PLC-5, PLC-3, and SLC controllers support logical ASCII addressing so you do not
have to map a compatibility file for MSG instructions initiated by a PLC-5, PLC-3, or SLC
controller. Place the DriveLogix tag name in double quotes (“).

You could optionally map a compatibility file. For example, if you enter 10 for the
compatibility file, you enter N10:0 for the source tag.

PLC-2 reads from DriveLogix source tag 200

destination element 010

The source tag is the three-digit PLC-2 address you specified for PLC-2 mapping.
Publication 20D-UM002C-EN-P - November 2003

6-20 Communicating with Devices on an EtherNet/IP Link

Producing and
Consuming Data

The DriveLogix controller supports the ability to produce (broadcast) and
consume (receive) system-shared tags over an EtherNet/IP link. Produced and
consumed data is accessible by multiple controllers over an Ethernet network.
The controller sends or receives data at a predetermined RPI rate.

Produced and consumed tags must be controller-scoped tags of DINT or
REAL data type, or in an array or structure.

The producer and consumer must be configured correctly for the specified
data to be shared. A produced tag in the producer must be specified exactly the
same as a consumed tag in the consumer.

If any produced/consumed tag between a producer and consumer is not
specified correctly, none of the produced/consumed tags for that producer
and consumer will be transferred. For example, if a DriveLogix controller is
consuming three tags that another DriveLogix controller consumes but the
first tag is specified incorrectly, none of the tags are transferred to the
consuming DriveLogix controller.

However, one consumer failing to access shared data does not affect other
consumers accessing the same data. For example, if the producing DriveLogix
controller from the previous example also produced tags for other consuming
controllers but did so correctly, those tags are still transferred to the additional
consuming controllers.

Maximum number of produced and consumed tags

The maximum number of produced/consumed tags that you can configure
depends on the connection limits of the communication device that transfers
the produced/consumed data.

Each produced tag uses one connection for the tag and the first configured
consumer of the tag. Each consumer thereafter uses an additional connection.

Tag type: Description: Specify:

produced These are tags that the controller
produced for other controllers to consume.

• Enabled for producing

• How many consumers allowed

consumed These are tags whose values are produced
by another controller.

• Controller name that owns the tag that the local controller
wants to consume

• Tag name or instance that the controller wants to consume

• Data type of the tag to consume

• Update interval of how often the local controller consumes
the tag
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-21

Size limit of a produced or consumed tag

A produced or consumed tag can be as large as 488 bytes, but it must also fit
within the bandwidth of the EtherNet/IP network.

Producing a tag

Produced data must be of DINT or REAL data type or a structure. You can
use a user-defined structure to group BOOL, SINT, and INT data to be
produced. To create a produced tag:

1. You must be programming offline.

2. In the controller organizer, double-click the Controller Tags folder and
then click the Edit Tags tab.

3. Select the tag that you want to produce, or enter a new tag, and display
the Tag Properties dialog box.

4. Make sure the tag is controller scope.

5. Select the �Produce this tag� check box. Specify how many controllers
can consume the tag.

You can produce a base, alias, or consumed tag.

The consumed tag in a receiving controller must have the same data type as the
produced tag in the originating controller. The controller performs type
checking to ensure proper data is being received.

Produced tags require connections. The number of connections depends on
how many controllers are consuming the tags. The controller requires one
connection for the produced tag and the first consumer. Then, the controller
requires an additional connection for each subsequent consumer.
Publication 20D-UM002C-EN-P - November 2003

6-22 Communicating with Devices on an EtherNet/IP Link

Consuming a tag

A consumed tag represents data that is produced (broadcast) by one controller
and received and stored by the consuming controller. To create a consumed
tag:

1. You must be programming offline.

2. In the controller organizer, double-click the Controller Tags folder and
then click the Edit Tags tab.

3. Select the tag that you want to consume, or enter a new tag, and display
the Tag Properties dialog box.

4. Specify:

All consumed tags are automatically controller-scope.

The produced tag in the originating DriveLogix controller must have the same
data type as the consumed tag in the consuming DriveLogix controller. The
DriveLogix controller performs type checking to make sure proper data is
being received.

In this field: Type or select:

Tag Type Select Consumed.

Controller Select the name of the other controller. You must have already created the controller in
the controller organizer for the controller name to be available.

Remote Tag Name
Remote Instance

Type a name for the tag in the other controller you want to consume.

Important: The name must match the name in the remote controller exactly, or the
connection faults.

RPI
(requested packet interval)

Type the amount of time in msec between updates of the data from the remote controller.
The local controller will receive data at least this fast.

Display Style If you are creating a consumed tag that refers to a tag whose data type is BOOL, SINT,
INT, DINT, or REAL, you can select a display style. This display style defines how the tag
value will be displayed in the data monitor and ladder editor. The display style does not
have to match the display style of the tag in the remote controller.

IMPORTANT If a consumed-tag connection fails, none of the tags are
transferred from the producing controller to the
consuming controller.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-23

Guidelines for Configuring
Connections

Each 1788-ENBT communication daughtercard supports 32 I/O
connections. How you configure these connections determines how many
devices the daughtercard can support.

If you have two communication daughtercards, use one for communication
and the other for remote I/O. While one daughtercard can support both
functions, performance can improve by separating these functions onto
separate daughtercards.

Example 1: DriveLogix
Controller and Remote I/O

In the following example, one DriveLogix controller controls remote I/O
through a 1794-AENT module.

Example 1: Controlling remote devices

This example has DriveLogix1 controlling the I/O connected to the remote
1794-AENT module. The data the DriveLogix controller receives from the
remote I/O modules depends on how you configure the remote I/O modules.
You can configure each module as a direct connection or as rack optimized.

! Et
he

rN
et

/IP

DriveLogix controller
(DriveLogix1)

EtherNet/IP

1794-AENT with remote I/O
(Remote1)
Publication 20D-UM002C-EN-P - November 2003

6-24 Communicating with Devices on an EtherNet/IP Link

One chassis can have a combination of some modules configured as a direct
connection and others as rack optimized.

Example 1: Total connections required by DriveLogix1

The following table calculates the connections used in this example.

If you configured the remote I/O modules as rack-optimized, you would only
need a rack-optimized connection to the 1794-AENT, reducing the above
example by 3 connections.

Connection: Amount:

DriveLogix1 controller to 3 local I/O modules

rack-optimized connection for the DIN rail

direct connection for each I/O module

1

3

DriveLogix1 controller to remote 1794-AENT 1

DriveLogix1 to 4 remote I/O modules (through
1794-AENT)

all I/O modules configured as direct connection

no connection to the 1794-AENT

4

total connections used: 9
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-25

Example 2: DriveLogix
Controller to DriveLogix
Controller

In the following example, one DriveLogix controller communicates with
another DriveLogix controller over EtherNet/IP. Each DriveLogix controller
has its own local I/O

Example 2: Sending a MSG instruction

To send a MSG from DriveLogix1 to DriveLogix2:

1. For DriveLogix1, create a controller-scoped tag and select the
MESSAGE data type.

2. Enter a MSG instruction.

In this example logic, a message is sent when a specific condition is met.
When count_send is set, send count_msg.

! Et
he

rN
et

/IP

DriveLogix1

1,1,2,xxx.xxx.xxx.xxx,1,0

DriveLogix2

1,1,2,xxx.xxx.xxx.xxx,1,0

EtherNet/IPDistributed control

workstation

! Et
he

rN
et

/IP

count_send

/
count_msg.en

EN
DN
ER

Type - Unconfigured
Message Control count_msg ...

MSG
Publication 20D-UM002C-EN-P - November 2003

6-26 Communicating with Devices on an EtherNet/IP Link

3. Configure the MSG instruction. On the Configuration tab:

4. On the Communication tab, specify the communication path.

A communication path requires pairs of numbers. The first number in
the pair identifies the port from which the message exits. The second
number in the pair designates the node address of the next device.

For this item: Specify:

Message Type CIP Data Table Read or

CIP Data Table Write

Source Tag Tag containing the data to be transferred

Number of Elements Number of array elements to transfer

Destination Tag Tag to which the data will be transferred

For this item: Specify:

Communication Path 1,1,2,xxx.xxx.xxx.xxx,1,0

where:

1 is the DriveLogix backplane of DriveLogix1

1 is 1788-ENBT daughtercard in slot 1

2 is the EtherNet/IP port

xxx.xxx.xxx.xxx. is the IP address of DriveLogix2

1 is the DriveLogix backplane of DriveLogix2

0 is the controller slot of DriveLogix2
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-27

Example 2: Producing and consuming tags

Produced data must be of DINT or REAL data type or an array or structure.
You can use a user-defined structure to group BOOL, SINT, and INT data to
be produced. You can produce a base, alias, or consumed tag.

The consumed tag must have the same data type as the produced tag in the
originating controller. The controller performs type checking to ensure proper
data is being received.

This example shows DriveLogix1 as producing TagA and consuming TagB:

! Et
he

rN
et

/IP

EtherNet/IP

workstation
! Et

he
rN

et
/IP

DriveLogix1

TagA DINT

DriveLogix2 (controllerb)

TagA DINT

TagA TagB
Publication 20D-UM002C-EN-P - November 2003

6-28 Communicating with Devices on an EtherNet/IP Link

Each produced tags requires one connection for the producing controller and
an additional connection for each consuming controller. Each consumed tag
requires one connection.

Example 2: Total connections required by DriveLogix1

The following table calculates the connections used in this example.

If you configured the local I/O modules as rack-optimized, you would only
need the DIN-rail connection to the I/O modules, reducing the above
example by 3 connections.

Connection: Amount:

DriveLogix1 controller to 3 local I/O modules

rack-optimized connection for the DIN rail

direct connection for each I/O module

1

3

DriveLogix1 controller to local 1788-ENBT 0

DriveLogix1 controller to remote 1788-ENBT 0

connected, cached MSG from DriveLogix1 to
DriveLogix2

1

produced TagA

produced from DriveLogix1 to DriveLogix2

other consumer (2 are configured)

1

1

consumed TagB 1

total connections used: 8
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on an EtherNet/IP Link 6-29

Example 3: DriveLogix
Controller to Other Devices

In the following example, one DriveLogix controller communicates with a
Logix5550 controller and an Ethernet PLC-5 controller over EtherNet/IP.

Example 3: Sending MSG instructions

You configure a MSG instruction to a Logix5550 controller the same as you
do for a DriveLogix controller. All Logix-based controllers follow the same
MSG configuration requirements. See Example 2 above.

Configuring a MSG instruction for a PLC-5 controller depends on the
originating controller.

For MSG instructions originating from the DriveLogix controller to the
Ethernet PLC-5 controller:

! Et
he

rN
et

/IP

DriveLogix controller
(DriveLogix1)

EtherNet/IP

ControlLogix controller
(Control1)

Ethernet PLC-5 controller
(PLC5E1)

DriveLogix controller
(DriveLogix2)

Distributed control with a
ControlLogix controller as the
coordinating controller

! Et
he

rN
et

/IP

Type of Logix MSG instruction: Source: Destination:

Typed Read any integer element (such as B3:0,
T4:0.ACC, C5:0.ACC, N7:0, etc.)

SINT, INT, or DINT tag

any floating point element (such as F8:0,
PD10:0.SP, etc.)

REAL tag
Publication 20D-UM002C-EN-P - November 2003

6-30 Communicating with Devices on an EtherNet/IP Link

The PLC-5 controller supports logical ASCII addressing so you do not have to
map a compatibility file for MSG instructions initiated by a PLC-5 controller.
Place the DriveLogix tag name in double quotes (�).

Example 3: Total connections required by DriveLogix1

The following table calculates the connections used in this example.

If you configured the local I/O modules as rack-optimized, you would only
need the DIN-rail connection to the I/O modules, reducing the above
example by 3 connections.

Typed Write SINT or INT tag any integer element (such as B3:0,
T4:0.ACC, C5:0.ACC, N7:0, etc.)

REAL tag any floating point element (such as F8:0,
PD10:0.SP, etc.)

Word Range Read any data type (such as B3:0, T4:0, C5:0,
R6:0, N7:0, F8:0, etc.)

SINT, INT, DINT, or REAL

Word Range Write SINT, INT, DINT, or REAL any data type (such as B3:0, T4:0, C5:0,
R6:0, N7:0, F8:0, etc.)

Type of Logix MSG instruction: Source: Destination:

Type of MSG Instruction: Example Source and Destination:

PLC-5 writes to DriveLogix source element N7:10

destination tag “array_1”

PLC-5 reads from DriveLogix source tag “array_1”

destination element N7:10

Connection: Amount:

DriveLogix1 controller to 3 local I/O modules

rack-optimized connection for the DIN rail

direct connection for each I/O module

1

3

DriveLogix1 controller to local 1788-ENBT 0

connected, cached MSG from DriveLogix1 to Control1 1

connected, cached MSG from DriveLogix1 to PLC-5E1 1

total connections used: 6
Publication 20D-UM002C-EN-P - November 2003

Chapter 7

Communicating with Devices on a
ControlNet Link

Using This Chapter

Configuring Your System for
a ControlNet Link

For the DriveLogix controller to operate on a ControlNet network, you need:

• a workstation with an appropriate ControlNet
communication daughtercard

• a 1788-CNx communication daughtercard installed in the DriveLogix
communication slot

• RSLinx software to configure the ControlNet communication driver
• RSLogix 5000 programming software to configure the 1788-CNx

communication daughtercard as part of the DriveLogix system
• RSNetWorx software to schedule the DriveLogix system on the network

For information about: See page

Configuring your system for a ControlNet link 7-1

Configuring remote I/O 7-5

Sending messages 7-11

Producing and consuming data 7-17

Guidelines for configuring connections 7-21

Example 1: DriveLogix controller and remote I/O 7-22

Example 2: DriveLogix controller to DriveLogix controller 7-24

Example 3: DriveLogix controller to other devices 7-28
1 Publication 20D-UM002C-EN-P - November 2003

7-2 Communicating with Devices on a ControlNet Link

Step 1: Configure the hardware

Before you can connect the DriveLogix system to the ControlNet network,
you must configure the 1788-CNx communication daughtercard and make
sure it�s properly installed in the DriveLogix controller.Refer to Access
Procedures on page C-1 to understand how to gain access to the NetLinx
daughtercard slot on the DriveLogix controller.

You�ll need to configure the communication daughtercard slot number to 1 in
the RSLogix 5000 programming software. The DriveLogix controller uses slot
0.

For more information about configuring a 1788-CNx communication
daughtercard, see:

For this card: See this document:

1788-CNC, -CNCR 1788-IN002

1788-CNF, -CNFR 1788-IN005
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-3

Step 2: Configure the communication driver

Use RSLinx software to configure the ControlNet communication driver.
Select the appropriate communication driver for the communication
daughtercard in your workstation.

1. In RSLinx software, select Configure Driver. Select the appropriate driver.

The installation instructions for the communications daughtercard should identify which
communication driver to install.

2. Specify the appropriate settings. For example:

If you are using this device: Specify this information:

1784-KTCx card memory address, which must match the switch setting on the card

I/O base address, which must match the switch setting on the card

ControlNet node address

1784-PCC card ControlNet node address (MAC ID)

1784-PCIC card ControlNet node address (MAC ID)
Publication 20D-UM002C-EN-P - November 2003

7-4 Communicating with Devices on a ControlNet Link

Step 3: Configure the daughtercard as part of the system

Use RSLogix 5000 programming software to map the 1788-CNx
communication daughtercard as part of the DriveLogix system. In the
Controller Organizer, add the communication daughtercard to the I/O
Configuration folder.

Complete your system configuration and develop your program logic. Then
download the project to the DriveLogix controller.

1. In RSLogix 5000 programming software, select the I/O Configuration folder.

2 Right-click to select New Module and add a 1788-CNx communication daughtercard.

4. Specify the slot number 1 for the communication
daughtercard.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-5

Configuring Remote I/O The DriveLogix controller supports remote I/O over a ControlNet link.
Configuring I/O in a remote chassis is similar to configuring local I/O. The
difference is that you must also configure the communication daughtercard
(1788-CNx) in the local chassis and the communication module in the
remote chassis.

To configure a remote I/O module:

1. In the Controller Organizer, select the I/O Configuration Folder. Add and configure a 1788-CNx communication daughtercard. This is the
local communication daughtercard.

3. Specify the slot number (1 or 2) where you installed
the communication daughtercard.
Publication 20D-UM002C-EN-P - November 2003

7-6 Communicating with Devices on a ControlNet Link

The local daughtercard becomes the �parent module� to the remote module.
The controller organizer shows this parent/child relationship between local
and remote communication devices.

Configure I/O modules for the remote communication module by adding
them to the remote communication module (i.e., right-click the 1794-ACN15
module and select New Module). Configure the remote I/O modules the same
way you do local I/O modules.

3. In the Controller Organizer, select the local 1788-CNx communication daughtercard you just added. Add and configure the remote
communication module (1794-ACN15 in this example)

5. Add and configure the remote I/O modules on the remote communication module you just added.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-7

Accessing remote I/O

I/O information is presented as a structure of multiple fields, which depend
on the specific features of the I/O module. The name of the structure is based
on the location of the I/O module in the system. Each I/O tag is
automatically created when you configure the I/O module through the
programming software. Each tag name follows this format:

Location:SlotNumber:Type.MemberName.SubMemberName.Bit

where:

This address variable: Is:

Location Identifies network location

LOCAL = local DIN rail or chassis

ADAPTER_NAME = identifies remote adapter or bridge

SlotNumber Slot number of I/O module in its chassis

Type Type of data

I = input

O = output

C = configuration

S = status

MemberName Specific data from the I/O module; depends on the type of data the module can store

For example, Data and Fault are possible fields of data for an I/O module. Data is the common name for
values the are sent to or received from I/O points.

SubMemberName Specific data related to a MemberName.

Bit (optional) Specific point on the I/O module; depends on the size of the I/O module (0-31 for a 32-point module)

EXAMPLE

configured for direct connections

configured for rack-optimized
connections
Publication 20D-UM002C-EN-P - November 2003

7-8 Communicating with Devices on a ControlNet Link

Device: Example Tag Names (automatically created by the software):

remote adapter “FLEX_adapter” FLEX_adapter:I

FLEX_adapter:I.SlotStatusBits

FLEX_adapter:I.Data

FLEX_adapter:O

FLEX_adapter:O.Data

remote “input1” in slot 0

direct connection

FLEX_adapter:0:C

FLEX_adapter:0:C.Config

FLEX_adapter:0:C.Filter0_00_11

FLEX_adapter:0:C.Filter1_00_11

FLEX_adapter:0:C.Filter2_00_11

FLEX_adapter:0:C.Filter3_12_15

FLEX_adapter:0:C.Filter4_12_15

FLEX_adapter:0:C.Filter5_12_15

FLEX_adapter:0:C.ResetCounter

FLEX_adapter:0:C.DisableFilter

FLEX_adapter:0:I

FLEX_adapter:0:I.Fault

FLEX_adapter:0:I.Data

FLEX_adapter:0:I.Counter
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-9

For examples of local I/O tags, see chapter 4 �Placing and Configuring Local
I/O�.

remote “output1” in slot 1

direct connection

FLEX_adapter:1:C

FLEX_adapter:1:C.SSDate

FLEX_adapter:1:I

FLEX_adapter:1:I.Fault

FLEX_adapter:1:O

FLEX_adapter:1:O.Data

remote “input2” in slot 2

rack-optimized connection

These tags are created as aliases into
the FLEX_adapter:I tag

FLEX_adapter:2:C

FLEX_adapter:2:C.Config

FLEX_adapter:2:C.Filter0_00_11

FLEX_adapter:2:C.Filter1_00_11

FLEX_adapter:2:C.Filter2_00_11

FLEX_adapter:2:C.Filter3_12_15

FLEX_adapter:2:C.Filter4_12_15

FLEX_adapter:2:C.Filter5_12_15

FLEX_adapter:2:C.ResetCounter

FLEX_adapter:2:C.DisableFilter

FLEX_adapter:2:I

remote “output2” in slot 3

rack-optimized connection

These tags are created as aliases into
the FLEX_adapter:O tag

FLEX_adapter:3:C

FLEX_adapter:3:C.SSDate

FLEX_adapter:3:O

Device: Example Tag Names (automatically created by the software):
Publication 20D-UM002C-EN-P - November 2003

7-10 Communicating with Devices on a ControlNet Link

Scheduling the ControlNet
Network

Use RSNetWorx software to schedule the ControlNet network. The controller
project must already be downloaded from RSLogix 5000 programming
software to the controller and the controller must be in Program or Remote
Program mode.

1. In RSNetWorx software, go online, enable edits, and survey the network.

3. After you specify the NUT, save and re-write the schedule for all connections.

2. Specify the network update time (NUT)

The default NUT is 5ms.

The NUT you specify must be lower than or equal to the lowest RPI in your ControlNet network. The RPI numbers for the local and extended-local

Every device on the network must be in Program or Remote Program mode for the software to re-write all its connections. If a device is not in the
correct mode, the software prompts you to let it change the device’s mode.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-11

Sending Messages The DriveLogix controller can send MSG instructions to other controllers
over a ControlNet link. Each MSG instruction requires you to specify a target
and an address within the target. The number of messages that a device can
support depends on the type of message and the type of device:

MSG instructions are unscheduled. The type of MSG determines whether or
not it requires a connection. If the MSG instruction requires a connection, it
opens the needed connection when it is executed. You can configure the MSG
instruction to keep the connection open (cache) or to close it after sending the
message.

This device: Support this many
unconnected messages:

Support this many
connected messages:

1756-CNB or 1756-CNBR module
(for a Logix5550 controller)

20 64

1788-CNx daughtercard
(for a DriveLogix controller)

5 32

with a maximum of 9 scheduled

ControlNet PLC-5 controller 32 128

This type of message: And this communication method: Uses a connection:

CIP data table read or write X

PLC2, PLC3, PLC5, or SLC (all types) CIP

CIP with Source ID

DH+ X

CIP generic CIP Optional(1)

block-transfer read or write X

(1) You can connect CIP generic messages, but for most applications, we recommend you leave CIP generic messages unconnected.
Publication 20D-UM002C-EN-P - November 2003

7-12 Communicating with Devices on a ControlNet Link

Connected messages are unscheduled connections on ControlNet.

If a MSG instruction uses a connection, you have the option to leave the
connection open (cache) or close the connection when the message is done
transmitting.

The controller has the following limits on the number of connections that you
can cache:

Communicating with another Logix-based controller

All Logix-based controllers can use MSG instructions to communicate with
each other. The following examples show how to use tags in MSG instructions
between Logix-based controllers.

The source and destination tags:

• must be controller-scoped tags.

• can be of any data type, except for AXIS, MESSAGE, or
MOTION_GROUP.

If you: Then:

Cache the connection The connection stays open after the MSG instruction is done.
This optimizes execution time. Opening a connection each time
the message executes increases execution time.

Do not cache the
connection

The connection closes after the MSG instruction is done. This
frees up that connection for other uses.

If you have this software
and firmware revision:

Then you can cache:

11.x or earlier • block transfer messages for up to 16 connections

• other types of messages for up to 16 connections

12.x or later up to 32 connections

Type of MSG Instruction: Example Source and Destination:

Logix-based controller writes to
Logix-based controller

(CIP Data Table Write)

source tag

destination tag

array_1

array_2

Logix-based controller reads from
Logix-based controller

(CIP Data Table Read)

source tag

destination tag

array_1

array_2
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-13

Communicating with other controllers over ControlNet

The DriveLogix controller also uses MSG instructions to communicate with
PLC and SLC controllers. The MSG instructions differ depending on which
controller initiates the instruction.

For MSG instructions originating from a DriveLogix controller to a PLC or
SLC controller:

Type of MSG
Instruction:

Supported Source File Types: Supported Destination File Types:

DriveLogix writes
to PLC-5 or SLC

In the DriveLogix controller, specify the source data type
based on the destination device:

PLC-5: SINT, INT, DINT, or REAL

SLC: INT

Example source element: array_1

Specify the destination file type based on the
destination device:

PLC-5 typed write: S, B, N, or F

PLC-5 word-range write: S, B, N, F, I, O, A, or D

SLC: B or N

Example destination tag: N7:10
Publication 20D-UM002C-EN-P - November 2003

7-14 Communicating with Devices on a ControlNet Link

DriveLogix writes
to PLC-2

In the DriveLogix controller, select one of these data
types:

SINT, INT, DINT, or REAL

Example source element: array_1

Use the PLC-2 compatibility file.

Example destination tag: 010

DriveLogix reads
from PLC-5 or
SLC

Specify the destination file type based on the destination
device:

PLC-5 typed read: S, B, N, or F

PLC-5 word-range read: S, B, N, F, I, O, A, or D

SLC: B or N

Example source element: N7:10

In the DriveLogix controller, specify the destination data
type based on the destination device:

PLC-5: SINT, INT, DINT, or REAL

SLC: INT

Example destination tag: array_1

DriveLogix reads
from PLC-2

Use the PLC-2 compatibility file.

Example source element: 010

In the DriveLogix controller, select one of these data
types:

SINT, INT, DINT, or REAL

Example destination tag: array_1

Type of MSG
Instruction:

Supported Source File Types: Supported Destination File Types:
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-15

The DriveLogix controller can send typed or word-range commands to PLC-5
controllers. These commands read and write data differently. The following
diagrams show how the typed and word-range commands differ.

The DriveLogix controller can process messages initiated from PLC or SLC
controllers. These messages use data table addresses. In order for these
controllers to access tags within the DriveLogix controller, you map tags to
data table addresses.

Mapping addresses

The programming software includes a PLC/SLC mapping tool which allows
you to make an existing controller array tag in the local controller available to
PLC-2, PLC-3, PLC-5, or SLC controllers.

To map addresses:

16-bit words in
PLC-5 controller

32-bit words in
DriveLogix controller

The typed commands maintain data structure and value.

1

2

3

4

Typed read command

1

2

3

4

16-bit words in
PLC-5 controller

32-bit words in
DriveLogix controller

The word-range commands fill the destination tag contiguously. Data
structure and value change depending on the destination data type.

1

2

3

4

Word-range read command

1

3

2

4

Publication 20D-UM002C-EN-P - November 2003

7-16 Communicating with Devices on a ControlNet Link

1. From the Logic menu, select Map PLC/SLC Messages.

2. Specify this information:

The following table shows example source and destination tags and elements
for different controller combinations.

For: In this field: Specify: For example:

PLC-3, PLC-5, and
SLC controllers

File Number Type the file number of the data table in the
PLC/SLC controller.

10

Tag Name Type the array tag name the local controller uses to refer
to the PLC/SLC data table address. The tag must be an
integer array (SINT, INT, or DINT) that is large enough for
the message data.

array_1

PLC-2 controllers Tag Name Type the tag name to be the PLC-2 compatibility file. 200

TIP You can map as many tags as you want to a PLC-3,
PLC-5, or SLC controller. You can map only one tag
to a PLC-2 controller.

Type of MSG Instruction: Example Source and Destination:

PLC-5 writes to DriveLogix

SLC writes to DriveLogix

SLC 5/05

SLC 5/04 OS402 and above

SLC 5/03 OS303 and above

source element N7:10

destination tag “array_1”

The PLC-5, PLC-3, and SLC controllers support logical ASCII addressing so you do not
have to map a compatibility file for MSG instructions initiated by a PLC-5, PLC-3, or SLC
controller. Place the DriveLogix tag name in double quotes (“).

You could optionally map a compatibility file. For example, if you enter 10 for the
compatibility file, you enter N10:0 for the destination tag.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-17

When the DriveLogix controller initiates messages to PLC or SLC controllers,
you do not have to map compatibility files. You enter the data table address of
the target device just as you would a tag name.

SLC 5/05 controllers, SLC 5/04 controllers (OS402 and above), and
SLC 5/03 controllers (OS303 and above) support logical ASCII addressing
and support PLC/SLC mapping (see the examples above). For all other SLC
or MicroLogix1000 controllers, you must map a PLC-2 compatibility file (see
the PLC-2 examples above).

Producing and
Consuming Data

The DriveLogix controller supports the ability to produce (broadcast) and
consume (receive) system-shared tags over a ControlNet link. Produced and
consumed data is accessible by multiple controllers over a ControlNet
network. Produced and consumed data are scheduled connections because the
controller sends or receives data at a predetermined RPI rate.

Produced and consumed tags must be controller-scoped tags of DINT or
REAL data type, or in an array or structure.

PLC-2 writes to DriveLogix source element 010

destination tag 200

The destination tag is the three-digit PLC-2 address you specified for PLC-2 mapping.

PLC-5 reads from DriveLogix

SLC reads from DriveLogix

SLC 5/05
SLC 5/04 OS402 and above

SLC 5/03 OS303 and above

source tag “array_1”

destination element N7:10

The PLC-5, PLC-3, and SLC controllers support logical ASCII addressing so you do not
have to map a compatibility file for MSG instructions initiated by a PLC-5, PLC-3, or SLC
controller. Place the DriveLogix tag name in double quotes (“).

You could optionally map a compatibility file. For example, if you enter 10 for the
compatibility file, you enter N10:0 for the source tag.

PLC-2 reads from DriveLogix source tag 200

destination element 010

The source tag is the three-digit PLC-2 address you specified for PLC-2 mapping.

Type of MSG Instruction: Example Source and Destination:

Tag type: Description: Specify:

produced These are tags that the controller
produced for other controllers to consume.

• Enabled for producing

• How many consumers allowed

consumed These are tags whose values are produced
by another controller.

• Controller name that owns the tag that the local controller
wants to consume

• Tag name or instance that the controller wants to consume

• Data type of the tag to consume

• Update interval of how often the local controller consumes
the tag
Publication 20D-UM002C-EN-P - November 2003

7-18 Communicating with Devices on a ControlNet Link

The producer and consumer must be configured correctly for the specified
data to be shared. A produced tag in the producer must be specified exactly the
same as a consumed tag in the consumer.

If any produced/consumed tag between a producer and consumer is not
specified correctly, none of the produced/consumed tags for that producer
and consumer will be transferred. However, other consumers can still access
their shared tags, as long as their tags are specified correctly. One consumer
failing to access shared data does not affect other consumers accessing the
same data.

Maximum number of produced and consumed tags

The maximum number of produced/consumed tags that you can configure
depends on the connection limits of the communication device that transfers
the produced/consumed data.

Each produced tag uses one connection for the tag and the first configured
consumer of the tag. Each consumer thereafter uses an additional connection.

Size limit of a produced or consumed tag

A produced or consumed tag can be as large as 488 bytes, but it must also fit
within the bandwidth of the ControlNet network:

• As the number of connections over a ControlNet network increases,
several connections, including produced or consumed tags, may need to
share a network update.

• Since a ControlNet network can only pass 500 bytes in one update, the
data of each connection must be less than 488 bytes to fit into the
update.

If a produced or consumed tag is too large for your ControlNet network, make
one or more of the following adjustments:

• Reduce the Network Update Time (NUT). At a faster NUT, less
connections have to share an update slot.

• Increase the Requested Packet Interval (RPI) of all connections. At a
higher RPI, connections can take turns sending data during an update
slot.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-19

• For a ControlNet bridge module (CNB) in a remote chassis, select the
most efficient communication format for that chassis:.

The Rack Optimization format uses an additional 8 bytes for each slot
in its chassis. Analog modules or modules that are sending or getting
diagnostic, fuse, or timestamp data require direct connections and
cannot take advantage of the rack optimized form. Selecting �None�
frees up the 8 bytes per slot for other uses, such as produced or
consumed tags.

• Separate the tag into two or more smaller tags:
� Group the data according to similar update rates. For example, you

could create one tag for data that is critical and another tag for data
that is not as critical.

� Assign a different RPI to each tag.
• Create logic to transfer the data in smaller sections (packets).

Producing a tag

Produced data must be of DINT or REAL data type or an array or structure.
You can use a user-defined structure to group BOOL, SINT, and INT data to
be produced. To create a produced tag:

1. You must be programming offline.

2. In the controller organizer, double-click the Controller Tags folder and
then click the Edit Tags tab.

3. Select the tag that you want to produce, or enter a new tag, and display
the Tag Properties dialog box.

4. Make sure the tag is controller scope.

5. Select the �Produce this tag� check box. Specify how many controllers
can consume the tag.

You can produce a base, alias, or consumed tag.

Are most of the modules in the
chassis non-diagnostic, digital
I/O modules?

Then select this communication
format for the remote
communication module:

yes rack optimization

no none
Publication 20D-UM002C-EN-P - November 2003

7-20 Communicating with Devices on a ControlNet Link

The consumed tag in a receiving controller must have the same data type as the
produced tag in the originating controller. The controller performs type
checking to ensure proper data is being received.

Produced tags require connections. The number of connections depends on
how many controllers are consuming the tags. The controller requires one
connection for the produced tag and the first consumer. Then, the controller
requires an additional connection for each subsequent consumer.

Consuming a tag

A consumed tag represents data that is produced (broadcast) by one controller
and received and stored by the consuming controller. To create a consumed
tag:

1. You must be programming offline.

2. In the controller organizer, double-click the Controller Tags folder and
then click the Edit Tags tab.

3. Select the tag that you want to consume, or enter a new tag, and display
the Tag Properties dialog box.

4. Specify:

All consumed tags are automatically controller-scope.

In this field: Type or select:

Tag Type Select Consumed.

Controller Select the name of the other controller. You must have already created the controller in
the controller organizer for the controller name to be available.

Remote Tag Name
Remote Instance

Type a name for the tag in the other controller you want to consume.

Important: The name must match the name in the remote controller exactly, or the
connection faults.

If the remote controller is a ControlNet PLC-5, this field is Remote Instance. Select the
instance number (1-128) of the data on the remote controller.

RPI
(requested packet interval)

Type the amount of time in msec between updates of the data from the remote controller.
The local controller will receive data at least this fast.

Display Style If you are creating a consumed tag that refers to a tag whose data type is BOOL, SINT,
INT, DINT, or REAL, you can select a display style. This display style defines how the tag
value will be displayed in the data monitor and ladder editor. The display style does not
have to match the display style of the tag in the remote controller.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-21

To consume data from a remote controller, use RSNetWorx software to
schedule the connection over the ControlNet network.

The produced tag in the originating DriveLogix controller must have the same
data type as the consumed tag in the other DriveLogix controller. The
DriveLogix controller performs type checking to ensure proper data is being
received.

Guidelines for Configuring
Connections

The 1788-CNx communication daughtercard supports 9 scheduled
connections. How you configure these connections determines how many
devices the daughtercard can support.

The NUT and RPI also play a part in determining how many connections a
1788-CNx can support in a given application, assuming the RPIs will be the
same for all connections. You must also make sure that you do not exceed the
maximum number of bytes per NUT.

• With the NUT = 5ms, the limit is 3 connections
• With the NUT = 10ms, the limit is 7connections
• With the NUT > 20ms, the limit is 9 connections

IMPORTANT If a consumed-tag connection fails, all of the other tags
being consumed from that remote controller stop
receiving data.
Publication 20D-UM002C-EN-P - November 2003

7-22 Communicating with Devices on a ControlNet Link

Determining the API

The API (actual packets per interval) is related to the RPI for the connection
and the NUT of the network. Use this table to select the API to enter in the
above worksheet:

Example 1: DriveLogix
Controller and Remote I/O

In the following example, one DriveLogix controller controls remote I/O
through a 1794-ACN15 module.

If: Enter this value for the API:

RPI ≥ NUT and RPI < 2∗NUT NUT

RPI ≥ 2∗NUT and RPI < 4∗NUT 2∗NUT

RPI ≥ 4∗NUT and RPI < 8∗NUT 4∗NUT

RPI ≥ 8∗NUT and RPI < 16∗NUT 8∗NUT

RPI ≥ 16∗NUT and RPI < 32∗NUT 16∗NUT

RPI ≥ 32∗NUT and RPI < 64∗NUT 32∗NUT

RPI ≥ 64∗NUT and RPI < 128∗NUT 64∗NUT

RPI ≥ 128∗NUT 128∗NUT

DriveLogix controller
(DriveLogix1)

ControlNet

1794-ACN with remote I/O
(Remote1)
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-23

Example 1: Controlling remote devices

This example has DriveLogix1 controlling the I/O connected to the remote
1794-ACN15 module. The data the DriveLogix controller receives from the
remote I/O modules depends on how you configure the remote I/O modules.
You can configure each module as a direct connection or as rack optimized.
One chassis can have a combination of some modules configured as a direct
connection and others as rack optimized.

Example 1: Total connections required by DriveLogix1

The following table calculates the connections used in this example.

If you configured the remote I/O modules as rack-optimized, you would only
need a rack-optimized connection to the 1794-ACNR15, reducing the above
example by 3 connections.

Connection: Amount:

DriveLogix1 controller to 3 local I/O modules

rack-optimized connection for the DIN rail

direct connection for each I/O module

1

3

DriveLogix1 controller to remote 1794-ACNR15 1

DriveLogix1 to 4 remote I/O modules (through
1794-ACNR15)

all I/O modules configured as direct connection

no connection to the 1794-ACNR15

4

total connections used: 9
Publication 20D-UM002C-EN-P - November 2003

7-24 Communicating with Devices on a ControlNet Link

Example 2: DriveLogix
Controller to DriveLogix
Controller

In the following example, one DriveLogix controller communicates with
another DriveLogix controller over ControlNet. Each DriveLogix controller
has its own local I/O

Example 2: Sending a MSG instruction

To send a MSG from DriveLogix1 to DriveLogix2:

1. For DriveLogix1, create a controller-scoped tag and select the
MESSAGE data type.

2. Enter a MSG instruction.

In this example logic, a message is sent when a specific condition is met.
When count_send is set, send count_msg.

DriveLogix1 DriveLogix2

ControlNet
Distributed control

workstation
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-25

3. Configure the MSG instruction. On the Configuration tab:

4. On the Communication tab, specify the communication path.

A communication path requires pairs of numbers. The first number in
the pair identifies the port from which the message exits. The second
number in the pair designates the node address of the next device.

Example 2: Producing and consuming tags

Produced data must be of DINT or REAL data type or an array or structure.
You can use a user-defined structure to group BOOL, SINT, and INT data to
be produced. You can produce a base, alias, or consumed tag.

For this item: Specify:

Message Type CIP Data Table Read or

CIP Data Table Write

Source Tag Tag containing the data to be transferred

Number of Elements Number of array elements to transfer

Destination Tag Tag to which the data will be transferred

For this item: Specify:

Communication Path 1,1,2,27,1,0

where:

1 is the DriveLogix backplane of DriveLogix1

1 is 1788-CNC daughtercard in slot 1

2 is the ControlNet port

27 is the ControlNet node of DriveLogix2

1 is the DriveLogix backplane of DriveLogix2

0 is the controller slot of DriveLogix2
Publication 20D-UM002C-EN-P - November 2003

7-26 Communicating with Devices on a ControlNet Link

The consumed tag must have the same data type as the produced tag in the
originating controller. The controller performs type checking to ensure proper
data is being received.

This example shows Flex1 as producing TagA and consuming TagB:

Each produced tags requires one connection for the producing controller and
an additional connection for each consuming controller. Each consumed tag
requires one connection.

DriveLogix1

TagA DINT

DriveLogix2 (Controller_B)

TagA DINT

ControlNet

workstation

TagA TagB
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-27

Example 2: Total connections required by DriveLogix1

The following table calculates the connections used in this example.

If you configured the local I/O modules as rack-optimized, you would only
need the DIN-rail connection to the I/O modules, reducing the above
example by 3 connections.

Connection: Amount:

DriveLogix1 controller to 3 local I/O modules

rack-optimized connection for the DIN rail

direct connection for each I/O module

1

3

DriveLogix1 controller to local 1788-CNC 0

DriveLogix1 controller to remote 1788-CNC 0

connected, cached MSG from DriveLogix1 to
DriveLogix2

1

produced TagA

produced from DriveLogix1 to DriveLogix2

other consumer (2 are configured)

1

1

consumed TagB 1

total connections used: 8
Publication 20D-UM002C-EN-P - November 2003

7-28 Communicating with Devices on a ControlNet Link

Example 3: DriveLogix
Controller to Other Devices

In the following example, one DriveLogix controller communicates with a
Logix5550 controller and a ControlNet PLC-5 controller over ControlNet.

Example 3: Sending MSG instructions

You configure a MSG instruction to a Logix5550 controller the same as you
do for a DriveLogix controller. All Logix-based controllers follow the same
MSG configuration requirements. See Example 2 above.

Configuring a MSG instruction for a PLC-5 controller depends on the
originating controller.

For MSG instructions originating from the DriveLogix controller to the
ControlNet PLC-5 controller:

DriveLogix controller
(DriveLogix1)

ControlNet

ControlLogix controller
(Control1)

ControlNet PLC-5 controller
(PLC5C1)

DriveLogix controller
(DriveLogix2)

Distributed control with a
ControlLogix controller as the
coordinating controller

Type of Logix MSG instruction: Source: Destination:

Typed Read any integer element (such as B3:0,
T4:0.ACC, C5:0.ACC, N7:0, etc.)

SINT, INT, or DINT tag

any floating point element (such as F8:0,
PD10:0.SP, etc.)

REAL tag
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-29

The PLC-5 controller supports logical ASCII addressing so you do not have to
map a compatibility file for MSG instructions initiated by a PLC-5 controller.
Place the DriveLogix tag name in double quotes (�).

Example 3: Producing and consuming tags

You can produce and consume tags with any Logix controller the same as you
do with a DriveLogix controller. All Logix controllers follow the same
requirements for producing and consuming tags. See Example 2 above.

Typed Write SINT or INT tag any integer element (such as B3:0,
T4:0.ACC, C5:0.ACC, N7:0, etc.)

REAL tag any floating point element (such as F8:0,
PD10:0.SP, etc.)

Word Range Read any data type (such as B3:0, T4:0, C5:0,
R6:0, N7:0, F8:0, etc.)

SINT, INT, DINT, or REAL

Word Range Write SINT, INT, DINT, or REAL any data type (such as B3:0, T4:0, C5:0,
R6:0, N7:0, F8:0, etc.)

Type of Logix MSG instruction: Source: Destination:

Type of MSG Instruction: Example Source and Destination:

PLC-5 writes to DriveLogix source element N7:10

destination tag “array_1”

PLC-5 reads from DriveLogix source tag “array_1”

destination element N7:10
Publication 20D-UM002C-EN-P - November 2003

7-30 Communicating with Devices on a ControlNet Link

Producing and consuming tags with a ControlNet PLC-5 controller depends
on the type of data.

Producing a tag to a ControlNet PLC-5 controller

To produce a tag that a ControlNet PLC-5 controller can consume:

1. Determine the type of data to produce?

DriveLogix1

TagA DINT

DriveLogix controller
(DriveLogix2)

ControlNet

ControlLogix controller
(Control1)

ControlNet PLC-5 controller
(PLC5C1)

If: And you are producing: Then:

INT na A. Create a user-defined data type that contains an array of INTs with an even
number of elements, such as INT[2]. When you produce INTs, you must
produce two or more.

B. Create a produced tag and select the user-defined data type you created.

DINT or REAL Only one DINT or REAL value Create a produced tag and select the DINT or REAL data type, as appropriate.

More than one DINT or REAL A. Create a user-defined data type that contains an array of DINTs or REALs,
as appropriate.

B. Create a produced tag and select the user-defined data type you created.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-31

2. In RSNetWorx software, open the ControlNet configuration for the
target ControlNet PLC-5 controller, insert a Receive Scheduled Message
and enter the following Message size:

3. In the RSNetWorx software, reschedule (save) the network.

The ControlNet PLC-5 controller does not perform type checking. Make sure
the PLC-5 data type can correctly receive the DriveLogix produced tag to
ensure proper data is being received.

When a ControlNet PLC-5 controller consumes a tag that is produced by a
Logix5000 controller, it stores the data in consecutive 16-bit integers. The
ControlNet PLC-5 controller stores floating-point data, which requires 32-bits
regardless of the type of controller, as follows:

• The first integer contains the upper (left-most) bits of the value.
• The second integer contains the lower (right-most) bits of the value.

To re-construct the floating point data within the ControlNet PLC-5
controller, first reverse the order of the integers and then copy them to a
floating-point file.

Consuming a tag from a ControlNet PLC-5 controller

To consume a tag from a ControlNet PLC-5 controller,:

1. In RSNetWorx software, open the ControlNet configuration of the
ControlNet PLC-5 controller, insert a Send Scheduled Message.

2. In RSLogix 5000 software, add the ControlNet PLC-5 controller to the
Controller Organizer.

3. Create a user-defined data type that contains these members:

If the produced tag
contains:

Then, for the Message size, enter:

INTs The number of integers in the produced tag

DINTs Two times the number of DINTs or REALs in the produced
tag. For example, if the produced tag contains 10 DINTs,
enter 20 for the Message size.REALs

Data type: Description:

DINT Status

INT[x], where “x” is the output size of the
data from the ControlNet PLC-5 controller.
(If you are consuming only one INT, no
dimension is required.)

Data produced by a ControlNet PLC-5
controller
Publication 20D-UM002C-EN-P - November 2003

7-32 Communicating with Devices on a ControlNet Link

4. Create a consumed tag with the following properties:

5. In the RSNetWorx for ControlNet software, reschedule (save)
the network.

Example 3: Total connections required by DriveLogix1

The following table calculates the connections used in this example.

If you configured the local I/O modules as rack-optimized, you would only
need the DIN-rail connection to the I/O modules, reducing the above
example by 3 connections.

For this tag property: Type or select:

Tag Type Consumed

Controller The ControlNet PLC-5 that is producing the data

Remote Instance The message number from the ControlNet configuration of the
ControlNet PLC-5 controller

RPI A power of two times the NUT of the ControlNet network. For
example, if the NUT is 5ms, select an RPI of 5, 10, 20, 40, etc.

Data Type The user-defined data type that you created.

Connection: Amount:

DriveLogix1 controller to 3 local I/O modules

rack-optimized connection for the DIN rail

direct connection for each I/O module

1

3

DriveLogix1 controller to local 1788-CNC 0

DriveLogix1 controller to remote 1756-CNB 1

DriveLogix1 controller to remote ControlNet PLC-5 1

connected, cached MSG from DriveLogix1 to Control1 1

connected, cached MSG from DriveLogix1 to PLC5C1 1

Produced TagA

produced from DriveLogix1 to DriveLogix2

consumed by PLC5C1

1

1

Consumed TagB from DriveLogix2 1

Consumed INT from PLC5C1 1

total connections used: 12
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a ControlNet Link 7-33

You can configure the 1756-CNB module to use no connection. This is useful
if you configure all direct connections to their associated I/O modules and do
not need a rack-optimized connection.
Publication 20D-UM002C-EN-P - November 2003

7-34 Communicating with Devices on a ControlNet Link

Notes:
Publication 20D-UM002C-EN-P - November 2003

Chapter 8

Communicating with Devices on a
DeviceNet Link

Using This Chapter

Configuring Your System for
a DeviceNet Link

For the DriveLogix controller to operate on a DeviceNet network, you need:

• a 1788-DNBO DeviceNet communication daughtercard.
• RSLogix 5000 programming software, version 10 or later, to configure

the 1788-DNBO card as part of the DriveLogix system
• RSNetWorx for DeviceNet software to configure the 1788-DNBO card

on the DeviceNet network

For information about: See page

Configuring your system for a DeviceNet link 8-1

Placing DeviceNet devices 8-5

Accessing DeviceNet devices 8-6

Placing the communication card in Run mode 8-9

Example 1: DriveLogix controller and DeviceNet devices 8-10

Example 2: Using a 1788-CN2DN Linking Device 8-11
1 Publication 20D-UM002C-EN-P - November 2003

8-2 Communicating with Devices on a DeviceNet Link

Step 1: Install the hardware

Before you can connect the DriveLogix system to the DeviceNet network, you
must configure the 1788-DNBO communication card and make sure it�s
properly installed in the DriveLogix controller. Refer to Access Procedures on
page C-1 to understand how to gain access to the NetLinx daughtercard slot
on the DriveLogix controller.

You�ll need to configure the communication daughtercard slot number to 1 in
the RSLogix 5000 programming software. The controller uses slot 0.

For more information about configuring a 1788-DNBO card, see the DeviceNet
Daughtercard Installation Instructions, publication 1788-IN053.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a DeviceNet Link 8-3

Step 2: Configure the daughtercard as part of the system

Use RSLogix 5000 programming software to map the 1788-DNBO card as
part of the DriveLogix system. In the Controller Organizer, add the card to the
I/O Configuration folder.

Complete your system configuration and develop your program logic. Then
download the project to the controller.

1. In RSLogix 5000 programming software, select the I/O Configuration folder.

2 Right-click to select New Module and add a 1788-DNBO communication daughtercard.

4. Specify slot number 1 for the communication card.
Publication 20D-UM002C-EN-P - November 2003

8-4 Communicating with Devices on a DeviceNet Link

Step 3: Define the DeviceNet scanlist

Use RSNetWorx for DeviceNet to create a scanlist of the DeviceNet devices
connected to the 1788-DNBO card. If the DriveLogix controller is
powered-up while connected to the 1788-DNBO card, the controller project
does not have to be downloaded from RSLogix 5000 programming software
to the controller and the controller must be in Program or Remote Program
mode.

1. In RSNetWorx software, go online, enable edits, and survey the network.

2. Assign a node address to each device.

Configure each device.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a DeviceNet Link 8-5

Placing DeviceNet Devices Use RSNetWorx for DeviceNet to configure a scan list for the 1788-DNBO
card. The scanlist and the associated input/output data tables set up the data
you want the controller to send to and receive from the card.

1. In RSNetWorx software, go online, enable edits, and survey the network.

2. Double-click the 1788-DNBO card and use the Module tab to configure the card. Upload the network information when prompted.

3. Use the ScanList tab to define the scanning order of the DeviceNet devices.
Publication 20D-UM002C-EN-P - November 2003

8-6 Communicating with Devices on a DeviceNet Link

Defining the data blocks

How you configure the DeviceNet devices determines how many words you
use per device. The 1788-DNBO card supports a
maximum of:

• 124 32-bit words of input data
• 123 32-bit words of output data
• 32 32-bit words of status data

Once you define the scanlist, you define how the data for the devices maps
into the input, output, and status data blocks. Use the Input, Output, or Status
tabs to define the associated data block

Use the AutoMap button to simplify defining the data block for each
DeviceNet device. The above screens show how many 32-bit words are
mapped for the devices on this example network. These words map directly
into the array tags that the software creates for the 1788-DNBO card.

Most DeviceNet devices support 16-bit words. Take care how you map these
into the 32-bit words used in RSLogix 5000 programming software.
RSNetWorx for DeviceNet lets you DINT-align the device data. While this
might simplify the organization of the data, it might also limit the data you
have available.

Accessing DeviceNet
Devices

I/O information is presented as a structure of multiple fields, which depend
on the specific features of the I/O module. The name of the structure is based
on the location of the I/O module in the system. Each I/O tag is
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a DeviceNet Link 8-7

automatically created when you configure the I/O module through the
programming software. Each tag name follows this format:

Location:SlotNumber:Type.MemberName.SubMemberName.Bit

where:

This address variable: Is:

Location Identifies network location

LOCAL = identifies communication card within the workstation

SlotNumber Slot number of I/O module in its chassis

Type Type of data

I = input

O = output

C = configuration

S = status

MemberName Specific data from the I/O module; depends on the type of data the module can store

For example, Data and Fault are possible fields of data for an I/O module. Data is the common name for
values the are sent to or received from I/O points.

SubMemberName Specific data related to a MemberName.

Bit (optional) Specific point on the I/O module; depends on the size of the I/O module (0-31 for a 32-point module)

EXAMPLE
The 1788-DNBO card in this example is in
named “DeviceNet_Interface_Card”.

The data for the card is configured as a
rack-optimized connection.
Publication 20D-UM002C-EN-P - November 2003

8-8 Communicating with Devices on a DeviceNet Link

The rack-optimized connection creates a DINT element for mapped data for
each DeviceNet module connected to the card �dnet.� The array dnet:I.Data
contains the possible input elements; the dnet.O.Data contains the possible
output elements.

The index number on the array element refers to the same numbered word
mapped to the device in RSNetWorx for DeviceNet. Depending on the device,
there can be several words mapped to on device. You can create aliases to the
elements you actually use to more identify the data you need.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a DeviceNet Link 8-9

Placing the Communication
Card in Run Mode

To place the 1788-DNBO daughtercard in Run mode, your program logic
needs to set the CommandRegister.Run bit in the output word for the
1788-DNBO card.

For example:

Set this bit
Publication 20D-UM002C-EN-P - November 2003

8-10 Communicating with Devices on a DeviceNet Link

Example 1: DriveLogix
Controller and DeviceNet
Devices

In the following example, one DriveLogix controller controls remote
DeviceNet devices through a 1788-DNBO card.

DriveLogix controller
with 1788-DNBO card

DeviceNet

ControlLogix
controller with

1756-DNB

PanelView
terminal

1794-ADN with FLEX I/O modules
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a DeviceNet Link 8-11

Example 2: Using a
1788-CN2DN Linking
Device

In the following example, one DriveLogix controller controls remote
DeviceNet devices through a 1788-CN2DN linking device.

This example has a DriveLogix controller controlling three DeviceNet devices
through the linking device. The controller automatically creates a
rack-optimized connection for the remote data based on the configuration of
the linking device.

The tag name for the rack-optimized array tag is based on the name of the
linking device. For example, if you name the linking device �cn_2_dnet,� the
software automatically creates cn_2_dnet:I and cn_2_dnet:O data structures.

DriveLogix controller

DeviceNet

1788-CN2DN linking device

ControlNet

ControlLogix controller
with 1756-DNB

PanelView
terminal

1794-ADN with FLEX I/O modules

EXAMPLE
The 1788-CN2DN device in this example is in named
“ControlNet_Interface_Module”.

The data for the linking device is configured as a
rack-optimized connection.
Publication 20D-UM002C-EN-P - November 2003

8-12 Communicating with Devices on a DeviceNet Link

The rack-optimized connection creates a DINT element for mapped data for
each DeviceNet module connected to the linking device �cnet_2_dnet.� The
array cnet_2_dnet:I.Data contains the possible input elements; the
cnet_2_dnet.O.Data contains the possible output elements.

The index number on the array element refers to the same numbered word
mapped to the device in RSNetWorx for DeviceNet. Depending on the device,
there can be several words mapped to on device. You can create aliases to the
elements you actually use to more identify the data you need.

System requirements for using the linking device

If you want to use the linking device to connect to DeviceNet, you need:

• a 1788-CN2DN ControlNet to DeviceNet linking device

As a bridge, the linking device routes I/O and messaging data with a 5
ms delay. As a ControlNet device it offers a 2ms network update time.
As a DeviceNet device, it provides full DeviceNet DML Scanner
compatibility.

• a 1788-CNx communication card installed in the DriveLogix
communication slot for the ControlNet network

• RSLogix 5000 programming software to configure the linking device
module as part of the DriveLogix system

• RSNetWorx for ControlNet software to configure the 1788-CN2DN
device on the ControlNet network
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a DeviceNet Link 8-13

• RSNetWorx for DeviceNet software to configure the 1788-CN2DN
device on the DeviceNet network

Placing DeviceNet devices

The linking device supports 124, 32-bit words each of input data, output data,
and status data. How you configure the DeviceNet devices determines how
many words you use per device.

Most DeviceNet devices support 16-bit words. Take care how you map these
into the 32-bit words used in RSLogix 5000 programming software.
RSNetWorx for DeviceNet lets you DINT-align the device data. While this
might simplify the organization of the data, it might also limit the data you
have available.
Publication 20D-UM002C-EN-P - November 2003

8-14 Communicating with Devices on a DeviceNet Link

Notes:
Publication 20D-UM002C-EN-P - November 2003

Chapter 9

Communicating with Devices on a Serial Link

Using This Chapter

Configuring Your System for
a Serial Link

For the DriveLogix controller to operate on a serial network, you need:

• a workstation with a serial port
• RSLinx software to configure the serial communication driver
• RSLogix 5000 programming software to configure the serial port of the

controller

For information about: See page

Configuring your system for a serial link 9-1

Example 1: workstation directly connected to a DriveLogix controller 9-8

Example 2: workstation remotely connected to a DriveLogix controller 9-9

Example 3: DriveLogix controller communicating with a bar code reader 9-14

IMPORTANT Limit the length of serial (RS-232) cables to 15.2m (50 ft.).
1 Publication 20D-UM002C-EN-P - November 2003

9-2 Communicating with Devices on a Serial Link

Step 1: Configure the hardware

The RS-232 port is an isolated serial port built-in to the front of the controller.
Refer to Access Procedures on page C-1 to understand how to gain access to
the front of the DriveLogix controller.

To connect to the serial port:

1. Select the appropriate cable.

The 1756-CP3 cable attaches the controller directly to the controller.

If you make your own cable, it must be shielded and the shields must be tied to
the metal shell (that surrounds the pins) on both ends of the cable.

You can also use a 1747-CP3 cable (from the SLC product family). This cable
has a taller right-angle connector housing than the 1756-CP3 cable.

Serial Port

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7 RTS

8 CTS

9

1 CD

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7 RTS

8 CTS

9

1 CD
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a Serial Link 9-3

2. Connect the cable to the serial port on the controller..

TIP Remember to route cable through sliding access panel at
the bottom of the Control Assembly.
Publication 20D-UM002C-EN-P - November 2003

9-4 Communicating with Devices on a Serial Link

Step 2: Configure the serial port of the controller

Specifying serial port characteristics

Specify these characteristics on the Serial Port tab (default values are shown in
bold):

3. On the System Protocol tab, select the appropriate DF1 communication mode for point-to-point or master/slave
communications. Or on the User Protocol tab, select ASCII to communicate with an ASCII device.

1. In RSLogix 5000 programming software, select the Controller folder. Right-click to select Properties.

Characteristic: Description (default is shown in bold):

Mode Select System (for DF1 communication) or User mode (for ASCII communication).

Baud rate Specifies the communication rate for the serial port. Select a baud rate that all devices in
your system support.

Select 110, 300 600, 1200, 2400, 4800, 9600, 19200, or 38400 Kbps.

Parity Specifies the parity setting for the serial port. Parity provides additional message-packet
error detection.

Select None or Even.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a Serial Link 9-5

Specifying system protocol characteristics

The available system modes are:

Data bits Specifies the number of bits per message packet.

Select 8.

Stop bits Specifies the number of stop bits to the device with which the controller is communicating.

Select 1 or 2.

Control line Specifies the mode in which the serial driver operates.

Select No Handshake, Full-Duplex, Half-Duplex with Continuous Carrier, or Half-Duplex
without Continuous Carrier.

If you are not using a modem, select No Handshake

If both modems in a point-to-point link are full-duplex, select Full-Duplex for both
controllers.

Characteristic: Description (default is shown in bold):

IMPORTANT Half-Duplex settings do not work as with other Logix
controllers. RTS and CTS are not functional

Use this mode: For: See page:

DF1 point-to-point communication between the controller and one other DF1-protocol-compatible device.

This is the default system mode.

This mode is typically used to program the controller through its serial port.

9-8
Publication 20D-UM002C-EN-P - November 2003

9-6 Communicating with Devices on a Serial Link

DF1 master mode control of polling and message transmission between the master and slave nodes.

The master/slave network includes one controller configured as the master node and as
many as 254 slave nodes. Link slave nodes using modems or line drivers.

A master/slave network can have node numbers from 0-254. Each node must have a
unique node address. Also, at least 2 nodes must exist to define your link as a network
(1 master and 1 slave station are the two nodes).

9-11

DF1 slave mode using a controller as a slave station in a master/slave serial communication network.

When there are multiple slave stations on the network, link slave stations using
modems or line drivers. When you have a single slave station on the network, you do
not need a modem to connect the slave station to the master; you can configure the
control parameters for no handshaking. You can connect 2-255 nodes to a single link. In
DF1 slave mode, a controller uses DF1 half-duplex protocol.

One node is designated as the master and it controls who has access to the link. All the
other nodes are slave stations and must wait for permission from the master before
transmitting.

9-11

User mode communicating with ASCII devices

This requires your program logic to use the ASCII instructions to read and write data
from and to an ASCII device.

9-15

Use this mode: For: See page:
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a Serial Link 9-7

Step 3: Configure the communication driver

Use RSLinx software to configure the serial communication driver. Select the
�DF1� driver.

2. Specify a name for the driver

1. In RSLinx software, select Communication → Configure Driver. From the Available Driver Types list, select”RS-232 DF1 Devices“.

3. Specify the appropriate communication settings.

Click OK.

Click Add New.

Click OK.
Publication 20D-UM002C-EN-P - November 2003

9-8 Communicating with Devices on a Serial Link

Example 1: Workstation
Directly Connected to a
DriveLogix Controller

In the following example, a workstation directly connects to a DriveLogix
controller over a serial link. This is useful for downloading a controller project
directly to the controller.

Use RSLogix 5000 programming software to configure the controller�s serial
port for the DF1 point-to-point (full-duplex) protocol. This type of protocol
supports simultaneous transmission between two devices in both directions.
The DF1 point-to-point protocol controls message flow, detects and signals
errors, and retries if errors are detected.

Configuring a DF1 point-to-point station

serial

This field: Description:

Station address The station address for the serial port on the DF1 point-to-point network. Enter a valid DF1
address (0-254). Address 255 is reserved for broadcast messages. The default is 0.

NAK receive limit Specifies the number of NAKs the controller can receive in response to a message
transmission.

Enter a value 0-127. The default is 3.

ENQ transmit limit Specifies the number of inquiries (ENQs) you want the controller to send after an ACK
timeout.

Enter a value 0-127. The default is 3.

ACK timeout Specifies the amount of time you want the controller to wait for an acknowledgment to its
message transmission.

Enter a value 0-32767. Limits are defined in 20ms intervals. The default is 50 (1000ms).
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a Serial Link 9-9

Example 2: Workstation
Remotely Connected to a
DriveLogix Controller

In the following example, a workstation remotely connects to a DriveLogix
controller over s serial link. A modem is connected to the controller to provide
remote access.

If you use a modem to remotely connect the controller to one workstation, use
RSLogix 5000 programming software to configure the serial port of the
controller for the DF1 point-to-point (full-duplex) protocol, as in the previous
example. If the controller is part of a master/slave serial network, configure

Embedded response Specifies how to enable embedded responses.

Select Autodetect (enabled only after receiving one embedded response) or Enabled. The
default is Autodetect.

Error detection Select BCC or CRC error detection.

Configure both stations to use the same type of error checking.

BCC: the controller sends and accepts messages that end with a BCC byte for error
checking. BCC is quicker and easier to implement in a computer driver. This is the default.

CRC: the controller sends and accepts messages with a 2-byte CRC for error checking. CRC
is a more complete method.

Enable duplicate
detection

Select whether or not the controller should detect duplicate messages. The default is
duplicate detection enabled.

This field: Description:

Preface

modem

modem
Publication 20D-UM002C-EN-P - November 2003

9-10 Communicating with Devices on a Serial Link

the serial port of the controller for either the DF1 master or DF1 slave
protocol (both half-duplex).

Master/slave communication methods

A master station can communicate with a slave station in two ways:

Name: This method: Benefits:

standard
communication
mode

Initiates polling packets to slave stations
according to their position in the polling
array(s).

Polling packets are formed based on the
contents of the normal poll array and the
priority poll array.

This communication method is most often used for
point-to-multipoint configurations.

This method provides these capabilities:

• slave stations can send messages to the master station
(polled report-by-exception)

• slave stations can send messages to each other via the
master

• master maintains an active station array

The poll array resides in a user-designated data file. You can
configure the master:

• to send messages during its turn in the poll array

or

• for between-station polls (master transmits any message
that it needs to send before polling the next slave station)

In either case, configure the master to receive multiple messages
or a single message per scan from each slave station.

message-based
communication
mode

initiates communication to slave stations
using only user-programmed message (MSG)
instructions.

Each request for data from a slave station
must be programmed via a MSG instruction.

The master polls the slave station for a reply
to the message after waiting a
user-configured period of time. The waiting
period gives the slave station time to
formulate a reply and prepare the reply for
transmission. After all of the messages in the
master’s message-out queue are transmitted,
the slave-to-slave queue is checked for
messages to send.

If your application uses satellite transmission or public
switched-telephone-network transmission, consider choosing
message-based communication. Communication to a slave
station can be initiated on an as-needed basis.

Also choose this method if you need to communicate with
non-intelligent remote terminal units (RTUs).
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a Serial Link 9-11

Configuring a DF1 slave station

Configuring a DF1 master station

This field: Description:

Station address The station address for the serial port on the DF1 slave.

Enter a valid DF1 address (0-254). Address 255 is reserved for broadcast messages. The default is 0.

Transmit retries The number of times the remote station retries a message after the first attempt before the station declares
the message undeliverable.

Enter a value 0-127. The default is 3.

Slave poll timeout Specifies the amount of time the slave station waits to be polled by a master before indicating a fault.

Enter a value 0-32767. Limits are defined in 20ms intervals. The default is 3000 (60,000ms).

EOT suppression Select whether or not to suppress sending EOT packets in response to a poll. The default is not to suppress
sending EOT packets.

Error detection Select BCC or CRC error detection.

Configure both stations to use the same type of error checking.

BCC: the controller sends and accepts messages that end with a BCC byte for error checking. BCC is quicker
and easier to implement in a computer driver. This is the default.

CRC: the controller sends and accepts messages with a 2-byte CRC for error checking. CRC is a more
complete method.

Enable duplicate
detection

Select whether or not the controller should detect duplicate messages. The default is duplicate
detection enabled.

This field: Description:

Station address The station address for the serial port on the DF1 master.

Enter a valid DF1 address (0-254). Address 255 is reserved for broadcast messages. The default is 0.

Transmit retries Specifies the number of times a message is retried after the first attempt before being declared
undeliverable.

Enter a value 0-127. The default is 3.

ACK timeout Specifies the amount of time you want the controller to wait for an acknowledgment to its message
transmission.

Enter a value 0-32767. Limits are defined in 20ms intervals. The default is 50 (1000ms).

Reply message wait Message-based polling mode only

Specifies the amount of time the master station waits after receiving an ACK to a master-initiated message
before polling the slave station for a reply.

Enter a value 0-65535. Limits are defined in 20ms intervals. The default is 5 (100ms).
Publication 20D-UM002C-EN-P - November 2003

9-12 Communicating with Devices on a Serial Link

Polling mode Select one of these:

• Message Based (slave cannot initiate messages)

• Message Based (slave can initiate messages) - default

• Standard (multiple message transfer per node scan)

• Standard (single message transfer per node scan)

Master transmit Standard polling modes only

Select when the master station sends messages:

• between station polls (default)

• in polling sequence

Normal poll node tag Standard polling modes only

An integer tag array that contains the station addresses of the slave stations.

Create a single-dimension array of data type INT that is large enough to hold all the normal station
addresses. The minimum size is three elements.

This tag must be controller-scoped. The format is:

list[0] contains total number of stations to poll

list[1] contains address of station currently being polled

list[2] contains address of first slave station to poll

list[3] contains address of second slave station to poll

list[n] contains address of last slave station to poll

Normal poll group size Standard polling modes only

The number of stations the master station polls after polling all the stations in the priority poll array. Enter 0
(default) to poll the entire array.

Priority poll node tag Standard polling modes only

An integer tag array that contains the station addresses of the slave stations you need to poll more
frequently.

Create a single-dimension array of data type INT that is large enough to hold all the priority station
addresses. The minimum size is three elements.

This tag must be controller-scoped. The format is:

list[0] contains total number of stations to be polled

list[1] contains address of station currently being polled

list[2] contains address of first slave station to poll

list[3] contains address of second slave station to poll

list[n] contains address of last slave station to poll

This field: Description:
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a Serial Link 9-13

If you choose one of the standard polling modes

The master station polls the slave stations in this order:

1. all stations that are active in the priority poll array

2. one station that is inactive in the priority poll array

3. the specified number (normal poll group size) of active stations in the
normal poll array

4. one inactive station, after all the active stations in the normal poll array
have been polled

Use the programming software to change the display style of the active station
array to binary so you can view which stations are active.

Active station tag Standard polling modes only

An array that stores a flag for each of the active stations on the DF1 link.

Both the normal poll array and the priority poll array can have active and inactive stations. A station
becomes inactive when it does not respond to the master’s poll.

Create a single-dimension array of data type SINT that has 32 elements (256 bits). This tag must be
controller-scoped.

Error detection Select BCC or CRC error detection.

Configure both stations to use the same type of error checking.

BCC: the controller sends and accepts messages that end with a BCC byte for error checking. BCC is quicker
and easier to implement in a computer driver. This is the default.

CRC: the controller sends and accepts messages with a 2-byte CRC for error checking. CRC is a more
complete method.

Enable duplicate
detection

Select whether or not the controller should detect duplicate messages. The default is duplicate detection
enabled.

This field: Description:
Publication 20D-UM002C-EN-P - November 2003

9-14 Communicating with Devices on a Serial Link

Example 3: DriveLogix
Controller to a Bar Code
Reader

In the following example, a workstation connects to a bar code reader. A bar
code reader is an ASCII device, so you configure the serial port differently
than in the previous examples. Configure the serial port for user mode, rather
than a DF1 mode.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a Serial Link 9-15

Connect the ASCII device to the controller

To connect the ASCII device to the serial port of the controller:

1. For the serial port of the ASCII device, determine which pins send
signals and which pins receive signals.

2. Connect the sending pins to the corresponding receiving pins and attach
jumpers:

3. Attach the cable shield to both connectors and tie the cable to
both connectors.

4. Connect the cable to the controller and the ASCII device.

The following table lists the default serial port configuration settings for the
ASCII protocol. You specify these settings on the User Protocol tab under
Controller Properties.

If the communications: Then wire the connectors as follows:

handshake

do not handshake

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7 RTS

8 CTS

9

1

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7

8

9

1 CD

ASCII Device Controller

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7 RTS

8 CTS

9

1

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7

8

9

1 CD

ASCII Device Controller
Publication 20D-UM002C-EN-P - November 2003

9-16 Communicating with Devices on a Serial Link

Configuring user mode

Programming ASCII instructions

The controller supports ASCII instructions to communicate with ASCII
devices. Your RSLogix 5000 programming software CDROM includes
programming examples using ASCII instructions.

For information about using these examples, see the Logix5000 Controllers
Reference Manual, publication 1756-UM001.

This field: Description:

Buffer size Specify the maximum size (in bytes) of the data array you plan to send and receive. The default is 82 bytes.

Termination
characters

Specify the characters you will use to designate the end of a line. The default characters are ‘$r’ and ‘$FF’.

Append characters Specify the characters you will append to the end of a line. The default characters are ‘$r’ and ‘$l’.

XON/XOFF Select whether or not to regulate the flow of incoming data. The default is disabled.

Echo mode Select whether or not to echo data back to the device from which it was sent. The default is disabled.

Delete mode Select Ignore, CTR, or Printer for the delete mode. The default is Ignore.
Publication 20D-UM002C-EN-P - November 2003

Chapter 10

Communicating with Devices on a
DH-485 Link

Using This Chapter The DH-485 protocol uses RS-485 half-duplex as its physical interface.
(RS-485 is a definition of electrical characteristics; it is not a protocol.) You can
configure the RS-232 port of the DriveLogix controller to act as an DH-485
interface.

Configuring Your System for
a DH-485 Link

For the DriveLogix controller to operate on a DH-485 network, you need:

• a 1761-NET-AIC converter for each DriveLogix controller you want to
put on the DH-485 network.

• RSLogix 5000 programming software to configure the serial port of the
controller for DH-485 communications

Step 1: Configure the hardware

The RS-232 port on the front of the DriveLogix controller supports the
requirements you need for the DH-485 network connection.

Connect the controller to an RS-232-to-RS-485 isolator. One possible isolator
is the 1761-NET-AIC interface converter. Refer to Access Procedures on

For information about: See page

Configuring your system for a DH-485 link 10-1

Planning a DH-485 network 10-4

Installing a DH-485 network 10-6

Example 1: DriveLogix controller, ControlLogix controller, and SLC
controller on the same DH-485 network

10-9

IMPORTANT A DH-485 network consists of multiple cable segments.
Limit the total length of all the segments to 1219m
(4000 ft.).
1 Publication 20D-UM002C-EN-P - November 2003

10-2 Communicating with Devices on a DH-485 Link

page C-1 to understand how to gain access to the front of the DriveLogix
controller.

Connect the serial port of the DriveLogix controller to either port 1 or port 2
of the 1761-NET-AIC converter. Use the RS-485 port to connect the
converter to the DH-485 network.

The cable you use to connect the controller depends on the port you use on
the 1761-NET-AIC converter.

port 1: DB-9 RS-232, DTE

baud rate selector switch

port 2: mini-DIN 8 RS-232

dc power source selector switch

terminals for external 24V dc power supply

RS-485 port

If you connect to this port: Use this cable:

port 1

DB-9 RS-232, DTE connection

1747-CP3

or

1761-CBL-AC00

port 2

mini-DIN 8 RS-232 connection

1761-CBL-AP00

or

1761-CBL-PM02
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a DH-485 Link 10-3

Step 2: Configure the DH-485 port of the controller

3. On the Serial Port tab, specify the appropriate communication settings.

The grayed out settings are selections
that do not apply to a DH-485 network.

1. In RSLogix 5000 programming software, select the Controller folder. Right-click to select Properties.
Publication 20D-UM002C-EN-P - November 2003

10-4 Communicating with Devices on a DH-485 Link

Specify these characteristics on the Serial Port tab (default values are shown in
bold):

Planning a DH-485 Network The DH-485 network offers:
• interconnection of 32 devices
• multi-master capability
• token passing access control
• the ability to add or remove nodes without disrupting the network
• maximum network length of 1219 m (4000 ft.)

The DH-485 protocol supports two classes of devices: initiators and
responders. All initiators on the network get a chance to initiate message
transfers. The DH-485 protocol uses a token-pass algorithm to determine
which initiator has the right to transmit

DH-485 token rotation

A node holding the token can send any valid packet onto the network. Each
node gets only one transmission (plus two retries) each time it receives the
token. After a node sends one message packet, it attempts to give the token to
its successor by sending a �token pass� packet to its successor.

Characteristic: Description (default is shown in bold):

Baud Rate Specifies the communication rate for the DH-485 port. All devices on the same DH-485
network must be configured for the same baud rate. Select 9600 or 19200 Kbps.

Node Address Specifies the node address of the DriveLogix controller on the DH-485 network. Select a
number 1-31 decimal, inclusive.

To optimize network performance, assign node addresses in sequential order. Initiators,
such as personal computers, should be assigned the lowest address numbers to minimize
the time required to initialize the network.

Token Hold Factor Number of transmissions (plus retries) that a node holding a token can send onto the data
link each time that it receives the token. Enter a value between 1-4. The default is 1.

Maximum Node
Address

Specifies the maximum node address of all the devices on the DH-485 network. Select a
number 1-31 decimal, inclusive.

To optimize network performance, make sure:

• the maximum node address is the highest node number being used on the network

• that all the devices on the same DH-485 network have the same selection for the
maximum node address.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a DH-485 Link 10-5

If no network activity occurs, the initiator sends the token pass packet again.
After two retries (a total of three tries) the initiator attempts to find a new
successor.

The allowable range of the node address of an initiator is 0 to 31. The
allowable address range for all responders is 1 to 31. There must be at least one
initiator on the network.

Network initialization

The network requires at least one initiator to initialize it. Network initialization
begins when an initiator on the network detects a period of inactivity that
exceeds the time of a link dead timeout. When the link dead timeout is
exceeded, usually the initiator with the lowest address claims the token. When
an initiator has the token it will begin to build the network.

Building a network begins when the initiator that claimed the token tries to
pass the token to the successor node. If the attempt to pass the token fails, or
if the initiator has no established successor (for example, when it powers up), it
begins a linear search for a successor starting with the node above it in the
addressing.

When the initiator finds another active initiator, it passes the token to that
node, which repeats the process until the token is passed all the way around
the network to the first node. At this point, the network is in a state of normal
operation.

Number of nodes and node addresses

The number of nodes on the network directly affects the data transfer time
between nodes. Unnecessary nodes (such as a second programming terminal
that is not being used) slow the data transfer rate. The maximum number of
nodes on the network is 32.

If the node addresses for controllers are assigned in sequence, starting at node
1 (with node 0 left for a programming terminal), it is as efficient to leave the
maximum node address at 31 as it is to decrease it to the highest node address
on the network. Then, adding devices to the network at a later time will not
require modifying the maximum node address in every device on the network.

IMPORTANT The maximum address that the initiator searches for before
starting again with zero is the value in the configurable
parameter �maximum node address.� The default value for
this parameter is 31 for all initiators and responders.
Publication 20D-UM002C-EN-P - November 2003

10-6 Communicating with Devices on a DH-485 Link

The maximum node address should be the same for all devices on a DH-485
network for optimal operation.

The best network performance occurs when node addresses start at 0 and are
assigned in sequential order. The controller defaults to node address 1
(controllers cannot be node 0). Initiators, such as personal computers, should
be assigned the lowest numbered addresses to minimize the time required to
initialize the network.

Installing a DH-485
Network

A DH-485 network consists of a number of cable segments daisy-chained
together. The total length of the cable segments cannot exceed 1219 m (4000
ft).

When cutting cable segments, make them long enough to route them from one
link coupler to the next with sufficient slack to prevent strain on the
connector. Allow enough extra cable to prevent chafing and kinking in the
cable.

IMPORTANT Use shielded, twisted-pair cable - either Belden 3106A or Belden 9842. A
daisy-chained network is recommended. Star connections are not recommended
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a DH-485 Link 10-7

Single Cable Connection

Connections Using Belden 3106 Cable

The table and schematic diagram below shows wire/terminal connections for
Belden 3106A cable.

For this Wire/Pair Connect this Wire To this Terminal

white/orange orange with white stripe 5 - Data A)

white with orange stripe 4 - (Data B)

blue blue 3 - (Common)

shield/drain non-jacketed 2 - Shield

Belden 3106A or 9842 Cable
(3106A Shown)

Shrink Tubing
(Recommended)

White Wire
with Orange Stripe

(WH/OR)

Orange Wire
with White Stripe

(OR/WH)

Blue Wire
(BU)

Drain Wire
(Shield)

6 Termination

5 Data A

4 Data B

3 Common

2 Shield

1 Chassis Ground

Termination
Data A
Data B
Common
Shield
Chassis Ground

WH/OR

OR/WH

BU

6
5
4
3
2
1

Publication 20D-UM002C-EN-P - November 2003

10-8 Communicating with Devices on a DH-485 Link

Connections Using Belden 9842 Cable

The table and schematic diagram below shows wire/terminal connections for
Belden 9842 cable.

For this Wire/Pair Connect this Wire To this Terminal

white/orange orange with white stripe 5 - (Data A)

white with orange stripe 4 - (Data B)

blue/white white with blue stripe cut back - no connection(1)

(1) To prevent confusion when installing the communication cable, cut back the white with blue stripe wire
immediately after the insulation jacket is removed. This wire is not used by DH-485.

blue with white stripe 3 - (Common)

shield/drain non-jacketed 2 - Shield

Termination
Data A
Data B
Common
Shield
Chassis Ground

WH/OR

OR/WH
6
5
4
3
2
1

WH/BU

BU/WH
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a DH-485 Link 10-9

Grounding and terminating a DH-485 network

You must terminate the network at the first and last PHYSICAL devices, by
connecting pin 6 (Termination) to pin 5 (Data A).

You must ground the network at the first PHYSICAL device by connecting
pin 1 (Chassis Ground) to pin 2 (Shield).

Example: DriveLogix
Controller, ControlLogix
Controller, and SLC
Controller on the Same
DH-485 Network

In the following example, both a DriveLogix controller and a ControlLogix
controller use its own 1761-NET-IAC+ converter to connect to a DH-485

Termination
Data A
Data B
Common
Shield
Chassis Ground

WH/OR

OR/WH

BU

6
5
4
3
2
1

Termination
Data A
Data B

Common
Shield

Chassis Ground

WH/OR

OR/WH

BU

6
5
4
3
2
1

Add jumpers to connect pin 6 (Termination) to
pin 5 (Data A) on the first and last PHYSICAL devices

Add jumper to connect pin 1 (Chassis Ground) to
pin 2 (Shield) on the first PHYSICAL device

IMPORTANT A device�s physical location may be independent of its node
address. Make sure you ground and terminate the proper
PHYSICAL locations.
Publication 20D-UM002C-EN-P - November 2003

10-10 Communicating with Devices on a DH-485 Link

network. In addition, an SLC 5/03 controller uses a 1747-AIC converter to
connect to the same DH-485 network.

On the DH-485 network, the DriveLogix controller can send and receive
messages to and from other controllers on the network.

DH-485 Network

1761-NET-AIC 1761-NET-AIC 1747-AIC

DriveLogix Controller

ControlLogix Controller
SLC 5/503 Controller

1747-CP3 or 1761-CBL-AP00 Cable

1747-CP3 or 1761-CBL-AP00 Cable 1747-C11 Cable
Publication 20D-UM002C-EN-P - November 2003

Chapter11

Communicating with Devices on a
Third-Party Link

Using This Chapter

Configuring Your System for
a Third-Party Link

For the DriveLogix controller to operate on a third-party network, you need:

• a 1788-MODULE generic module communication daughtercard.
• RSLogix 5000 programming software (Version 12 or later) to configure

the 1788-MODULE card as part of the DriveLogix system
• Software that configures the 1788-MODULE card on the third-party

network

Figure 11.1 shows an example system on third-party link.

Figure 11.1

For information about: See page

Configuring Your System for a Third-Party Link 9-1

RediPANEL

DriveLogix controller with 1788-MODULE
generic module communications card

Third-party network

Laptop
Other
devices

I/O devices

Motor
starter

Indicator
lights

Bar code
scanner

Pushbutton
cluster

Sensor
1 Publication 20D-UM002C-EN-P - November 2003

11-2 Communicating with Devices on a Third-Party Link

Step 1: Install the hardware

Before you can connect the DriveLogix system to the third-party network, you
must configure the 1788-MODULE communication card and make sure it is
properly installed in the DriveLogix controller. Refer to Access Procedures on
page C-1 to understand how to gain access to the NetLinx daughtercard slot
on the DriveLogix controller.

Remember which slot you use for which communication card. You�ll need the
slot number to configure the communication card in the RSLogix 5000
programming software. The controller uses slot 0.

Step 2: Configure the daughtercard as part of the system

Use RSLogix 5000 programming software to map the 1788-MODULE card as
part of the DriveLogix system. In the Controller Organizer, add the card to the
I/O Configuration folder.
Publication 20D-UM002C-EN-P - November 2003

Communicating with Devices on a Third-Party Link 11-3

1. In RSLogix 5000 programming software, select the I/O Configuration folder.

2 Right-click to select New Module and add a 1788-MODULE communication daughtercard.

3. Specify the appropriate communication settings.

4. Specify the module’s properties. For more
information on communications format the connection
parameters, see the next section.
Publication 20D-UM002C-EN-P - November 2003

11-4 Communicating with Devices on a Third-Party Link

Communication Format

The Communication Format field chooses a data type for information
transmitted between the controller and a remote device connected to the
1788-MODULE communication card. This format creates an array in the
controller of whatever data type you choose for the input and output data.

Connection Parameters

You must set connection parameters to define data identification and
connection size. An Assembly Instance and Data Size must be assigned for
each:

• Input
• Output
• Configuration.

Assembly Instance

The Assembly Instance is a number that identifies what data transferred
between the owner-controller and I/O module looks like. You must create a
map that defines your assembly instance entries.

Size

The size field determines how large the connections are between the
owner-controller and the I/O module. Connections are sent in sizes matching
the communications format data type selected. The default, DINT, results in
32-bit quantities.

Complete your system configuration and develop your program logic. Then
download the project to the controller.
Publication 20D-UM002C-EN-P - November 2003

Chapter12

DriveLogix Back-Up on DeviceNet

Using This Chapter

This chapter offers a solution to back-up your DriveLogix controller on
DeviceNet. DriveLogix Back-Up on DeviceNet is a simple, low-cost, back-up
system most effective when used in smaller applications that require fast
switchovers from a primary to a secondary controller.

This back-up solution will:

• minimize downtime in case of controller failure when the same program
is used in both programs.

• mitigate the risk of changes adversely affecting the application (use old,
proven program in one controller and new, untested program in other
controller). If the new untested program causes a problem, a forced
switchover can be made to the older proven program without
downloading the program again.

The DriveLogix Back-Up on DeviceNet solution takes advantage of Shared
DeviceNet Mastership of Slave I/O Devices technology. Typically, only a single
DeviceNet master exists for any particular slave. With Shared DeviceNet
Mastership, two masters can exist. Heartbeat communications between
primary and secondary controllers determines which scanner is the master and
which scanner remains in stand-by mode.

For information about: See page

How the Back-up Works 12-2

Power-Up and System Start-up 12-4

Developing the DriveLogix Back-Up Application 12-6

Using Indicators to Check Status 12-13

Development and Debugging Tips 12-13
1 Publication 20D-UM002C-EN-P - November 2003

12-2 DriveLogix Back-Up on DeviceNet

How the Back-up Works Figure 11.2 shows an example back-up system. In the back-up system, the
following occurs:

• Both controllers/scanners simultaneously receive all inputs.

• Both controllers execute in parallel but are NOT synchronized.

• Only the primary controllers sends output data to the I/O devices. A
virtual switch in the 1788-DNBO cards is used to switch outputs
between primary and secondary controllers.

• After failure or forced switchover, outputs are automatically switched by
the 1788-DNBO card from the primary controller to secondary. When
the switch occurs, the secondary controller becomes the primary
controller.

The switchover occurs so quickly that the I/O devices do not timeout;
these devices are unaware that redundant controllers/scanners exist and
are unaware of the switchover.

Figure 11.2

PanelView 300

DeviceNet

Primary controller

Secondary controller

All backed up devices must
operate on DeviceNet
Publication 20D-UM002C-EN-P - November 2003

DriveLogix Back-Up on DeviceNet 12-3

Requirements of the Back-Up

The DriveLogix Back-Up on DeviceNet solution requires that you use the
following:

• RSLogix 5000, version 10 or higher
• 2 DriveLogix controllers, firmware revision 10.x or higher
• 2 1788-DNBO communication cards, firmware revision 2.x or higher

Additional requirements are as follows:

• When setting up the DeviceNet network, you must set the primary and
secondary 1788-DNBO cards to the same node address and reserve the
next node address.

We recommend you set the primary and secondary 1788-DNBO node
addresses to 0 and reserve node 1. However, you can use any successive
node numbers (e.g. 30 and 31).

• All I/O and operator interfaces that required back-up must be on
DeviceNet.

• The scanlists in the two DeviceNet scanner must be identical.

IMPORTANT Many applications use multiple communications
cards in a DriveLogix controller to communicate with
several networks. This solution requires the software
and DriveLogix controllers use version 10.x or higher.

However, if you are using the 1788-ENBT card in
your application, remember that you must use
software and DriveLogix controllers of version 11.x
or higher.
Publication 20D-UM002C-EN-P - November 2003

12-4 DriveLogix Back-Up on DeviceNet

Power-Up and
System Start-up

To configure a DriveLogix Back-up system on DeviceNet, you can take the
following steps. Some of these steps are described in greater detail in the rest
of the appendix.

1. Install all I/O and operator interfaces that you need to back-up on
DeviceNet.

We recommend that you reserve node addresses 0 and 1 for the two
DriveLogix controllers used in the back-up. If you do not use 0 and 1,
make sure you reserve two consecutive numbers for the controllers
when you install I/O and other devices on DeviceNet.

2. Connect a DriveLogix controller with a 1788-DNBO scanner to the
DeviceNet network.

3. Set the controller node address to 0 (or the lower of the 2 node
addresses reserved for the DriveLogix controllers).

4. Power-up the controller and the network.

5. Use RSNetWorx for DeviceNet to download the network�s scanlist to
the 1788-DNBO card.

You can use either a scanlist from a new configuration or
previously-used configuration. If the scanlist is a new configuration, we
recommend you save it to a new project for later use.

6. Use RSLogix 5000 software to download the appropriate user program
to the DriveLogix controller.

The program should contain the explicit message(s) that enable the
back-up feature for this controller and scanner. The messages are
described in the Developing the DriveLogix Back-Up Application
section beginning on page 12-6.

7. Put controller into RUN mode.

8. Either disable power to the controller or disconnect the scanner from
DeviceNet. This controller will be the secondary controller.
Publication 20D-UM002C-EN-P - November 2003

DriveLogix Back-Up on DeviceNet 12-5

9. Connect the other DriveLogix controller with a 1788-DNBO scanner
on the network.

10. Set the node address to 0.

11. Power-up the controller and scanner.

12. Use RSNetWorx for DeviceNet to download the same scanlist used in
step 5.

It may be necessary to browse the network again before downloading
the scanlist. This second browsing of the network allows RSNetWorx
for DeviceNet to establish communication to the new scanner at the
same node number as the previous scanner.

13. Use RSLogix 5000 to download the user program to the second
DriveLogix controller as performed in step 6.

Typically, the same user program is downloaded to the second
DriveLogix controller as the first. However, unlike the scanlists, the user
programs in the controllers do not have to be identical.

14. Put the controller into RUN mode.

This controller is now ready to go and is the primary controller.

15. Reapply power to the secondary controller and/or reconnect the
secondary scanner to the DeviceNet subnet.

This completes the back-up process. For more detailed information on some
of the steps listed previously, see the next section.
Publication 20D-UM002C-EN-P - November 2003

12-6 DriveLogix Back-Up on DeviceNet

Developing the DriveLogix
Back-Up Application

The DriveLogix back-up is enabled from an RSLogix 5000 user program with
a few simple ladder rungs (or equivalent). The following rungs are used in the
DriveLogix back-up:

• Back-up Heartbeat Configuration Rungs - required
• Reading Back-up State Rung - optional
• Reading Back-up Status - optional

Back-up Heartbeat Configuration Rungs

The first, and most critical, step is to set the back-up �heartbeat� constant in
the DeviceNet scanner. The heartbeat constant enables the back-up feature
and determines the switchover time (2 x heartbeat).

By default, the heartbeat is zero; this default value disables the back-up mode.
Your user program must set the heartbeat to a non-zero value to enable
back-up.

The heartbeat occurs in multiples of 8ms (i.e. 8, 16, 24, etc.). We recommend a
value of 16-48ms for most applications. The recommended heartbeat times
result in switchover times of 32-96ms. However, these times do not include
controller scan delays.

IMPORTANT If multiples of 8 are not used for the requested
heartbeat, then the DeviceNet scanner uses the next
higher supported heartbeat value that can be read
from the scanner. For example, if you set the
heartbeat to 10, the scanner uses a 16ms heartbeat.
Publication 20D-UM002C-EN-P - November 2003

DriveLogix Back-Up on DeviceNet 12-7

Setting the Heartbeat Constant

You can set the heartbeat constant with five rungs of ladder logic. Figure 11.3
shows rungs 0 & 1 and the message set-up used in rung 1. The message in
rung 1 uses the INT data type.

Figure 11.3

Rung 1 message configuration and communication tabs
Publication 20D-UM002C-EN-P - November 2003

12-8 DriveLogix Back-Up on DeviceNet

Figure 11.4 shows rung 2 and the message set-up used on it. The message in
rung 2 uses the INT data type.

Figure 11.4

Rung 2 message configuration and communication tabs
Publication 20D-UM002C-EN-P - November 2003

DriveLogix Back-Up on DeviceNet 12-9

Figure 11.5 shows rungs 3 & 4 and the message set-up used on it. The message
in rung 3 uses the INT data type.

Figure 11.5

This completes the required portion of ladder logic to enable the DriveLogix
back-up on DeviceNet. The following sections describe how to use additional
ladder logic to read back-up state and status. However, these sections are not
required to complete the back-up solution.

Rung 3 message configuration and communication tabs
Publication 20D-UM002C-EN-P - November 2003

12-10 DriveLogix Back-Up on DeviceNet

Reading Back-up State Rung

You can read the back-up state of the DeviceNet scanner with a single rung of
ladder logic. The back-up state is useful for debug or more sophisticated
back-up schemes. The message in this rung uses the SINT data type.

Figure 11.6 shows the rung you can use to read the back-up state.

Figure 11.6

Rung 5 message configuration and communication tabs
Publication 20D-UM002C-EN-P - November 2003

DriveLogix Back-Up on DeviceNet 12-11

Table 11.1 describes the possible values this message may return when reading
the back-up state of the DeviceNet scanner.

Table 11.1

If the message reads
this value:

the back-up state of the DeviceNet scanner is:

0 Disabled

1 Primary scanner

2 Back-up scanner

3 Invalid primary node address (e.g. the node address cannot
be 62 or 63)

4 Faulted back-up scanner - CRC failure (e.g. the scanlists in
the scanners do not match)

5 Faulted back-up scanner - back-up node number failure (e.g.
the back-up scanner is not using a node number = the
primary node number + 1)

6 Back-up scanner pending primary detection

254 Attempting primary access

255 Attempting back-up access
Publication 20D-UM002C-EN-P - November 2003

12-12 DriveLogix Back-Up on DeviceNet

Reading Back-up Status

You can read the back-up status of the DeviceNet scanner with a single rung
of ladder logic. The back-up state is useful for debugging or more
sophisticated back-up schemes. The message in this rung uses the SINT data
type.

Figure 11.7 shows the rung you can use to read the back-up state.

Figure 11.7

Table 11.1 describes the possible values this message may return when reading
the back-up status of the DeviceNet scanner.

Rung 6 message configuration and communication tabs

Table 11.2

If the message reads
this value:

the back-up state of the DeviceNet scanner is:

0 No back-up scanner detected

1 Primary scanner forcing IDLE (back-up in RUN but primary in
IDLE)
Publication 20D-UM002C-EN-P - November 2003

DriveLogix Back-Up on DeviceNet 12-13

Using Indicators to
Check Status

The 1788-DNBO card�s status indicators provide useful information (e.g.
determining which controller is primary) about back-up scanner status.
Table 11.3 lists the indicators to monitor when checking back-up status.

Development and
Debugging Tips

When you implement the DriveLogix Back-Up on DeviceNet solution, we
recommend you consider the following development and debugging tips:

• Develop and debug the entire application with only the primary
controller and scanner present. When the application is totally verified,
then download the program and exact same scanlist to the secondary
controller, without the primary controller present. Verify that the
secondary is also functioning properly, and then both primary and
secondary can be added to the network at the same time.

• No configuration parameters are entered from RSNetworx for
DeviceNet or RSLogix 5000 to enable Back-up. All configuration occurs
in the user program. Almost your entire application (e.g. except for a
few ladder rungs) can be developed without knowledge that the
application will have a back-up controller and scanner.

• Local I/O still works when this solution is used but the Local I/O is not
backed up.

• Switchover time depends on the user configurable heartbeat. After two
heartbeats are lost between primary and secondary the switchover
occurs. This time can be as little as 50ms with a heartbeat of 16ms.

• The I/O during switchover is NOT bumpless. Since the programs and
I/O updates are not synchronized, it is possible for the secondary
controller to be either slightly faster or slower than the primary.

For example, if output changes during a switchover, the fact that the
primary and secondary controllers are unsynchronized can cause the

Table 11.3

If this indicator exhibits this behavior this condition exists:

Module status (MS) Flashing red A secondary controller was not
found (or other minor fault
detected)

Back-up status (BS)(1)

(1) The BS status indicator may not be labelled on current 1788-DNBO communication cards.

Solid green This scanner is the primary
controller.

Flashing green This scanner is a qualified
secondary controller.

Off This scanner is not configured for
back-up mode.
Publication 20D-UM002C-EN-P - November 2003

12-14 DriveLogix Back-Up on DeviceNet

output to momentarily switch between an older and newer value. If you
configure the switchover time slower than the program scan and I/O
update, the secondary lags behind the primary and eliminates this.

• State variables, such as counters or timers are NOT synchronized. The
user program must synchronize the primary and secondary controllers,
typically over an EtherNet/IP or ControlNet link between controllers.
If the outputs are dependent on a state variable, the lack of
synchronization can also cause a bumpy switchover.

• As with all back-up and redundancy systems, the I/O must change at a
slower rate than the switchover time. If the inputs change faster than the
switchover, the change of state is lost.

• Either the user program or user action determine the primary controller.
In its simplest mode, the first scanner to power-up or become available
on DeviceNet first is the primary.

• Unlike some back-up systems (i.e. PLC5), the primary controller still
maintain control of the I/O and switchover does NOT occur if the
primary controller is set to Program/Idle mode. The secondary
1788-DNBO scanner also indicates that it is in Idle Mode.

• By default, a switchover will NOT occur if the default fault routine or
user fault routine is executed in the primary controller. However, the
user fault routine can force a switchover if so desired.

• If an operator interface is on DeviceNet, then it can work without
knowledge which controller is primary or secondary.

• Online edits are not automatically performed on both Primary and
Secondary since no synchronization exists between Primary and
Secondary. Once an online edit occurs on the Primary, then the Primary
and Secondary will have different programs.

• DriveLogix Back-up on DeviceNet is not Hot Back-up. Hot Back-up
implies complete synchronization of program, program variables, and
I/O. Also, I/O switchover is completely bumpless is Hot Back-up.
Publication 20D-UM002C-EN-P - November 2003

Appendix A

DriveLogix System Specifications

Using This Appendix

DriveLogix Controller

For information about: See page

DriveLogix Controller A-1

1756-BA1 Battery A-3

DriveLogix Controller Serial Cables A-4

DriveLogix Controller LEDs A-6

Category: DriveLogix 5720 DriveLogix 5720 with Memory Expansion

user memory 256k bytes

FLEXBUS Local Rail current output 640 mA maximum @ 5.1V dc

thermal dissipation 87 BTU/hour

storage temperature -40 to 70 degrees C (-40 to 158 degrees F)

battery 1756-BA1 (Allen-Bradley PN 94194801)

0.59g lithium

serial cable 1756-CP3 directly to controller

1747-CP3 directly to controller

FLEXBUS Local I/O cable 4100-CCF3
1 Publication 20D-UM002C-EN-P - November 2003

A-2 DriveLogix System Specifications

Certifications:

(when product is marked)

The drive is designed to meet the following specifications:

NFPA 70 - US National Electric Code

NEMA ICS 3.1 - Safety standards for Construction and Guide for Selection,

 Installation and Operation of Adjustable Speed Drive Systems.

NEMA 250 - Enclosures for Electrical Equipment

IEC 146 - International Electrical Code.

UL and cUL Listed to UL508C and CAN/CSA-C2.2 No.
14-M91

Marked for all applicable European Directives (1)

EMC Directive (89/336/EEC)

Emissions

 EN 61800-3 Adjustable Speed electrical power
drive systems Part 3

Immunity

 EN 61800-3 Second Environment, Restricted
Distribution

Low Voltage Directive (73/23/EEC)

 EN 60204-1 Safety of Machinery - Electrical
Equipment of Machines

 EN 50178 Electronic Equipment for use in Power
Installations

Category: DriveLogix 5720 DriveLogix 5720 with Memory Expansion

UL USC Æ

TIP Refer to publication 20D-UM001 for PowerFlex 700S drive
specifications. Environmental specifications for the host
drive apply to the DriveLogix controller.

IMPORTANT The amount of memory that the software displays includes
both the user available memory and the memory reserved
for overhead. See the specifications for your controller to
determine how much memory you have available for
programming. The software might display a higher number,
but the additional memory is required by system overhead
and may not be available for programming.
Publication 20D-UM002C-EN-P - November 2003

DriveLogix System Specifications A-3

1756-BA1 Battery The DriveLogix controller uses the 1756-BA1 battery:

Battery 1756-BA1

0.59g lithium
Publication 20D-UM002C-EN-P - November 2003

A-4 DriveLogix System Specifications

DriveLogix Controller
Serial Cables

The RS-232 port is a non-isolated serial port built-in to the front of the
controller.

To connect to the serial port, determine whether you need an optical isolator.
If you connect the controller to a modem or an ASCII device, consider
installing an isolator between the controller and modem or ASCII device. An
isolator is also recommended when connecting the controller directly to a
programming workstation.

Serial Port
Publication 20D-UM002C-EN-P - November 2003

DriveLogix System Specifications A-5

Are you using an
isolator?

Use this cable:

No The 1756-CP3 cable attaches the controller directly to the
controller.

If you make your own cable, it must be shielded and the shields
must be tied to the metal shell (that surrounds the pins) on both
ends of the cable.

You can also use a 1747-CP3 cable (from the SLC product family).
This cable has a taller right-angle connector housing than the
1756-CP3 cable.

Yes The 1761-CBL-AP00 cable (right-angle connector to controller) or
the 1761-CBL-PM02 cable (straight connector to the controller)
attaches the controller to port 2 on the 1761-NET-AIC isolator.
The mini-DIN connector is not commercially available, so you
cannot make this cable.

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7 RTS

8 CTS

9

1 CD

2 RDX

3 TXD

4 DTR

COMMON

6 DSR

7 RTS

8 CTS

9

1 CD

2

3
4

5

6 7 8
6
7

8

9

1

2

3

4

5 1

DB-9 right-angle or straight
cable end

8-pin, mini-DIN cable end

Pin: DB-9 end: Mini-DIN end:
1 DCD DCD
2 RxD RxD
3 TxD TxD
4 DTR DTR
5 ground ground
6 DSR DSR
7 RTS RTS
8 CTS CTS
9 N/A N/A
Publication 20D-UM002C-EN-P - November 2003

A-6 DriveLogix System Specifications

DriveLogix Controller LEDs
Type Name Color State Description
Daughtercard
LEDs

PORT Green – Status of DPI port internal communications (if
present).

MOD Yellow – Status of communications module (when installed).
NET A Red – Status of network (if connected).
NET B Red – Status of secondary network (if connected).
NET A OFF No power,

Host is faulted,

Host is holding daughtercard in reset.
Red Steady Major Fault
Red Flashing Minor Fault
Green Flashing No connections established
Green Steady Connections established

NET B OFF No power,

Host is faulted,

Host is holding daughtercard in reset.
Red Steady Major Fault
Red Flashing Minor Fault
Green Flashing No connections established
Green Steady Connections established

Controller
LEDs

RUN Green Off No task(s) running.

Controller in Program mode.
Green Steady One or more tasks are running.

Controller is in Run mode.
FORCE Amber Off No forces present.

Amber Steady Forces present and enabled.
Amber Flashing Forces present but not enabled.

BATT Red Off Battery will support memory.
Red Steady Battery may not support memory - replace battery.

I/O Green Off Controller project not downloaded (the condition
after power up).

No I/O or communications configured.
Green Steady Communicating to all devices.
Green Flashing One or more devices are not responding.
Red Flashing No required I/O connections can be made, controller

is in Run mode.
RS 232 Green Off No activity.

Green Flashing Data being received or transmitted.
OK Off No power applied.

Red Flashing Recoverable fault or flash programming.
Red Steady Controller faulted.

Clear faults, clear memory, or replace the controller.
Green Steady Controller OK.
Publication 20D-UM002C-EN-P - November 2003

Appendix B

Installing and Maintaining the Battery

Using this Appendix

Connecting the Battery Allen-Bradley ships the DriveLogix controller with the battery installed, but
disconnected. You must connect the battary while installing the drive:

1. Referring to Access Procedures on page C-1, remove the cover(s) to
gain access to the DriveLogix controller.

2. Connect the plug on the battery lead into the socket on the DriveLogix
controller.

3. Referring to Access Procedures on page C-1, replace the cover(s)

For information about: See page

Installing and Maintaining the Battery B-1

Storing replacement batteries B-2

Estimating battery life B-2

Replacing batteries B-3
1 Publication 20D-UM002C-EN-P - November 2003

B-2 Installing and Maintaining the Battery

Storing Replacement
Batteries

Because a battery may leak potentially dangerous chemicals if stored
improperly, store batteries as follows:

Estimating Battery Life When the battery is about 95 percent discharged, the controller provides the
following warnings:

• On the front of the controller, the BATTERY LED turns on (solid red).
• A minor fault occurs (type 10, code 10).

To prevent the battery from leaking potentially dangerous chemicals, replace
the battery at least as often as:

To estimate how long the battery will support the memory of the controller:

1. Determine the temperature (° C) 1 in. below the DriveLogix controller.

ATTENTION

!
Store batteries in a cool, dry environment. We recommend
25° C with 40% to 60% relative humidity. You may store
batteries for up to 30 days between -45° to 85° C, such as
during transportation. To avoid possible leakage, do not
store batteries above 60° C for more than 30 days.

ATTENTION

!
To prevent possible battery leakage, even if the BATTERY
LED is off, replace the battery according to this schedule:

If the temperature 1 in.
below the controller is:

Replace the battery within:

0° to 35° C No required replacement

36° to 40° C 3 years

41° to 45° C 2 years

46° to 50° C 16 months

51° to 55° C 11 months

56° to 60° C 8 months
Publication 20D-UM002C-EN-P - November 2003

Installing and Maintaining the Battery B-3

2. Determine the percentage of time that the controller is powered off per
week.

Use the off-time percentage you calculated with the following table to
determine battery life:

Replacing a Battery Because the controller uses a lithium battery, you must follow specific
precautions when handling or disposing a battery.

EXAMPLE If a controller is off:

• 8 hr/day during a 5-day work week
• all day Saturday and Sunday

Then the controller is off 52% of the time:

1. total hours per week = 7 x 24 = 168 hours
2. total off hours per week = (5 days x 8 hrs/day) + Saturday + Sunday

= 88 hours
3. percentage off time = 88/168 = 52%

Worst-case battery life estimate:

Temperature: Power off 100%: Power off 50%: Battery duration after
the LED turns on:(1)

60° C 2 months 3.5 months 3 days

25° C 2 months 4 months 3 days

(1) The battery indicators (BATTERY) warns you when the battery is low. These durations are the amounts of time the battery will
retain controller memory from the time the controller is powered down after the LED first turns on.

IMPORTANT If the BATTERY LED turns on when you apply power to
the controller, the battery life may be less than the table
above indicates. Some of the warning time may have been
used while the controller was off and unable to turn on the
BATTERY LED.

ATTENTION

!
The controller uses a lithium battery, which contains
potentially dangerous chemicals. Before handling or
disposing a battery, review Guidelines for Handling Lithium
Batteries, publication AG-5.4.
Publication 20D-UM002C-EN-P - November 2003

B-4 Installing and Maintaining the Battery

1. Remove the front cover of the drive�s control assembly.

2. Upload the controller�s memory and program to a computer with
RSLogix 5000 programming software.

3. Turn off power to the DriveLogix controller.

4. Remove the side cover of the drive�s control assembly (not necesary for
high power drives).

5. Remove drive�s control assembly, if necessary.

6. Does the existing battery show signs of leakage or damage?

7. Remove the old battery, by unplugging the battery and cutting the cable
tie that holds the battery.

8. Install a new 1756-BA1 battery.

9. Attach the battery label. Write on the battery label the date you install
the battery.

If: Then:

Yes Before handling the battery, review Guidelines for Handling Lithium
Batteries, publication AG-5.4.

No Go to the next step.

ATTENTION

!
Only install a 1756-BA1 battery. If you install a
different battery, you may damage the controller.

Battery
Connector

Cable Tie That
Holds Battery

Battery
Publication 20D-UM002C-EN-P - November 2003

Installing and Maintaining the Battery B-5

10. Secure the new battery by installing a new cable tie.

11. Re-install the control assembly, if removed.

12. Turn on power to the DriveLogix controller.

13. On the front of the controller, is the BATTERY LED off?

14. Download the controller�s memory and program from the computer
with RSLogix 5000 programming software.

15. Turn off power to the DriveLogix controller.

16. Re-install the cover(s).

17. Dispose the old battery according to state and local regulations.

If: Then:

Yes Go to the next step.

No A. Check that the battery is correctly connected to the controller.

B. If the BATTERY LED remains on, install another 1756-BA1 battery.

C. If the BATTERY LED remains on after you complete Step B., contact
your Rockwell Automation representative or local distributor.

ATTENTION

!
Do not incinerate or dispose lithium batteries in
general trash collection. They may explode or
rupture violently. Follow state and local regulations
for disposal of these materials. You are legally
responsible for hazards created while your battery is
being disposed.
Publication 20D-UM002C-EN-P - November 2003

B-6 Installing and Maintaining the Battery

Notes:
Publication 20D-UM002C-EN-P - November 2003

Appendix C

Access Procedures

Using this Appendix
For information about: See page

Removing Cover(s) C-2

Removing Cover (For High Power Drives) C-3

Replacing Cover(s) C-4

Replacing Cover (For High Power Drives) C-6
1 Publication 20D-UM002C-EN-P - November 2003

C-2 Access Procedures

Removing Cover(s) Task Description
Loosen captive screw

Push down on front cover

Pull front cover away from assembly

Pull side cover forward

Lift side cover off of control assembly

A

B

C

D

E

Esc

7 8 9

4 5 6

1 2 3

. 0 +/-

Sel

Jog

Alt

Exp Param #

S.M.A.R.T. Exit Lang Auto / Man Remove

DRIVEDRIVE

SYNCHLINK
ENABLE

A

C

B

D

E

Publication 20D-UM002C-EN-P - November 2003

Access Procedures C-3

Removing Cover (For High
Power Drives)

Task Description
Remove eight (8) screws

Remove power cover (top cover)

A

B

AB
(8 Screws)
Publication 20D-UM002C-EN-P - November 2003

C-4 Access Procedures

Replacing Cover(s) Task Description
Align tabs on side cover with slots on drive

Push side cover down onto control assembly

Push side cover back onto control assembly

A

B

C

A

B

C

Publication 20D-UM002C-EN-P - November 2003

Access Procedures C-5

Replacing Cover(s)
Continued

Task Description
Locate tabs on inside of front cover

Align tabs on front cover with slots on flanges

Push front cover onto drive

Push front cover up into slots

Tighten captive screw

D

E

F

G

H

D

E

FG

H

Publication 20D-UM002C-EN-P - November 2003

C-6 Access Procedures

Replacing Cover (For High
Power Drives)

Task Description
Install power cover (top cover)

Install eight (8) screws

A

B

A

B

(8 Screws)
Publication 20D-UM002C-EN-P - November 2003

Index

Numerics
1756-BA1 B-1
1788-CN2DN 8-11
1788-CNCx 7-1
1788-DNBO 8-1
1788-ENBT 6-1
1788-MODULE 11-1

A
adding

local analog module 1-12
local output module 1-10

alias
defining 4-16
getting started 1-17

analog module
adding 1-12

ASCII protocol 9-15

B
battery B-1

how to replace B-3
life B-2
storage B-2
when to replace B-2

C
changing

module properties 1-14
project properties 1-5

commands
motion 5-12
motion event 5-12
motion group 5-12
motion move 5-12
motion state 5-12

communicating
ControlNet 7-1
DeviceNet 8-1
DH-485 10-1
EtherNet/IP 6-1
mapping address 6-18, 7-15
serial 9-1
with other controllers 6-15, 7-13
with other Logix-based controller 6-14,

7-12
communication card

ControlNet 7-4
DeviceNet 8-3
EtherNet/IP 6-7

installing (ControlNet) 7-2
installing (DeviceNet) 8-2
installing (EtherNet/IP) 6-2
installing (Third Party Link) 11-2
Third-Party Link 11-2

communication driver
ControlNet 7-3
serial 9-7

communication format 3-1, 3-6, 4-8
Custom User-Defined Control 3-1, 3-11
mapping 3-2
Motion Control 3-1, 3-10
Position Control 3-1, 3-8
User-Defined 3-1
User-Defined Control 3-9
Velocity Control 3-1, 3-7

configuring
alias 4-16
ASCII protocol 9-15
communication format 4-8
ControlNet system 7-1
DeviceNet system 8-1
DF1 master 9-11
DF1 point-to-point 9-8
DF1 slave 9-11
DH-485 system 10-1
DIN rail 4-5
drive for motion 5-2
electronic keying 4-7
EtherNet/IP system 6-1
host PowerFlex 700S 1-6, 3-4
inhibit I/O module 4-10
local I/O 4-6
motion 5-1
remote devices 6-8, 7-5
response to connection failure 3-24,

4-16
serial system 9-1
third party link 11-1

configuring Ethernet communication
drivers ??�6-6

AB_ETH driver 6-3�6-6
connection

ControlNet guidelines 7-21
EtherNet/IP guidelines 6-23
I/O module 2-12
monitoring rack-optmized 4-19
requirements 2-17
response to failure 4-16

connection failure 3-24
controller ownership 4-8
controller updates 3-3
ControlNet
Publication 20D-UM002C-EN-P - November 2003

2
accessing remote devices 7-7
communication card 7-4
communication driver 7-3
configuring the system 7-1
connection guidelines 7-21
consuming a tag 7-20
example DriveLogix Controller and

Remote I/O 7-22
example DriveLogix Controller to

DriveLogix Controller 7-24
example DriveLogix Controller to Other

Devices 7-28
hardware 7-2
installing communication card 7-2
mapping address 7-15
message to other controller 7-13
message to other Logix-based controller

7-12
overview 7-1
produced/consumed tag 7-17
producing a tag 7-19
remote devices 7-5
schedule network 7-10
sending messages 7-11

cover
removing C-2
removing (high power drives) C-3
replacing C-4

cover (high power drives)
replacing C-6

creating
project 1-3, 1-4
tags 1-16

D
data 4-13
DecviceNet

scan list 8-4
developing

programs 2-2
DeviceNet

accessing remote devices 8-6
communication card 8-3
configuring the system 8-1
DriveLogix back-up on the network

12-1�12-14
example using a 1788-CN2DN linking

device 8-11
hardware 8-2
installing communication card 8-2
overview 8-1

DF1 protocol

master 9-5, 9-11
master/slave methods 9-10
point-to-point 9-5, 9-8
slave 9-5, 9-11

DH-485
configuring the port 10-3
configuring the system 10-1
example network configuration 10-9
grounding 10-9
hardware 10-1
installing 10-6
network initialization 10-5
nodes 10-5
overview 10-1
terminating 10-9
token rotation 10-4

DIN rail
configuring 4-5

documenting I/O 1-17
downloading

project 1-3, 1-20, 2-20
drive

revision 3-5
DriveExecutive 3-15, 3-21

E
electronic keying 3-5, 4-7
entering

logic 1-18
EtherNet/IP

accessing remote devices 6-10
communication card 6-7
configuring the system 6-1
connection guidelines 6-23
consuming a tag 6-22
example DriveLogix controller and

remote devices 6-23
example DriveLogix controller to other

devices 6-29
hardware 6-2
installing communication card 6-2
mapping address 6-18
message to other controller 6-15
message to other Logix-based controller

6-14
overview 6-1
produced/consumed tag 6-20
producing a tag 6-21
remote devices 6-8
sending messages 6-13

event tasks 2-6�2-8
example
Publication 20D-UM002C-EN-P - November 2003

 3
DH-485 configuration 10-9
DriveLogix controller and remote devices

over EtherNet/IP 6-23
DriveLogix Controller and Remote I/O on

ControlNet 7-22
DriveLogix Controller to DriveLogix

Controller on ControlNet 7-24
DriveLogix Controller to Other Devices on

ControlNet 7-28
DriveLogix controller to other devices

over EtherNet/IP 6-29
monitoring I/O module 4-18
monitoring rack-optimized connection

4-19
using a 1788-CN2DN linking device 8-11

F
fault bit 4-17

G
getting started

adding a local analog module 1-12
adding a local output module 1-10
changing module properties 1-14
changing project properties 1-5
configuringthe host PowerFlex 700S 1-6,

3-4
creating a project 1-4
creating tags 1-16
documenting I/O with alias tags 1-17
downloading a project 1-20
entering logic 1-18
overview 1-1
steps 1-3
viewing controller memory usage 1-22
viewing I/O tags 1-15
viewing scan time 1-21

H
hardware

ControlNet 7-2
DeviceNet 8-2
DH-485 10-1
EtherNet/IP 6-2
serial 9-2
Third-Party Link 11-2

host PowerFlex 700S
configuring 1-6, 3-4
placing 3-4

I
I/O configuration

FLEX I/O adapter 6-9�??
local ENBT module 6-8�??

I/O module
alias 4-16
communication format 4-8
configuring local 4-6
connection 2-12
DIN rail 4-5
electronic keying 4-7
example logic for monitoring a

rack-optmized connection 4-19
example logic for monitoring the module

4-18
fault bits 4-17
local overview 4-1
monitoring 4-16

inhibit operation
Drive Connection 3-13
I/O module 4-10

installing
communication card (ControlNet) 7-2
communication card (DeviceNet) 8-2
communication card (EtherNet/IP) 6-2
communication card (Third Party Link)

11-2
cover C-4
cover (high power drives) C-6

K
keying

drive 3-5
keying, electronic 4-7

 3-5

L
local I/O

configuring 4-6
DIN rail 4-5
overview 4-1

logic
entering 1-18

Logix environment 2-1
low battery B-2

M
mapping address 6-18, 7-15
master/slave communication 9-10
memory
Publication 20D-UM002C-EN-P - November 2003

4
controller usage 1-22
nonvolatile 2-20

message
sending over ControlNet 7-11
sending over EtherNet/IP 6-13
to other controller 6-15, 7-13
to other Logix-based controller 6-14,

7-12
monitoring

example logic for I/O module 4-18
example logic for rack-optmized

connection 4-19
I/O module 4-16
rack-optimized connection 4-19

motion
configuring 5-1
configuring host drive 5-2
motion event 5-12
motion group 5-12
motion move 5-12
motion state 5-12
programming 5-5
supported commands 5-12
system requirements 5-1

motion event
supported commands 5-12

motion group
supported commands 5-12

motion move
supported commands 5-12

motion state
supported commands 5-12

N
nonvolatile memory 2-20

O
output module

adding 1-10

P
placing

host PowerFlex 700S 3-4
priority 2-3
produced/consumed tag

overview 6-20, 7-17
program

defining 2-5
developing 2-2

programming

for motion 5-5
project

creating 1-3, 1-4
developing 2-2
downloading 1-3, 1-20
program 2-5
properties 1-5
routine 2-5
task 2-3

R
rack optimized I/O

add FLEX I/O adapter to I/O configuration
6-9�??

add local ENBT module to I/O
configuration 6-8�??

remote devices
accessing over ControlNet 7-7
accessing over DeviceNet 8-6
accessing over EtherNet/IP 6-10
configuring over ControlNet 7-5
configuring over EtherNet/IP 6-8

removing
cover C-2
cover (high power drives) C-3

replace the battery
how B-3
when B-2

replacing
cover C-4
cover (high power drives) C-6

Requested Packet Interval 3-4
revision

drive 3-5
routine

defining 2-5
RPI 3-4
RSLinx communication drivers ??�6-6

AB_ETH driver 6-3�6-6

S
scan list 8-4
scan time 1-21
schedule network 7-10
serial

ASCII protocol 9-15
communication driver 9-7
configuring the port 9-4
configuring the system 9-1
hardware 9-2
master 9-11
Publication 20D-UM002C-EN-P - November 2003

 5
overview 9-1
point-to-point 9-8
slave 9-11

slave/master communication 9-10
store batteries B-2
supported motion commands 5-12
system requirements

motion 5-1

T
tag

alias 4-16
consuming 6-22, 7-20
creating 1-16
names 4-13
produced/consumed overview 6-20,

7-17
producing 6-21, 7-19
sample alias 1-17
viewing 1-15

task
defining 2-3
priority 2-3

Third Party Link
installing communication card 11-2

third party link
configuring the system 11-1

Third-Party Link
communication card 11-2

third-party link
hardware 11-2

V
viewing

Communication Interface to the
Controller 3-18

controller memory usage 1-22
I/O tags 1-15
scan time 1-21
Publication 20D-UM002C-EN-P - November 2003

Publication 20D-UM002C-EN-P - November 2003 1
 Supersedes 20D-UM002B-EN-P March 2003 Copyright © 2003 Rockwell Automation. Printed in the U.S.A.

D
riveL

o
g

ix S
ystem

U
ser M

an
u

al

	Front Cover
	Rockwell Automation Support
	Table of Contents
	Introduction
	Purpose of this Manual
	Who Should Use This Manual
	When to Use This Manual
	How to Use this Manual
	Controller Firmware Revision

	Summary of Changes
	Preface
	Chapter 1
	Getting Started
	Introduction
	Connecting Battery
	Creating and Downloading a Project
	Creating a project
	Changing project properties
	Configuring the host PowerFlex 700S Drive
	Configuring the host PowerFlex 700S Drive (continued)
	Adding a local input module1
	Adding a local input module (continued)
	Adding a local output module
	Adding a local output module (continued)
	Adding a local analog module
	Adding a local analog module (continued)
	Changing module properties
	Viewing I/O tags
	Creating other tags
	Documenting I/O with alias tags
	Entering logic
	Entering logic (continued)
	Downloading a project
	Viewing program scan time
	Viewing controller memory usage
	What To Do Next

	Chapter 2
	What Is DriveLogix?
	Using This Chapter
	Developing programs
	Using the Event Task
	How the DriveLogix System Uses Connections
	Determining Connections for Produced and Consumed Tags
	Determining Connections for Messages
	Determining Connections for I/O Modules
	Determining Total Connection Requirements
	Downloading Projects
	Selecting a System Overhead Percentage

	Chapter 3
	Placing and Configuring the Drive
	Using This Chapter
	Understanding the Interface to the Drive
	Determining When the Controller Updates the Drive
	Placing and Configuring the Drive
	Inhibiting the Drive Connection
	Using DriveExecutive Lite
	Accessing Drive Data
	Monitoring Drive Data

	Chapter 4
	Placing and Configuring Local I/O
	Using This Chapter
	Placing Local I/O Modules
	Determining When the Controller Updates I/O
	Configuring a DIN Rail
	Configuring Local I/O Modules
	Inhibiting I/O Module Operation
	Accessing I/O Data
	Monitoring I/O Modules

	Chapter 5
	Configuring DriveLogix Motion
	Using This Chapter
	Configuring the Drive
	Programming the Controller
	Supported Motion Commands

	Chapter 6
	Communicating with Devices on an EtherNet/IP Link
	Using This Chapter
	Configuring Your System for a EtherNet/IP Link
	Configuring Remote I/O
	Sending Messages
	Producing and Consuming Data
	Guidelines for Configuring Connections
	Example 1: DriveLogix Controller and Remote I/O
	Example 2: DriveLogix Controller to DriveLogix Controller
	Example 3: DriveLogix Controller to Other Devices

	Chapter 7
	Communicating with Devices on a ControlNet Link
	Using This Chapter
	Configuring Your System for a ControlNet Link
	Configuring Remote I/O
	Scheduling the ControlNet Network
	Sending Messages
	Producing and Consuming Data
	Guidelines for Configuring Connections
	Example 1: DriveLogix Controller and Remote I/O
	Example 2: DriveLogix Controller to DriveLogix Controller
	Example 3: DriveLogix Controller to Other Devices

	Chapter 8
	Communicating with Devices on a DeviceNet Link
	Using This Chapter
	Configuring Your System for a DeviceNet Link
	Placing DeviceNet Devices
	Accessing DeviceNet Devices
	Placing the Communication Card in Run Mode
	Example 1: DriveLogix Controller and DeviceNet Devices
	Example 2: Using a 1788-CN2DN Linking Device

	Chapter 9
	Communicating with Devices on a Serial Link
	Using This Chapter
	Configuring Your System for a Serial Link
	Example 1: Workstation Directly Connected to a DriveLogix Controller
	Example 2: Workstation Remotely Connected to a DriveLogix Controller
	Example 3: DriveLogix Controller to a Bar Code Reader

	Chapter 10
	Communicating with Devices on a DH-485 Link
	Using This Chapter
	Configuring Your System for a DH-485 Link
	Planning a DH-485 Network
	Installing a DH-485 Network
	Example: DriveLogix Controller, ControlLogix Controller, and SLC Controller on the Same DH-485 Network

	Chapter 11
	Communicating with Devices on a Third-Party Link
	Using This Chapter
	Configuring Your System for a Third-Party Link

	Chapter 12
	DriveLogix Back-Up on DeviceNet
	Using This Chapter
	How the Back-up Works
	Power-Up and System Start-up
	Developing the DriveLogix Back-Up Application
	Using Indicators to Check Status
	Development and Debugging Tips

	Appendix A
	DriveLogix System Specifications
	Using This Appendix
	DriveLogix Controller
	1756-BA1 Battery
	DriveLogix Controller Serial Cables
	DriveLogix Controller LEDs

	Appendix B
	Installing and Maintaining the Battery
	Using this Appendix
	Connecting the Battery
	Storing Replacement Batteries
	Estimating Battery Life
	Replacing a Battery

	Appendix C
	Access Procedures
	Using this Appendix
	Removing Cover(s)
	Removing Cover (For High Power Drives)
	Replacing Cover(s)
	Replacing Cover(s) Continued
	Replacing Cover (For High Power Drives)

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V

	Pub. No. / Date
	Spine

