
BASIC Language
(Catalog Numbers 1746-BAS and
1746-BAS-T)

Reference Manual

Important User
Information

Because of the variety of uses for the products described in this publication, those
responsible for the application and use of this control equipment must satisfy
themselves that all necessary steps have been taken to assure that each application
and use meets all performance and safety requirements, including any applicable
laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this
guide are intended solely for purposes of example. Since there are many variables
and requirements associated with any particular installation, Rockwell
International Corporation does not assume responsibility or liability (to include
intellectual property liability) for actual use based upon the examples shown in
this publication.

Rockwell Automation publication SGI-1.1, Safety Guidelines for the Application,
Installation and Maintenance of Solid-State Control (available from your local
Rockwell Automation office), describes some important differences between
solid-state equipment and electromechanical devices that should be taken into
consideration when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or part,
without written permission of Rockwell Automation, is prohibited.

Throughout this manual we use notes to make you aware of safety considerations:

Attention statements help you to:

• identify a hazard

• avoid a hazard

• recognize the consequences

PLC-5 is a registered trademark; and MicroLogix, SLC 500, RSLogix, and RSLinx are trademarks of Rockwell Automation.

ATTENTION

�
Identifies information about practices or circumstances that
can lead to personal injury or death, property damage or
economic loss

IMPORTANT Identifies information that is critical for successful
application and understanding of the product.

Table of Contents

Preface
Who Should Use This Manual . P-1
Purpose of this Manual . P-2
How to Use this Manual . P-3
Terms and Abbreviations. P-4
Conventions Used in this Manual . P-4
Rockwell Automation Support . P-5

Chapter 1
Language Elements Character Set. 1-1

The BASIC Program Line . 1-1

Chapter 2
Data Types Data Types . 2-1

Variables . 2-4

Chapter 3
Expressions and Operators Expressions and Operators . 3-2

Hierarchy of Operators . 3-3
Arithmetic Operators . 3-3
Logical Operators . 3-6
Relational Operators . 3-7
Trigonometric Operators . 3-8
Functional Operators . 3-9
Logarithmic Operators . 3-11
String Operators . 3-12
Special Function Operators . 3-15

Chapter 4
BASIC Commands BRKPNT . 4-2

CONT . 4-3
Control-C . 4-4
CALL 18 – Re-enable the Control-C Break Function 4-5
CALL 19 – Disable the Control-C Break Function 4-6
Control-S . 4-7
Control-Q. 4-8
EDIT . 4-8
ERASE . 4-9
IDLE. 4-10
LIST . 4-11
LIST@ . 4-12
LIST# . 4-12
MODE . 4-12
NEW . 4-14
i Publication 1746-RM001A-US-P

Table of Contents ii
NULL. 4-14
PROG . 4-15
PROG1 . 4-16
PROG2 . 4-17
RAM. 4-19
REM. 4-19
REN . 4-20
ROM . 4-20
RROM . 4-21
RUN. 4-22
SNGLSTP . 4-23
VER . 4-25
XFER . 4-26

Chapter 5
Command Line CALLs CALL 73 – Battery-Backed RAM Disable. 5-1

CALL 74 – Battery-Backed RAM Enable . 5-2
CALL 77 – Protected Variable Storage . 5-2
CALL 81 – User Memory Module Check and Description. 5-3
CALL 82 – Check User Memory Module Map. 5-4
CALL 101 – Upload User Memory Module Code to Host 5-4
CALL 103 – Print PRT1 Output Buffer and Pointer 5-5
CALL 104 – Print PRT1 Input Buffer and Pointer. 5-6
CALL 109 – Print Argument Stack. 5-7
CALL 110 – Print PRT2 Output Buffer Pointer 5-8
CALL 111 – Print PRT2 Input Buffer Pointer 5-8

Chapter 6
Assignment Functions CLEAR. 6-1

CLEARI . 6-3
CLEARS. 6-3
DATA. 6-4
DIM . 6-4
LET . 6-5
RESTORE . 6-7

Chapter 7
Control Functions CLOCK1 . 7-1

CLOCK0 . 7-2
DO-WHILE. 7-3
DO-UNTIL . 7-4
END. 7-5
FOR-TO-(STEP)-NEXT . 7-6
GOTO . 7-7
IF-THEN-ELSE . 7-8
Publication 1746-RM001A-US-P

Table of Contents iii
NEXT. 7-9
ON-GOTO . 7-11

Chapter 8
Execution Control and
Interrupt Support Functions

CALL 16 – Enable DF1 Packet Interrupt . 8-2
CALL 17 – Disable DF1 Packet Interrupt. 8-3
CALL 20 – Enable Processor Interrupt . 8-3
CALL 21 – Disable Processor Interrupt. 8-4
CALL 26 – Module Interrupt . 8-4
CALL 38 – Expanded ONERR Restart. 8-5
CALL 70 – ROM to RAM Program Transfer 8-8
CALL 71 – ROM/RAM to ROM Program Transfer. 8-9
CALL 72 – RAM/ROM Return . 8-9
GOSUB . 8-11
ONERR . 8-12
ON-GOSUB. 8-14
ONTIME . 8-14
PUSH . 8-15
POP . 8-17
RETI. 8-18
RETURN . 8-18
STOP . 8-20

Chapter 9
Math and Backplane
Conversion Functions

CALL 14 – 16-Bit Signed Integer to BASIC Floating-Point 9-1
CALL 15 – 16-Bit Unsigned Integer to BASIC Floating-Point 9-2
CALL 24 – BASIC Floating-Point to 16-Bit Signed Integer 9-2
CALL 25 – BASIC Floating-Point to 16-Bit Binary 9-3
CALL 88: BASIC Floating-Point to SLC Floating-Point. 9-4
CALL 89: SLC Floating-Point to BASIC Floating-Point. 9-5

Chapter 10
Clock/Calendar Functions CALL 40 – Set Clock/Calendar Time . 10-1

CALL 41 – Set Clock/Calendar Date . 10-2
CALL 42 – Set Day of Week. 10-3
CALL 43 – Retrieve Date/Time String . 10-4
CALL 44 – Retrieve Date Numeric . 10-4
CALL 45 – Retrieve Time String . 10-5
CALL 46 – Retrieve Time Numeric . 10-6
CALL 47 – Retrieve Day of Week String . 10-6
CALL 48 – Retrieve Day of Week Numeric 10-7
CALL 52 – Retrieve Date String . 10-7
Publication 1746-RM001A-US-P

Table of Contents iv
Chapter 11
Status Functions CALL 36 – Get Number of Characters in PRT2 Buffers 11-2

CALL 51 – Check CPU Output Image Buffer 11-3
CALL 55 – Check CPU Input Image Buffer. 11-4
CALL 58 – Check M0 File . 11-5
CALL 59 – Check M1 File . 11-6
CALL 75 – Check SLC 500 Controller CPU Status 11-7
CALL 80 – Check Battery Condition . 11-8
CALL 86 – Check DH485 Interface File Remote Write Status. 11-8
CALL 87 – Check DH485 Interface File Remote Read Status 11-9
CALL 95 – Get Number of Characters in PRT1 Buffers 11-10
CALL 97 – Enable Port PRT2 DTR Signal 11-11
CALL 98 – Disable Port PRT2 DTR Signal 11-11
CALL 108 – Enable DF1 Driver Communications. 11-12
CALL 113 – Disable DF1 Driver Communications 11-18
CALL 120 – Clear module Input and Output Buffers 11-18
CALL 121 – Get SLC Processor Program ID Number 11-19

Chapter 12
Output Functions CALL 23 – Transfer Data from the CPU Files to Port 1 or 2 12-2

CALL 28 – Write to Remote DH485 SLC Data File 12-6
CALL 29 – Read/Write to a PLC/SLC from the
Module Internal String . 12-13
CALL 31 – Display Current PRT2 Port Setup 12-14
CALL 37 – Clear PRT2 Input/Output Buffers 12-15
CALL 54 – Transfer BASIC Output Buffer to CPU Input Image. . 12-15
CALL 57 – Transfer BASIC Output Buffer to CPU M1 File 12-16
CALL 85 – Transfer BASIC Output Buffer to DH485
Common Interface File . 12-17
CALL 91 – Write BASIC Output Buffer to Remote DH485 Data File 12-18
CALL 93 – Write Output Buffer to Remote DH485
Common Interface File . 12-22
CALL 94 – Display Current PRT1 Port Setup 12-24
CALL 96 – Clear PRT1 Input/Output Buffers 12-24
CALL 112 – User LED Control . 12-25
CALL 114 – Transmit DF1 Packet. 12-26
CALL 115 – Check DF1 XMIT Status. 12-27
CALL 123 – Write to Remote DF1 PLC Data File. 12-28
PRINT . 12-35
PH0., PH1. . 12-37
ST@ . 12-38
Publication 1746-RM001A-US-P

Table of Contents v
Chapter 13
Input Functions CALL 22 – Transfer Data from Port 1 or 2 to the CPU Files 13-2

CALL 27 – Read Remote DH485 SLC Data File 13-8
CALL 29 – Read/Write to a PLC/SLC from the
Module Internal String . 13-13
CALL 35 – Get Numeric Input Character from PRT2 13-15
CALL 53 – Transfer CPU Output Image to BASIC Input Buffer . . 13-17
CALL 56 – Transfer CPU M0 File to BASIC Input Buffer. 13-18
CALL 84 – Transfer DH485 Interface File to BASIC Input Buffer. 13-19
CALL 90 – Read Remote DH485 Data File to BASIC Input Buffer 13-20
CALL 92 – Read Remote DH485 Common Interface File to
BASIC Input Buffer . 13-23
CALL 117 – Get DF1 Packet Length . 13-25
CALL 118 – PLC/SLC Unsolicited Writes 13-26
CALL 122 – Read Remote DF1 PLC Data File 13-30
GET . 13-38
INPL. 13-39
INPS . 13-40
INPUT . 13-40
LD@ . 13-43
READ . 13-45

Chapter 14
Setup Functions CALL 30 – Set PRT2 Port Parameters . 14-1

CALL 78 – Set Program Port Baud Rate . 14-2
CALL 99 – Reset Print Head Pointer . 14-3
CALL 105 – Reset PRT1 to Default Settings 14-4
CALL 119 – Reset PRT2 to Default Settings 14-4
MODE . 14-5

Chapter 15
String Functions CALL 60 – String Repeat . 15-1

CALL 61 – String Append . 15-2
CALL 62 – Number to String Conversion . 15-3
CALL 63 – String to Number Conversion . 15-4
CALL 64 – Find a String in a String . 15-6
CALL 65 – Replace a String in a String. 15-7
CALL 66 – Insert a String in a String . 15-8
CALL 67 – Delete a String in a String. 15-9
CALL 68 – Find the Length of a String. 15-10
STRING. 15-11
Publication 1746-RM001A-US-P

Table of Contents vi
Appendix A
Decimal/Hexadecimal/Octal/
ASCII
Conversion Table

Mathematical Conversion Overview . A-1

Appendix B
BASIC Command, Statement,
and CALL Quick Reference
Guide

Mnemonic List Overview . B-1

Index
Publication 1746-RM001A-US-P

Preface

Read this preface to familiarize yourself with the rest of the manual. This preface
covers the following topics:

• who should use this manual

• the purpose of this manual

• how to use this manual

• terms and abbreviations

• conventions used in this manual

• Rockwell Automation support

Who Should Use This
Manual

Use this manual if you are responsible for designing, installing, programming, or
troubleshooting control systems that use Allen-Bradley small logic controllers.

You should have a basic understanding of SLC 500™ products. You should
understand programmable controllers and be able to interpret the ladder logic
instructions required to control your application. If you do not, contact your local
Rockwell Automation representative for information on available training courses
before using this product.
P-1 Publication 1746-RM001A-US-P

 P-2
Purpose of this Manual This manual is a reference guide for programming the BASIC or BASIC-T
module. This manual is intended for reference purposes only.

Chapter Title Contents

Preface Describes the purpose, background, and scope of this manual. Also lists related
publications.

1 Language Elements Describes BASIC program lines, line numbers, statements, commands,
operators, and line length.

2 Data Types Describes and illustrates data types, variable names and types.

3 Expressions and Operators Describes and illustrates arithmetic, logical, relational, trigonometric, functional,
logarithmic, string, and special function operators.

4 BASIC Commands Describes and illustrates BRKPNT, CONT, [CTRL-C], [CTRL-S], [CTRL-Q], EDIT,
ERASE, IDLE, LIST, LIST@, LIST#, MODE, NEW, NULL, PROG, PROG1, PROG2,
RAM, REM, REN, ROM, RROM, RUN, SNGLSTP, VER, and XFER commands and
CALLs 18 and 19.

5 Command Line CALLS Describes and illustrates CALLs 73, 74, 77, 81, 82, 101, 103, 104, 109, 110, and
111.

6 Assignment Functions Describes and illustrates CLEAR, CLEARI, CLEARS, DATA, DIM, LET and
RESTORE functions.

7 Control Functions Describes and illustrates CLOCK1, CLOCK0, DO-WHILE, DO-UNTIL, END,
FOR-TO-(STEP)-NEXT, GOTO, IF-THEN-ELSE, NEXT, and ON-GOTO functions.

8 Execution Control and Interrupt
Support Functions

Describes and illustrates CALLs 16, 17, 20, 21, 26, 38, 70, 71, 72, and GOSUB,
ONERR, ON-GOSUB, ONTIME, PUSH, POP, RETI, RETURN, and STOP functions.

9 Math and Backplane Functions Describes and illustrates CALLs 14, 15, 24, 25, 88, and 89.

10 Clock/Calendar Functions Describes and illustrates CALLs 40, 41, 42, 43, 44, 45, 46, 47, 48, and 52.

11 Status Functions Describes and illustrates CALLs 36, 51, 55, 58, 59, 75, 80, 86, 87, 95, 97, 98, 108,
113, 120, and 121.

12 Output Functions Describes and illustrates CALLs 23, 28, 29, 31, 37, 54, 57, 85, 91, 93, 94, 96, 112,
114, 115, 123, and PRINT, PH0. PH1. and ST@ functions.

13 Input Functions Describes and illustrates CALLs 22, 27, 29, 35, 53, 56, 84, 90, 92, 117, 118, 122,
and GET, INPL, INPS, INPUT, LD@ and READ functions.

14 Setup Functions Describes and illustrates CALLs 30, 78, 99, 105, 119, and MODE functions.

15 String Functions Describes and illustrates CALLs 60, 61, 62, 63, 64, 65, 66, 67, 68, and STRING
functions.

Appendix A Decimal/Hexidecimal/Octal/
ASCII Conversion Table

Lists the Decimal/Hexidecimal/Octal/ASCII equivalents.

Appendix B BASIC Command, Statement, and
CALL Quick Reference Guide

Lists the various commands, statements, and CALLs needed for BASIC
programming.
Publication 1746-RM001A-US-P

 P-3
Related Documentation

The following documents contain additional information regarding Rockwell
Automation products. To obtain a copy, contact your local Rockwell Automation
office or distributor.

How to Use this Manual To use this manual effectively, use the worksheets provided in Appendix B. The
worksheets can help you document your application and settings and also facilitate
the flow of information to other individuals in your organization for
implementation.

For Read this document Publication Number

A BASIC and BASIC-T manual that provides
information on installing and using the 1746-BAS
and 1746-BAS-T modules.

SLC 500™ BASIC and BASIC-T Modules
User Manual

1746-UM004A-US-P

A programming manual with detailed
instructions on installing and using BASIC
Development Software to program the BASIC
and BASIC-T modules.

BASIC Development Software
Programming Manual

1746-PM001A-US-P

An overview of the SLC 500 family of products SLC 500™ System Overview 1747-SO001A-US-P

A description of how to install and use a Modular
SLC 500 Processor

Modular Hardware Style Installation and
Operation Manual

1747-6.2

A reference manual that contains status file data
and instruction set information for SLC 500
processors

SLC 500™ and MicroLogix™ 1000
Instruction Set Reference Manual

1747-6.15

A description of how to install and use a module
that acts as a bridge between DH485 networks
and devices requiring DF1 protocol.

DH-485/RS-232C Interface Module User’s
Manual

1747-6.12

An application example demonstrating how to
transfer ASCII data to an SLC 5/02 or later
processor using a remote SLC 500 BASIC module.

ASCII Data Transfer to the SLC 500™
BASIC Module (Series B)

1746-2.41

In-depth information on grounding and wiring
Allen-Bradley programmable controllers

Allen-Bradley Programmable Controller
Grounding and Wiring Guidelines

1770-4.1

A glossary of industrial automation terms and
abbreviations

Allen-Bradley Industrial Automation
Glossary

AG-7.1

An article on wire sizes and types for grounding
electrical equipment

National Electric Code Published by the National Fire Protection
Association of Boston, MA
Publication 1746-RM001A-US-P

 P-4
Terms and Abbreviations The following terms and abbreviations are specific to this product. For a complete
listing of Allen-Bradley terminology, refer to the Allen-Bradley Industrial
Automation Glossary, publication number ICCG-7.1.

• Module SLC 500 BASIC and BASIC-T Modules (catalog numbers
1746-BAS and 1746-BAS-T)

• BASIC development software BASIC Development Software (catalog
number 1747-PBASE)

• BASIC —the BASIC-52 programming language

• console device — the device connected to the BASIC module program port.
This device is used as an interface between the user and the BASIC program.

• DH485 network communication protocol

• EPROM Erasable Programmable Read Only Memory

• EEPROM — Electrically Erasable Programmable Read Only Memory

• memory module — BASIC or BASIC-T modules EEPROM or UVPROM

• MTOP system control value that holds the last valid memory address

• program port — the port used to program the module. Either PRT1 or port
DH485 can be used as the program port.

• RAM — Random Access Memory

• ROM — Read Only Memory, refers to the optional memory module memory
space (EEPROM or UVPROM)

• RS-232/423 serial communication interface

• RS-422 differential communication interface

• RS-485 network communication interface

• SCADA — Supervisory Control and Data Acquisition

• scalar variable — a variable with a single value

• SLC 500 SLC 500 fixed and modular controller

• UVPROM — Ultra Violet Erasable Programmable Read Only Memory

Conventions Used in this
Manual

The following conventions are used throughout this manual:

• Bulleted lists such as this one provide information, not procedural steps.

• Numbered lists provide sequential steps or hierarchical information.

• Italic type is used for emphasis.

• Text in this font indicates words or phrases you should type.

• Key names match the names shown and appear in bold, capital letters within
brackets (for example, [ENTER]).
Publication 1746-RM001A-US-P

 P-5
Rockwell Automation
Support

Allen-Bradley offers support services worldwide, with over 75 Sales/Support
Offices, 512 authorized Distributors and 260 authorized Systems Integrators
located throughout the United States alone, plus Rockwell Automation
representatives in every major country in the world.

Local Product Support

Contact your local Rockwell Automation representative for:

• sales and order support

• product technical training

• warranty support

• support service agreements

Technical Product Assistance

If you need to contact Rockwell Automation for technical assistance, please review
the information in the appropriate chapter first. Then call your local Rockwell
Automation representative.

Your Questions or Comments on this Manual

If you find a problem with this manual, please notify us of it on the enclosed
Publication Problem Report.

If you have any suggestions for how this manual could be made more useful to you,
please contact us at the address below:

Rockwell Automation
Control and Information Group
Technical Communication, Dept. A602V
P.O. Box 2086
Milwaukee, WI 53201-2086
Publication 1746-RM001A-US-P

 P-6
Publication 1746-RM001A-US-P

Chapter 1

Language Elements

This chapter introduces you to the elements of a BASIC program. These elements
include BASIC:

• line numbers

• statements, commands, and operators

• line length

Character Set BASIC programs are composed of a group of BASIC program lines. Each BASIC
program line is composed of a group of ASCII characters. Refer to Appendix A for
a complete listing of ASCII character codes.

The BASIC Program Line BASIC program lines consist of a BASIC line number and BASIC statements and
operators. BASIC program lines are restricted to the BASIC line length.

BASIC Line Numbers

We refer to BASIC line numbers as:

[ln num]

BASIC line numbers indicate the order that the program lines are stored in
memory and are also used as references when branching and editing. This number
may be any whole integer from 1 to 65535. Typically you start numbering BASIC
programs with line number 10 and increment by 10. This allows you to add
additional lines later as you work on your program.

Since the computer runs the statements in numerical order, additional lines need
not appear in consecutive order on the screen. If you enter line 35 after line 40, the
computer still runs line 35 after line 30 and before line 40. This technique saves
you from reentering an entire program if you forget to include a line.

IMPORTANT The first line of your program must be a comment.
1 Publication 1746-RM001A-US-P

1-2 Language Elements

n

Typically, the line numbers of a program start out looking like the first column and
end up looking something like the second column below:

#1 #2
10 5
20 7
30 10
40 15
50 20
60 30
70 35
80 40

. .

. .

. .

BASIC Statements, Commands, and Operators

BASIC program lines consist of a BASIC line number and BASIC statements and
operators. Depending on the logic of your program, there may be more than one
statement on a line. If so, each must be separated by a colon (:).

BASIC Line Length

A BASIC program line always begins with a line number and must contain at least
one character, but no more than 68 characters. A program line ends when you press
[RETURN].

IMPORTANT Reuse of an existing line number causes all of the informatio
referenced by the original line number to be lost. Be careful
when entering numbers in the Command mode, as you may
accidentally erase some program lines. You may delete an
existing line by retyping it with no information following it and
pressing[RETURN].
Publication 1746-RM001A-US-P

Chapter 2

Data Types

This chapter provides you a method of defining or displaying data within the
BASIC programming language through the use of:

• data types

• variables

Data Types Data types are broken down into three sections: argument stack, string and
numeric elementary data types, and backplane conversion data.

Argument Stack

The argument stack (A-stack) stores all constants that the BASIC or BASIC-T
module is currently using. Operations such as add, subtract, multiply, and divide
always operate on the first two numbers of the argument stack and return the result
to the stack. The argument stack is 203 bytes long. Each floating point number
placed in the stack requires 6 bytes of storage. The argument stack can hold up to
33 floating point numbers before overflowing.

In addition, the PUSH command saves data to the argument stack and the POP
command restores data from the stack. PUSHes and POPs are typically associated
with CALLs. PUSHes and POPs are mechanisms used to transfer information to
and from CALL routines.

PUSH makes a copy of the variable being PUSHed, then puts that copy on the top
of the argument stack. POP takes the value on the top of the argument stack and
copies it to the variable being POPped.

String Data Types

A string is a character or group of characters stored in memory. Usually, the
characters stored in a string make up a word or a sentence. Strings allow you to use
characters instead of numbers. Strings are shown as:

$([expr])

The module uses single-dimension string variables, $([expr]) . The dimension of
a string variable (the [expr] value) ranges from 0 to 254. This means that you can
define and manipulate 255 different strings in the module. Initially, no memory is
allocated for strings. Memory is allocated using the STRING statement. Strings are
declared and manipulated through the $ operator.
1 Publication 1746-RM001A-US-P

2-2 Data Types
When allocating memory for a string, you must account for the overhead bytes
used by BASIC to manipulate strings. BASIC uses one overhead byte per string
being declared plus one additional overhead byte.

Example 1

String 106,20

Allocates space for five 20 byte strings (100 bytes) and includes five overhead bytes
(1 per string) and one additional overhead byte.

In the module you can define strings with the LET statement, the INPUT
statement, and with the ASC operator.

Example 2

>10 STRING 106,20
>20 $(1)=“THIS IS A STRING, ”
>30 INPUT “WHAT’S YOUR NAME? - ”,$(2)
>40 PRINT $(1),$(2)
>50 END

READY
>RUN

WHAT’S YOUR NAME? - FRED
THIS IS A STRING, FRED

READY
>

You can also assign strings to each other with a LET statement.

Example 3

LET $(2)=$(1)

Result: Assigns the string value in $(1) to the STRING $(2).
Publication 1746-RM001A-US-P

Data Types 2-3
Numeric Data Types

There are two different numeric data types:

• integer numbers

• floating-point numbers

You can enter and display numbers in four formats: integer, decimal, hexadecimal,
and exponential.

Example
129, 34.98, 0A6EH, 1.23456E+3

The BASIC or BASIC-T module interprets all numbers as floating-point numbers
except when performing logical operations. When performing logical operations,
the module converts floating-point numbers to integers, performs the operation,
then converts the result back to floating-point.

Integer Numbers

The module operates on unsigned 16-bit integers that range from 0 to 65535 or
0FFFFH. You can enter all integers in either decimal or hexadecimal format. You
indicate a hexadecimal number by placing the character H after the number
(example: 170H). If the hexadecimal number begins with A through F, then it
must be preceded by a zero. (For example, you must enter A567H as 0A567H.)
When an operator, such as .AND. requires an integer, the module truncates the
fraction portion of the number so it fits the integer format. Integers are shown as:

[integer]

Floating-Point Numbers

In the module, all numbers are stored as floating-point numbers. Floating-point
numbers are numbers in which the decimal point floats depending on the
significant digits of a specific number. The processor accounts for the location of
the decimal point. This allows the processor to store only the significant digits of a
value, thus saving memory space.

You can represent the following range of numbers in the module:

+1E –127 to +.99999999 +127

There are eight significant digits. Numbers are internally rounded to fit this
precision.

IMPORTANT The SLC 500 processor operates on signed 16-bit integers that
range from –32768 to 32767. If an integer value larger than
32767 is passed to the processor from the module, that value is
interpreted as negative by the processor.
Publication 1746-RM001A-US-P

2-4 Data Types
Backplane Conversion Data

The module communicates with the local processor through the SLC 500 I/O
backplane. All data communicated to and from the SLC 500 is in SLC 500 format.
The SLC 500 formats are:

• 16-bit signed integer (–32768 to 32767)

• 16-bit binary (0000000000000000 to 1111111111111111)

Variables Variables that include a single-dimension expression [exp] are dimensioned or
arrayed variables. Variables that contain a letter or a letter and a number are scalar
variables. Any variables entered in lower case are changed to upper case. Variables
are shown as:

[var]

The module allocates variables in a static manner, which means the first time a
variable is used, the module allocates a portion of memory (8 bytes) specifically for
that variable. This memory cannot be de-allocated on a variable to variable basis.
This means that if you execute a statement (example: >10 Q - 3), you cannot tell
the module that the variable Q no longer exists to free up the 8 bytes of memory
that belong to Q. You can clear the memory allocated to variables by executing a
CLEAR statement. The CLEAR statement frees all memory allocated to variables.
Variables may be set aside for reuse to save memory.

IMPORTANT Any integer larger than 32767 is interpreted as a negative number
by the SLC 500 processor

IMPORTANT The module requires less time to find a scalar variable because
there is no expression to evaluate. To run a program as fast as
possible, use single-dimension variables only when necessary. Use
scalar variables for intermediate variables and assign the final
result to a dimensioned variable. Also, put the most frequently
used variables first. Variables defined first require the least
amount of time to locate.
Publication 1746-RM001A-US-P

Data Types 2-5
Variable Names

Variables may represent either numeric values or strings. Variable names can only
be eight characters long. The module compares the first, last, and number of
characters in a variable name with the first, last, and number of characters in other
variable names to determine if it is a unique variable name. The characters allowed
in a variable name are letters, numbers, and the decimal point. Special type
declaration characters are also allowed.

A variable can be a letter (for example A, X, or I) followed by a:

• single-dimension expression, (example: J(4), G(A+6), I(10*SIN(X))

• number followed by a single-dimension expression (example: A1(8),

P7(10*SIN(X)), W8(A + C))

• number (0 to 9) or letter (example: AA, AC, XX, A1, X3, G8) except for the
following combinations: CR, DO, IE, IF, IP, ON, PI, SP, TO, UI, UO

Variable Types

Type declaration characters indicate what a variable represents. The following type
declaration character is recognized:

The only other legal variable type is a floating-point variable. Floating-point
variables do not require a type declaration.

IMPORTANT Reserved words (words already used in BASIC functions or
statements) cannot be used as variable names.

Character Variable Type
$ String variable
Publication 1746-RM001A-US-P

2-6 Data Types
Publication 1746-RM001A-US-P

Chapter 3

Expressions and Operators

This chapter describes and illustrates how you manipulate and/or evaluate
expressions and statements within the BASIC program or the command line. Table
3.1 lists the corresponding mnemonics.

Table 3.1 Chapter Reference Guide

If you need (to) Use this mnemonic Page
Absolute value ABS() 3-9

Return the integer value of the ASCII character. ASC() 3-12

Return the arctangent of the argument. ATN() 3-8

Retrieve data from the specified memory address. CBY() 3-16

Count the value converted ASCII character. CHR() 3-14

Return the cosine of argument. COS() 3-8

Retrieve or assign data to or from the internal data memory of
the BASIC or BASIC-T module.

DBY() 3-16

Test for empty input buffer. EOF 3-15

“e” (2.7182818) TO THE X EXP() 3-11

Test for number of free bytes of RAM memory. FREE 3-15

Integer INT() 3-10

Read the number of bytes of memory in the current selected
program.

LEN 3-15

Natural log LOG() 3-11

Read the last valid memory address. MTOP 3-16

One’s complement NOT() 3-9

PI-3.1415926 PI 3-10

Random number RND 3-11

Sign SGN 3-10

Return the sine of the argument SIN() 3-8

Square Root SQR() 3-10

Return the tangent of the argument. TAN() 3-8

Retrieve and/or assign the free running clock value. TIME 3-17

Retrieve or assign data to or from the external data memory of
the module.

XBY() 3-17

Addition + 3-3

Division / 3-4

Exponentiation ** 3-4

Multiplication * 3-4

Subtraction - 3-4

Logical AND .AND. 3-6

Logical OR .OR. 3-6
1 Publication 1746-RM001A-US-P

3-2 Expressions and Operators
Expressions and
Operators

An expression is a logical mathematical expression that involves operators,
constants, and variables. There are eight types of operators that may act on an
expression:

• arithmetic

• logical

• relational

• trigonometric

• functional

• logarithmic

• string

• special function

Expressions

Expressions are simple or complex.

Simple expression: 12*EXP(A)/100,H(1) + 55,

Complex expression: (SIN(A)*SIN(A)+COS(A)* COS(A)/2)

A stand alone variable [var] or constant [const] is also considered an expression.
Expressions are shown as:

[expr]

Operators

An operator performs a defined operation on variables or constants. Operators
require either one or two operands. Typical two operand operators include
ADD(+), SUBTRACT(-), MULTIPLY(*) and DIVIDE(/). We call operators that
require only one operand, single-operand operators. Typical single-operand
operators are SIN, COS, and ABS.

Logical Exclusive OR .XOR. 3-6

Direct communications to port PRT1. @ 3-15

Direct communications to port PRT2. # 3-15

Table 3.1 Chapter Reference Guide

If you need (to) Use this mnemonic Page
Publication 1746-RM001A-US-P

Expressions and Operators 3-3
Hierarchy of Operators The hierarchy of operators is the order that the operations in an expression are
performed. You can write complex expressions using only a small number of
parentheses. To illustrate the hierarchy of operators, examine the following
equation:

4+3*2 = ?

In this equation, multiplication has precedence over addition. Therefore, multiply
(3*2) and then add 4.

4+3*2 = 10

When an expression is scanned from left to right, an operation is not performed
until an operator of lower or equal precedence is encountered. In the example, you
cannot perform addition until the multiplication operation is complete because
multiplication has a higher precedence. Use parentheses if you are in doubt about
the order of precedence or to enhance program readability. The precedence of
operators from highest to lowest in the module is:

1.1.1.1. Operators that use parentheses ()

2.2.2.2. Exponentiation (**)

3.3.3.3. Negation (-)

4.4.4.4. Multiplication (*) and division (/)

5.5.5.5. Addition (+) and subtraction (-)

6.6.6.6. Relational expressions (-, <>, >, >=, <, <-).

7.7.7.7. Logical AND (.AND.)

8.8.8.8. Logical OR (.OR.)

9.9.9.9. Logical XOR (.XOR.)

Arithmetic Operators The module contains a complete set of arithmetic operators that are divided into
two groups: dual-operand operators and single-operand operators.

The general form of all dual-operand instructions is:

(expr) OP (expr), where OP is one of the following arithmetic operators

Add (+)

Use the Addition operator to add the first and the second expressions together.

Example Result
>PRINT 3+2 5
Publication 1746-RM001A-US-P

3-4 Expressions and Operators
Divide (/)

Use the Division operator to divide the first expression by the second expression.

Exponentiation (**)

Use the Exponentiation operator to raise the first expression to the power of the
second expression. The maximum power to which you can raise a number is 255.

Multiply (*)

Use the Multiplication operator to multiply the first expression by the second
expression.

Subtract (-)

Use the Subtraction operator to subtract the second expression from the first
expression.

Negation (-)

Use the Negation operator to change an expression from positive to negative.

Example Result
>PRINT 100/5 20

Example Result
>PRINT 2**3 8

Example Result
>PRINT 3*3 9

Example Result
>PRINT 9-6 3

Example Result
>PRINT –(9+4) –13
Publication 1746-RM001A-US-P

Expressions and Operators 3-5
Overflow and Division by Zero

During the evaluation of an expression if an overflow, underflow, or division by
zero error occurs, the module generates error messages and reverts to Command
mode. Refer to the ONERR operation in chapter 8 for more information on how
to trap these errors.

The largest result allowed from any calculation is 0.99999999 E+127. If this
number is exceeded, the module generates the ERROR: ARITH. OVERFLOW message
and returns to Command mode.

The smallest result allowed from any calculation is 0.99999999 E-128. If this
number is exceeded, the module generates the ERROR: ARITH. UNDERFLOW

message and returns to Command mode.

If an attempt is made to divide any number by zero, the module generates the
ERROR: DIVIDE BY ZERO message and returns to Command mode.

>10 PRINT 9/0
>20 PRINT “PROGRAM SHOULD NOT GET HERE.”

READY
>RUN

ERROR: DIVIDE BY ZERO - IN LINE 10

10 PRINT 9/0
-----------------X

READY
>

>10 PRINT 9.9E126*(2)
>

READY
>RUN

ERROR: ARITH. OVERFLOW - IN LINE 10

10 PRINT 9.9E126*(2)
-------------------------X

READY
>

Publication 1746-RM001A-US-P

3-6 Expressions and Operators
Logical Operators The module contains a complete set of logical operators that are divided into two
groups: dual-operand operators and single-operand operators.

The general form of all dual-operand instructions is:

(expr) OP (expr) , where OP is one of the following logical operators.

These operators perform BIT-WISE logical operations on numbers between 0
(0000H) and 65535 (0FFFFH) inclusive. If the argument is outside this range,
then the module generates an ERROR: BAD ARGUMENT message and returns to
Command mode. All decimal places are truncated, not rounded. Use the following
table for bit manipulations on 16-bit values.

.AND.

Use the logical .AND. operator to logically AND expressions together.

.OR.

Use the logical .OR. operator to logically OR expressions together.

.XOR.

Use the logical exclusive .XOR. operator to logically XOR expressions together.

Table 3.2 Bit Manipulations on 16-Bit Values

X Y X .AND.Y X .OR.Y X .XOR.Y
0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Example Result
>PRINT 3.AND.2 2

Example Result
>PRINT 1.OR.4 5

Example Result
 >PRINT 7.XOR.6 1
Publication 1746-RM001A-US-P

Expressions and Operators 3-7
Relational Operators Relational expressions involve the operators =, < >, >, >=, <, and <=. In the module,
relational operations are typically used to test a condition. The module relational
operators return a result of 65535 (0FFFFH) if the relational expression is true, and
a result of 0 if the relation expression is false. The result returns to the argument
stack. Because of this, it is possible to display the result of a relational expression.

Relational expressions are shown as:

[rel expr]

You can chain relational expressions with the logical operators .AND., .OR., and
.XOR.. This makes it possible to test a complex condition with ONE statement.

>10 IF (A>E).AND.(A>C).OR.(A>D)THEN...

Additionally, you can use the NOT([expr]) operator.

>10 IF NOT(A>E).AND.(A>C)THEN...

By chaining relational expressions with logical operators, you can test particular
conditions with one statement.

Example Result
>PRINT 1=0 0

>PRINT 1>0 65535

>PRINT A<>A 0

>PRINT A=A 65535

IMPORTANT When using logical operators to link relational expressions, you
must be sure operations are performed in the proper sequence.
When in doubt, use parentheses.
Publication 1746-RM001A-US-P

3-8 Expressions and Operators
Trigonometric Operators The module contains a complete set of trigonometric operators. These operators
are single-operand operators.

SIN([expr])

Use the SIN operator to return the sine of the argument. The argument is
expressed in radians. Calculations are carried out to 7 significant digits. The
argument must be between +200000.

COS([expr])

Use the COS operator to return the cosine of the argument. The argument is
expressed in radians. Calculations are carried out to 7 significant digits. The
argument must be between +200000.

TAN([expr])

Use the TAN operator to return the tangent of the argument. The argument is
expressed in radians. The argument must be between +200000.

ATN([expr])

Use the ATN operator to return the arctangent of the argument. The result is in
radians. Calculations are carried out to 7 significant digits. The ATN operator
returns a result between –PI/2 (3.1415926/2) and PI/2.

Example Result
>PRINT SIN(PI/4) .7071067

>PRINT SIN(0) 0

Example Result
>PRINT COS(PI/4) .7071067

>PRINT COS(0) 1

Example Result
>PRINT TAN(PI/4) 1

>PRINT TAN(0) 0

Example Result
>PRINT ATN(PI) 1.2626272

>PRINT ATN(1) .78539804
Publication 1746-RM001A-US-P

Expressions and Operators 3-9
Comments on Trigonometric Functions

The SIN, COS, and TAN operators use a Taylor series to calculate the function.
These operators first reduce the argument to a value between 0 and PI/2. This
reduction is accomplished by the following equation:

reduced argument=(user arg/PI – INT(user arg/PI) *PI

The reduced argument, from the above equation, is between 0 and PI. The reduced
argument is then tested to see if is greater than PI/2. If it is, then it is subtracted
from PI to yield the final value. If it is not, then the reduced argument is the final
value.

Although this method of angle reduction provides a simple and economical means
of generating the appropriate arguments for a Taylor series, there is an accuracy
problem associated with this technique. The accuracy problem is noticed when the
user argument is large (example: greater than 1000). This is because significant
digits in the decimal (fraction) portion of the reduced argument are lost in the
(user arg/PI - INT (user arg/PI)) expression. As a general rule, keep the
arguments for the trigonometric functions as small as possible.

Functional Operators The module contains a complete set of functional operators. These operators are
single-operand operators.

ABS([expr])

Use the ABS operator to return the absolute value of the expression.

NOT([expr])

Use the NOT operator to return a 16-bit one’s complement of the expression. The
expression must be a valid integer (example: between 0 and 65535 (0FFFFH)

inclusive). Non-integers are truncated, not rounded.

Example Result
>PRINT ABS(5) 5

>PRINT ABS(–5) 5

Example Result
>PRINT NOT(65000) 535

>PRINT NOT(0) 65535
Publication 1746-RM001A-US-P

3-10 Expressions and Operators
INT([expr])

Use the INT operator to return the integer portion of the expression.

PI

PI is a stored constant. In the module PI is stored as 3.1415926.

SGN([expr])

Use the SGN operator to return a value of +1 if the argument is greater than zero,
zero if the argument is equal to zero, and –1 if the argument is less than zero.

SQR([expr])

Use the SQR operator to return the square root of the argument. The argument
may not be less than zero.

Example Result
>PRINT INT(3.7) 3

>PRINT INT(100.876) 100

Example Result
>PRINT SGN(52) 1

>PRINT SGN(0) 0

>PRINT SGN(–8) -1

Example Result
>PRINT SQR(9) 3

>PRINT SQR(45) 6.7082035

>PRINT SQR(100) 0
Publication 1746-RM001A-US-P

Expressions and Operators 3-11
RND

Use the RND operator to return a pseudo-random number in the range between 0
and 1 inclusive. The RND operator uses a 16-bit binary seed and generates 65536
pseudo-random numbers before repeating the sequence. The numbers generated
are specifically between 0/65535 and 65535/65535 inclusive.

Logarithmic Operators The module contains a complete set of logarithmic operators. These operators are
single-operand operators.

LOG([expr])

Use the LOG operator to return the natural logarithm of the argument. The
argument must be greater than 0. This calculation is carried out to 7 significant
digits.

If base 10 logs are needed, the following expression may be used:

log10(x)=log(x)/log(10)

The log is natural.

EXP([expr])

Use the EXP operator to raise the number e (2.7182818) to the power of the
argument.

IMPORTANT Unlike most BASIC languages, the RND operator in the module
does not require an argument or a dummy argument. If an
argument is placed after the RND operator, a bad syntax error
occurs.

Example Result
>PRINT RND .26771954

Example Result
>PRINT LOG(12) 2.484906

>PRINT LOG(EXP(1)) 1

Example Result
>PRINT EXP(1) 2.7182818

>PRINT EXP(LOG(2)) 2
Publication 1746-RM001A-US-P

3-12 Expressions and Operators
String Operators Two operators in the module can manipulate STRINGS. These operators are ASC(
) and CHR().

ASC([expr])

Use the ASC operator to return the integer value of the ASCII character placed in
the parentheses.

>1 REM EXAMPLE PROGRAM
>10 PRINT ASC(a)
>20 PRINT ASC(A)

READY
>RUN

65
65

READY
>

The decimal representation for the ASCII character A is 65. The decimal
representation for the ASCII character a is 97. However, the module capitalizes all
ASCII characters not contained within quotation marks. Similarly, special ASCII
characters whose decimal value is greater than 127 should not be used.

In addition, you can evaluate individual characters in a defined ASCII string with
the ASC operator.

>1 REM EXAMPLE PROGRAM
>5 STRING 1000,40
>10 $(1) =“THIS IS A STRING”
>20 PRINT $(1)
>30 PRINT ASC($(1),1)
>40 END

READY
>RUN

THIS IS A STRING
84

READY
>

Publication 1746-RM001A-US-P

Expressions and Operators 3-13
When you use the ASC operator as shown above, the $([expr]) denotes what string
is accessed. The expression after the comma selects an individual character in the
string. In the above example, the first character in the string is selected. The
decimal representation for the ASCII character T is 84. String character position 0
is invalid.

>NEW

>1 REM EXAMPLE PROGRAM
>5 STRING 1000,40
>10 $(1)=“ABCDEFGHIKJL”
>20 FOR X = 1 TO 12
>30 PRINT ASC($(1),X),
>40 NEXT X
>50 END

READY
>RUN

65 66 67 68 69 70 71 72 73 75 74 76
READY
>

The numbers printed in the previous example represent the ASCII characters A
through L.

You can also use the ASC operator to change individual characters in a defined
string.

In general, the ASC operator lets you manipulate individual characters in a string.
A simple program can determine if two strings are identical.

>NEW

>1 REM EXAMPLE PROGRAM
>5 STRING 1000,40
>10 $(1) = “ABCDEFGHIJKL”
>20 PRINT $(1)
>30 ASC($(1),1) = 75 : REM DECIMAL EQUIVALENT OF K
>40 PRINT $(1)
>50 ASC($(1),2) = ASC($(1),3)
>60 PRINT $(1)

READY
>RUN

ABCDEFGHIJKL
KBCDEFGHIJKL
KCCDEFGHIJKL

READY
>

Publication 1746-RM001A-US-P

3-14 Expressions and Operators
CHR([expr])

Use the CHR operator to convert a numeric expression to an ASCII character.

Like the ASC operator, the CHR operator also selects individual characters in a
defined ASCII string.

>NEW

>1 REM EXAMPLE PROGRAM
>5 STRING 1000,40
>10 $(1) = “The module”
>20 FOR I = 1 TO 16 : PRINT CHR($(1),I),: NEXT I

READY
>RUN

The module
READY
>

In the example above, the expressions contained within the parentheses, following
the CHR operator have the same meaning as the expressions in the ASC operator.

Unlike the ASC operator, you cannot assign the CHR operator a value. A statement
such as CHR ($(1),1)= H is INVALID and generates an ERROR: BAD SYNTAX
message, causing the module to go into Command mode. Use the ASC operator to
change a value in a string, or use the string support CALL routine – replace string
in a string.

Example Result
>PRINT CHR(65) A

IMPORTANT Use the CHR function only in a print statement. You cannot use
the CHR operator in a DATA statement.
Publication 1746-RM001A-US-P

Expressions and Operators 3-15
Special Function
Operators

The module contains a complete set of special function operators. These operators
manipulate the I/O hardware and memory addresses of the module.

and @

Use the # and @ operators to direct communications. Communication takes place
through port PRT1 when the @ operator is programmed, and through port PRT2
when the # operator is programmed. The absence of either the # or @ operators
indicates that communication should take place through a program port (port
PRT1 or port DH485).

EOF

Use the EOF operator to test for an empty input buffer before executing an input
statement or function. This prevents input statements from waiting indefinitely on
empty input buffers. Use the EOF# statement to test for an empty input buffer for
port PRT2. Use the EOF@ statement to test for an empty input buffer for port
PRT1.

>10 REM EXAMPLE PROGRAM
>20 IF (NOT(EOF)) THEN A=GET
>30 REM IF BUFFER NOT EMPTY, READ SINGLE CHARACTER

FREE

Use the system control value FREE to tell you how many bytes of RAM are
available to the user. When the current selected program is in RAM, the following
relationship is true:

FREE = MTOP – LEN – 511

LEN

Use the system control value LEN to tell you how many bytes of memory the
currently selected program occupies. This is the length of the program and does not
include the size of string memory or the variables and array memory usage. You
cannot assign LEN a value, it can only be read. A NULL program (example: no
program) returns a LEN of 1. The 1 represents the end of program file character.

Example Result
>10 A = GET# The next character in the PRT2 input buffer is assigned to variable A.
>10 A = GET@ The next character in the PRT1 input buffer is assigned to variable A.

IMPORTANT The module does not require any dummy arguments for the
system control values.
Publication 1746-RM001A-US-P

3-16 Expressions and Operators
MTOP

Use the MTOP operator to retrieve the last valid memory address in RAM that is
available to the module. After reset, the module sizes the external memory and
assigns the last valid memory address to the system control value MTOP. The
module does not use any external RAM beyond the value assigned to MTOP. If this
value has not been changed by CALL 77, then the last valid BASIC address is
5FFFH (24575).

CBY([expr])

Use the CBY operator to retrieve data from the program or code memory address
location of the module. You cannot assign CBY a value; it can only be read. The
argument for the CBY operator must be a valid integer between 0 and 65535
(0FFFFH). If it is not a valid integer, a bad argument error occurs.

DBY([expr])

Use the DBY operator to retrieve or assign data to or from the internal data
memory of the module. Both the value and the argument in the DBY operator
must between 0 and 255 inclusive. This is because there are only 256 internal
memory locations in the module and one byte can only represent a quantity
between 0 and 255 inclusive.

Example Result
>PRINT MTOP 24575

PH0.MTOP 5FFFH

IMPORTANT Improper use of this operator may cause a malfunction of the
module.

Example Result
A = CBY(1000) The value in the program or code memory address location 1000 is

assigned to variable A.

IMPORTANT Improper use of this operator may cause a malfunction of the
module.

Example Result
A = DBY(B) The value in internal memory location B is assigned to

variable A. B must be between 0 and 255.
DBY(250) = CBY(1000) The value in program or code memory location 1000 is

assigned to internal memory location 250.
Publication 1746-RM001A-US-P

Expressions and Operators 3-17
XBY([expr])

Use the XBY operator to retrieve or assign data to or from the external data
memory of the module. The argument for the XBY operator must be a valid
integer between 0 and 65535 (0FFFFH). The value assigned to the XBY operator
must between 0 and 255 inclusive. If it is not, a bad argument error occurs.

TIME

Use the TIME operator to retrieve or assign a value to the free running clock
resident in the module. After reset, time is equal to 0. The CLOCK1 statement
enables the free running clock. When the free running clock is enabled, the special
function operator TIME increments once every 5 milliseconds. The units of time
are in seconds.

When TIME is assigned a value with a LET statement (example: TIME=100), only
the integer portion of TIME is changed.

>CLOCK1 (enable FREE RUNNING CLOCK)

>CLOCK0 (disable FREE RUNNING CLOCK)

>PRINT TIME (display TIME)
3.315

>TIME = 0 (set TIME = 0)

>PRINT TIME (display TIME)

.315 (only the integer is changed)

IMPORTANT Improper use of this operator may cause a malfunction of the
module.

Example Result
A = XBY(0F000H) The value in external memory location 0F00H is assigned

to variable A.
XBY(4000H) = DBY(100) The value in internal memory location 100 is assigned to

external memory location 4000H.
Publication 1746-RM001A-US-P

3-18 Expressions and Operators
You can change the fraction portion of TIME by manipulating the contents of
internal memory location 71 (47H). You can do this by using a DBY(71)
statement. Each count in internal memory location 71 (47H) represents 5
milliseconds of TIME.

Continuing with the example:

>DBY(71) = 0 (fraction of TIME = 0)

>PRINT TIME
0

>DBY(71) = 3 (fraction of TIME = 3*5ms = 15 ms)

>PRINT TIME
1.5 E–2

Only the integer portion of TIME changes when a value is assigned. This allows
you to generate accurate time intervals. For example, if you want to create an
accurate 12-hour clock: there are 43200 seconds in a 12-hour period, so an
ONTIME 43200, [ln num] statement is used. When the TIME interrupt occurs,
the statement TIME 0 is executed, but the millisecond counter is not re-assigned a
value. If interrupt latency exceeds 5 milliseconds, the clock remains accurate.
Publication 1746-RM001A-US-P

Chapter 4

BASIC Commands

This chapter describes and illustrates words and expressions that cause a function to
occur within the BASIC program or the command line. Table 4.1 lists the
corresponding mnemonics.

Table 4.1 Chapter Reference Guide

If you need (to) Use this mnemonic Page
Set the program break point. BRKPNT 4-2

Re-enable the [CTRL-C] break function. CALL 18 4-5

Disable the [CTRL-C] break function. CALL 19 4-6

Continue after a Stop or [CTRL-C] . CONT 4-3

Stop execution & return to Command mode. CONTROL-C 4-4

Restart a list after [CTRL-S] . CONTROL-Q 4-8

Interrupt a list command. CONTROL-S 4-7

Edit a line of the BASIC program. EDIT 4-8

Delete the last BASIC program stored in ROM by a PROG
command.

ERASE 4-9

Force the module to enter “wait until interrupt mode”. IDLE 4-10

List the program to the console devise. LIST 4-11

List the program to the serial printer. LIST# 4-12

List the program to the device connected to port PRT1. LIST@ 4-12

Set port parameters of ports PRT1, PRT2, and DH485. MODE 4-12

Erase the program stored in RAM. NEW 4-14

Set NULL count after carriage return-line feed. NULL 4-14

Save the current program in EPROM. PROG 4-15

Save the baud rate information in EPROM. PROG1 4-16

Save the baud rate information in EPROM and execute the
program after reset.

PROG2 4-17

Evoke RAM mode. RAM 4-19

Specify a remark or comment line. REM 4-19

Renumber the BASIC program. REN 4-20

Select ROM mode. ROM 4-20

Select ROM mode and execute the selected program. RROM 4-21

Execute a program. RUN 4-22

Initiate single-step program execution. SNGLSTP 4-23

Verify the module firmware version. VER 4-25

Transfer a program from ROM to RAM. XFER 4-26
1 Publication 1746-RM001A-US-P

4-2 BASIC Commands
BRKPNT Purpose

Use the BRKPNT command to set a program break point at the line number
specified by this command. Program execution stops just before the line number
specified by the BRKPNT command. If the line number is zero, the break point is
disabled. After the break point is reached, you can examine variables by using
assignment statements. Continue from the break point by using the CONT
command. Once the break point is reached, it is disabled. To stop at the same place
twice, set the break point twice. The BRKPNT command works only on programs
executing from RAM. It does not stop a program executing from ROM.

Syntax

BRKPNT[ln num]

Example

>1 REM EXAMPLE PROGRAM
>10 D=0 : SU=0 : AV=0
>20 REM GET 100 DATUM POINTS
>30 FOR I=1 TO 100
>40 REM GET ANOTHER DATUM
>50 GOSUB 140
>60 REM SUM THE DATA
>70 GOSUB 170
>80 NEXT I
>90 REM AVERAGE THE DATA
>100 GOSUB 200
>110 REM PRINT RESULT
>120 PRINT “THE AVERAGE VALUE IS ”,AV
>130 END
>140 REM THIS SUBROUTINE GENERATES RANDOM DATA
>150 D=RND
>160 RETURN
>170 REM THIS SUBROUTINE SUMS THE DATA
>180 SU=SU+D
>190 RETURN
>200 REM THIS SUBROUTINE AVERAGES THE DATA
>210 AV=SU/I
>220 RETURN

READY
>BRKPNT 160

Breakpoint enabled.

READY
>RUN
Publication 1746-RM001A-US-P

BASIC Commands 4-3
STOP - IN LINE 160
READY
>PRINT D,SU,AV

.86042573 0 0

>D = .5

>PRINT D,SU,AV
.5 0 0

>CONT

THE AVERAGE VALUE IS .48060383

READY
>

CONT Purpose

Use the CONT command to resume execution of a program stopped by a
[CTRL-C] , BRKPNT command, or a STOP statement. If you stop a program by
pressing [CTRL-C] on the console device or by execution of a STOP statement,
you can resume execution of the program by typing CONT. If you press [CTRL-C]
while [CTRL-C] is enabled, it stops the program. Use CONT to continue. Between
the stopping and the re-starting of the program you may display the values of
variables or change the values of variables. However, you cannot CONTinue if the
program is modified during the STOP or after an error.

Syntax

CONT

IMPORTANT [CTRL-C] clears all input and output buffers.
Publication 1746-RM001A-US-P

4-4 BASIC Commands
Example

>NEW

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 10000
>20 PRINT I
>30 NEXT I
>40 END

READY
>RUN

1
2
3
4
5
6
7
8
9

10 [CTRL-C] pressed

STOP - IN LINE 15
READY
>CONT

20
21
22

Control-C Purpose

Use the [CTRL-C] command to stop execution of the current program and return
the module to the Command mode. In some cases you can continue execution of
the program using a CONTinue. See the explanation for CONTinue for more
information.

Syntax

[CTRL-C]

Example

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 10000

IMPORTANT [CTRL-C] clears all input and output buffers.
Publication 1746-RM001A-US-P

BASIC Commands 4-5
>20 PRINT I
>30 NEXT I
>40 END
>RUN

1
2
3
4

5 [CTRL-C] pressed

STOP – IN LINE 20

READY
>PRINT I

27

>I =10

>CONT

10
11
12

Notice that after [CTRL-C] is pressed and I is printed the value of I is 27. The
value of I is incremented several times before [CTRL-C] is detected.

CALL 18 – Re-enable the
Control-C Break
Function

Purpose

Re-enable the [CTRL-C] break function by executing CALL 18 in a module
program or from the Command mode.

IMPORTANT When[CTRL-C] is disabled, you are unable to stop program
execution through a BASIC command. Cycling power
re-enables[CTRL-C] checking until the program once again
disables[CTRL-C] . To stop program execution, you must cycle
power and press[CTRL-C] before the line that disables
[CTRL-C] is executed.
Publication 1746-RM001A-US-P

4-6 BASIC Commands
Syntax

CALL 18

Example

>1 REM EXAMPLE PROGRAM
>10 CALL 19
.
>90 CALL 18

CALL 19 – Disable the
Control-C Break
Function

Purpose

Disable the [CTRL-C] break function by executing CALL 19 in a module program
or from the Command mode.

When CALL 19 is executed, the [CTRL-C] break function for both LIST and
RUN operations is disabled. Cycling power returns the [CTRL-C] function to
normal operation if it is disabled from the Command mode
.

Syntax

CALL 19

Example

>1 REM EXAMPLE PROGRAM
>10 CALL 19

IMPORTANT [CTRL-C] is enabled by default.
Publication 1746-RM001A-US-P

BASIC Commands 4-7
Control-S Purpose

Use the [CTRL-S] command to interrupt the scrolling of a BASIC program during
the execution of a LIST command. [CTRL-S] stops output from the transmitting
port if you are running a program. In this case XOFF ([CTRL-S]) operates as
follows:

• XOFF only operates on PRINT statements.

• When received during a PRINT, data output is suspended immediately but
program execution continues.

• When received at any other time, the program continues until encountering a
PRINT statement. At this time data output is suspended. The program
continues to fill the output buffer until the buffer is full.

• XON ([CTRL-Q]) is required to resume data output operation.

Syntax

[CTRL–S]

Example

> LIST
1 REM EXAMPLE PROGRAM
10 A = 1
20 DO
[CTRL–S]
.
.
.
[CTRL–Q]
30 A = A+1
40 PRINT A
50 WHILE A < 20

READY
>

In this example, the output is suspended when [CTRL–S] is pressed. The output is
continued after [CTRL–Q] is pressed.

IMPORTANT [CTRL-S] only works if you have enabled software
handshaking on the program port.
Publication 1746-RM001A-US-P

4-8 BASIC Commands
Control-Q Purpose

Use the [CTRL-Q] command to restart a LIST command or PRINT output that is
interrupted by [CTRL-S] .

Syntax

[CTRL–Q]

Example

> LIST
1 REM EXAMPLE PROGRAM
10 A = 1
20 DO
[CTRL–S]
.
.
.
[CTRL–Q]
30 A = A+1
40 PRINT A
50 WHILE A < 20

READY
>

In this example, the output is suspended when [CTRL–S] is pressed. The output is
continued after [CTRL–Q] is pressed.

EDIT Purpose

Use the EDIT command to access the BASIC line editor. Use this editor to edit a
line of the current program in RAM. Table 4.2 lists the BASIC editor operations.
Publication 1746-RM001A-US-P

BASIC Commands 4-9
Syntax

EDIT

Example

>EDIT 150

Displays program line number 150 for editing.

ERASE Purpose

Use the ERASE command to delete the last BASIC program stored in EEPROM
through a PROG command.

Syntax

ERASE

Table 4.2 BASIC Editor Operations

Operation Function Key Strokes
Move Use the Move operation to provide

right/left cursor control.
[Space bar] – moves the cursor one
space to the right.
[Backspace] – moves the cursor one
space to the left.

Replace Use the Replace operation to replace
the character at the current cursor
position.

Press the key that corresponds to the
character that replaces the character at
the current cursor position.

Insert Use the Insert operation to insert text
at the current cursor position.

Important: When you use the Insert
operation, all text to the right of the
cursor disappears until you press the
second [Ctrl–A] . Total line length is
79 characters.

[Ctrl–A]

Important: You must press a second
[Ctrl–A] to terminate the Insert
command.

Delete Use the Delete operation to delete the
character at the cursor position.

[Ctrl–D]

Exit Use the Exit operation(s) to exit the
editor with or without saving the
changes.

[Ctrl–Q] – exits the editor and
replaces the old line with the edited line.
[Ctrl–C] – exits the editor without
saving any changes made to the line.

Retype Use the Retype operation to copy the
current line of text and insert it at the
line following the current line. The
cursor is moved to the first character on
the new line.

[RETURN]
Publication 1746-RM001A-US-P

4-10 BASIC Commands
Example

>ERASE

>ROM 13 ERASED

The last program stored in EEPROM (ROM 13 in this example) is erased.

IDLE Purpose

Use the IDLE command to force the module to enter wait until Interrupt mode.
Program execution halts until an ONTIME condition is met. The ONTIME
interrupt must be enabled before executing the IDLE command or else the module
enters a wait forever mode. [CTRL-C] exits the IDLE command if [CTRL-C] is
enabled.

Syntax

IDLE

Example

>1 REM EXAMPLE PROGRAM
>10 TIME = 0
>20 CLOCK1
>30 ONTIME 2,70
>40 IDLE
>50 PRINT “END OF TEST!!!”
>60 END
>70 PRINT “TIMER INTERRUPT AT – ”,TIME,“SECONDS.”
>80 RETI

READY
>RUN

TIMER INTERRUPT AT – 2.005 SECONDS.
END OF TEST!!!
Publication 1746-RM001A-US-P

BASIC Commands 4-11
LIST Purpose

Use the LIST command to print the program to the console device. Spaces are
inserted after the line number, and before and after statements. This helps in the
debugging of module programs. You can terminate the listing of a program at any
time by pressing [CTRL-C] on the console device. You can interrupt and continue
the listing using [CTRL-S] and [CTRL-Q] .

Syntax

LIST [ln num]

LIST [ln num] - [ln num]

The first variation causes the program to print from the designated line number [ln
num] to the end of the program. The second variation causes the program to print
from the first designated line number [ln num] to the second designated line
number [ln num].

Example

>LIST
1 REM EXAMPLE PROGRAM
10 PRINT “LOOP PROGRAM”
20 FOR I = 1 TO 3
30 PRINT I
40 NEXT I
50 END

READY
>LIST 30
1 REM EXAMPLE PROGRAM
30 PRINT I
40 NEXT I
50 END

READY
>LIST 20–40
1 REM EXAMPLE PROGRAM
20 FOR I = 1 TO 3
30 PRINT I
40 NEXT I

IMPORTANT [CTRL–C] terminates the listing if[CTRL–C] checking is
enabled.[CTRL–S] halts the listing until[CTRL–Q] is pressed if
software handshaking in enabled.

IMPORTANT You must separate the two line numbers with a dash (–).
Publication 1746-RM001A-US-P

4-12 BASIC Commands
LIST@ Purpose

Use the LIST@ command to print the program to the device attached to port
PRT1. All comments that apply to the LIST command apply to the LIST@
command. You must configure PRT1 port parameters to match your particular list
device. The PRT1 parameters (baud rate, parity, stop bits, and so on) can be set
using the MODE command.

Syntax

LIST@

Examples

LIST@ :REM LISTS ALL LINES IN THE PROGRAM

LIST@10–20 :REM LISTS LINES 10 THROUGH 20

LIST# Purpose

Use the LIST# command to print the program to the device attached to port
PRT2. All comments that apply to the LIST command apply to the LIST#
command. You must configure the PRT2 port parameters to match your particular
list device. The PRT2 parameters (baud rate, parity, stop bits, and so on) can be set
using the MODE command.

Syntax

LIST#

Example

Refer to LIST@ examples.

MODE Purpose

Use the MODE command to set the port parameters of ports PRT1, PRT2, and
DH485. Table 4.3 lists the port parameters and default settings for ports PRT1 and
PRT2. Table 4.4 lists the port parameters for port DH485.
Publication 1746-RM001A-US-P

BASIC Commands 4-13
Syntax

MODE(port name, baud rate, arg1, arg2, arg3, arg4, arg5)

Table 4.3 PRT1 and PRT2 Port Parameters

Port Parameters Selections Default Settings
baud rate 300, 600, 1200, 2400, 4800, 9600, 19200 1200

arg1 (parity) None (N), Even (E), Odd (O) N

arg2 (number of data bits) 7 or 8 8

arg3 (number of stop bits) 1 or 2 1

arg4 (handshaking) No handshaking (N)
Software handshaking (S)
 Hardware handshaking (H)
Hardware and software handshaking (B)

S

arg5 (storage type) Store information in user ROM and RAM (E)
Store information in battery backed RAM (R)

R

IMPORTANT If any argument (other than port name and baud rate) is left
blank, then that argument defaults to the previously specified
value for that argument.

Table 4.4 DH485 Port Parameters

Port Parameters Selections Default
Settings

baud rate 300, 600, 1200, 2400, 4800, 9600, 19200 19200

arg1 (host node address) 0 to 31 0

arg2 (module node address) 0 to 31 1

arg3 (maximum node address) 1 to 31 31

arg4 (not used)

arg5 (storage type) Store information in user ROM and RAM (E)
Store information in battery backed RAM (R)

R

IMPORTANT If any argument (other than port name) is left blank, then that
argument defaults to the previously specified value for that
argument.
Publication 1746-RM001A-US-P

4-14 BASIC Commands
Example

>1 REM EXAMPLE PROGRAM
>10 MODE(DH485,19200,0,1,2,,R)
.
.
.
>25 MODE(PRT1,1200,N,8,,,)

NEW Purpose

Use the NEW command to delete the program currently stored in RAM. In
addition, all variables are set equal to ZERO; all strings and all BASIC evoked
interrupts are cleared. The free running clock, string allocation, and internal stack
pointer values are not affected. The NEW command is used to erase a program and
all variables in RAM.

Syntax

NEW

Example

>NEW

>LIST

>READY
>

NULL Purpose

Use the NULL command to determine how many NULL characters (00H) the
module outputs after a carriage return in a print statement. After initialization this
value is set to 0. Most printers contain a RAM buffer that eliminates the need to
output NULL characters after a carriage return.

Syntax

NULL[integer]

IMPORTANT The E storage type option cannot be used if MODE is used as a
statement.
Publication 1746-RM001A-US-P

BASIC Commands 4-15

re
PROG

Purpose

Use the PROG command to program the resident EEPROM with the current
program in RAM. The module cannot program UVPROMs.

After you type PROG, the module displays the number in the EEPROM FILE the
program occupies. Programming takes only a few seconds.

Syntax

PROG

Example

>LIST
1 REM EXAMPLE PROGRAM
10 FOR I=1 TO 10
20 PRINT I
30 NEXT I
40 END

READY
>PROG

ROM 12

Programming sequence successful.

READY
>ROM 12

>LIST
1 REM EXAMPLE PROGRAM
10 FOR I=1 TO 10
20 PRINT I
30 NEXT I
40 END

READY
>

The program just placed in the EEPROM is the 12th program stored.

IMPORTANT Before you attempt to program EEPROM, read the PROG,
PROG1 and PROG2 sections of this chapter.

IMPORTANT Be sure you have selected the program you want to save befo
using the PROG command. Your module does not
automatically copy the RAM program to EEPROM. If an error
occurs during EEPROM programming, the messageERROR:

Programming sequence failure is displayed.
Publication 1746-RM001A-US-P

4-16 BASIC Commands
PROG1

Purpose

Use the PROG1 command to program the resident EEPROM with port
information for all three ports as well as store MTOP information. At module
powerup, the module reads this information and initializes MTOP and all three
serial ports. The sign-on message is sent to the console immediately after the
module completes its reset sequence. If the baud rate on the console device
changes, you must re-program the EEPROM to make the module compatible with
the new console. Re-program by changing the appropriate port or MTOP
information, then execute PROG1 again.

Syntax

PROG1

Example

READY
>PROG1

Programming sequence successful.

IMPORTANT If you exceed the available EEPROM space, you cannot continue
programming until it is erased. Use the ERASE command to erase
the last program stored in EEPROM. Be sure to use CALL 81 or
CALL 82 to determine memory space prior to programming your
EEPROM. Refer to chapter 5 for information regarding CALLs
81 and 82.

IMPORTANT Before you attempt to program an EEPROM, read the PROG,
PROG1 and PROG2 sections of this chapter.
Publication 1746-RM001A-US-P

BASIC Commands 4-17
PROG2

Purpose

Use the PROG2 command the same as you would the PROG1 command except
for the following: instead of signing on and entering the Command mode, the
module immediately begins executing the first program stored in the resident
EEPROM. Otherwise, it executes the program stored in RAM.

You can use the PROG2 command to RUN a program on powerup without
connecting to a console. Saving PROG2 information is the same as typing a ROM
1, RUN command sequence. This feature also allows you to write a special
initialization sequence in BASIC and generate a custom sign-on message for
specific applications. The PROG2 command does not alter the first program in the
memory module.

The following figure shows the module operation from a power-up condition using
PROG1 and PROG2, or battery backed RAM.

Syntax

PROG2

Example

READY
>PROG2

Programming sequence successful.

IMPORTANT Before you attempt to program an EEPROM, read the PROG,
PROG1 and PROG2 sections of this chapter. Note, the PROG2
command does not transfer the RAM program to EEPROM. The
PROG2 command enables the first program in EEPROM to be
loaded at each powerup.

IMPORTANT The PROG2 command does not cause the module to RUN at
powerup if PRT1 default communications are selected via JW4.
Refer to Chapter 3 of the SLC 500™ BASIC and BASIC-T
Modules User Manual (publication number
1746-UM004A-US-P) for more information.
Publication 1746-RM001A-US-P

4-18 BASIC Commands
Figure 4.1 Operation of PROG1 or PROG2

Is
battery backup

enabled?

Has
PROG1 or PROG2
been executed?

Is
battery-backed

RAM MTOP and
Port information

valid?

Initialize ports using
battery-backed RAM

Erase RAM
program

Erase MTOP and port
information in

battery-backed RAM

Copy EEPROM MTOP and
port information to

battery-backed RAM

Store default MTOP and
port information in

battery-backed RAM

Print sign-on message

Print checksum error
message

Enter command mode

Execute ROM1

Execute RAM program

Is
user EEPROM

checksum correct?

Has
PROG2

been executed?

Is
RAM program

present?

Print sign-on
message

Enter Command
Mode

Start

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No
Publication 1746-RM001A-US-P

BASIC Commands 4-19
RAM Purpose

Use the RAM command to tell the module interpreter to select the current
program out of RAM. The current program is displayed during a LIST command
and executed when RUN is typed.

Available user RAM = MTOP–H

H = LEN + S + 6*A + 8*V + 512

Where:

LEN = system control value that contains current RAM program
length

S = number of bytes allocated for strings (first value in the
STRING instruction)

A = sum of all (array sizes +1)

V = sum of all variable names used (including each array name)

Syntax

RAM

Example

READY
>RAM

REM Purpose

Use the REM command to specify a comment line in a BASIC program. Adding
comment lines to a program makes the program easier to understand. Program
lines that start with a REM command cannot be terminated with a colon (:). REM
commands can be placed after a colon (:) in a program line. This allows you to
place a comment on each line.

IMPORTANT RAM space is limited to 24K bytes. Use the following formula to
calculate the available user RAM space

IMPORTANT REM commands add time to program execution. Use them
selectively or place them at the end of the program where they do
not affect program execution speed. Do not use REM commands
in frequently-called loops or subroutines.
Publication 1746-RM001A-US-P

4-20 BASIC Commands
Syntax

REM

Example

>10 REM THIS IS A COMMENT LINE
>20 NEW : REM THIS IS ALSO A COMMENT LINE

REN Purpose

Use the REN command to renumber program lines.

Syntax

REN[new number],[old number],[increment]

Examples

ROM Purpose

Use the ROM command to tell the module interpreter to select the current
program out of EEPROM or UVPROM. The current program is displayed during
a LIST command and executed when RUN is typed.

Example Result
REN Renumbers the entire program. The first new line number is 10. Line

numbers increment by 10.
REN 20 Renumbers the entire program. The first new line number is 10. Line

numbers increment by 20.
REN 300,50 Renumbers the entire program. The first new line number is 300. Line

numbers increment by 50.
REN 1000,900,20 Renumbers the program from line 900 on up. Line number 900

becomes line number 1000. Any following line numbers increment by
20.

IMPORTANT Your module can execute and store up to 255 programs in
EEPROM depending on the size of the programs and the
capacity of the EEPROM. The programs are stored in a sequence
string, referred to as the EEPROM file, in EEPROM for retrieval
and execution.
Publication 1746-RM001A-US-P

BASIC Commands 4-21
When you enter ROM [integer], the module selects that program out of EEPROM
memory and makes it the current program. If no integer is typed after the ROM
command (example: ROM) the module defaults to ROM 1. Since the programs are
stored in sequence in EEPROM, the integer following the ROM command selects
the program the user wants to run or list. If you attempt to select a program that
does not exist (example: you type ROM 8 and only 6 programs are stored in the
EEPROM) the message ERROR: PROM MODE is displayed.

The module does not transfer the program from EEPROM to RAM when the
ROM mode is selected. If you attempt to alter a program in the ROM mode by
typing in a line number, the message ERROR: PROM MODE is displayed. The XFER
command allows you to transfer a program from EEPROM to RAM for editing
purposes. You do not get an error message if you attempt to edit a line of RAM
program.

Since the ROM command does not transfer a program to RAM, it is possible to
have different programs in ROM and RAM simultaneously. You can move back
and forth between the two modes when in Command mode. If you are in Run
mode, you can change back and forth using CALLS 70, 71, and 72. You can also
use all of the RAM for variable storage if the program is stored in EEPROM. The
system control value MTOP always refers to RAM. The system control value LEN
refers to the currently selected program in RAM or ROM.

Syntax

ROM[integer]

Example

READY
>ROM1

RROM Purpose

Use the RROM command to tell the module interpreter to select the current
program out of EEPROM or UVPROM and then execute the program. This
command is equivalent to typing ROM and then RUN.

IMPORTANT When you transfer programs from EEPROM to RAM you lose
the previous RAM contents.

IMPORTANT Your module can execute and store up to 255 programs in
EEPROM depending on the size of the programs and the
capacity of the EEPROM. The programs are stored in a sequence
string, referred to as the EEPROM file, in EEPROM for retrieval
and execution.
Publication 1746-RM001A-US-P

4-22 BASIC Commands
When you enter RROM [integer], the module selects that program out of
EEPROM memory, makes it the current program, and starts program execution. If
no integer is typed after the RROM command (example: RROM) the module
defaults to RROM 1. Since the programs are stored in sequence in EEPROM, the
integer following the RROM command selects the program the user wants to run
or list. If you attempt to select a program that does not exist (example: you type
RROM 8 and only 6 programs are stored in the EEPROM) the message ERROR:

PROM MODEis displayed.

The module does not transfer the program from EEPROM to RAM when ROM
mode is selected. If you attempt to alter a program in ROM mode by typing in a
line number, the message ERROR: PROM MODEis displayed. The XFER command
allows you to transfer a program from EEPROM to RAM for editing purposes. You
do not get an error message if you attempt to edit a line of RAM program.

Since the RROM command does not transfer a program to RAM, it is possible to
have different programs in ROM and RAM simultaneously. You can move back
and forth between the two modes when in Command mode. If you are in Run
mode, you can change back and forth using CALLS 70, 71, and 72. You can also
use all of the RAM for variable storage if the program is stored in EEPROM. The
system control value MTOP always refers to RAM. The system control value LEN
refers to the currently selected program in RAM or ROM.

Syntax

RROM[integer]

Example

READY
>RROM

RUN Purpose

Use the RUN command to set all variables equal to zero, clear all BASIC evoked
interrupts, and begin program execution with the first line number of the selected
program. The RUN command and the GOTO statement are the only ways you
can place the module interpreter into Run mode from Command mode. Terminate
program execution at any time by pressing [CTRL-C] on the console device.

Syntax

RUN

IMPORTANT When you transfer programs from EEPROM to RAM you lose
the previous RAM contents.
Publication 1746-RM001A-US-P

BASIC Commands 4-23
Variations

Some BASIC interpreters allow a line number to follow the RUN command
(example: RUN 100). The module does not permit this variation on the RUN
command.

Execution begins with the first line number. To obtain a function similar to the
RUN [ln num] command, use the GOTO [ln num] statement in the Direct mode.
See statement GOTO in chapter 7.

Example

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 3
>20 PRINT I
>30 NEXT I
>40 END
>RUN

1
2
3

READY
>

SNGLSTP Purpose

Use the SNGLSTP command to initiate single-step program execution. If the
number specified by this command is zero, single-step execution is disabled. If the
number is not zero, a break point is set before each line in the program. Start the
program by typing the RUN command. After each stop, type CONT to execute the
next line. You can inspect variables or assign variables at each break point.
SNGLSTP works only on programs executing from RAM. It does not stop a
program executing from EEPROM.

Syntax

SNGLSTP[integer]
Publication 1746-RM001A-US-P

4-24 BASIC Commands
Example

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 5
>20 PRINT I
>30 NEXT I
>40 PRINT “PASSED FOR – NEXT LOOP”
>50 PRINT “THIS IS THE END”
>60 END

READY
>SNGLSTP 20

SINGLE STEP ENABLED

READY
>RUN

STOP – LINE 20
READY
>CONT

1

STOP – LINE 30
READY
>CONT

STOP – LINE 20
READY
>CONT

2

STOP – LINE 30
READY
>CONT

STOP – LINE 20
READY
>CONT

3

STOP – LINE 30
READY
>SNGLSTP 0

SINGLE STEP DISABLED

READY
>CONT

4
5
PASSED FOR – NEXT LOOP
THIS IS THE END
Publication 1746-RM001A-US-P

BASIC Commands 4-25
READY
>

VER Purpose

Use the VER command to print the module sign-on message that displays the
current version of the firmware.

Syntax

VER

Example

>VER
SLC 500 module–Catalog Number 1746-BAS
Firmware release: x.xx
Allen–Bradley Company, Copyright 19xx
All rights reserved

>

Publication 1746-RM001A-US-P

4-26 BASIC Commands
XFER Purpose

Use the XFER command to transfer the current selected program in ROM to RAM
and select RAM mode. After the XFER command executes, you can edit the
program in the same way you edit any RAM program.

Syntax

XFER

Example

READY
>XFER

IMPORTANT The XFER command clears existing RAM programs.
Publication 1746-RM001A-US-P

Chapter 5

Command Line CALLs

This chapter describes and illustrates CALLs that cause a function to occur within
the BASIC or BASIC-T module. These CALLs cannot be executed within the
BASIC program but are entered at the command line. Table 5.1 lists the
corresponding mnemonics.

CALL 73 –
Battery-Backed RAM
Disable

Purpose

Use CALL 73 to disable the battery-backed RAM. When this CALL is executed,
the message Battery Backup Disabled is printed on the host terminal.
Disabling battery-backed RAM allows a purging reset. When power to the module
is turned OFF, the contents of RAM are destroyed. When power is reapplied, RAM
is cleared and battery back-up is re-enabled.

Syntax

CALL 73

Example

>CALL 73

Battery Backup Disabled

>REM TURNING POWER OFF, THEN BACK ON

Table 5.1 Chapter Reference Guide

If you need (to) Use this mnemonic Page
Battery-backed RAM disable CALL 73 5-1

Battery-backed RAM enable CALL 74 5-2

Protected variable storage CALL 77 5-2

User memory module check and description CALL 81 5-3

Check the user memory module map. CALL 82 5-4

Upload the user memory module code to host. CALL 101 5-4

Print port PRT1 output buffer and pointer. CALL 103 5-5

Print port PRT1 input buffer and pointer. CALL 104 5-6

Print the argument stack. CALL 109 5-7

Print port PRT2 output buffer and pointer. CALL 110 5-8

Print port PRT2 input buffer and pointer. CALL 111 5-8
1 Publication 1746-RM001A-US-P

5-2 Command Line CALLs
CALL 74 –
Battery-Backed RAM
Enable

Purpose

Use CALL 74 to enable the battery-backed RAM. When this CALL is executed,
the message Battery Backup Enabled is printed on the host terminal.
Battery-backed RAM is enabled on module powerup and remains enabled until
you execute a CALL 73 or until the battery fails.

Syntax

CALL 74

Example

>CALL 74

Battery Backup Enabled

CALL 77 – Protected
Variable Storage

Purpose

Use CALL 77 to reserve the top of RAM memory for protected variable storage.
Values are saved if BATTERY-BACKUP is invoked. You store values with the ST@
command and retrieve them with the LD@ command. Each variable stored
requires 6 bytes of storage space.

You must subtract 6 times the number of variables stored from MTOP reducing
available RAM memory. This value is PUSHed onto the stack as the new MTOP
address. All appropriate variable pointers are reconsidered. Do this only in
Command mode.

Syntax

PUSH [new MTOP address]
CALL 77

IMPORTANT Change CALL 77 from Command mode only to ensure proper
operation.

IMPORTANT Do not let the ST@ address write over the MTOP address. This
could alter the value of a variable or string. The lowest setting
MTOP may be set to is 4096 (1000H).

IMPORTANT Call 77 de-allocates all the string memory along with the string
contents. Therefore, make sure that you perform this CALL
before the execution of the string statement.
Publication 1746-RM001A-US-P

Command Line CALLs 5-3
Example: (For saving 2 variables)

>PRINT MTOP
24575
>PRINT MTOP-12
24563
>PUSH 24563:REM NEW MTOP ADDRESS
>CALL 77

>1 REM EXAMPLE PROGRAM
>10 K = 678*PI
>20 L = 520
>30 PUSH K
>40 ST@ 24575 : REM STORE K IN PROTECTED AREA
>50 PUSH L
>60 ST@ 24569 : REM STORE L IN PROTECTED AREA
>70 REM TO RETRIEVE PROTECTED VARIABLES
>80 LD@ 24575 : REM REMOVE K FROM PROTECTED AREA
>90 POP K
>100 LD@ 24569 : REM REMOVE L FROM PROTECTED AREA
>110 POP L
>120 REM USE LD@ AFTER POWER LOSS AND BATTERY BACK-UP IS USED

CALL 81 – User Memory
Module Check and
Description

Purpose

Use CALL 81 to check the user memory module before burning a program into the
memory module. This routine:

• determines the number of memory module programs

• determines the number of bytes left in the memory module

• determines the number of bytes in the RAM program

• prints a message indicating if enough space is available in the memory module
for the RAM program

• checks memory module checksum if program is found

• prints a caution message is checksum fails

No PUSHes or POPs are needed.

Syntax

CALL 81

IMPORTANT CALL 81 cannot detect a defective memory module.
Publication 1746-RM001A-US-P

5-4 Command Line CALLs
Example

>CALL 81

Number of BASIC programs in (E)EPROM.......... 3
Available bytes to end of user (E)EPROM....... 7944
Available bytes to beginning of assembly pgm.. 3848
Length of BASIC program in RAM................ 76

Program will fit in (E)EPROM.

READY
>

CALL 82 – Check User
Memory Module Map

Purpose

Use CALL 82 to check the user memory module and display a map of where all the
BASIC programs are stored. The programmer can determine by using this CALL
where the empty space in the memory module is located and how much space is
available. No PUSHes or POPs are needed.

Syntax

CALL 82

Example

>CALL 82

8010H -- 805CH --> ROM 1
805DH -- 80A9H --> ROM 2
80AAH -- 80F6H --> ROM 3
80F7H -- FFFFH --> UNUSED

>

CALL 101 – Upload User
Memory Module Code to
Host

Purpose

Use CALL 101 to upload the code in the user memory module to the host
terminal. This CALL requires two PUSHes and no POPs. The first PUSH is the
starting address. The second PUSH is the ending address. This CALL converts data
within the address range to Intel Hex format, then prints the information to the
program port. An error message is printed if the addresses are not consistent.
Publication 1746-RM001A-US-P

Command Line CALLs 5-5
Syntax

PUSH [starting address]
PUSH [ending address]
CALL 101

Example

>PUSH 8000 : PUSH 804FH : CALL 101

:108000003107021327CC3313276607005FFF473081
:108010005509000A8B41E034290D1000149C3130C1
:108020002C32302C33302C34300D0A001EA049EA9B
:1080300030A6330D0900289B41E049290D06003286
:1080400097490D0A003CA04AEA4FA6330D090046A5
:00000001F
>

CALL 103 – Print PRT1
Output Buffer and
Pointer

Purpose

Use CALL 103 to print the complete output buffer with address, front pointer, and
number of characters in the buffer to the program port screen. No PUSHes or
POPs are needed.

Use this information as a troubleshooting aid. It does not affect the contents of the
buffer.

Syntax

CALL 103
Publication 1746-RM001A-US-P

5-6 Command Line CALLs
Example

>CALL 103
PRT1 Output Queue

6D00H 3AH 31H 30H 38H 30H 34H 30H 30H 30H 39H 37H 34H 39H 30H 44H 30H
6D10H 41H 30H 30H 33H 43H 41H 30H 34H 41H 45H 41H 34H 46H 41H 36H 33H
6D20H 33H 30H 33H 30H 48H 20H 33H 33H 48H 20H 33H 30H 48H 20H 34H 38H
6D30H 48H 20H 32H 30H 48H 20H 33H 33H 48H 20H 33H 33H 48H 20H 34H 38H
6D40H 48H 20H 32H 30H 48H 20H 33H 33H 48H 20H 33H 30H 48H 20H 34H 38H
6D50H 48H 20H 32H 30H 48H 20H 33H 34H 48H 20H 33H 38H 48H 0DH 0AH 20H
6D60H 36H 44H 33H 30H 48H 20H 34H 38H 48H 20H 32H 30H 48H 20H 34H 38H
6D70H 48H 20H 32H 30H 48H 20H 33H 34H 48H 20H 33H 38H 48H 0DH 0AH 20H
6D80H 36H 44H 37H 30H 48H 20H 34H 38H 48H 20H 32H 30H 48H 20H 33H 32H
6D90H 48H 20H 33H 30H 48H 20H 34H 38H 48H 20H 32H 30H 48H 20H 33H 33H
6DA0H 48H 20H 33H 34H 48H 20H 34H 38H 48H 20H 32H 30H 48H 20H 33H 33H
6DB0H 48H 20H 33H 38H 48H 20H 34H 38H 48H 20H 32H 30H 48H 20H 33H 34H
6DC0H 48H 20H 33H 38H 48H 20H 34H 38H 48H 20H 32H 30H 48H 20H 33H 32H
6DD0H 48H 20H 33H 30H 48H 20H 34H 38H 48H 20H 32H 30H 48H 20H 33H 33H
6DE0H 48H 20H 33H 34H 48H 0DH 0AH 20H 36H 44H 43H 30H 48H 20H 34H 38H
6DF0H 48H 20H 32H 30H 48H 20H 33H 33H 48H 20H 33H 38H 48H 20H 34H 34H

Output queue front pointer is: 6D29H

CALL 104 – Print PRT1
Input Buffer and Pointer

Purpose

Use CALL 104 to print the complete input buffer with address, front pointer, and
number of characters in the buffer to the program port screen. No PUSHes or
POPs are needed.

Use this information as a troubleshooting aid. It does not affect the contents of the
buffer.

Syntax

CALL 104
Publication 1746-RM001A-US-P

Command Line CALLs 5-7
Example

>CALL 104
PRT1 Input Queue

6C00H 33H 0DH 43H 41H 4CH 4CH 20H 31H 30H 34H 7FH 7FH 7FH 7FH 7FH 7FH
6C10H 7FH 7FH 52H 45H 4DH 20H 45H 58H 41H 4DH 50H 4CH 45H 53H 7FH 7FH
6C20H 7FH 7FH 7FH 7FH 7FH 7FH 7FH 7FH 7FH 7FH 0DH 0DH 0DH 0DH 0DH 0DH
6C30H 0DH 0DH 0DH 45H 58H 41H 4DH 7FH 7FH 7FH 7FH 52H 45H 4DH 20H 45H
6C40H 58H 41H 4DH 50H 4CH 45H 53H 20H 4FH 4EH 20H 50H 41H 47H 45H 20H
6C50H 36H 2DH 37H 0DH 43H 41H 4CH 4CH 20H 31H 30H 34H 0DH 52H 4DH 41H
6C60H 4EH 54H 20H 7FH 7FH 7FH 54H 20H 44H 41H 54H 41H 0DH 52H 45H 4DH
6C70H 20H 54H 48H 45H 52H 45H 20H 49H 53H 20H 4EH 4FH 20H 52H 45H 41H
6C80H 4CH 20H 52H 45H 53H 50H 4FH 4EH 53H 45H 20H 57H 48H 49H 43H 48H
6C90H 20H 57H 49H 4CH 4CH 20H 53H 48H 4FH 57H 20H 55H 50H 20H 49H 4EH
6CA0H 20H 41H 4EH 20H 45H 58H 41H 4DH 50H 4CH 45H 0DH 0DH 0DH 0DH 0DH
6CB0H 52H 45H 4DH 20H 45H 58H 41H 4DH 50H 4CH 45H 53H 20H 4FH 4EH 20H
6CC0H 50H 41H 47H 45H 20H 36H 2DH 36H 0DH 50H 55H 53H 48H 20H 38H 30H
6CD0H 30H 30H 48H 3AH 50H 7FH 7FH 20H 70H 55H 53H 7FH 7FH 7FH 3AH 20H
6CE0H 50H 55H 53H 48H 20H 38H 30H 7FH 30H 34H 46H 48H 20H 3AH 43H 41H
6CF0H 4CH 4CH 20H 31H 30H 31H 0DH 0DH 0DH 43H 41H 4CH 4CH 20H 31H 30H

Input queue front pointer is: 6C5DH

CALL 109 – Print
Argument Stack

Purpose

Use CALL 109 to print the top 9 values on the argument stack to the console. No
PUSHes or POPs are needed. Use this information as a troubleshooting aid. It does
not affect the contents of the argument stack or pointer to the stack.

Syntax

CALL 109

Example

>CALL 109

1C9H 00H 00H 00H 00H 00H 00H
1CFH 00H 00H 00H 00H 00H 00H
1D5H 00H 00H 00H 00H 00H 00H
1DBH 41H 67H 50H 00H 00H 7EH
1E1H 83H 75H 00H 00H 00H 7CH
1E7H 13H 04H 00H 00H 00H 7CH
1EDH 32H 84H 70H 00H 00H 85H
1F3H 32H 76H 80H 00H 00H 85H
1F9H 00H 00H 00H 00H 00H 00H

Argument stack pointer is: 01FEH
Publication 1746-RM001A-US-P

5-8 Command Line CALLs
CALL 110 – Print PRT2
Output Buffer Pointer

Purpose

Use CALL 110 to print the complete output buffer with addresses, front pointer
and the number of characters in the buffer to the console device. No PUSHes or
POPs are needed.

Use this information as a troubleshooting aid. It does not affect the contents of the
buffer.

Syntax

CALL 110

Example

>CALL 110
PRT2 Output Queue

6F00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6F10H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6F20H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6F30H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6F40H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6F50H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6F60H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6F70H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6F80H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6F90H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6FA0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6FB0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6FC0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6FD0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6FE0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6FF0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H

Output queue front pointer is: 6F00H

CALL 111 – Print PRT2
Input Buffer Pointer

Purpose

Use CALL 111 to print the complete input buffer with addresses, front pointer and
the number of characters in the buffer to the console device. No PUSHes or POPs
are needed.

Use this information as a troubleshooting aid. It does not affect the contents of the
buffer.

Syntax

CALL 111
Publication 1746-RM001A-US-P

Command Line CALLs 5-9
Example

>CALL 111
PRT2 Input Queue

6E00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6E10H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6E20H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6E30H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6E40H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6E50H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6E60H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6E70H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6E80H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6E90H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6EA0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6EB0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6EC0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6ED0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6EE0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H
6EF0H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H

Input queue front pointer is: 6E00H
Publication 1746-RM001A-US-P

5-10 Command Line CALLs
Publication 1746-RM001A-US-P

Chapter 6

Assignment Functions

This chapter describes and illustrates commands that assign storage, reset data
storage, and values to variables within the BASIC program or from the command
line. Table 6.1 lists the corresponding mnemonics.

CLEAR Purpose

Use the CLEAR statement to set all variables equal to 0 and reset all BASIC evoked
interrupts and stacks. This means that after the CLEAR statement is executed, an
ONTIME statement must be executed before the module acknowledges the
internal timer interrupts. ERROR trapping with the ONERR statement also does
not occur until an ONERR [ln num] statement is executed.

The CLEAR statement does not affect the free running clock that is enabled by the
CLOCK1 statement. CLOCK0 is the only module statement that can disable the
free running clock.

CLEAR also does not reset the memory that has been allocated for strings, so it is
not necessary to enter the STRING [exp], [expr] statement to re-allocate memory
for strings after the CLEAR statement is executed. In general, CLEAR is used to
erase all variables.

Syntax

CLEAR

Table 6.1 Chapter Reference Guide

If you need (to) Use this mnemonic Page
Clear variables, interrupts & strings. CLEAR 6-1

Clear interrupts. CLEARI 6-3

Clear all stacks. CLEARS 6-3

Data read by Read statement. DATA 6-4

Allocate memory for array variables. DIM 6-4

Assign a variable or a string a value (LET is optional). LET 6-5

RESTORE read pointer. RESTORE 6-7
1 Publication 1746-RM001A-US-P

6-2 Assignment Functions
Example

>CLEAR

>LIST
1 REM EXAMPLE PROGRAM
10 DIM A(4)
20 DATA 10,20,30,40
30 FOR I=0 TO 3
40 READ A(I)
50 NEXT I
60 FOR J=O TO 3
70 PRINT A(J)
80 NEXT J

READY
>PRINT A(1),I,J

0 0 0

>RUN

10
20
30
40

READY
>PRINT A(1),I,J

20 4 4

>CLEAR

>PRINT A(1),I,J
0 0 0
Publication 1746-RM001A-US-P

Assignment Functions 6-3
CLEARI Purpose

Use the CLEARI statement to clear all of the BASIC evoked interrupts. The
ONTIME interrupt is disabled after the CLEARI statement is executed.

CLEARI does not affect the free running clock enabled by the CLOCK1
statement. CLOCK0 is the only module statement that can disable the free
running clock.

You can use this statement to selectively DISABLE ONTIME interrupts during
specific sections of your BASIC program. You must execute the ONTIME
statement again before the specific interrupts are enabled.

Syntax

CLEARI

Example

READY
>CLEARI

CLEARS Purpose

Use the CLEARS statement to reset all of the stacks. The control, argument, and
internal stacks all reset to their initialization values. You can use this command to
reset the stacks if an error occurs in a subroutine.

Syntax

CLEARS

Example

READY
>CLEARS

IMPORTANT When the CLEARI statement is LISTed it appears as CLEARI.

IMPORTANT When the CLEARS statement is LISTed it appears as CLEARS.
Publication 1746-RM001A-US-P

6-4 Assignment Functions
DATA Purpose

Use the DATA statement to specify the expressions that you can retrieve with a
READ statement. If multiple expressions per line are used, you must separate them
with a comma.

Every time a READ statement is encountered the next consecutive expression in
the DATA statement is evaluated and assigned to the variable in the READ
statement. You can place DATA statements anywhere within a program. They are
not executed and do not cause an error. DATA statements are considered chained
and appear as one large DATA statement. If at anytime all the data is read and
another READ statement is executed, the program terminates and the message
ERROR: NO DATA - IN LINE XX prints to the console device. The module
returns to Command mode.

Syntax

DATA

Example

>LIST
1 REM EXAMPLE PROGRAM
10 DIM A(4)
20 DATA 10,ASC(A),ASC(C),35.627
30 FOR I=0 TO 3
40 READ A(I)
50 NEXT I
60 FOR J=O TO 3
70 PRINT A(J)
80 NEXT J

READY
>RUN

10
65
67
35.627

DIM Purpose

Use the DIM statement to reserve storage for matrices. The storage area is first
assumed to be zero. Matrices in the BASIC module may have only one dimension
and the size of the dimensioned array may not exceed 254 elements.

IMPORTANT You cannot use the CHR operator in a DATA statement.
Publication 1746-RM001A-US-P

Assignment Functions 6-5
Once a variable is dimensioned in a program it may not be re-dimensioned. An
attempt to re-dimension an array causes an array size error that causes the module
to enter the Command mode.

If an array variable is used that was not dimensioned by a DIM statement, BASIC
assigns a default value of 10 to the array size. All arrays are set equal to zero when
the RUN command, NEW command or the CLEAR statement is executed.

The number of bytes allocated for an array is six times the array size plus one
(6 ∗ (array size + 1)). For example, the array A (100) requires 606 bytes of storage.
Memory size usually limits the size of a dimensioned array.

Syntax

DIM

Examples

More than one variable can be dimensioned by a single DIM statement.

>1 REM EXAMPLE PROGRAM
>10 DIM A(25), C(15), A1(20)

Error on attempt to re-dimension array:

>1 REM EXAMPLE PROGRAM
>10 A(5) = 10 : REM BASIC ASSIGNS DEFAULT OF 10 TO ARRAY A
>20 DIM A(5) : REM ARRAY RE-DIMENSION ERROR
>

READY
>RUN

ERROR: ARRAY SIZE - IN LINE 20

20 DIM A(5) : REM ARRAY RE-DIMENSION ERROR
---------------X
READY
>

LET Purpose

Use the LET statement to assign a variable to the value of an expression.

Syntax

LET [var] = [expr]
Publication 1746-RM001A-US-P

6-6 Assignment Functions
Examples

>1 REM EXAMPLE PROGRAM
>10 LET A = 10*SIN(C)/100

>1 REM EXAMPLE PROGRAM
>10 LET A = A +1

When LET is omitted the LET statement is called an IMPLIED LET. We use the
word LET to refer to both the LET statement and the IMPLIED LET statement.

Also use the LET statement to assign string variables:

LET $(1)=“THIS IS A STRING” or LET $(2)=$(1)

Before you can assign strings you must execute the STRING [expr], [expr]
statement or else a memory allocation error occurs that causes the module to enter
the Command mode.

NOTE The - sign used in the LET statement is not an equality operator.
It is a replacement operator. The statement should be read A is
replaced by A plus one. The word LET is always optional
(example: LET A = 2 is the same as A = 2).
Publication 1746-RM001A-US-P

Assignment Functions 6-7
RESTORE Purpose

Use the RESTORE statement to reset the internal read pointer to the beginning of
the data so that it may be read again.

Syntax

RESTORE

Example

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 3
>20 READ A,C
>30 PRINT A,C
>40 NEXT I
>50 RESTORE
>60 READ A,C
>70 PRINT A,C
>80 DATA 10,20,10/2,20/2,SIN(PI),COS(PI)

READY
>RUN

10 20
5 10
0 -1
10 20
Publication 1746-RM001A-US-P

6-8 Assignment Functions
Publication 1746-RM001A-US-P

Chapter 7

Control Functions

This chapter describes and illustrates commands executed within the BASIC
program or from the command line to control the internal clock or the flow of the
BASIC program. Table 7.1 lists the corresponding mnemonics.

CLOCK1 Purpose

Use the CLOCK1 statement to enable the free running clock resident on the
BASIC or BASIC-T module. The special function operator TIME is incremented
once every 5 milliseconds after the CLOCK1 statement is executed. The CLOCK1
statement uses an internal TIMER to generate an interrupt once every 5
milliseconds. Because of this, the special function operator TIME has a resolution
of 5 milliseconds. The special function operator TIME counts from 0 to
65535.995 seconds. After reaching a count of 65535.995 seconds TIME overflows
back to a count of zero. The interrupts associated with the CLOCK1 statement
cause the module programs to run at about 99.6% of normal speed. This means
that the interrupt handling for the free running clock uses about 0.4% of the total
CPU time
.

Syntax

CLOCK1

Table 7.1 Chapter Reference Guide

If you need (to) Use this mnemonic Page
Disable the real time clock. CLOCK0 7-2

Enable the real time clock. CLOCK1 7-1

Set up a conditional do-loop. DO-UNTIL 7-4

Set up a conditional do-loop. DO-WHILE 7-3

Terminate a program execution. END 7-5

Set up a for-next loop. FOR-TO-(STEP)-NEXT 7-6

Go to the program line number. GOTO 7-7

Conditional test IF-THEN-ELSE 7-8

Test a for-next loop condition. NEXT 7-9

Conditional GOTO ON-GOTO 7-11

IMPORTANT This does not include additional overhead for ON-TIME user
interrupt handling execution.
1 Publication 1746-RM001A-US-P

7-2 Control Functions
Example

>NEW

>1 REM EXAMPLE PROGRAM
>10 TIME = 0
>15 DBY(71) = 0
>20 CLOCK1
>30 ONTIME 2,100
>40 DO
>50 WHILE TIME < 10
>60 END
>100 PRINT “TIMER INTERRUPT AT - ”,TIME,“ SECONDS”
>110 ONTIME TIME+2,100
>120 RETI

READY
>RUN

TIMER INTERRUPT AT - 2.01 SECONDS
TIMER INTERRUPT AT - 4.015 SECONDS
TIMER INTERRUPT AT - 6.01 SECONDS
TIMER INTERRUPT AT - 8.01 SECONDS
TIMER INTERRUPT AT - 10.01 SECONDS

CLOCK0 Purpose

Use the CLOCK0 (zero) statement to disable or turn off the free running clock
resident on the BASIC module. After CLOCK0 is executed, the special function
operator TIME no longer increments. CLOCK0 is the only module statement that
can disable the free running clock. CLEAR and CLEARI do not disable the free
running clock, only its associated ONTIME interrupt.

Syntax

CLOCK0

Example

READY
>CLOCK0

IMPORTANT CLOCK1 and CLOCK0 are independent of the clock/calendar.
Publication 1746-RM001A-US-P

Control Functions 7-3
DO-WHILE Purpose

Use the DO-WHILE statement to set up loop control within a module program.
The operation of this statement is similar to the DO-UNTIL [rel expr]. All
statements between the DO and the WHILE [rel expr] are executed as long as the
relational expression following the WHILE statement is true. You can nest
DO-WHILE statements.

The control stack (C-stack) stores all information associated with loop control
(example: DO-WHILE, DO-UNTIL, FOR-NEXT and BASIC subroutines). The
control stack is 157 bytes long. DO-WHILE and DO-UNTIL loops and GOSUB
commands use 3 bytes of the control stack. FOR-NEXT loops use 17 bytes.

Syntax

DO-WHILE [rel expr]

Examples

Simple DO-WHILE

>NEW

>1 REM EXAMPLE PROGRAM
>10 DO
>20 A = A + 1
>30 PRINT A
>40 WHILE A < 4
>50 PRINT “DONE”
>60 END

READY
>RUN

1
2
3
4

DONE

READY
>

Nested DO-WHILE

>NEW

IMPORTANT Excessive nesting exceeds the limits of the control stack,
generating an error, and causing the module to enter Command
mode.
Publication 1746-RM001A-US-P

7-4 Control Functions
>1 REM EXAMPLE PROGRAM
>10 A=0 : C=0
>20 DO
>30 A=A+1
>40 DO
>45 C=C+1
>50 PRINT A,C,A*C
>60 WHILE C<>3
>70 C=0
>80 WHILE A<4
>90 END

READY
>RUN

1 1 1
1 2 2
1 3 3
2 1 2
2 2 4
2 3 6
3 1 3
3 2 6
3 3 9

READY
>

DO-UNTIL Purpose

Use the DO-UNTIL statement to set up loop control within a module program.
All statements between the DO and the UNTIL[rel expr] are executed until the
relational expression following the UNTIL statement is TRUE. You can nest
DO-UNTIL loops.

The control stack (C-stack) stores all information associated with loop control
(example: DO-WHILE, DO-UNTIL, FOR-NEXT and BASIC subroutines). The
control stack is 157 bytes long. DO-WHILE and DO-UNTIL loops and GOSUB
commands use 3 bytes of the control stack. FOR-NEXT loops use 17 bytes.

Syntax

DO-UNTIL [rel expr]

IMPORTANT Excessive nesting exceeds the limits of the control stack,
generating an error, and causing the module to enter Command
mode.
Publication 1746-RM001A-US-P

Control Functions 7-5
Examples

Simple DO-UNTIL Nested DO-UNTIL
>1 REM EXAMPLE PROGRAM >1 REM EXAMPLE PROGRAM
>10 A=0 >10 DO
>20 DO >20 A=A+1
>30 A=A+1 >30 DO
>40 PRINT A >40 C=C+1
>50 UNTIL A=4 >50 PRINT A,C,A*C
>60 PRINT “DONE” >60 UNTIL C=3
>70 END >70 C=0
>RUN >80 UNTIL A=3

>90 END
RUN

END Purpose

Use the END statement to terminate program execution. CONT does not operate
if the END statement is used to terminate execution. An ERROR : CAN’T

CONTINUE prints to the console. Always include an END statement to properly
terminate a program.

Syntax

END

Example

End Statement Termination

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 4
>20 PRINT I,
>30 NEXT I
>40 END

READY
>RUN

1 2 3 4
READY
>

Publication 1746-RM001A-US-P

7-6 Control Functions
FOR-TO-(STEP)-NEXT Purpose

Use the FOR- TO-(STEP)-NEXT statement to set up and control program loops.

The control stack (C-stack) stores all information associated with loop control
(example: DO-WHILE, DO-UNTIL, FOR-NEXT and BASIC subroutines). The
control stack is 157 bytes long. DO-WHILE and DO-UNTIL loops and GOSUB
commands use 3 bytes of the control stack. FOR-NEXT loops use 17 bytes.

Syntax

FOR [expr] TO [expr] STEP [expr]
.
.
.
NEXT [expr]

Examples
>1 REM EXAMPLE PROGRAM
>5 E=0 : C=10 : D=2
>10 FOR A=E TO C STEP D
>20 PRINT A
>30 NEXT A
>40 END
>RUN

0
2
4
6
8
10

READY

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 4
>20 PRINT I,
>30 NEXT I
>40 END

READY
>RUN

1 2 3 4

IMPORTANT Excessive nesting exceeds the limits of the control stack,
generating an error, and causing the module to enter Command
mode.
Publication 1746-RM001A-US-P

Control Functions 7-7
In the first example, since E-0, C-10, D-2, and the PRINT statement at line 20
executes 6 times, the values of A that are printed are 0, 2, 4, 6, 8 and 10. A
represents the name of the index or loop counter. The value of E is the starting
value of the index. The value of C is the limit value of the index and the value of D
is the increment to the index.

If the STEP statement and the value D are omitted, the increment value defaults to
1, therefore; STEP is an optional statement. The NEXT statement returns the loop
to the beginning of the loop and adds the value of D to the current index value.
The current index value is then compared to the value of C, the limit value of the
index.

If the index is less than or equal to the limit, control transfers back to the statement
after the FOR statement. Stepping backward (FOR I-100 TO 1 STEP-1) is
permitted in the module. The NEXT statement is always followed by the
appropriate variable. You may nest FOR-NEXT loops up to 9 times.

>1 REM EXAMPLE PROGRAM >1 REM EXAMPLE PROGRAM
>10 FOR I=1 TO 4 >10 FOR I=0 TO 8 STEP 2
>20 PRINT I, >20 PRINT I
>30 NEXT I >30 NEXT I
>40 END >40 END
>RUN >RUN
>1 2 3 4 0

2
4
6
8

READY READY

GOTO Purpose

Use the GOTO statement to cause BASIC to transfer control to the line number
([ln num]) specified.

Syntax

GOTO [ln num]

Example

>1 REM EXAMPLE PROGRAM
>50 GOTO 100
Publication 1746-RM001A-US-P

7-8 Control Functions
If line 100 exists, this statement causes execution of the program to resume at line
100. If line number 100 does not exist, the message ERROR: INVALID LINE

NUMBER is printed to the console device and the module enters the Command
mode.

Unlike the RUN command, the GOTO statement, if executed in the Command
mode, does not clear the variable storage space or interrupts. However, if the
GOTO statement is executed in the Command mode after a line is edited, the
module clears the variable storage space and all BASIC evoked interrupts.

IF-THEN-ELSE Purpose

Use the IF-THEN-ELSE statement to set up a conditional test.

Syntax

IF [rel expr] THEN valid statement ELSE valid statement

Examples

Example 1

>1 REM EXAMPLE PROGRAM
>10 IF A =100 THEN A=0 ELSE A=A+1

Upon execution of line 10 IF A is equal to 100, THEN A is assigned a value of 0.
IF A does not equal 100, A is assigned a value of A+1. If you want to transfer
control to different line numbers using the IF statement, you may omit the GOTO
statement. The following examples give the same results:

>20 IF INT(A)<10 THEN GOTO 100 ELSE GOTO 200
or

>20 IF INT(A)<10 THEN 100 ELSE 200

You can replace the THEN statement with any valid module statement as shown
below:

>30 IF A<>10 THEN PRINT A ELSE 10
>30 IF A<>10 PRINT A ELSE 10
Publication 1746-RM001A-US-P

Control Functions 7-9
Example 2

You may execute multiple statements following the THEN or ELSE if you use a
colon to separate them.

>30 IF A<>10 THEN PRIN T A : GOTO 150 ELSE 10
>30 IF A<>10 PRIN T A : GOTO 150 ELSE 10

In these examples, if A does not equal 10, then both PRINT A and GOTO 150 are
executed. If A equals 10, then control passes to 10.

Example 3

You may omit the ELSE statement. If you omit the ELSE statement control passes
to the next statement.

>1 REM EXAMPLE PROGRAM
>20 IF A=10 THEN 40
>30 PRINT A

In this example, if A equals 10 then control passes to line number 40. If A does not
equal 10, line number 30 is executed.

NEXT Purpose

Use the NEXT statement to return the FOR-TO-(STEP)-NEXT loop to the
beginning of the loop and add the value of the index increment to the index. The
current index value is then compared to the index limit to determine if another
loop should be performed.

Syntax

NEXT
Publication 1746-RM001A-US-P

7-10 Control Functions
Example

>1 REM EXAMPLE PROGRAM
>5 E=0 : C=10 : D=2
>10 FOR A=E TO C STEP D
>20 PRINT A
>30 NEXT A
>40 END
>RUN

0
2
4
6
8
10

READY
>

>NEW

>1 REM EXAMPLE PROGRAM
>10 FOR I = 0 TO 8 STEP 2
>20 PRINT I
>30 NEXT I
>40 END

>RUN

0
2
4
6
8

Publication 1746-RM001A-US-P

Control Functions 7-11
ON-GOTO Purpose

Use the ON-GOTO statement to transfer control to the line(s) specified by the
GOTO statement when the value of the expression following the ON statement is
encountered in the BASIC program.

Syntax

ON [expr] GOTO [ln num]

Example

>1 REM EXAMPLE PROGRAM
>10 ON Q GOTO 100,200,300

Control is transferred to line 100 if Q is equal to 0 and then to line 200 if Q is
equal to 1. If Q is equal to 2, control is transferred to line number 300, and so on.
All comments that apply to GOTO apply to the ON statement. If Q is less than
zero, an ERROR: BAD ARGUMENTmessage is generated and the BASIC module
enters Command mode. If Q is greater than the line number list following the
GOTO statement, an ERROR: BAD SYNTAXmessage is generated. The
ON-GOTO statement provides conditional branching options within the module
program.
Publication 1746-RM001A-US-P

7-12 Control Functions
Publication 1746-RM001A-US-P

Chapter 8

Execution Control and Interrupt Support
Functions

This chapter describes and illustrates commands that control data flow and
program transfer between ROM and RAM within the BASIC program or from the
command line. Table 8.1 lists the corresponding mnemonics.

Table 8.1 Chapter Reference Guide

If you need (to) Use this
mnemonic

Page

Enable the interrupt capability when a DF1 packet is received. CALL 16 8-2

Disable the DF1 packet interrupt capability. CALL 17 8-3

Enable the SLC processor interrupt capability. CALL 20 8-3

Disable the SLC processor interrupt capability. CALL 21 8-4

Generate an interrupt to the SLC processor. CALL 26 8-4

Initiate transactions defined by CALLs 27, 28, 122, and 123. CALL 38 8-5

ROM to RAM program transfer CALL 70 8-8

ROM/RAM to ROM program transfer CALL 71 8-9

RAM/ROM return CALL 72 8-9

Execute a subroutine. GOSUB 8-11

Go to line number when an error is detected. ONERR 8-12

Conditional GOSUB ON-GOSUB 8-14

Generate an interrupt when TIME is equal to or greater than
ONTIME argument-line number.

ONTIME 8-14

POP argument stack to variables. POP 8-17

PUSH expressions on argument stack. PUSH 8-15

Return from interrupt. RETI 8-18

RETURN from subroutine. RETURN 8-18

Break program execution. STOP 8-20
1 Publication 1746-RM001A-US-P

8-2 Execution Control and Interrupt Support Functions
CALL 16 – Enable DF1
Packet Interrupt

Purpose

Use CALL 16 to enable the DF1 packet interrupt capability. One argument is
PUSHed and no arguments are POPped. The input argument is the BASIC line
number of the beginning of the interrupt routine that the program should jump to,
when a valid DF1 packet is received in the port PRT2 buffer. You should process
the packet within the interrupt routine. A RETI executed within the routine
returns you to the point in the program before the interrupt occurred. This
command has no effect if the DF1 protocol is not enabled (CALL 108). Also,
jumper JW4 must be in a position enabling DF1 for port PRT2.

Once this CALL is enabled, port PRT2 is checked by the processor at the end of
each line of BASIC code for a DF1 message received.

If the DF1 packet arrives due to CALL 122 or CALL 123 when CALL 16 is
enabled, you will receive the DF1 packet interrupt but the DF1 packet will have
been removed from the input buffer.

Interrupts are disabled when the module is in Command mode. CALL 16 disabled
is the default of the module when entering Run mode. CALL 16 must be
re-executed every time Run mode is entered.

Syntax

PUSH [BASIC line number]
CALL 16

Example

>1 REM EXAMPLE PROGRAM
>10 REM ENABLE DF1 PACKET INTERRUPT
>20 PUSH 800: REM LINE NUMBER OF START OF DF1 INTERRUPT ROUTINE
>30 CALL 16
>800 (BEGINNING OF INTERRUPT ROUTINE)

: (PROCESS THE PACKET)
>850 RETI
Publication 1746-RM001A-US-P

Execution Control and Interrupt Support Functions 8-3
CALL 17 – Disable DF1
Packet Interrupt

Purpose

Use CALL 17 to disable the DF1 packet interrupt capability enabled with CALL
16. This routine has no input or output arguments.

Syntax

CALL 17

Example

>1 REM EXAMPLE PROGRAM
>10 REM DISABLE DF1 PACKET INTERRUPT ENABLED WITH CALL 16
>20 CALL 17

CALL 20 – Enable
Processor Interrupt

Purpose

Use CALL 20 to allow the processor to interrupt the module. One argument is
PUSHed and no arguments are POPped. The PUSH is the BASIC line number of
the beginning of the interrupt routine that the program should jump to, when
word 0, bit 15 in the CPU output image table, toggles from a low to a high value.
The module detects this transition automatically and jumps to an interrupt
routine. A RETI executed within the interrupt routine returns you to the point in
the module program before the interrupt occurred.

The module monitors CPU output file word 0, bit 15 at the end of every BASIC
line and generates the interrupt if the bit goes high. The CPU must hold the
interrupt request bit low for at least 10 milliseconds prior to requesting interrupt
service. The bit must be held high for at least one scan so the bit can be detected by
the module.

If another interrupt is detected before the previous one is fully serviced, the new
interrupt is marked pending. Only one interrupt is pending at a time.

Interrupts are disabled when the module is in Command mode. CALL 20 disabled
is the default of the module when entering Run mode. CALL 20 must be
re-executed every time Run mode is entered.

Syntax

PUSH [BASIC line number]
CALL 20
Publication 1746-RM001A-US-P

8-4 Execution Control and Interrupt Support Functions
Example

>1 REM EXAMPLE PROGRAM
>10 REM ENABLE PROCESSOR INTERRUPTS
>20 PUSH 1000 : REM LINE NUMBER OF START OF PROCESSOR

INTERRUPT ROUTINE
>30 CALL 20
>1000 (BEGINNING OF THE PROCESSOR INTERRUPT ROUTINE)

:
>1050 RETI

CALL 21 – Disable
Processor Interrupt

Purpose

Use CALL 21 to disable the processor interrupt capability enabled with CALL 20.
This routine has no input or output arguments.

Syntax

CALL 21

Example

>1 REM EXAMPLE PROGRAM
>10 REM DISABLE PROCESSOR INTERRUPTS ENABLED WITH CALL 20
>20 CALL 21

CALL 26 – Module
Interrupt

Purpose

Use CALL 26 to generate an interrupt to the SLC 5/02 and above processors. No
arguments are PUSHed and one argument is POPped. The POP shows the status
of the SLC processor. When this CALL is executed, an I/O event interrupt is issued
by the module to interrupt the normal processor operating cycle in order to scan a
specified subroutine. This interrupt causes the SLC processor to execute the
interrupt subroutine file configured in the module slot configuration (ISR
numbered file). The module remains in this CALL routine until an interrupt
acknowledge is received from the processor. CALL 26 must be executed in the
BASIC program each time the SLC processor is to be interrupted.

This CALL has no effect if the SLC processor is not in the Run mode.

After the module issues the CALL, it may take up to 5 milliseconds for the
execution of interrupt to occur.
Publication 1746-RM001A-US-P

Execution Control and Interrupt Support Functions 8-5

TE
The POP shows the status of the SLC processor:

• 0 - SLC processor acknowledges the interrupt but may not have executed the
interrupt routine yet

• 1 - SLC processor aborted the interrupt

• 2 - SLC processor is not in Run mode

• 3 - SLC 500 fixed and SLC 5/01 processor cannot support interrupts

Syntax

CALL 26

POP[SLC processor status]

Example

>1 REM EXAMPLE PROGRAM
>10 REM ENABLE MODULE INTERRUPT TO THE SLC PROCESSOR TO EXECU
THE ISR FILE
>20 CALL 26
>30 POP S : REM SLC PROCESSOR STATUS

CALL 38 – Expanded
ONERR Restart

Purpose

Use CALL 38 to expand the type of errors trapped and handled by the ONERR
function. One argument is PUSHed and no arguments are POPped. The ONERR
restart allows the module to jump to an error handling routine when the arithmetic
overflow, divide by zero, and bad argument errors are encountered. All other errors
cause the module to enter the Command mode and stop the execution of the
program. When CALL 38 is enabled, all errors other than hardware-specific
failures (watchdog, RAM failure, etc.), cause the program to enter the routine
defined in the ONERR function, instead of returning to the Command mode.
This routine may be used to reset the error and resume normal program operation.
If any error occurs that causes a restart, stacks are cleared and variables and ports are
not re-initialized. This CALL has no effect until the ONERR command is executed
within the program.

The PUSH determines if this expanded ONERR function is enabled or disabled as
shown below:

• 0 - Disable the expanded ONERR restart

• 1 (or any other number) - Enable the expanded restart

This CALL is reset when the module returns to the Command mode. CALL 38
must be re-executed every time Run mode is entered.
Publication 1746-RM001A-US-P

8-6 Execution Control and Interrupt Support Functions
If you perform an XBY in the error routine, this is a list of the status codes you
might receive.

Table 8.2 Status Codes

Status Code Description
01 module attempted to call an illegal call number

02 port has been assigned an invalid parameter

03 string has not been dimensioned

04 defined string length is too small for operation

05 memory has not been allocated for this string

06 attempted to transfer to a RAM or ROM program that did not exist

07 command or call can only be executed from Command mode

08 user PROM has invalid checksum

09 this statement or call requires a user PROM; no user PROM is installed

10 divide by zero

11 DH485 call executed and DH485 port not enabled

12 argument stack problem

13 syntax error

14 control stack problem

15 array size problem

16 internal processor stack problem

17 no DATA available for READ

18 DF1 cannot be enabled (JW4 in wrong position)

19 • illegal user of PRT2 while DF1 is enabled
• illegal use of PRT2 while background DF1 task is enabled
• attempted to transmit DF1 packet before DF1 is enabled
• attempted to transmit DF1 packet of incorrect length

20 arithmetic overflow (value too large for range)

21 bad line number

22 JW5 in 8-point position

30 arithmetic underflow (value too small for range)

40 bad argument
Publication 1746-RM001A-US-P

Execution Control and Interrupt Support Functions 8-7
Syntax

PUSH [0 or 1]

CALL 38

Example

>1 REM EXAMPLE PROGRAM
>10 REM ENABLE EXPANDED ONERR FUNCTION
>20 ONERR 160
>30 PUSH 1
>40 CALL 38
>50 CALL 53: REM GET DATA FROM OUTPUT IMAGE
>60 PUSH 201: REM ADDRESS OF SECOND WORD IN BUFFER
>70 CALL 14: REM GET DATA FROM INPUT BUFFER
>80 POP X: REM VALUE FROM INPUT BUFFER
>90 A=(X*2.499733)-8191.625
>100 PUSH A: REM RESULT OF ABOVE CALCULATION
>110 PUSH 201: REM WORD NUMBER OF BASIC OUTPUT BUFFER
>120 CALL 24: REM BASIC FLOATING POINT TO 16-BIT SIGNED
INTEGER
>130 CALL 54: REM OUTPUT BUFFER TO SLC INPUT FILE
>140 POP Y: REM SLC PROCESSOR STATUS
>150 IF (Y<>0) THEN PRINT “PROCESSOR NOT IN RUN MODE”
>160 GOTO 50
>170 PRINT “ERROR CODE WAS”,XBY(257) : REM BEGINNING OF ONERR
ROUTINE
>175 PRINT “AT LINE “, (256*XBY (69FDH) + XBY(69FEH))
>180 GOTO 50
>190 END

The error in the example above is a missing POP for CALL 53. The missing POP
will cause an A-Stack error and would normally put the processor in Command
mode. When this occurs, print the error code and resume running the program.
Publication 1746-RM001A-US-P

8-8 Execution Control and Interrupt Support Functions
CALL 70 – ROM to RAM
Program Transfer

Purpose

Use CALL 70 to shift program execution from a running ROM program to the
beginning of the RAM program. No arguments are PUSHed or POPped.

Syntax

CALL 70

Example

READY
>LIST
1 REM EXAMPLE PROGRAM
10 REM SAMPLE ROM PROGRAM FOR CALL 70
20 PRINT “NOW EXECUTING ROM 5”
30 CALL 70 : REM GO EXECUTE RAM
40 END

READY
>RUN

NOW EXECUTING ROM 5
NOW EXECUTING RAM

READY
>LIST
1 REM EXAMPLE PROGRAM
10 REM SAMPLE RAM PROGRAM FOR CALL 70
20 PRINT “NOW EXECUTING RAM”
30 END

READY

IMPORTANT The first line of the RAM program is not executed. We
recommend that you make it a remark.
Publication 1746-RM001A-US-P

Execution Control and Interrupt Support Functions 8-9
CALL 71 – ROM/RAM to
ROM Program Transfer

Purpose

Use CALL 71 to transfer from a running ROM or RAM program to the beginning
of any available ROM program. One argument is PUSHed (which ROM
program). None are POPped. An invalid program error displays and you enter the
Command mode if the ROM number does not exist.

Syntax

PUSH [ROM program number]
CALL 71

Example

>1 REM EXAMPLE PROGRAM
>10 REM THIS ROUTINE WILL CALL AND EXECUTE A ROM ROUTINE
>20 INPUT “ENTER ROM ROUTINE TO EXECUTE”,N
>30 PUSH N
>40 CALL 71
>50 END

>RUN

ENTER ROM ROUTINE TO EXECUTE 4

You are now executing ROM 4, if it exists. If the ROM routine requested does not
exist the result is:

PROGRAM NOT FOUND.
READY
>

CALL 72 – RAM/ROM
Return

Purpose

Use CALL 72 to return to the ROM or RAM routine that called this ROM or
RAM routine. Execution begins on the line following the line that CALLed the
routine. No arguments are PUSHed or POPped. This routine works one layer
deep. Program control reverts to the line following the CALL in the previous
program.

IMPORTANT The first line of the ROM program is not executed. We
recommend that you make it a remark.

IMPORTANT There must be a next line in the ROM or RAM routine,
otherwise unpredictable events could occur that may destroy the
contents of RAM. For this reason, always be sure that at least one
END statement exists following a CALL 70 or 71.
Publication 1746-RM001A-US-P

8-10 Execution Control and Interrupt Support Functions
Syntax

CALL 72

Example

Program in ROM 1

>1 REM EXAMPLE PROGRAM
>10 REM SAMPLE PROG FOR CALL 72
>20 PRINT “NOW EXECUTING ROM 1”
>30 PUSH 3
>40 CALL 71 : REM EXECUTE ROM 3 THEN RETURN
>50 PRINT “EXECUTING ROM 1 AGAIN”
>60 END

Program in ROM 3

>1 REM EXAMPLE PROGRAM
>10 PRINT “NOW EXECUTING ROM 3”
>20 CALL 72
>30 END

With ROM 1 selected:

>RUN

NOW EXECUTING ROM 1
NOW EXECUTING ROM 3
EXECUTING ROM 1 AGAIN

READY
>

Publication 1746-RM001A-US-P

Execution Control and Interrupt Support Functions 8-11
GOSUB Purpose

Use the GOSUB statement to cause the module to transfer control of the program
to the line number [ln num] following the GOSUB statement. In addition, the
GOSUB statement saves the location of the statement following GOSUB on the
control stack so that you can perform a RETURN statement to return control to
the statement following the most recently executed GOSUB statement. You may
nest the GOSUB statement up to 9 times.

The control stack (C-stack) stores all information associated with loop control
(example: DO-WHILE, DO-UNTIL, FOR-NEXT and BASIC subroutines). The
control stack is 157 bytes long. DO-WHILE and DO-UNTIL loops and GOSUB
commands use 3 bytes of the control stack. FOR-NEXT loops use 17 bytes.

Syntax

GOSUB [ln num]

Examples

Simple Subroutine

READY
>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 5
>20 GOSUB 100
>30 NEXT I
>40 END
>100 PRINT I
>110 RETURN

READY
>RUN

1
2
3
4
5

READY
>NEW

Nested Subroutine

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 3

IMPORTANT Excessive nesting exceeds the limits of the control stack,
generating an error, and causing the module to enter Command
mode.
Publication 1746-RM001A-US-P

8-12 Execution Control and Interrupt Support Functions
>20 GOSUB 100
>30 NEXT I
>40 END
>100 REM USER SUBROUTINE HERE
>105 PRINT I,
>110 GOSUB 200
>120 RETURN
>200 REM START OF NESTED SUBROUTINE
>210 PRINT I*I

220 RETURN

READY
>RUN

1 1
2 4
3 9

READY
>

ONERR Purpose

Use the ONERR statement to handle arithmetic errors, if they occur, during
program execution. Only arithmetic overflow, arithmetic underflow, divide by zero,
and bad argument errors are trapped by the ONERR statement. All other errors are
not trapped and cause the module to enter the Command mode. If an arithmetic
error occurs after the ONERR statement is executed, the module interpreter passes
control to the line number [ln num] following the ONERR statement. You handle
the error condition in a manner suitable to your application. The ONERR
command does not trap bad data entered during an input instruction. This yields a
TRY AGAIN message or EXTRA IGNOREDmessage. For expanded ONERR
functionality, refer to CALL 38 on page 8-5.

After the ONERR statement is executed, you can determine what type of error
occurred by examining external memory location 257 (101H).

The error codes are:

• ERROR CODE = 10-DIVIDE BY ZERO

• ERROR CODE = 20-ARITH. OVERFLOW or ARITH.UNDERFLOW

• ERROR CODE = 40-BAD ARGUMENT

You can examine this location by using an XBY(257) statement.

Syntax

ONERR [ln num]
Publication 1746-RM001A-US-P

Execution Control and Interrupt Support Functions 8-13
Example

>1 REM EXAMPLE PROGRAM
>10 ONERR 500
>20 FOR I = 5 TO 0 STEP -1
>30 PRINT 1/I
>40 NEXT I
>50 END
>500 PRINT “ERROR CODE WAS ”,XBY(257)
>510 END

READY
>RUN

.2

.25

.33333333

.5
1

ERROR CODE WAS 10

READY
>

A GOTO statement can replace the END statement in this example to provide a
method of user programmed error recovery.
Publication 1746-RM001A-US-P

8-14 Execution Control and Interrupt Support Functions
ON-GOSUB Purpose

Use the ON-GOSUB statement to transfer control to the line(s) specified by the
GOSUB statement when the value of the expression following the ON statement is
encountered in the BASIC program.

Syntax:

ON [expr] GOSUB [ln num], [ln num],...[ln num]

Example

>1 REM EXAMPLE PROGRAM
>10 ON Q GOSUB 100,200,300

If Q is equal to 0, control is transferred to line number 100. If Q is equal to 1,
control is transferred to line number 200. If Q is equal to 2, control is transferred
to line number 300, and so on. All comments that apply to GOSUB apply to the
ON statement. If Q is less than zero an ERROR: BAD ARGUMENTmessage is
generated. If Q is greater than the line number list following the GOSUB
statement, an ERROR: BAD SYNTAXmessage is generated. The ON-GOSUB
statement provides conditional branching options within the module program.

ONTIME Purpose

Use the ONTIME [expr], [ln num] statement to compensate for the
incompatibility between the timer/counters on the microprocessor and the module.
Your module can process a line in milliseconds while the timer/counters on the
microprocessor operate in microseconds. The ONTIME statement generates an
interrupt every time the special function operator, TIME, is equal to or greater
than the expression following the ONTIME statement.

Only the integer portion of TIME is compared to the integer portion of the
expression that gives you seconds. This comparison is performed at the end (CR or
:) of each line of BASIC. The interrupt forces a GOSUB to the line number [ln
num] following the expression [expr] in the ONTIME statement.

The ONTIME statement does not interrupt an input command or a CALL
routine. Since the ONTIME statement uses the special function operator, TIME,
you must execute the CLOCK1 statement for ONTIME to operate. If CLOCK1 is
not executed the special function operator, TIME, does not increment.

Syntax

ONTIME [expr], [ln num]
Publication 1746-RM001A-US-P

Execution Control and Interrupt Support Functions 8-15
Example

>1 REM EXAMPLE PROGRAM
>10 TIME = 0
>15 DBY(71) = 0
>20 CLOCK1
>30 ONTIME 2,100
>40 DO
>50 WHILE TIME < 10
>60 CLOCK0
>70 END
>100 PRINT “TIMER INTERRUPT AT - ”,TIME, “ SECONDS”
>110 ONTIME TIME+2,100
>120 RETI

READY
>RUN

TIMER INTERRUPT AT - 2.01 SECONDS
TIMER INTERRUPT AT - 4.005 SECONDS
TIMER INTERRUPT AT - 6.015 SECONDS
TIMER INTERRUPT AT - 8.01 SECONDS
TIMER INTERRUPT AT - 10.01 SECONDS

In the example above, the time printed out is .01 seconds later than the time that
was supposed to be printed. This is caused by the terminal used in the example
operating at 19200 baud which causes a .01 second delay in printing.

To execute the ONTIME interrupt at a fraction of a second use DBY(71) - X
where X - 0 to 200. Each count represents a 5 millisecond time interval.

PUSH Purpose

Use the PUSH statement to place the arithmetic expression or expressions in the
module argument stack. This statement evaluates the arithmetic expression, or
expressions, following the PUSH statement and then places them in sequence on
the argument stack.

The PUSH and POP statements provide a simple means of passing parameters to
CALL routines. In addition, the PUSH and POP statements are used to pass
parameters to BASIC subroutines and to SWAP variables. The last value PUSHed
onto the argument stack is the first value POPped off the argument stack.
Publication 1746-RM001A-US-P

8-16 Execution Control and Interrupt Support Functions
You can push more than one expression onto the argument stack using a single
PUSH statement with multiple expressions ([expr], [expr],.[expr]). Each expression
must be followed by a comma. The last value PUSHed onto the argument stack is
the last expression [expr] encountered in the push statement.

Syntax

PUSH [expr], [expr],.[expr]

Example

>1 REM EXAMPLE PROGRAM
>10 A = 10
>20 C = 20
>30 PRINT “A = ”,A,“ AN D C = ” C
>40 PUSH A,C
>50 POP A,C
>60 PRINT “A = ”,A,“ AN D C = ”,C
>70 END

READY
>RUN

A = 10 AND C = 20
A = 20 AND C = 10

READY
>

>NEW

>1 REM EXAMPLE PROGRAM
>10 PUSH 0
>20 CALL 14
>30 POP W
>40 PRINT W
>50 END

READY
>RUN

0

READY
>

IMPORTANT The argument stack can hold up to 33 floating-point numbers
before overflowing.
Publication 1746-RM001A-US-P

Execution Control and Interrupt Support Functions 8-17
POP Purpose

Use the POP statement to remove values from the module argument stack. The
value at the top of the argument stack is assigned to the variable following the POP
statement and the argument stack is POPped (example: incremented by 6). You
can place values in the stack using the PUSH statement.

You can pop more than one variable off the argument stack using a single POP
statement with multiple variables ([var], [var],.[var]). Each expression must be
followed by a comma.

Syntax

POP [var], [var],.......[var]

Example

See the PUSH statement.

You can use the PUSH and POP statements to minimize GLOBAL variable
problems. These are caused by the main program and all main program
subroutines using the same variable names (example: GLOBAL VARIABLES). If
you cannot use the same variables in a subroutine as in the main program, you can
re-assign a number of variables (example: A-Q) before a GOSUB statement is
executed.

If you reserve some variable names just for subroutines (S1, S2) and pass variables
on the stack as shown in the previous example, you can avoid any GLOBAL
variable problems in the module.

The PUSH and POP statements accept dimensioned variables A(4) and S1(12) as
well as scalar variables. This is useful when using CALL routines in which large
amounts of data must be PUSHed or POPped, as shown below.

>1 REM EXAMPLE PROGRAM
>40 FOR I=1 TO 64
>50 PUSH I
>60 CALL 10
>70 POP A(I)
>80 NEXT I

IMPORTANT If a POP statement executes and no number is in the argument
stack, an A-Stack error occurs and the module enters Command
mode.
Publication 1746-RM001A-US-P

8-18 Execution Control and Interrupt Support Functions
RETI Purpose

Use the RETI statement to exit from an interrupt (ONTIME, CALL 16, or CALL
20) that is processed in a module program. The RETI statement functions the
same as the RETURN statement except that it also clears a software interrupt flag
so interrupts can again be acknowledged. If you fail to execute the RETI statement
in the interrupt procedure, all future interrupts are ignored.

Syntax

RETI

Example

>1 REM EXAMPLE PROGRAM
>10 TIME=0 : CLOCK1 : ONTIME 2, 100 : DO
>20 WHILE TIME<10 : END
>100 PRINT “TIMER INTERRUPT AT –”, TIME,“ SECONDS”
>110 ONTIME TIME+2, 100 : RETI
>RUN

TIMER INTERRUPT AT – 2.045 SECONDS
TIMER INTERRUPT AT – 4.045 SECONDS
TIMER INTERRUPT AT – 6.045 SECONDS
TIMER INTERRUPT AT – 8.045 SECONDS
TIMER INTERRUPT AT – 10.045 SECONDS

READY

RETURN Purpose

Use the RETURN statement to return control to the statement following the most
recently executed GOSUB STATEMENT. Use one return for each GOSUB to
avoid overflowing the control stack. This means that a subroutine called by the
GOSUB statement can call another subroutine with another GOSUB statement.

Syntax

RETURN
Publication 1746-RM001A-US-P

Execution Control and Interrupt Support Functions 8-19
Examples

Simple Subroutine

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 5
>20 GOSUB 100
>30 NEXT I
>40 END
>100 PRINT I
>110 RETURN

READY
>RUN

1
2
3
4
5

READY
>

Nested Subroutine

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 5
>20 GOSUB 100
>30 NEXT I
>40 END
>100 PRINT I,
>110 GOSUB 200
>120 RETURN
>200 PRINT I*I,
>210 GOSUB 300
>220 RETURN
>300 PRINT I*I*I
>310 RETURN

READY
>RUN

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125

READY
>

Publication 1746-RM001A-US-P

8-20 Execution Control and Interrupt Support Functions
STOP Purpose

Use the STOP statement to break program execution at specific points in a
program. After a program is STOPped you can display or modify variables. You can
resume program execution with a CONTinue command. The purpose of the
STOP statement is to allow for easy program debugging.

Syntax

STOP

Example

1
STOP - IN LINE 40

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 100
>20 PRINT I
>30 STOP
>40 NEXT I

READY
>RUN

1
STOP - IN LINE 40
READY
>CONT

2
STOP - IN LINE 40
READY
>CONT

3
STOP - IN LINE 40
READY
>CONT

4
STOP - IN LINE 40
READY
>

NOTE The line number printed out after execution of the STOP
statement is the line number following the STOP statement, not
the line number that contains the STOP statement.
Publication 1746-RM001A-US-P

Chapter 9

Math and Backplane Conversion Functions

This chapter describes and illustrates commands that convert numbers between
integer and BASIC floating-point. This chapter also describes and illustrates
commands that transfer data from the BASIC or BASIC-T module output buffer
to the processor input image or transfers data from the output image to the module
input buffer. These commands can be used within the BASIC program or from the
command line. Table 9.1 lists the corresponding mnemonics.

CALL 14 – 16-Bit Signed
Integer to BASIC
Floating-Point

Purpose

Use CALL 14 to convert an SLC 500 controller 16-bit signed integer number to a
BASIC floating-point number. The input argument is the address number (0 to
207) of the word in the module input buffer to be converted. The output argument
is the converted value.

Syntax

PUSH [word number of module input buffer]
CALL 14
POP [converted value]

Example

>1 REM EXAMPLE PROGRAM
>20 PUSH 0 : REM CONVERT 1ST WORD OF BASIC INPUT BUFFER
>30 CALL 14 : REM DO 16-BIT SIGNED TO F.P. CONVERSION
>40 POP W : REM GET CONVERTED VALUE
>50 PRINT W
>RUN

0

READY
>

Table 9.1 Chapter Reference Guide

If you need (to) Use this mnemonic Page
Convert 16-bit signed integer to BASIC floating-point. CALL 14 9-1

Convert 16-bit unsigned integer to BASIC floating-point. CALL 15 9-2

Convert BASIC floating-point to 16-bit signed integer. CALL 24 9-2

Convert BASIC floating-point to 16-bit binary. CALL 25 9-3

Convert BASIC floating-point to SLC floating-point CALL 88 9-4

Convert SLC floating-point to BASIC floating-point CALL 89 9-5
1 Publication 1746-RM001A-US-P

9-2 Math and Backplane Conversion Functions
CALL 15 – 16-Bit
Unsigned Integer to
BASIC Floating-Point

Purpose

Use CALL 15 to convert an SLC 500 controller 16-bit unsigned integer number to
a module floating-point number. The input argument is the address number (0 to
207) of the word in the module input buffer to be converted. The output argument
is the converted value.

Syntax

PUSH [word number of module input buffer]
CALL 15
POP [converted value]

Example

>1 REM EXAMPLE PROGRAM
>50 PUSH 9 : REM CONVERT 10TH WORD OF BASIC INPUT BUFFER
>60 CALL 15 : REM DO 16-BIT UNSIGNED INTEGER TO

F.P. CONVERSION
>70 POP W : REM GET CONVERTED VALUE
>80 PRINT W
>RUN

0

READY
>

CALL 24 – BASIC
Floating-Point to 16-Bit
Signed Integer

Purpose

Use CALL 24 to convert a module floating–point number to a signed 16-bit
integer and place the result in the module output buffer. The first value PUSHed is
the data variable. The second value PUSHed is the address number (0 to 207) of
the word in the module output buffer.

The fractional part of the module floating-point value is truncated. If the module
floating-point value is less than –32768, the value placed in the module output
buffer is –32768. If the module floating-point value is greater than +32767, the
value placed in the module output buffer is +32767. The programmer is
responsible for checking the range of the number before conversion.

IMPORTANT If an attempt is made to write to word 200 of the BASIC output
buffer, an error message is displayed and the module returns to
Command mode. The bits of word 200 are defined.
Publication 1746-RM001A-US-P

Math and Backplane Conversion Functions 9-3
Syntax

PUSH [value to be converted]
PUSH [word number of module output buffer]
CALL 24

Example

>1 REM EXAMPLE PROGRAM
>10 W = 17
>40 PUSH W : REM THE VALUE TO BE CONVERTED
>50 PUSH 0 : REM 1ST WORD OF BASIC OUTPUT BUFFER
>60 CALL 24 : REM DO THE F.P. TO 16-BIT SIGNED CONVERSION

READY
>

CALL 25 – BASIC
Floating-Point to 16-Bit
Binary

Purpose

Use CALL 25 to convert a module floating-point value between 0 and 65535 to its
16-bit binary representation. The resulting value is then stored in the module
output buffer. The first value PUSHed is the data to be converted. The second
value PUSHed is the address number (0 to 207) of the word in the module output
buffer.

The fractional part of the module floating-point value is truncated. If the module
floating-point value is less than 0, then the value placed in the module output
buffer is 0. If the value is greater than +65535, then the value placed in the module
output buffer is +65535. The programmer is responsible for checking the range of
the number before conversion.

Syntax

PUSH [value to be converted]
PUSH [word number of module output buffer]
CALL 25

IMPORTANT If an attempt is made to write to word 200 of the BASIC output
buffer, an error message is displayed and the module returns to
Command mode. The bits of word 200 are defined.
Publication 1746-RM001A-US-P

9-4 Math and Backplane Conversion Functions
Example

>1 REM EXAMPLE PROGRAM
>40 PUSH 9E+1 : REM THE VALUE TO BE CONVERTED
>50 PUSH 0 : REM 1ST WORD OF BASIC OUTPUT BUFFER
>60 CALL 25 : REM DO F.P. TO 16-BIT BINARY CONVERSION
>

READY
>

CALL 88: BASIC
Floating-Point to SLC
Floating-Point

Purpose

This CALL may only be used with a SLC™ 5/03, 5/04 or 5/05 processor. These
are the only SLC processors that support the floating-point data type. In addition,
the module must be configured for SLC 5/02 mode (Class 4), so it cannot be used
in a remote I/O chassis with a 1747-ASB. This CALL may be used in a remote
ControlNet chassis with a 1747-ACN(R)15.

Use this CALL to convert BASIC floating-point to SLC floating-point in a
two-word format and place the converted value in the module’s output buffer. See
also CALL 89.

The module floating-point number is an 8-digit BCD floating-point number. The
range of the module floating-point number is:

±1E-127 to ±.99999999E+127

The SLC floating-point number is a 7-digit binary floating-point number (IEEE
Float 32-bit value). The range of the SLC floating-point number:

±1.1754944E-38 to ±3.4028237E+38

The module has a floating-point range larger than the floating-point range of the
SLC processor. If CALL 88 attempts to convert a number larger than

3.4028237E+38, the converted number is assigned a value of 3.4028237E+38. If

CALL 88 attempts to convert a number smaller than 1.1754944E-38, the

converted number is assigned a value of 1.1754944E-38.

SLC floating-point numbers are stored in 2 16-bit words.

IMPORTANT Due to the fact that the SLC floating-point number is a 7-digit
floating-point number, and the module is an 8-digit
floating-point number, some round-off error may be introduced
during number conversions.
Publication 1746-RM001A-US-P

Math and Backplane Conversion Functions 9-5

ut
Syntax

This routine has two input arguments and no output arguments. The first inp
argument is the floating-point value you want to convert. The second input
argument is the first word in the module’s output buffer. The output buffer
addresses are 100-163 for the M1 file and 200-207 for the Input Image.

PUSH [number to convert]

PUSH [output buffer to receive converted value]

CALL 88

Example

>50 PUSH F: REM Floating-point value to convert

>60 PUSH 100 : REM Words 100 and 101 of the BASIC output buffer
associated with the M1 file

>70 CALL 88 :

>80 PUSH 2 : REM Number of words to transfer from BASIC output
buffer to M1 file

>90 CALL 57 : REM Transfer data from BASIC output buffer to M1
file

>100 POP S : REM status for CALL 57

CALL 89: SLC
Floating-Point to BASIC
Floating-Point

Purpose

This CALL may only be used with a SLC™ 5/03, 5/04 or 5/05 processor. These
are the only SLC processors that support the floating-point data type. In addition,
the module must be configured for SLC 5/02 mode (Class 4), so it cannot be used
in a remote I/O chassis with a 1747-ASB. This CALL may be used in a remote
ControlNet chassis with a 1747-ACN(R)15.

Use this call to convert SLC floating-point to BASIC floating-point. See also CALL
88.

The SLC floating-point number is a 7-digit binary floating-point number (IEEE
Float 32-bit value). The range of the SLC floating-point number:

±1.1754944E-38 to ±3.4028237E+38

The module floating-point number is an 8-digit BCD floating-point number. The

range of the module floating-point number is ±1E-127 to ±.99999999E+127
Publication 1746-RM001A-US-P

9-6 Math and Backplane Conversion Functions

the

d

SLC floating-point numbers are stored in two 16-bit words.

Syntax

This routine has one input and one output argument. The input argument is
address of the module’s input buffer containing the value to be converted.
Addresses 100-163 are from the M0 file and200-207 are from the SLC Output
Image. The output argument is the converted value.

PUSH [input buffer of value to be converted]

CALL 89

POP converted value

Example

>50 PUSH 2: REM Transfer 2 words (1 floating-point value) from
M0 file to BASIC input buffer for conversion

>60 CALL 56: REM Transfers data from M0 file to BASIC input
buffer

>70 POP 5 : REM Status for CALL 56

>80 PUSH 100 : REM module input buffer address

>90 CALL 89

>100 POP C : REM The variable C will contain the converted value

IMPORTANT Due to the fact that the SLC floating-point number is a 7-digit
floating-point number, and the module is an 8-digit
floating-point number, some round-off error may be introduce
during number conversions.
Publication 1746-RM001A-US-P

Chapter 10

Clock/Calendar Functions

This chapter describes and illustrates commands that set and display the real time
clock/calendar within the BASIC program or from the command line. Table 10.1
lists the corresponding mnemonics.

CALL 40 – Set Clock/
Calendar Time

Purpose

Use CALL 40 to set the following clock/calendar time functions:

• H - hours (0 to 23; only a 24-hour clock is available)

• M - minutes (0 to 59)

• S - seconds (0 to 59)

Syntax

PUSH [hours]
PUSH [minutes]
PUSH [seconds]
CALL 40

Table 10.1 Chapter Reference Guide

If you need (to) Use this mnemonic Page
Set the clock/calendar time (hour, minute, second). CALL 40 10-1

Set the clock/calendar date (day, month, year). CALL 41 10-2

Set the clock/calendar - day of week. CALL 42 10-3

Retrieve a date/time string. CALL 43 10-4

Retrieve the date numeric (day, month, year). CALL 44 10-4

Retrieve a time string. CALL 45 10-5

Retrieve a time numeric. CALL 46 10-6

Retrieve the day of week string. CALL 47 10-6

Retrieve the day of week numeric. CALL 48 10-7

Retrieve a date string. CALL 52 10-7
1 Publication 1746-RM001A-US-P

10-2 Clock/Calendar Functions
Example

Program the wall clock for 1:35 P.M. (programmed as 13:35; only a 24-hour clock
is available)

>1 REM EXAMPLE PROGRAM
>10 H = 13 : M = 35 : S = 00
>20 REM HOURS = 13, MINUTES = 35, SECONDS = 00
>30 PUSH H,M,S
>40 CALL 40

READY
>RUN

READY
>

CALL 41 – Set Clock/
Calendar Date

Purpose

Use CALL 41 to set the following clock/calendar functions:

• D - day

• M - month

• Y - year

Three values are PUSHed and none are POPped.

Syntax

PUSH [day]
PUSH [month]
PUSH [year]
CALL 41
Publication 1746-RM001A-US-P

Clock/Calendar Functions 10-3
Example

Program the clock/calendar for the 16th day of June 1991.

>1 REM EXAMPLE PROGRAM
>5 STRING 100,20
>10 H=13 : M=35 : S=00
>20 REM HOURS = 13, MINUTES = 35, SECONDS = 00
>30 PUSH H,M,S
>40 CALL 40
>60 D=16 : MO=6 : Y=91
>70 PUSH D,MO,Y
>80 CALL 41
>90 PUSH 3
>100 CALL 42
>120 PUSH 0
>130 CALL 43
>140 PRINT $(0)

READY
>RUN

16-JUN-91 13:35:00

CALL 42 – Set Day of
Week

Purpose

Use CALL 42 to set the day of the week. Sunday is day 1. Saturday is day 7.

Syntax

PUSH [day of week]
CALL 42

Example

>1 REM EXAMPLE PROGRAM
>10 PUSH 3: CALL 42:REM DAY IS TUESDAY.
Publication 1746-RM001A-US-P

10-4 Clock/Calendar Functions
CALL 43 – Retrieve Date/
Time String

Purpose

Use CALL 43 to return the current date and time as a string. PUSH the number of
the string to receive the date/time (dd-mmm-yy HH:MM:SS). You must allocate a
minimum of 18 characters for the string. This requires you to set the maximum
length for all strings to at least 18 characters.

Syntax

PUSH [string number]
CALL 43

Example

>1 REM EXAMPLE PROGRAM
>10 STRING 100,20
>20 PUSH 1: CALL 43: REM PUT DATE/TIME IN STRING 1
>30 PRINT $(1)
>40 END

READY
>RUN

16-JUN-91 13:35:00

READY
>

CALL 44 – Retrieve Date
Numeric

Purpose

Use CALL 44 to return the current date on the argument stack as three numbers.
There is no input argument to this routine and three variables are returned. The
date is POPped in day, month and year order.

Syntax

CALL 44
POP [day]
POP [month]
POP [year]
Publication 1746-RM001A-US-P

Clock/Calendar Functions 10-5
Example

>1 REM EXAMPLE PROGRAM
>10 REM DATE RETRIEVE - NUMERIC EXAMPLE
>20 CALL 44 : REM INVOKE THE UTILITY ROUTINE
>30 POP D,M,Y : REM GET THE DATA FROM THE ARGUMENT STACK
>40 PRINT “CURRENT DATE IS ”,Y,M,D
>50 END

READY
>RUN

CURRENT DATE IS 91 6 19

READY

>

CALL 45 – Retrieve Time
String

Purpose

Use CALL 45 to return the current time in a string (HH:MM:SS). PUSH the
number of the string to receive the time. You must allocate a minimum of 8
characters for the string.

Syntax

PUSH [string number]
CALL 45

Example

>1 REM EXAMPLE PROGRAM
>10 STRING 100,20
>20 PUSH 1 : CALL 45 : REM PUT TIME IN STRING 1
>30 PRINT $(1)
>40 END

READY
>RUN

06:40:49

READY
>

Publication 1746-RM001A-US-P

10-6 Clock/Calendar Functions
CALL 46 – Retrieve Time
Numeric

Purpose

Use CALL 46 to return the time of day in numeric form. Retrieve the time of day
in numeric form by executing CALL 46 and POPping the three variables off of the
argument stack on return. There are no input arguments. The time is POPped in
hour, minute, and second order.

Syntax

CALL 46
POP [hour]
POP [minute]
POP [second]

Example

>1 REM EXAMPLE PROGRAM
>10 REM TIME IN VARIABLES EXAMPLE : REM GET THE WALL CLOCK

TIME
>20 CALL 46
>30 POP H,M,S
>40 PRINT “CURRENT TIME IS ”,H,M,S
>50 END

READY
>RUN

CURRENT TIME IS 6 43 7

READY
>

CALL 47 – Retrieve Day
of Week String

Purpose

Use CALL 47 to return the current day of week as a 3-character string. PUSH the
number of the string to receive the day of week. You must allocate a minimum of 3
characters per string. Strings returned are SUN, MON, TUE, WED, THU, FRI,
and SAT.

Syntax

PUSH [string number]
CALL 47

Example

>1 REM EXAMPLE PROGRAM
>10 STRING 100,20
Publication 1746-RM001A-US-P

Clock/Calendar Functions 10-7
>20 PUSH 0 :CALL 47
>30 PRINT “TODAY IS ”,$(0)

READY
>RUN

TODAY IS FRI

READY
>

CALL 48 – Retrieve Day
of Week Numeric

Purpose

Use CALL 48 to return the current day of week on the argument stack as a number
(example: Sunday=1, Saturday=7). This number can be POPped into a variable.

Syntax

CALL 48
POP [day of week]

Example

>1 REM EXAMPLE PROGRAM
>10 REM DAY OF WEEK RETRIEVE - NUMERIC EXAMPLE
>20 CALL 48 : REM INVOKE UTILITY TO GET D.O.W.
>30 POP D
>40 PRINT D
>50 END

READY
>RUN

5

READY
>

CALL 52 – Retrieve Date
String

Purpose

Use CALL 52 to return the current date in a string (dd-mmm-yy). PUSH the
number of the string to receive the date. You must allocate a minimum of 9
characters for the string.
Publication 1746-RM001A-US-P

10-8 Clock/Calendar Functions
Syntax

PUSH [string number]
CALL 52

Example

>1 REM EXAMPLE PROGRAM
>10 STRING 100,20
>20 PUSH 1 : CALL 52 : REM PUT DATE IN STRING 1
>30 PRINT $(1)
>40 END

READY
>RUN

16-JUN-91

READY
>

Publication 1746-RM001A-US-P

Chapter 11

Status Functions

This chapter describes and illustrates commands that monitor the status of the
BASIC or BASIC-T module. This chapter also describes and illustrates commands
that allow the setup of the DF1 driver within the BASIC program or from the
command line. Table 11.1 lists the corresponding mnemonics.

Table 11.1 Chapter Reference Guide

If you need to Use this mnemonic Page
Get the number of characters in PRT2 buffers. CALL 36 11-2

Check the CPU output image buffer. CALL 51 11-3

Check the CPU input image buffer. CALL 55 11-4

Check the M0 file status. CALL 58 11-5

Check the M1 file status. CALL 59 11-6

Check the SLC 500 controller CPU status. CALL 75 11-7

Check the battery condition. CALL 80 11-8

Check the DH485 interface file remote Write status. CALL 86 11-8

Check the DH485 interface file remote Read status. CALL 87 11-9

Get the number of characters in the PRT1 buffers. CALL 95 11-10

Enable port PRT2 DTR signal. CALL 97 11-11

Disable port PRT2 DTR signal. CALL 98 11-11

Enable DF1 driver communications. CALL 108 11-12

Disable DF1 driver communications. CALL 113 11-18

Clear the module input and output buffers. CALL 120 11-18

Get the SLC processor program ID number. CALL 121 11-19
1 Publication 1746-RM001A-US-P

11-2 Status Functions
CALL 36 – Get Number of
Characters in PRT2
Buffers

Purpose

Use CALL 36 to retrieve the number of characters in the chosen buffer of port
PRT2.

You must PUSH the buffer that you want examined:

 PUSH 1 for the input buffer

 PUSH 0 for the output buffer

One POP is required to get the number of characters.

Syntax

PUSH [buffer selection]
CALL 36
POP [number of characters]

Example

>1 REM EXAMPLE PROGRAM
>10 PUSH 0 : REM EXAMINES THE OUTPUT BUFFER
>20 CALL 36
>30 POP X : REM GET THE NUMBER OF CHARACTERS
>40 PRINT “NUMBER OF CHARACTERS IN OUTPUT BUFFER IS”,X
>50 END

READY
>RUN

NUMBER OF CHARACTERS IN OUTPUT BUFFER IS 0

READY
>

Publication 1746-RM001A-US-P

Status Functions 11-3
CALL 51 – Check CPU
Output Image Buffer

Purpose

Use CALL 51 to determine if the SLC 500 controller output image buffer located
in the module has been updated since the last time it was checked. (In this case,
update means that the data was written to these buffers from the CPU, even if the
data is the same value.) This routine has no input arguments and one output
argument.

The output argument is equal to:

• 0 – if the Logic Processor has not written to the output image buffer since the
last time this CALL was executed or since the module was powered up,
whichever occurred last

• 1 – if the Logic Processor has written to the output image buffer since the last
time this CALL was executed or since the module was powered up, whichever
occurred last

• 2 – if the Logic Processor does not support this capability (as with the SLC 5/
01 processor)

Syntax

CALL 51
POP [output image buffer status]

Example

>1 REM EXAMPLE PROGRAM
>120 CALL 51 : REM WAIT ON SLC
>130 POP S
>140 IF (S = 2) THEN PRINT “THE SLC DOES NOT SUPPORT THIS

FUNCTION”
>150 IF (S = 2) THEN STOP
>160 IF (S = 0) THEN GOTO 120
>170 PRINT “OUTPUT IMAGE HAS BEEN UPDATED”

READY
>RUN

THE SLC DOES NOT SUPPORT THIS FUNCTION
STOP - IN LINE 160
READY
Publication 1746-RM001A-US-P

11-4 Status Functions
CALL 55 – Check CPU
Input Image Buffer

Purpose

Use CALL 55 to determine if the SLC 500 controller input image buffer located in
the module has been read by the Logic Processor since the last time it was checked.
This routine has no input arguments and one output argument.

The output argument is equal to:

• 0 – if the Logic Processor has not read from the input image buffer since the
last time the CALL was executed or since the module was powered up,
whichever occurred last

• 1 – if the Logic Processor has read from the input image buffer since the last
time this CALL was executed or since the module was powered up, whichever
occurred last

• 2 – if a Logic Processor does not support this capability (as with the SLC 5/01
processor)

Syntax

CALL 55
POP [input image buffer status]

Example

>1 REM EXAMPLE PROGRAM
>120 CALL 55 : REM WAIT ON SLC
>130 POP S
>140 IF (S=2) THEN PRINT “THE SLC DOES NOT SUPPORT THIS

FUNCTION”
>150 IF (S=2) THEN STOP
>160 IF (S=0) THEN GOTO 120
>170 PRINT “INPUT IMAGE HAS BEEN READ”

READY
>RUN

INPUT IMAGE HAS BEEN READ

READY
>

Publication 1746-RM001A-US-P

Status Functions 11-5
CALL 58 – Check M0 File Purpose

Use CALL 58 to determine if the Module File M0 located in the module has been
updated since the last time it was checked. (In this case, update means that the data
was written to these buffers from the CPU, even if the data is the same value.) This
routine has no input argument and one output argument.

The output argument is equal to:

• 0 – if the Logic Processor has not written to the Module File M0 since the last
time this CALL was executed or since the module was powered up

• 1 – if the Logic Processor has written to the Module File M0 since the last
time this CALL was executed or since the module was powered up, whichever
occurred last

• 2 – if the Logic Processor does not support this capability (as with the SLC 5/
01 processor)

Syntax

CALL 58
POP[module file M0 write status]

Example

>1 REM EXAMPLE PROGRAM
>120 CALL 58 : REM START WAITING ON M0 UPDATE
>130 POP S
>140 IF (S = 2) THEN PRINT “PROCESSOR DOES NOT SUPPORT THIS
FUNCTION”
>150 IF (S = 2) THEN STOP
>160 IF (S = 0) THEN GOTO 120
>170 PUSH 64
>180 CALL 56
>190 POP A
>200 PRINT “CALL 56 OUTPUT IS ”,A

READY
>RUN

CALL 56 OUTPUT IS 0
Publication 1746-RM001A-US-P

11-6 Status Functions
CALL 59 – Check M1 File Purpose

Use CALL 59 to determine if the Module File M1 located in the module has been
read by the Logic Processor since the last time it was checked. This routine has no
input arguments and one output argument.

The output argument is equal to:

• 0 if the Logic Processor has not read from the Module File M1 since the last
time this CALL was executed or since the module was powered up, whichever
occurred last

• 1 if the Logic Processor has read from the Module File M1 since the last time
this CALL was executed or since the module was powered up, whichever
occurred last

• 2 if the Logic Processor does not support this capability (as with the SLC 5/01
processor)

Syntax

CALL 59
POP [module file M1 read status]

Example

>1 REM EXAMPLE PROGRAM
>100 PUSH 64
>110 CALL 56 : REM COPY BASIC OUTPUT BUFFER TO M1
>120 POP A
>130 IF (A=2) THEN PRINT “SLC DOES NOT SUPPORT THIS

FUNCTION”
>140 IF (A=2) THEN STOP
>150 IF (A<>0)THE GOTO 110
>160 CALL 59 : REM START WAITING NOW
>170 POP S
>180 IF (S=2) THEN PRINT “SLC DOES NOT SUPPORT THIS

FUNCTION”
>190 IF (S=2)THE STOP
>200 IF (S=0) THEN GOTO 170
>210 PRINT “CALL 59 OUTPUT IS ”,S

READY
>RUN

CALL 59 OUTPUT IS 1
Publication 1746-RM001A-US-P

Status Functions 11-7
CALL 75 – Check SLC 500
Controller CPU Status

Purpose

Use CALL 75 to check the mode (Run/Program/Test) of the SLC processor. No
PUSHes are required. One POP is required.

In SLC 5/01 mode of operation, the POPped values are:

• 0 - SLC processor in Run mode

• 1 - SLC processor not in Run mode

In SLC 5/02 mode of operation, the POPped values are:

• 0 - SLC processor in Run mode

• 1 - SLC processor in Program mode

• 2 - SLC processor in Test mode

Syntax

CALL 75
POP [processor mode]

Example

>1 REM EXAMPLE PROGRAM
>100 CALL 75
>110 POP S
>120 IF (S=0) THEN PRINT “SLC IS IN RUN MODE”
>130 IF (S=1) THEN PRINT “SLC IS NOT IN RUN MODE”
>140 IS (S=2) THEN PRINT “SLC IS IN TEST MODE”

READY
>RUN

SLC IS IN RUN MODE

READY
>

Publication 1746-RM001A-US-P

11-8 Status Functions
CALL 80 – Check Battery
Condition

Purpose

Use CALL 80 to check the module battery condition. If a 0 is POPped after a
CALL 80, the battery is okay. If a 1 is POPped a low battery condition exists.

Syntax

CALL 80
POP [battery status]

Example

>1 REM EXAMPLE PROGRAM
>10 CALL 80
>20 POP C
>30 IF (C<>0) THEN PRINT ”BATTERY LOW!”
>40 END

READY
>RUN

BATTERY LOW!

CALL 86 – Check DH485
Interface File Remote
Write Status

Purpose

Use CALL 86 to determine if the DH485 Common Interface File located in the
module has been updated since the last time it was checked. This routine has no
input arguments and one output argument.

The output argument is equal to:

• 0 if a device on the DH485 Serial Communications Link has not written to
the DH485 Serial Common Interface File since the last time this CALL was
executed or since the module was powered up, whichever occurred last

• 1 if a device on the DH485 Serial Communications Link has written to the
DH485 Common Interface File since the last time this CALL was executed or
since the module was powered up, whichever occurred last

Syntax

CALL 86
POP [DH485 interface file remote write status]

Example

>1 REM EXAMPLE PROGRAM
>100 CALL 86 : REM CHECK FILE STATUS
Publication 1746-RM001A-US-P

Status Functions 11-9
>110 POP X : REM GET THE STATUS
>120 IF(X<>1) THEN GOTO 100 : REM WAIT ON THE DATA

READY
>

CALL 87 – Check DH485
Interface File Remote
Read Status

Purpose

Use CALL 87 to determine if the DH485 Common Interface File located in the
module has been read by a device on the DH485 Serial Communications Link
since the last time it was checked. This routine has no input arguments and one
output argument.

The output argument is equal to:

• 0 if a device has not read from the DH485 Common Interface File since the
last time this CALL was executed or since the module was powered up,
whichever occurred last

• 1 if a device on the DH485 Serial Communications Link has read the DH485
Common Interface File since this CALL was executed or since the module was
powered up, whichever occurred last

Syntax

CALL 87
POP [DH485 interface file remote read status]

Example

>1 REM EXAMPLE PROGRAM
>100 CALL 87 : REM CHECK FILE STATUS
>110 POP X : REM GET THE STATUS
>120 IF (X<>1) GOTO 100: REM WAIT ON DATA TO BE READ

READY
>

Publication 1746-RM001A-US-P

11-10 Status Functions
CALL 95 – Get Number of
Characters in PRT1
Buffers

Purpose

Use CALL 95 to retrieve the number of characters in the chosen buffer of port
PRT1.

You must PUSH which buffer you want examined:

• PUSH 1 for the input buffer

• PUSH 0 for the output buffer

One POP is required to get the number of characters.

Syntax

PUSH [buffer selection]
CALL 95
POP [number of characters]

Example

>1 REM EXAMPLE PROGRAM
>10 PUSH 0 : REM EXAMINES THE OUTPUT BUFFER
>20 CALL 95
>30 POP X : REM GET THE NUMBER OF CHARACTERS
>40 PRINT “NUMBER OF CHARACTERS IN PRT1 OUTPUT BUFFER IS ”,X
>50 END

READY
>RUN

NUMBER OF CHARACTERS IN PRT1 OUTPUT BUFFER IS 0

READY
>

Publication 1746-RM001A-US-P

Status Functions 11-11
CALL 97 – Enable Port
PRT2 DTR Signal

Purpose

Use CALL 97 to enable the Data Terminal Ready (DTR) signal from port PRT2.
The DTR signal on PTR2 is enabled by default on powerup. This CALL re-enables
the DTR signal if it has been disabled by CALL 98.

Syntax

CALL 97

Example

>10 REM EXAMPLE PROGRAM
>20 CALL 97 : REM ENABLE DTR SIGNAL

READY
>

CALL 98 – Disable Port
PRT2 DTR Signal

Purpose

Use CALL 98 to disable the Data Terminal Ready (DTR) signal from port PRT2.

Syntax

CALL 98

Example

>10 REM EXAMPLE PROGRAM
>20 CALL 98 : REM DISABLE DTR SIGNAL

READY
>

Publication 1746-RM001A-US-P

11-12 Status Functions
CALL 108 – Enable DF1
Driver Communications

Purpose

Use CALL 108 to enable DF1 driver communications via port PRT2.

This routine has six input arguments and no output arguments. The first input
argument specifies the operational code selection that indicates the mode of
operation for the DF1 driver. The operational code specifies the following DF1
parameters:

• full-duplex or half-duplex slave operation

• duplicate packet detection (DPD) selection

• BCC or CRC error checking selection

• enable embedded responses (ER) or auto-detect embedded responses (ADER).
If ADER is selected, enabled responses are not transmitted until an embedded
response is received. It is assumed that if the device being communicated with
can send an ER it can also receive them (only applies to full-duplex operation).

• modem handshaking selection:

– half-duplex options:

• No HandShaking (NHS)

• Half-Duplex Modem without Continuous Carrier (HDMwoCC)

• Half-Duplex Modem with Continuous Carrier (HDMwCC)

– full-duplex options:

• No HandShaking (NHS)

• Full-Duplex Modem (FDM)

Legal values for the operational code are 0 to 11 for half-duplex mode and 16 to 31
for full-duplex mode. Table 11.B lists the legal values for the half-duplex
operational codes and their corresponding mode of operation. Table 11.C lists the
legal values for the full-duplex operational codes and their corresponding mode of
operation.

A special range of operational codes (32 - 43) are also accepted. These codes are
identical to codes 0 - 11 except that the end of transmission (EOT) packets are
suppressed. This operation is a deviation from the standard DF1 protocol and
should only be used where transmissions from a slave module are minimized.
When using one of these selections, the DF1 driver does not respond to ENQuires
from a DF1 master unless there is a data packet transmitted.

IMPORTANT DF1 can only be enabled if jumper JW4 on the module is in the
correct position. Refer to the SLC 500™ BASIC and BASIC-T
Modules User Manual (publication number
1746-UM004A-US-P) for additional information.
Publication 1746-RM001A-US-P

Status Functions 11-13

IMPORTANT Other port parameters, such as baud rate, number of stop bits,
and parity are selected using the MODE command before DF1 is
enabled. The modem handshaking selection made here overrides
the handshaking parameter of the MODE command until DF1
is disabled.

Table 11.2 DF1 Half-Duplex Operational Codes

Operational
Code

Corresponding Mode of Operation Special Operational Code
(Same as 0 - 11 except EOT

is suppressed)
0 NHS, Disable DPD, BCC Error Checking 32

1 NHS, Enable DPD, BCC Error Checking 33

2 NHS, Disable DPD, CRC Error Checking 34

3 NHS, Enable DPD, CRC Error Checking 35

4 HDMwoCC, Disable DPD, BCC Error Checking 36

5 HDMwoCC, Enable DPD, BCC Error Checking 37

6 HDMwoCC, Disable DPD, CRC Error Checking 38

7 HDMwoCC, Enable DPD, CRC Error Checking 39

8 HDMwCC, Disable DPD, BCC Error Checking 40

9 HDMwCC, Enable DPD, BCC Error Checking 41

10 HDMwCC, Disable DPD, CRC Error Checking 42

11 HDMwCC, Enable DPD, CRC Error Checking 43

Table 11.3 DF1 Full-Duplex Operational Codes

Operational Code Corresponding Mode of Operation
16 NHS, ER, Disable DPD, BCC Error Checking

17 NHS, ER, Enable DPD, BCC Error Checking

18 NHS, ER, Disable DPD, CRC Error Checking

19 NHS, ER, Enable DPD, CRC Error Checking

20 NHS, ADER, Disable DPD, BCC Error Checking

21 NHS, ADER, Enable DPD, BCC Error Checking

22 NHS, ADER, Disable DPD, CRC Error Checking

23 NHS, ADER, Enable DPD, CRC Error Checking

24 FDM, ER, Disable DPD, BCC Error Checking

25 FDM, ER, Enable DPD, BCC Error Checking

26 FDM, ER, Disable DPD, CRC Error Checking

27 FDM, ER, Enable DPD, CRC Error Checking

28 FDM, ADER, Disable DPD, BCC Error Checking

29 FDM, ADER, Enable DPD, BCC Error Checking

30 FDM, ADER, Disable DPD, CRC Error Checking

31 FDM, ADER, Enable DPD, CRC Error Checking
Publication 1746-RM001A-US-P

11-14 Status Functions
Half-Duplex No Handshaking Modem Control

Half-duplex no handshaking modem control, selected by operational codes 0
through 3, has the following characteristics:

• The RTS output line is activated during transmission, but no RTS On Delay
or RTS Off Delay is performed.

• The DTR output line is not manipulated by the DF1 driver. It is
recommended that you activate DTR in your BASIC program while DF1
communications are taking place

• The CTS and DSR input lines are not monitored nor do they have any affect
on transmissions or receptions.

• A transmission monitor guarantees that transmitter interrupts are being
generated in a timely manner. If a timeout occurs, the DF1_Status is set to
code value 5 if a data packet was being transmitted. Also, RTS is immediately
dropped when this timeout occurs.

Half-duplex without continuous carrier modem control, selected by operational
codes 4 through 7, has the following characteristics:

• The RTS output line is activated only during transmissions. The actual packet
transmission starts after the delay specified by the RTS On Delay parameter,
assuming the CTS input is active by then. When the transmission is complete
and the delay time period specified by the RTS Off Delay parameter has timed
out, RTS is deactivated.

• An actual transmission does not start until the CTS input is active. A
transmission guarantees that transmitter interrupts are being generated in a
timely manner. If a timeout occurs, then the DF1_Status is set to code value 5
if the data packet was being transmitted. RTS is dropped immediately when
this occurs.

• If not already active, the DTR line is raised when the DF1 Driver is enabled.
Even after the DF1 Driver is disabled, it will remain active; the user may
deactivate it via a BASIC Call.

• Characters that are received only are accepted if the DCD line is active. A
packet reception is aborted if DCD goes inactive during the byte-to-byte
reception of that packet.

There is no constant monitoring of DCD even between packets as there is with
the constant carrier selection. Therefore, the DTR line is never deactivated.

IMPORTANT For proper operation, the Data Carrier Detect (DCD) line from
the modem must be connected to the DSR input of port PRT2.
Publication 1746-RM001A-US-P

Status Functions 11-15
Half-Duplex With Continuous Carrier Modem Control

Half-duplex with continuous carrier modem control, selected by operational codes
8 through 11, has the following characteristics:

• The RTS output line is activated only during transmissions. The actual packet
transmission starts after the delay specified by the RTS On Delay parameter,
assuming the CTS input is active by then. When the transmission is complete
and the delay time period specified by the RTS Off Delay parameter has timed
out, RTS is deactivated.

• An actual transmission does not start until the CTS input is active. A
transmission guarantees that transmitter interrupts are being generated in a
timely manner. If a timeout occurs, then the DF1_Status is set to code value 5
if the data packet was being transmitted. RTS is dropped immediately when
this occurs.

• If not already active, the DTR line is raised when the DF1 Driver is enabled. It
is dropped only when DCD is lost as described in the next paragraph. Even
after the DF1 Driver is disabled or remains active, the user may deactivate it via
a BASIC CALL.

• For packet reception, the DCD signal is monitored (via the DSR input line).
If DCD is not already active when the DF1 Driver is enabled, then it is
immediately detected when it does go active. At this point, the DCD is
checked every 5 ms to make sure it remains active. If DCD goes inactive, the
driver waits 10 seconds for it to go active again. If DCD does not go active
again in this amount of time, then the DTR output line is dropped for a period
of time ranging from 5 to 10 ms in length.

Also, characters that are received are accepted if the DCD line is active. A
packet reception is aborted if DCD goes inactive during the byte-to-byte
reception of a packet.

IMPORTANT For proper operation, the Data Carrier Detect (DCD) line from
the modem must be connected to the DSR input of port PRT2.
Publication 1746-RM001A-US-P

11-16 Status Functions
Full-Duplex With No Handshaking

Full-duplex with no handshaking, selected by operation codes 16 through 23, has
the following characteristics:

• The RTS output line is activated when the DF1 Driver is enabled and remains
so until the DF1 Driver is disabled.

• The DTR output line is not manipulated by the DF1 Driver. It is
recommended that the user activate DTR in his/her BASIC program while the
DF1 communications is taking place.

• The CTS and DSR input lines are not monitored or have any effect on
transmissions.

• A transmission monitor guarantees that transmitter interrupts are being
generated in a timely manner. If a timeout occurs, then the DF1_Status is sent
to code value 5 if the packet in the process of being transmitted was a data
packet. RTS is not deactivated when this timeout occurs.

Full-Duplex Modem (FDM)

Full-Duplex Modem (FDM), selected by operation codes 24 through 31, has the
following characteristics:

• The RTS output line is activated when the DF1 Driver is enabled and remains
so until the DF1 Driver is disabled.

• An actual transmission does not start until the CTS input is active. A
transmission monitor guarantees that transmitter interrupts are being
generated in a timely manner. If a timeout occurs, then the DF1_Status is sent
to code value 5 if the packet in the progress of being transmitted was a data
packet. RTS is not deactivated when this occurs.

• If DTR is not already active when the DF1 Driver is enabled, it is immediately
activated. It becomes active only if DCD is lost as described in the next
paragraph. Even after the DF1 Driver is disabled, DTR remains active; the user
may deactivate it via a BASIC CALL.

• For packet receptions, the DCD signal is monitored via the DSR input line. If
DCD is not already active when the DF1 Driver is enabled, then it is
immediately detected when it does go active. At this point, DCD is checked
every 5 ms to make sure it remains active. If it goes inactive, the driver waits 10
seconds for DCD to go active again. If DCD does not go active again in this
amount of time, then the DTR output line is deactivated for a period of time
ranging from 5 to 10 ms in length.

Also, characters that are received are only accepted if the DCD line is active. A
packet reception is aborted if DCD goes inactive during the byte-to-byte
reception of that packet.
Publication 1746-RM001A-US-P

Status Functions 11-17
The second input argument specifies the Poll Time-out period when in
half-duplex mode or the ACKnowledge Time-out period when in full-duplex
mode. Poll Timeout specifies in 5 ms increments how long to wait before being
polled by the DF1 master, before a transmission request is ignored. PUSHing 0
indicates no Poll Time-out period. ACKnowledge Timeout specifies in 5 ms
increments how long to wait for an ACK/NAK before transmitting an
ENQuiry. The valid range for the ACKnowledge Timeout is 2 to 65535.

The third input argument specifies the number of message retries when in
half-duplex mode or the number of ENQuiry Retries to perform when in
full-duplex mode. Message retries specifies the number of message transmission
retry attempts made before giving up and flagging the transmission as failed.
PUSHing 0 indicates only the initial attempt is made and if not acknowledged
by the master the attempt is flagged as failed. ENQuiry Retries specifies the
number of ENQ’s to transmit before a packet transmission is flagged as failed.
The valid range for both is 0 to 254.

The fourth input argument specifies the RTS On Delay time period when in
half-duplex mode or the number of NAK Received Retries to perform when in
full-duplex mode. RTS On Delay specifies in 5 ms increments the delay
between when a Request-To-Send (RTS) is activated and a transmission is
initiated. Only used if HDMwCC or HDMwoCC is selected through the first
input argument. The valid range for the RTS On Delay is 0 to 65535. NAK
Received Retries specifies the number of packet retries to transmit due to
receiving NAK responses. The valid range for NAK Received Retries is 0 to
254.

The fifth input argument specifies the RTS Off Delay time period. RTS Off
Delay specifies in 5 ms increments the delay between when a transmission is
completed and a Request-To-Send (RTS) is deactivated. The valid range for
the RTS Off Delay is 0 to 65499. This argument is only used if HDMwCC or
HDMwoCC is selected through the first input argument. This input
argument is only used for half-duplex mode. When full-duplex mode is
selected a NULL value must be PUSHed.

The sixth input argument specifies the module address that the DF1 driver
responds to when receiving enquires from a remote DF1 device. Legal values
are 0 to 254. This input argument is used for half-duplex and full-duplex
mode.
Publication 1746-RM001A-US-P

11-18 Status Functions
Syntax

PUSH [operational code]
PUSH [Poll timeout or ACKnowledge timeout]
PUSH [message retries or ENQuiry retries]
PUSH [RTS On delay or NAK received retries]
PUSH [RTS Off delay or NULL value]
PUSH [module DF1 address]
CALL 108

Example

>1 REM EXAMPLE PROGRAM
>10 PUSH 5 : REM HDMWOCC, ENABLE DPD, BCC ERROR CHECKING
>20 PUSH 200 : REM WAIT 1 SECOND TO BE POLLED BY MASTER
>30 PUSH 2 : REM PERFORM 2 RETRIES
>40 PUSH 4 : REM 20 MS RTS ON DELAY
>50 PUSH 4 : REM 20 MS RTS OFF DELAY
>60 PUSH 10 : REM module ADDRESS OF 10
>70 CALL 108
>80 END

CALL 113 – Disable DF1
Driver Communications

Purpose

Use CALL 113 to disable DF1 driver communications. This routine has no input
arguments and no output arguments. This CALL terminates DF1 communication
immediately, even if the serial transmission of a data packet is in progress. You
should write your user program so that it completes any transmission before
performing CALL 113. This CALL clears the PRT2 transmission and receive
buffers.

Syntax

CALL 113

Example

>1 REM EXAMPLE PROGRAM
>10 CALL 113
>20 END

CALL 120 – Clear module
Input and Output Buffers

Purpose

Use CALL 120 to clear the module input and output buffers. This routine has one
input argument and no output arguments. The input argument is an 8-bit word
Publication 1746-RM001A-US-P

Status Functions 11-19
that corresponds to the module input and output buffers, as shown in the table
below:

You must PUSH the decimal equivalent of the areas of the input and output
buffers that you want to clear. For example to clear the SLC M0 and SLC M1 files
you would PUSH the value 3. The module sets bits 0 and 1 true and clears the SLC
M0 and M1 file areas of the input and output buffers.

Syntax

PUSH [decimal equivalent]
CALL 120

Example

>1 REM EXAMPLE PROGRAM
>10 PUSH 3 : REM CLEAR SLC MO AND M1 FILES
>20 CALL 120
>30 END

CALL 121 – Get SLC
Processor Program ID
Number

Purpose

Use CALL 121 to get the ID number of the active SLC processor program. This
routine has no input arguments and one output argument. The output argument is
an integer value between 0 and 65536 that corresponds to the program ID number
of the active program on the SLC processor.

Table 11.4 Information for Clearing Input and Output Buffer

Bit Decimal Equivalent Module Input and Output Buffer Areas
0 1 SLC M0 File

1 2 SLC M1 File

2 4 SLC Output Image Table

3 8 SLC Input Image Table

4 16 Common Interface Input File

5 32 Common Interface Output File

6 Not Used

7 Not Used

These bits set TRUE

Push 3 = 0 0 0 0 0 0 1 1

SLC M1 File Bit SLC M0 File Bit
Publication 1746-RM001A-US-P

11-20 Status Functions
Syntax

CALL 121
POP [program ID number]

Example

>1 REM EXAMPLE PROGRAM
>10 CALL 121
>20 POP X : REM GET SLC PROCESSOR PROGRAM ID
>30 END
Publication 1746-RM001A-US-P

Chapter 12

Output Functions

This chapter describes and illustrates commands that allow the transfer of data
from the BASIC or BASIC-T module to external ports PRT1, PRT2, and DH485
within the BASIC program or from the command line. Table 12.1 lists the
corresponding mnemonics.

Table 12.1 Chapter Reference Guide

If you need (to) Use this
mnemonic

Page

Transfer data from the SLC I/O or M files to PRT1 or PRT2. CALL 23 12-2

Transfer data from the SLC processor to a remote DH485 data
file.

CALL 28 12-6

Handle all errors that are not handled by the ONERR statement. CALL 29 12-13

Display the current PRT2 port setup. CALL 31 12-14

Clear port PRT2 input and output buffers. CALL 37 12-15

Transfer module output buffer to the CPU input image buffer. CALL 54 12-15

Transfer module output buffer to the CPU M1 file. CALL 57 12-16

Transfer module output buffer to the DH485 interface file. CALL 85 12-17

Write module output buffer to the remote DH485 data file. CALL 91 12-18

Write module output buffer to the remote DH485 interface file. CALL 93 12-22

Print current PRT1 port setup. CALL 94 12-24

Clear port PRT1 input and output buffers. CALL 96 12-24

User LED control CALL 112 12-25

Transmit the DF1 packet. CALL 114 12-26

Check the DF1 XMIT status. CALL 115 12-27

Write to a PLC data file. CALL 123 12-28

Print hex value with zero suppression to the console device. PH0. 12-37

Print hex value with zero suppression to PRT2. PH0.# 12-37

Print hex value with zero suppression to PRT1. PH0.@ 12-37

Print hex value with no zero suppression to the console device. PH1. 12-37

Print hex value with no zero suppression to PRT2. PH1.# 12-37

Print hex value with no zero suppression to PRT1. PH1.@ 12-37

Print variables, strings, or literals to the console device; P. is
shorthand for print.

PRINT 12-35

Print to port PRT2. PRINT# 12-35

Print to port PRT1. PRINT@ 12-35

Print carriage return. PRINT CR 12-36

Print spaces. PRINT SPC() 12-36

Print tabs. PRINT TAB() 12-36

Print numeric values in scientific notation. PRINT USING(Fx) 12-36
1 Publication 1746-RM001A-US-P

12-2 Output Functions
CALL 23 – Transfer Data
from the CPU Files to
Port 1 or 2

Purpose

Use CALL 23 to transfer data from the CPU output data file or the CPU M0 file
directly to the module serial port and/or to a string within the module. The data is
transferred low byte first, then high byte or high byte first, then low byte to the
module port. The data can also be stored in a string for access by the BASIC
program.

The byte swap selection (low byte first, then high byte, or high byte first, then low
byte) of the last CALL 23 or CALL 22 executed determines the data packing
method for all ports enabled by CALL 23.

The low byte of the first word of the source file contains the character count (byte
count) of the data being transferred. If the byte count is larger than the file selected,
only the maximum number of bytes within the file are transferred. The high byte
of the first word is not used.

Execute CALL 23 to set up the data transfer parameters. After the CALL is
executed, the module gets data from the source file and transfers it to port PRT1,
port PRT2, or an internal string. Input and Output image file bits (word 0, bits 6
and 7) for the slot containing the module, are used to initiate and notify
completion of the transfer. The operation is described below:

1.1.1.1. The ladder logic program of the SLC processor builds the data buffer. The
SLC then determines the byte count of the file to be transferred and places it
into the lower byte of the first available word to be transferred. This word plus
the data comprise the data file to be transferred.

Print numeric values in decimal notation. PRINT USING(#.#) 12-36

Restore the default print mode. PRINT USING(0) 12-37

Store variable. ST@ 12-38

Table 12.1 Chapter Reference Guide

If you need (to) Use this
mnemonic

Page

BYTE COUNT

DATA BUFFER
Publication 1746-RM001A-US-P

Output Functions 12-3
2.2.2.2. The ladder logic program of the SLC processor must set the output file word 0,
bit 6 or bit 7 to inform the module that valid data is available. Bit 6 indicates
that data is available for port 1 and bit 7 indicates that data is available for port
2.

3.3.3.3. The module automatically transfers the data to the destination serial port
(PRT1 or PRT2) from the SLC processor.

4.4.4.4. The module sets the input file word 0, bit 6 or bit 7 to inform the SLC
processor that the transfer was successful.

5.5.5.5. The ladder logic program of the SLC processor resets output file word 0, bit 6
or bit 7.

6.6.6.6. The module resets the input file word 0, bit 6 or bit 7 on the same end of scan
cycle in which the output file word 0, bit 6 or bit 7 was reset.

Output File
Word 0, Bit 6

or Bit 7

PORT PRT1

PORT PRT2

SLC Processor SLC Backplane BASIC or BASIC-T Module

BYTE
COUNT

DATA BUFFER

PORT PRT1

PORT PRT2

SLC Processor SLC Backplane BASIC or BASIC-T Module

Input File
Word 0, Bit 6

or Bit 7

SLC Processor SLC Backplane BASIC or BASIC-T Module

Reset Output File
Word 0, Bit 6

or Bit 7

SLC Processor SLC Backplane BASIC or BASIC-T Module

Reset Input File
Word 0, Bit 6

or Bit 7

SLC Processor SLC Backplane BASIC or BASIC-T Module
Publication 1746-RM001A-US-P

12-4 Output Functions
Transfers continue in this manner until the CALL for the port is re-executed with
different input parameters. If this occurs, the previous CALL 23 for the port is
automatically disabled and the new CALL 23 takes effect. Multiple CALL 23s for
the same port are not executed in parallel. However, port 1 and port 2 can be
activated simultaneously by issuing separate CALL 23s for these ports.

This CALL has five input arguments and one output argument.

The first input argument chooses the destination of the data. It can be the port
number (1 or 2) and/or the internal string:

• 0 - Disable CALL 23 for all active ports and strings enabled by earlier CALL
23s

• 1 - Internal string only

• 2 - Serial port 1

• 3 - Internal string and serial port 1

• 4 - Serial port 2

• 5 - Internal string and serial port 2

If an internal string (1, 3, or 5) is chosen, the first character of the string contains
the byte count. The second character (transaction number) is incremented to
inform the module that new data is in the string. The value of this character wraps
around from 255 to 0. The data from the source buffer begins with the third
character of the string.

The second input argument is the selection of the data source. It can be the CPU
output data file or CPU M0 file:

• 0 - CPU output image file

• 1 - CPU M0 file

The third input argument is the word offset within the CPU output image file or
M0 file. This offset points to the first word, which contains the byte count of the
valid data in the file. The second word of the CPU file contains the first two
characters of the data to be transferred. If the CPU output image file is chosen, this
offset must not be word 0 since word 0 is reserved for the handshaking bits used in
this CALL. Therefore, the first available word for the byte count when the output
image is chosen is the second word (word 1).

The fourth input argument is the internal string number. If the second input
argument does not select internal string usage, the value of this input argument is
ignored (but must still be PUSHed). If the data exceeds the string length, the
remaining data is truncated.
Publication 1746-RM001A-US-P

Output Functions 12-5
The fifth input argument is the byte swap selection. It has the following values:

• 0 - Data bytes transferred from the CPU are not swapped when passed to the
module port or string. The data transfer order is low byte first, then high byte
per word. The low byte of the first word in the source buffer contains the byte
count.

• 1 - Data bytes transferred from the CPU are swapped when passed to the
module port or string. The data transfer order is high byte first, then low byte
per word. Swapping does not affect the first word. The low byte of the first
word still contains the byte count.

The last CALL 23 executed determines the byte swap option for all active CALL 23
and CALL 22 commands previously executed.

The output argument is the status of the CALL. It has the following values:

• 0 - Successful

• 1 - Disabled

• 2 - Bad input parameter

• 3 - PRT2 is chosen but it is already enabled for DF1 protocol. The CALL is
not executed.

• 4 - String is too small

• 5 - String is not dimensioned

Data transfer does not begin until the SLC processor sets output image file word 0,
bit 6 or bit 7 (depending on the destination port). The module sets the input file
word 0, bit 6 or bit 7 to indicate a successful transfer to a port.

If the internal string is chosen as the destination, output image file word 0, bit 6 is
used to initiate the transfer. Input file word 0, bit 6 is set by the module to indicate
a successful transfer to the string.

Syntax

PUSH [destination port number and/or internal string]

PUSH [selection of source file]

PUSH [word offset within the source file]

PUSH [string number]

PUSH [byte swap selection]

CALL 23

POP [CALL 23 status]
Publication 1746-RM001A-US-P

12-6 Output Functions
Example

>1 REM EXAMPLE PROGRAM
>10 REM ENABLE CALL 23 INTERRUPTS
>20 PUSH 2 : REM SEND DATA TO PRT1
>30 PUSH 1 : REM GET DATA FROM M0 FILE
>40 PUSH 0 : REM WORD OFFSET INTO M0 FILE
>50 PUSH 0 : REM STRING NUMBER/NOT USED HERE
>60 PUSH 1 : REM ENABLE BYTE SWAPPING
>70 CALL 23
>80 POP S : REM STATUS OF CALL SETUP
>90 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 23 SETUP”

Below is a sample ladder logic program for CALL 23. The module is located in slot
1 of the SLC chassis. At rung 0000, copy data to the M0 file and set the handshake
bit (O:1.0/6) to inform the module that new data is available for port PRT1. Do
not send more data until the previous data has been acknowledged by the module.
The data file for the module begins with the byte count (40 in this example) at
N7:0. The data follows in N7:1-N7:20. The data byte count word is not included
in the data byte count. The copy instruction word length is 21. The byte count
maximum is 40 bytes (20 words) for this example.

At rung 2:1, unlatch the handshake bit from the SLC (O:1.0/6) for port PRT1
when the handshake bit from the module is set indicating the module has received
the data.

CALL 28 – Write to
Remote DH485 SLC Data
File

Purpose

Use CALL 28 to write up to 40 words of data from the CPU output image file,
CPU M0 file, and/or a string within the module to the remote DH485 file at the
designated node address.

0000
I:2

0

O:1

6
OSR
B3:0

0

B3
COP

Copy File
Source #N7:0
Dest #MO:1.0
Length 21

L
O:1

6

Input Switch Handshake Bit from SLC
Processor to Module

Byte Count is located at N7:0.

Handshake Bit from SLC
Processor to Module

0001
I:1

6
U

O:1

6

0002 END

Handshake Bit from
Module to SLC Processor

Handshake Bit from SLC
Processor to Module
Publication 1746-RM001A-US-P

Output Functions 12-7
If an internal string is chosen, the first character (transaction number) is
incremented on successful completion of the write to inform the module that data
was sent. The value of the transaction number wraps around from 255 to 0.

Execute CALL 28 once to set up the data transfer parameters. Input and output
image bits (word 0, bit 11) for the slot containing the module, are used to initiate
and notify completion of the transfer. The operation is described below:

1.1.1.1. The local SLC processor builds the data buffer.

2.2.2.2. The SLC processor sets output file word 0, bit 11 to inform the module that
data can be transferred.

3.3.3.3. The module transfers the data into the remote data buffer.

4.4.4.4. The module places the transfer status into the input file word 1, bits 0-7.

5.5.5.5. The module sets the input file word 0, bit 11 to inform the local SLC
processor that valid data is transferred and the status of the transfer is available.

DATA BUFFER

SLC Processor

Output File
Word 0, Bit 11

SLC Processor SLC Backplane BASIC or BASIC-T Module

SLC Processor SLC Backplane BASIC or BASIC-T Module DH485 Network Remote Device

DESTINATION
BUFFER

PORT DH485 DATA
BUFFER

Input File Word 1,
Bits 0 through 7

SLC Processor SLC Backplane BASIC or BASIC-T Module
Publication 1746-RM001A-US-P

12-8 Output Functions
6.6.6.6. The SLC retrieves the status and resets output file word 0, bit 11. The data
buffer can be reused by the SLC.

7.7.7.7. The module resets the input file word 0, bit 11 on the same end of scan cycle
in which the output file word 0, bit 11 was reset.

Once this CALL is active, it will remain active and will send data to the remote
node whenever the SLC processor sets output file word 0, bit 11.

This CALL has ten input arguments and one output argument.

The first input argument is the type of SLC WRITE command issued:

• 0 - Disable the previously executed CALL 28

• 1 - Common Interface File Write

• 2 - SLC Typed Write

The second input argument is the node address of the SLC remote device on the
DH485 network (0 through 31). If the number is not within this range, the status
equals 2 and the write message does not occur.

The third input argument is the file number on the SLC remote device (0 through
255). If the number is not within this range, the status equals 2 and the write
message does not occur. The parameter is ignored if the Common Interface File is
chosen in the first parameter. The CIF is always file 9.

The fourth input argument is the file type to be written to the remote device. This
number is ignored if the CIF is chosen in the first parameter (assumes integer file).

Input File
Word 0, Bit 11

SLC Processor SLC Backplane BASIC or BASIC-T Module

Reset Output File
Word 0, Bit 11

SLC Processor SLC Backplane BASIC or BASIC-T Module

Reset Input File
Word 0, Bit 11

SLC Processor SLC Backplane BASIC or BASIC-T Module
Publication 1746-RM001A-US-P

Output Functions 12-9
If the file type is not one of these listed below, the status equals 2 and the write
message does not take place. Enter the file type code as shown:

The fifth input argument is the starting word offset within the file on the SLC
remote device (0 through 32766). If the number is not within this range, the status
equals 2 and the transfer does not occur.

The sixth input argument is the number of words to be transferred. If the number
is not within the range shown, the status equals 2 and the transfer does not occur.

The seventh input argument is the message time-out value. This value
(1 through 255) corresponds to the number of hundreds of milliseconds that are
allowed to receive the write response (0.1 through 25.5 seconds). If the write
response is not received within this time, the message aborts with the status equal
to 55 in the input file word 1, bits 0-7. If the time-out value is not within the range
(1 through 255), the status POPped equals 2 and the transfer does not take place.

The eighth input argument is the selection of the source CPU output image file,
CPU M0 file, or the internal string:

• 0 - CPU output image file

• 1 - CPU M0 file

• 2 - Internal string

If you chose internal string (2), CALL 29 can be executed to initiate each data
transfer without requiring SLC processor interaction. The output file word 0, bit
11 will also initiate a string transaction.

The ninth input argument is the word offset within the source CPU file. The word
offset points to the first data location. If you chose the CPU output image file, the

Table 12.2 File Type

File Type File Type Code Words/Element
Integer File ASC(N) 1 word/element

Counter File ASC(C) 3 words/element

Timer File ASC(T) 3 words/element

Bit File ASC(B) 1 word/element

Control File ASC(R) 3 words/element

Table 12.3 Valid Length Range

File Type Code Valid Length Range
ASC(N) 1 to 40

ASC(C) 1 to 13

ASC(T) 1 to 13

ASC(B) 1 to 40

ASC(R) 1 to 13

Common Interface File 1 to 40
Publication 1746-RM001A-US-P

12-10 Output Functions
offset should not be 0 since this word is reserved for the data transfer handshaking
bits. The offset for the internal string is always 1. The string character (transaction
number) at location 0 is incremented upon every data transfer.

The tenth input argument is the string number. If the eighth input argument does
not select internal string usage, the value of this input argument is ignored but
must still be PUSHed.

The output argument is the validation of the CALL parameters. It has the
following values:

• 0 - Successful

• 1 - Disabled

• 2 - Bad input parameter

• 3 - Port DH485 not enabled (DF1 enabled)

• 4 - String is too small

• 5 - String is not dimensioned

• 6 - Data packet is too long

To disable this CALL, a zero must be PUSHed into the first input parameter. All
other parameters are ignored but must still be PUSHed.

Whenever an attempt is made to write to a remote node, the module places the
status of the write into the SLC input file word 1, bits 0-7. The status values have
the same definition as the values POPped in CALL 93.
Publication 1746-RM001A-US-P

Output Functions 12-11
Syntax

PUSH [type of WRITE command]

PUSH [remote node address]

PUSH [remote file number]

PUSH [remote file type]

PUSH [remote starting word offset]

PUSH [number of words to be transferred]

PUSH [message time-out value]

PUSH [selection of source file]

PUSH [word offset within source file]

PUSH [string number]

CALL 28

POP [CALL 28 status]

Example

>1 REM EXAMPLE PROGRAM
>10 REM ENABLE INTERRUPTS FOR READ COMMANDS TO A

REMOTE DH485 NODE
>20 PUSH 2 : REM SLC TYPED WRITE
>30 PUSH 1 : REM REMOTE SLC NODE NUMBER
>40 PUSH 7 : REM REMOTE SLC FILE NUMBER
>50 PUSH ASC(N) : REM REMOTE SLC FILE TYPE
>60 PUSH 0 : REM ELEMENT OFFSET INTO DESTINATION FILE
>70 PUSH 20 : REM NUMBER OF ELEMENTS TO BE TRANSFERRED
>80 PUSH 10 : REM MESSAGE TIME-OUT VALUE(X100MS)
>90 PUSH 1 : REM LOCAL SLC FILE TYPE (M0)
>100 PUSH 0 : REM WORD OFFSET INTO LOCAL SLC FILE
>110 PUSH 0 : REM INTERNAL STRING NUMBER - NOT USED FOR THIS
EXAMPLE
>120 CALL 28
>130 POP S
>140 IF (S=1) THEN PRINT “CALL 28 DISABLED”
>150 IF (S=2) THEN PRINT “CALL 28 BAD INPUT PARAMETER”
>160 IF (S=3) THEN PRINT “PORT DH485 NOT ENABLED”

Copy the data to be sent to the remote DH485 node to the local file (the M0 file
associated with the slot number of the module). Latch the CALL 28 request bit
(word 0, bit 11).
Publication 1746-RM001A-US-P

12-12 Output Functions
0000
I:2

0

O:1

11
OSR
B3:0

0

COP
Copy File
Source #N7:0
Dest #M0:1.0
Length 20

L
O:1

11

0001
I:1

11

NEQ
Not Equal
Source A I:1.1

Source B 0

MOV
Move
Source I:1.1
 0
Dest N7:20
 0

L
O:3

0

U
O:3

1

EQU
Equal
Source A I:1.1

Source B 0

0

0

L
O:3

1

U
O:3

0

U
O:1

11

0002 END

Input P.B. to initiate CALL 28.

CALL 28 Request Bit

Buffer Status Byte if Non-zero

Command Failed Indication

Command Success Indication

Command Failed Indication

CALL 28 Request Bit

Handshake Bit from Module
Publication 1746-RM001A-US-P

Output Functions 12-13
CALL 29 – Read/Write to
a PLC/SLC from the
Module Internal String

Purpose

Use CALL 29, in conjunction with CALLs 122 or 123, to communicate between
remote PLCs and the module internal string without local SLC processor
interaction. You can also use CALL 29, in conjunction with CALLs 27 or 28, to
communicate between remote SLCs and the module internal string without local
SLC processor interaction. CALLs 27, 28, 122, or 123 must be executed within the
BASIC program before CALL 29.

CALL 29 is active when the internal string is the only choice in CALLs 27, 28,
122, or 123. In this situation, it is not practical to use the SLC input and output
image files to begin the transfer and to pass the status. The SLC processor does not
need to be involved. If an SLC file is chosen instead, the local SLC processor
controls the transfer with the input and output image bits. In this instance, a status
of 255 is returned when CALL 29 is attempted.

One argument is PUSHed and one argument is POPped. The input argument is
the CALL to be activated (CALL 27, 28, 122, or 123).

When CALL 29 is executed, the transfer is attempted. If the selected CALL (27,
28, 122, or 123) is not executed before CALL 29, a 1 is returned in the status
POPped. When CALL 29 is executed successfully, the value in the first character of
the string (transaction number) is incremented to designate that the transfer
occurred. The range of this character is 0-255.

After CALL 29 is executed, one word is POPped. This word is the status of the
transaction:

• 0 - Successful completion

• 1 - The chosen CALL (27, 28, 122, or 123) is not active

• 255 - SLC buffer is chosen for CALL 27, 28, 122, or 123 and CALL 29 is
ignored

• All other codes are identical to CALL 90/92

Syntax

PUSH [27, 28, 122, or 123 for the CALL you want activated]

CALL 29

POP [status of transaction]
Publication 1746-RM001A-US-P

12-14 Output Functions
Example

CALL 122 must be enabled with internal string only prior to executing CALL 29
in this example. Upon execution of CALL 29, an attempt is made to transfer one
element from integer file 10, starting at element 0 of the PLC-5® at node 3, to the
internal string $(1) of the module.

>1 REM EXAMPLE PROGRAM
>10 REM EXECUTE DF1 PLC REMOTE READ FROM INTERNAL
>20 REM STRING WITH NO SLC INTERVENTION
>21 REM SET UP CALL 122
>25 PUSH 5, 3, 10, ASC(N), 0, 10, 10, 1, 1, 1: CALL 122: POP

STATUS
>30 PUSH 122
>40 CALL 29
>50 POP S
>60 IF (S=1) THEN PRINT “CALL 122 NOT ACTIVE”
>70 IF (S=255) THEN PRINT “SLC FILE CHOSEN FOR CALL 122”
>80 IF (S=0) THEN PRINT “SUCCESSFUL TRANSFER”
>90 IF (S<>0) THEN PRINT “UNSUCCESSFUL TRANSFER”
>100 END

CALL 29 does not require SLC bit handshaking at the end of the command, unlike
CALLs 27, 28, 122, and 123 when using an SLC file as a source or destination.

CALL 31 – Display
Current PRT2 Port Setup

Purpose

Use CALL 31 to display the current PRT2 port configuration on the program port
terminal screen. No arguments are PUSHed or POPped.

Syntax

CALL 31

Example

>CALL 31

1200 Baud
Hardware Handshaking OFF
1 Stop Bit(s)
No Parity
8 Bits/Char
Xon/Xoff

READY
>

Publication 1746-RM001A-US-P

Output Functions 12-15
CALL 37 – Clear PRT2
Input/Output Buffers

Purpose

Use CALL 37 to clear the peripheral port input and/or output buffers. Use the
following PUSHes to clear the corresponding buffer:

• PUSH 0 to clear the output buffer.

• PUSH 1 to clear the input buffer.

• PUSH 2 to clear both buffers.

Syntax

PUSH [buffer selection]
CALL 37

Example

>1 REM EXAMPLE PROGRAM
>10 PUSH 0 : REM CLEARS THE OUTPUT BUFFER
>20 CALL 37
>30 END

READY
>RUN

READY
>

CALL 54 – Transfer
BASIC Output Buffer to
CPU Input Image

Purpose

Use CALL 54 to transfer words 200 to 207 of the module output buffer to words 0
to 7 of the CPU input image table. This routine has no input arguments and one
output argument. The output argument is the status of the Logic Processor.

Word 200 in the BASIC output buffer is reserved and can not be modified. This
word provides module status information to the SLC 500 processor. Bit 15 is the
module mode bit. It can have one of the following values:

• 0 - BASIC or BASIC-T module is in the Run mode

• 1 - BASIC or BASIC-T module is not in the Run mode

Bit 14 of word 200 is the EEPROM checksum bit. It can have one of the following
values:

• 0 - EEPROM checksum is correct

• 1 - EEPROM checksum is incorrect
Publication 1746-RM001A-US-P

12-16 Output Functions
Bit 13 of word 200 is the battery status bit. It can have one of the following values:

• 0 - Battery is good

• 1 - Battery is low

Word integrity is guaranteed during this transfer. File integrity is not. Handshaking
bits can be used in your application program to provide file integrity.

Syntax

CALL 54
POP [processor mode]

Example

>1 REM EXAMPLE PROGRAM
>30 CALL 54 : REM XFER BASIC OUTPUT BUFFER TO CPU INPUT IMAGE
TABLE
>40 POP X : REM LOGIC PROCESSOR STATUS IS IN X
>50 IF X<>0 THEN PRINT “PROCESSOR NOT IN RUN MODE”

READY
>RUN

READY
>

CALL 57 – Transfer
BASIC Output Buffer to
CPU M1 File

Purpose

Use CALL 57 to transfer up to 64 words starting at word 100 from the module
output buffer to the CPU M1 file starting at word 0. This routine has one input
argument and one output argument. The input argument is the number of words
to be transferred (1 to 64). If the number is not within the range 1 to 64, no
transfer occurs and the output argument is set to 10.

If the input argument is a valid number, then the output argument is the status of
the Logic Processor. It can have one of the following values:

• 0 - Successful transfer, SLC processor in Run mode

• 1- Successful transfer, SLC processor in Program mode

• 2 - Successful transfer, SLC processor in Test mode

• 10 - Illegal length specified

• 11 - SLC processor does not support this capability

Word integrity is guaranteed during this transfer. File integrity is not. Handshaking
bits can be used in your application program to provide file integrity.
Publication 1746-RM001A-US-P

Output Functions 12-17
Syntax

PUSH [number of words to be transferred]
CALL 57
POP [processor mode]

Example

>1 REM EXAMPLE PROGRAM
>50 PUSH 64 : REM TRANSFER LENGTH IS 64 WORDS
>60 CALL 57 : REM TRANSFER BASIC OUTPUT BUFFER TO M1
>70 POP X : REM LOGIC PROCESSOR STATUS IS IN X
>80 PRINT X

READY
>RUN 0

READY
>

CALL 85 – Transfer
BASIC Output Buffer to
DH485 Common
Interface File

Purpose

Use CALL 85 to transfer up to 40 words to the DH485 Common Interface File.

This routine has two input arguments and one output argument. The first input
argument is the starting word offset of the DH485 Common Interface File. If the
word offset value is not within the range 0 to 127, the output argument equals 1.
The second input argument is the number of words to be transferred from the
module output buffer to the DH485 Common Interface File. If the second input
argument number is not within the range 1 to 40, the output argument equals 2.

The output argument specifies the transfer status. It can have one of the following
values:

• 0 - Successful transfer

• 1 - Illegal starting offset

• 2 - Illegal length

Word integrity is guaranteed during this transfer. File integrity is not.

Syntax

PUSH [starting word offset in DH485 interface file]
PUSH [number of words to be transferred]
CALL 85
POP [transfer status]
Publication 1746-RM001A-US-P

12-18 Output Functions
Example

>1 REM EXAMPLE PROGRAM
>40 PUSH 31 : REM OFFSET ADDRESS = 31
>50 PUSH 3 : REM WORD LENGTH = 3
>60 CALL 85 : REM TRANSFER DATA TO DH485 COMMON INTERFACE

FILE
>70 POP R
>80 IF R<>0 PRINT “TRANSFER ERROR CODE = ”,R : REM PRINT

ERROR

READY
>RUN

READY
>

CALL 91 – Write BASIC
Output Buffer to Remote
DH485 Data File

Purpose

Use CALL 91 to write up to 40 words starting at word 0 of the module output
buffer to the remote DH485 data file at the designated node address, file number,
file type, and element offset. This routine has six input arguments and one output
argument.

The first input argument is the node address of the remote device (0 to 31). If the
number is not within the range 0 to 31, then the output argument equals 10, and
the write message does not take place.

The second input argument is the file number on the remote device (0 to 255). If
the number is not within the range 0 to 255, then the output argument equals 11,
and the write message does not take place.

The third input argument is the file type written to the remote device. Valid type
codes are ASC(N), ASC(S), ASC(C), ASC(T), ASC(B), and ASC(R). If the file
type is not one of these valid types, then the output argument equals 241, and the
write message does not take place.

The fourth input argument is the starting element offset within the file on the
remote device (0 to 32767). If the number is not within the range (0 to 32767),
then the output argument equals 12, and the transfer does not take place.

Table 12.4 File Type Written to the Remote Device

File Type File Type Code Words/Element
Integer File ASC(N) 1 word/element

Status File ASC(S) 1 word/element

Counter File ASC(C) 3 words/element

Timer File ASC(T) 3 words/element

Bit File ASC(B) 1 word/element

Control File ASC(R) 3 words/element
Publication 1746-RM001A-US-P

Output Functions 12-19
The fifth input argument is the number of elements to be transferred. If the
number is not within the range specified below, then the output argument equals
13, and the transfer does not take place.

The sixth input argument is the message time-out value. This value is the number
of hundreds of milliseconds that are allowed to receive the write response (1 to 50 =
0.1 to 5.0 seconds). If the write response is not received within this time, the
message aborts with the output argument equal to 55. If the number is not within
the range 1 to 50, the output argument equals 14, and the transfer does not take
place.

The write data from the module output buffer written to the remote device starting
at word 0 and filling as many words as specified by the element length of the
message.

Upon return from the CALL, the output argument specifies the status of the
message instruction. Table 12.6 defines the output argument.

IMPORTANT The offset will be twice of what is expected. For example, if an
offset of 3 was PUSHed, the data will be written to the remote
DH485 data file beginning at element 6.

Table 12.5 Valid Length Range

File Type Valid Length Range
ASC(N) 1 to 40

ASC(S) 1 to 40

ASC(C) 1 to 13

ASC(T) 1 to 13

ASC(B) 1 to 40

ASC(R) 1 to 13
Publication 1746-RM001A-US-P

12-20 Output Functions
This CALL is implemented as a Protected Typed Logical Write with two address
fields.

Table 12.6 Output Argument

Decimal
Output

Hexadecimal
Output

Description

0 00 Successful Completion.

2 02 Target node cannot accept the message at this time.

3 03 Target node cannot respond because message is too large.

4 04 Target node cannot respond because it does not
understand the command parameters.

5 05 module is off-line (not on link).

6 06 Target node cannot respond because requested function is
not available.

7 07 Target node does not respond.

10 0A module detects illegal target node address.

11 0B module detects illegal file number.

12 0C module detects illegal target file element offset.

13 0D module detects illegal target file length.

14 0E module detects illegal time-out value.

16 10 Target node cannot respond because of incorrect command
parameters or unsupported command.

55 37 Message timed out (time-out value exceeded).

80 50 Target node is out of memory.

96 60 Target node cannot respond because file is protected.

231 E7 Target node cannot respond because length requested is
too large.

235 EB Target node cannot respond because target node denies
access.

236 EC Target node cannot respond because requested function is
currently unavailable.

241 F1 module detects illegal target file type.

250 FA Target node cannot respond because another node is file
owner (has sole file access).

251 FB Target node cannot respond because another node is
program owner (has sole access to all files).
Publication 1746-RM001A-US-P

Output Functions 12-21
Syntax

PUSH [remote device node address]
PUSH [remote device file number]
PUSH [remote device file type]
PUSH [starting element offset (x2) of remote device file]
PUSH [number of elements to be transferred]
PUSH [message time-out value]
CALL 91
POP [status of message instruction]

Example

>1 REM EXAMPLE PROGRAM
>10 PUSH 1 : REM REMOTE NODE ADDRESS = 1
>20 PUSH 7 : REM REMOTE FILE 7
>30 PUSH ASC(N) : REM FILE TYPE = INTEGER
>40 PUSH 0 : REM OFFSET = 0
>50 PUSH 10: REM WORD LENGTH = 10
>60 PUSH 5 : REM THE TIME-OUT VALUE = 0.5 SECOND
>70 CALL 91 : REM WRITE DATA FROM OUTPUT BUFFER
>80 POP R : REM GET THE OUTPUT ARGUMENT
>90 IF R<>0 PRINT “READ ERROR CODE =”,R

READY
>RUN

READ ERROR CODE = 5

READY
>

Publication 1746-RM001A-US-P

12-22 Output Functions
CALL 93 – Write Output
Buffer to Remote DH485
Common Interface File

Purpose

Use CALL 93 to write up to 40 words starting at word 0 of the module output
buffer to the remote DH485 Common Interface File at the designated node
address, starting at the designated word offset. This routine has four input
arguments and one output argument.

The first input argument is the node address of the remote device (0 to 31). If the
number is not within the range 0 to 31, then the output argument equals 10, and
the write message does not take place.

The second input argument is the starting word offset within the file on the remote
device (0 to 32767). If the number is not within the range (0 to 32767), then the
output argument equals 12, and the transfer does not take place.

The third input argument is the number of words to be transferred. If the number
is not within the range specified below, then the output argument equals 13, and
the transfer does not take place.

The fourth input argument is the message time-out value. This value is the number
of hundreds of milliseconds that are allowed to receive the write response (1 to 50 =
0.1 to 5.0 seconds). If the write response is not received within this time, the
message aborts with the output argument equal to 55. If the number is not within
the range 1 to 50, the output argument equals 14, and the transfer does not take
place.

The data from the module output buffer starting at word 0 is written to the remote
common interface file starting at the specified word, and filling as many words as
specified by the word length of the message.

Upon return from the CALL, the output argument specifies the status of the
message instruction. Table 12.7 the output argument.

IMPORTANT The offset will be twice of what is expected. For example, if an
offset of 3 was PUSHed, the data will be written to the remote
DH485 data file beginning at element 6.
Publication 1746-RM001A-US-P

Output Functions 12-23
Syntax

PUSH [remote device node address]
PUSH [starting element offset (x2) of remote device file]
PUSH [number of words to be transferred]
PUSH [message time-out value]
CALL 93
POP [status of message instruction]

Table 12.7 Output Argument

Decimal
Output

Hexadecimal
Output

Description

0 00 Successful Completion.

2 02 Target node cannot accept the message at this time.

3 03 Target node cannot respond because message is too large.

4 04 Target node cannot respond because it does not understand
the command parameters.

5 05 module is off-line (not on link).

6 06 Target node cannot respond because requested function is
not available.

7 07 Target node does not respond.

10 0A module detects illegal target node address.

11 0B module detects illegal file number.

12 0C module detects illegal target file element offset.

13 0D module detects illegal target file length.

14 0E module detects illegal time-out value.

16 10 Target node cannot respond because of incorrect command
parameters or unsupported command.

55 37 Message timed out (time-out value exceeded).

80 50 Target node is out of memory.

96 60 Target node cannot respond because file is protected.

231 E7 Target node cannot respond because length requested is too
large.

235 EB Target node cannot respond because target node denies
access.

236 EC Target node cannot respond because requested function is
currently unavailable.

241 F1 module detects illegal target file type.

250 FA Target node cannot respond because another node is file
owner (has sole file access).

251 FB Target node cannot respond because another node is
program owner (has sole access to all files).
Publication 1746-RM001A-US-P

12-24 Output Functions
Example

>1 REM EXAMPLE PROGRAM
>30 PUSH 1 : REM REMOTE NODE ADDRESS = 1
>40 PUSH 0 : REM OFFSET = 0
>50 PUSH 10 : REM WORDLENGTH = 10
>60 PUSH 5 : REM THE TIME-OUT VALUE = 0.5 SECONDS
>70 CALL 93 : REM WRITE DATA FROM BASIC OUTPUT BUFFER
>80 POP R : REM GET THE OUTPUT ARGUMENT
>90 IF R<>0 THEN PRINT READ ERROR CODE = ”,R

READY
>RUN

READ ERROR CODE = 5

READY
>

CALL 94 – Display
Current PRT1 Port Setup

Purpose

Use CALL 94 to display the current PRT1 port configuration on the program port
terminal screen. No arguments are PUSHed or POPped.

Syntax

CALL 94

Example

>CALL 94

19200 Baud
Hardware Handshaking OFF
1 Stop Bit(s)
No Parity
8 Bits/Char
Xon/Xoff

CALL 96 – Clear PRT1
Input/Output Buffers

Purpose

Use CALL 96 to clear port PRT1 input and output buffers. Use the following
PUSHes to clear the corresponding buffer:

• PUSH 0 to clear the output buffer

• PUSH 1 to clear the input buffer

• PUSH 2 to clear both buffers
Publication 1746-RM001A-US-P

Output Functions 12-25
Syntax

PUSH [buffer selection]
CALL 96

Example

>1 REM EXAMPLE PROGRAM
>10 PUSH 0 : CALL 96 : REM CLEAR PRT1 OUTPUT BUFFER

READY
>

CALL 112 – User LED
Control

Purpose

Use CALL 112 to activate or de-activate the user LEDs (LED1 and LED2). Two
inputs arguments are required and no output arguments. The first input argument
activates or de-activates LED1. The second input argument activates or de-activates
LED2. An input argument of one activates the LED. An input argument of zero
deactivates the LED. Any other value has no effect on that particular LED.

Syntax

PUSH [LED1 state]
PUSH [LED2 state]
CALL 112

IMPORTANT If port PRT1 is configured for DH485 protocol, this CALL has
no effect.

NOTE When you change to Command mode, the user-defined LEDs
remain in their last state until you execute another CALL112.
Publication 1746-RM001A-US-P

12-26 Output Functions
Example

>1 REM EXAMPLE PROGRAM
>100 PUSH 1 : REM TURN ON LED1
>110 PUSH 0 : REM TURN OFF LED2
>120 CALL 112 : REM SET THE LEDS

READY
>RUN

READY
>

CALL 114 – Transmit DF1
Packet

Purpose

Use CALL 114 to transmit the DF1 data packet. This routine has no input
arguments and no output arguments. When CALL 114 is performed, the DF1 data
is posted for the DF1 driver to transmit as a single message packet. If half-duplex
slave operation is selected, the message packet is transmitted the next time an
ENQuiry is received from the DF1 master. If full-duplex operation is selected, the
message packet is transmitted immediately.

Use one or more PRINT#, PH0.#, or PH1.# statements to construct the desired
data in the transmit buffer of port PRT2. After constructing the data in the
transmit buffer, use CALL 114 to initiate transmission of the data inside a DF1
message packet.

Caution must be exercised when building DF1 data packets. If an attempt is made
to transmit five or less bytes of data (minimum is six bytes), the message ERROR:

DF1 DATA PACKET TO TRANSMIT IS TOO SMALL is sent to the program port and
the module enters Command mode.

If an attempt is made to place more than 256 bytes of data into the transmit buffer,
the message ERROR: BUFFER OVERFLOW is sent to the program port and the
module enters Command mode.

The user’s program must wait for one transmission to complete before construction
of another data packet may be performed. Use CALL 115 to check the DF1
transmission status to determine when a transmission is complete.

Syntax

CALL 114
Publication 1746-RM001A-US-P

Output Functions 12-27
Example

>1 REM EXAMPLE PROGRAM
>10 CALL 114
>20 END

CALL 115 – Check DF1
XMIT Status

Purpose

Use CALL 115 to check the DF1 transmit status. This routine has no input
arguments and one output argument. The output argument returns a value that
represents the DF1 transmit status. The possible DF1 transmit status values are
shown below:

• 0 - No transmit result pending

• 1 - Transmit result pending

• 2 - Transmission successful

• 3 - Transmission failed

• 4 - Enquiry timeout, no transmission

• 5 - If modem handshaking is selected, either a loss of CTS signal while
transmitting or a fatal transmitter failure has occurred. If no handshaking is
selected, a fatal transmitter failure has occurred.

• 6 - If modem handshaking with constant carrier has been selected for either
half–duplex or full–duplex modes, this error indicates transmission failure due
to modem disconnection (DCD signal loss for more than 10 seconds).

• 7 - DF1 driver is not enabled.

Syntax

CALL 113
POP [DF1 transmit status]

Example

>1 REM EXAMPLE PROGRAM
>10 CALL 113
>20 POP X
>30 END

IMPORTANT Transmit status value 4 should never be returned if full-duplex
mode is selected.
Publication 1746-RM001A-US-P

12-28 Output Functions
CALL 123 – Write to
Remote DF1 PLC Data
File

Purpose

Use CALL 123 to write up to 64 words of data from the CPU output image file,
the CPU M0 file, and/or a string within the module to a remote DF1 node
(PLC-2®, -3®, or -5).

The following table lists specific notes when using CALL 123 with the PLC-3 and
PLC-5.

If an internal string is chosen, the first character (transaction number) is
incremented upon a successful write transaction to inform the module that string
data was written to the PLC. The value of the transaction number wraps around
from 255 to 0.

The DF1 port parameters are set up with CALL 108. The DF1 port can operate
with either full-duplex or half-duplex slave protocol.

Execute CALL 123 once to set up the data transfer parameters. Input and output
image bits (word 0, bit 11) for the slot containing the module, are used to initiate
and notify completion of the transfer. The operation is described below:

1.1.1.1. The SLC processor builds the data buffer and sets output file word 0, bit 11 to
inform the module that valid data is available.

2.2.2.2. The module transfers the data into the destination PLC data file.

Table 12.8 PLC Application Notes

PLC Notes
-3 For timers and counters, the file number PUSHed (third parameter) is the

structure number, limited to a maximum of 255 words.

Input and output files cannot be accessed with this CALL. Choosing these
file types will cause a 2 (bad input parameter) to be POPped.

-5 For timer data, an element is three 16-bit words, stored in the source file in
the following order: Control, Preset, and Accumulator.

Output File
Word 0, Bit 11

SLC Processor SLC Backplane BASIC or BASIC-T Module

PLCDF1 NetworkBASIC or BASIC-T Module

PORT PRT2 DATA FILE
Publication 1746-RM001A-US-P

Output Functions 12-29
3.3.3.3. The module places the status of the transaction in input file word 1, bits 0-7.

4.4.4.4. The module sets the input file word 0, bit 11 to inform the SLC processor that
the data was transmitted, and that the status of the transfer is valid.

5.5.5.5. The SLC retrieves the status and resets output file word 0, bit 11. The data
buffer can be reused by the SLC processor.

6.6.6.6. The module resets the input file word 0, bit 11 on the same end of scan cycle
in which the output file word 0, bit 11 was reset.

This CALL is active until it is re-executed with different input parameters.

This CALL has ten input arguments and one output argument.

The first input argument is the type of PLC WRITE command issued:

• 0 - Disable the previously executed CALL

• 2 - Common interface file - PLC-2 unprotected WRITE command

• 3 - PLC-3 file - word range WRITE command

• 5 - PLC-5 file - typed WRITE command

Input File Word 1
 Bits 0 through 7

SLC Processor SLC Backplane BASIC or BASIC-T Module

Input File
Word 0, Bit 11

SLC Processor SLC Backplane BASIC or BASIC-T Module

Output File
Word 0, Bit 11

SLC Processor SLC Backplane BASIC or BASIC-T Module

Reset Input File
Word 0, Bit 11

SLC Processor SLC Backplane BASIC or BASIC-T Module
Publication 1746-RM001A-US-P

12-30 Output Functions
The second input argument is the decimal node address of the PLC remote device
(0 through 254). If the number is not within this range, the status equals 2 and the
write message does not occur.

The third input argument is the file number to be written to on the PLC remote
device (0 through 255). If the number is not within this range, the status equals 2
and the write message does not occur. The parameter is PUSHed, but ignored, if
the common interface file is chosen in the first parameter.

The fourth input argument is the destination file type on the remote device. This
number is ignored if the common interface file is chosen in the first parameter
(assumes integer file). If the file type code is not one of these shown below, the
status equals 2 and the write message does not take place.

The fifth input argument is the starting word offset within the file on the PLC-2
remote device (0 through 32766). For PLC-3 integer, binary, or status files, the
value is 0-9999 (decimal). For PLC-3 I/O files, the value is 0-4095 (decimal). For
PLC-3 timer or counter files the value is 0. If the number is not within this range,
the status equals 2 and the transfer does not occur.

The sixth input argument is the number of elements to be transferred. If the
number is not within the range shown below, the status equals 2 and the transfer
does not occur.

Table 12.9 File Type Written to the Remote Device

File Type File Type Code Words/Element (1 word = 16 bits)
Integer File ASC(N) 1 word/element

Status File ASC(S) 1 word/element

Counter File ASC(C) 3 words/element

Timer File ASC(T) 3 words/element

Bit File ASC(B) 1 word/element

Control File ASC(R) 3 words/element

Input File ASC(I) 1 word/element

Output File ASC(O) 1 word/element

Table 12.10 Valid Element Length Range

File Type Code Valid Element Length Range
ASC(N) 1 to 64

ASC(S) 1 to 64

ASC(C) 1 to 21

ASC(T) 1 to 21

ASC(B) 1 to 64

ASC(R) 1 to 21

ASC(I) 1 to 64

ASC(O) 1 to 64

Common Interface File 1 to 64
Publication 1746-RM001A-US-P

Output Functions 12-31
The seventh input argument is the message time-out value. This value (1 through
255) corresponds to the number of hundreds of milliseconds that are allowed to
receive the write response (0.1 through 25.5 seconds). If the write response is not
received within this time, the message aborts with the status equal to 55 in the
input file word 1, bits 0-7. If the time-out value is not within the range (1 through
255), the POPped status equals 2 and the transfer does not take place.

The eighth input argument is the selection of the source CPU output image file,
CPU M0 file, or the internal string:

• 0 - CPU output image file

• 1 - CPU M0 file

• 2 - Internal string

If you chose internal string (2), CALL 29 can be executed to initiate each data
transfer without requiring SLC processor interaction. The output file word 0, bit
11 will also initiate a string transaction.

The ninth input argument is the word offset within the CPU file. This offset
points to the first word of the data. If you chose the CPU output image file (0), the
offset cannot be 0 since this word is reserved for the data transfer handshaking bits.
The offset for the internal string is always one. The first character of the string
(transaction number at location 0) is incremented on every successful transfer to
inform the module that the data was transferred. The value of the transaction
number wraps around from 255 to 0.

The tenth input argument is the string number. If the eighth input argument does
not select internal string usage, the value of this input argument is ignored but
must still be PUSHed.

The output argument is the validation of the CALL. It has the following values:

• 0 - Successful

• 1 - Disabled

• 2 - Bad input parameter

• 3 - DF1 not enabled

• 4 - String too small

• 5 - String is not dimensioned

To disable this CALL, a zero must be PUSHed into the first input parameter. All
other parameters are ignored but must still be PUSHed.

Whenever an attempt is made to write to a remote packet, the module places the
status of the write into the input word 0, bits 0-7. The possible status codes are
shown below. This status is valid when the module sets the input file word 0, bit
11.
Publication 1746-RM001A-US-P

12-32 Output Functions
Table 12.11 Transaction Status Codes

Code Indicates
0 Transfer OK.

1 Transmission failed.

2 Enquiry timeout.

3 With handshaking selected – either a loss of CTS signal while transmitting
or a fatal transmitter failure occurred.

Without handshaking selected – a fatal transmitter failure occurred.

4 Transmission failure due to modem disconnection (DCD signal loss for more
than 10 seconds) if modem handshaking with constant carrier is selected.

5 DF1 driver is not enabled.

6 Message timed out.

81 Illegal command or format.

82 Host has a problem and will not communicate.

83 Remote station host is not there, disconnected, or shut down.

84 Host could not complete function due to hardware fault.

85 Addressing problem or memory protect rungs.

86 Function disallowed due to command protection selection.

87 Processor is in Program mode.

88 Compatibility mode file missing or communication zone problem.

89 Remote station cannot buffer command.

8B Remote station problem due to download.

8C Local station cannot execute command due to active IPBs.

C1 Illegal address format - field has an illegal value.

C2 Illegal address format - not enough fields specified.

C3 Illegal address format - too many fields specified.

C4 Illegal address format - symbol not found.

C5 Illegal address format - symbol is 0 or greater than the maximum number of
characters supported by this device.

C6 Illegal address - address does not exist or does not point to something
usable in this command.

C7 Illegal size - file is wrong size; address is past end of file.

C8 Cannot complete request.

C9 Data or file is too large.

CA Request is too large; transaction size plus word address is too large.

CB Access denied, privilege violation.

CC Resource is not available; condition cannot be generated.

CD Resource is already available; condition already exists.

CE Command cannot be executed.

CF Overflow; histogram overflow.

D0 No access.

D1 Illegal data type information.

D2 Invalid parameter; invalid data in search or command block.
Publication 1746-RM001A-US-P

Output Functions 12-33
Syntax

PUSH [type of PLC WRITE command]

PUSH [remote PLC node address]

PUSH [file number of remote PLC]

PUSH [file type on remote PLC]

PUSH [starting word offset on remote PLC]

PUSH [number of elements to be transferred]

PUSH [message time-out value]

PUSH [selection of source file]

PUSH [word offset within source file]

PUSH [string number]

CALL 123

POP [CALL 123 status]

D3 Address reference exists to deleted area.

D4 Command execution failure for unknown reason; PLC-3 histogram overflow.

D5 Data conversion error.

D6 The scanner is not able to communicate with a 1771 chassis adapter.

D7 The adapter is not able to communicate with the module.

D8 The 1771 module response was not valid.

D9 Duplicated label.

DA File is open - another station owns it.

DB Another station is the program owner.

Table 12.11 Transaction Status Codes

Code Indicates
Publication 1746-RM001A-US-P

12-34 Output Functions
Example

>1 REM EXAMPLE PROGRAM
>10 REM ENABLE DF1 PLC REMOTE WRITE COMMAND
>20 PUSH 5 : REM PLC-5 FILE
>30 PUSH 0 : REM PLC-5 NODE ADDRESS
>40 PUSH 7 : REM PLC-5 FILE NUMBER
>50 PUSH ASC(N) : REM PLC-5 FILE TYPE
>60 PUSH 0 : REM STARTING WORD OFFSET FOR PLC-5
>70 PUSH 20 : REM NUMBER OF WORDS TO TRANSFER
>80 PUSH 10 : REM COMMAND TIME-OUT VALUE (X100MS)
>90 PUSH 1 : REM USE M0 FILE
>100 PUSH 0 : REM OFFSET WITHIN M0 FILE
>110 PUSH 0 : REM STRING NUMBER - NOT APPLICABLE FOR THIS

EXAMPLE
>120 CALL 123
>130 POP S : REM STATUS OF THE CALL
>140 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 123 SETUP”

0000
I:2

0

O:1

11
OSR
B3:0

0

COP
Copy File
Source #N7:0
Dest #M0:1.0
Length 20

L
O:1

11

0001
I:1

11

NEQ
Not Equal
Source A I:1.1
 ?
Source B 0
 ?

MOV
Move
Source I:1.1
 ?
Dest N7:22
 ?

L
O:3

0

U
O:1

11

0002 END

Input switch to send data to the PLC-5.

CALL 123 Command Request Bit

Buffer Status Byte if Non-zero

Command Failed Indication

CALL 123 Command Request Bit

CALL 123 Command Sent Bit
Publication 1746-RM001A-US-P

Output Functions 12-35
PRINT Purpose

Use the PRINT statement to direct the module to output a value to the console
device. You may print the value of expressions, strings, literal values, variables or
text strings. You may combine the various forms in the print list by separating them
with commas. If the list is terminated with a comma, the carriage return/line feed is
suppressed. P. is a shorthand notation for PRINT.

Values are printed next to one another with two intervening blanks. A PRINT
statement with no arguments sends a carriage return/line feed sequence to the
console device.

Syntax

PRINT

Example

>PRINT 10*10,3*3
100 9

>PRINT ”1746–BAS”
1746–BAS

>PRINT 5,1E3
5 1000

The symbols @ and # can be used to direct the print output to ports PRT1 and
PRT2 respectively.

IMPORTANT The BASIC Interpreter terminates the printing of a string if it
encounters a NULL (0), or CR (13) character. If you want to
print strings containing these values, print the characters
individually inside of a loop construct. To suppress the CR LF in
the PRINT instruction, use a trailing comma. Example: print A,

IMPORTANT You must ensure that buffer space is available anytime that you
are printing data out of the serial port using hardware
handshaking or software handshaking (Xon/Xoff). Failure to do
so causes the BASIC program to stop executing while awaiting
buffer space. When space is available in the buffer, the module
resumes execution from the point at where it left off. The output
buffer of each port is capable of holding 256 characters. See
descriptions of CALLs 36, 37, 95, and 96 for more information.
Publication 1746-RM001A-US-P

12-36 Output Functions
Use the PRINT CR expression to output a carriage return without a line feed.

>1 REM EXAMPLE PROGRAM
>10 PRINT “A”, CR,
>20 PRINT “B”

READY
>RUN

B

READY
>

The A was printed and then overwritten by the B.

Use the PRINT SPC() expression to output a specified number of spaces.

>1 REM EXAMPLE PROGRAM
>10 PRINT “A”, SPC(10), “B”

READY
>RUN

A B

Use the PRINT TAB() expression to output a specified number of tab characters.

>1 REM EXAMPLE PROGRAM
>10 PRINT “A”, TAB(1), “B”

READY
>RUN

A B

Use the PRINT USING(Fx) expression to output all numeric values in scientific
notation. The x represents the total number of digits of the mantissa that are
displayed. One digit is displayed before the decimal point. The value of x is a
minimum of three and a maximum of eight. The value displayed is adjusted
according to these limits.

>1 REM EXAMPLE PROGRAM
>10 PRINT USING(F4), 123.45678

READY
>RUN

1.234 E+2

Use the PRINT USING(#.#) expression to output all numeric values in decimal
notation according to the format specified by the instruction.
Publication 1746-RM001A-US-P

Output Functions 12-37
>1 REM EXAMPLE PROGRAM
>10 PRINT USING(###.##),
>20 PRINT 4.67890, 123.456
>30 PRINT .0123, .234
>40 PRINT 123.456, 2.1

READY
>RUN

4.67 123.45
0.01 0.23
123.45 2.10

READY
>

Use the PRINT USING(0) expression to restore the default print mode if the
mode was altered by the PRINT USING(Fx) expression, or by the PRINT
USING(#.#) expression.

PH0., PH1. Purpose

Use the PH0. and PH1. statements to direct the module to output a hexadecimal
value to the console device. These statements function the same as the PRINT
statement except that the values are printed out in a hexadecimal format. The PH0.
statement suppresses two leading zeros if the number printed is less than 255
(0FFH). The PH1. statement always prints out four hexadecimal digits.

The character H is always printed after the number when PH0. or PH1. is used to
direct an output. The values printed are always truncated integers. If the number
printed is not within the range of valid integer (example: is between 0 and 65535
[0FFFFH] inclusive), the module defaults to the normal mode of print. If this
happens no H prints out after the value. Since integers are entered in either decimal
or hexadecimal form, the statements PRINT, PH0., and PH1. can be used to
perform decimal to hexadecimal and hexadecimal to decimal conversion. All
comments that apply to the PRINT statement apply to the PH0. and PH1.
statements.

IMPORTANT You must ensure that buffer space is available anytime that you
are printing data out of the serial port using hardware
handshaking or software handshaking (Xon/Xoff). Failure to do
so causes the BASIC program to stop executing while awaiting
buffer space. When space is available in the buffer, the module
resumes execution from the point at where it left off. The output
buffer of each port is capable of holding 256 characters. See
descriptions of CALLs 36, 37, 95, and 96 for more information.
Publication 1746-RM001A-US-P

12-38 Output Functions
Syntax

PH0., PH1.

Example

>PH0.2*2
04H

>PH1.2*2
0004H

>PH0. 100
64H

>PH0. 1000
3E8H

>PH1. 1000
03E8H

>PH1. 3E8
3.0 E+8

>PH0. PI
03H

>

ST@ Purpose

Use the ST@ statement to store module floating point numbers to a specified
address. The expression [expr] following the ST@ statement specifies the address
where the number is stored in RAM. The ST@ statement takes the value on the
top of the argument stack and stores it in RAM at the address location specified by
[expr].

This statement can be used with CALL 77 to store variables to a protected area of
memory. This protected area is not zeroed on powerup or when the RUN
command is issued.

Syntax

ST@ [expr]

Example

>P. MTOP
24515
Publication 1746-RM001A-US-P

Output Functions 12-39
P. MTOP-10*6
24455

>PUSH 24455 : CALL 77

>P. MTOP
24455

>1 REM EXAMPLE PROGRAM
>5 DIM A(10),B(10)
>10 REM *** ARRAY SAVE ***
>20 FOR I = 0 TO 9
>30 A(I) = I+20
>40 PUSH A(I) : REM PUT NUMBER ON STACK
>50 ST@ 5FFFH–I*6
>60 NEXT I
>70 REM *** GET ARRAY ***
>80 FOR I = 0 TO 9
>90 LD@ 5FFFH–I*6
>100 POP B(I) : REM GET NUMBER FROM STACK
>110 PRINT B(I)
>120 NEXT I

READY
>RUN

20
21
22
23
24
25
26
27
28
29

READY
>PUSH 5FFFH : CALL 77

>P. MTOP
24575
Publication 1746-RM001A-US-P

12-40 Output Functions
Publication 1746-RM001A-US-P

Chapter 13

Input Functions

This chapter describes and illustrates commands that allow the BASIC or BASIC-T
module to read input data from its external ports within the BASIC program or
from the command line. Table 13.1 lists the corresponding mnemonics.

Table 13.1 Chapter Reference Guide

If you need (to) Use this
mnemonic

Page

Transfer data from PRT1 or PRT2 to the SLC I/O or M files. CALL 22 13-2

Transfer data from a remote DH485 data file to the SLC
processor.

CALL 27 13-8

Handle all errors that are not handled by the ONERR statement. CALL 29 13-13

Get a numeric input character from port PRT2. CALL 35 13-15

Transfer the CPU output image buffer to the module input buffer. CALL 53 13-17

Transfer the CPU M0 file to the module input buffer. CALL 56 13-18

Transfer the DH485 interface file to the module input buffer. CALL 84 13-19

Read remote DH485 data file to the BASIC input buffer. CALL 90 13-20

Read remote DH485 interface file to the module input buffer. CALL 92 13-23

Get the DF1 packet length. CALL 117 13-25

Allow unsolicited writes from a remote SLC or PLC node. CALL 118 13-26

Read a PLC data file. CALL 122 13-30

Read the console input device. GET 13-38

Read the console input device connected to PRT2. GET# 13-38

Read the console input device connected to PRT1. GET@ 13-38

Read a line of characters from the program port buffer. INPL 13-39

Read a line of characters from the port PRT2 buffer. INPL# 13-39

Read a line of characters from the port PRT1 buffer. INPL@ 13-39

Read a string of characters from the program port buffer. INPS 13-40

Read a string of characters from the port PRT2 buffer. INPS# 13-40

Read a string of characters from the port PRT1 buffer. INPS@ 13-40

Input a string or variable. INPUT 13-40

Input a string or variable from port PRT2. INPUT# 13-40

Input a string or variable from port PRT1. INPUT@ 13-40

Load a variable. LD@ 13-43

READ data in the data statement. READ 13-45
1 Publication 1746-RM001A-US-P

13-2 Input Functions
CALL 22 – Transfer Data
from Port 1 or 2 to the
CPU Files

Purpose

Use CALL 22 to transfer data from the module serial ports directly to the CPU
input data file, CPU M1 file and/or an internal string within the module. During
data transfer, data is automatically transferred in 8-bit blocks from the input buffer
of the selected port to the selected SLC processor buffer and/or BASIC internal
string for storage. The transfer occurs when the specified number of characters are
detected in the input buffer of the port or the user-defined delimiter is received in
the port. The data is stored either low byte first, then high byte, or high byte first,
then low byte within the 16-bit word of the destination. Data is transferred on
word boundaries. If an odd number of bytes are to be transferred, the unused byte
contains a zero.

The byte swap selection (low byte first, then high byte, or high byte first, then low
byte) of the last CALL 22 or CALL 23 executed determines the data packing
method for all ports enabled by CALL 22.

The low byte of the first word of the destination file contains the character count
(byte count) of the data being transferred. If a delimiter is found, the byte count is
expanded to include the first occurrence of the delimiter. The second word of the
destination file contains the first two characters of data.

If an internal string is chosen, the first character of the string contains the byte
count. The second character of the internal string is a transaction number and is
incremented to inform the module that new data is in the string. The value of this
character wraps around from 255 to 0. The third character of the string contains
the first data character.

Execute CALL 22 to set up the data transfer parameters. After the CALL is
executed, the module gets data from the port and transfers it to the destination file.
Input and output image file bits (word 0, bits 8 and 9) for the slot containing the
module, are used to initiate and notify completion of the transfer. The operation is
described below:

1.1.1.1. When data is available from the port, the module automatically transfers the
data into the destination buffer. This same port is checked for data at the end
of each line of BASIC code.

SLC Processor SLC Backplane BASIC or BASIC-T Module

External Device
RS-232, RS-422, or
RS-485 Network

DESTINATION
BUFFER

PORT PRT1

PORT PRT2
Publication 1746-RM001A-US-P

Input Functions 13-3
2.2.2.2. The module places the byte count of the valid data into the lower byte of the
first available word of the destination buffer. The upper byte of the first
available word is not used.

3.3.3.3. The module sets the input file word 0, bit 8 or bit 9 to inform the SLC
processor that valid data is available. Bit 8 indicates that data is available from
port 1 and bit 9 indicates that data is available from port 2.

4.4.4.4. The ladder logic program of the SLC processor gets the data from the file. The
ladder logic program sets the output file word 0, bit 8 or bit 9 to inform the
module that data was received.

5.5.5.5. The module resets the input file word 0, bit 8 or bit 9 on the same end of scan
cycle in which the output file word 0, bit 8 or bit 9 was set.

SLC Processor Input
Data file or M1 File

SLC Backplane BASIC or BASIC-T Module

DATA

BYTE
COUNT

SLC Processor Input
Data file or M1 File

SLC Backplane BASIC or BASIC-T Module

DATA

BYTE
COUNT

PORT PRT1

PORT PRT1

SLC Processor SLC Backplane BASIC or BASIC-T Module

PORT PRT1

PORT PRT1

Output File
Word 0, Bit 8 or

Bit 9 is set

SLC Processor SLC Backplane BASIC or BASIC-T Module

PORT PRT1

PORT PRT1

Reset Input File
Word 0, Bit 8 or

Bit 9
Publication 1746-RM001A-US-P

13-4 Input Functions
6.6.6.6. The ladder logic program of the SLC resets output file word 0, bit 8 or bit 9.
The module can begin loading the destination buffer with the next packet as
data arrives from the port.

Data transfers continue until the CALL for the port is re-executed with different
input parameters. If this occurs, the previous CALL 22 for the port is automatically
disabled and the new CALL 22 takes effect. Multiple CALL 22s for the same port
are not executed in parallel. However, port 1 and port 2 can be activated
simultaneously by issuing separate CALL 22s.

This CALL has seven input arguments and one output argument.

The first input argument is the source port number (1 or 2) of the module. A zero
disables all previously active CALL 22 commands.

• 0 - Disable CALL 22 for all active ports enabled by earlier CALL 22s.

• 1 - Port 1 is source.

• 2 - Port 2 is source.

The second input argument is the maximum number of 8-bit characters to be
copied from the BASIC serial port to the destination file. The maximum number
of characters is selected by the fourth input argument:

• CPU input image file: maximum characters - 10 (5 words)

• CPU M1 file: maximum characters - 126 (63 words)

• Internal string: maximum characters - string size-3 (The first character is the
byte count value; the second character is the incremented transaction number;
and the last character is the terminating character. The maximum number of
characters for an internal string is 254.)

If less than the maximum is acquired when a delimiter character is received, the
packet including the delimiter is sent to the CPU file. The SLC processor
determines the amount of valid data transferred into the destination file from the
byte count placed into the lower byte of the first word of the file.

If the data received exceeds the string length or CPU file size, the remaining data is
truncated.

SLC Processor SLC Backplane BASIC or BASIC-T Module

PORT PRT1

PORT PRT1

Reset Output File
Word 0, Bit 8 or

Bit 9
Publication 1746-RM001A-US-P

Input Functions 13-5
The third input argument is the decimal value of the ASCII character delimiter.
Any valid ASCII character can be chosen. If no delimiter is desired, enter a NULL
value (0 decimal). The data will be transferred to the destination buffer when the
delimiter is received from the selected port regardless of the number of characters
received.

The fourth input argument is the selection of the destination CPU input image file
with or without the internal string, the CPU M1 file with or without the internal
string, or the internal string alone:

• 0 - CPU input image file

• 1 - CPU M1 file

• 2 - CPU input image file and internal string

• 3 - CPU M1 file and internal string

• 4 - Internal string only

When transferring data to the internal string of the module, check your transaction
number for string updates because there is no indication that data has been placed
in the internal string. Your BASIC program must check the transaction number to
verify that the data was updated.

The fifth input argument is the word offset within the destination CPU file. If the
CPU input data file is chosen, this offset must not be 0 or 1, since word 0 and 1 are
reserved. Zero is reserved for data transfer handshaking bits and word 1 is reserved
for the transaction status. A 0 or 1 will cause a CALL status of 2 to be POPped.
This offset points to the buffer location of the byte count. If the M1 file is chosen,
the offset can be zero. If the internal string is chosen, data placement always begins
with the third character of the string. (The first character contains the byte count
and the second character contains the transaction number.) Therefore, the offset
value has no effect on string data placement, only on input image file and M1 file
data placement.

The sixth input argument is the string number. If the fourth input argument does
not select internal string usage, the value of this input argument is ignored but
must still be PUSHed.

The seventh input argument is the byte swap selection. It has the following values:

• 0 - Data bytes transferred from the BASIC port are not swapped when passed
to the destination. The data packing order is low byte first, then high byte per
word. The low byte of the first word in the destination file contains the byte
count.

• 1 - Data bytes transferred from the BASIC port are swapped when passed to
the destination. The data packing order is high byte first, then low byte per
word. Swapping does not affect the first word. The low byte of the first word
still contains the byte count.
Publication 1746-RM001A-US-P

13-6 Input Functions
The last CALL 22 or CALL 23 executed determines the byte swap option for all
active CALL 22 commands previously executed.

The output argument is the status of the CALL. It has the following values:

• 0 - Successful setup

• 1 - Disabled

• 2 - Bad input parameter

• 3 - PRT2 is chosen but it is already enabled for DF1 protocol. Transfer is not
executed.

• 4 - String too small

• 5 - String is not dimensioned

If data is being received into the serial port faster than the SLC processor is
retrieving data, the input buffer of the port fills up. If you use handshaking
between the port and the external device, no data is lost.

Syntax

PUSH [source port number]

PUSH [maximum number of characters to be transferred]

PUSH [decimal value of character delimiter]

PUSH [selection of destination file and/or string]

PUSH [word offset within the destination file]

PUSH [string number]

PUSH [byte swap selection]

CALL 22

POP [CALL 22 status]
Publication 1746-RM001A-US-P

Input Functions 13-7
Example

>1 REM EXAMPLE PROGRAM
>10 REM ENABLE CALL 22 INTERRUPTS
>20 PUSH 1 : REM PRT1 ACTIVE FOR CALL 22
>30 PUSH 10 : REM RECEIVING 10 BYTES OF DATA MAXIMUM
>40 PUSH 13 : REM <CR> USED AS TERMINATION CHARACTER

(13 DECIMAL)
>50 PUSH 1 : REM SEND DATA TO M1 FILE
>60 PUSH 0 : REM OFFSET INTO M1 FILE
>70 PUSH 0 : REM STRING NUMBER - NOT USED
>80 PUSH 1 : REM BYTE SWAPPING ENABLED
>90 CALL 22
>100 POP S : REM STATUS OF CALL 22 SETUP
>110 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 22 SETUP”
>120 END

Below is a sample ladder logic program for CALL 22. The module is located in slot
1 of the SLC chassis. At rung 0000, copy data from the M1 file when the
handshake bit (I:1.0/8) is set by the module. The SLC sets handshake bit (O:1.0/8)
once the data has been copied out of the M1 file. This informs the module to turn
off (I:1.0/8). The first word of the M1 file contains the byte count and this word is
not included in the data byte count. A maximum of 10 bytes of data is expected in
this example.

0000
I:1

8

COP
Copy File
Source #M1:1.0
Dest #N7:0
Length 6

L
O:1

8

0001 END

Handshake Bit from
Module to SLC Processor

Handshake Bit from
SLC Processor to Module
Publication 1746-RM001A-US-P

13-8 Input Functions
CALL 27 – Read Remote
DH485 SLC Data File

Purpose

Use CALL 27 to read up to 64 words of data from a remote DH485 node data file
to the local CPU input image file, the CPU M1 file, and/or a string within the
module.

If an internal string is chosen, the first character is incremented to inform the
module that new data is in the string. The value of this character wraps around
from 255 to 0.

Execute CALL 27 once to set up the data transfer parameters. Input and output
image bits (word 0, bit 10) for the slot containing the module, are used to initiate
and notify completion of the transfer. The module sends the READ command
configured in CALL 27 to the designated remote DH485 device on the network.
The operation is described below:

1.1.1.1. The local SLC processor sets the output file word 0, bit 10 to inform the
module that the READ command configured in CALL 27 should be executed.

2.2.2.2. The module automatically issues the appropriate READ command to the
remote device on the DH485 network. The data and status are sent back to the
local SLC processor.

3.3.3.3. When data is available, the module transfers the data into the local SLC
destination buffer.

SLC Processor SLC Backplane BASIC or BASIC-T Module

Output File
Word 0, Bit 10

SLC Processor SLC Backplane BASIC or BASIC-T Module DH485 Network Remote Device

READ Command

Data and Status

PORT DH485

SLC Processor SLC Backplane BASIC or BASIC-T Module

DESTINATION
BUFFER
Publication 1746-RM001A-US-P

Input Functions 13-9
4.4.4.4. The module places the status in the input file word 1, bits 0-7.

5.5.5.5. The module sets the input file word 0, bit 10 to inform the SLC processor that
valid data is available.

6.6.6.6. The local SLC retrieves the data and status from the buffer and then resets
output file word 0, bit 10 to inform the module that data was received.

7.7.7.7. The module resets the input file word 0, bit 10 on the same end of scan cycle
in which the output file word 0, bit 10 was reset.

The SLC processor must not set, then reset, the output file word 0, bit 10 on the
same ladder logic scan cycle. If this occurs, the module may miss the bit being set.

This CALL is active until it is re-executed with different input parameters.

This CALL has ten input arguments and one output argument.

SLC Processor SLC Backplane BASIC or BASIC-T Module

Status Input File
Word 1

Bits 7 through 10

SLC Processor SLC Backplane BASIC or BASIC-T Module

Input File
Word 0, Bit 10

SLC Processor SLC Backplane BASIC or BASIC-T Module

Reset Output File
Word 0, Bit 10

SLC Processor SLC Backplane BASIC or BASIC-T Module

Reset Input File
Word 0, Bit 10
Publication 1746-RM001A-US-P

13-10 Input Functions
The first input argument is the type of SLC READ command issued:

• 0 - Disable the previously executed CALL 27

• 1 - Common Interface File Read

• 2 - SLC Typed Read

The second input argument is the node address of the SLC remote device (0
through 31). If the number is not within this range, the status equals 2 and the read
message does not occur.

The third input argument is the file number on the SLC remote device (0 through
255). If the number is not within this range, the status equals 2 and the read
message does not occur. The parameter is ignored if the Common Interface File
(CIF) is chosen in the first parameter. The CIF is always file 9.

The fourth input argument is the file type to be read from the remote device. This
number is ignored if the CIF is chosen in the first parameter (assumes integer file).
If the file type is not one of these listed below, the status equals 2 and the read
message does not take place. Enter the file type code as shown below when you
PUSH the fourth input parameter.

The fifth input argument is the starting word offset within the file on the remote
device (0 through 32766). If the number is not within this range, the status equals
2 and the transfer does not occur. (The SLC 500 processor only supports 0 through
255 words per file.)

The sixth input argument is the number of words to be transferred. If the number
is not within the range shown, the status equals 2 and the transfer does not occur.
SLC 5/01 and SLC 5/02 processors support transfers up to 41 words maximum.

Table 13.2 File Type to be Read from Remote Device

File Type File Type Code Words/Element
Integer File ASC(N) 1 word/element

Counter File ASC(C) 3 words/element

Timer File ASC(T) 3 words/element

Bit File ASC(B) 1 word/element

Control File ASC(R) 3 words/element

Table 13.3 Valid Length Range

File Type Code Valid Length Range
ASC(N) 1 to 64

ASC(C) 1 to 21

ASC(T) 1 to 21

ASC(B) 1 to 64

ASC(R) 1 to 21

Common Interface File 1 to 64
Publication 1746-RM001A-US-P

Input Functions 13-11
The seventh input argument is the message time-out value. This value (1 through
255) corresponds to the number of hundreds of milliseconds that are allowed to
receive the read response (0.1 through 25.5 seconds). If the read response is not
received within this time, the message aborts with the status equal to 55 in the
input file word 1, bits 0 through 7. If the time-out value is not within the range (1
through 255), the POPped status equals 2 and the transfer does not take place.

The eighth input argument is the selection of the destination file and/or string:

• 0 - CPU input image file

• 1 - CPU M1 file

• 2 - Internal string

• 3 - CPU input image file and internal string

• 4 - CPU M1 file and internal string

If you chose internal string (2), CALL 29 can be executed to initiate each data
transfer without requiring SLC processor interaction. The output file word 0, bit
10 will also initiate a string transaction.

The ninth input argument is the word offset within the destination CPU file. This
offset points to the first word transferred. The offset for the internal string is always
1 (the transaction number at location 0) followed by the data. The transaction
number is incremented upon every data transfer and wraps around from 255 to 0.

If the CPU input image file is chosen, this offset must not be 0 or 1. Zero is
reserved for data transfer handshaking bits and word 1 is reserved for the
transaction status. A 0 or 1 causes an error to be POPped (2 - bad input parameter)
and the CALL is not executed.

The tenth input argument is the string number. If the eighth input argument does
not select internal string usage, the value of this input argument is ignored but
must still be PUSHed.

The output argument is the status of the CALL. It has the following values:

• 0 - Successful

• 1 - Disabled

• 2 - Bad input parameter

• 3 - Port DH485 not enabled (DF1 enabled)

• 4 - String is too small

• 5 - String is not dimensioned

To disable this CALL, a 0 must be PUSHed into the first input parameter. All other
parameters are ignored but must still be PUSHed.
Publication 1746-RM001A-US-P

13-12 Input Functions
Whenever an attempt is made to read a remote packet, the status of the read is
placed into input word 1, bits 0 through 7. These values have the same definition
as the values POPped in CALL 92. The status becomes valid when the module sets
the input file word 0, bit 10.

Syntax

PUSH [type of READ command]

PUSH [remote node address]

PUSH [remote file number]

PUSH [remote file type]

PUSH [starting word offset of remote file]

PUSH [number of words to be transferred]

PUSH [message time-out value]

PUSH [selection of destination file]

PUSH [word offset within destination file]

PUSH [string number]

CALL 27

POP [CALL 27 status]

Example

>1 REM EXAMPLE PROGRAM
>10 REM ENABLE REMOTE DH485 READ COMMAND INTERRUPT
>20 PUSH 2 : REM SLC TYPED READ COMMAND
>30 PUSH 2 : REM NODE ADDRESS OF REMOTE SLC
>40 PUSH 7 : REM FILE NUMBER OF REMOTE SLC
>50 PUSH ASC(N) : REM FILE TYPE OF REMOTE SLC
>60 PUSH 100 : REM REMOTE ELEMENT OFFSET INTO REMOTE SLC FILE
>70 PUSH 20 : REM NUMBER OF ELEMENTS TO BE TRANSFERRED
>80 PUSH 5 : REM MESSAGE TIMEOUT (X100MS)
>90 PUSH 1 : REM DESTINATION FILE TO PUT DATA (M1 FILE)
>100 PUSH 0 : REM WORD OFFSET INTO DESTINATION FILE
>110 PUSH 0 : REM STRING NUMBER - NOT AVAILABLE FOR THIS

EXAMPLE
>120 CALL 27
>130 POP S
>140 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 27 SETUP”
Publication 1746-RM001A-US-P

Input Functions 13-13
CALL 29 – Read/Write to
a PLC/SLC from the
Module Internal String

Purpose

Use CALL 29, in conjunction with CALLs 122 or 123, to communicate between
remote PLCs and the module internal string without local SLC processor
interaction. You can also use CALL 29, in conjunction with CALLs 27 or 28, to
communicate between remote SLCs and the module internal string without local
SLC processor interaction. CALLs 27, 28, 122, or 123 must be executed within the
BASIC program before CALL 29.

CALL 29 is active when the internal string is the only choice in CALLs 27, 28,
122, or 123. In this situation, it is not practical to use the SLC input and output
image files to begin the transfer and to pass the status. The SLC processor does not
need to be involved. If an SLC file is chosen instead, the local SLC processor
controls the transfer with the input and output image bits. In this instance, a status
of 255 is returned when CALL 29 is attempted.

One argument is PUSHed and one argument is POPped. The input argument is
the CALL to be activated (CALL 27, 28, 122, or 123).

0000
T4:0

DN
EN

DN

TON
Timer On Delay
Timer T4:0
Time Base 0.01
Preset 1000
Accum 0

0001
T4:0

DN

O:1

10
L

O:1

10

0002
EQU

Equal
Source A I:1.1

Source B 0

0

COP
Copy File
Source #M1:1.0
Dest #N10:20
Length 21

NEQ
Not Equal
Source A I:1.1

Source B 0

0 0

0

MOV
Move
Source I:1.1

Dest N10:20

L
O:3

0

U
O:1

10

0003
I:2.0

0

I:1.0

10

OSR
B3:0

0
U

O:3

0

0004 END

Initiate CALL 27 in the
module every 10 seconds via
timer T4:0.

CALL 27 Request Bit

Status OK Buffer Data if Status OK

Bad Command Status Buffer Status Byte if Non-zero

Command Failed Indication

CALL 27 Request Bit

Command Failed Indication
Reset Alarm P.B.
Publication 1746-RM001A-US-P

13-14 Input Functions
When CALL 29 is executed, the transfer is attempted. If the selected CALL (27,
28, 122, or 123) is not executed before CALL 29, a 1 is returned in the status
POPped. When CALL 29 is executed successfully, the value in the first character of
the string (transaction number) is incremented to designate that the transfer
occurred. The range of this character is 0 through 255.

After CALL 29 is executed, one word is POPped. This word is the status of the
transaction:

• 0 – Successful completion

• 1 – The chosen CALL (27, 28, 122, or 123) is not active

• 255 – SLC buffer is chosen for CALL 27, 28, 122, or 123 and CALL 29 is
ignored

• All other codes are identical to CALL 90/92

Syntax

PUSH [27, 28, 122, or 123 for the CALL you want activated]

CALL 29

POP [status of transaction]

Example

CALL 122 must be enabled with internal string only prior to executing CALL 29
in this example. Upon execution of CALL 29, an attempt is made to transfer one
element from integer file 10, starting at element 0 of the PLC-5 at node 3, to the
internal string $(1) of the module.

>1 REM EXAMPLE PROGRAM
>10 REM EXECUTE DF1 PLC REMOTE READ FROM INTERNAL
>20 REM STRING WITH NO SLC INTERVENTION
>21 REM SET UP CALL 122
>25 PUSH 5, 3, 10, ASC(N), 0, 10, 10, 1, 1, 1: CALL 122: POP
STATUS
>30 PUSH 122
>40 CALL 29
>50 POP S
>60 IF (S=1) THEN PRINT “CALL 122 NOT ACTIVE”
>70 IF (S=255) THEN PRINT “SLC FILE CHOSEN FOR CALL 122”
>80 IF (S=0) THEN PRINT “SUCCESSFUL TRANSFER”
>90 IF (S<>0) THEN PRINT “UNSUCCESSFUL TRANSFER”
>100 END

CALL 29 replaces the handshaking bit function in CALLs 27, 28, 122, and 123
when using an SLC file or module string.
Publication 1746-RM001A-US-P

Input Functions 13-15
CALL 35 – Get Numeric
Input Character from
PRT2

Purpose

Use CALL 35 to retrieve the current character in the 256 character input buffer of
port PRT2. It returns the decimal representation of the characters received as its
output argument. Port PRT2 receives data transmitted by your device and stores it
in this buffer. If there is no character, the output argument is a 0 (null). If there is a
character, the output argument is the ASCII value of that character. There is no
input argument for this routine.

Syntax

CALL 35
POP [ASCII value of character]

Examples

Example 1

>1 REM EXAMPLE PROGRAM
>10 CALL 35
>20 POP X
>30 IF X=0 THEN GOTO 10
>40 PRINT CHR(X)

READY
>RUN

A
READY
>

The above example assumes the PRT2 input buffer contains the ASCII character
A.

IMPORTANT A 0 (null) is a valid character in some communication protocols.
Use CALL 36 to determine the actual number of characters in the
buffer.

IMPORTANT Purge the buffer before storing data to ensure data validity.
Publication 1746-RM001A-US-P

13-16 Input Functions
Example 2

>1 REM EXAMPLE PROGRAM
>10 REM PERIPHERAL PORT INPUT USING CALL 35
>20 STRING 200,20
>30 DIM D(254)
>40 CALL 35 : POP X
>50 IF X <>2 GOTO 40
>55 REM WAIT FOR DEVICE TO SEND START OF TEXT
>60 REM
>70 DO
>80 I=I+1
>90 CALL 35 : POP D(I): REM STORE DATA IN ARRAY
>100 UNTIL D(I)=3 : REM WAIT FOR DEVICE TO SEND END OF TEXT
>120 REM
>130 REM FORMAT AND PRINT DATA TYPES
>140 PRINT “RAW DATA=”
>150 FOR J=1 TO I : PRINT D(J),: NEXT J
>155 REM PRINT RAW DECIMAL DATA
>160 PRINT: PRINT: PRINT
>170 PRINT “ASCII DATA=”
>180 FOR J=1 TO I : PRINT CHR(D(J)),:NEXT J
>185 REM PRINT ASCII DATA
>190 PRINT: PRINT: PRINT
>200 PRINT “$(1)=”
>210 FOR J=1 TO I: ASC($(1),J)=D(J): NEXT J
>215 REM STORE DATA IN STRING
>220 PRINT $(1)
>230 PRINT: PRINT: PRINT
>240 I=0
>250 REM
>260 GOTO 40

READY
>RUN

RAW DATA=
65 66 67 68 69 70 71 49 50 51 52 53 54 55 56 57 3

ASCII DATA=
ABCDEFG123456789

$(1)=
ABCDEFG123456789
Publication 1746-RM001A-US-P

Input Functions 13-17
CALL 53 – Transfer CPU
Output Image to BASIC
Input Buffer

Purpose

Use CALL 53 to transfer words 0 to 7 of the CPU output image table to words 200
to 207 of the module input buffer. This routine has no input arguments and one
output argument. The output argument is the status of the Logic Processor. It can
have one of the following values:

• 0 – Logic processor is in the Run mode

• 1 – Logic processor is not in the Run mode

Word integrity is guaranteed during this transfer. File integrity is not. Handshaking
bits can be used in your application program to provide file integrity.

All data transferred to the module from the SLC 500 processor must be routed
through the module input buffer. Table 13.4 lists the definition of the addresses in
the module input buffer.

Syntax

CALL 53
POP [processor status]

Example

>1 REM EXAMPLE PROGRAM
>30 CALL 53 : REM XFER CPU OUTPUT IMAGE TO BASIC INPUT BUFFER
>40 POP X : REM LOGIC PROCESSOR STATUS
>50 IF (X<>0) THEN PRINT “PROCESSOR NOT IN RUN MODE”

READY
>RUN

Table 13.4 Module Input Buffer Addresses

Address Definition
0 to 39 Data transferred from the DH485 common interface file.

40 to 99 Reserved

100 to 163 Data transferred from the SLC 500 CPU module M0 file.

164 to 199 Reserved

200 to 207 Data transferred from the SLC 500 CPU output image table.
Publication 1746-RM001A-US-P

13-18 Input Functions
CALL 56 – Transfer CPU
M0 File to BASIC Input
Buffer

Purpose

Use CALL 56 to transfer up to 64 words starting at word 0 of the CPU M0 file to
the module input buffer starting at word 100. This routine has one input argument
and one output argument. The input argument is the number of words to be
transferred (0 to 64). If the number is not within the range 0 to 64, no transfer
occurs, and the output argument sets to 10. If the input argument is valid number,
the output argument is the status of the Logic Processor. It can have one of the
following values:

• 0 – Successful Transfer, Logic Processor in Run mode

• 1 – Successful Transfer, Logic Processor in Program mode

• 2 – Successful Transfer, Logic Processor in Test mode

• 10 – Illegal length specified

• 11 – Logic Processor does not support this capability

Word integrity is guaranteed during this transfer. File integrity is not. Handshaking
bits can be used in your application program to provide file integrity.

Syntax

PUSH [number of words to be transferred]
CALL 56
POP [processor status]

Example

>1 REM EXAMPLE PROGRAM
>30 PUSH 64 : REM TRANSFER 64 WORDS
>40 CALL 56 : REM TRANSFER M0 TO BASIC INPUT BUFFER
>50 POP X : REM LOGIC PROCESSOR STATUS IS IN X
>60 IF (X=10) PRINT “ILLEGAL INPUT ARGUMENT”
>70 IF (X<>0).AND.(X<>10) THEN PRINT “PROCESSOR NOT IN RUN

MODE”

READY
>RUN
Publication 1746-RM001A-US-P

Input Functions 13-19
CALL 84 – Transfer
DH485 Interface File to
BASIC Input Buffer

Purpose

Use CALL 84 to transfer up to 40 words starting at the designated offset of the
DH485 Common Interface File to the module input buffer starting at the same
designated offset from word 0. This routine has two input arguments and one
output argument. The first input argument is the starting offset in the DH485
Common Interface File and the module input buffer (0 to 39). If the number is not
within the range 0 to 39, the output argument equals 1, and the transfer does not
take place. The second input argument is the length in words to be transferred (1 to
40). If the number of words is not within the range 1 to 40, the output argument
equals 2, and the transfer does not take place.

• 0 – Successful transfer

• 1 – Illegal starting offset

• 2 – Illegal length

Word integrity is guaranteed during this transfer. File integrity is not. Handshaking
bits can be used in your application program to provide file integrity.

Syntax

PUSH [starting word offset in DH485 interface file]
PUSH [number of words to be transferred]
CALL 84
POP [transfer status]

Example

>1 REM EXAMPLE PROGRAM
>40 PUSH 0 : REM OFFSET ADDRESS = 0
>50 PUSH 32 : REM WORD OFFSET = 32
>60 CALL 84 : REM TRANSFER THE DATA TO THE BASIC INPUT BUFFER
>70 POP R : REM GET THE OUTPUT ARGUMENT
>80 IF (R<>0) THEN PRINT “TRANSFER ERROR CODE = ”,R : REM

PRINT ERROR

READY
>RUN

READY
>

Publication 1746-RM001A-US-P

13-20 Input Functions
CALL 90 – Read Remote
DH485 Data File to
BASIC Input Buffer

Purpose

Use CALL 90 to read up to 40 words from the designated node address, file
number, file type, and element offset of a remote DH485 data file to the module
input buffer starting at word 0. This routine has six input arguments and one
output argument.

The first input argument is the node address of the remote device (0 to 31). If the
number is not within the range 0 to 31, then the output argument equals 10, and
the read message does not take place.

The second input argument is the file number on the remote device (0 to 255). If
the number is not within the range 0 to 255, then the output argument equals 11,
and the read message does not take place.

The third input argument is the file type read from the remote device. Valid file
type codes are ASC(N), ASC(S), ASC(C), ASC(T), ASC(B), and ASC(R). If the
file type is not one of these valid types, then the output argument equals 241, and
the read message does not take place.

The fourth input argument is the starting element offset within the file on the
remote device (0 to 32767). If the number is not within the range 0 to 32767, then
the output argument equals 12, and the transfer does not take place.

The fifth input argument is the number of elements to be transferred. If the
number is not within the valid length range specified in Table 13.6, then the
output argument equals 13, and the transfer does not take place.

Table 13.5 File Type to be Read from Remote Device

File Type File Type Code Words/Element
Integer File ASC(N) 1 word/element

Status File ASC(S) 1 word/element

Counter File ASC(C) 3 words/element

Timer File ASC(T) 3 words/element

Bit File ASC(B) 1 word/element

Control File ASC(R) 3 words/element

IMPORTANT The offset will be twice of what is expected. For example, if an
offset of 3 was PUSHed, the data will be written to the remote
DH485 data file beginning at element 6.
Publication 1746-RM001A-US-P

Input Functions 13-21
The sixth input argument is the message time-out value. This value is the number
of hundreds of milliseconds that are allowed to receive the read response (1 to 50 -
0.1 to 5.0 seconds). If the read response is not received within this time, the
message aborts with the output argument equal to 55. If the number is not within
the range 1 to 50, the output argument equals 14, and the transfer does not take
place.

The read data from the remote device is read into the module input buffers starting
at word 0 and filling as many words as specified by the element length of the
message.

The output argument specifies the status of the message instruction. Upon return
from the CALL, the output argument has the following definition.

Table 13.6 Valid Length Range

File Type Code Valid Length Range
ASC(N) 1 to 40

ASC(S) 1 to 40

ASC(C) 1 to 13

ASC(T) 1 to 13

ASC(B) 1 to 40

ASC(R) 1 to 13

Table 13.7 Output Argument

Decimal
Output

Hexadecimal
Output

Description

0 00 Successful Completion.

2 02 Target node cannot accept the message at this time.

3 03 Target node cannot respond because message is too large.

4 04 Target node cannot respond because it does not understand
the command parameters.

5 05 module is off-line (not on link).

6 06 Target node cannot respond because requested function is
not available.

7 07 Target node does not respond.

10 0A module detects illegal target node address.

11 0B module detects illegal file number.

12 0C module detects illegal target file element offset.

13 0D module detects illegal target file length.

14 0E module detects illegal time-out value.

16 10 Target node cannot respond because of incorrect command
parameters or unsupported command.

55 37 Message timed out (time-out value exceeded).

80 50 Target node is out of memory.

96 60 Target node cannot respond because file is protected.
Publication 1746-RM001A-US-P

13-22 Input Functions
Syntax

PUSH [remote device node address]
PUSH [remote device file number]
PUSH [remote device file type]
PUSH [starting element offset (x2) of remote device file]
PUSH [number of elements to be transferred]
PUSH [message time-out value]
CALL 90
POP [status of message instruction]

Example

>1 REM EXAMPLE PROGRAM
>10 PUSH 1 : REM REMOTE NODE ADDRESS = 1
>20 PUSH 5 : REM REMOTE FILE 5
>30 PUSH ASC(C) : REM FILE TYPE = COUNTER
>40 PUSH 0 : REM OFFSET = 0
>50 PUSH 10 : REM ELEMENT LENGTH = 10 = 30 WORDS
>60 PUSH 5 : REM TIMEOUT = 0.5 SECONDS
>70 CALL 90
>80 POP R : REM GET THE OUTPUT ARGUMENT
>90 IF (R<>0) THEN PRINT “READ ERROR CODE =”,R

READY
>RUN

READ ERROR CODE = 5

231 E7 Target node cannot respond because length requested is too
large.

235 EB Target node cannot respond because target node denies
access.

236 EC Target node cannot respond because requested function is
currently unavailable.

241 F1 module detects illegal target file type.

250 FA Target node cannot respond because another node is file
owner (has sole file access).

251 FB Target node cannot respond because another node is
program owner (has sole access to all files).

Table 13.7 Output Argument

Decimal
Output

Hexadecimal
Output

Description
Publication 1746-RM001A-US-P

Input Functions 13-23
CALL 92 – Read Remote
DH485 Common
Interface File to BASIC
Input Buffer

Purpose

Use CALL 92 to read up to 40 words from the remote DH485 Common Interface
File of the designated node address, starting at the designated word offset to the
module input buffer starting at word 0. This routine has four input arguments and
one output argument.

The first input argument is the node address of the remote device (0 to 31). If the
number is not within the range 0 to 31, then the output argument equals 10, and
the read message does not take place.

The second input argument is the starting word offset within the file on the remote
device (0 to 32767). If the number is not within the range 0 to 32767, then the
output argument equals 12, and the transfer does not take place.

The third input argument is the number of words to be transferred. If the number
is not within the range (1 to 40), then the output argument equals 13, and the
transfer does not take place.

The fourth input argument is the message time-out value. This value is the number
of hundreds of milliseconds that are allowed to receive the read response (1 to 50 -
0.1 to 5.0 seconds). If the read response is not received within this time, the
message aborts with the output argument equal to 55. If the number is not within
the range 1 to 50, the output argument equals 14, and the transfer does not take
place.

The read data from the remote device is read into the module input buffer starting
at word 0 and filling as many words as specified by the word length of the message.

Upon return from the CALL, the output argument specifies the status of the
message instruction. Table 13.8 defines the output arguments.

IMPORTANT The offset will be twice of what is expected. For example, if an
offset of 3 was PUSHed, the data will be written to the remote
DH485 data file beginning at element 6.
Publication 1746-RM001A-US-P

13-24 Input Functions
Syntax

PUSH [remote device node address]
PUSH [starting element offset (x2) of remote device file]
PUSH [number of words to be transferred]
PUSH [message time-out value]
CALL 92
POP [status of message instruction]

Table 13.8 Output Argument

Decimal
Output

Hexadecimal
Output

Description

0 00 Successful Completion.

2 02 Target node cannot accept the message at this time.

3 03 Target node cannot respond because message is too large.

4 04 Target node cannot respond because it does not understand
the command parameters.

5 05 module is off-line (not on link).

6 06 Target node cannot respond because requested function is
not available.

7 07 Target node does not respond.

10 0A module detects illegal target node address.

11 0B module detects illegal file number.

12 0C module detects illegal target file element offset.

13 0D module detects illegal target file length.

14 0E module detects illegal time-out value.

16 10 Target node cannot respond because of incorrect command
parameters or unsupported command.

55 37 Message timed out (time-out value exceeded).

80 50 Target node is out of memory.

96 60 Target node cannot respond because file is protected.

231 E7 Target node cannot respond because length requested is too
large.

235 EB Target node cannot respond because target node denies
access.

236 EC Target node cannot respond because requested function is
currently unavailable.

241 F1 module detects illegal target file type.

250 FA Target node cannot respond because another node is file
owner (has sole file access).

251 FB Target node cannot respond because another node is
program owner (has sole access to all files).
Publication 1746-RM001A-US-P

Input Functions 13-25
Example

>1 REM EXAMPLE PROGRAM
>30 PUSH 1 : REM REMOTE NODE ADDRESS = 1
>40 PUSH 0 : REM OFFSET = 0
>50 PUSH 10 : REM WORD LENGTH = 10
>60 PUSH 5 REM TIME-OUT VALUE = 0.5 SECONDS
>70 CALL 92
>80 POP R : REM GET THE OUTPUT ARGUMENT
>90 IF (R<>0) THEN PRINT “READ ERROR CODE IS”,R : REM PRINT

ERROR

READY
>RUN

READ ERROR CODE IS 5

CALL 117 – Get DF1
Packet Length

Purpose

Use CALL 117 to get the length of the DF1 data packet. This routine has no input
arguments and one output argument. The output argument returns the length of
the oldest DF1 packet queued up in the DF1 receive buffer.
.

When CALL 117 is read in a program, the module checks to see if DF1
communications has been enabled through CALL 108. If DF1 communications
have not been enabled, an error message is printed to the console device and the
module enters Command mode.

After the length of the DF1 packet has been retrieved, it must be used in
conjunction with the GET statement to retrieve the data in the received DF1
packet.

Syntax

CALL 117
POP [length of DF1 packet]

Example

>1 REM EXAMPLE PROGRAM
>10 CALL 117
>20 POP X
>30 END

IMPORTANT If the receive buffer is found empty, then 0000 is returned to the
argument stack.
Publication 1746-RM001A-US-P

13-26 Input Functions
CALL 118 – PLC/SLC
Unsolicited Writes

Purpose

Use CALL 118 to allow the module to receive data packets sent by PLC-2, PLC-3,
or PLC-5 message instructions on the DF1 network. This CALL also sets up the
module to receive data packets from an SLC node on the DH485 network. Both
the DF1 port (PRT2) and the DH485 port cannot be active at the same time.
Jumper JW4 on the module is used to select your port configuration.

Any write message instruction sent to the module from these PLC/SLCs cause the
data to be placed in an internal string within the CPU M1 file, the CPU input
image file and/or the module string, starting at the designated word offset.

The low byte of the first word of the destination file contains the character count
(byte count) of the transferred data. The high byte of this word is unused. If an
internal string is chosen, the first character contains the byte count. The second
character (transaction number) of the internal string is incremented, upon
successful receipt of a packet, to inform the module that new data is in the string.
The value of this transaction number wraps around from 255 to 0.

Execute CALL 118 once. After the CALL is executed, the module checks the port
at the end of each line of BASIC code. The module gets new data from the PLC or
SLC and transfers it as described below:

1.1.1.1. The module receives packets initiated from the PLC/SLC configured in the
CALL through either ports PRT2 or DH485. Both PRT2 and DH485 ports
cannot be active at the same time. Jumper JW4 is used to make this selection.

2.2.2.2. The module transfers the data into the local SLC destination buffer.

SLC Processor SLC BackplaneBASIC or BASIC-T Module

PORT PRT1

PORT PRT2

DF1 Network
PLC

SLC
DH485 Network

SLC Processor SLC Backplane BASIC or BASIC-T Module

DESTINATION
BUFFER
Publication 1746-RM001A-US-P

Input Functions 13-27
3.3.3.3. The module places the byte count into the lower byte of the first available
word of the destination buffer.

4.4.4.4. The module sets the input file word 0, bit 12 to inform the SLC processor that
valid data is available.

5.5.5.5. The SLC processor retrieves the data from the buffer and sets the output file
word 0, bit 12 to inform the module that data was received.

6.6.6.6. The module resets the input file word 0, bit 12 on the same end of scan cycle
in which the output file word 0, bit 12 was reset.

7.7.7.7. The SLC resets output file word 0, bit 12. The module can begin loading the
destination buffer with the next packet when it is received.

SLC Processor SLC Backplane BASIC or BASIC-T Module

DESTINATION
BUFFER

BYTE
COUNT

SLC Processor SLC Backplane BASIC or BASIC-T Module

Input File
Word 0, Bit 12

SLC Processor SLC Backplane BASIC or BASIC-T Module

Output File
Word 0, Bit 12

SLC Processor SLC Backplane BASIC or BASIC-T Module

Input File
Word 0, Bit 12

SLC Processor SLC Backplane BASIC or BASIC-T Module

Reset Output File
Word 0, Bit 12
Publication 1746-RM001A-US-P

13-28 Input Functions
The SLC processor must not set, then reset, the output file word 0, bit 12 on the
same ladder logic scan cycle. If this occurs, the module may miss the bit being set.

This CALL is active until it is re-executed with different input parameters. If this
occurs, the previous CALL 118 is automatically disabled and the new CALL 118
takes effect. Multiple CALL 118s are not executed in parallel.

This CALL has five input arguments and one output argument.

The first input argument enables or disables the CALL:

• 0 – Disable the previously executed CALL 118

• 1 – Enable the CALL. The following commands are acceptable:

–––– PLC (Unprotected writes)

–––– PLC (Word range writes)

–––– PLC (Typed writes)

–––– SLC 5/02 (Unprotected writes)

–––– SLC 5/02 (Typed writes)

If the data received exceeds the string length or CPU file size, the remaining data is
truncated.

The second input argument is the selection of the destination CPU input image
file with or without the internal string, the CPU M1 file with or without the
internal string, or the internal string alone:

• 0 – CPU input image file

• 1 – CPU M1 file

• 2 – Internal string

• 3 – CPU input image file and internal string

• 4 – CPU M1 file and internal string

If the internal string (2) is chosen, the input/output image data handshaking bits
(word 0, bit 12) are not used to indicate that data was received by the module. In
the BASIC program, you must monitor the second character of the string
(transaction number) which is incremented upon every successful data transfer.
Then you must remove the data from the string before the next data packet is
received or data will be lost.

The third input argument is the word offset within the destination CPU file. This
offset points to the first word which contains the byte count of the valid data that is
transferred. The offset for the internal string is always 2. The byte count is placed at
character location 0, and location 1 is a transaction number that is incremented
upon every successful packet completion.
Publication 1746-RM001A-US-P

Input Functions 13-29
If the DH485 port is used for data transfer, an offset of greater than 40 hex (64
decimal) words should not be used. Unsolicited write packets of greater than 64
causes a write to the DH485 program port buffer, leading to improper operation.
The size of the data packet can be up to the maximum for the input file selected.

If the CPU input image file is chosen as the destination, this offset must not be 0 or
1. Zero is a reserved word for the handshaking bits. Word 1 is reserved for the PLC
transaction number used with CALLs 27, 28, 122, and 123. A 0 or 1 causes an
error to be POPped (2 = bad input parameter) and the CALL is not executed.

The fourth input argument is the string number. If the second input argument
does not select internal string usage, the value of this input argument is ignored but
must still be PUSHed.

The fifth input argument is the maximum word length allowed for the data packet.
Any packets received by the module of greater size are rejected. Entering 0 causes
the module to accept packets of any size and all packets are received up to the
maximum length of the destination file. Excess data is truncated.

The output argument is the status of the CALL. It has the following values:

• 0 – Successful

• 1 – Disabled

• 2 – Bad input parameter

• 3 – Selected DH485/DF1 port not enabled

• 4 – String too small

• 5 – String is not dimensioned

Syntax

PUSH [CALL enable/disable]

PUSH [selection of destination file and/or string]

PUSH [word offset in destination file]

PUSH [string number]

PUSH [maximum word length]

CALL 118

POP [CALL 118 status]
Publication 1746-RM001A-US-P

13-30 Input Functions
Example

>1 REM EXAMPLE PROGRAM
>10 REM ENABLE PLC/SLC UNSOLICITED WRITE INTERRUPT
>20 PUSH 1 : REM ENABLE THE CALL
>30 PUSH 1 : REM DESTINATION SLC M1 FILE
>40 PUSH 0 : REM WORD OFFSET INTO M1 FILE
>50 PUSH 0 : REM STRING NUMBER - NOT USED
>60 PUSH 20 : REM MAX ALLOWED WORD LENGTH OF DATA PACKET
>70 CALL 118
>80 POP S
>90 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 118 SETUP”
>100 GOTO 100 : REM CALL 118 stays active while BASIC program is
running

Below is a sample ladder logic program for CALL 118. The module is located in
slot 1 of the SLC rack. Rung 0000 copies data from the M1 file when the
handshake bit (I:1.0/12) is set by the module. Rung 2:0 sets the handshake bit
(O:1.0/12) once the data has been copied out of the M1 file. This informs the
module to turn off I:1.0/12. The first word is the byte count. A maximum of 20
words of data is expected.

CALL 122 – Read Remote
DF1 PLC Data File

Purpose

Use CALL 122 to read up to 64 words of data from a remote DF1 node (PLC-2,
-3, or -5) to the CPU input image file, the CPU M1 file, and/or a string within the
module.

The following table lists specific notes when using CALL 122 with the PLC-3 and
PLC-5.

0000
I:1

12

COP
Copy File
Source #M1:1.0
Dest #N7:0
Length 21

L
O:1

12

0001 END

Handshake Bit from Module
to SLC Processor

Handshake Bit from SLC
Processor to Module

Table 13.9 PLC Application Notes

PLC Notes
-3 For timers and counters, the file number PUSHed (third parameter) is the

structure number, limited to a maximum of 255 words.

-5 For timer data, an element is three 16-bit words, stored in the destination
file in the following order: Control, Preset, and Accumulator.
Publication 1746-RM001A-US-P

Input Functions 13-31
If an internal string is chosen, the first character (transaction number) is
incremented upon a successful read transaction to inform the module that new
data is in the string. The value of the transaction number wraps around from 255
to 0.

The DF1 port parameters must be set up with CALL 108. The DF1 port can
operate with full-duplex or half-duplex slave protocol.

Execute CALL 122 once to set up the data transfer parameters. Input and output
image bits (word 0, bit 10) for the slot containing the module, are used to initiate
and notify completion of the transfer. The operation is described below:

1.1.1.1. The SLC processor sets the output file word 0, bit 10 to inform the module
that READ command configured in CALL 122 should be executed.

2.2.2.2. The module issues the appropriate READ command to the PLC. The data
and status are received from the PLC.

3.3.3.3. When data is available, the module transfers the data into the destination
buffer.

4.4.4.4. The module places the transaction status in the input word 1, bits 0-7.

SLC Processor SLC Backplane BASIC or BASIC-T Module

Output File
Word 0, Bit 12

PLCDF1 NetworkBASIC or BASIC-T Module

DATA FILE PORT PRT2

READ Command

Data and Status

SLC Processor SLC Backplane BASIC or BASIC-T Module

DESTINATION
BUFFER

SLC Processor SLC Backplane BASIC or BASIC-T Module

Input File
Word 1,

Bits 0 through 7
Publication 1746-RM001A-US-P

13-32 Input Functions
5.5.5.5. The module sets the input file word 0, bit 10 to inform the SLC processor that
valid data and status are available.

6.6.6.6. The SLC retrieves the data and status from the buffer and resets output file
word 0, bit 10 to inform the module that data was received.

7.7.7.7. The module resets the input file word 0, bit 10 on the same end of scan cycle
in which the output file word 0, bit 10 was reset.

The SLC processor must not set, then reset, the output file word 0, bit 10 on the
same ladder logic cycle. If this occurs, the module may miss the bit being set.

This CALL is active until it is re-executed with different input parameters.

This CALL has ten input arguments and one output argument.

The first input argument is the type of PLC READ command issued:

• 0 – Disable the previously executed CALL

• 2 – Common interface file - PLC-2 unprotected READ command

• 3 – PLC-3 file - word range READ command

• 5 – PLC-5 file - typed READ command

The second input argument is the node address of the remote PLC device (0
through 255). If the number is not within this range, the status equals 2 and the
read message does not occur.

SLC Processor SLC Backplane BASIC or BASIC-T Module

Input File
Word 0, Bit 10

SLC Processor SLC Backplane BASIC or BASIC-T Module

Reset Output File
Word 0, Bit 10

SLC Processor SLC Backplane BASIC or BASIC-T Module

Reset Input File
Word 0, Bit 10
Publication 1746-RM001A-US-P

Input Functions 13-33
The third input argument is the file number to be read on the PLC remote device
(0 through 255). If the number is not within this range, the status equals 2 and the
read message does not occur. The parameter is ignored if the common interface file
is chosen in the first parameter, but must still be PUSHed.

The fourth input argument is the file type to be read from the PLC remote device.
Enter the file type code as shown below. This argument is ignored if the common
interface file is chosen in the first parameter but must still be PUSHed (assumes
integer type). If the file type is not one of these, the status equals 2 and the read
message does not take place.

The fifth input argument is the starting word offset within the file on the PLC-2
remote device (0 through 32766). For PLC-3 integer, binary, or status files, the
value is 0-9999. For PLC-3 I/O files, the value is 0-4095. For PLC-3 timer or
counter files the value must be 0. If the number is not within this range, the status
equals 2 and the transfer does not occur.

The sixth input argument is the number of elements to be transferred. If the
number is not within the range shown, the status equals 2 and the transfer does not
occur.

Table 13.10 File Type to be Read from Remote Device

File Type File Type Code Words/Element (1 word = 16 bits)
Integer File ASC(N) 1 word/element

Status File ASC(S) 1 word/element

Counter File ASC(C) 3 words/element

Timer File ASC(T) 3 words/element

Bit File ASC(B) 1 word/element

Control File ASC(R) 3 words/element

Input File ASC(I) 1 word/element

Output File ASC(O) 1 word/element

Table 13.11 Valid Element Length Range

File Type Code Valid Element Length Range
ASC(N) 1 to 64

ASC(S) 1 to 64

ASC(C) 1 to 21

ASC(T) 1 to 21

ASC(B) 1 to 64

ASC(R) 1 to 21

ASC(I) 1 to 21

ASC(O) 1 to 21

Common Interface File 1 to 21
Publication 1746-RM001A-US-P

13-34 Input Functions
The seventh input argument is the message time-out value. This value (1 through
255) corresponds to the number of hundreds of milliseconds that are allowed to
receive the read response (0.1 through 25.5 seconds). If the read response is not
received within this time, the message aborts with the status equal to 55 in the
input file word 1, bits 0-7. If the time-out value is not within the range (1 through
255), the status POPped equals 2 and the transfer does not take place.

The eighth input argument is the selection of the destination CPU input image file
with or without the internal string, the CPU M1 file with or without the internal
string, or the internal string alone:

• 0 – CPU input image file

• 1 – CPU M1 file

• 2 – Internal string

• 3 – CPU input image file and internal string

• 4 – CPU M1 file and internal string

If you chose internal string (2), CALL 29 can be executed to initiate each data
transfer without requiring SLC processor interaction. The output file word 0, bit
10 will also initiate a string transaction.

The ninth input argument is the word offset within the destination CPU file. This
offset points to the first word transferred. The offset for the internal string is always
1. The first character (transaction number at location 0) is incremented on every
successful transfer, to inform the module that new data is in the string. The value of
the transaction number wraps around from 255 to 0.

If the CPU input image file is chosen, this offset must not be 0 or 1 because they
are reserved words. Zero is reserved for data transfer handshaking bits and word 1 is
reserved for the transaction status. A 0 or 1 causes an error to be POPped (2 - bad
input parameter) and the CALL is not executed.

If the data received exceeds the string length or CPU file size, the remaining data is
truncated.

The tenth input argument is the string number. If the eighth input argument does
not select internal string usage, the value of this input argument is ignored but
must still be PUSHed.
Publication 1746-RM001A-US-P

Input Functions 13-35
The output argument is the status of the CALL. It has the following values:

• 0 – Successful

• 1 – Disabled

• 2 – Bad input parameter

• 3 – DF1 not enabled

• 4 – String too small

• 5 – String is not dimensioned

To disable this CALL, a zero must be PUSHed into the first input parameter. All
other parameters are ignored but must still be PUSHed.

Whenever an attempt is made to read a remote node, the status of the read is placed
into the input word 1, bits 0-7. The possible status codes are shown in Table 13.12.

The status is valid when the module sets the input file word 0, bit 10.

Table 13.12 Transaction Status Codes

Code Indicates
0 Transfer OK.

1 Transmission failed.

2 Enquiry timeout.

3 With handshaking selected – either a loss of CTS signal while transmitting or a fatal
transmitter failure occurred.

Without handshaking selected – a fatal transmitter failure occurred.

4 Transmission failure due to modem disconnection (DCD signal loss for more than 10
seconds) if modem handshaking with constant carrier is selected.

5 DF1 driver is not enabled.

6 Message timed out.

81 Illegal command or format.

82 Host has a problem and will not communicate.

83 Remote station host is not there, disconnected, or shut down.

84 Host could not complete function due to hardware fault.

85 Addressing problem or memory protect rungs.

86 Function disallowed due to command protection selection.

87 Processor is in Program mode.

88 Compatibility mode file missing or communication zone problem.

89 Remote station cannot buffer command.

8B Remote station problem due to download.

8C Local station cannot execute command due to active IPBs.

C1 Illegal address format – field has an illegal value.

C2 Illegal address format – not enough fields specified.

C3 Illegal address format – too many fields specified.

C4 Illegal address format – symbol not found.
Publication 1746-RM001A-US-P

13-36 Input Functions
C5 Illegal address format – symbol is 0 or greater than the maximum number of
characters supported by this device.

C6 Illegal address – address does not exist or does not point to something usable in this
command.

C7 Illegal size – file is wrong size; address is past end of file.

C8 Cannot complete request.

C9 Data or file is too large.

CA Request is too large; transaction size plus word address is too large.

CB Access denied, privilege violation.

CC Resource is not available; condition cannot be generated.

CD Resource is already available; condition already exists.

CE Command cannot be executed.

CF Overflow; histogram overflow.

D0 No access.

D1 Illegal data type information.

D2 Invalid parameter; invalid data in search or command block.

D3 Address reference exists to deleted area.

D4 Command execution failure for unknown reason; PLC-3 histogram overflow.

D5 Data conversion error.

D6 The scanner is not able to communicate with a 1771 chassis adapter.

D7 The adapter is not able to communicate with the module.

D8 The 1771 module response was not valid.

D9 Duplicated label.

DA File is open – another station owns it.

DB Another station is the program owner.

Table 13.12 Transaction Status Codes

Code Indicates
Publication 1746-RM001A-US-P

Input Functions 13-37
Syntax

PUSH [type of PLC READ command]

PUSH [remote PLC node address]

PUSH [file number of remote PLC]

PUSH [file type on remote PLC]

PUSH [starting element offset on remote PLC]

PUSH [number of elements to be transferred]

PUSH [message time-out value]

PUSH [selection of destination file]

PUSH [word offset within destination file]

PUSH [string number]

CALL 122

POP [CALL 122 status]

Example

>1 REM EXAMPLE PROGRAM
>10 REM ENABLE DF1 PLC REMOTE READ COMMAND
>20 PUSH 5 : REM PLC-5 FILE
>30 PUSH 0 : REM NODE ADDRESS OF PLC-5
>40 PUSH 7 : REM FILE NUMBER OF PLC-5
>50 PUSH ASC(N) : REM FILE TYPE OF PLC-5
>60 PUSH 0 : REM STARTING WORD OFFSET OF PLC-5 FILE
>70 PUSH 20 : REM NUMBER OF DATA WORDS TO READ
>80 PUSH 10 : REM COMMAND TIME-OUT VALUE (X100MS)
>90 PUSH 1 : REM DESTINATION IS SLC M1 FILE
>100 PUSH 0 : REM WORD OFFSET WITHIN M1 FILE
>110 PUSH 0 : REM STRING NUMBER - NOT USED FOR THIS EXAMPLE
>120 CALL 122
>130 POP S : REM STATUS OF THE CALL
>140 IF (S<>0) THEN PRINT “UNSUCCESSFUL CALL 122 SETUP”
>150 GOTO 150 : REM CALL 122 is active while BASIC program is
running
Publication 1746-RM001A-US-P

13-38 Input Functions
GET Purpose

Use the GET operator in the Run mode. It returns a result of zero in the
Command mode. The GET operator reads the console input device. If a character
is available from the console device, the value of the character is assigned to GET.
After GET is read in the program, it is assigned the value of zero until another
character is sent from the console device.

Use the GET# operator to read port PRT2 and the GET@ operator to read port
PRT1. The following example prints the decimal representation of any character
sent from the console device.

0000
T4:0

DN
EN

DN

TON
Timer On Delay
Timer T4:0
Time Base 0.01
Preset 1000
Accum 0

0001
T4:0

DN

O:1

10
L

O:1

10

0002
I:1

10

EQU
Equal
Source A I:1.1
 0
Source B 0

COP
Copy File
Source #M1:1.0
Dest #N10:20
Length 20

NEQ
Not Equal
Source A I:1.1
 0
Source B 0

MOV
Move
Source I:1.1
 0
Dest N10:20
 0

L
O:3

0

U
O:1

10

0003
I:2

0
OSR
B3:0

0
U

O:3

0

0004 END

Buffer Data if Status OK

Initiate CALL 122 in the module
every 10 seconds via timer T4:0.

Buffer Status Byte if Non-zero

Reset alarm P.B.

CALL 122 Request Bit

CALL 122 Request Bit

Command Failed Indication

Command Failed Indication
Publication 1746-RM001A-US-P

Input Functions 13-39
Syntax

GET

Example

>1 REM EXAMPLE PROGRAM
>10 A = GET
>20 IF (A<>0) THEN PRIN T A : REM ZERO MEANS NO ENTRY
>30 GOTO 10
>RUN

65 [A]
49 [1]
24 [^X]
50 [2]

STOP - IN LINE 30
READY
>

The GET operator is read only once before it is assigned a value of zero. This
guarantees that the first character entered is always read, independent of where the
GET operator is placed in the program. There is no buffering of characters on the
program port.

INPL Purpose

Use the INPL statement to read an entire line (up to 254 characters) from program
port buffer. The line must be stored in a string variable. The INPL statement reads
all characters from the program port until a carriage return or the 254 character
limit is reached, whichever comes first. INPL does not echo characters read from
the program port.

Use the INPL# statement to read an entire line of characters from the PRT2 port
buffer. Use the INPL@ statement to read an entire line of characters from the
PRT1 port buffer. Both these statements function like the INPL statement.

Syntax

INPL string_variable
Publication 1746-RM001A-US-P

13-40 Input Functions
Example

>1 REM EXAMPLE PROGRAM
>10 STRING 270,254 : REM ONE STRING OF < 254 BYTES
>20 INPL $(0) : REM READ LINE FROM PROGRAM PORT
>30 PRINT# $(0) : REM ECHO STRING TO PORT PRT2

INPS Purpose

Use the INPS statement to read an entire string of characters from the program
port buffer. No characters are echoed. The INPS statement is preferred over
INPUT or INPL for communications because all ASCII characters may be
significant. INPUT is least desirable because input stops when a comma or a
carriage return is seen. INPL terminates when a carriage return is seen.

Use the INPS# statement to read an entire string of characters from the PRT2 port
buffer. Use the INPS@ statement to read an entire string of characters from the
PRT1 port buffer. Both these statements function like the INPS statement.

Syntax

INPS string_variable, number_of_characters

Example

>1 REM EXAMPLE PROGRAM
>100 PRINT, “TYPE P TO PROCEED OR S TO STOP”
>110 REM READ SINGLE CHARACTER FROM PROGRAM PORT
>120 INPS $(0),1
>130 IF ASC($(0),1)= ASC(P) GOTO 500
>140 IF ASC($(0),1)= ASC(S) GOTO 700
>150 GOTO 100

INPUT Purpose

Use the INPUT statement to enter data from the console device during program
execution. You may assign data to one or more variables with a single input
statement. You must separate the variables with a comma.

Use the INPUT# statement to input data from port PRT2. Use the INPUT@
statement to input data from port PRT1. Both these statements function like the
INPUT statement.
Publication 1746-RM001A-US-P

Input Functions 13-41
Syntax

INPUT

Examples

>INPUT A,C

>INPUT A,C causes a question mark (?) to print on the console device. This
prompts you to input two numbers separated by a comma. If you do not enter
enough data, the module prints TRY AGAIN on the console device.

>1 REM EXAMPLE PROGRAM
>10 INPUT A,C
>20 PRINT A,C
>RUN

?1

TRY AGAIN

?1,2
l 2

READY

You can write the INPUT statement so that a descriptive prompt tells you what to
enter. The message printed is placed in quotes after the INPUT statement. If a
comma appears before the first variable on the input list, the question mark prompt
character is not displayed.

>1 REM EXAMPLE PROGRAM
>10 INPUT “ENTER A NUMBER”A
>20 PRINT SQR(A)
>30 END

READY
>RUN

ENTER A NUMBER
?4

2

READY
>

>NEW

>1 REM EXAMPLE PROGRAM
>10 INPUT “ENTER A NUMBER - ”,A
>20 PRINT SQR(A)
>30 END

>RUN
Publication 1746-RM001A-US-P

13-42 Input Functions
ENTER A NUMBER - 25
5

READY
>

You can also assign strings with an INPUT statement. Strings are always
terminated with a carriage return (cr). If more than one string input is requested
with a single INPUT statement, the module prompts you with a question mark.

>1 REM EXAMPLE PROGRAM
>10 STRING 100,20
>20 INPUT “NAME(CR),AGE - ”,$(1),A
>30 PRINT “HELLO ”,$(1), “YOU ARE ”,A,“ YEARS OLD.”
>40 END

READY
>RUN

NAME(CR),AGE - PAM
?29
HELLO PAM YOU ARE 29 YEARS OLD.

READY
>

You can assign strings and variables with a single INPUT statement.

>1 REM EXAMPLE PROGRAM
>10 STRING 100,10
>20 INPUT “NAME(CR), AGE - ”,$(1),A
>30 PRINT “HELLO ”,$(1),“, YOU ARE ”, A,“ YEARS OLD”
>40 END
>RUN

NAME(CR),AGE - FRED
?15
HELLO FRED, YOU ARE 15 YEARS OLD

READY
>

Publication 1746-RM001A-US-P

Input Functions 13-43
LD@

Purpose

Use the LD@ statement to retrieve floating point numbers that were stored with a
ST@ statement. The expression [expr] following the LD@ statement specifies the
address where the number is stored after executing the LD@. The LD@ statement
places the number on the ARGUMENT STACK at the address location specified
by [expr].

This statement can be used with CALL 77 to retrieve variables from a protected
area of memory. This protected area is not zeroed on powerup or when the RUN
command is issued.

Syntax

LD@ [expr]

Example

>P. MTOP
24515

P. MTOP 10*6
24455

>PUSH 24455 : CALL 77

>1 REM EXAMPLE PROGRAM
>5 DIM A(10),B(10)
>10 REM *** ARRAY SAVE ***
>20 FOR I = 0 TO 9
>30 A(I) = I+20
>40 PUSH A(I) : REM PUT NUMBER ON STACK
>50 ST@ 5FFFH–I*6
>60 NEXT I
>70 REM *** GET ARRAY ***
>80 FOR I = 0 TO 9
>90 LD@ 5FFFH–I*6
>100 POP B(I) : REM GET NUMBER FROM STACK
>110 PRINT B(I)
>120 NEXT I0

IMPORTANT This instruction is not associated with any port designation.

IMPORTANT LD@ is not used with any port designation.
Publication 1746-RM001A-US-P

13-44 Input Functions
READY
>RUN

 20
21
22
23
24
25
26
27
28
29

READY
>PUSH 5FFFH : CALL 77

>P. MTOP
24575
Publication 1746-RM001A-US-P

Input Functions 13-45
READ Purpose

Use the READ statement to retrieve the expressions that are specified in the DATA
statement and assign the value of the expression to the variable in the READ
statement. The READ statement is always followed by one or more variables. If
more than one variable follows a READ statement, they are separated by a comma.

Syntax

READ

Example

>1 REM EXAMPLE PROGRAM
>10 FOR I = 1 TO 3
>20 READ A,C
>30 PRINT A,C
>40 NEXT I
>50 RESTORE
>60 READ A,C
>70 PRINT A,C
>80 DATA 10,20,10/2,20/2,SIN(PI),COS(PI)

READY
>RUN

10 20
5 10
0 -1
10 20

READY
>

Every time a READ statement is encountered the next consecutive expression in
the DATA statement is evaluated and assigned to the variable in the READ
statement. You can place DATA statements anywhere within a program. They are
not executed and do not cause an error. DATA statements are considered chained
together and appear as one large DATA statement. If at anytime all the data is read
and another READ statement is executed, the program terminates and the message
ERROR: NO DATA - IN LINE XX prints to the console device.
Publication 1746-RM001A-US-P

13-46 Input Functions
Publication 1746-RM001A-US-P

Chapter 14

Setup Functions

This chapter describes and illustrates commands used to set port parameters within
the BASIC program or from the command line. Table 14.1 lists the corresponding
mnemonics.

CALL 30 – Set PRT2 Port
Parameters

Purpose

Use CALL 30 to set the port parameters for port PRT2. Table 14.2 lists the PRT2
port parameters and their selections in the order they are PUSHed on the stack
before executing the CALL.

Syntax

PUSH [bits per word]
PUSH [parity enable]
PUSH [number of stop bits]
PUSH [software handshaking enable/disable]
PUSH [hardware handshaking enable/disable]
CALL 30

Table 14.1 Chapter Reference Guide

If you need (to) Use this mnemonic Page
Set the PRT2 port parameters. CALL 30 14-1

Set the program port baud rate. CALL 78 14-2

Reset the print head pointer. CALL 99 14-3

Reset port PRT1 to the default settings. CALL 105 14-4

Reset port PRT2 to the default settings. CALL 119 14-4

Set port parameters of ports PRT1, PRT2, and DH485. MODE 14-5

Table 14.2 PRT2 Port Parameters

PRT2 Port Parameters Selections
Bits per word 5, 6, 7, 8

Parity enable 0 = None, 1 = Odd, 2 = Even

Number of stop bits 1 = 1 Stop bit , 2 = 2 Stop bits , 3 = 1.5 Stop bits

Software handshaking 0 = None, 1 = XON-XOF

Hardware handshaking 0 = Disabled DCD, 1 = Enabled DCD
1 Publication 1746-RM001A-US-P

14-2 Setup Functions
Example

>1 REM EXAMPLE PROGRAM
>10 REM CALL 30 INPUT PARAMETERS:
>20 REM FIRST PUSH : 5, 6, 7, OR 8 (BITS/CHARACTER)
>30 REM SECOND PUSH : 0, 1, OR 2 (NO PARITY, ODD, OR EVEN)
>40 REM THIRD PUSH : 1, 2, OR 3 (1, 2, OR 1.5 STOP BITS)
>50 REM FOURTH PUSH: 0 OR 1 (SOFTWARE HANDSHAKING

DISABLE, ENABLED)
>60 REM FIFTH PUSH : 0 OR 1 (HARDWARE HANDSHAKING

DISABLED, ENABLED)
>70 REM PRT2 DEFAULT CONFIGURATION IS:
>80 REM 1200 BAUD, 8 BITS/CHAR, NO PARITY, 1 STOP BIT, AND
>90 REM SOFTWARE HANDSHAKING ENABLED
>100 PUSH 8 0,1,1,0 : CALL 30
>110 CALL 31

19200 Baud
Hardware Handshaking OFF
1 Stop Bit(s)
No Parity
8 Bits/Char
Xon/Xoff

>

CALL 78 – Set Program
Port Baud Rate

Purpose

Use CALL 78 to change the program port baud rate from its default value (1200
baud) to one of the following: 300, 600, 1200, 2400, 4800, 9600 or 19200 baud.
The default baud rate for the program port is 1200 baud if port PRT1 is
configured as the program port or 19200 baud if port DH485 is configured as the
program port. PUSH the desired baud rate and CALL 78. The program port
remains at this baud rate unless CALL 73 is invoked or the following conditions are
met:

• The battery is dead or has been removed.

• The battery-backup capacitor is discharged.

• The EEPROM is removed or not programmed.

• The power is cycled.

If this happens the baud rate defaults to 1200 baud.
Publication 1746-RM001A-US-P

Setup Functions 14-3
Syntax

PUSH [baud rate]
CALL 78

Example

>1 REM EXAMPLE PROGRAM
>10 PUSH 4800
>20 CALL 78

CALL 99 – Reset Print
Head Pointer

Purpose

Use CALL 99 to reset the internal print head character counter of your printer
when printing out wide forms. This CALL prevents the automatic CR/LF at
character 79. You must keep track of the characters in each line.

Syntax

CALL 99

Example

>10 REM EXAMPLE PROGRAM
>20 REM THIS PRINTS TIME BEYOND 80TH COLUMN
>30 PRINT TAB(79)
>40 CALL 99
>50 PRINT TAB(41), “TIME –”,
>60 PRINT H,“:”,M,“:”,S
>70 END
Publication 1746-RM001A-US-P

14-4 Setup Functions
CALL 105 – Reset PRT1 to
Default Settings

Purpose

Use CALL 105 to reset the port parameters of port PRT1 to their default settings.
Table 14.3 lists the default parameters for port PRT1.

Syntax

CALL 105

Example

>1 REM EXAMPLE PROGRAM
>10 CALL 105

CALL 119 – Reset PRT2 to
Default Settings

Purpose

Use CALL 119 to reset port parameters of PRT2 to their default settings. Table
14.4 lists the default port parameter settings for port PRT2.

Syntax

CALL 119

Example

>1 REM EXAMPLE PROGRAM
>10 CALL 119

Table 14.3 PRT1 Port Parameter Default Settings

PRT1 Port Parameters Default Setting
Baud rate 1200 baud

Number of data bits 8-bits

Number of stop bits 1-bit

Parity No parity

Handshaking Software handshaking

Table 14.4 PRT2 Port Parameter Default Settings

PRT2 Port Parameters Default Setting
Baud rate 1200 baud

Number of data bits 8-bits

Number of stop bits 1-bit

Parity No parity

Handshaking Software handshaking
Publication 1746-RM001A-US-P

Setup Functions 14-5
MODE Purpose

Use the MODE command to set the port parameters of ports PRT1, PRT2, and
DH485.

The module applies the following rules when hardware handshaking is enabled.
The module:

• does not transmit until CTS becomes active

• examines DSR following the receipt of a character. If the DSR is active, the
character is placed in the input queue. If DSR is inactive, the character is
assumed to be noise and is discarded.

IMPORTANT You must ensure that buffer space is available anytime that you
are printing data out of the serial port using hardware
handshaking or software handshaking (Xon/Xoff). Failure to do
so causes the BASIC program to stop executing while awaiting
buffer space. When space is available in the buffer, the module
resumes execution from the point where it left off. The output
buffer of each port is capable of holding 256 characters. See
descriptions of CALLs 36, 37, 95, and 96 for more information.

Table 14.5 PRT1 and PRT2 Port Parameters

Port Parameters Selections Default
Settings

Baud rate 300, 600, 1200, 2400, 4800, 9600, 19200 1200

arg1 (parity) None (N), Even (E), Odd (O) N

arg2 (number of data bits) 7 or 8 8

arg3 (number of stop bits) 1 or 2 1

arg4 (handshaking) No handshaking (N)
Software handshaking (S)
 Hardware handshaking (H)
Hardware and software handshaking (B)

S

arg5 (storage type) Store information in user ROM and RAM (E).
Store information in battery backed RAM (R).

R

IMPORTANT If any argument (other than port name and baud rate) is left
blank, then that argument defaults to the previously specified
value for that argument.
Publication 1746-RM001A-US-P

14-6 Setup Functions
Syntax

MODE (port name, baud rate, arg1, arg2, arg3, arg4, arg5)

Example

>1 REM EXAMPLE PROGRAM
>10 MODE(DH485,19200,0,1,2,,R)
>.
.
>25 MODE(PRT1,1200,N,8,,,)

Table 14.6 DH485 Port Parameters

Port Parameters Selections Default
Settings

Baud rate 300, 600, 1200, 2400, 4800, 9600, 19200 19200 baud

arg1 (host node address) 0 to 31 0

arg2 (module node address) 1 to 31 1

arg3 (maximum node address) 1 to 31 31

arg4 (not used)

arg5 (storage type) Store information in user ROM and RAM (E).
Store information in battery backed RAM (R).

R

IMPORTANT The E storage type option cannot be used if MODE is used as a
statement.
Publication 1746-RM001A-US-P

Chapter 15

String Functions

This chapter describes and illustrates commands used to manipulate string data
structures within the BASIC program or from the command line. Table 15.1 lists
the corresponding mnemonics.

CALL 60 – String Repeat Purpose

Use CALL 60 to repeat a character and place it in a string. You can use the String
Repeat when designing output formats. First PUSH the number of times to repeat
the character, then PUSH the number of the string containing the repeated
character. No arguments are POPped. You cannot repeat more characters than the
string’s maximum length.

Syntax

PUSH [number of times to repeat character]
PUSH [base string number]
CALL 60

Table 15.1 Chapter Reference Guide

If you need (to) Use this mnemonic Page
String repeat CALL 60 15-1

String append (concatenation) CALL 61 15-2

Number to string conversion CALL 62 15-3

String to number conversion CALL 63 15-4

Find a string in a string. CALL 64 15-6

Replace a string in a string. CALL 65 15-7

Insert a string in a string. CALL 66 15-8

Delete a string from a string. CALL 67 15-9

Determine the length of a string. CALL 68 15-10

Allocate memory for strings. STRING 15-11
1 Publication 1746-RM001A-US-P

15-2 String Functions
Example

>1 REM EXAMPLE PROGRAM
>10 REM STRING REPEAT EXAMPLE PROGRAM
>20 STRING 200,48
>30 $(1) = “*”
>40 PUSH 40 : REM THE NUMBER OF TIMES TO REPEAT CHARACTER
>50 PUSH 1 : REM BASE STRING NUMBER
>60 CALL 60
>70 PRINT $(1)
>80 END

READY
>RUN

**

READY
>

CALL 61 – String Append Purpose

Use CALL 61 to append one string to the end of another string. This CALL
expects two string arguments. The first is the string number of the string to be
appended and the second is the string number of the base string. If the resulting
string is longer than the maximum string length, the append characters are lost.
There are no output arguments. This is a string concatenation assignment:
(example: $(1)=$(1)+$(2)).

Syntax

PUSH [string number to be appended]
PUSH [base string number]
CALL 61

IMPORTANT If the new string length exceeds the length allocated by the string
command, an error message is printed on the console device and
the module enters Command mode.
Publication 1746-RM001A-US-P

String Functions 15-3
Example

>1 REM EXAMPLE PROGRAM
>10 STRING 200,20
>20 $(1) = “How are ”
>30 $(2) = “you?”
>40 PRINT “BEFORE ”
>50 PRINT “$(1) = ”,$(1)
>60 PRINT “$(2) = ”,$(2)
>70 PUSH 2 : REM STRING NUMBER TO BE APPENDED
>80 PUSH 1 : REM BASE STRING NUMBER
>90 CALL 61 : REM INVOKE STRING APPEND ROUTINE
>100 PRINT “AFTER:”
>110 PRINT “$(1) = ”,$(1)
>120 PRINT “$(2) = ”,$(2)
>130 END

READY
>RUN

BEFORE:
$(1) = How are
$(2) = you?
AFTER:
$(1) = How are you?
$(2) = you?

READY
>

CALL 62 – Number to
String Conversion

Purpose

Use CALL 62 to convert a number or numeric variable into a string. You must
allocate a minimum of 14 characters for the string. If the exponent of the value to
be converted is anticipated to be 100 or greater, you must allocate 15 characters.
Error checking traps string allocation of less than 14 characters only. There are no
output arguments.

Syntax

PUSH [number to convert to string]
PUSH [string number to receive the value]
CALL 62
Publication 1746-RM001A-US-P

15-4 String Functions
Example

>1 REM EXAMPLE PROGRAM
>10 STRING 100,14
>20 INPUT “ENTER A NUMBER TO CONVERT TO A STRING ”,N
>30 PUSH N : REM NUMBER TO CONVERT TO STRING
>40 PUSH 1 : REM CONVERT NUMBER TO STRING 1
>50 CALL 62 : REM DO THE CONVERSION
>60 PRINT $(1)
>70 END

READY
>RUN

ENTER A NUMBER TO CONVERT TO A STRING 2E3
2000

READY
>RUN

ENTER A NUMBER TO CONVERT TO A STRING 1.233
1.233

READY
>

CALL 63 – String to
Number Conversion

Purpose

Use CALL 63 to convert the first decimal number found in the specified string to a
number on the argument stack. Valid numbers and associated characters are 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, ., E, +, -. The comma is not a valid number character and
terminates the conversion.

If the string does not contain a legal value, a zero is returned. A valid value is
between 1 and 255. PUSH the number of the string to convert. Two POPs are
required. First POP the validity of the value, then POP the actual value. If a string
contains a number followed by an E and a letter or non-numeric character, it is
assumed that no number was found since the letter is not a valid exponent. (CALL
63 returns a zero in the first argument popped indicating that no valid number was
in the string.)

Syntax

PUSH [string number to convert]
CALL 63
POP [validity of the value]
POP [actual value]
Publication 1746-RM001A-US-P

String Functions 15-5
Example

>1 REM EXAMPLE PROGRAM
>20 INPUT “INPUT A STRING TO CONVERT ”,$(1)
>30 PUSH 1 : REM CONVERT STRING 1
>40 CALL 63
>50 POP V,N
>60 IF (V<>0) THEN PRINT $(1),“ ” N:GOTO 80
>70 PRINT “INVALID OR NO VALUE FOUND”
>80 END

READY
>RUN

INPUT A STRING TO CONVERT 123ABC
123ABC 123

READY
>RUN

INPUT A STRING TO CONVERT 1.2E-7
1.2E-7 1.2 E-7

READY
>RUN

INPUT A STRING TO CONVERT 1.3.6
INVALID OR NO VALUE FOUND

READY
>

Publication 1746-RM001A-US-P

15-6 String Functions
CALL 64 – Find a String
in a String

Purpose

Use CALL 64 to find a string within a string. It locates the first occurrence
(position) of this string. This CALL has two input arguments. The first is the string
to be found, the second is the string searched for a match. One output argument is
required. If the number is not zero then a match was located at the position
indicated by the value of the output argument. This routine is similar to the BASIC
INSTR$(findstr$,str$) (example: L=INSTR$($(1),$(2)).

Syntax

PUSH [string number to be found]
PUSH [base string number]
CALL 64
POP [match position]

Example

>1 REM EXAMPLE PROGRAM
>10 REM SAMPLE FIND STRING IN STRING ROUTINE
>20 STRING 100,20
>30 $(1) = “456”
>40 $(2) = “12345678”
>50 PUSH 1 : REM STRING NUMBER OF STRING TO BE FOUND
>60 PUSH 2 : REM BASE STRING NUMBER
>70 CALL 64 : REM GET THE LOCATION OF FIRST CHARACTER
>80 POP L
>90 IF (L=0) THEN PRINT “NOT FOUND”
>100 IF(L>0) THEN PRINT “FOUND AT LOCATION”,L
>110 END

READY
>RUN

FOUND AT LOCATION 4

READY
>

Publication 1746-RM001A-US-P

String Functions 15-7
CALL 65 – Replace a
String in a String

Purpose

Use CALL 65 to replace a string within a string. Three arguments are expected.
The first argument is the number of the string that replaces the string identified by
the second argument string number. The third argument is the base string number.
There are no output arguments.

Syntax

PUSH [new string number]
PUSH [old string number to be replaced]
PUSH [base string number]
CALL 65

Example

>1 REM EXAMPLE PROGRAM
>10 REM SAMPLE OF REPLACE STRING IN STRING
>20 STRING 100,20
>30 $(0) = “RED-LINES”
>40 $(1) = “RED”
>50 $(2) = “BLUE”
>60 PRINT “BEFORE:”
>70 PRINT “$(0) = ”,$(0)
>80 PUSH 2 : REM STRING NUMBER OF THE STRING

TO BE REPLACED WITH
>90 PUSH 1 : REM STRING NUMBER OF THE STRING TO BE REPLACED
>100 PUSH 0 : REM BASE STRING NUMBER
>110 CALL 65 : REM INVOKE REPLACE STRING IN STRING
>120 PRINT “AFTER:”
>130 PRINT “$(0) = ”,$(0)
>140 END

READY
>RUN

BEFORE:
$(0) = RED-LINES
AFTER:
$(0) = BLUE-LINES

READY
>

IMPORTANT If the new string length exceeds the length allocated by the string
command, an error message is printed on the console device and
the module enters Command mode.
Publication 1746-RM001A-US-P

15-8 String Functions
CALL 66 – Insert a String
in a String

Purpose

Use CALL 66 to insert a string within another string. The CALL expects three
arguments. The first argument is the position at which to begin the insert. The
second argument is the string number of the characters inserted into the base
string. The third argument is the number of the base string. This routine has no
output arguments.

Syntax

PUSH [insert position]
PUSH [string number of inserted character]
PUSH [base string number]
CALL 66

Example

>1 REM EXAMPLE PROGRAM
>10 REM SAMPLE ROUTINE TO INSERT A STRING IN A STRING
>20 STRING 100,15
>30 $(0) = “1234590”
>40 $(1) = “67890”
>50 PRINT “BEFORE:”
>60 PRINT “$(0) = ”,$(0)
>70 PUSH 6 : REM POSITION TO START THE INSERT
>80 PUSH 1 : REM STRING NUMBER TO BE INSERTED
>85 PUSH 0 : REM BASE STRING NUMBER
>90 CALL 66 : REM INVOKE INSERT A STRING IN A STRING
>100 PRINT “$(0) = ”, (0)
>110 END

READY
>RUN

BEFORE:
$(0) = 1234590
$(0) = 123456789090

READY
>

IMPORTANT If the new string length exceeds the length allocated by the string
command, an error message is printed on the console device and
the module enters Command mode.
Publication 1746-RM001A-US-P

String Functions 15-9
CALL 67 – Delete a
String in a String

Purpose

Use CALL 67 to delete a string from within another string. The CALL expects two
arguments. The first argument is the base string number. The second is the number
of the string deleted from the base string. This routine has no output arguments.

Syntax

PUSH [base string number]
PUSH [deleted string number]
CALL 67

Example

>1 REM EXAMPLE PROGRAM
>10 REM ROUTINE TO DELETE A STRING IN A STRING
>20 STRING 200,14
>30 $(1) = “123456789012”
>40 $(2) = “12”
>50 PRINT “BEFORE:”
>60 PRINT “$(1) = ”,$(1)
>70 PUSH 1 : REM BASE STRING NUMBER
>80 PUSH 2 : REM STRING NUMBER OF THE STRING DELETED
>90 CALL 67 : REM INVOKE STRING DELETE ROUTINE
>100 PRINT “AFTER:”
>110 PRINT “$(1) = ”,$(1)
>120 END

READY
>RUN

BEFORE:
$(1) = 123456789012
AFTER:
$(1) = 3456789012

READY
>

IMPORTANT This routine deletes only the first occurrence of the string.
Publication 1746-RM001A-US-P

15-10 String Functions
CALL 68 – Find the
Length of a String

Purpose

Use CALL 68 to determine the length of a string. One input argument is expected.
This is the string number on which the routine acts. One output argument is
required. It is the actual number of non-carriage return (CR) characters in this
string. This is similar to the BASIC command LEN(str$) (example: L=LEN($l)).
The length of the string can be properly determined only if the string is terminated
with a CR character. If a string is filled using the ASC instruction, a CR must be
added as the last character to terminate the string.

Syntax

PUSH [string number]
CALL 68
POP [number of characters]

Example

>1 REM EXAMPLE PROGRAM
>10 REM SAMPLE OF STRING LENGTH
>20 STRING 1 0,10
>30 $(1) = “1234567”
>40 PUSH 1 : REM BASE STRING
>50 CALL 68 : REM INVOKE STRING LENGTH ROUTINE
>60 POP L : REM GET LENGTH OF BASE STRING
>70 PRINT “THE LENGTH OF ”,$(1),“ IS”,L
>80 END

READY
>RUN

THE LENGTH OF 1234567 IS 7

READY
>

Publication 1746-RM001A-US-P

String Functions 15-11
STRING Purpose

Use the STRING statement to allocate memory for strings. Initially, no memory is
allocated for strings. If you attempt to define a string with a statement such as LET
$(1)=HELLO before memory is allocated for strings, an ERROR: MEMORY

ALLOCATION message is generated. The first expression ([expr]) in the STRING
statement is the total number of bytes you want to allocate for string storage. The
second expression ([expr]) gives the maximum number of bytes in each string. The
second value should not be larger than 254. These two numbers determine the
total number of defined string variables.

The module requires one additional byte for each string, plus one additional byte
overall. The additional character for each string is allocated for the carriage return
character that terminates the string. This means that the statement STRING
100,10 allocates enough memory for 9 string variables, ranging from $(0) to $(8)
and all of the 100 allocated bytes are used. Note that $(0) is a valid string in the
module.

Syntax

STRING [expr], [expr]

IMPORTANT If an ASCII null character is used within the string it acts as a
marker denoting the end of a string.

IMPORTANT After memory is allocated for string storage, commands
(example: NEW) and statements (example: CLEAR) cannot
de-allocate this memory. Cycling power also cannot de-allocate
this memory unless battery backup is disabled. You can
de-allocate memory by executing a STRING 0,0 statement.
STRING 0,0 allocates no memory to string variables.

IMPORTANT The module executes the equivalent of a CLEAR statement every
time the STRING [expr],[expr] statement executes. This is
necessary because string variables and numeric variables occupy
the same external memory space. After the STRING statement
executes, all variables are wiped out. Because of this, you should
perform string memory allocation early in a program (during the
first statement if possible). If you re-allocate string memory you
destroy all defined variables.
Publication 1746-RM001A-US-P

15-12 String Functions
Examples

>1 REM EXAMPLE PROGRAM
>10 STRING 100,30
>20 $(0) = “-----MONTHLY REPORT-----”
>30 PRINT $(0)

READY
>RUN

-----MONTHLY REPORT-----

READY
>

Publication 1746-RM001A-US-P

Appendix A

Decimal/Hexadecimal/Octal/ASCII
Conversion Table

Mathematical
Conversion Overview

The table below lists the decimal, hexadecimal, octal, and ASCII conversions.

Column1 Column 2 Column 3 Column 4
DEC HEX OCT ASC DEC HEX OCT ASC DEC HEX OCT ASC DEC HEX OCT ASC
00 00 000 NUL 32 20 040 SP 64 40 100 @ 96 60 140 ‘

01 01 001 SOH 33 21 041 ! 65 41 101 A 97 61 141 a

02 02 002 STX 34 22 042 “ 66 42 102 B 98 62 142 b

03 03 003 ETX 35 23 043 # 67 43 103 C 99 63 143 c

04 04 004 EOT 36 24 044 $ 68 44 104 D 100 64 144 d

05 05 005 ENQ 37 25 045 % 69 45 105 E 101 65 145 e

06 06 006 ACK 38 26 046 & 70 46 106 F 102 66 146 f

07 07 007 BEL 39 27 047 ‘ 71 47 107 G 103 67 147 g

08 08 010 BS 40 28 050 (72 48 110 H 104 68 150 h

09 09 011 HT 41 29 051) 73 49 111 I 105 69 151 i

10 0A 012 LF 42 2A 052 * 74 4A 112 J 106 6A 152 j

11 0B 013 VT 43 2B 053 + 75 4B 113 K 107 6B 153 k

12 0C 014 FF 44 2C 054 , 76 4C 114 L 108 6C 154 l

13 0D 015 CR 45 2D 055 - 77 4D 115 M 109 6D 155 m

14 0E 016 SO 46 2E 056 . 78 4E 116 N 110 6E 156 n

15 0F 017 SI 47 2F 057 / 79 4F 117 O 111 6F 157 o

16 10 020 DLE 48 30 060 0 80 50 120 P 112 70 160 p

17 11 021 DC1 49 31 061 1 81 51 121 Q 113 71 161 q

18 12 022 DC2 50 32 062 2 82 52 122 R 114 72 162 r

19 13 023 DC3 51 33 063 3 83 53 123 S 115 73 163 s

20 14 024 DC4 52 34 064 4 84 54 124 T 116 74 164 t

21 15 025 NAK 53 35 065 5 85 55 125 U 117 75 165 u

22 16 026 SYN 54 36 066 6 86 56 126 V 118 76 166 v

23 17 027 ETB 55 37 067 7 87 57 127 W 119 77 167 w

24 18 030 CAN 56 38 070 8 88 58 130 X 120 78 170 x

25 19 031 EM 57 39 071 9 89 59 131 Y 121 79 171 y

26 1A 032 SUB 58 3A 072 : 90 5A 132 Z 122 7A 172 z

27 1B 033 ESC 59 3B 073 ; 91 5B 133 [123 7B 173 {

28 1C 034 FS 60 3C 074 < 92 5C 134 \ 124 7C 174 .

29 1D 035 GS 61 3D 075 = 93 5D 135] 125 7D 175 }

30 1E 036 RS 62 3E 076 > 94 5E 136 ^ 126 7E 176 ~

31 1F 037 US 63 3F 077 ? 95 5F 137 _ 127 7F 177 DEL
1 Publication 1746-RM001A-US-P

A-2 Decimal/Hexadecimal/Octal/ASCII Conversion Table
Publication 1746-RM001A-US-P

Appendix B

BASIC Command, Statement, and CALL Quick
Reference Guide

Mnemonic List
Overview

The table below lists the various mnemonics found in this manual along with a
description and location.

Mnemonic Required PUSHes or POPs Description Active In
Command

Mode
Only

Page

ABS() Absolute value 3-9

ASC() Return integer value of ASCII character. 3-12

ATN() Return arctangent of argument. 3-8

BRKPNT Set program break point. * 4-2

CALL 14 PUSH [word number of module input buffer]
POP [converted value]

16-bit signed integer to BASIC floating-point 9-1

CALL 15 PUSH [word number of module input buffer]
POP [converted value]

16-bit unsigned integer to BASIC floating-point 9-2

CALL 16 PUSH [BASIC line number] Enable the interrupt capability when a DF1
packet is received.

 8-2

CALL 17 None Disable the DF1 packet interrupt capability. 8-3

CALL 18 None Re-enable the [CTRL-C] break function. 4-5

CALL 19 None Disable the [CTRL-C] break function. 4-6

CALL 20 PUSH [BASIC line number] Enable the SLC processor interrupt capability. 8-3

CALL 21 None Disable the SLC processor interrupt capability. 8-4

CALL 22 PUSH [source port number]
PUSH [maximum number of characters to be
transferred]
PUSH [decimal value of character delimiter]
PUSH [selection of destination file and/or
string]
PUSH [word offset within the destination file]
PUSH [string number]
PUSH [byte swap selection]
POP [CALL 22 status]

Transfer data from PRT1 or PRT2 to the SLC I/O
or M files.

13-2

CALL 23 PUSH [destination port number and/or internal
string]
PUSH [selection of source file]
PUSH [word offset within source file]
PUSH [string number]
PUSH [byte swap selection]
POP [CALL 23 status]

Transfer data from the SLC I/O or M files to
PRT1 or PRT2.

12-2
1 Publication 1746-RM001A-US-P

B-2 BASIC Command, Statement, and CALL Quick Reference Guide
CALL 24 PUSH [value to be converted]
PUSH [word number of module output
buffer]

BASIC floating-point to 16-bit signed integer 9-2

CALL 25 PUSH [value to be converted]
PUSH [word number of module output
buffer]

BASIC floating-point to 16-bit binary 9-3

CALL 26 POP[SLC processor status] Generate an interrupt to the SLC processor. 8-4

CALL 27 PUSH [type of READ command]
PUSH [remote node address]
PUSH [remote file number]
PUSH [remote file type]
PUSH [starting word offset of remote file]
PUSH [number of words to be transferred]
PUSH [message time-out value]
PUSH [selection of destination file]
PUSH [word offset within destination file]
PUSH [string number]
POP [CALL 27 status]

Transfer data from a remote DH485 data file to
the SLC processor.

13-8

CALL 28 PUSH [type of WRITE command]
PUSH [remote node address]
PUSH [remote file number]
PUSH [remote file type]
PUSH [remote starting word offset]
PUSH [number of words to be transferred]
PUSH [message time-out value]
PUSH [selection of source file]
PUSH [word offset within source file]
PUSH [string number]
POP [CALL 28 status]

Transfer data from the SLC processor to a
remote DH485 data file.

12-6

CALL 29 PUSH [CALL 27, 28, 122, or 123 for the CALL
you want activated]
POP [status of transaction]

Handle all errors that are not handled by the
ONERR statement.

12-13,
13-13

CALL 30 PUSH [bits per word]
PUSH [parity enable]
PUSH [number of stop bits]
PUSH [software handshaking enable/disable]
PUSH [hardware handshaking enable/disable]

Set PRT2 port parameters. 14-1

CALL 31 None Display current PRT2 port setup. 12-14

CALL 35 POP [ASCII value of character] Get numeric input character from port PRT2. 13-15

CALL 36 PUSH [buffer selection]
POP [number of characters]

Get number of characters in PRT2 buffers. 11-2

CALL 37 PUSH [buffer selection] Clear port PRT2 input and output buffers. 12-15

CALL 38 PUSH [0 or 1] Initiate transactions defined by CALLs 27, 28,
122, and 123.

8-5

Mnemonic Required PUSHes or POPs Description Active In
Command

Mode
Only

Page
Publication 1746-RM001A-US-P

BASIC Command, Statement, and CALL Quick Reference Guide B-3
CALL 40 PUSH [hours]
PUSH [minutes]
PUSH [seconds]

Set clock/calendar time (hour, minute, second). 10-1

CALL 41 PUSH [date]
PUSH [month]
PUSH [year]

Set clock/calendar date (day, month, year). 10-2

CALL 42 PUSH [day of week] Set clock/calendar – day of week. 10-3

CALL 43 PUSH [string number] Retrieve date/time string. 10-4

CALL 44 POP [day]
POP [month]
POP [year]

Retrieve date numeric (day, month, year). 10-4

CALL 45 PUSH [string number] Retrieve time string. 10-5

CALL 46 POP [hour]
POP [minute]
POP [second]

Retrieve time numeric. 10-6

CALL 47 PUSH [string number] Retrieve day of week string. 10-6

CALL 48 POP [day of week] Retrieve day of week numeric. 10-7

CALL 51 POP [output image buffer status] Check CPU output image buffer. 11-3

CALL 52 PUSH [string number] Retrieve date string. 10-7

CALL 53 POP [processor status] Transfer CPU output image buffer to module
input buffer.

13-17

CALL 54 POP [processor mode] Transfer module output buffer to CPU input
image buffer.

12-15

CALL 55 POP [input image buffer status] Check CPU input image buffer. 11-4

CALL 56 PUSH [number of words to be transferred]
POP [processor status]

Transfer CPU M0 file to module input buffer. 13-18

CALL 57 PUSH [number of words to be transferred]
POP [processor mode]

Transfer module output buffer to CPU M1 file. 12-16

CALL 58 POP [module file M0 write status] Check M0 file status. 11-5

CALL 59 POP [module file M1 read status] Check M1 file status. 11-6

CALL 60 PUSH [number of times to repeat character]
PUSH [base string number]

String repeat 15-1

CALL 61 PUSH [string number to be appended]
PUSH [base string number]

String append (concatenation) 15-2

CALL 62 PUSH [number to convert to string]
PUSH [string number to receive the value]

Number to string conversion 15-3

CALL 63 PUSH [string number to convert]
POP [validity of the value]
POP [actual value]

String to number conversion 15-4

Mnemonic Required PUSHes or POPs Description Active In
Command

Mode
Only

Page
Publication 1746-RM001A-US-P

B-4 BASIC Command, Statement, and CALL Quick Reference Guide
CALL 64 PUSH [string number to be found]
PUSH [base string number]
POP [match position]

Find a string in a string. 15-6

CALL 65 PUSH [new string number]
PUSH [old string number to be replaced]
PUSH [base string number]

Replace a string in a string. 15-7

CALL 66 PUSH [insert position]
PUSH [string number of inserted character]
PUSH [base string number]

Insert string in a string. 15-8

CALL 67 PUSH [base string number]
PUSH [deleted string number]

Delete string from a string. 15-9

CALL 68 PUSH [string number]
POP [number of characters]

Determine length of a string. 15-10

CALL 70 None ROM to RAM program transfer 8-8

CALL 71 PUSH [ROM program number] ROM/RAM to ROM program transfer 8-9

CALL 72 None RAM/ROM return 8-9

CALL 73 None Battery-backed RAM disable 5-1

CALL 74 None Battery-backed RAM enable 5-2

CALL 75 POP [processor mode] Check SLC 500 controller CPU status. 11-7

CALL 77 PUSH [new MTOP address] Protected variable storage 5-2

CALL 78 PUSH [baud rate] Set program port baud rate. 14-2

CALL 80 POP [battery status] Check battery condition. 11-8

CALL 81 None User memory module check and description * 5-3

CALL 82 None Check user memory module map. * 5-4

CALL 84 PUSH [starting word offset in DH485 interface
file]
PUSH [number of words to be transferred]
POP [transfer status]

Transfer DH485 interface file to module input
buffer.

13-19

CALL 85 PUSH [starting word offset in DH485 interface
file]
PUSH [number of words to be transferred]
POP [transfer status]

Transfer module output buffer to DH485
interface file.

12-17

CALL 86 POP [DH485 interface file remote write status] Check DH485 interface file remote Write
status.

11-8

CALL 87 POP [DH485 interface file remote read status] Check DH485 interface file remote Read status. 11-9

CALL 88 PUSH [number to convert]
PUSH [output buffer to receive converted
value]

Convert BASIC floating-point to SLC
floating-point

9-4

CALL 89 PUSH [input buffer of value to be converted] Convert SLC floating-point to BASIC
floating-point

9-5

Mnemonic Required PUSHes or POPs Description Active In
Command

Mode
Only

Page
Publication 1746-RM001A-US-P

BASIC Command, Statement, and CALL Quick Reference Guide B-5
CALL 90 PUSH [remote device node address]
PUSH [remote device file number]
PUSH [remote device file type]
PUSH [starting element offset (x2) of remote
device file]
PUSH [number of elements to be transferred]
PUSH [message time-out value]
POP [status of message instruction]

Read remote DH485 data file to BASIC input
buffer.

13-20

CALL 91 PUSH [remote device node address]
PUSH [remote device file number]
PUSH [remote device file type]
PUSH [starting element offset (x2) of remote
device file]
PUSH [number of elements to be transferred]
PUSH [message time-out value]
POP [status of message instruction]

Write module output buffer to remote DH485
data file.

12-18

CALL 92 PUSH [remote device node address]
PUSH [starting element offset (x2) of remote
device file]
PUSH [number of words to be transferred]
PUSH [message time-out value]
POP [status of message instruction]

Read remote DH485 interface file to module
input buffer.

13-23

CALL 93 PUSH [remote device node address]
PUSH [starting element offset (x2) of remote
device file]
PUSH [number of words to be transferred]
PUSH [message time-out value]
POP [status of message instruction]

Write module output buffer to remote DH485
interface file.

12-22

CALL 94 None Print current PRT1 port setup. 12-24

CALL 95 PUSH [buffer selection]
POP [number of characters]

Get number of characters in PRT1 buffers. 11-10

CALL 96 PUSH [buffer selection] Clear port PRT1 input and output buffers. 12-24

CALL 97 None Enable port PRT2 DTR signal. 11-11

CALL 98 None Disable port PRT2 DTR signal. 11-11

CALL 99 None Reset print head pointer. 14-3

CALL 101 PUSH [starting address]
PUSH [ending address]

Upload user memory module code to host. 5-4

CALL 103 None Print port PRT1 output buffer and pointer. 5-5

CALL 104 None Print port PRT1 input buffer and pointer. 5-6

CALL 105 None Reset port PRT1 to default settings. 14-4

Mnemonic Required PUSHes or POPs Description Active In
Command

Mode
Only

Page
Publication 1746-RM001A-US-P

B-6 BASIC Command, Statement, and CALL Quick Reference Guide
CALL 108 PUSH [operational code]
PUSH [poll timeout or ACKnowledge timeout]
PUSH [message retries or ENQuiry retries]
PUSH [RTS On delay or NAK received retries]
PUSH [RTS Off delay or NULL value]
PUSH [module DF1 address]

Enable DF1 driver communications. 11-12

CALL 109 None Print the argument stack. 5-7

CALL 110 None Print port PRT2 output buffer and pointer. 5-8

CALL 111 None Print port PRT2 input buffer and pointer. 5-8

CALL 112 PUSH [LED1 state]
PUSH [LED2 state]

User LED control 12-25

CALL 113 None Disable DF1 driver communications. 11-18

CALL 114 None Transmit DF1 packet. 12-26

CALL 115 POP [DF1 transmit status] Check DF1 XMIT status. 12-27

CALL 117 POP [length of DF1 packet] Get DF1 packet length. 13-25

CALL 118 PUSH [CALL enable/disable]
PUSH [selection of destination file and/or
string]
PUSH [word offset in destination file]
PUSH [string number]
PUSH [maximum word length]
POP [CALL 118 status]

Allow unsolicited writes from a remote SLC or
PLC node.

13-26

CALL 119 None Reset port PRT2 to default settings. 14-4

CALL 120 PUSH [decimal equivalent] Clear module input and output buffers. 11-18

CALL 121 POP [program ID number] Get SLC processor program ID number. 11-19

CALL 122 PUSH [type of PLC READ command]
PUSH [remote PLC node address]
PUSH [file number of remote PLC]
PUSH [file type on remote PLC]
PUSH [starting element offset on remote PLC]
PUSH [number of elements to be transferred]
PUSH [message time-out value]
PUSH [selection of destination file]
PUSH [word offset within destination file]
PUSH [string number]
POP [CALL 122 status]

Read a PLC data file. 13-30

Mnemonic Required PUSHes or POPs Description Active In
Command

Mode
Only

Page
Publication 1746-RM001A-US-P

BASIC Command, Statement, and CALL Quick Reference Guide B-7
CALL 123 PUSH [type of PLC WRITE command]
PUSH [remote PLC node address]
PUSH [file number of remote PLC]
PUSH [file type on remote PLC]
PUSH [starting word offset on remote PLC]
PUSH [number of elements to be transferred]
PUSH [message time-out value]
PUSH [selection of source file]
PUSH [word offset within source file]
PUSH [string number]
POP [CALL 123 status]

Write to a PLC data file. 12-28

CBY() Retrieve data from specified memory address. 3-16

CHR() Count value converted ASCII character. 3-14

CLEAR Clear variables, interrupts & strings. 6-1

CLEARI Clear interrupts. 6-3

CLEARS Clear all stacks. 6-3

CLOCK0 Disable real time clock. 7-2

CLOCK1 Enable real time clock. 7-1

CONT Continue after a Stop or [CTRL-C] . * 4-3

CONTROL-C Stop execution & return to Command mode. 4-4

CONTROL-Q Restart a list after [CTRL-S] . 4-8

CONTROL-S Interrupt a list command. 4-7

COS() Return the cosine of argument. 3-8

DATA Data read by Read statement. 6-4

DBY() Retrieve or assign data to or from the internal
data memory of the module.

3-16

DIM Allocate memory for array variables. 6-4

DO-UNTIL Set up conditional do-loop. 7-4

DO-WHILE Set up a conditional do-loop. 7-3

EDIT Edit a line of the BASIC program. * 4-8

END Terminate program execution. 7-5

EOF Test for empty input buffer. 3-15

ERASE Delete the last BASIC program stored in ROM
by a PROG command.

* 4-9

EXP() “e” (2.7182818) TO THE X 3-11

FOR-TO-(STEP)-
NEXT

Set up for-next loop. 7-6

FREE Test for number of free bytes of RAM memory. 3-15

Mnemonic Required PUSHes or POPs Description Active In
Command

Mode
Only

Page
Publication 1746-RM001A-US-P

B-8 BASIC Command, Statement, and CALL Quick Reference Guide
GET Read console input device. 13-38

GET# Read console input device connected to PRT2. 13-38

GET@ Read console input device connected to PRT1. 13-38

GOSUB Execute subroutine. 8-11

GOTO Go to program line number. 7-7

IDLE Force module to enter “wait until interrupt
mode”.

4-10

IF-THEN-ELSE Conditional test 7-8

INPL Read line of characters from the program port
buffer.

13-39

INPL# Read line of characters from port PRT2 buffer. 13-39

INPL@ Read line of characters from port PRT1 buffer. 13-39

INPS Read string of characters from the program port
buffer.

13-40

INPS# Read string of characters from port PRT2 buffer. 13-39

INPS@ Read string of characters from port PRT1 buffer. 13-39

INPUT Input a string or variable. 13-40

INPUT# Input a string or variable from port PRT2. 13-40

INPUT@ Input a string or variable from port PRT1. 13-40

INT() Integer 3-10

LD@ Load variable. 13-43

LEN Read the number of bytes of memory in the
current selected program.

3-15

LET Assign a variable or string a value (LET is
optional).

6-5

LIST List program to the console devise. * 4-11

LIST# List program to serial printer. * 4-12

LIST@ List program to device connected to port PRT1. * 4-12

LOG() Natural log 3-11

MODE Set port parameters of ports PRT1, PRT2, and
DH485.

4-12,
14-5

MTOP Read the last valid memory address. 3-16

NEW Erase the program stored in RAM. * 4-14

NEXT Test for-next loop condition. 7-9

NOT() One’s complement 3-9

NULL Set NULL count after carriage return-line feed. * 4-14

Mnemonic Required PUSHes or POPs Description Active In
Command

Mode
Only

Page
Publication 1746-RM001A-US-P

BASIC Command, Statement, and CALL Quick Reference Guide B-9
ONERR Go to line number when an error is detected. 8-12

ON-GOSUB Conditional GOSUB 8-14

ON-GOTO Conditional GOTO 7-11

ONTIME Generate an interrupt when TIME is equal to or
greater than ONTIME argument-line number.

8-14

PH0. Print hex value with zero suppression to
console device.

12-37

PH0.# Print hex value with zero suppression to PRT2. 12-37

PH0.@ Print hex value with zero suppression to PRT1. 12-37

PH1. Print hex value with no zero suppression to
console device.

12-37

PH1.# Print hex value with no zero suppression to
PRT2.

12-37

PH1.@ Print hex value with no zero suppression to
PRT1.

12-37

PI PI-3.1415926 3-10

POP POP argument stack to variables. 8-17

PRINT Print variables, strings or literals to console
device; P. is shorthand for print.

12-35

PRINT# Print to port PRT2. 12-35

PRINT@ Print to port PRT1. 12-35

PRINT CR Print carriage return. 12-36

PRINT SPC() Print spaces. 12-36

PRINT TAB() Print tabs. 12-36

PRINT
USING(Fx)

Print numeric values in scientific notation. 12-36

PRINT
USING(#.#)

Print numeric values in decimal notation. 12-36

PRINT
USING(0)

Restore the default print mode. 12-37

PROG Save the current program in EPROM. * 4-15

PROG1 Save baud rate information in EPROM. * 4-16

PROG2 Save baud rate information in EPROM and
execute program after reset.

* 4-17

PUSH PUSH expressions on argument stack. 8-15

RAM Evoke RAM mode. * 4-19

READ READ data in data statement. 13-45

Mnemonic Required PUSHes or POPs Description Active In
Command

Mode
Only

Page
Publication 1746-RM001A-US-P

B-10 BASIC Command, Statement, and CALL Quick Reference Guide
REM Specify a remark or comment line. 4-19

REN Renumber BASIC program. 4-20

RESTORE RESTORE read point. 6-7

RETI Return from interrupt. 8-18

RETURN RETURN from subroutine. 8-18

RND Random number 3-11

ROM Select ROM mode. * 4-20

RROM Select ROM mode and execute the selected
program.

* 4-21

RUN Execute a program. * 4-22

SGN Sign 3-10

SIN() Return the sine of argument 3-8

SNGLSTP Initiate single-step program execution. * 4-23

SQR() Square Root 3-10

ST@ Store variable. 12-38

STOP Break program execution. 8-20

STRING Allocate memory for strings. 15-11

TAN() Return the tangent of the argument. 3-8

TIME Retrieve and/or assign free running clock value. 3-17

VER Verify module firmware version. 4-25

XBY() Retrieve or assign data to or from the external
data memory of the module.

3-17

XFER Transfer a program from ROM to RAM. * 4-26

+ Addition 3-3

/ Division 3-4

** Exponentiation 3-4

* Multiplication 3-4

- Subtraction 3-4

.AND. Logical AND 3-6

.OR. Logical OR 3-6

.XOR. Logical Exclusive OR 3-6

@ Direct communications to port PRT1. 3-15

Direct communications to port PRT2. 3-15

Mnemonic Required PUSHes or POPs Description Active In
Command

Mode
Only

Page
Publication 1746-RM001A-US-P

Index

Symbols
and @

quick reference guide B-10
special function operator 3-15

.AND.
logical operator 3-6
quick reference guide B-10

.OR.
logical operator 3-6
quick reference guide B-10

.XOR.
logical operator 3-6
quick reference guide B-10

Numerics
16-Bit Signed Integer to BASIC Floating-Point 9-1
16-Bit Unsigned Integer to BASIC Floating-Point 9-2

A
abbreviations and terms P-4
ABS

functional operator 3-9
quick reference guide B-1

Add (+)
arithmetic operator 3-3
quick reference guide B-10

argument stack 2-1
arithmetic operators 3-3

Add(+) 3-3
Divide(/) 3-4
Exponentiation(**) 3-4
Multiply(*) 3-4
Negation(-) 3-4
Overflow and Division by Zero 3-5
Subtract(-) 3-4

ASC
quick reference guide B-1
string operator 3-12

ATN
quick reference guide B-1
trigonometric operator 3-8

B
backplane conversion data 2-4
BASIC Floating-Point to 16-Bit Binary 9-3
BASIC Floating-Point to 16-Bit Signed Integer 9-2
BASIC Module Interrupt 8-4
BASIC program

line 1-1
line length 1-2
line numbers 1-1

Battery Condition 11-8
Battery-Backed RAM Disable 5-1
Battery-Backed RAM Enable 5-2
baud rate

program port setup 14-2
BRKPNT

BASIC command 4-2
quick reference guide B-1

C
calendar

See clock/calendar function
CALL 101 - Upload User Memory Module Code to Host

command line CALL 5-4
quick reference guide B-5

CALL 103 - Print PRT1 Output Buffer and Pointer
command line CALL 5-5
quick reference guide B-5

CALL 104 - Print PRT1 Input Buffer and Pointer
command line CALL 5-6
quick reference guide B-5

CALL 105 - Reset PRT1 to Default Settings
quick reference guide B-5
setup function 14-4

CALL 108 - Enable DF1 Driver Communications
quick reference guide B-6
status function 11-12

CALL 109 - Print Argument Stack
command line CALL 5-7
quick reference guide B-6

CALL 110 - Print PRT2 Output Buffer Pointer
command line CALL 5-8
quick reference guide B-6

CALL 111 - Print PRT2 Input Buffer Pointer
command line CALL 5-8
quick reference guide B-6
Publication 1746-RM001A-US-P

ii Index
CALL 112 - User LED Control
output function 12-25
quick reference guide B-6

CALL 113 - Disable DF1 Driver Communications
quick reference guide B-6
status function 11-18

CALL 114 - Transmit DF1 Packet
output function 12-26
quick reference guide B-6

CALL 115 - Check DF1 XMIT Status
output function 12-27
quick reference guide B-6

CALL 117 - Get DF1 Packet Length
input function 13-25
quick reference guide B-6

CALL 118 - PLC/SLC Unsolicited Writes
input function 13-26
quick reference guide B-6

CALL 119 - Reset PRT2 to Default Settings
quick reference guide B-6
setup function 14-4

CALL 120 - Clear Module Input and Output Buffers
quick reference guide B-6
status function 11-18

CALL 121 - Get SLC Processor Program ID Number
quick reference guide B-6
status function 11-19

CALL 122 - Read Remote DF1 PLC Data File
input function 13-30
quick reference guide B-6

CALL 123 - Write to Remote DF1 PLC Data File
output function 12-28
quick reference guide B-7

CALL 14 - 16-Bit Signed Integer to BASIC Floating-Point
math and backplane conversion function 9-1
quick reference guide B-1

CALL 15 - 16-Bit Unsigned Integer to BASIC Floating-Point
math and backplane conversion function 9-2
quick reference guide B-1

CALL 16 - Enable DF1 Packet Interrupt
execution control and interrupt support function 8-2
quick reference guide B-1

CALL 17 - Disable DF1 Packet Interrupt
execution control and interrupt support function 8-3
quick reference guide B-1

CALL 18 - Enable Control-C
BASIC command 4-5
quick reference guide B-1

CALL 19 - Disable Control-C
BASIC command 4-6
quick reference guide B-1

CALL 20 - Enable Processor Interrupt
execution control and interrupt support function 8-3
quick reference guide B-1

CALL 21 - Disable Processor Interrupt
execution control and interrupt support function 8-4
quick reference guide B-1

CALL 22 - Transfer Data from Port 1 or 2 to the CPU Files
input function 13-2
quick reference guide B-1

CALL 23 - Transfer Data from the CPU Files to Port 1 or 2
output function 12-2
quick reference guide B-1

CALL 24 - BASIC Floating-Point to 16-Bit Signed Integer
math and backplane conversion function 9-2
quick reference guide B-2

CALL 25 - BASIC Floating-Point to 16-Bit Binary
math and backplane conversion function 9-3
quick reference guide B-2

CALL 26 - BASIC Module Interrupt
execution control and interrupt support function 8-4
quick reference guide B-2

CALL 27 - Read Remote DH485 SLC Data File
input function 13-8
quick reference guide B-2

CALL 28 - Write to Remote DH485 SLC Data File
output function 12-6
quick reference guide B-2

CALL 29 - Read/Write to a PLC/SLC from the BASIC Module
Internal String

input function 13-13
output function 12-13
quick reference guide B-2

CALL 30 - Set PRT2 Port Parameters
quick reference guide B-2
setup function 14-1

CALL 31 - Display Current PRT2 Port Setup
output function 12-14
quick reference guide B-2

CALL 35 - Get Numeric Input Character from PRT2
input function 13-15
quick reference guide B-2

CALL 36 - Get Number of Characters in PRT2 Buffers
quick reference guide B-2
status function 11-2
Publication 1746-RM001A-US-P

Index iii
CALL 37 - Clear PRT2 Input/Output Buffers
output function 12-15
quick reference guide B-2

CALL 38 - Expanded ONERR Restart
execution control and interrupt support function 8-5
quick reference guide B-2

CALL 40 - Set Clock/Calendar Time
clock/calendar function 10-1
quick reference guide B-3

CALL 41 - Set Clock/Calendar Date
clock/calendar function 10-2
quick reference guide B-3

CALL 42 - Set Day of Week
clock/calendar function 10-3
quick reference guide B-3

CALL 43 - Retrieve Date/Time String
clock/calendar function 10-4
quick reference guide B-3

CALL 44 - Retrieve Date Numeric
clock/calendar function 10-4
quick reference guide B-3

CALL 45 - Retrieve Time String
clock/calendar function 10-5
quick reference guide B-3

CALL 46 - Retrieve Time Numeric
clock/calendar function 10-6
quick reference guide B-3

CALL 47 - Retrieve Day of Week String
clock/calendar function 10-6
quick reference guide B-3

CALL 48 - Retrieve Day of Week Numeric
clock/calendar function 10-7
quick reference guide B-3

CALL 51 - Check CPU Output Image Buffer
quick reference guide B-3
status function 11-3

CALL 52 - Retrieve Date String
clock/calendar function 10-7
quick reference guide B-3

CALL 53 - Transfer CPU Output Image to BASIC Input Buffer
input function 13-17
quick reference guide B-3

CALL 54 - Transfer BASIC Output Buffer to CPU Input Image
output function 12-15
quick reference guide B-3

CALL 55 - Check CPU Input Image Buffer
quick reference guide B-3
status function 11-4

CALL 56 - Transfer CPU M0 File to BASIC Input Buffer
input function 13-18
quick reference guide B-3

CALL 57 - Transfer BASIC Output Buffer to CPU M1 File
output function 12-16
quick reference guide B-3

CALL 58 - Check M0 File
quick reference guide B-3
status function 11-5

CALL 59 - Check M1 File
quick reference guide B-3
status function 11-6

CALL 60 - String Repeat
quick reference guide B-3
string function 15-1

CALL 61 - String Append
quick reference guide B-3
string function 15-2

CALL 62 - Number to String Conversion
quick reference guide B-3
string function 15-3

CALL 63 - String to Number Conversion
quick reference guide B-3
string function 15-4

CALL 64 - Find a String in a String
quick reference guide B-4
string function 15-6

CALL 65 - Replace a String in a String
quick reference guide B-4
string function 15-7

CALL 66 - Insert a String in a String
quick reference guide B-4
string function 15-8

CALL 67 - Delete a String in a String
quick reference guide B-4
string function 15-9

CALL 68 - Find the Length of a String
quick reference guide B-4
string function 15-10

CALL 70 - ROM to RAM Program Transfer
execution control and interrupt support function 8-8
quick reference guide B-4

CALL 71 - ROM/RAM to ROM Program Transfer
execution control and interrupt support function 8-9
quick reference guide B-4

CALL 72 - RAM/ROM Return
execution control and interrupt support function 8-9
quick reference guide B-4
Publication 1746-RM001A-US-P

iv Index
CALL 73 - Battery-Backed RAM Disable
command line CALL 5-1
quick reference guide B-4

CALL 74 - Battery-Backed RAM Enable
command line CALL 5-2
quick reference guide B-4

CALL 75 - Check SLC 500 Controller CPU Status
quick reference guide B-4
status function 11-7

CALL 77 - Protected Variable Storage
command line CALL 5-2
quick reference guide B-4

CALL 78 - Set Program Port Baud Rate
quick reference guide B-4
setup function 14-2

CALL 80 - Check Battery Condition
quick reference guide B-4
status function 11-8

CALL 81 - User Memory Module Check and Description
command line CALL 5-3
quick reference guide B-4

CALL 82 - Check User Memory Module Map
command line CALL 5-4
quick reference guide B-4

CALL 84 - Transfer DH 485 Interface File to BASIC Input Buffer
input function 13-19
quick reference guide B-4

CALL 85 - Transfer BASIC Output Buffer to DH485 Common
Interface File

output function 12-17
quick reference guide B-4

CALL 86 - Check DH485 Interface File Remote Write Status
quick reference guide B-4
status function 11-8

CALL 87 - Check DH 485 Interface File Remote Read Status
quick reference guide B-4
status function 11-9

CALL 88 - BASIC Floating-Point to SLC Floating-Point
math and backplane conversion function 9-4
quick reference guide B-4

CALL 89 - SLC Floating-Point to BASIC Floating-Point
math and backplane conversion function 9-5
quick reference guide B-4

CALL 90 - Read Remote DH 485 Data to BASIC Input Buffer
input function 13-20
quick reference guide B-5

CALL 91 - Write BASIC Output Buffer to Remote DH485 Data
File

output function 12-18
quick reference guide B-5

CALL 92 - Read Remote DH485 Common Interface File to
BASIC Input Buffer

input function 13-23
quick reference guide B-5

CALL 93 - Write Output Buffer to Remote DH485 Common
Interface File

output function 12-22
quick reference guide B-5

CALL 94 - Display Current PRT1 Port Setup
output function 12-24
quick reference guide B-5

CALL 95 - Get Number of Characters in PRT1 Buffers
quick reference guide B-5
status function 11-10

CALL 96 - Clear PRT1 Input/Output Buffers
output function 12-24
quick reference guide B-5

CALL 97 - Enable Port PRT2 DTR Signal
quick reference guide B-5
status function 11-11

CALL 98 - Disable Port PRT2 DTR Signal
quick reference guide B-5
status function 11-11

CALL 99 - Reset Print Head Pointer
quick reference guide B-5
setup function 14-3

CBY
quick reference guide B-7
special function operator 3-16

character set 1-1
CHR

quick reference guide B-7
string operator 3-14

CLEAR
assignment function 6-1
quick reference guide B-7

clear
BASIC Module Input and Output Buffers 11-18
Module Input and Output Buffers 11-18
PRT1 Input/Output Buffers 12-24
PRT1 input/output buffers 12-24
PRT2 Input/Output Buffers 12-15

CLEARI
assignment function 6-3
quick reference guide B-7
Publication 1746-RM001A-US-P

Index v
CLEARS
assignment function 6-3
quick reference guide B-7

clock/calendar function
retrieve date numeric 10-4
retrieve date string 10-7
retrieve date/time string 10-4
retrieve day of week numeric 10-7
retrieve day of week string 10-6
retrieve time numeric 10-6
retrieve time string 10-5
set clock/calendar date 10-2
set clock/calendar time 10-1
set day of week 10-3

CLOCK0
control function 7-2
quick reference guide B-7

CLOCK1
control function 7-1
quick reference guide B-7

CONT
BASIC command 4-3
quick reference guide B-7

contacting Rockwell Automation for assistance P-5
contents of manual P-2
control stack 7-3
Control-C

BASIC command 4-4
disable 4-6
enable 4-5
quick reference guide B-7

Control-Q
BASIC command 4-8
quick reference guide B-7

Control-S
BASIC command 4-7
quick reference guide B-7

conversion
16-Bit Signed Integer to BASIC Floating-Point 9-1
16-Bit Unsigned Integer to BASIC Floating-Point 9-2
BASIC Floating-Point to 16-Bit Binary 9-3
BASIC Floating-Point to 16-Bit Signed Integer 9-2
BASIC Floating-Point to SLC Floating-Point 9-4
number to string 15-3
SLC Floating-Point to BASIC Floating-Poin 9-5
string to number 15-4

conversion table A-1
COS

quick reference guide B-7

CPU Input Image Buffer Status 11-4
CPU Output Image Buffer Status 11-3

D
DATA

assignment function 6-4
quick reference guide B-7

data types
argument stack 2-1
backplane conversion 2-1
string 2-1

DBY
quick reference guide B-7
special function operator 3-16

definitions P-4
delete a String in a String 15-9
DF1 driver communications

disable 11-18
enable 11-12

DF1 Packet Interrupt
disable 8-3
enable 8-2

DF1 Packet Length
input function 13-25

DF1 XMIT Status
output function 12-27
quick reference guide B-6

DH485
check interface file remote read status 11-9
check interface file remote write status 11-8
common interface file 11-8, 11-9
network 12-8
read remote common interface file to BASIC input buffer

13-23
read remote data file 13-8
read remote data file to BASIC input buffer 13-20
serial communication link 11-8, 11-9
transfer BASIC output buffer to common interface file

12-17
transfer data to BASIC input buffer 13-19
write BASIC output buffer to remote data file 12-18
write output buffer to remote common interface file 12-22
write to remote data file 12-6

DIM
assignment function 6-4
quick reference guide B-7
Publication 1746-RM001A-US-P

vi Index
Disable
Control-C 4-6
DF1 Driver Communications 11-18
DF1 Packet Interrupt 8-3
Port PRT2 DTR Signal 11-11
Processor Interrupt 8-4

Display
Current PRT1 Port Setup 12-24
Current PRT2 Port Setup 12-14

Divide (/)
arithmetic operator 3-4
quick reference guide B-10

DO-UNTIL
control function 7-4
quick reference guide B-7

DO-WHILE
control function 7-3
quick reference guide B-7

DTR signal
disable 11-11
enable 11-11

E
EDIT

BASIC command 4-8
quick reference guide B-7

Enable
Control-C 4-5
DF1 Driver Communications 11-12
DF1 Packet Interrupt 8-2
Port PRT2 DTR Signal 11-11
Processor Interrupt 8-3

END
control function 7-5
quick reference guide B-7

EOF
quick reference guide B-7
special function operator 3-15

ERASE
BASIC command 4-9
quick reference guide B-7

EXP
logarithmic operator 3-11
quick reference guide B-7

Expanded ONERR Restart 8-5
Exponentiation (**)

arithmetic operator 3-4
quick reference guide B-10

functional operators
ABS 3-9

expressions 3-2

F
Find a String in a String 15-6
Find the Length of a String 15-10
floating-point numbers 2-3
FOR-TO-(STEP)-NEXT

control function 7-6
quick reference guide B-7

FREE
quick reference guide B-7
special function operator 3-15

functional operators 3-9
INT 3-10
NOT 3-9
PI 3-10
RND 3-11
SGN 3-10
SQR 3-10

G
GET

input function 13-38
quick reference guide B-8

Get DF1 Packet Length 13-25
Get Number of Characters in PRT1 Buffers 11-10
Get Number of Characters in PRT2 Buffers 11-2
Get Numeric Input Character from PRT2 13-15
Get SLC Processor Program ID Number 11-19
GET#

input function 13-38
quick reference guide B-8

GET@
input function 13-38
quick reference guide B-8

GOSUB
execution control and interrupt support function 8-11
quick reference guide B-8

GOTO
control function 7-7
quick reference guide B-8
Publication 1746-RM001A-US-P

Index vii
H
hierarchy of operations 3-3

I
IDLE

BASIC command 4-10
quick reference guide B-8

IF-THEN-ELSE
control function 7-8
quick reference guide B-8

INPL
input function 13-39
quick reference guide B-8

INPL#
input function 13-39
quick reference guide B-8

INPL@
input function 13-39
quick reference guide B-8

INPS
input function 13-40
quick reference guide B-8

INPS#
input function 13-40
quick reference guide B-8

INPS@
input function 13-40
quick reference guide B-8

INPUT
input function 13-40
quick reference guide B-8

INPUT#
input function 13-40
quick reference guide B-8

INPUT@
input function 13-40
quick reference guide B-8

Insert a String in a String 15-8
INT

functional operator 3-10
quick reference guide B-8

integer numbers 2-3
Interrupt, module 8-4
Interrupt, processor

See processor interrupt.

L
LD@

input function 13-43
quick reference guide B-8

LED, user control
output function 12-25

LEN
quick reference guide B-8
special function operator 3-15

LET
assignment function 6-5
quick reference guide B-8

LIST
BASIC command 4-11
quick reference guide B-8

LIST #
BASIC command 4-12

LIST @
BASIC command 4-12

LIST#
quick reference guide B-8

LIST@
quick reference guide B-8

LOG
logarithmic operator 3-11
quick reference guide B-8

logarithmic operators 3-11
EXP 3-11
LOG 3-11

logical operators 3-6
.AND. 3-6
.OR. 3-6
.XOR. 3-6

M
M0 File Status 11-5
M1 File Status 11-6
manuals

related P-3
memory module

check and description 5-3
map 5-4

MODE
BASIC command 4-12
quick reference guide B-8
setup function 14-5

module interrupt 8-4
Publication 1746-RM001A-US-P

viii Index
MTOP
quick reference guide B-8
special function operator 3-16

Multiply (*)
arithmetic operator 3-4
quick reference guide B-10

N
Negation (-)

arithmetic operator 3-4
NEW

BASIC command 4-14
quick reference guide B-8

NEXT
control function 7-9
quick reference guide B-8

NOT
functional operator 3-9
quick reference guide B-8

NULL
BASIC command 4-14
quick reference guide B-8

Number to String Conversion 15-3

O
ONERR

execution control and interrupt support function 8-12
quick reference guide B-9

ON-GOSUB
execution control and interrupt support function 8-14
quick reference guide B-9

ON-GOTO
control function 7-11
quick reference guide B-9

ONTIME
execution control and interrupt support function 8-14
quick reference guide B-9

operators 3-2
arithmetic 3-3
functional 3-9
logarithmic 3-11
logical 3-6
special function 3-15
string 3-12
trigonometric 3-8

Overflow and Division by Zero
arithmetic operator 3-5

P
PH0.@

quick reference guide B-9
PH1.

quick reference guide B-9
PH1.#

quick reference guide B-9
PH1.@

quick reference guide B-9
PHO.

quick reference guide B-9
PHO.,PH1.

output function 12-37
PI

functional operator 3-10
quick reference guide B-9

PLC/SLC Unsolicited Writes
input function 13-26

PLC/SLC Unsolicited Writes-CALL 118 13-26
POP 2-1

execution control and interrupt support function 8-17
quick reference guide B-9

PRINT
output function 12-35
quick reference guide B-9

print
argument stack 5-7
PRT1 Input Buffer and Pointer 5-6
PRT1 Output Buffer and Pointer 5-5
PRT2 Input Buffer Pointer 5-8
PRT2 Output Buffer Pointer 5-8

PRINT CR
output function 12-36
quick reference guide B-9

PRINT SPC()
output function 12-36
quick reference guide B-9

PRINT TAB()
output function 12-36
quick reference guide B-9

PRINT USING(#.#)
output function 12-36
quick reference guide B-9

PRINT USING(Fx)
output function 12-36
quick reference guide B-9

PRINT#
output function 12-35
quick reference guide B-9
Publication 1746-RM001A-US-P

Index ix
PRINT@
output function 12-35
quick reference guide B-9

Processor Interrupt
disable 8-4
enable 8-3

PROG
BASIC command 4-15
quick reference guide B-9

PROG 1
BASIC command 4-16
quick reference guide B-9

PROG 2
BASIC command 4-17
quick reference guide B-9

Program ID Number 11-19
Protected Variable Storage 5-2
PRT1

clear input/output buffers 12-24
display current setup 12-24
get number of characters in buffers 11-10
print input buffer and pointer 5-6
print output buffer and pointer 5-5
reset to default settings 14-4

PRT2
clear input/output buffers 12-15
disable DTR signal 11-11
display current setup 12-14
enable DTR signal 11-11
get numeric input character 13-15
print input buffer and pointer 5-8
print output buffer and pointer 5-8
reset to default settings 14-4
set port parameters 14-1

publications
related P-3

PUSH 2-1
execution control and interrupt support function 8-15
quick reference guide B-9

R
RAM

BASIC command 4-19
quick reference guide B-9

RAM/ROM Return 8-9
READ

input function 13-45
quick reference guide B-9

Read Remote DF1 PLC Data File 13-30

Read Remote DF1 PLC Data File - CALL 122 13-30
Read Remote DH 485 Data to BASIC Input Buffer 13-20
Read Remote DH485 Common Interface File to BASIC Input

Buffer 13-23
Read Remote DH485 Data File to BASIC Input Buffer 13-20
Read Remote DH485 SLC Data File 13-8

input function 13-8
Read/Write to a PLC/SLC from the BASIC Module Internal

String 12-13, 13-13
input function 13-13
output function 12-13

relational operator 3-7
REM

BASIC command 4-19
quick reference guide B-10

REN
BASIC command 4-20
quick reference guide B-10

Replace a String in a String 15-7
Reset

Print Head Pointer 14-3
PRT1 to Default Settings 14-4
PRT2 to Default Settings 14-4

RESTORE
assignment function 6-7
quick reference guide B-10

RETI
execution control and interrupt support function 8-18
quick reference guide B-10

Retrieve
Date Numeric 10-4
Date String 10-7
Date/Time String 10-4
Day of Week Numeric 10-7
Day of Week String 10-6
Time Numeric 10-6
Time String 10-5

RETURN
execution control and interrupt support function 8-18
quick reference guide B-10

RND
functional operator 3-11
quick reference guide B-10

Rockwell Automation
contacting for assistance P-5

ROM
BASIC command 4-20
quick reference guide B-10

ROM to RAM Program Transfer 8-8
Publication 1746-RM001A-US-P

x Index
ROM/RAM to ROM Program Transfer 8-9
RROM

BASIC command 4-21
quick reference guide B-10

RS-232 network 13-2
RS-422 network 13-2
RS-485 network 13-2
RUN

BASIC command 4-22
quick reference guide B-10

S
set

clock/calendar date 10-2
Clock/Calendar Time 10-1
Day of Week 10-3
Program Port Baud Rate 14-2
PRT2 Port Parameters 14-1

SGN
functional operator 3-10
quick reference guide B-10

SIN
quick reference guide B-10

SLC 500 Controller CPU Status 11-7
SLC Processor Program ID Number 11-19
SNGLSTP

BASIC command 4-23
quick reference guide B-10

special function operators 3-15
and @ 3-15
CBY 3-16
DBY 3-16
EOF 3-15
FREE 3-15
LEN 3-15
MTOP 3-16
TIME 3-17
XBY 3-17

SQR
functional operator 3-10
quick reference guide B-10

ST@
output function 12-38
quick reference guide B-10

STOP
execution control and interrupt support function 8-20
quick reference guide B-10

STRING
quick reference guide B-10
string function 15-11

string
append 15-2
repeat 15-1

string and numeric elementary data types 2-1
string function

delete a string in a string 15-9
find a string in a string 15-6
find the length of a string 15-10
insert a string in a string 15-8
replace a string in a string 15-7

string operators 3-12
ASC 3-12
CHR 3-14

Subtract (-)
arithmetic operator 3-4
quick reference guide B-10

T
TAN

quick reference guide B-10
terms and abbreviations P-4
TIME

quick reference guide B-10
special function operator 3-17

Transfer BASIC Output Buffer to CPU M1 File 12-16
Transfer BASIC Output Buffer to DH485 Common Interface File

12-17
Transfer CPU M0 File to BASIC Input Buffer 13-18
Transfer CPU Output Image to BASIC Input Buffer 13-17
Transfer Data from Port 1 or 2 to the CPU Files 13-2
Transfer DH 485 Interface File to BASIC Input Buffer 13-19
Transmit DF1 Packet

output function 12-26
trigonometric operators

ATN 3-8
COS 3-8
SIN 3-8
TAN 3-8

troubleshooting
contacting Rockwell Automation P-5
Publication 1746-RM001A-US-P

Index xi
U
Unsolicited Writes 13-26
Upload User Memory Module Code to Host 5-4
User LED Control 12-25
User Memory Module Check and Description 5-3

V
variables

in general 2-4
name of 2-5
type of 2-5

VER
BASIC command 4-25
quick reference guide B-10

W
Write BASIC Output Buffer to Remote DH485 Data File 12-18
Write Output Buffer to Remote DH485 Common Interface File

12-22
Write to Remote DF1 PLC Data File 12-28
Write to Remote DH485 SLC Data File 12-6

X
XBY

quick reference guide B-10
special function operator 3-17

XFER
BASIC command 4-26
quick reference guide B-10
Publication 1746-RM001A-US-P

xii Index
Publication 1746-RM001A-US-P

Back Cover
Publication 1746-RM001A-US-P - April 2000 13
Supercedes Publication 1746-6.3 - November 1994 © 2000 Rockwell International Corporation. Printed in the U.S.A.

	1746-RM001A-US-P, BASIC Language Reference Manual
	Important User Information
	Table of Contents
	Preface
	Who Should Use This Manual
	Purpose of this Manual
	How to Use this Manual
	Terms and Abbreviations
	Conventions Used in this Manual
	Rockwell Automation Support

	Language Elements
	Character Set
	The BASIC Program Line

	Data Types
	Data Types
	Variables

	Expressions and Operators
	Expressions and Operators
	Hierarchy of Operators
	Arithmetic Operators
	Logical Operators
	Relational Operators
	Trigonometric Operators
	Functional Operators
	Logarithmic Operators
	String Operators
	Special Function Operators

	BASIC Commands
	BRKPNT
	CONT
	Control-C
	CALL 18 – Re-enable the Control-C Break Function
	CALL 19 – Disable the Control-C Break Function
	Control-S
	Control-Q
	EDIT
	ERASE
	IDLE
	LIST
	LIST@
	LIST#
	MODE
	NEW
	NULL
	PROG
	PROG1
	PROG2
	RAM
	REM
	REN
	ROM
	RROM
	RUN
	SNGLSTP
	VER
	XFER

	Command Line CALLs
	CALL 73 – Battery-Backed RAM Disable
	CALL 74 – Battery-Backed RAM Enable
	CALL 77 – Protected Variable Storage
	CALL 81 – User Memory Module Check and Description
	CALL 82 – Check User Memory Module Map
	CALL 101 – Upload User Memory Module Code to Host
	CALL 103 – Print PRT1 Output Buffer and Pointer
	CALL 104 – Print PRT1 Input Buffer and Pointer
	CALL 109 – Print Argument Stack
	CALL 110 – Print PRT2 Output Buffer Pointer
	CALL 111 – Print PRT2 Input Buffer Pointer

	Assignment Functions
	CLEAR
	CLEARI
	CLEARS
	DATA
	DIM
	LET
	RESTORE

	Control Functions
	CLOCK1
	CLOCK0
	DO-WHILE
	DO-UNTIL
	END
	FOR-TO-(STEP)-NEXT
	GOTO
	IF-THEN-ELSE
	NEXT
	ON-GOTO

	Execution Control and Interrupt Support Functions
	CALL 16 – Enable DF1 Packet Interrupt
	CALL 17 – Disable DF1 Packet Interrupt
	CALL 20 – Enable Processor Interrupt
	CALL 21 – Disable Processor Interrupt
	CALL 26 – Module Interrupt
	CALL 38 – Expanded ONERR Restart
	CALL 70 – ROM to RAM Program Transfer
	CALL 71 – ROM/RAM to ROM Program Transfer
	CALL 72 – RAM/ROM Return
	GOSUB
	ONERR
	ON-GOSUB
	ONTIME
	PUSH
	POP
	RETI
	RETURN
	STOP

	Math and Backplane Conversion Functions
	CALL 14 – 16-Bit Signed Integer to BASIC Floating-Point
	CALL 15 – 16-Bit Unsigned Integer to BASIC Floating-Point
	CALL 24 – BASIC Floating-Point to 16-Bit Signed Integer
	CALL 25 – BASIC Floating-Point to 16-Bit Binary
	CALL 88: BASIC Floating-Point to SLC Floating-Point
	CALL 89: SLC Floating-Point to BASIC Floating-Point

	Clock/Calendar Functions
	CALL 40 – Set Clock/ Calendar Time
	CALL 41 – Set Clock/ Calendar Date
	CALL 42 – Set Day of Week
	CALL 43 – Retrieve Date/ Time String
	CALL 44 – Retrieve Date Numeric
	CALL 45 – Retrieve Time String
	CALL 46 – Retrieve Time Numeric
	CALL 47 – Retrieve Day of Week String
	CALL 48 – Retrieve Day of Week Numeric
	CALL 52 – Retrieve Date String

	Status Functions
	CALL 36 – Get Number of Characters in PRT2 Buffers
	CALL 51 – Check CPU Output Image Buffer
	CALL 55 – Check CPU Input Image Buffer
	CALL 58 – Check M0 File
	CALL 59 – Check M1 File
	CALL 75 – Check SLC 500 Controller CPU Status
	CALL 80 – Check Battery Condition
	CALL 86 – Check DH485 Interface File Remote Write Status
	CALL 87 – Check DH485 Interface File Remote Read Status
	CALL 95 – Get Number of Characters in PRT1 Buffers
	CALL 97 – Enable Port PRT2 DTR Signal
	CALL 98 – Disable Port PRT2 DTR Signal
	CALL 108 – Enable DF1 Driver Communications
	CALL 113 – Disable DF1 Driver Communications
	CALL 120 – Clear module Input and Output Buffers
	CALL 121 – Get SLC Processor Program ID Number

	Output Functions
	CALL 23 – Transfer Data from the CPU Files to Port 1 or 2
	CALL 28 – Write to Remote DH485 SLC Data File
	CALL 29 – Read/Write to a PLC/SLC from the Module Internal String
	CALL 31 – Display Current PRT2 Port Setup
	CALL 37 – Clear PRT2 Input/Output Buffers
	CALL 54 – Transfer BASIC Output Buffer to CPU Input Image
	CALL 57 – Transfer BASIC Output Buffer to CPU M1 File
	CALL 85 – Transfer BASIC Output Buffer to DH485 Common Interface File
	CALL 91 – Write BASIC Output Buffer to Remote DH485 Data File
	CALL 93 – Write Output Buffer to Remote DH485 Common Interface File
	CALL 94 – Display Current PRT1 Port Setup
	CALL 96 – Clear PRT1 Input/Output Buffers
	CALL 112 – User LED Control
	CALL 114 – Transmit DF1 Packet
	CALL 115 – Check DF1 XMIT Status
	CALL 123 – Write to Remote DF1 PLC Data File
	PRINT
	PH0., PH1.
	ST@

	Input Functions
	CALL 22 – Transfer Data from Port 1 or 2 to the CPU Files
	CALL 27 – Read Remote DH485 SLC Data File
	CALL 29 – Read/Write to a PLC/SLC from the Module Internal String
	CALL 35 – Get Numeric Input Character from PRT2
	CALL 53 – Transfer CPU Output Image to BASIC Input Buffer
	CALL 56 – Transfer CPU M0 File to BASIC Input Buffer
	CALL 84 – Transfer DH485 Interface File to BASIC Input Buffer
	CALL 90 – Read Remote DH485 Data File to BASIC Input Buffer
	CALL 92 – Read Remote DH485 Common Interface File to BASIC Input Buffer
	CALL 117 – Get DF1 Packet Length
	CALL 118 – PLC/SLC Unsolicited Writes
	CALL 122 – Read Remote DF1 PLC Data File
	GET
	INPL
	INPS
	INPUT
	LD@
	READ

	Setup Functions
	CALL 30 – Set PRT2 Port Parameters
	CALL 78 – Set Program Port Baud Rate
	CALL 99 – Reset Print Head Pointer
	CALL 105 – Reset PRT1 to Default Settings
	CALL 119 – Reset PRT2 to Default Settings
	MODE

	String Functions
	CALL 60 – String Repeat
	CALL 61 – String Append
	CALL 62 – Number to String Conversion
	CALL 63 – String to Number Conversion
	CALL 64 – Find a String in a String
	CALL 65 – Replace a String in a String
	CALL 66 – Insert a String in a String
	CALL 67 – Delete a String in a String
	CALL 68 – Find the Length of a String
	STRING

	Decimal/Hexadecimal/Octal/ASCII Conversion Table
	Mathematical Conversion Overview

	BASIC Command, Statement, and CALL Quick Reference Guide
	Mnemonic List Overview

	Index
	Back Cover

