Logix 5000 Controllers
Add On Instructions

1756 ControlLogix, 1756 GuardLogix, 17769 CompactLogix,
1769 Compact GuardLogix, 1789 SoftLogix, 5069
CompactLogix, 5069 Compact GuardLogix, Studio 5000
Logix Emulate

Rockwell Automation Publication 1756-PMOT0L-EN-P - November 2023
Supersedes Publication 1756-PMOT0K-EN-P - September 2020

tig Rockwell
Aufomaltion
Programming Manual Original Instructions

Logix 5000 Controllers Add On Instructions

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and
operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize
themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to
be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be
impaired.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use

or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and
requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for
actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software
described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is
prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Q WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to
personal injury or death, property damage, or economic loss.

Q ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss.
Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT |dentifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

Q SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

ﬁ BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous
temperatures.

éé ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a mator control center, to alert people ta potential Arc Flash. Arc Flash will
cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for
Personal Protective Equipment (PPE).

Rockwell Automation recognizes that some of the terms that are currently used in our industry and in this publication are not in
alignment with the movement toward inclusive language in technology. We are proactively collaborating with industry peers to
find alternatives to such terms and making changes to our products and content. Please excuse the use of such terms in our
content while we implement these changes.

2 Rockwell Automation Publication 1756-PMO10L-EN-P - November 2023

Summary of changes

This manual includes new and updated information. Use these reference
tables to locate changed information.

Grammatical and editorial style changes are not included in this summary.

Global changes

None in this release.

New or enhanced features

This table contains a list of topics changed in this version, the reason for the
change, and a link to the topic that contains the changed information.

Change Topic

Updated the list of publications. Additional resources on page 10

Added a note on the appearance of the safety signature on | View and print the instruction signature on

the Quick View Pane and in the signature report. page 62
In the Required and Visible parameter settings table, Determining which parameters to make visible
changed the parameter type in the last row to InOut. or required on page 30

Rockwell Automation recognizes that some of the terms that are currently
used in our industry and in this publication are not in alignment with the
movement toward inclusive language in technology. We are proactively
collaborating with industry peers to find alternatives to such terms and
making changes to our products and content. Please excuse the use of such
terms in our content while we implement these changes.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 3

Table of Contents

Summary of changes
Preface

Designing Add-On Instructions

StUdiOo 5000 ENVIFONIMENT «...euvveuieiierenireeieerterenesseseseteseseesseseessesesessesenenes 9
AddItioNnal FESOUICEScuvueueucuueeuieieirinireecacieiereiete e seseeeeaeeaese e 10
Understanding terminologycceeeueuererererirerieueueieieeneneneseseseeeeseneenene 11
LGl NOTICES ..cvuuiniiirieieieieicieee ettt sttt 11
Chapter 1
INTIOAUCTION .ttt eaes 13
About Add-On INSTIUCTIONS. ...evvveeeieueriririreeteieieieieeeseneee s eesesesees 13
Components of an Add-On INStIUCTIONc.ceeererereeiereieeeeereeieeeieeeaenene 14
General INfOrmationcocoeccueueueuririninerecciceieeeeeee e 14
Parameters. ... 15
LOCAL TAGS wevrvvvieieieieeiirir ettt 16
Data TYPE ceoveiiiiiiiiiiiiicttrc e 17
LOZIC TOULITIE ...c.veueeueeeuirueieiententeie e te e te et e s te e sae e sae et se e e 17
Optional Scan Modes FOULINEScvrvrveuerrrreeririereeriereerteseereeseseeeens 18
INStIUCTION SIGNATULC....cveuerreueererererreeerenteneerentesessesessesessessesesseneesesene 19
SINALULE NISTOIY...cueuiiririririeeeiciceceeerr et 20
Chang@e HISTOTY ..ccuoueueueueueieeeninirieeeeeeeieieieces ettt 20
HEID ettt 21
Considerations for Add-On INStIUCTIONS ...c.eveeeeveveeruererenieieeieieeseesenenes 22
Instruction functionalityocececceeeeeereriereeniereeririeeeseee et 22
ENCAPSULALION ..ttt 22
Safety Add-On INSTIUCTIONSceeeiererieieieieieieeirieieieseieieese e 22
INSTIUCTION SIGNATUIE....cvrveueerrereeriereertereerterenetesesetsseseseesesesessesenenes 23
Safety INStruction SIGNATULE........couvvvureereuereieneneerieieeeseeeseseneeesesesaeees 24
Programming languagescoeveeeeeeueucueuririnininenecccereeeseseseeenes 24
Transitional INSTIUCTIONS.....cccevevrureeueueueueieererereeeeeeeeieteseeeseseseseseesenenes 25
INSTIUCTION SIZE ..evvinrriinirreneineeiecteectese ettt se s 25
RUNTIME €dITING c..vivieiiiieieieieieeeeee ettt 25
Nesting Add-On INStIUCTIONS ...coceerererueveveueuemeeneririreeeeeeeeseneesesesesenens 26
Routines versus Add-On INStIUCTIONScccueveuerevrererererccmcecaereneenans 26
Programmatic access t0 datacoceeeueucueueueurererereneesenerereneeneseneseeaene 27
Unavailable instructions within Add-On Instructions 27
Use GSV and SSV INSTIUCTIONS......cucueueerererereererereieaeereneneeseeenesenenesenes 28
Considerations when creating parameters.......c.coeeeeeeerereeereseseseseenenes 29
Passing arguments to parameters by reference or by value............ 29
Selecting a data type for a parametercooeeveeeeueveueeecncnenenenennnnns 30
Creating an alias parameter for alocal tagccccovveveveereieeccnccnene. 30
Using a single dimension array as an InOut parameter 30
Determining which parameters to make visible or required 30
Using standard and safety tags.......ccceoevevervverenieieieeecreneneeeeeenene 32

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023 5

Table of Contents

Defining Add-On Instructions

Data acCess CONTIOL....couririiieueieiieiirieieteteeeieeeee et 32
Planning your Add-On Instruction design.........cccecevererererereeeerereeeeneenes 34
Intended behavior........ccerurrecrceucicicieierreecceieete e 34
Parameters. ... 34
NamINg CONVENTIONS...c.ceurueuerurrereerrereereereerteseertesesesessesestssesesessesesenes 34
SOUICE PrOTECTION .cuveerrrenreuerreneereteuerretesestesesseterestesessesesseseesesseseesensene 35
Nesting - reuse INSTIUCTIONS c.v.veuevveurrrerererieresereereseeeseseeeseseteseseneeene 35
LOCAL TAGS vttt 35
Programming languagescoeceeeueucueueunirininenccciereieeseseeeeeeenene 35
SCAN MOAE FOULINES .cuvueriretrieieneeireeieteteteeeieeeesese e bese e sees 35
TOST o 35
Help dOCUMENTATION ..ottt 35
Chapter 2
Create an Add-On INSTIUCTION ...ccveveveveueieeertreeieeeeeieieieeeeestseseseeaenenes 37
Create @ PArAMETEY ..ccceereveeeuierierieeireeieenteete et sstesresresse e e essaesaresnesanas 38
Create a module reference parameterccoeeeeeeeeereeeereuereeenenesisenennns 40
Create [0Cal tags.....ceeueueiiriririreeieecce e 42
Editing parameters and 10cal tagscocovvevereeeeeeicccnennnneeeeccene 43
Updates to arguments following parameter edits.........c.cocevvrereerereuennen. 44
Copy parameter or local tag default valuescccoouveeevereenireecinieennne 45
Creating logic for the Add-On InStructionc.coceeeeeeveuecereneneneneseenenenee 47
Execution considerations for Add-On Instructions........c.coceceeueueee 48
Optimizing Performance.....ccov o eeueueerererererereeseeeeeseseeeseseseseesesenenes 48
Defining operation in different scan modes........c.cocecvrvrueerireeeneruereennes 48
Enabling SCan modesccccevereriririririeieieeeceeeeeieie et 49
Create a PreSCan FOULINEC. ...c.c.cucueueveurererereeaeaeaesereeeteeseseeseaescsesesesesesens 49
Create 2 POSLSCAN FOULIMEeveueeuereeuereeneerenteserteseesetsseseesesseneeseeesessene 52
Create an EnableInFalse routinecocoeeeeeeeeececuceeveueirinenenenccccnenes 54
Using the Enableln and EnableOut parameters..........ccccceeveverereeveuenennen. 56
EnableIn parameter and ladder diagrams........ccccoceevennninicecnccnnee 56
Enableln parameter and function blocks.........cceceueeivennniririruenennnee. 56
Enableln parameter and structured teXtocoeeueueerererererereenenenenen. 57
Change the class of an Add-On INStruCtionccceeeeevereeverereeerereenenenns 57
Testing the Add-On INSTIUCTION ..c.vvvveveeeeeiiecirieieieie et 57
Prepare to test an Add-On INStruction.......coeeeeeveueueeeerererereeeenenenenens 58
TSt the flOW....c.coiiririreeieececc e 58
Monitor logic with data CONteXt VIEWScccevvereeveveucucucrenerenineeeenenenenene 58
Verifying individual scan modescccoeererererirerieieieeeeenccneeneens 59
Source protection for an Add-On INStrUCtIONcoveveeerveueerereerererieneennas 60
Enable the source protection featureccoceeevereeevereeeeneeieeenens 61
Generating an Add-On Instruction SIgNAatUrececeeererererereererenenenene 61

6 Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Table of Contents

Using Add-On Instructions

Importing and Exporting Add-On
Instructions

Generate, remove, Or COPy an Instruction Signature........c....c.ceceuee.. 61
Create a signature hiStory entrycoceeveeeueeeeneneneneseeieieeeeeenes 62
Generate a safety inStruction SIgNAtUIE........ccceererererereererereneneeneens 62
View and print the Instruction SIgNAaturecccoeceeeeerererereevevemenenen. 62
Create an alarm definitioncccccoeeererirerieieeeieccerereseeeeeeee e 64
Access attributes from Add-On Instruction alarm setsc........ 65
Creating instruction helpccoeeeveeenneieeee e 66
Write clear deSCIIPLIONS ...cvvvevieirieueeriereerieieereeieeeeee et eaees 67
Document an Add-On INStEUCTION. ..c.c.cucueveueueurerererereseaeeereneeeeeeneseeaene 67
Project dOCUMENTATIONoveuieevereirieieerieteeereeteseeeseieestesesesseseseessenene 70
Motor starter insStruction eXamplecccceeeeervereierieieeneieerireeseeeeaenes 70
Simulation instruction eXampleccceeevirerieieieeeenennneeee s 74
Ladder diagram configuration.........cceceeeeeenenereneeeeeeuecncneneneneneeeenenene 76
Function block diagram configurationcececeeevveeverereceriereennnnen 77
Structured teXt CONTIGUIATION ...cvvvvveveueieeieirereeeeieieie et 78
Chapter 3
INEEOAUCTION covevetieteiiteteieteteetete ettt ettt e e sae e e st e et senessesennanes 79
Access Add-On INSTIUCTIONS...cvveveveueueueerererereeieieeeieeaeesesesesesee e seseseenene 79
Use the Add Ladder Element dialog boX........cccevuverureeueeecninininirieieennen. 79
Including an Add-On Instruction in a FOULINEeceevvvererereereereerenernenene 81
Track an Add-On INSTIUCTIONvvueucueueririririeeeieeeieieeeseeet et 83
Reference a hardware module..........ccocoeeeeueueveirininininenccccceerreceaee 84
Tips for using an Add-On INStIUCTIONoveuevrvereririeieireereirieeeeieeeeeeene 86
Programmatically access a parameterc.c.coeeueveueueerenereneneenenememencenenes 87
Using the Jog command in ladder diagram........ccccceeeevveverieueneennee. 87
Use the Jog command in a function block diagramccccc......... 88
Using the Jog command in structured teXt........cocoverereeueueueuecrcneenes 89
Monitor the value of @ parameter........cooceeueueeeerereririseeeeeeeeesereseees 89
View logic and monitor with data CONteXtccevvvererererereeeeueieeeeennes 90
Determine if the Add-On Instruction is source protected..................... 92
Copy an Add-On INSTITUCTION ...ovveueueeiiririeieieieieieeereeesteseseseseeseeeesssees 93
Store Add-On INSTIUCTIONS ...cuvvurererereeaeaeacierereteaessesesesesesesesesesseseseseseacaes 94
Chapter 4
Create an eXPOrt fileoceivieeeiririeireeree s 95
EXPOTt tO SeParate filescceeiiriririrerieieieieeeeeee e 95
EXport to a SINgle fileo.oueueueiiiiiiieieieeeeee s 97
Importing an Add-On INSTIUCTIONvevueueuerereririreeieeeieieieeeereeee e 98
IMPOTt CONSIAETATIONS c.uveveeevieeieieeeiieieteteie ettt 98
IMPOTt CONTIGUIATION ..ottt eees 99

Update an Add-On Instruction to a newer revision through import.. 100

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023 7

Table of Contents

Index

8 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Preface

Studio 5000 environment

This manual shows how to use Add-On Instructions, which are custom
instructions that you design and create, for the Logix Designer application.
This manual is one of a set of related manuals that show common procedures
for programming and operating Logix 5000 controllers.

For a complete list of common procedures manuals, refer to the Logix 5000

Controllers Common Procedures Programming Manual, publication
1756-PMoo1.

The term Logix 5000 controller refers to any controller based on the Logix
5000 operating system.

Rockwell Automation recognizes that some of the terms that are currently
used in our industry and in this publication are not in alignment with the
movement toward inclusive language in technology. We are proactively
collaborating with industry peers to find alternatives to such terms and
making changes to our products and content. Please excuse the use of such
terms in our content while we implement these changes.

The Studio 5000 Automation Engineering & Design Environment® combines
engineering and design elements into a common environment. The first
element is the Studio 5000 Logix Designer® application. The Logix Designer
application is the rebranding of RSLogix 5000® software and will continue to
be the product to program Logix 5000™ controllers for discrete, process,
batch, motion, safety, and drive-based solutions.

T

Studio 5000 Logix Designer®

The Studio 5000® environment is the foundation for the future of

Rockwell Automation® engineering design tools and capabilities. The Studio
5000 environment is the one place for design engineers to develop all
elements of their control system.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 9

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf

Preface

Additional resources

10

These documents contain additional information concerning safety
application requirements, safety task signature, configuring and operating
safety controllers and additional information concerning related Rockwell

Automation products.

Resource

Description

ControlLogix 5580 and GuardLogix® 5580 Controllers
User Manual, publication 1756-UM543.

Provides information on haw ta install, configure, and
program ControlLogix and GuardLogix 5580
controllers in the Logix Designer application.

CompactLogix™ 5380 and Compact GuardLogix®
5380 User Manual, publication 5069-UMQO1.

Provides information on haw ta install, configure, and
program CompactLogix and Compact GuardLogix
5580 controllers in the Logix Designer application.

GuardLogix 5570 Contrallers User Manual, publication
1756-UM022.

Provides information on haw ta install, configure, and
program GuardLogix 5570 contrallers in the Logix
Designer application.

GuardLogix 5570 Controllers Reference Manual,
publication 1756-RM099.

Contains detailed requirements for how to achieve
and maintain SIL 3 with the GuardLogix 5570
controller system in a Logix Designer application.

Compact GuardLogix 5370 Contrallers User Manual,
publication 1769-UM022.

Provides information on haw ta install, configure, and
program Compact GuardLogix 5570 contrallers in the
Logix Designer application.

GuardLogix 5580 and Compact GuardLogix 5380
Controller Systems Safety Reference, publication
1756-RM012.

Describes the development, operation, and
maintenance of GuardLogix 5580 and Compact
GuardLogix 5380 controller-based safety systemsin
the Logix Designer application.

GuardLogix Controller Systems Safety Reference
Manual, publication 1756-RM093.

Describes the GuardLogix cantroller system for use in
safety applications.

Compact GuardLogix Controllers User Manual,
publication 1768-UM002.

Guide for using Compact GuardLogix contrallers.
Describes the Compact GuardLogix-specific
procedures used to configure, operate, and
troubleshaot controllers.

GuardLogix Controllers User Manual, publication
1756-UM020.

Provides GuardLogix-specific procedures to use to
configure, operate, and troubleshoot contrallers.

GuardLogix Safety Application Instruction Set
Reference Manual, publication 1756-RM095.

Describes the GuardLogix Safety Application
Instruction Set which is type-approved and certified
for safety-related function in applications.

Logix5000 Controllers Security Programming Manual,
publication 1756-PMO16.

Describes how ta configure security for contraller
projects using the Logix Designer application.

Logix5000 Controllers Program Parameters
Programming Manual, publication 1756-PM021.

Describes how to use program parameters when
programming Logix5000 controllers.

Product Certifications webpage, available at
http://ab.rockwellautomation.com.

Provides declarations of conformity, certificates, and
other certification details.

You can view or download publications at

http://www.rockwellautomation.com/literature. To order paper copies of
technical documentation, contact your local Rockwell Automation distributor
or sales representative.

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

http://www.rockwellautomation.com/global/certification/safety.page?
https://www.rockwellautomation.com/literature

Preface

Understanding terminology

This table defines some of the terms used in this manual when describing
how parameters and arguments are used in Add-On Instructions.

Term

Definition

Argument

An argument is assigned to a parameter of an Add-On Instruction instance. An argument contains the specification
of the data used by an instruction in a user program. An argument can contain the following:

o A simple tag (for example, L101)

o Aliteral value (for example, b)

o Atag structure reference (for example, Recipe.Temperature)

o Adirect array reference (for example, Buffer{1])

e Anindirect array reference (for example, Buffer[Index+1])

o A combination (for example, Buffer[Index+1].Delay)

Parameter

Parameters are created in the Add-0n Instruction definition. When an Add-On Instruction is used in application code,
arguments must be assigned to each required parameter of the Add-On Instruction.

InOut parameter

An InOut parameter defines data that can be used as both input and output data during the execution of the
instruction. Because InOut parameters are always passed by reference, their values can change from external
sources during the execution of the Add-On Instruction.

Input parameter

For an Add-0n Instruction, an Input parameter defines the data that is passed by value into the executing instruction.
Because Input parameters are always passed by value, their values cannot change from external sources during the
execution of the Add-On Instruction.

Output parameter

For an Add-On Instruction, an Output parameter defines the data that is produced as a direct result of executing the
instruction. Because Output parameters are always passed by value, their values cannat change from external
sources during the execution of the Add-On Instruction.

Passed by reference

When an argument is passed to a parameter by reference, the logic directly reads or writes the value that the tag
uses in controller memory. Because the Add-On Instruction is acting on the same tag memory as the argument, other
code or HMI interaction that changes the argument’s value can change the value while the Add-On Instruction is
executing.

Passed by value

When an argument is passed to a parameter by value, the value is copied in or out of the parameter when the Add-On
Instruction executes. The value of the argument does not change from external code or HMI interaction outside of
the Add-On Instruction itself.

Module reference parameter

A module reference parameter is an InOut parameter of the MODULE data type that points to the Module Object of a
hardware module. You can use module reference parameters in both Add-on Instruction logic and program logic.
Since the module reference parameter is passed by reference, it can access and modify attributes in a hardware
module from an Add-On Instruction.

Legal notices

Rockwell Automation publishes legal notices, such as privacy policies, license
agreements, trademark disclosures, and other terms and conditions on the
Legal Notices page of the Rockwell Automation website.

End User License Agreement (EULA)

You can view the Rockwell Automation End User License Agreement (EULA)
by opening the license.rtf file in your product's install folder on your hard
drive.

The default location of this file is:

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 n

https://www.rockwellautomation.com/global/legal-notices/overview.page

Preface

12

C:\Program Files (x86)\Common Files\Rockwell\license.rtf.

Open Source Software Licenses

The software included in this product contains copyrighted software that is
licensed under one or more open source licenses.

You can view a full list of all open source software used in this product and
their corresponding licenses by opening the oss_licenses.txt file in your
product's OPENSOURCE folder on your hard disk drive. This file is divided
into these sections:

e Components

Includes the name of the open source component, its version number,
and the type of license.

e Copyright Text

Includes the name of the open source component, its version number,
and the copyright declaration.

e Licenses

Includes the name of the license, the list of open source components
citing the license, and the terms of the license.

The default location of this file is:

C:\Program Files (x86)\Common Files\Rockwell\Help\Control FLASH
Plus\Release Notes\OPENSOURCE\oss_licenses.txt.

You may obtain Corresponding Source code for open source packages
included in this product from their respective project websites. Alternatively,
you may obtain the complete Corresponding Source code by contacting
Rockwell Automation via the Contact form on the Rockwell Automation
website:
https://www.rockwellautomation.com/global/about-us/contact/contact.page.
Include "Open Source" as part of the request text.

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

https://www.rockwellautomation.com/global/about-us/contact/contact.page

Chapter 1

Introduction

About Add-On Instructions

Designing Add-On Instructions

Add-On Instructions are available beginning with RSLogix 5000, version 16.
Add-On Instructions are custom instructions that you design and create.
Beginning in RSLogix 5000, version 18, high integrity and safety Add-On
Instructions are available.

With Add-On Instructions, you can create new instructions for sets of
commonly-used logic, provide a common interface to this logic, and provide
documentation for the instruction.

Add-On Instructions are intended to be used to encapsulate commonly used
functions or device control. They are not intended to be a high-level
hierarchical design tool. Programs with routines are better suited to contain
code for the area or unit levels of your application. The following table lists the
benefits of using Add-On Instructions.

Reuse Code

o You can use Add-On Instructions to promote consistency between
projects by reusing commonly-used control algorithms.

o |f you have an algorithm that will be used multiple times in the same
project or acrass multiple projects, it may make sense to incorporate
that code inside an Add-On Instruction to make it modular and easier to
reuse.

Provide an easier to understand interface e You can place complicated algorithms inside of an Add-On Instruction,

and then provide an easier to understand interface by making only
essential parameters visible or required.

o You can reduce documentation development time through
automatically generating instruction help.

Export and import an Add-On Instruction o You can export an Add-On Instruction to an.L5X file that can then be

imported into another project. You can also copy and paste between
projects.

Simplify maintenance You can simplify code maintenance because Add-On Instruction logic,

monitored in the Logix Designer application, animates with tag values
relative to that specific instance of the Add-On Instruction.

Track revisions, view change history, and confirm | e You can add an instruction signature to your Add-On Instruction, which
instruction functionality generates a unique identifier and prevents the instruction from being

edited without resulting in a change to the signature.

Use Add-On-Instructions across multiple projects. You can define the
instructions, the instructions can be provided to you by someone else, or they
can be copied from another project.

Once defined in a project, they behave similarly to the built-in instructions
already available in the Logix Designer application. They appear on the

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 13

Chapter1 Designing Add-On Instructions

instruction toolbar and in the instruction browser for easy access, just like
built-in Logix Designer application instructions.

Like standard Add-On Instructions, safety Add-On Instructions let you
encapsulate commonly-used safety logic into a single instruction, making it

modular and easier to reuse. In addition to the instruction signature used for
high-integrity Add-On Instructions, safety Add-On Instructions feature a SIL

3 safety instruction signature for use in safety-related functions up to and
including SIL 3.

Refer to the safety reference manual for your controller, listed in the

Additional Resources, for details on certifying safety Add-On Instructions and

using them in SIL 3 safety applications.

components of an Add-On Add-On Instructions are made up of the following parts.

Instruction The General tab contains the information you enter when you first create the
instruction. You can use this tab to update that information. The description,
. . revision, revision note, and vendor information is copied into the custom help
General information for the instruction. The revision is not automatically managed by the
software. You are responsible for defining how it isused and when itis
updated.
Add-On Instruction Definition - Simulation_DT1st v1.0 o @ ==
General” | Parameters | Local Tags | Scan Modes | Signature | Change History I Help |
Name: Simulation_DT_Tst
Description: Simulation instruction which includes a deadtime anda »
firet order lag |
Type: 578 Function Block Diagram
Major Minar Extendad Taxt
Revision: 1 o 2| Sim DT 1at
Revision Mate: B
Vendor: Roclkwell Automation
Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type
Data Type Size: 4 byte () [OK] [Cancel] [Apply l [Help
Class information for safety controller projects appears on the General tab as
well. The class can be standard or safety. Safety Add-On Instructions must
14 Rockwell Automation Publication 1756-PMOT0L-EN-P - November 2023

Chapter1 Designing Add-On Instructions

Parameters

meet requirements specific to safety applications. See Safety Add-On
Instructions on page 22 for more information.

&1 Add-On Instruction Definition - SafetyAddOnlnstruction v1.0 [| =[]
General | Farameters I Local Tags | Scan Modes | Signature | Change History I Help |
Name: SafetyAddOnlnstruction
Description: =
Class: Safety i
. Safety
Type: Standard |
Major Minor Extended Teaxt
Revision: 1= o =
Revision Mote: %
Vendor: Rockwel

Copy all default values of parameters and local tags whose values were modffied to all tags of this instruction type

Data Type Size: 4 byte (s) [OK] [Cancel] Apply Help

The parameters define the instruction interface; that is, how the instruction
appears when used. The parameter order defines the order that the
parameters appear on the instruction call.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 15

Chapter 1 Designing Add-On Instructions

Local tags

16

' h'
i | Add-On Instruction Definition - MyACIL v1.0 [
General | Parameters | Local Tags I Scan Modes I Signature I Change History I Help |
Mame Uzage | Data Type |.Nias Far | Defautt |St'_.de | Req | Vis | (]
[Enablein Inpt BOOL 1 Decimal [[E
| EnableOut Output BOOL 0 Decimal [0 [Er
L O o
1| 1 k
| Move Up Move Down
Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type
Data Type Size: 4 byte i) [oK J [Cancel Apply Help

The Local Tags tab defines tags that are used by the logic within the Add-On
Instruction and are not visible outside the instruction. Other Add-On
Instructions or programs in the project cannot access these tags.

The only way to make a local tag or one of its members accessible from outside
the instruction is by defining an alias parameter.

See Creating an Alias Parameter for a Local Tag on page 30.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter1 Designing Add-On Instructions

Data Type

Logic routine

-

' Add-On Instruction Definition - MyAQCI1 v1.0

===

General I Parameters | Local Tags™ |5can Modes | Signature | Change Histary | Help |

Mame ::lAl Data Type | Default |St3.f|e | Description | |
“| - DEDT_01 DEADTIME !
“Ib LDLG_0 LEAD_LAG F
<

Copy all default values of parameters and local tags whose values were modffied to all tags of this instruction type

Data Type Size: 77 byte (=) [DK ” Cancel] [Apply] l Help

Parameters and local tags are used to define the Data Type that is used when
executing the instruction. The software builds the associated Data Type. The

software orders the members of the Data Type that correspond to the

parameters in the order that the parameters are defined. Local tags are added

as hidden members.

The Data Type for a Local Tag may not be:

e A multi-dimensional array or an object type, which includes all Motion

types, MSG, ALARM_ANALOG, and ALARM_DIGITAL.
e Adata type used only for InOut parameters (MODULE).

The Data Type field is unavailable for members of a Local Tag.

The logic routine of the Add-On Instruction defines the primary functionality

of the instruction. It is the code that executes whenever the instruction is

called. The following image is the interface of an Add-On Instruction and its

primary logic routine that defines what the instruction does.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 17

Chapter1 Designing Add-On Instructions

Lewel Laop 101
Simulated Lewel|
baszed an Walve Pos.

LIC101_Sim

FracSim _|

Frocess Simulation (Deadtime-=Lag)

0.0 0.0
LW 101 Ol Ir}ut Cutput | LIT_101
*,

2 kY

N\

Simulation Input
[Eng Units)

[Lreadtime Instruction LeadlLag Instruction

0.0 Backing Tag Badking Tag
DERT_01 LDLG_01
DEDT | LDLéE |
Simulation Qutput
Leadtime Lead-Lag (Eng Units)

0.0 oo
In Out —111In Out | Output
- (_ Outout]
Cfg_DeadTime I Leadtime ———] Lag

Storagedrray Lead TimeShiftArray

Leadtime (seconds)

Lag Time Constant
(zeconds)

0.0
Cfg_LagTime

You can define additional routines for scan mode behavior.

Optional Scan Modes
routines

18 Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Chapter1 Designing Add-On Instructions

s

Add-0n Instruction Definition - Simulate_Feedback v1.0 (o] & |3

|Genem| I Parameters | Local Tags | Scan Modes | Signaturs I Change History | Help |

The controller prescans and postscans the Add-On Instruction Logic routine but will not execute the Logic
routine when Enableln is false.

Optional Prescan, Postscan and EnablelnFalse routines may be corfigured below.

Prescan routine: Executes prior to first scan on transition from program to mn

Execute Prescan routine after the Logic routine is prescanned Mew... Go To

Postscan routine: Executes on last scan of a step f SFC is configured for automatic reset

Execute Postscan routine after the Logic routing is postscanned Mew... G0 To

EnablelnFalze routine: Executes when the Enableln parameter iz false

Execute EnablzinFalse routine Mew... Go To

Copy all default values of parameters and local tags whose values were modffied to all tags of this instruction type

Data Type Size: & byte (5) 0K] [Cancel Apply Help

-

The instruction signature consists of an ID number that identifies the
contents of the Add-On Instruction and a timestamp that identifies the
specific date and time at which the instruction signature was generated or a
signature history entry was made (whichever came last).

Instruction signature

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 19

Chapter 1

Designing Add-On Instructions

s

‘@ Add-0n Instruction Definition - Simulation_DT_1st v1.0 Sim DT 1st

| General I Parameters I Local Tags | Scan Modes | Signature | Change History | Help |

E=N ol =5

Signature
Generate a signature to uniquely identify this instruction and seal it from modifications.

Signature history

Change History

20

Signature History

1D ABD1AAZE Ea
Timestamp: 2014-06-15T21:05.03 5242

User Signature 1D | Timestamp Description

Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type

Data Type Size: 4 byte (5) [OK] [Cancel] Apply Help

Once generated, the instruction signature seals the Add-On Instruction,
preventing it from being edited while the signature is in place.

In addition, when a sealed safety Add-On Instruction is downloaded for the
first time, a SIL 3 safety instruction signature is automatically generated. The
safety instruction signature is an ID number that identifies the execution
characteristics of the safety Add-On Instruction.

Tip: The instruction signature is not guaranteed to be maintained when migrating between major
revisions of RSLogix5000 or Logix Designer.

The Signature history provides a record of signatures for future reference. A
signature history entry consists of the name of the user, the instruction
signature, the timestamp value, and a user-defined description. Up to six
history entries can be stored. If a seventh entry is made, the oldest entry is
automatically deleted.

The Change History tab displays the creation and latest edit information that
is tracked by the software. The By fields show who made the change based on
the Windows user name at the time of the change.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter1 Designing Add-On Instructions

s

{§! Add-On Instruction Definition - Simulation_DT_1st v1.0 Sim DT 1st o | B =)

| General I Parameters | Local Tags | Scan Modes Signature| Change History |He-||::u |

Created: 6/19/2014 4.26:42 PM
By: RAINTY L Woods

Edited: 6/15/2014 5:09:03 PM
By: RAINT\LWoods

Copy all defaultt values of parameters and local tags whose values were modified to all tags of this instruction type

Data Type Size: 4 byte (5) oK || Cancel Apply Help

The name, revision, description, and parameter definitions are used to
automatically build the Instruction Help. Use the Extended Description Text
to provide additional Help documentation for the Add-On Instruction. This
content reflects updates as Parameters or other attributes are changed in the

definition.

The Instruction Help Preview shows how your instruction will appear in the
various languages, based on parameters defined as required or visible.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 21

Chapter1 Designing Add-On Instructions

.

)

Add-0n Instruction Definition - Simulation_DT _1st v1.0 == =]

| General I Parameters I Local Tags™ I Scan Modes | Signature | Change Histor'_.fl Help |

BExtended Description Text:

Instruction Help Preview:

Simulation_DT_1st v1.0 Sim DT 1st

Rockwell Automation

[Contact the Add-On Instruction developer for questions or problerns with this
inatruction]

Simulation instruction which includes a dead time and a first order lag.

Available Languages o

m

Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type

Data Type Size: 77 byte (s) [OK] [Cancel] [Hoply] [Help

Considerations for Add-On

Instructions
Instruction functionality

Encapsulation

Safety Add-On Instructions

When deciding whether to develop an Add-On Instruction, consider the
following aspects.

Complex instructions tend to be highly application specific and not reusable,
or require extensive configuration support code. As with the built-in
instructions, Add-On Instructions need to do one thing, do it well, and
support modular coding. Consider how the instruction will be used and
manage interface complexity for the end user or application.

Add-On Instructions are best at providing a specific type of functionality or
device control.

Add-On Instructions are designed to fully encapsulate the code and data
associated with the instruction. The logic inside an Add-On Instruction uses
only the parameters and local tags defined by the instruction definition. There
is no direct programmatic access to controller or program scope tags. This lets
the Add-On Instruction be a standalone component that can execute in any
application that calls it by using the parameters interface. It can be validated
once and then locked to prevent edits.

Safety Add-On Instructions are used in the safety task of GuardLogix safety
controllers. Create a safety Add-On Instruction if you need to use your
instruction in a safety application. Safety Add-On Instructions are subject to a
number of restrictions. These restrictions, enforced by Logix Designer

22 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter1 Designing Add-On Instructions

Instruction signature

application and all GuardLogix controllers, are listed here for informational
purposes only.

e They may use only safety-approved instructions and data types.

o All parameters and local tags used in a safety Add-On Instruction must
also be safety class.

o Safety Add-On Instructions use ladder diagram logic only and can be
called in safety routines only, which are currently restricted to ladder
logic.

e Safety Add-On Instructions may be referenced by other safety Add-On
Instructions, but not by standard Add-On Instructions.

e Safety Add-On instructions cannot be created, edited, or imported
when a safety project is safety-locked or has a safety task signature.

Refer to the the safety reference manual for your controller, listed in the
Additional Resources, for information on how to certify a safety Add-On
Instruction as well as details on requirements for safety applications, the
safety task signature, and a list of approved instructions and data types.

The instruction signature, available for both standard and safety controllers,
lets you quickly determine if the Add-On Instruction has been modified. Each
Add-On Instruction has its own instruction signature on the Add-On
Instruction definition. The instruction signature is required when an Add-On
Instruction is used in SIL 3 safety-related functions, and may be required for
regulated industries. Use it when your application calls for a higher level of
integrity.

Once generated, the instruction signature seals the Add-On Instruction,
preventing it from being edited until the signature is removed. This includes
rung comments, tag descriptions, and any instruction documentation that
was created. When an instruction is sealed, you can perform only these
actions:

e Copy the instruction signature

e Create or copy a signature history entry

e Create instances of the Add-On Instruction
e Download the instruction

e Remove the instruction signature

e Print reports

The instruction signature does not prevent referenced Add-On Instructions or
User-defined Data Types from being modified. Changes to the parameters of
areferenced Add-On Instruction or to the members of a referenced
User-defined Data Type can cause the instruction signature to become
invalid. These changes include:

e Adding, deleting, or moving parameters, local tags, or members in
referenced User-defined Data Types.

e Changing the name, data type, or display style of parameters, local
tags, or members in referenced User-defined Data Types.

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023 23

Chapter1 Designing Add-On Instructions

Safety instruction signature

Programming languages

If you want to enable project documentation or source protection on an
Add-On Instruction to be sealed with an instruction signature, you need to
import the translated information or apply source protection before
generating the signature. You must have the source key to generate a
signature or to create a signature history entry for a source-protected Add-On
Instruction that has an instruction signature.

See Defining Source Protection for an Add-On Instruction on page 60 for
more information on source protecting your Add-On Instruction.

Tip: The instruction signature is not guaranteed to be maintained when migrating between major
revisions of RSLogix5000 or Logix Designer.

When a sealed safety Add-On Instruction is downloaded for the first time, a
SIL 3 Safety Instruction Signature is automatically generated.

The Safety Instruction Signature is a number that identifies the execution
characteristics of the safety Add-On Instruction (AOI). The Safety Instruction
Signature is different than the ID, which consists of a number and time stamp
which helps determine if the instruction has been modified.

The Safety Instruction Signature takes into account a variety of factors that
affect execution characteristics of the Safety Instruction, such as firmware
and software version, and technology considerations such as compilers and
hardware platform. Therefore, the Safety Instruction Signature is not
guaranteed to be maintained when migrating between major revisions of
Logix Designer.

Q Tip: The Safety Instruction Signature is computed by the controller and may change upon download.

For details on how to certify a safety Add-On Instruction, refer to the safety
reference manual for your controller, listed in the Additional Resources.

Select the programming language based on the type of application you are
developing. Ladder Diagram, Function Block Diagram, and Structured Text
can be used for Add-On Instruction logic.

Each of the programming languages supported in Logix Designer application
is targeted for different types of applications and programming styles. In
general, Ladder Diagram executes simple Boolean logic, timers, and counters
the fastest. Function Block Diagrams and Structured Text may be more
efficient if you take advantage of the more advanced process and drives
instructions available in those languages.

You cannot compare execution times for the same Add-On Instruction
written in different programming languages. There are fundamental
differences on how the different languages execute and are compiled.

Tip: You can change the programming language after you create the Add-On Instruction by clicking
Change Type on the General tab on the Add-On Instruction Definition Editor. However, any existing
logic will be lost.

24 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter1 Designing Add-On Instructions

Transitional instructions

Instruction size

Runtime editing

Some instructions execute (or retrigger) only when rung-condition-in toggles
from false to true. These are transitional-ladder diagram instructions. When
used in an Add-On Instruction, these instructions will not detect the rung-in
transition to the false state. When the Enableln bit is false, the Add-On
Instruction logic routine no longer executes, thus the transitional instruction
does not detect the transition to the false state. Extra conditional logic is
required to handle triggering of transitional instructions contained in an
Add-On Instruction.

Some examples of transitional instructions include: ONS, MSG, PXRQ, SRT,
some of the ASCII instructions, and some of the Motion instructions.

Q Tip: The EnablelnFalse routine can be used to provide the conditioning required to retrigger
transitional instructions cantained in an Add-On Instruction. However, this method will nat wark for
calls to this Add-On Instruction contained in a Structured Text routine, since Enableln is always true
for calls in Structured Text.

Add-On Instructions have one primary logic routine that defines the behavior
of the instruction when executed. This logic routine is like any other routine
in the project and has no additional restrictions in length. The total number of
Input parameters plus Output parameters plus local tags can be up to 512.

Logix Designer versions 27 and earlier do not set a limit on the number of
InOut parameters. However, limit extended properties (@Min and .@Max
syntax) should not be defined on an InOut parameter of an Add-On
Instruction and should not be used in Add-On Instruction definition logic or
the logic does not verify.

Logix Designer version 28 limits the number of InOut parameters for Add-On
Instructions to 40.

Logix Designer versions 29 and later limit the number of InOut parameters
for Add-On Instructions to 64 and limit the Add-On Instruction nesting levels
to 16. Rockwell recommends limiting the level of nesting to eight levels to
reduce complexity and make the instruction easier to manage.

Limits cannot be accessed inside Add-On Instruction logic.

The maximum data instance supported (which includes Inputs, Outputs, and
local tags) is two megabytes. The data type size is displayed on the bottom of
the Parameters and Local Tags tab in the Add-On Instruction Definition.

lﬂl Data Type Size: 77 byte (s}

Add-On Instructions can only be edited offline. If the intended functionality
needs to be changed in a running controller, consider carefully if an Add-On
Instruction is suitable.

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023 25

Designing Add-On Instructions

Nesting Add-On Instructions

Routines versus Add-0n
Instructions

Add-On Instructions can call other Add-On Instructions in their routines.
This provides the ability to design more modular code by creating simpler
instructions that can be used to build more complex functionality by nesting
instructions. The instructions can be nested up to 16 levels deep. However,
Rockwell recommends limiting the level of nesting to eight levels to reduce
complexity and make the instruction easier to manage.

Add-On Instructions cannot call other routines through a JSR instruction. You
must use nested instructions if you need complex functionality consisting of

multiple routines.

@ Tip: To nest Add-0n Instructions, both the nested instruction and the instruction that calls it must be
of the same class type or the calling instruction will not verify. That is, standard Add-On Instructions
may call only standard Add-On Instructions and safety Add-On Instructions may call only safety

Add-0n Instructions.

You can write your code in three basic ways: to run in-line as a main routine,
to use subroutine calls, or as Add-On Instructions. The following table

summarizes the advantages and disadvantages of each.
Aspect Main Routine Subroutine Add-On Instruction
. Within program (multiple copies, one | Anywhere in controller (single copy for
Accessibility N/A program multiple cop ywnere In c ingle copy
for each program) the entire project)
Pass by value with Input and Output
Parameters N/A Pass by value Y P P
parameters
. . Automatic data type conversion for
Numeric parameters N/A No conversion, user must manage »
Input and Output parameters
Atomic for any parameter
Parameters data types N/A Atomic, arrays, structures Arrays and structures must be InOut
parameters
Verification checks that correct type of
Parameter checking N/A None, user must manage argument has been provided for a
parameter
. All data at program or controller scope | Local data is isolated (only accessible
Data encapsulation N/A prog P (only

(accessible to anything)

within instruction)

Monitor/debug

In-line code with its data

Mixed data from multiple calls, which
complicates debugging

Single calling instance data, which
simplifies debugging

Supparted programming
languages

FBD, LD, SFC, ST

FBD, LD, SFC, ST

FBD, LD, ST

Callable from

N/A

FBD, LD, SFC, ST

FBD, LD, SFC through ST, ST

Protection

Locked and view only

Locked and view only

Locked and view only

Documentation

Routine, rung, textbox, line

Routine, rung, textbox, line

Instruction, revision information,
vendor, rung, textbox, line, extended
help

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 1

Designing Add-On Instructions

Aspect Main Routine Subroutine Add-On Instruction
Call is mare efficient
JSRISBR/RTN instructions add Indut parameters are passed by
overhead reference, which is faster than copying
Execution performance Fastest
P All data is copied data for many types
. Parameter references are
Indexed reference impact . .
automatically offset from passed-in
instruction tag location
Compact call requires more memory
Memory use Most used Very compact than a subroutine call
All references need an additional word
Edit Online/offline Online/offline Offline only
Entire routine, including tags and | Entire routine, including tags and Fullinstruction definition including
Import/export

instruction definitions to L5X

instruction definitions to L5X

routines and tags to LbX

Instruction signature

N/A

N/A

32-hit signature value seals the
instruction to prevent modification and

provide high integrity

Input and Output parameters and local tags are used to define an
instruction-defined data type. Each parameter or local tag has a member in
the data type, although local tag members are hidden from external use. Each
call to an Add-On Instruction uses a tag of this data type to provide the data
instance for the instruction's execution.

Programmatic access to
data

The parameters of an Add-On Instruction are directly accessible in the
controller's programming through this instruction-defined tag within the
normal tag-scoping rules.

Local tags are not accessible programmatically through this tag. This has
impact on the usage of the Add-On Instruction. If a structured (including
UDTs), array, or nested Add-On Instruction type is used as a local tag (not
InOut parameters), then they are not programmatically available outside the
Add-On Instruction definition.

Tip: You can access a local tag through an alias parameter.
See Creating an Alias Parameter for a Local Tag on page 30.

Most built-in instructions can be used within Add-On Instructions. The
following instructions cannot be used.

Unavailable instructions
within Add-0n Instructions

Unavailable Instruction Description

BRK Break

EOT End of Transition

EVENT Event Task Trigger

FOR For (For/Next Loop)

10T Immediate Output

JSR Jump to Subroutine

JXR Jump to External Routine

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 27

Chapter1 Designing Add-On Instructions
Unavailable Instruction Description
MAQC Motion Arm Output Cam
PATT Attach to Equipment Phase
PCLF Equipment Phase Clear Failure
PCMD Equipment Phase Command
PDET Detach from Equipment Phase
POVR Equipment Phase Override Command
RET Return
SBR Subroutine
SFP SFC Pause
SFR SFC Reset

Safety application instructions, such as Safety Mat (SMAT), may be used in
safety Add-On Instructions only. For detailed information on safety
application instructions, refer to the GuardLogix Safety Application
Instruction Set Safety Reference Manual, publication 1756-RMo9s.

In addition, the following instructions may be used in an Add-On Instruction,
but the data instances must be passed as InOut parameters.

Use GSV and SSV
instructions

28

ALMA (Analog Alarm)
ALMD (Digital Alarm)
All Motion Instructions
MSG (Message)

When using GSV and SSV instructions inside an Add-On Instruction, the
following classes are supported:

e AddOnlInstructionDefinition

Tip: GSV-only. SSV instructions will nat verify. Also, the classes that represent
programming components (Task, Program, Routine, AddOnInstructionDefinition)
support only 'this’ as the Instance Name.

Axis

Controller

Controller Device

CoordinateSystem

CST

Q Tip: GSV-only. SSV instructions will nat verify.

DF1

FaultLog

HardwareStatus

Q Tip: GSV-only. SSV instructions will nat verify.

Message
Module
MotionGroup
Program

Tip: The classes that represent programming components (Task, Program, Routine,
AddOnInstructionDefinition) support only 'this’ as the Instance Name.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm095_-en-p.pdf

Chapter1 Designing Add-On Instructions

Considerations when
creating parameters

Passing arguments to

parameters by reference or

Aspect

e Redundancy
e Routine

o Safety

e Serial Port

e Task

e TimeSynchronize
e WallClockTime

When you enter a GSV or SSV instruction, Logix Designer application
displays the object classes, object names, and attribute names for each
instruction. This table lists the attributes for the AddOnInstructionDefinition

class.

Attribute Name Data Type Attribute Description

MajorRevision DINT Major revision number of the Add-On Instruction

MinorRevision DINT Minor revision number of the Add-On Instruction

Name String Name of the Add-On Instruction

RevisionExtendedText String Text describing the revision of the Add-On Instruction

Vendor String Vendor that created the Add-On Instruction

LastEditDate LNT Date anq time stamp of the last edit to an Add-On
Instruction

SignaturelD DINT 32-bit instruction signature value

SafetySignaturelD DINT 32-bit safety instruction signature value

For more information on using GSV and SSV instructions, refer to the Logix
Controllers Instructions Reference Manual, publication 1756-RM00g9.

Consider the following information when you are creating parameters.

The following information will help you understand the differences between
passing argument tags to parameters by reference or by value.

By Value (Input or Output)

By Reference (InOut)

by valuey,..

Synchronous—the argument's value does not change Asynchronous—the argument's value may change
during Add-On Instruction execution.

during Add-0n Instruction execution. Any access
by the instruction's logic directly reads or writes
the passed tag's value.

Performance

Argument values are copied in and out of the parameters | Parameters access argument tags directly by
of the Add-On Instruction. This takes more time to reference, which leads to faster execution of
execute a call to the instruction.

instruction calls.

Memory usage

Most amount.

Least amount.

Parameter data types supported

Atomic (SINT, DINT, INT, REAL, BOOL).

Atomic, arrays, and structures.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 29

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm009_-en-d.pdf

Chapter1 Designing Add-On Instructions

Selecting a data type for a
parameter

Creating an alias parameter
for a local tag

Using a single dimension
array as an InOut
parameter

Determining which
parameters to make visible
or required

The Logix5000 controllers perform DINT (32 bit) and REAL (32 bit) math
operations, which causes DINT data types to execute faster than other integer
data types. Data conversion rules of SINT to INT to DINT are applied
automatically, and can add overhead. Whenever possible, use DINT data
types for the Add-On Instruction Input and Output parameters.

Alias parameters simplify connecting local tags to an Input or Output tag that
is commonly used in the Add-On Instruction’s application without requiring
that manual code be created to make the association. Aliases can be used to
define an Input or Output parameter with direct access to a local tag or its
member. Changing the value of an alias parameter changes the data of the
local tag or local tag member it represents and vice versa.

Alias parameters are subject to these restrictions:

o Alias parameters must be either Input or Output parameters.

e You can only create an alias parameter for a local tag or its member.

e Only one Input and one Output parameter may be mapped to the same
local tag or the same member of a local tag.

e Only BOOL, SINT, INT, DINT, and REAL data types may be used.

e Alias parameters may not be constants.

e The External Access type of an alias parameter matches the External
Access type of the local tag to which it is mapped.

For information on constants and External Access, see Data Access
Control on page 32.

The InOut parameter can be defined to be a single dimension array. When
specifying the size of this array, consider that the user of your array can
either:

e Passan array tag that is the same size as your definition.
e Passan array tag that is larger than your definition.

When developing your logic, use the Size instruction to determine the actual
size of the referenced array to accommodate this flexibility.

Tip: When you monitor an array InOut parameter inside of the logic routine, the parameter definition
is used to determine the size of the array. For example, assume you have defined an InOut parameter
to be a 10-element array of DINTs and the end user passes in an array of 100 DINTs. Then if you open
the Add-On Instruction logic, select the appropriate context for that call, and monitor the array
parameter, only 10 elements will be displayed.

To help be sure that specific data is passed into the Add-On Instruction, you
can use required parameters. A required parameter must be passed each
argument for a call to the instruction to verify. In Ladder Diagram and
Structured Text, this is done by specifying an argument tag for these
parameters. In a Function Block Diagram, required Input and Output
parameters must be wired, and InOut parameters must have an argument
tag. If a required parameter does not have an argument associated, as

30 Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Chapter1 Designing Add-On Instructions

described above, then the routine containing the call to the Add-On
Instruction will not verify.

For Output parameters, making a parameter visible is useful if you do not
usually need to pass the parameter value out to an argument, but you do want
to display its value prominently for troubleshooting.

Required parameters are always visible, and InOut parameters are always
required and visible. All Input and Output parameters, regardless of being
marked as required or visible, can be programmatically accessed as a member
of the instruction's tag.

The following picture shows a Simulation instruction in the function block

editor.
Simulation_DT_1st [xec)
Required input G) e
parameter Simulation INStruchon which ncludes a
\ Simulation_DT_1st_01
_ _ Siminput SimOutput o ~e— Visible (non-required)
Visible (non-reguired) i output parameter

input parameter ——®= | SimTimeConstant
DA DT_Array_FBD -¢—— InOut parameter

DT |- — Visible (non-reguired)
Boolean cutput parameter

If you want a pin that is displayed in Function Block, but wiring to it is
optional, set it as Visible.

The following picture shows a Simulation instruction in the ladder editor.

Vizible (non-reguired)
Boolean output parameter

Simulation_DT_1st l
y oy imulation instruction which include
?':‘;Ltilgﬂ':?ﬂ”n:;tfr”'mdf mulation_DT_{st Sim_DT_LD () - SimDTinv
siminput My_Control_Variable -—— Required input

\ 0.0 parameter
mTimeConstant S0em

Output 0.0
A1 DT_Awray_LD -—— [nQut parameter

Vizible (non-reguired) —m=
output parameter

e Ifyouwant the parameter’s value displayed on the instruction face in
Ladder, set the parameter as visible.

e An Output parameter of the BOOL tag type that is not required, but
visible, will show as a status flag on the right side of the block in
Ladder. This can be used for status flags like DN or ER.

This table explains the effects of the Required and Visible parameter settings
on the display of the instructions.

Parameter Is the Is the Ladder Function Block Structured Text
Type Parameter Parameter Diagram Diagram
Required? Visible?

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 31

Chapter 1

Designing Add-On Instructions

Parameter Is the Is the Ladder Function Block Structured Text
Type Parameter Parameter Diagram Diagram
Required? Visible?
Does the Does the Do You Need to Does the Can You Change | Does the
Value Argument Connect the Argument the Visibility Argument
display? display? Parameter? display? Setting Within | display?
the Function
Block?
Input \ \ \ \ \ N/A N \
Input N \ \ N N N/A Y N
Input N N N N N N/A Y N
Output Y Y Y Y Y N/A Y Y
Output N \ \ N N N/A Y N
Output N N N N N N/A Y N
InOut Y Y N Y N/A Y N Y

Using standard and safety

tags

Data access control

32

If you have a parameter for which the user must specify a tag as its source for
input or its destination as output, and you do not want this to be optional, set
the parameter as required. Any required parameters are automatically set to
visible.

The Visible setting is always set to visible for InOut parameters. All InOut
parameters are required.

Tip: When you are using your Add-On Instructions, the Visible setting may be overridden in
Function Block Diagram routines if the parameter is not required or already wired. Overriding the
visibility at the instruction call does not affect this definition configuration.

When creating a safety Add-On Instruction, follow these guidelines for
standard and safety tags:

e Standard tags may not be used as Input, Output, or InOut parameters
of a safety Add-On Instruction.

e Safety tags may be used as Input parameters for standard Add-On
Instructions.

In the Logix Designer application, versions 18 and later, you can prevent
programmatic modification of InOut parameters by designating them as
constants. You can also configure the type of access to allow external devices,
such as an HMI, to have to your tag and parameter data. You can control
access to tag data changes with Logix Designer application by configuring
FactoryTalk security.

Constant values

InOut parameters may be designated as constant value tags to prevent their
data from being modified by controller logic. If the logic of an Add-On
Instruction contains a write operation to a constant value parameter, the
Add-On Instruction does not verify in the Add-On Instruction definition
context.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter1 Designing Add-On Instructions

et e o o-sesrasornacin -]

Scope: SafetyAddOnInstrudion ~ Show: Al Tags * T -
Data Context: TEF SafetyAddOninstruction <de v | | @v
Name =z|« Usage Default + Force Mask + Style Data Type Description Constant =
Input 1 Decimal BOOL Enable Input - Syste...] :E E.], : :Extended Properties... v:
EnableQut Output 0 Decimal BOOL Enable Output - Syste... [4 General -
MName Enableln
Description Enable Input - Sys...
Usage Input
Type Base
Alias For
Base Tag
Data Type BOOL
Scope SafetyAddOnlnstr...
External Access Read Only =
E Style Decimal
Constant Mo
Required Mo
Visible Mo
4 Data
Value g
Force Mask
P Produced Connection B
b Consumed Connection
4 Parameter Connections {0:0}

4/[» |\ Monitor Tags |4 Edit Tags / < i | r

External Access

External Access defines the level of access that is allowed for external devices,
such as an HMI, to see or change tag values.

Add-On Instruction Parameters and Tags External Access Options
Local tag Read/Write

Input parameter Read Only

Output parameter None

Enableln parameter Read Only

EnableOut parameter

InOut parameter N/A

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 33

Chapter1 Designing Add-On Instructions

Scope: Simulate_Feedback ~ Show: Al Tags * T -
Simulate_Feedback <definit J
Name =]« Alias For Data Type Description External Access Usage Constant Style =
Enableln BOOL Enable Input - Syst... Read Only Input 0 Decimal oe: Oy [1
EnableQut BOOL Enable Qutput - Sy... Read Only Output 0 Decimal b General
b DelayTime DINT Read/Write Input a Decimal b Data
b DelayTimer TIMER Read/Write Local O P Froduced Connexton
b Consumed Connection
OutCommand BOOL Read/Write Input 0 Decimal IR e e et IED)
SimulateFault BOOL Read/Write Input [} Decimal
& O
«|[»| Monitor Tags) Edit Tags // [i r
: Take time to plan your instruction design. Advance planning can identi
Planning your Add-On] plany gn. Advance planning fy
i . issues that need to be addressed. When defining the requirements of an
Instruction des'ﬂ“ instruction, you are also determining the interface. Keep the following
aspects in mind when defining your instruction requirements and creating
your Add-On Instruction.
. e What is the purpose for creating the Add-On Instruction?
Intended behavior PUTpe 8
e What problem is it expected to solve?
e How isitintended to function?
e Doyou need to higher level of integrity on your Add-On Instruction?
If so, you can generate an instruction signature as a means to verify
that your Add-On Instruction has not been modified.
e Do you need to use safety application instructions and certify your
safety Add-On Instruction to SIL-3 integrity?
For details on how to certify a safety Add-On Instruction, refer to the
safety reference manual for your controller, listed in the Additional
Resources.
Parameters e What data needs to be passed to the instruction?
e What information needs to be accessible outside of the instruction?
e Do alias parameters need to be defined for data from local tags that
needs to be accessible from outside the Add-On Instruction?
e How does the parameters display? The order of the parameters defines
the appearance of instruction.
e Which parameters should be required or visible?
Namlng conventions The instruction name is to be used as the mnemonic for your instruction.

Although the name can be up to 40 characters long, you typically want to use

34 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter1 Designing Add-On Instructions

shorter, more manageable names.

L] . 1 1 ?
Source protection What type of source protection needs to be defined, if any?
e Whohas access to the source key?
o Will you need to manage source protection and an instruction
signature?

Source protection can be used to provide read-only access of the
Add-On Instruction or to completely lock or hide the Add-On
Instruction and local tags.

Source protection must be applied prior to generating an instruction
signature.

Nesting - reuse instructions e Are there other Add-On Instructions that you can reuse?
e Do you need to design your instructions to share common code?

Local tags e What data is needed for your logic to execute but is not public?

e Identifylocal tags you might use in your instruction. Local tags are
useful for items such as intermediate calculation values that you do not
want to expose to users of your instruction.

e Doyou want to create an alias parameter to provide outside access to a
local tag?

Programming Iangu ages e What language do you want to use to program your instruction?
The primary logic of your instruction will consist of a single routine of
code. Determine which software programming language to use based
on the use and type of application. Safety Add-On Instructions are
restricted to Ladder Diagram.

e Ifexecution time and memory usage are critical factors, refer to the
Logix5000 Controllers Execution Time and Memory Use Reference
Manual, publication 1756-RMo87.

Scan mode routines e Do you need to provide Scan mode routines?

You can optionally define the scan behavior of the instruction in
different Scan modes. This lets you define unique initialization
behaviors on controller startup (Program -> Run), SFC step postscan,
or Enableln False condition.

e Inwhatlanguage do Scan mode routines need to be written?

Test e How will you test the operation of your Add-On Instruction before
commissioning it?
e What possible unexpected inputs could the instruction receive, and
how will the instruction handle these cases?
Help docum entation e What information needs to be in the instruction help?

When you are creating an instruction, you have the opportunity to
enter information into various description fields. You will also need to

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023 35

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm087_-en-p.pdf

Chapter 1 Designing Add-On Instructions

develop information on how to use the instruction and how it
operates.

36 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2

Create an Add-On
Instruction

Defining Add-On Instructions

Use the New Add-On Instruction dialog to create Add-On Instructions.

To create a New Add-On Instruction

1. Open a new or existing project.
2. Right-click the Add-On Instructions folder in the Controller
Organizer and select New Add-On Instruction.

|

Name: Mator_Starter 0

Description: Starts and stops a motor - Cancel

iHg

Type: Ladder Diagram

Major Minor
Revision: 1= 0

Revision Mote:

Vendor: Roclowell

[7] Open Logic Routine
Cpen Definition

3. Inthe Name box, type a unique name for the new instruction.

The name can be up to 40 characters long. It must start with a letter or
underscore and must contain only letters, numbers, or underscores.
The name must not match the name of a built-in instruction or an
existing Add-On Instructions.

4. In Description box, type a description for the new instruction,
maximum 512 characters.
5. For safety projects, in the Class box, select either a Safety or Standard.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 37

Chapter 2 Defining Add-On Instructions

Create a parameter

The Class field is available on the Add-On Instructions dialog box for
safety controller projects.

6. Inthe Typebox, select a programming language for Add-On
Instruction logic.

The language Type defaults to Ladder Diagram for safety Add-On
Instructions.

7. In Revision box, assign a Revision level for the instruction.

8. (Optional) In the Revision Note box, type a Revision note.

9. (Optional) In the Vendor box, add information about the Vendor.
10. Click OK to create the instruction.

Use the Add-On Instruction Definition Editor to create the parameters for
your instructions. Follow these steps to define the parameters for your
instruction.

To create a parameter

1. Inthe Controller Organizer, right-click an Add-On Instruction and
select Open Definition.
2. On the Parameters tab, in the blank Name box, type a name for a

parameter.
B ' Add-On Instruction Definition - SafetyAddOnlnstruction v1.0 @
General | Parameters” | Local Tags | Scan Modes | Signature | Change History | Help |
Name | Usage | Data Type | Alias For | Default | Style | Req | Vis | Description | BExtemal Access |Con5tarﬂ | ;l
| Enableln Input BOOL 1 Decimal [] [Enable Input - Sys... Read Only o
EnableOut Output BOOL 0 Decimal [] [] Enable Output -S... Read Only |
*| OutCommand Input BOOL 0 Decimal [7] [C] Erterthe tag forthe Read/Wite [}
= SimulateFautt Input BOOL 0 Decimal [7] [Tosimulate afault Read/Write [l
2 I | E [
ove U e D
Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type
Data Type Size: 77 byte (s) [oK] [Cancel] [Apply l [Help

3. Inthe Usagebox, select Input, Output, or InOut.

38 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

Tip: An instruction with only Input parameters, except EnableOut, is treated as an input
instruction in a Ladder diagram and is displayed left-justified. The EnableQut parameter is
used for the rung-out condition.

4. Inthe Data Type list, choose the type based on the parameter usage:

e An Input parameter is a passed by value into the Add-On
Instruction and must be a SINT, INT, DINT, REAL, or BOOL data
type.

e An Output parameter is a passed by value out of the Add-On
Instruction and must be a SINT, INT, DINT, REAL, or BOOL data
type.

e An InOut parameter is a passed by reference into the Add-On
Instruction and can be any data type including structures and array.
Module reference parameters must be InOut parameters with the
MODULE data type (see Creating a module reference parameter on
page 40).

5. Ifthis parameteris intended as an alias for an existing local tag, select
the Alias For check box to select the local tag or its member.

Tip: You can also designate a parameter as an alias for a local tag by using the Tag Editor.
See Edit Parameters and Local Tags on page 43.

6. Inthe Defaultvalues list, set the default values.

Default values are loaded from the Add-On Instruction definition into
the tag of the Add-On Instruction data type when it is created, and
anytime a new Input or Output parameter is added to the Add-On
Instruction.

Tip: If you want to update existing invacations of the instruction to the new default values,
select the Copy all default values of parameters and local tags whose values were
modified to all tags of this instruction type check box at the bottom of the Add-On
Instruction Definition Editor. For details on copying default values, see Copying Parameter or
Local Tag Default Values on page 45.

In the Style list, set the display style.
8. Inthe Reqand Vis lists, select the check box to make the parameter
required or visible, as desired.

See Determining Which Parameters to Make Visible or Required on
page 30. If you decide to make the parameter required, it will also be
visible.

9. Inthe Description list, type a description, maximum 512 characters.
This description appears in the instruction’s help.

10. In the External Access list, select a type for Input or Output
parameters; Read/Write, Read Only, None.

11. In the Constant list, select InOut parameters check box you want to
designate as constant values.

12. Repeat for additional parameters.

Tip: You can also create parameters by using the Tag Editor, New Parameter or Local Tag
dialog box, or by right-clicking a tag name in the logic of your routine.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 39

Chapter 2 Defining Add-On Instructions

The order that you create the parameters is how they appear in the
data type and on the instruction face. To rearrange the order of the
Parameter tab on the Add-On Instruction Definition Editor, select the
parameter row and click Move Up or Move Down.

-

° Add-On Instruction Definition - SafetyAddOnInstruction v1.0 ﬁ
General | Parameters™ | Local Tags I Scan Modes I Signature I Change History I Help |
Mame | Usage | Data Type |Nias For | Req | Vis | Description | BExdemal Access |Cnnstant | ‘l
Enablein Input BOOL [] Enable Input - Sys... Read Only |
EnableCQut Qutput BOOL [[C] Enable Qutput - 5... Read Only |
OutCommand Input BOOL [7] [[] Enterthe tag forthe Read/\Wrte =
. Simulate Fautt Input BOOL To simulate a fault Read/Wiite |
*| ClearFautt Input BOOL [[Toclearafaut ReadWrite |
2 B B B
[Move Up L\\Jl Move Down l
Copy all default values of parameters and local tags whose values were modfied to all tags of this instruction type
Data Type Size: 77 byte (s) DK l ’ Cancel l I Apply l ’ Help

Create a module reference

A module reference parameter is an InOut parameter of the MODULE data

type that you use to access and modify attributes in a hardware module from

parameter

within the Add-On Instruction. For information on using a module reference

parameter, see Referencing a hardware module on page 84. You can use the
module reference parameter in two ways:

e InaGSVor SSVinstruction, or an Add-on Instruction, you can use the
module reference parameter as the Instance Name or Add-on

Instruction parameter.

e InanAdd-on Instruction, or in a GSV or SSV instruction, you can pass
the module reference parameter into the InOut parameter of another
nested Add-on Instruction.

There are several limitations on module reference parameters:

e Module references parameters can only be InOut parameters with the

MODULE data type.

40 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

e You can use a module reference parameter only in standard programs
and Add-on Instructions, not in Safety programs or Safety Add-on
Instructions.

e Program parameters that reference a module must connect to a
module, and cannot reference other module reference parameters.

e Module reference parameters must be program or Add-on Instruction
scope, not controller scope.

Tip: You cannot create a module reference tag. You can only reference madules using an
InOut parameter of the MODULE data type.

To create a module reference parameter

1. Inthe Controller Organizer, right-click an Add-On Instruction and
select Open Definition.
2. Onthe Parameters tab, in the blank Name box, type a name for a
parameter.
3. Inthe Usagebox, select InOut.
4. Inthe Data Type list, select the MODULE type. This data type is for the
Module object, and contains the following information:

e Entry Status

e Fault Code

e Fault Info

e FW Supervisor Status
e Force Status

e INSTANCE

e LED Status

e Mode

e Path

For more information on the Module object, search the Logix Designer
online help.

5. Inthe Description list, type a description, maximum 512 characters.
This description appears in the instruction’s help.

6. Inthe Constant list, select InOut parameters check box you want to
designate as constant values.
Tip: You can also create parameters by using the Tag Editor, New Parameter or Local Tag
dialog box, or by right-clicking a tag name in the logic of your routine.
For more information on using parameters in programs, see Logix5000
Controllers Program Parameters Programming Manual, publication

1756-PMo21.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 4]

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf

Chapter 2 Defining Add-On Instructions

Create local tags Use the Add-On Instruction Definition Editor to create the local tags for your
instructions. Local tags contain data that will be used by your Add-On

Instruction but that you do not want exposed to the user of your instruction.
Local tags do not appear in the data structure for an Add-On Instruction

because they are hidden members.

Tip: You can access local tag values from an HMI by specifying the name of the local tag as a member
in an Add-On Instruction type tag. For example, the Motor_Starter v1.0 instruction, shown in step 2,
has a tag called ‘CheckAuxContact'. This tag can be referenced by an HMI through
‘instancetag.CheckAuxContact’, where instancetag is the tag used to call the instruction.

To create local tags

1. Inthe Controller Organizer, right-click an instruction and select Open
Definition.

2. Onthe Local Tags tab, in the blank Name box field, type a name for a
new tag.

3. Inthe Data Typelist, select a data type from the Select Data Type
dialog box.

i Y

" Add-On Instruction Definition - SafetyAddOnlnstruction v1.0

General | Parameters | Local Tags™ | Scan Modes | Signature | Change History | Help |

Mame == | Data Type | Default | Style | Description
°| CheckAwCont BOOL 0 Decimal
“| b FaultTimer TIMER {...}
7| RunCommand [0 Decimal
1%

Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type

Data Type Size: 77 byte (5) [OK l [Cancel] [fpply] [Help]
You cannot use these data types for local tags - ALARM_ANALOG,
ALARM_DIGITAL, MESSAGE, MODULE, or any Motion data types, for
example Axis or MOTION_GROUP. To use these type of tags in your
Add-On Instruction, define an InOut Parameter. Local tags also are
limited to single dimension arrays, the same as User-Defined Data

Types.

42 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

Tip: Refer to the safety reference manual for your controller, listed in the Additional
Resources, for a list of data types supported for safety instructions.

4. Inthe Defaultlist, set the default values.

Default values are loaded from the Add-On Instruction definition into
the tag of the Add-On Instruction data type when it is created or any
time a new tag is added to the Add-On Instruction.
Tip: Select the Copy all default values of parameters and local tags whose values were
modified to all tags of this instruction type check box at the bottom of the Add-On
Instruction Definition Editor if you want to update existing invocations of the instruction to

the new default values. For details on copying default values, see Copying Parameter or Local
Tag Default Values on page 45.

5. Inthe Stylelist, set the display style.

6. In the Description list, type a description, a maximum of 512
characters.

7. Repeat for additional local tags.

Tip: When you create a local tag from the Local Tags tab, the External Access setting
defaults to None. You can edit the External Access setting by using the Tag Editor. See Edit
Parameters and Local Tags on page 43.

Edltlng parameters and You can also add and edit parameters and local tags on the Edit Tags tab.

local tags

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 43

Chapter 2 Defining Add-On Instructions

e ————

Usage
Input
Output
Input
Local
Input

Local

m

-

s5

General

Data

Produced Connection

Consumed Connection
Parameter Connections {0:0}

If you edit an Add-On Instruction by adding, deleting, renaming, reordering,

Scope: Simula‘te_Feedback + Show: Al Tags
Simulate_Feedback <definit
Name =2| =« DataType Description External Access
Enableln BOOL Enable Input - Syst... Read Only
EnableQut BOOL Enable Cutput - Sy... Read Only
b DelayTime DINT Read/Write
b DelayTimer TIMER Read/Write
OutCommand BOOL Read/Write
SimulateFault BOOL Read/Write
@
4|[» | Monitor Tags X Edit Tags |/ || «

following parameter edits

b

or changing the status or usage type of one or more parameters, RSLogix

calls to the instruction.

5000 software, version 18 and later, automatically updates the arguments on

A ATTENTION: Source-protected routines and other source-pratected Add-On Instructions that use
the edited Add-On Instruction are not automatically updated if the source key is unavailable. The
Add-On Instruction or routine may still verify, but the resulting operation may not be as intended.

It is your responsibility to know where Add-On Instructions are used in logic when you make edits
to existing Add-On Instructions.

A confirmation dialog box shows you the impacts of the edits and lets you
review the pending changes before confirming or rejecting them.

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

Copy parameter or local tag

default values

"'_n.‘ Changes pending for 'Corvvenor_Contral' instruction reguire updates to the callz of thiz ingtruction,

E ach call will be edited to maintain arguments pazzed to existing parameters.

[f you chooze to apply the changes to the ingtruction, check all lozations calling instruction 'Convegar_Contral' to
enzure that they will execute comectly with the updates.

Locations where instruction iz called: Selected call's arguments:
|Eu:untainer R outine Location | | Farameter Argument
Eﬂ, Motor_Starter_ ... rﬁ] Mested_M ... Bung 1 Stop Corweyor_1_Stop_PB
Start Corveyor_1_Entry_PE
* JamClear ?
<Unknowr Corveyor_1_0ut

[] 5how Changed Parameters Only

Thiz operation cannot be undane.

Apply changes o the instruction and edit arguments for each call?

Tes [No] [Help

[] Open Crozz Reference

e Anasterisk identifies parameters with changes pending.

e Existing arguments are reset to the parameters they were originally
associated with.

o Newly added parameters are inserted with a ?” in the argument field,
except for Structured Text, where the field is blank.

e Unknown parameters are created for arguments where associated
parameters have been deleted.

To accomplish this update, Logix Designer application tracks the changes
made to the Add-On Instruction parameters from the original instruction to
the final version. In contrast, the import and paste processes compare only
parameter names to associate arguments with parameters. Therefore, if two
different parameters have the same name, but different operational
definitions, importing or pasting may impact the behavior of the instruction.

In RSLogix 5000 software, version 18 or later, you can copy either parameter
or local tag default values to all tags of the Add-On Instruction data type or
just to specific tags. You can do so only when you are offline.

A ATTENTION: Values cannot be modified when the instance tags are part of a source-protected
Add-On Instruction or you do not have sufficient permission to make edits.

If you change the default values of a parameter or local tag by using the
Add-On Instruction Definition editor, you can copy the modified values to all
of the tags of the Add-On Instruction data type by selecting the Copyall

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023 45

Chapter 2 Defining Add-On Instructions

default values of parameters and local tags whose values were modified to all
tags of this instruction type check box.

'8 ™
B " Add-On Instruction Definition - CheckfutoCont v1.0 ﬁ
General | Parameters | Local Tags™ | Scan Mades | Signature | Change Histony I Help |
Mame | |sage | Data Type |Fn.|ias Far | Default |5t'_.fle | Req | Vis |]
] Enableln Input BOOL 1 Decimal B [E
| EnableQut Output BOOL 0 Decimal [[Er
] b CheckfutoCont Output DINT 18737 Decimal B &=
2 | B B
{ T | 3
Move Up ove Do
I [| Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type |
Data Type Size: 77 byte (s) [OK] [Cancel] [Apply] [Help]

You can also click the copy default values icon to copy default values to all tags
the Add-On Instruction data type. The icon appears on the watch pane (as a
context menu), data monitor, and logic editor when the Data Context is the
Add-On Instruction’s definition.

If you want to select which specific tags and values to copy, click the
pull-down arrow of the copy default values icon and select Copy Specified
Values.

P Il

Copy All Values
Copy Specified Values...

The Copy Default Values dialog box shows the current default values for the
parameters and local tags, and the instance tags where the Add-On
Instruction is used or referenced.

L6 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

I @ Specify which values to copy to which tags:

il — ™
oo o T D . =

Default values of selected parameters and local tags in CheckAutoCont” will be copied to specified tags of this type.

Default Values: Tags of type TheckAutoCont™

*/| Parameter 55_..!-"_‘-. Default D Tag Container Routine & Location
[@ CheckAutoCort 18721

v Delay_Time o

v Enableln 1

v EnableOut]

Y| = Simulate_Fautt 0

Local Tag =&| Default
Auto K.} |

| oK | | cance | | Heo |

Creating logic for the
Add-On instruction

Select the check boxes to select which values to copy to which tags, and click
OK.

Use alogic editor to create logic for an Add-On Instruction.

To create logic for an Add-On Instruction

1. Inthe Controller Organizer, expand the Assets folder and the Add-On
Instructions folder.

Controller Organizer - 0 =

B Controller L85 102
B Tasks

b Motion Groups

P

4

Alarm Manager

Aszsets
4 B Add-On Instructions N
[Check&utoCont

b & MyAOL

P SafetyAddOnlnstruction
4 Simulate_Feedback

B 5L Simulation DT 1st

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 47

Chapter 2 Defining Add-On Instructions

Execution considerations
for Add-On Instructions

Optimizing performance

Defining operation in
different scan modes

2. Expand the instruction and double-click the logic routine to open it.

Controller Organizer - 0 X

B Controller L85 102 -
4 Tasks

b Motion Groups

[+

p

Alarm Manager
Assets
4 Add-On Instructions
4 CheckfutoCont
<1 Parameters and Local Tags

b & MyAOL s
[i Safstz AddOnlnstruction N |

3. Edit your logic using the available language editors.

—

An Add-On Instruction is executed just like any other routine belonging to a
particular program. Because another task can preempt a program containing
an Add-On Instruction that is being executed, an Add-On Instruction may be
interrupted prior to completing its execution.

In standard programs, you can use the User Interrupt Disable/Enable
(UID/UIE) instructions to block a task switch if you want to be sure the
Add-On Instruction executes uninterrupted before switching to another task.

Q Tip: UID and UIE instructions are not supparted in the safety task of GuardLogix projects.

The performance depends on the structuring, configuration, and the amount
of code in an Add-On Instruction. You can pass large amounts of data
through a structure by using an InOut parameter. The size of data referenced
by an InOut parameter does not impact scan time and there is no difference
between passing a user-defined type tag or an atomic tag because it is passed
by reference.

When a rung condition is false, any calls to an Add-On Instruction are still
processed even though the logic routine is not executed. The scan time can be
affected when many instances of an Add-On Instruction are executed false. Be
sure to provide instructions in your documentation if an Add-On Instruction
can be skipped when the rung condition is false.

To provide Add-On Instructions with the same flexibility as built-in
instructions, optional Scan mode routines can be configured to fully define
the behavior of the instruction. Scan mode routines do not initially exist for
Add-On Instructions. You can create them depending upon the requirements
of your instruction.

Like all built-in instructions in the controller, Add-On Instructions support
the following four controller Scan modes.

48 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

Enabling scan modes

Create a prescan routine

Scan Mode Description

The instruction is scanned as the result of a true rung condition or the Enableln parameter

True .
is set True.

The instruction is scanned as the result of a false rung condition or the Enableln parameter
False is set False. Instructions in the controller may or may not have logic that executes only when
that instruction is scanned false.

Occurs when the controller either powers up in Run mode or transitions from Program to
Prescan Run. Instructions in the controller may or may not have logic that executes only when that
instruction is executed in Prescan mode.

Occurs as a result of an Action in a Sequential Function Chart (SFC) routine becoming
Postscan(1) inactive if SFCs are configured for Automatic Reset. Instructions in the contraller may or
may not have logic that executes only when that instruction is executed in Pastscan mode.

(1) Postscan mode routines cannot be created for safety Add-On Instructions because safety
instructions do not support SFC.

The default behavior for executing an Add-On Instruction with no optional
scan routines created may be sufficient for the intended operation of the
instruction. If you do not define an optional Scan Mode, the following default
behavior of an Add-On Instruction occurs.

Scan Mode Result

True Executes the main logic routine of the Add-On Instruction.

False Does not execute any logic for the Add-On Instruction and does nat write any outputs. Input
parameters are passed values.

Prescan Executes the main logic routine of the Add-On Instruction in Prescan mode. Any required
Input and Output parameters' values are passed.

Postscan Executes the main logic routine of the Add-On Instruction in Pastscan mode.

For each Scan mode, you can define a routine that is programmed specifically
for that Scan mode and can be configured to execute in that mode.

Scan Mode Result

True The main logic routine for the Add-On Instruction executes (not optional).

The Enableln False routine executes normally in place of the main logic when a scan false of

False the instruction occurs. Any required (or wired in FBD) Input and Output parameters' values
are passed.

Prescan The Prescan routine executes normally after a prescan execution of the main logic routine.
Any required Input and Output parameters' values are passed.
The Postscan rautine executes narmally after a postscan execution of the main logic

Postscan

routine.

The Scan Modes tab in the Instruction Definition Editor lets you create and
enable execution of the routines for the three Scan modes: Prescan, Postscan,
and EnableInFalse.

When the controller transitions from Program mode to Run mode or when
the controller powers up in Run mode, all logic within the controller is
executed in Prescan mode. During this scan, each instruction may initialize
itself and some instructions also initialize any tags they may reference. For

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 49

Chapter 2

Defining Add-On Instructions

50

most instructions, Prescan mode is synonymous with scanning false. For
example, an OTE instruction clears its output bit when executed during
Prescan mode. For others, special initialization may be done, such as an ONS
instruction setting its storage bit during Prescan mode. During Prescan
mode, all instructions evaluate false so conditional logic does not execute.

The optional Prescan routine for an Add-On Instruction provides a way for an
Add-On Instruction to define additional behavior for Prescan mode. When a
Prescan routine is defined and enabled, the Prescan routine executes
normally after the primary logic routine executes in Prescan mode. This is
useful when you want to initialize tag values to some known or predefined
state prior to execution. For example, setting a PID instruction to Manual
mode with a 0% output prior to its first execution or to initialize some
coefficient values in your Add-On Instruction.

When an Add-On Instruction executes in Prescan mode, any required
parameters have their data passed.

o Values are passed to Input parameters from their arguments in the
instruction call.

e Values are passed out of Output parameters to their arguments
defined in the instruction call.

These values are passed even when the rung condition is false in Ladder
Diagram or when the instruction call is in a false conditional statement in
Structured Text. When Function Block Diagram routines execute, the data
values are copied to all wired inputs and from all wired outputs, whether or
not the parameters are required.

To create a Prescan routine

1. Inthe Controller Organizer, right-click an instruction and select Open
Definition.
2. Click the Scan Modes tab.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

3. Click New for Prescan routine.

o

Add-On Instruction Definition - Simulate_Feedback v1.0 = =R

| General I Parameters I Local Tags | Scan Modes |Signature | Change History | Help |

The controller prescans and postscans the Add-On Instruction Logic routine but will not execute the Logic
routing when Enableln is false.

Optional Prescan, Postscan and Enableln False routines may be configured below.

Prescan routine: Executes prior to first scan on transition from program to un
Execute Prescan routine after the Logic routing is prescanned m = To

Postscan routine: Executes on last scan of a step if SFCis configured for automatic reset

Execute Postscan routine after the Logic routine is postscanned Go To
EnablzInFalse routing: Executes when the Enableln parameter is false
Execute EnablelnFalse routine Go To

Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type

Data Type Size: 8 byte (s) [OK] [Cancel] Apply Help

4. Onthe New Scan Mode Routine dialog box, from the Type list, select
the type of programming language; Ladder Diagram, Function Block,
or Structured Text.

-

Mew 5can Mode Routine
- - - -

"

Mode: Prescan oK
Description: B P
Type: Ladder Diagram - Help

Instruction: (45} Simulate_Feedback

[T Open Routine

L A

5. Inthe Description box, type the Prescan behavior.
6. Click OK to create the routine and return to the Scan Modes tab.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 51

Chapter 2 Defining Add-On Instructions

7. Define if the prescan routine executes (or not) by checking or clearing
Execute Prescan routine after the logic routine is prescanned check
box.

E Prescan muting: Esecutes prior to firgt scan on tranzition from program o mn

Execute Prezcan routine after the Logic routing iz prezcanned [Delete | [GoTao]

Create a postscan routine

The Prescan routine can now be edited like any other routine.

Postscan mode occurs only for logic in a Sequential Function Chart (SFC)
Action when the Action becomes inactive and the SFC language is configured
for Automatic Reset (which is not the default option for SFC). When an SFC
Action becomes inactive, then the logic in the Action is executed one more
time in Postscan mode. This mode is similar to Prescan in that most
instructions simply execute as if they have a false condition. It is possible for
an instruction to have different behavior during Postscan mode than it has
during Prescan mode.

When an Add-On Instruction is called by logic in an SFC Action or a call
resides in a routine called by a JSR from an SFC Action, and the Automatic
Reset option is set, the Add-On Instruction executes in Postscan mode. The
primary logic routine of the Add-On Instruction executes in Postscan mode.
Then if itis defined and enabled, the Postscan routine for the Add-On
Instruction executes. This could be useful in resetting internal states, status
values, or de-energizing instruction outputs automatically when the action is
finished.

Tip: Because safety Add-On Instructions cannot be called from an SFC Action, this option is disabled
for safety Add-On Instructions.

To create a postscan routine

1. Inthe Controller Organizer, right-click an instruction and select Open
Definition.
2. Click the Scan Modes tab.

52 Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

3. Click New for Postscan Routine.

e

Add-On Instruction Definition - Simulate_Feedback v1.0 o &=

|Genetal I Parameters | Local Tags | Scan Modes |Signature I Change History I Help |

The controller prescans and postscans the Add-On Instruction Logic routing but will not execute the Logic
routine when Enableln is false.

Optional Prescan, Postscan and EnablelnFalse routines may be corfigured below.

Prescan routine: Executes prior to fisst scan on transition from program to run

Execite Prescan routine after the Logic routine is prescanned Go To

Postscan routine; Executes on last scan of a step f SFC is configured for automatic reset

Execute Postscan routing after the Logic routine is postscanned G To

EnablelnFalse routine: Executes when the Enableln parameter is false

| New..
Execute EnablelnFalse routine Go Ta

Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type

Data Type Size: 8 byte s) [OK] [Cancel] Apply Help

4. Onthe New Scan Mode Routine dialog box, from the Type list, select
the type of programming language; Ladder Diagram, Function Block,

or Structured Text.

Mew Scan Mode Routine pa— ﬁ
Mode: Postscan
Description: | = Fr—

Type: Ladder Diagram - Help
Instruction: Simulate_Feedback
[Dpen Routine

5. Inthe Description box, type the Postscan behavior.
6. Click OK to create the routine and return to the Scan Modes tab.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 53

Chapter 2 Defining Add-On Instructions

7. Define if the postscan routine executes (or not) by checking or clearing
Execute Postscan routine after the logic routine is postscanned.

-@ Pozstzoan routine: Executes on last scan of a step if SFC iz configured for automatic rezet

Ewecute Postzcan routing after the Logic routing iz postzcanned [Delete | [GoTo]

Create an EnablelnFalse
routine

The Postscan routine can now be edited like any other routine.

When defined and enabled for an Add-On Instruction, the EnableInFalse
routine executes when the rung condition is false or if the EnableIn
parameter of the Add-On Instruction is false (0). This is useful primarily for
scan false logic, when used as an output instruction in a Ladder routine. A
common use of scan false is the setting of OTEs to the de-energized state
when the preceding rung conditions are false. An Add-On Instruction can use
the EnableInFalse capability to let you define behavior for the False
conditions.

When the Add-On Instruction is executed in the false condition and has an
EnableInFalse routine defined and enabled, any required parameters have
their data passed.

e Values are passed to Input parameters from their arguments in the
instruction call.

e Values are passed out of Output parameters from their arguments in
the instruction call.

If the EnableInFalse routine is not enabled, the only action performed for the
Add-On Instruction in the false condition is that the values are passed to any
required Input parameters in ladder logic.

Follow these steps to create an EnableInFalse routine. For more information
on other scan mode instructions, see Prescan routine on page 49 and Postscan
routine on page 52.

To create an EnablelnFalse routine

1. Inthe Controller Organizer, right-click an instruction and select Open
Definition.
2. Click the Scan Modes tab.

54 Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

3. Click New on EnableInFalse routine.

s

Add-On Instruction Definition - Simulate_Feedback v1.0 o[=]]

| Genersal I Parameters | Local Tags | Scan Modes |Signature I Change History I Help |

The controller prescans and postscans the Add-On Instruction Logic routine but will not execute the Logic
routine when Enableln is false.

Cptional Prescan, Postscan and EnablelnFalse routines may be configured below.

Prescan routine: Executes prior to first scan on transition from program to run

Execute Prescan routine after the Logic routing is prescanned Go To

Postscan routine: Executes on last scan of a step f SFC s configured for automatic reset

Execute Postscan routine after the Logic routine is postscanned Go To

EnableInFalse routine: Executes when the Enableln parameter is false

Execute EnablelnFalse routine o To

Copy all default values of parameters and local tags whose values were modfied to all tags of this instruction type

Data Type Size: 8 byte (5) | ok || Concel | pply Help

4. Onthe New Scan Mode Routine dialog box, from the Type list, select
the type of programming language; Ladder Diagram, Function Block,

or Structured Text.

Mew Scan Mode Routine - &J
Mode: Prescan
Description: = Fr—

Type: Ladder Diagram - Help
Instruction: Simulate_Feedback
[Dpen Routine

5. Inthe Description box, type the EnableInFalse behavior.
6. Click OK to create the routine and return to the Scan Modes tab.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 55

Chapter 2 Defining Add-On Instructions

7. Define if Enableln False routine executes (or not) by checking or
clearing Execute EnableInFalse routine.

& E nablelnFalze rauting: Executes when the Enableln parameter is falze
Execute EnablelnF alze routine [Delete] [GoTo]

Using the Enableln and
EnableOut parameters

Enableln parameter and
ladder diagrams

Enableln parameter and
function blocks

The EnableInFalse routine can now be edited like any other routine.

The EnableIn and EnableOut parameters that appear by defaultin every
Add-On Instruction have behaviors that conform to the three language
environments: Ladder Diagram, Function Block Diagram, and Structured
Text.

To execute the primary logic routine in any of the language environments, the
Enableln parameter must be True (1). In general, the EnableIn parameter
should not be referenced by the primary logic routine within the instruction
definition. The EnableOut parameter will, by default, follow the state of the
Enableln parameter but can be overridden by user logic to force the state of
this parameter.

O Tip: If Enableln is False, then EnableQut cannot be made True in an Enableln False routine.

If the EnableIn parameter of the instruction is False (0), the logic routine is
not executed and the EnableOut parameter is set False (0). If an EnableInFalse
routine is included in the instruction definition and it is enabled, the
EnableInFalse routine will be executed.

In the ladder diagram environment, the EnableIn parameter reflects the rung
state on entry to the instruction. If the rung state preceding the instruction is
True (1), the EnableIn parameter will be True and the primary logic routine of
the instruction will be executed. Likewise, if the rung state preceding the
instruction is False (0), the EnableIn parameter will be False and the primary
logic routine will not be executed.

Tip: Aninstruction with only Input parameters, except EnableQut, is treated as an input instruction
(left-justified) in a Ladder Diagram. The EnableQut parameter is used for the rung-out condition.

In the function block environment, the EnableIn parameter can be
manipulated by the user through its pin connection. If no connection is
made, the EnableIn parameter is set True (1) when the instruction begins to
execute and the primary logic routine of the instruction will be executed. If a
wired connection to this parameter is False (0), the primary logic routine of
the instruction will not execute. Another reference writing to the EnableIn
parameter, such as a Ladder Diagram rung or a Structured Text assignment,
will have no influence on the state of this parameter. Only a wired connection
to this parameter’s input pin can force it to be False (0).

56 Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

Enableln parameter and
structured text

Change the class of an
Add-O0n Instruction

Testing the Add-On
Instruction

In the structured text environment, the EnableIn parameter is always set
True (1) by default. The user cannot influence the state of the EnableIn
parameter in a Structured Text call to the instruction. Because Enableln is
always True (1) in structured text, the EnableInFalse routine will never
execute for an instruction call in structured text.

You can change the class of a safety Add-On Instruction so that it can be used
in a standard task or standard controller.

To change the class of an Add-On Instruction

e You can change the class in a safety project if the instruction does not
have an instruction signature, you are offline, the application does not
have a safety task signature, and is not safety-locked.

e You can also change the class from standard to safety so that the
Add-On Instruction can be used in the safety task.

Changing the class of an Add-On Instruction results in the same class change
being applied to the routines, parameters, and local tags of the Add-On
Instruction. The change does not affect nested Add-On Instructions or
existing instances of the Add-On Instruction.

If any parameters or tags become unverified due to the change of class, they
are identified on the Parameters and Local Tags tabs of the Add-On
Instruction Editor.

If any of the restrictions for safety Add-On Instructions are violated by
changing the class from standard to safety, one of the following errors is
displayed and the change does not succeed:

e Routines must be of Ladder Diagram type.

o Safety Add-On Instructions do not support the Postscan routine.

e One or more parameters or local tags have an invalid data type for a
safety Add-On Instruction.

You must edit the parameter, tag, or routine types before the class change can
be made.

Tip: If the safety controller project contains safety Add-On Instructions, you must remove them from
the project or change their class to standard before changing to a standard controller type.

You need to test and troubleshoot the logic of an instruction to get it working.

Tip: When a fault occurs in an Add-On Instruction routine, a fault log is created that contains
extended information useful for troubleshooting.

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023 57

Chapter 2 Defining Add-On Instructions

Prepare to test an Add-On
Instruction

Test the flow

Monitor logic with data
context views

Before you start to test an Add-On Instruction, do the following.

To prepare to test an Add-On Instruction

1. Open a project to debug offline.

Tip: Add-On Instructions can only be created or modified when offline. You can add, delete, or
modify tag arguments in calls to Add-On Instructions while editing online, but you cannot edit
arguments inside the Add-On Instruction while online.

2. Add the Add-On Instruction to the project, if it is not already there.

Follow these steps to test the flow of an Add-On Instruction.

To test the flow

1. Add acall to the instruction in a routine in the open project.
2. Assign any arguments to required parameters for your call.
3. Download the project.

You can simplify the online monitoring and troubleshooting of your Add-On
Instruction by using Data Context views. The Data Context selector lets you
select a specific call to the Add-On Instruction that defines the calling
instance and arguments whose values are used to visualize the logic for the
Add-On Instruction.

Tip: When troubleshooting an Add-On Instruction, use a non-arrayed instance tag for the call to the
instruction. This lets you monitor and troubleshaot the instruction's logic routine with a data context.
Variable indexed arrays cannot be used to monitor the logic inside an Add-On Instruction.

To monitor logic with data context views

Follow these steps to monitor the logic.

1. Gointo Run mode.

58 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

2. Right-click the instruction call and select Open Instruction Logic.

My_Control_Variable

Simulation
instruction which
includes a display

option

Simulation_0T_1st Cut Element Ctri+X

|j—.| Copy Element Ctrl+C
Simulation_DT_1st_01 4] Paste Cirl+V
Siminput Si
Delete Element Delete L
SimTimeConstant '
Delete Element but not Tag
DAl DT_An
] Add Element... Alt+Insert
by k-

Save Instruction Defaults

Clear Instruction Drefaults ’!
Edit Main Operand Description ¥ 1

Go To... Ctri+G i
Instruction Help F1

Mever Show Description

Open Instruction Logic

Open Instruction Definition

The logic routine opens with animated logic for the specific calling
instance.

verifying individual scan The most straightforward method to verify Scan mode operation is to execute

the instruction first with the Scan mode routine disabled, then again with it
enabled. Then you can determine whether the Scan mode routine performed
as expected.

Instruction Description

True This is simply the execution of the main logic routine.

Ina ladder logic target routine, this entails placing an XIC befare an instance of the
instruction and evaluating instruction results when the XIC is false.

False
Ina Function Block target routine, this entails executing an instance of the instruction
with the Enableln parameter set to zero (0).

Prescan Place the controller in Program mode, then place it in Run mode.

With the controller configured for SFC Automatic Reset, place an instance of the
Postscan instruction into the Action of an SFC. Run the SFC such that this Action is executed and
the SFC proceeds beyond the step that is associated with this Action.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 59

Chapter 2 Defining Add-On Instructions

Source protection for an
Add-On Instruction

You can apply source protection to your Add-On Instruction to protect your
intellectual property or prevent unintended edits of a validated source.
Cannot modify the Source Protection settings if the Add-On Instruction is
sealed. To source protect and seal an Add-On Instruction, apply the source
protection settings before sealing.

Source protection limits user access to your Add-On Instruction or blocks
access to the internal logic or local tags used by the instruction. You can
protect Add-On Instructions using Source Key protection or License
protection. You can also apply Execution Protection to source-protected
components to allow execution only on controllers with a specific execution
license.

Source Key protection:

e Protects components using existing source keys.

Q Tip: You can optionally allow source-protected components to be available
in a read-only format on a system that does nat have the saurce key
required for access.

Q Tip: Apply Source Key protection before generating an instruction signature
for your Add-On Instruction definition. You will need the source key to
create a signature history entry. When source protection is enabled, you
can still copy the instruction signature or signature history, if they exist.

License-based protection:

e Protects components with specific licenses.

Tip: License-Based Source Protection is not supported on Sequential
Function Chart routines in version 30 of the Logix Designer application.

e Execution Protection is an extension of License-Based Source
Protection. You can apply Execution Protection to limit the execution
of routines and Add-On Instructions, including equipment phase state
routines, to controllers that contain a specific execution license.

e When you protect a component with License-Based Source Protection,
you can also lock it. When locking a component, the routine's logic is
compiled into executable code and encrypted. The code is decrypted by
the controller when it is ready for execution. As a result, sharing
project files containing locked components with users without licenses
to use the locked components is possible. Those users can use
unprotected parts of the project, upload and download the project file,
and copy and paste locked components into other project files.
However, if a component is protected using the Protect with
controller key and specific license option, executing the project
requires an SD card with the correct execution license.

Tip: Execution Protection and component locking is supported only on CompactLogix 5380,
CompactLogix 5480, and ControlLogix 5580 controllers in version 30 of the Logix Designer
application.

60 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

Enable the source
protection feature

Generating an Add-On
Instruction signature

Generate, remove, or copy
an instruction signature

If source protection is unavailable and not listed in your menus, follow the
instructions for enabling Source Protection in the Logixs000 Controllers
Security Programming Manual, publication 1756-PMo16.

The Security Programming manual provides detailed instructions for
configuring Source Protection for routines and Add-On Instructions.

The Signature tab on the Add-On Instruction Definition Editor lets you
manage the instruction signature, create signature history entries, and view
the safety instruction signature, if it exists. Instruction signatures are applied
to the definition of the Add-On Instruction. All instances of that Add-On
Instruction are sealed when the signature is applied.

Use this procedure to generate, remove, or copy an instruction signature

To generate, remove, or copy an instruction signature

1. Onthe Signature tab in the Add-On Instruction Definition Editor,
click Generate to create an instruction signature or Remove to delete
the instruction signature.

You must be offline to generate or remove an instruction signature.
Both actions change the Last Edited Date.

IMPORTANT | you remove an instruction signature when the Add-On Instruction also has a
safety instruction signature, the safety instruction signature is also deleted.

2. Click Copy to copy the instruction signature and the safety instruction
signature, if it exists, to the clipboard to facilitate record-keeping.

Signature
Generate a signature o uniquely identify thiz instruction and seal it from modifications.

Timestamp: 2009-06-22T18:04:18.1155
Add to Hiztory...

IMPORTANT |f an invalid instruction signature is detected during verification, an error
message indicates that the signature is invalid. You must remave the
instruction signature, review the Add-0n Instruction, and generate a new
instruction signature.

Tip: The instruction signature is not guaranteed to be maintained when migrating between
major revisions of RSLogix5000 or Logix Designer.

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023 61

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm016_-en-p.pdf

Chapter 2 Defining Add-On Instructions

The signature history provides a record of signatures for future reference. A
signature history entry consists of the name of the user, the instruction
entry signature, the timestamp value, and a user-defined description. You can only
create a signature history if an instruction signature exists and you are
offline. Creating a signature history changes the Last Edited Date, which
becomes the timestamp shown in the history entry. Up to six history entries
may be stored.

Create a signature history

To create a signature history entry

1. On the Signature tab on the Add-On Instruction Definition Editor,
click Add to History.
2. Inthe Create History Entry description box, type up to 512 characters
long, for the entry.
3. Click OK.
Tip: To facilitate record-keeping, you can copy the entire signature history to the clipboard by
selecting all the rows in the signature history and choosing Copy from the Edit menu. The
data is copied in tab separated value (TSV) format.
To delete the signature history, click Clear Signature History. You must be
offline to delete the Signature History.

When a sealed safety Add-On Instruction is downloaded for the first time, a
] . . SIL 3 safety instruction signature is automatically generated. Once created,
Instruction signature the safety instruction signature is compared at every download.

Generate a safety

If Logix Designer application detects an invalid safety instruction signature
value, it generates a new safety instruction signature value in the offline
project and displays a warning indicating that the safety instruction signature
was changed. The safety instruction signature is deleted if the instruction
signature is removed.

IMPORTANT After testing the safety Add-On Instruction and verifying its functionality, you must
record the instruction signature, the safety instruction signature and the timestamp
value. Recording these values will help you determine if the instruction functionality
has changed.

Refer to the safety reference manual for your cantroller, listed in the Additional
Resources, for details on safety application requirements.

When the instruction signature has been generated, Logix Designer
. . . application displays the instruction with the blue seal icon in the Controller
Instruction Slgnature Organizer, on the Add-On Instruction title bar, and in the Logic Editor.

View and print the

62 Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

Controller Organizer - 0 =
B Controller L85 102
B Tasks
b Motion Groups
b Alarm Manager
4 Aszets

4 Add-0n Instructions

[CheckfutoCont

[Motor_2_FBD

b My AOIL

P SafetyAddOnlnstruction

[Simulate_Feedback
<1 Parameters and Local Tags
& Logic

@ Tip: When an instruction is sealed, the instruction signature is displayed on the faceplate of the
instruction in the Ladder Diagram Editor and the Function Block Diagram Editor.

Ladder editor Function Block Diagram editor

Simulation_DT_1st Simulation_DT_1st)
Simulation instruction which include. ..

Simulation_DT_1st Sim_DT_LD [— SimDTinv
Ziminput My_Control_Variable
0.0 4=

Simulation instruction which includes a ...

Simulation_DT_1st_01

SimTimeConstant 504 Siminput SimOutput [
SimOutput 0.0 4= _—
DA OT_Array_LD SimTimeConstant
DA DT_Array_FBD .
SimDTinw

Signature ID: 8ACFC14E

To view and print the instruction signature

e Turn off the display of the instruction signature in the Workstation
Options dialog box of the Logix Designer application.

e View the instruction signature and the safety instruction signature on
the Quick View pane of the Controller Organizer and on the Signature
tab of the Instruction Definition Editor.

The Add-On Instruction name, revision, instruction signature, safety
instruction signature, and timestamp are printed on the Add-On
Instruction Signature Listing report.

@ Tip: The first 32 bits of an AQI's signature (Safety ID) as it appears in the Quick View Pane and
in the signature report are comparable to the AQI's signature as it appears on the AQI
Properties > Signature tab.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 63

Chapter 2 Defining Add-On Instructions

Create an alarm definition

e Include the instruction signature, safety instruction signature, and
signature history on the Add-On Instruction report by clicking Print
Options on the Generate Report dialog box.

Use tag-based alarms and alarm definitions to notify users of conditions that
they might need to respond to, such as temperature over-limit, excessive
current, or a motor failure. A tag-based alarm is similar to an
instruction-based alarm (ALMA and ALMD instructions) in that it monitors a
tag value to determine the alarm condition. However, a tag-based alarm is not
part of the logic program and does not increase the scan time for a project.

An alarm definition is associated with an Add-On Instruction or a defined
data type. When a tag is created using a data type or an Add-On Instruction
that has alarm definitions, alarm conditions are created automatically based
on the alarm definitions.

Tip: Tag-based alarms and alarm definitions are supported anly on CompactLogix 5380,
CompactlLogix 5480, and ControlLogix 5580 controllers.

To create an alarm definition:

1. On the Controller Organizer, right-click the Alarms folder and select
New Alarm Definition.

You can also right-click a scalar tag or parameter of an Add-On
Instruction and select Add Alarm Definition.

2. Inthe Name box, enter a name for the alarm definition.
In the Input box, add an input tag.

4. Toenable all instances of the alarm, select the Required to be used and
evaluated check box. All new alarms definitions are disabled by
default.

5. Use the tabs on the New Alarm Definition dialog box to configure
additional settings:

e General - Used to configure the name, input tag, trigger condition,
timing, severity, message, associated tags, and shelving settings.

e Class/Group - Used to identify the class and group name for the
alarm definition.

e Advanced - Used to assign additional settings to the alarm
definition, such as an FactoryTalk View command to run in
response to an alarm, latch state, acknowledgment requirement,
alarm set inclusion, and use of the alarm.

64 Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

Access attributes from

Tip: Alarm definitions associated with the tag are not included when an Add-0n

Instruction tag is copied and pasted in a project.

After you copy and paste an Add-On Instruction tag, open the Alarm Definition list and

copy and paste the alarm definition for the tag. Follow these steps:

1. In the Controller Organizer, right-click Alarms and select Edit Alarm Definitions.

2. Right-click the alarm definition for the Add-On Instruction tag and select Copy.

3. Right-click again and select Paste. The alarm definition is pasted into the list with
_000 added to the alarm name.

4. Double-click the copy of the alarm definition to open the Alarm Definition Properties
dialog box.

5. In the Input box, change the input tag to the Add-On Instruction tag that you copied
and pasted.

The alarms contained in an Add-On Instruction definition, a structured tag of
an Add-On Instruction definition, or an array tag of an Add-On Instruction

Add-On Instruction alarm definition can be referenced as an alarm set. Use these alarm set attributes as

sets

operands in logic.

When you reference an attribute from an individual alarm, you insert the
owner of the alarm in the operand syntax. Similarly, when you reference an
attribute from an Add-On Instruction alarm set, you insert the alarm set
container (the AOI definition, AOI structured tag, or AOI array tag) in the
operand syntax.

To access attributes from an Add-0n Instruction alarm set

1. Inthelogic editor, create an instruction.
2. Onthe instruction operand that accesses an Add-On Instruction alarm
set attribute, enter the following syntax:

e The container for the alarm set.
o @AlarmSet
e The attribute to access.

To access an attribute of an alarm set in a container that is also the
Add-On Instruction in which you are entering the logic, enter THIS,
followed by a period. For alarm definitions associated with a nested
Add-On Instruction, the alarm definition attributes can be accessed
programmatically through the nested Add-On Instruction.

The following table lists example syntax.

To access: Alarm set container Syntax

Attribute of an alarm setina | MyAQl THIS.@Alarms.FailTaOpen.InAlarm
container that is alsa the AQI
in which you are entering the
logic

Attribute of an alarm setina | MyTank MyTank.@Alarms.FailToClose.AckRequired
container that is an AQI
definition

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023 65

Chapter 2

Defining Add-On Instructions

Creating instruction help

To access:

Alarm set container Syntax

Attribute of an alarm setina | MyTank[3] MyTank[3].@Alarms.FailToOpen.AckRequired

container that is an A0l array

tag

Attribute of an alarm setina | MyTank.MyValve MyTank.MyValve.@Alarms.FailToClose.AckRequired

container that is an AOI

structured tag

Tip: In this version of the Logix Designer application, the @Alarms and @AlarmSet syntax is not
supported in the following instructions:

o CMP

o CPT

o FAL

o SC

The following example shows how inserting an MOV instruction allows the @Alarms and @AlarmSet
syntax to work with CMP, CPT, FAL, and FSC instructions.

Unsupported expression:

CPT(Tag], RightValve.ValveTimer.@Alarms.TM_ACC_1.Severity + Tag2)

Supported expression:

MOV(RightValve.ValveTimer.@Alarms.TM_ACC_1.Severity, MylntermediateTag)

CPT(Tagl, MyIntermediateTag + Tag2)

Tip: In this version of the Logix Designer application, in the Structured Text editor, the @Alarms and
@AlarmSet syntax is supported only in simple arithmetic expressions, such as a + b. The following
example shows how inserting an additional step allows creation of more complex arithmetic
expressions.

Unsupported expression Alternative

cTagl := cTagl.@Alarms.new.Severity + cTagl := cTagl.@Alarms.new.Severity +

= THIS.@AlarmSet.DisabledCount +1; =:THIS.@AlarmSet.DisabledCount;
cTagl:=cTagl+71;

Custom instruction help is generated automatically as you are creating your
Add-On Instructions. Logix Designer application automatically builds help

for your Add-On Instructions by using the instruction’s description, revision
note, and parameter descriptions. By creating meaningful descriptions, you

can help the users of your instruction.

In addition, you can add your own custom text to the help by using the
Extended Description field. You can provide additional help documentation
by entering it on the Help tab on the Add-On Instruction Definition Editor.

The instruction help is available in the instruction browser and from any call

to the instruction in a language editor by pressing Fi1.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

Write clear descriptions

To write clear descriptions

e Use short sentences and simple language.
e Bebriefand direct when you write.

e Include simple examples.

e Proofread your entries.

When writing your descriptions keep the following in mind.

This is an example of the Extended Description Text field in the Help tab on
the Add-On Instruction Definition Editor. This area lets you create directions
on how to use and troubleshoot your instruction. The Instruction Help
Preview window shows how your text will look as generated instruction help.

Tip: When you are typing your text into the Extended Description Text field, you can use returns and
tabs in the field to format the text, and if you copy and paste text into the field tabs are preserved.

i

Add-On Instruction Definition - Simulate_Feedback v1.0

| General I Farameters I Local Tags | Scan Modes | Signature | Change Histnwl Help |

E=N(ECH =

Bdended Description Tead:

IJze this inztuction to start and stop a matar. The instruchion uses a basic stop and start circuit.

- If the Stop button is closed, the motar gets the command to run when vou press the Start button,
- The matar rung even after pou release the Start button.

- The matar stops when pou press [open| the Stop buttan.

- Uze the Jog bit to jog the motor. The Jog bit overides the Stop button.

Instruction Help Preview:

Extended Description

se this instruction to start and stop a motor. The instruction uses a basic stop and
start circuit.

- Ifthe Stop button is closed, the motor gets the command to run when you press the
Start button.

- The motor runs even after you release the Start button.

- The motar stops when you press (open) the Stop button.

- Uzse the Jog bit to jog the motor. The Jog bit overrides the Stop button.

You can also use the auxiliary contact of the motor to make a fault happen if the motor
doesn't start or stop.

m

Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type

Data Type Size: 8 byte (s) OK] [Cancel Apply Help
Document an Add-On Follow these steps to create custom help for an instruction.
Instruction
Rockwell Automation Publication 1756-PMO10L-EN-P - November 2023 67

Chapter 2

Defining Add-On Instructions

To document an Add-On Instruction

Right-click an Add-On Instruction and select Open Definition.

. Onthe General tab, in the Extended Description Text box, type a

description and a revision note for the Add-On Instruction to explain
the purpose of the instruction.

. Click the Parameters tab in the Description box, type a meaningful

description for each Parameter.

. Right-click each routine located below the Add-On Instruction in the

Controller Organizer and select Properties.

. In the Description box, type a description for execution of each

routine.

a. For thelogic routine, describe execution of the instruction when
Enableln is true.

b. For the EnableInFalse routine (if one exists), describe actions that
will take place when Enableln is false, such as any outputs that get
cleared.

c. For the Prescan routine (if one exists), briefly describe actions that
will take place during the Prescan routine, such as initialization of
any parameters.

d. For the Postscan routine (if one exists), briefly describe actions that
will take place during the Postscan routine, such as initialization of
any parameters resetting any internal state of the instruction.

. Click the Help tab on the Add-On Instruction Definition Editor and

type additional information in the Extended Description field.
The extended description can include the following information:

e Additional parameter information
e Description of how the instruction executes
e Change history notes

. Review the Help format in the preview window.

This is an example of the Logix Designer application generated help
for the instruction. This information is gathered from the definition
descriptions that you complete when defining an instruction.

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Chapter 2

Defining Add-On Instructions

=
i ' Add-On Instruction Definition - Motor_Starter v1.0

General* | Parameters | Local Tags | Scan Modes | Signature | Change History | Help |
Heme otor_Startes
Description: Starts and stops a motor -
Major Minor Extended Text
Revision: 1= o =
Revision Note -
Vendor. Rockuwel

il defautt walues of parameters and local tags whose values were modified to alltags of this instruction type

.

Motor_Starter

Rockwell

v1.0

[Contact the Add-On Instruction developer for questions or problems with this instruction]

Starts and stops a motor

Available Languages

Relay Ladder

Motor_Starter
—— Starts and stops a motor

Motor_Starter =

Stop 2

Start ?
s

Out 7
27

Function Block

Motor_Starter

Starts and stops a m

otor

Out |»

L

7 Add-On Instruction Definition - Motor_Starter v1.0

| General | Parameters | Local Tags | Scan Modes | Signature | Change History | Help |

Signature
Generate a signature to uniquely identify this instruction and seal it from madfications.

Timestamp: 2017-05-15T17:06:45.1262
Signature History
User Signature ID | Timestamp. Description

Clear Signature History

Copy all defautt values of parameters and local tags whose values were modified to alltags of this insiruction type

Data Type Size: 8byte 5} [ok [Camced][ok [teb

Routine Properties - EnablelnFalse [

General |

Name EnablelnFalse

Description OutCommand tums off -
Faut timer resets.|

Type ¥ | adder Diagram

In Instruction Mtor_Starter

Number of Rungs: 1

Apply

- The motor runs even after you release the Start button.

Data Type Size: 4 byte {5 [ok][Camcdl J[oy J[He
" Add-On Instruction Definition - Motor_Starter v1.0 &* Structured Text
Motor Starter (Motor Starter,Stop,Start,out);
Parameters | Local Tags | Scan Modes | Signature | Change History | Help | = =
Parameters
Name | Usage | Data Type | Alias For |Defaut |Stle |Req|Vis | Description | Bxtemial Access | Constant | a| —
Enableln Input BOOL 1 Decimal] [O] Enable Input - Sys... Read Only [&] — Name Data Type Usage D
| EnsbleOut Ouput BOOL 0 Decimd [[0 EnableOutput -S.. Read Orly & x Motor_Starter Motor_Starter InOut
Stop nput BOOL 0 Decimal Enterthe tag that ... Read/Wrie] Enableln BOOL Input
| stat Input BOOL 0 Decimal Enterthe tag that ... Read/Wike o EnableOut BOOL Output
Jog Input BOOL 0 Decimal Jog command fort .. Read/Write B X Stop BOOL Input Enter the tag that gives the stop command for the motor
AuwdContact Input BOOL 0 Decimal Auliary contact o... Read/Wite [&] x Start BOOL Input Enter the tag that gives the start command for the motar
| QearFaut Input BOOL 0 Decimal To clearthe fault ... Read/Write [} Jog BOOL Input Jog command for the motor.
out Oupt BOOL 0 Decimal Output command ... Read Orly] To jog the motor, turn on this bit.
Faut Output BOOL 0 Decimal F on, the motordi... Read Only [l Aotsiog the, jog; o this: b
b FautTime Input DINT 0 Decimal Enterthe time (ms)... Read/Wite =] AuxContact BOOL Input Auxiliary contact of the motor.
= Wake sure you set the FaultTime.
I & Otherwise, this input doesn't do anything.
ClearFault BOOL Input To clear the fault of the motor, turn on this bit.
x Qut BOOL Qutput Output command to the motor starter
If on, the motor starts.
If off, the motor stops.
Fault BOOL Output I on, the motor did not start or stop.
FaultTime DINT Input Enter the time (ms) to wait for the auxiliary contact to open
Move Lp TR or close. The FaultTime bit tums on when that time is up.
Copy all defaut values of parameters and local tags whose values wers modfied to al tags of this instnuctio Extended Description
Appk Use this instruction to start and stop a motor. The instruction uses a basic stop and start circuit.
Data Type Size: 8byte (5} £ ek - If the Stop button is closed, the mstur gets the command to run when you prepss the Start button.

- The motor stops when you press (open) the Stop buttan
- Use the Jog bit to jog the motor. The Jog bit overrides the Stop button.

You can also use the auxiliary contact of the motor to make a fault happen if the motor doesn't start or stop.

- In FaultTime, enter how long you want to wait for the contact to open or close. Enter the time in milliseconds

- The Fault bit turns on if the contact doesn't show that the motor started or stopped within the FaultTime.

- You must set FaultTime greater than 0 to use the auxiliary contact. Otherwise the instruction doesn't use the value of

the auxiliary contact.

- To clear the Fault bit, turn on the FaultClear bt

The instruction doesn't let you enter tags for the Jog, AuxContact, and FaultClear bits in the LD and ST programming
languages. You write code to tumn those bits on and off. For example:

-In LD, use XIC and OTE instructions to read the value of the auxiliary contact tag and write it to the AuxContact bit.
- In ST, use an assignment (-=) to set the AuxContact bit aqual to the value of the auxiliary cantact tag.

Signature
1D: 15816A93
Timestamp: 2017-05-15T17:42:49.389Z
Signature History:
User 1] Timestamp _ Description
<none:
Execution

[see Add-On Instruction Scan Modes online Help for more information]

Condition

Description

Enableln is false OutCom

mand tums off

Fault timer resets.

Enableln is true

OutCommand tums on when Stop and Start are on

OutCommand tums off when Stop turns off.
Revision v1.0 Notes

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

Project documentation

Motor starter instruction
example

With RS Logix 5000 software, version 17 and later, you have the option to
display project documentation, such as tag descriptions and rung comments
in any supported localized language. You can store project documentation for
multiple languages in a single project file rather than in language-specific
project files. You define all the localized languages that the project will
support and set the current, default, and optional custom localized language.
The software uses the default language if the current language's content is
blank for a particular component of the project. However, you can use a
custom language to tailor documentation to a specific type of project file user.

Enter the localized descriptions in your project, either when programming in
that language or by using the import/export utility to translate the
documentation offline and then import it back into the project. Once you
enable project documentation in application, you can dynamically switch
between languages as you use the software.

Project documentation that supports multiple translations includes these
variables:

e Component descriptions in tags, routines, programs, equipment
phases, user-defined data types, and Add-On Instructions

e Engineering units and state identifiers added to tags, user-defined
data types, or Add-On Instructions

e Trends

e Controllers

e Alarm Messages (in configuration of ALARM_ANALOG and
ALARM_DIGITAL tags)

e Tasks

e Property descriptions for module in the Controller Organizer

e Rung comments, SFC text boxes, and FBD text boxes

If you want to allow project documentation on an Add-On Instruction that is
sealed with an instruction signature, you must enter the localized
documentation into your Add-On Instruction before generating the
signature. Because the signature history is created after the instruction
signature is generated, the signature history is not translatable. If the
translated information already exists when you generate the Add-On
Instruction signature, you can switch the language while keeping the
signature intact because the switch does not alter the instruction definition, it
only changes the language that is displayed.

For more information on enabling a project to support multiple translations
of project documentation, refer to the online help.

The Motor_Starter Add-On Instruction starts and stops a motor.
If the stop pushbutton is closed and the start pushbutton is pressed then:

e The motor gets the command to run.

70 Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

e Theinstruction seals in the command, so the motor keeps running
even after you release the start pushbutton.

If the stop pushbutton is pressed (opened), then the motor stops. The
following screen capture shows the General tab for the Motor Starter Add-On

Instruction.

Add-On Instruction Definition - Motor_Starter v1.0 [o | @ |3

General | Parameters | Local Tags | Scan Modes | Signature I Change History | Help |

Name: Motor Starter,

Description: Starts and stops a motor -

s

Tre: [Ladder Dogram

Majar Minar Extandad Text
Revision: 1k o =
Revision Note: %
Vendor: Roclowell

Copy all default values of parameters and local tags whose values were modfied to all tags of this instruction type

Data Type Size: 20 byte is) [OK J l Cancel] Apply Help

The following screen capture shows the Parameters tab for the Motor Starter
Example Definition Editor.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 n

Chapter 2 Defining Add-On Instructions

' ™
B ' Add-On Instruction Definition - Motor_Starter v1.0 u
General | Parameters | Local Tags I Scan Modes I Signature I Change Histany I Help |
Mame | |Jsage | Data Type |.Nias For | Defautt |Sty18 | Req | iz | Description | BExtemal Access |Constar|t | A|
| Enableln Inpt BOOL 1 Decimal Enable Input - Sys... Read Only
| EnableOut Output BOOL 0 Decimal Enable Output - 5... Read Only
| Stop Input BOOL 0 Decimal Erter the tagthat ... Read Write
| Stat Inpt BOOL 0 Decimal Enterthe tag that ... Read/Write [l
| deg Input BOOL 0 Decimal [[Jogcommand fort... Read Wite
| AuwdContact Inpt BOOL 0 Decimal [[] [[] Awdliany contact o... Read/Write 5]
] ClearFault Input BOOL 0 Decimal [[Tocdearthefault ... Read/Wite
_ | Ou Output BOOL 0 Decimal Output command t... Read Only
| Faut Output BOOL 0 Decimal [] ¥ on, the motor di... Read Only
| b FaultTime Input DINT 0 Decimal [[C] Enterthe time {ms)... Read Write
Il B @ &
Move Up Mowve Down
Copy all default values of parameters and local tags whose values were modffied to all tags of this instruction type
Data Type Size: 8 byte (s) [OK] [Cancel] Apply Help

The following screen capture shows the Motor Starter Example ladder logic.

72 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

| I| Motor_Starter - Logic*

| Qi

abed :',"] ab.. * by

Data Contexd: Mator_Starter <definition:

- (W) 2

If the Stop button is closed, the editor gets the command to run when you press the Start button. The motor runs even after you release the Start button.
The motoer stops when you press (open) the Stop button. The run command turns off if there is a fault.
Start command for

Stop command for the

If on, the motor did

motar the motor not start or stop.
Stop Start Fault RunCoemmand
a8 Ik = = .
RunCemmand
1E
The motor starts if the run command is on. The motor also starts if the Jog input is on and there isn't a fault.
Cutput command te
the motor starter.
If on, the motor
starts.
If off, the motor
stops.
RunCommand Out
HE
Jog command for the
motor.
To jog the motor,
turn on this bit.
To stop the jog, If on, the motor did
turn off this bit. not start or stop.
Jog Fault
I E]
If FaultTime is greater than 0, turn on CheckAuxContact. This lets the instruction use the auxiliary contact on the motor.
Time (ms) to wait
for the auxiliary
contact to open or
close. The FauliTime
bit turns on when
that time is up.
GRT Mo CheckauxContact
Greater Than (A=B) Move i
Source A FauliTime Source FaultTime
4= 0=
Source B 0 Dest FaulTimer.PRE
O

If CheckAuxContact is on, the rung checks for that state of the auxiliary contact. The Fault bit turns on if the auxiliary centact doesnt match the

CQutput command to
the motor starter.
If on, the motor

commanded state of the metor within FaukTime.
Auxiliary contact of
the motor.
Make zure you zet
the FaultTime.

To clear the fault
of the motor, turn

on this bit. net start or stop.
ClearFault Fault

1F

1

starts. Otherwise, this
If off, the motor input doesn't do
stops. anything.
CheckAuxCantact Out AuxContact TON
1 E 1 E = = Timer On Delay HEN>
- Timer FaulTimer
Auxiliary contact of Bre—ct [—
Qutput command to the motor. e 4=
the motor starter. Make zure you zet
If on, the motor the FaultTime.
starts. Otherwise, this If on, the moter did
If off, the motor input doesn't do not start or stop.
stops. anything. FaultTimer.DN Fault
Out AuxContact -IJ [L
= == 1E

To clear the fault of the motor, turn on the FaultClear bit.

If on, the motor did

Chapter 2 Defining Add-On Instructions

Pushbutton to stop
the conveyor

L=

Stop_PB

Pushbutton to start
the conveyor

L=

Start_PB

Simulation instruction
example

The following diagrams show the Motor Starter instruction called in three
different programming languages. First is Motor Starter Ladder Logic.

Conveyor
Motor_Starter
Starts and stops a motor
Motor_Starter Motor_Starter LD [..] — Fault

Stop Stop_PB

() 4u
Start Start_ PB

() 4u
Cut Motor_Qut_LD

() 4u

Here is the Motor Starter Function Block Diagram.
Conveyor

Motor_Starter]

Startz and stops a motor
Cutput command to

Motor_Starter 041 the conveyor motor
Stop Out : Motor_Qut_FBD.0
Start Fault [+

Here is the Motor Starter Structured Text.

Motor Starter (Motor Starter ST, Stop PB, Start PB,
Motor Out ST);

The Simulation_DT 1st Add-On Instruction adds a dead time and a
first-order lag to an input variable. The following screen capture shows the
General tab for the Simulation Example Definition Editor.

74 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions

P

Add-0On Instruction Definition - Simulation_DT1stv1.0 o[BS
General” |Famme¢ers Local Tags | Scan Modes | Signature | Change Histony | Help |
Mame: Simulation_DT_1st
Description: Simulation instruction which includes a dead time anda =
first order lag
Type: 31 Function Block Diagram [Change Type...]
Major Minar Extended Text
Revision: 1 0 = Sim DT 1st
Revision Mote: %
Vendor: Rockowell Automation

Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type

Data Type Size: 4 byte s) [OK] [Cancel] [Apply] [Help

-

The following screen capture shows the Parameter tab for the Simulation
Example Definition Editor.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 s

Chapter 2 Defining Add-On Instructions

-

-
Add-On Instruction Definition - Simulation_DT_1st v1.0 [
General | Parameters | Local Tags | Scan Modes | Signature I Change History | Help |
MName | lzage | Data Type | Alias For | Default |St'_.f|e | Reg | Vig | Description | Edemal Access |Cnn5tarrt | A|
| Enableln Input BOOL 1 Decimal Enable Input... Read Only |
| EnableCut Output BOOL 0 Decimal Enable Outp... Read Only
| SimInput Input REAL 0.0 Float Enterthetag Read/Write
| SimDeadtime Input REAL 0.0 Foat [[C] Enterthe de... ReadAWrite |
| SimTimeConstart Input REAL 0.0 Float | Enterthe tim... ReadWrte
| SimOutput Output REAL 0.0 Hoat [l Output value ReadWrnite
| SimOTlrv Output BOOL 0 Decimal = if on, the de... ReadWrte
| DA Input REAL 0.0 Float Enteran am... ReadWrite
a] O O]
Mave Up Maove Down
Copy all default values of parameters and local tags whose values were modified to all tags of this instruction type
Data Type Size: 24 byte (s) Lok J[Ganced || Acoy Help

The following image shows the Simulation example logic.

Simulation input

0.0 DEDT - e [J
Siminput .
Deadtime Lead-Lag Simulation output
DEDT_01 LOLG_01 SimOutput
N \ 0.0 0.0
Dead time (Sec) ik In Out : In Out
SimDeadtime : Deadtime Deadtimelny Lag Dead time invalid
StorageArray DA SimOTinv
Time constant (Sec)
1.0
SimTimeConstant
: In this example, the instruction simulates a deadtime and lag (first order
Ladder diagram pe, g)
process.

configuration

The Simulation_DT 1st instruction reads the control variable from the PID
instruction. The PID instruction reads the SimOutput Parameter of the
Simulation_DT 1st instruction.

76 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2

Defining Add-On Instructions

Function block diagram
configuration

Simulation_DT_1st
Simulation instruction which include. ..

Simulation_DT_1st Sim DT LD [— SimDTinv
Siminput My _Control_Variable
SimTmeConstant
SmOutput
DAt DT_.
PD
Proportional Integral Derivatiye
PID My_PID_LD (i)
Process Variable Sim_DT_LD\ SimQutput
Tieback 0
Control Variable Wy_Control_\ariable
PID Master Loop 0
nhold Bit 0
Inhold Value 0
Setpoint 0.0
Process Variable 004
Output % 00w

Sim_DT_LD.SimCutput

N

Simulation_DT_1% tag SimOutput parameter

The Simulafion_DT_1s
instruction reads the
controd variable from the
PID instruction.

The PID instruction reads
the SimOut put parRmeter
of the Simulation_DT_1=
instruction.

The PIDE instruction sends the control variable to the Simulation_DT_1st

instruction. The Simulation_DT_1st instruction calculates an output and

sends it to the PIDE instruction as the process variable

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 2 Defining Add-On Instructions
Simulation
instruction which
includes a dead time The PIDE instruction sends the control
and a first order wvariable to the Simulation_DT_1st instruction.
lag.
Simulation_DT_1st [r] PIDE —
Simulation instruction which includes a ... Enhanced PID
Simulation_DT_1st_02 PIDE_01
0.0 0.0
" —»| Siminput SimOutput : Py CVEU ?
FJ
2 SimDeadtime SimDTinw SPProg SP .
SimTimeConstant SPCascade PYHHAlarm >
DA RatioProg PWHAlarm .
CVProg PYLAlarm >
FF PVLLAlarm
The Simulation_DT_1st instruction calculates .) 0
an output and sends it to the PIDE instruction HandFB FVROCPosAlarm 0
as the process variable. ProgProgReq PWVROCHNegAlarm .
ProgOperReg DevHHAlarm >
ProgCazRatReq DevHAlarm
FClrmem & cdkm M Mmael Almees I:
The Simulation_DT_ 1t instruction reads the
structured text control variable from the PIDE irstruction and
. . calculates anoutput. T et i BT_ST, Wy_BE_STCVEL BT Ay 571
configuration Ty _PIDE_STPV = Sim_DT_STSmOutput

18

Theoutput goes to the process wariable afthe —C
PIDEinstruction.

PIDE(Ry_PIDE_3T)

Simulation_DT_ st tag

SimOutput Pa mmeter

Sim_DT_ST .

SimOutput

— |

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 3

Using Add-On Instructions

. Add-On Instructions are used in your routines like any built-in instructions.
Introduction : Sy y
You add calls to your instruction and then define the arguments for any
parameters.

Access Add-On Instructions The A('id—On Instruction can be used in any one. of the‘ Ladder Diagram,
Function Block, or Structured Text languages (including Structured Text
within Sequential Function Chart actions). The appearance of the instruction
conforms to the language in which it is placed.

To access Add-On Instructions

e Access them from any of the normal instruction selection tools.
e Theinstruction toolbar has an Add-On tab that lists all of the currently
available Add-On Instructions in the project.

Ches Mot Mot MyA Safet Zimul Eimul
D G D (:I kdut or 2 or = 0O vhdd ate

ation

Favorites Add-Omn Process Drives Filters Select/Lim... Statistii

IMPORTANT Safety Add-On Instructions can be used only in safety routines, which are currently
restricted to ladder logic. Safety Add-On Instructions are shown in the Language
Element toolbar only when the routine is a safety routine.

Use the Add Ladder Element Use the Add (language) Element dialog to add elements to add an element to

logic.

dialog box

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 79

Chapter 3 Using Add-On Instructions

Use the Add (language) Element dialog

1. Press Alt+ Insert anywhere in the editor or right-click the logicin the
Editor and select Add Element.

-

:

B Add Ladder Element

Ladder Element: Rung £ Instruction Help >3

MName Description

]
o Branch {BST - BND})

* Branch Level (NXE)
Aams

Bit

Timer/Courter

InputOutput

Compare

Compute/Math

MoveLogical

| »

m

[¥] Show Language Blements By Groups
[ﬂew Add-On Instmd.iun...] Help

L ; -
2. From the Elementlist, select the Add-On Instruction you want to add
to your routine.

i e’
W Add Ladder Element e
Ladder Element: Motor_Starter | Instruction Help >>
MName Description
Metion Group -
Motion Evert
Metion Corfig
Motion Coordinated
ASCII String
ASCI Conversion
Add-On —
* CheckAwdCont =
1
- Test -
[¥] Show Language Blements By Groups
Cancel
[ﬂew Add-On Instmc:tiun...] Help
L5

80 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 3

Using Add-On Instructions

3. Click Instruction Help to display the instruction help for any

instruction in the browser.

-

' Add Ladder Element

eS|

Ladder Element: Motor_Starter

<< |nstruction Help] Logix Designer Instruction Help

[#] Show Language Elemerts By Groups

[ﬂew Add-On Instruction...]

Name Description Motor Starter v1.0

Muotion Group -

e Rockwell

Motion Config [Contact the Add-On Instruction develope
Mation Coordinated
ASCII String

=

ASCIl Corversion Starts and sStops & motor
Add-On =

#H CheckAwdCont ‘E ‘ .

E:{I Maotor_Starter Starts and stops a maotar R * Available nguages
- Test -
|E] Relay Ladder

OK

Cancel

Help

Motor_Starter
4 Starts and stops a motar p———

Including an Add-On
Instruction in a routine

4. Click OK.

Follow this procedure when you want to use an Add-On Instruction in one of

your routines.

1. Open the Add-On Instruction folder in the Controller Organizer and

view the listed instructions.

If the instruction you want to use is not listed, you need to do one of

the following:

e Create the instruction in your project.

e Copy and paste an instruction into your project.
o Get the file for an exported instruction definition and then import

the instruction into your current project.

2. Open the routine that will use the instruction.
3. Click the Add-On tab on the instruction toolbar.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

81

Chapter 3 Using Add-On Instructions

4. Click the desired Add-On Instruction to insert it in the editor. Hover
the cursor on an instruction to see a preview of it.

Chec Mot Mot MeA Safet Simuol | Simol
kfwk or 2 er 0N uiadd ate atio“

Favortes Add-On Alarms Bit Timer/Counter Sirr;;_llati::un_DT_lstxrl.D
Simulation_DT_1st
Simulation instruction which incl...
Simulation_DT_1st ? [0 SimDTinv
Siminput ?

2

SimTimeConstant

SimCutput 7?2
DA 7
2

5. Define arguments for each Parameter on the instruction call.

The instruction appears as follows in each of the languages.

Ladder Diagram: Simulation_DT_1st

Simulation instruction which incl...

Simulation_DT_1st ? [.] — SimDTinwv
Siminput ?
77
SimTimeConstant EL
SimCutput i
DA ?
77
Parameter With Description
Single question mark This is a required InOut parameter. Enter a tag.
Single and double question marks This is a required Input or Output parameter. Enter a tag.

This is not a required parameter. You can either:
Double question marks o Leave asis and use the default value.
o Enter a different value if it's an Input parameter.

Function Block Diagram:

Simulation_DT_1st (=]
Simulation instruction which includes a
] \ Simulation_DT_1st_01
Siminput SimOutput
Item Description

This is a required Input or Qutput parameter.
Nub on the end of pin You must wire the pin to an IREF, OREF, connector, or
another black to verify.

82 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 3 Using Add-On Instructions

Track an Add-On
Instruction

Item Description

Single question mark This is a required InOut parameter. Enter a tag.

This is not a required parameter.

You can either:

o leave as is and use the default value.

o enter a different value if it's an Input parameter.

No nub on the end of pin

Structured Text:

Simulation mstruchion which includes a ..
Simulation_DT_1stSimulation_DT_1st, Simlnput, DA7T]

The instruction expects arguments for required parameters as listed in the
instruction tooltip.

Tip: For help with an instruction, select the instruction and then press F1. In Structured Text,
make sure the cursor is in the blue instruction name.

Use component tracking to determine whether tracked components have
been changed. The Logix Designer application creates an overall tracked value
to indicate the current state of tracked components.

Tracked components and their current states appear in the Tracked
Components dialog box, which is accessible on the Controller Properties
dialog box - Security tab. The recommended limit on the number of Add-On
Instructions that can be tracked is 100. If this limit is exceeded, there might be
a noticeable impact on performance in the Logix Designer application.

The FactoryTalk Security permission Add-On Instruction: Modify controls a
user's ability to change the tracking status for an Add-On Instruction.

Tips:

o Component tracking is supported only on CompactLogix 5370, ControlLogix 5570, Compact
GuardLogix 5370, and GuardLogix 5570 contrallers in version 30 of the Logix Designer application.

 To optimize performance, configure component tracking so that the tracked state value is
calculated on demand rather than at reqular intervals.

To track an Add-On Instruction

. Inthe Controller Organizer, highlight the component to track.
2. Right-click and select Include in tracking group.
3. To stop tracking a component, right-click and select Include in

tracking group again.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 83

Chapter 3 Using Add-On Instructions

Reference a hardware

A module reference parameter is an InOut parameter of the MODULE data

type that points to the Module Object of a hardware module. You can use

module module reference parameters in both Add-on Instruction logic and program
logic. Since a module reference parameter is passed by reference, it can access
and modify attributes in a hardware module from an Add-On Instruction.
Follow this procedure to use a module reference parameter from within the
Add-On Instruction. This example shows how to retrieve the communication
path for a hardware module.

To reference a hardware module

1. Create the module reference parameter in the Add-On Instruction. See
Creating a module reference parameter on page 40.

2. Create a SINT tag in the Add-On Instruction to hold the module
communication path.

3. Add a GSV instruction in the Add-On Instruction, using the
programming language you chose for the Add-On Instruction. The
GSV instruction allows you to retrieve module information.

4. Inthe GSV instruction, choose the following values to retrieve the
communication path to the module.

Attribute

Value

Class Name

Module

Instance Name

The module reference parameter you created in the Add-On Instruction
(I0_ModuleSts below)

Attribute Name

Path. This is the communication path to the module.

Dest

The tag to hold the module path (Module_Path below)

G5

Get System Value

Clazs Mame

Module

Ingtance Name 10_ModuleSts

Attribute Name

Dest

Path
Module_Path
0 4=

5. Inthe routine that includes the Add-On Instruction, create another
module reference parameter.

1. Inthe routine, right-click Parameters and Local Tags and then click

New Parameter.

2. Enter the following values in the dialog box.

Attribute

Value

Name

ModuleRef_Slot01

Usage

InOut parameter

Data Type

MODULE

84 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 3

Using Add-On Instructions

3. Click the down arrow in the Parameter Connections box, and

choose a hardware module. This is the module that the parameter

references.

-

Mew Parameter or Tag

2]

Create |‘r

Cancel

Help

Name: ModuleRef_Slot01
Description: T
Usage: [InDut Parameter T]
Type: [Base = | | Connection...
Alias Far:
Data Type: MODULE E
Parameter Lel_S01 =
Connection:
s _ =44 1/0 Configuration
s -8 1756 Backplane, 1756-A7
Edenad ----- ﬂ{l [0] 1756-L75 Controller
Access: . W11] 1756-1B16 Lol_S01
------ B [211756-0B16] Lol_503
Style:
e B [311756-F8 Lol_S04
[] Constant =~ { [4] 1756-EN3TR Lel_505
...... EI?E Ethemet
Seqguencing
Open Corfig

[T Open Parameter Connections

!

6. Add the Add-On Instruction to the routine.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

85

Chapter 3 Using Add-On Instructions

7. Connect the routine's module reference parameter to the Add-On
Instruction's module reference parameter. Double-click the question
mark next to the Add-On Instructions module reference parameter,
then click the down arrow and choose the module reference parameter

from the program.

AD_ModuleSts

A0 ModuleSts

A0 MadnlaDef

ModuleRef_Siotd1 |

Tips for using an Add-On
Instruction

X » Show: gl Tags

Name: ::| | Data Type U=age Description g
Module_Path DINT Local
ModuleRef_Slot01 P WODULE InCut
Motor_Qut_FBD g DINT Local
Motor_Out_LDy DINT Output
Motor_Starter LD BOOL Local Conveyor
Iy_Control_Variable DINT Local

B Ky _PID_LD PID Local

B PIDE_0A PID_EMHAMNCED Local
Result1 DINT Local
Sim_DT_LD_SimCutput DINT Cutput

B Simulation_DT_1st 01 Simulation_DT... Local Simulation ingtruction which i

B Simulation_DT_1st_02 Simulation_DOT... Local Simulation instruction which
Start_PB BOOL Local Pushbutton to start the conw
Stop_PB Local Pushbutton to stop the conve

BOOL

Show controller tags

[¥] Show MainProgram tags

You can now access the attributes associated with the Module Object from
within the Add-On Instruction.

This table describes programming tips for you to reference when using
Add-On Instructions.

Topic

Description

Instruction Help

Use the instruction help to determine how to use the instruction in your code.

In a ladder rung, consider if the instruction should be executed on a false rung

Ladder Rungs - . . .
condition. It may improve scan time to not execute it.
A data type defined with the Add-On Instruction is used for the tag that provides
Data Types context for the execution from your code. A tag must be defined of this Add-On
Instruction-defined type on the call to the instruction.
You can use an indirect array indexed tag for the Instruction instance. One
Indexed Tag drawback is that you cannot monitor the Add-On Instruction by using this as a data

context.

Passing Data

o Input and OQutput parameters are passed by value.
o In0ut parameters are passed by reference.

86 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 3 Using Add-On Instructions

Programmatically access a Follow these procedures for any language when you want to access an Add-On
Instruction parameter that isn't available on the instruction face by default.

parameter

The following procedures demonstrate how to use the Jog parameter of the
Motor Starter Add-On Instructions.

* Parameters

Fequired Name Data Type Usage Description

b Mlotor Starter Motor Starter InOut

Enatkleln BOOL Inpat

EnatleCht BOaL Oatput
x Stop BOOL Input Atop cormmand for the motor.
b4 Statt BOOL Inpat Start command for the motor.

Tog BOOL Input Jog command CEE D moREEe

To jog the motor, turh on this bitc.
To stop the jog, turn off this bit

, wurn off this bis

USiI'Ig the Jog command in The first rung sets the Jog bit of Motor_Starter_LD =Jog_PB.

ladder diagram Conveyor jog command

{ Motor_Starter_LD.Jog)

Motor_Starter
Starts and stops a motor
Starter Motor_Starter_LD [..) < Fault
Stop_PB
O
Start_PB
04
Motor_Out_LD
O

Motor_Starter LD . Jog

Wotor_Starter_ LD tag

dot

Jog parameter

Use another instruction, an assignment, or an expression to read or write to
the tag name of the parameter. Use this format for the tag name of the
parameter:

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 87

Chapter 3 Using Add-On Instructions

Add_On_Tag.Parameter

Where Is
Add_On_Tag An instance tag defined by the Add On data type.
Parameter Name of the parameter.

Use the J og commandina Anparametercan be made visible or invisible except those defined as
. . required. Required parameters are always visible. If the parameter is
function block dlagfam required, you will see it checked in the Properties dialog box.

To use the Jog command in a function block diagram

1. Click Properties for the instruction.

Motor_Starter

Startz and stops a motor

Motor_Starter_01

Stop Cut
Start Fault

2. Select the Vis check box of the Jog parameter to use it in your diagram.

Moter_Starter Properties - Motor_Starter_01 (Sheet 1, A3) @
Parameters™ | Tag |
Vis | MName |.ﬁ.rgumerrt Value Data Tvpe | Description

I_ = Enableln 1 BOOL Enable Input - Sy=
O | [EnableCt 0 BOOL Enable Output - 5
I_ Stop 0 BOOL Stop command for
| | [Star 0 BOOL Start command for
§ Jog 0 BOOL Jog command fori
[1] [l AuContact 0 BOOL Aundliary contact o
I I_ o ClearFault 0 BOOL To clear the fault «
I D_ Ot 0 BOOL Output command 1
0 | Fault 0 BOOL f on, the mator dic

1| 1] [b

[7] Sort Parameters Insert Instruction Defaults
[Insert Defintion Defaults]
[Save Instruction Defaults]

Execution Order Mumber: <routine not verified:
[] Mever display description in a routine QK] [Cancel] [Apphy] [Help]

3. Click OK.

88 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 3 Using Add-On Instructions

4. Wire to the pin for the parameter.

Puzhbutton to stop

Startz and stops a

the conveyor
0 motor
Stop_PB
Motor_Starter]
Startz and stops a motor
Qutput command to
Pushbutton to start Motor_Starter_01 the conveyor motor
the conveyor Stop Out [F— Motor_Out_FED
Start_PB - Start

Using the Jog command in
structured text

Monitor the value of a
parameter

Jog

Jog pushbutton to
jog the conveyor

forward

=

Jog_PB

The assignment setsthe Jog bit of

Motor_Starter_STJog :=Jog_PB;
Motor_Starter_5T = Jog_PB.

Motor_Starter(Motor_Sarter_3T, Stop_PB, Start_PB, Mcltclr_ﬂut_ST];|

Motor_Starter ST . log

Mator_Starter tag

dot

log Parameter

Follow this procedure when you want to see or change a parameter value of an
Add-On Instruction.

To monitor the value of a parameter

1. Open the Properties of the instruction based on what language you are
using.

a. For either a Function Block or Ladder Diagram, click Properties E]
for the instruction.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 89

Chapter 3 Using Add-On Instructions

Motor_Starter
Starts and stops a motor
Motor_Starter Motor_Starter LD [..] — Fault

Stop Stop_PB
04

Start Start_PB
04

COut Motor_Qut_LD
04

b. For Structured Text, right-click the instruction name and select

Properties.
I" '
Motor_Starter Properties - Motor_Starter_01 (Sheet 1, C2) M
Parameters | Tag
Vis | Name Argument Default Data Type Description
| | [C]| Enableln 1|Bo0OL Enable Input - System Defi.
0|0 EnableCut 0|pooL Enable Output - System De
| Stop 0 |BOOL Enter the tag that
I Start 0 (BOOL Ertter the tag that
| || Jog 0 |BOOL Job command for
| | [C]| AutoContact 0 |BOOL Sureliary contact o
| |]| ClearFault 0 |BOOL To clear the fault
0 Out 0 |BOOL Output command
0 Fault 0|BOOL If on, the motor di
1| T | FautTime =] 400d[pINT Enter the time (ms)
4| n | 3
[7] Sort Parameters Insert Instruction Defaults
[Ingert Definition Defaults]
[Save Instruction Defaults]
Bxecution Order Mumber: <routing not verfied s
[Mever display description in a routine [QK] [Cancel l Apphy Help
L &

2. Monitor the value of the parameters and change any if needed.
3. Type a new value for each parameter as needed.
4. Click Apply and when finished, click OK.

View Iogic and monitor with rollow this procedure when you want to view the logic of an Add-On
data context Instruction and monitor data values with the logic.

90 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 3 Using Add-On Instructions

To view logic and monitor with data context

1. Right-click the instruction call in any routine.

Instruction call

Motor_Starter
Starts and stops a motor
Motor_Starter Motor_Starter LD [..] — Fault
Stop Stop_PB %
04 Motor_Starer(M otor_Starter ST Stop_PB,
Start Start_PB Start_PB Motor_Out_ST};
O
Qut Motor_Out_LD
(e
Pushbutton to stop
et Motor_Starter -
Starts and stops a motor
Stop_PB tp mand t
Mlﬂm’_stﬂﬂtr_t” the Conveyor motor
Pushbution to start Stop Dut [F=— Motor_Out_FBD.0
he conveyor Start Fault [
Start_PB

2. Select Open Instruction Logic.

| Open Instruction Logic |

Open Instruction Definition

Properties Alk+Enter

The Language Editor opens with the Add-On Instruction's logic
routine and with data values from the instruction call.
As you view the logic you can:

o Identify the instruction call whose tags are being used for data.
o See thelogic as it executes (when online).
e See Parameter and Local Tag values.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023]|

Chapter 3 Using Add-On Instructions

e Change local tag and parameter values for the data instance
selected.

S0 Ll SN Ca) Rl e 25 at= v o Data Context: <7 Maotor_Starter_01 {MainProgram) - | 'lw

If the Stop button is closed, the editor gets the command to run when you press the Start button. The motor runs even after
ou release the Start button. The motor stops when you press (open) the Stop button. The run command turns off if there is a

»

fault.
Stop command for the Start command for If on, the motor did
motor the motor not start or stop. A
Stop Start Fault RunCommand 3

RunCommand R

The motor starts if the run command is on. The motor also starts if the Jog input is on and there isnt a fault.
Output command to
the motor starter.
If on, the motor

starts.
If off, the motor
stops.
RunCommand Cut
Jog command for the
motor.
To jog the motor,
turn on this bit.
To stop the jog, If on, the motor did
turn off this bit. not start or stop.
Jog Fault
4 4

3. Toedit the logic of the Add-On Instruction, select the instruction
<definition> in Data Context.

g Data Cortendt: Motor_Starter <definition: -
You can't edit the instruction logic:

Online

When the logicis in the context of an instruction call

If the instruction is source-protected
If the instruction is sealed with an instruction signature

Determine if the Add-On An Add-On Instruction may be source protected so you cannot view the logic.
Instruction is source Follow these steps to see if an Add-On Instruction is source protected.

protected
To determine if an Add-On Instruction is source protected

1. Select the Add-On Instruction in the Controller Organizer.
The Add-On Instruction cannot be expanded when fully protected.

2. Look in the Quick View pane for Protection Type.

92 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 3 Using Add-On Instructions

The Protection Type field indicates if the Add-On Instruction is
protected by a license or a source key. If the Protection Type attribute

is not listed, then the instruction is not protected.

Controller Organizer

- 0 X

4 Controller LE5_102
<! Controller Tags

Tasks
Motion Groups
Alarm Manager
Aszets

h ¥V OV W

Protection Permissions

Power-Up Handler

-~

Controller Fault Handler

m

4 Add-On Instructions

b ACT_ ModuleSts

P CheckfiutoCont -
Description
Revision v1.0
Revision Mote
Vendor Rockowell
Data Type Size 4 bytes
Created 5/19/2017 2:16:17 PM
Created By RA-INT
Edited 5/2272017 10:32:18 AM
Edited By RA-IMNT

Signature ID one
Protection Type
Protection Mame Mayd? 2017

Protect, Edit, Copy, Export, ...

1 | m

f}: Controller Organizer thgical Crganizer

copy an Add-On Instruction You can copy an Add-On Instruction into your project when it exists in

[3

another Logix Designer project. After you copy the Add-On Instruction, you
can use the instruction as is or rename it, modify it, and then use it in your

programs.

IMPORTANT Use caution when copying and pasting components between different versions of Logix
Designer programming application. Logix Designer application only supports pasting to
the same version or newer version of Logix Designer application. Pasting to an earlier

version of Logix Designer application is not supported. When pasting to an earlier
version, the paste action may succeed, but the results may not be as expected.

Tip: When copying and pasting Add-On Instructions, consider these guidelines:

 You cannot paste a safety Add-On Instruction into a standard routine.

 You cannot paste a safety Add-On Instruction into a safety project that has been safety-locked or
one that has a safety task signature.

 You cannot copy and paste a safety Add-On Instruction while online.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

93

Chapter 3 Using Add-On Instructions

To copy an Add-On Instruction

1. Open the Logix Designer project that contains the Add-On Instruction.
2. Find the instruction in the Add-On Instructions folder.

Controller Qrganizer - I X

P Controller L85_102
B Tasks

P Motion Groups

[

4

Alarm Manager

HAzcete
[CheckfuteCont k
b & MyAOL

b SafetyAddOnlnstruction
B Simulate_Feedback
P {=L Simulation DT 1st

3. Right-click the instruction and select Copy.
4. Goto the other project where you want to paste the instruction.
5. Right-click the Add-On Instructions folder and select Paste.

There are two ways to store a group of Add-On Instructions together. One is
to save your Add-On Instructions in a project file. Another is to create an LsX
export file, as described in Chapter 4 on page 95.

Store Add-0n Instructions

To store instructions by saving them in a project file

1. Identify the instructions to store.

2. Place them in a project file with a distinctive name, such as
MyInstructions.ACD.

3. Open other projects in additional instances of the Logix Designer
application and use copy and paste or drag and drop to move a copy of
the instruction from MyInstructions.ACD to another project.

If any of these instructions reference the same Add-On Instruction or
User-Defined Data Type, there is only one shared copy in the project
file. When an Add-On Instruction is copied to another project, it also
copies any instruction it references to the target project.

94 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 4

Create an export file

Export to separate files

Importing and Exporting Add-0n Instructions

When you export an Add-On Instruction, the exported Add-On Instruction
includes all of its parameters, local tags, and routines. These will be imported
with the Add-On Instruction automatically.

To create an export file

e Optionally, you can include any nested Add-On Instructions or
User-Defined Data Types that are referenced by the exported Add-On
Instruction. Referenced Add-On Instructions and data types are
exported to the LsX file if you select Include all referenced Add-On
Instructions and User-Defined Types during the export.

¢ Add-On Instruction definition references may also be exported when a
program, routine, set of rungs, or User-Defined Data Type is exported.

Tip: If an Add-On Instruction uses Message (MSG) instruction and InOut parameters of type
MESSAGE, you may wish to export a rung containing the Add-On Instruction to include the
MESSAGE tags. This captures the message configuration data, such as type and path.
In deciding how to manage your Add-On Instruction definitions in export
files, you need to consider your goals in storing the definitions.

If Then

You want to store many Add-On Instructions that share a set of
common Add-0n Instructions or User-Defined Data Types in a
common location

Export to separate files as described in
Exporting to separate files on page 95.

You want to distribute an Add-On Instruction as one file

You want to manage each Add-On Instruction as a standalone

)) Export to a single file as described in
instruction

Exporting to a single file on page 97.

You want ta preserve the instruction signature on your Add-On
Instruction

Q Tip: Add-On Instructions with instruction signatures are encrypted upon expart to prevent
modifications to the export file.

O Tip: A License-protected Add-On Instruction is written to the export file in an encoded format unless
the user's license contains Export permission. To export in non-encrypted text, the license must
contain the Export permission, and when saving the expart file, the user must deselect the Encode
Source Protected Content option.

If you want to store many Add-On Instructions that share a set of common
Add-On Instructions or User-Defined Data Types in a common location, you
may want to export each Add-On Instruction and User-Defined Data Types to
separate files without including references.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 95

Chapter &4 Importing and Exporting Add-On Instructions

To export to separate files

1. Inthe Controller Organizer, right-click the Add-On Instruction and
select Export Add-On Instruction.
2. Inthe Save In box, select the common location to store the LsX file.

G oo I =

Save in: | Projects - @ ¥ B G-
T Mame : Date modified Type
e D15

Recent Places (316
[CT1A0I Projects

! [C)5amples

Desktop

Libraries

ity

Computer

4| 1

(1
File name: Motor Starter. | 5X]

r
Expaort
Save as type: Logie Designer XML File (" L5X) -

File description: Starts and stops a motor

-

Include all referenced Add-On Instructions and User-Defined Types
Encode Source Protected Content

In the File name box, type a name for the file.

4. Clear the Include referenced Add-On Instructions and User-Defined
Types check box.

Click Export.

Follow the above steps to individually export the other shared Add-On
Instructions and User-Defined Data Types.

w

Y

Using export in this way lets you manage the shared Add-On
Instruction and User-Defined Data Types independently of the
Add-On Instructions that reference them. One advantage of this is the
ability to update the shared component without having to regenerate
all the export files for the instructions that reference it. That is, it is
only stored in one file instead of in every file whose instruction
references it. This can help with the maintenance of the instructions as
you only have to update one export file.

To use Add-On Instructions that have been exported in a separate file,
without references, you must first import any User-Defined Data
Types of Add-On Instructions that the exported instruction references
before the import of the referencing instruction can be successful. To

96 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter &4 Importing and Exporting Add-On Instructions

do this, work from the bottom up. Import the lowest-level
User-Defined Data Types and any User-Defined Data Types that
reference them.

Then, import the lowest-level Add-On Instructions, followed by any
Add-On Instructions that reference those low-level Add-On
Instructions. Once all of the items it references are in place, the import
of the Add-On Instruction will succeed.

EXpOI’t toa single file If you manage each Add-On Instruction as a standalone, you might want to
export the instruction and any referenced Add-On Instructions or
User-Defined Data Types into one export file. By including any referenced
Add-On Instructions or User-Defined Data Types, you also make it easier to
preserve the instruction signature of an Add-On Instruction.

To export to a single file and include any referenced items

1. Inthe Controller Organizer, right-click the Add-On Instruction and
select Export Add-On Instruction.
2. Inthe Save In box, select the common location to store the LsX file.

@‘ Export Add-On Instruction | 28 |
Savein: || Projects ~- @ E
[Mame . Date modified Type
'*“.Ji? CheckAutoContl L5X 8/11/2014 2:18 PM Logix Desi
Rl e SafetyAddOnlnstructionl L5X 8/11/2014 221 PM Logix Desi
Desktop
=
Libraries
A
Computer
‘_:: 1| T » b
s File name: CheckAutoCont . L5X - Export
Saveastype: |Logi Designer XML Fis (~L5X)
File description: A Help
Include all referenced Add-On Instructions and User-Defined Types
Encode Source Protected Content

3. Inthe Filename box, type a name for the file.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 97

Chapter &4 Importing and Exporting Add-On Instructions

4. Select the Include referenced Add-On Instructions and User-Defined
Types check box.
5. Click Export.

This exports the selected Add-On Instruction and all the referenced
instructions into the same export file. You can use this file to distribute
an Add-On Instruction. When the exported Add-On Instruction is
imported into the project, the referenced instructions are imported as
well in one step.

Importing an Add-On You can import an Add-On Instruction that was exported from another Logix
: Designer project. When importing an Add-On Instruction, the parameters,
Instruction . . .
local tags, and routines are imported as part of the Add-On Instruction. Once
the project has the Add-On Instruction, you can use it in your programs.

Import considerations

A ATTENTION: Editing an L5K or L5X File:
The EditedDate attribute of an Add-On Instruction must be updated if the Add-On Instruction is
modified by editing an L5K or L5X file. If Logix Designer application detects edits to the Add-On
Instruction, but the EditedDate attribute is the same, the Add-On Instruction will nat be
imported.

When importing Add-On Instructions directly or as references, consider the
following guidelines:

Topic Consideration

Tag Data Imported tags that reference an Add-0n Instruction in the impart file may be affected if the
Add-On Instruction is not imported as well. In this case, the imported tag's data may be
converted if the existing Add-On Instruction’s data structure is different and tag data may be
lost.

If an existing Add-On Instruction is overwritten, project tag data may be converted if the
Add-On Instruction’s data structure is different and tag data may be lost.

See Import Configuration on page 99 for more information.

Logic Imported logic that references the Add-On Instruction in the import file may be affected if the
Add-On Instruction is not imported. If an existing Add-On Instruction is used for the imported
logic reference and the parameter list of the Add-On Instruction in the project is different, the
project may nat verify or it may verify but not work as expected.

If an existing Add-On Instruction is overwritten, logic in the project that references the
Add-On Instruction may be affected. The project may nat verify or may verify but not work as
expected.

See Import Configuration on page 99 for more information.

Add-On Instructions While Online | An Add-On Instruction cannot be overwritten during import while online with the controller,
though a new Add-On Instruction may be created while online.

License-protected Add-On A License-protected Add-On Instruction is written to the export file in an encoded format
Instructions unless the user's license contains Export permission. To export in non-encrypted text, the
license must contain the Export permission, and when saving the export file, the user must
deselect the Encode Source Protected Content option.

98 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter &4 Importing and Exporting Add-On Instructions

Import configuration

Topic

Consideration

Final Name Change

If the Final Name of an Add-On Instruction is madified during import configuration, the edit
date of the imported Add-On Instruction will be updated. In addition, all logic, tags,
User-Defined Data Types, and other Add-On Instructions in the import file that reference the
Add-On Instruction will be updated to reference the new name. As a result, the edit date of
any Add-On Instruction that references the Add-On Instruction will be updated.

Add-On Instructions that have been sealed with an instruction signature cannot be renamed
during import.

User-Defined Data Types

Add-0n Instructions cannot overwrite User-Defined Data Types. Add-On Instructions and
User-Defined Data Types must have unique names.

Instruction Signature

If you import an Add-On Instruction with an instruction signature into a project where
referenced Add-On Instructions or User-Defined Data Types are not available, you may need
to remove the signature.

You can overwrite an Add-On Instruction that has an instruction signature by importing a
different Add-On Instruction with the same name into an existing routine. Add-On Instructions
that have been sealed with an instruction signature cannot be renamed during import.

Safety Add-On Instructions

You cannat import a safety Add-On Instruction into a standard task.

You cannot import a safety Add-On Instruction into a safety project that has been
safety-locked or one that has a safety task signature.

You cannot import a safety Add-0n Instruction while online.

Class, instruction signature, signature history, and safety instruction signature, if it exists,
remain intact when an Add-On Instruction with an instruction signature is imported.

IMPORTANT |mporting an Add-On Instruction created in version 18 or later of Logix Designer

software into an older project that does not suppart Add-On Instruction signatures
causes the Add-On Instruction to lose attribute data and the instruction may no longer
verify.

When you select a file to import, the Import Configuration dialog box lets you
select how the Add-On Instruction and referenced components are imported.

If there are no issues, you can simply click OK to complete the import.

If your Add-On Instruction collides with one already in the project, you can:

e Rename it, by typing a new, unique name in the Final Name list.
o Select Overwrite from the Operation list.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 99

Chapter &4 Importing and Exporting Add-On Instructions

e Select Use Existing from the Operation list.

-

i " Import Configuration - Motor_2_FBD.L5X

& T Find:
Find Within: Final Name

Import Content:

&
¢ Parameters and Local Tags
T8 Routines

r‘ Errors, ﬂ.n'am'mgs
o

Click Add-On Instructions
to see the Configure Add-
On Instruction Reference
view. If any referenced
instruction definitions collide,
the References folder is
flagged.

Ready

o ¥ W

* Configure Add-On Instruction Properties

Import Name:

Operation:

Final Mame:

Description:

Revision:
Revision Note

Vendor:

Motor_2_FBD

Use Existing -

i) References wil be imported as
configured in the References folders

Motor_2_FED =

v1.0

Click Collision Details to
see components that collide
with a definition already in
the project.

ok [cancel ||

Hep |

Update an Add-On
Instruction to a newer
revision through import

O

Tip: You can only rename an Add-On Instruction if it has not been sealed with an instruction

signature.

To rename an Add-On Instruction that has been source-protected, you need the source key or the

required license.

The Collision Details button displays the Property Compare tab, which shows
the differences between the two instructions, and the Project References tab,
which shows where the existing Add-On Instruction is used.

When you need to update an instruction to a newer revision, you can import

it from an LsX file or copy it from an existing project. You must be offline to

update an Add-On Instruction.

100 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter &4 Importing and Exporting Add-On Instructions

To update an Add-On Instruction to a newer revision through import

1. Right-click the Add-On Instruction folder and click Import Add-On
Instruction.
2. Select the file with the Add-On Instruction and click Open.

p
@ Import Add-On Instruction

Search Projects 02 |

| Organize « Mew folder ==~ [@
‘ 3¢ Favorites chuments library Arangeibye Foklcr v
Pl Desktop Projects
#’ Ll e - Mame Date modified Type
“El Recent Places
| CheckfutoContl L5X 8/11/2014 2:18 PM Logix Designer X...
B Librases SafetyAddOnlnstructionl.L5X 8/11/2014 2:21 PM Logix Designer X..,
@ Documents
J’ Music
[Pictures

B videos

Lo Computer
&, 0sDisk (C:)

¥ Releases (\MUSMAYL
% Releases (\usmayln

?! Metwork

|

File name: CheckAutoContl L5X ~ | Logix Designer XML Files (*L5X |

l Open |vl [Cancel])

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 101

Chapter &4 Importing and Exporting Add-On Instructions

3. Review the Import Configuration dialog box, and from the Operations
list, click Overwrite.

i |
1 ' Import Configuration - CheckAutoCont2.L5X ﬁ

- a

Find Within: Final Name

Import Content:
Add-On Instructions Configure Add-On Instruction Properties
CheckAutoCont

Impart Name: CheckautoCaont
; <? Parameters and Local Tags
3 Routines Operation: [Dverwribe) vl
-[@ Errors/Warnings*=
Final Mame: CheckAutoCont + | Collision Details. ..
Description: -
Revision: v1.0

Revision Note:

Vendor:

[oK][Cancel][Help

Ready

4. Click Collision Details to see any differences in the Add-On
Instructions and to view where the Add-On Instruction is used.

102 Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Chapter 4

Importing and Exporting Add-On Instructions

The Property Compare tab shows the differences between the

instructions, in this case, the Revision, Edited Date, and Software
Revision.

i '
Add-On Instruction Name C_ulllsmrl— M g

Property Compare | Project References |

There are no differences in property values.

Impaort Add-On Instruction

Existing Add-On Instruction

Mame Ched:AutoCont ChedcAutoCont i
Description: i
Revision: 1.0 1.0
Revision Mote:
Vendor: Rodaowell Rodaowell
Created Date: 2/8/2014 1:20:33PM 2/8/2014 1:20:33PM
Created By: RA-INTYwoods RA-INTYwoods =
Edited Date: 8/3/2014 1:22:09PM 8/3/2014 1:22:09PM
Edited By: RA-INTYwoods RA-INTYwoods
Execute Prescan: Mo Mo
Execute Postscan: Mo Mo
Execute Enable In False: Mo Mo TN
Software Revision: w22.00 w22.00
Additional Help Text:
Logic is different: Mo
Mumber of Parameters: 4 4 i
Current Operation: Overwrite
Overwrite] [IUse Existing] Close] [Help

Tip: The Compare dialog box only compares extended properties for each instruction
definition, such as description, revision, or edited date. For effective revision control, enter a

detailed revision note.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

103

Chapter 4

Importing and Exporting Add-On Instructions

104

The Project References tab shows where the existing Add-On
Instruction is used.

Add-On Instruction Name Collision - CheckAutoCont . . s

| Froperty Compare | Project References |

Locations where 'ChedkAutoCont' is called in project:

Container Routine Location

Current Operation: Qverwrite

Cverwrite] [Use Existing Close] [Help

IMPORTANT Check each routine where your Add-On Instruction is used to make sure that
your existing program cade will work correctly with the new version of the
instruction.

For more information on updates to arguments, see Updates to
Arguments Following Parameter Edits on page 44.

5. Click Close and then OK to complete the operation.

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023

Index

Index

access
Add-On Instructions 81
Add Element dialog box 81

Add-On Instruction Definition Editor 38

Alarm definition 64
alias

parameter 29, 38
array 30

C

Change History tab 20
changing class 57
class 14
changing 57
collision
import 103, 105
compare instructions 105
constant value tags 32
copy
Add-On Instruction 96
default values 45
instruction signature 61
safety Add-On Instruction 96
safety instruction signature 61
signature history 61
Copy Default Values dialog box 45
create
Add-On Instruction 37
alias parameter 38
EnablelnFalse routine 54
instruction help 67
instruction signature 61
local tags 41
logic 47
parameters 38
postscan routine 52
prescan routine 50
signature history 61

Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

data access 27
data access control 32
data context views 58
data types
alias 29
parameters 29, 38
size 25
tags 41
default values 38, 41
copy 45
delete
safety instruction signature 62

E

Edit Tags tab 43

Enableln parameter 56
Function Block Diagram 56
ladder diagram 56
structured text 56

EnablelnFalse routine 54
create 54

EnableOut parameter 56

export 99,101

external access 32

G

General tab 14
generate

instruction signature 61
GSV 28

help
create 67
Helptab 21

import 102, 105
Import Configuration dialog box 105
instruction

size 25
toolbar 81

instruction signature
changing 23
copy 61

105

Index

definition 19 planning 34

generate 61 reorder 38

language switching 23 required 30

remove 61 visible 30

restricted actions 19, 23 Parameters tab 15

source protection 23 create a parameter 38

passing arguments 29
L performance 48
language switching planning 33

instruction signature 23 postscan routine 52

Last Edit Date 61 create 52

local tags prescan routine 50
create 41 create 50
external access 41 programming language
planning 34 choosing 24

Local Tags tab 16 planning 34
create tags 41 programming tips 88

logic 47 Project References tab 105
execution 48 Property Compare tab 105

M R
module reference parameter 10, 40, 85 reference hardware modules 10, 40, 85
remove

monitor
instruction signature 61

reorder parameters 38
required parameters 30

data values 93
parameter values 92
move

parameter 38 routine
EnableInfalse 54
N postscan 52
prescan 50
naming conventions 34, 37
nesting 25 S
data access 27
planning 34 safety
class 14
0 restrictions 23
tags 31
object classes 28 safety Add-On Instruction
P copy 96
import 102
parameter safety application instructions
alignment 44 restrictions 27
parameters safety instruction signature 19, 24
alias 29 copy 61
create 38 create 62
Enableln 56 delete 62
EnableQut 56 invalid 62
module reference parameter 10, 40, 85 view 62
monitor 92 safety task signature 23, 57, 96, 102
move 38 additional resources 9

106 Rockwell Automation Publication 1756-PM010L-EN-P - November 2023

Index

Scan Mode tab 18
scan modes 49, 54
planning 35
verify 59
Scan Modes tab 50
SFC Action 52
signature history 20, 61
Signature tab 19
SIL3 24
source protection
applying 60
enabling 61
instruction signature 23
options 60
planning 34
Quick View pane 95
SsvV 28
standard
class 14
tags 31
store your instructions 97

T

tags
create local tags 41
standard and safety 31
test 57
planning 35
track an Add-On Instruction 85
transitional instructions 24

unavailable instructions 27
update Add-On Instruction revision 105

v

visible
parameters 30

Rockwell Automation Publication 1756-PM0O10L-EN-P - November 2023 107

Rockwell Automation support

Use these resources to access support information.

Technical Support Center Find help with how-to videos, FAQs, chat, user forums, and product notification rok.auto/support
updates.

Knowledgebase Access Knowledgebase articles. rok.auto/knowledgebase

Local Technical Support Phone Numbers Locate the telephone number for your country. rok.auto/phonesupport

Literature Library Find installation instructions, manuals, brochures, and technical data publications. | rok.auto/literature

Product Compatibility and Download Center | Get help determining how products interact, check features and capabilities, and rok.auto/pede

(pcoc) find associated firmware.

Documentation feedback

Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form at
rok.auto/docfeedback.

Waste Electrical and Electronic Equipment (WEEE)

Note: At the end of life, this equipment should be collected separately from any unsorted municipal
waste.

Rockwell Automation maintains current environmental information on its website at rok.auto/pec.

Allen-Bradley, expanding human possibility, Logix, Rockwell Automation, and Ro ckwell Software are trademarks of Rockwell Automation, Inc.
EtherNet/IP is a trademark of ODVA, Inc.
Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomayson Ticaret A.S. Kar Plaza Is Merkezi E Blok Kat:6 34752, icerenkOy, istanbul, Tel: +90 (216) 5698400 EEE YOnetmeligine Uygundur

Connect with us. n m

rockwellautomation.com expanding human possibility”

AMERICAS: Rockwell Automation, 1201 South Second Street, Milwaukee, WI53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
EUROPE/MIDDLE EAST/AFRICA: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32)2 663 0600, Fax: (32) 2 663 0640
ASIA PACIFIC: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Rockwell Automation Publication 1756-PMO10L-EN-P - November 2023

Supersedes Publication 1756-PMOT0K-EN-P - September 2020 Copyright © 2023 Rockwell Automation Technologies, Inc. All Rights Reserved. Printed in the U.S.A.

http://rok.auto/support
http://rok.auto/knowledgebase
http://rok.auto/phonesupport
http://rok.auto/literature
http://rok.auto/pcdc
http://rok.auto/docfeedback
http://rok.auto/pec

	Logix 5000 Controllers Add On Instructions
	Important User Information
	Summary of changes
	Preface
	Studio 5000 environment
	Additional resources
	Legal notices

	Table of Contents
	1- Designing Add-On Instructions
	Introduction
	About Add-On Instructions
	Components of an Add-On Instruction
	General information
	Parameters
	Local tags
	Data Type
	Logic routine
	Optional Scan Modes routines
	Instruction signature
	Signature history
	Change History
	Help

	Considerations for Add-On Instructions
	Instruction functionality
	Encapsulation
	Safety Add-On Instructions
	Instruction signature
	Safety instruction signature
	Programming languages
	Transitional instructions
	Instruction size
	Runtime editing
	Nesting Add-On Instructions
	Routines versus Add-On Instructions
	Programmatic access to data
	Unavailable instructions within Add-On Instructions
	Use GSV and SSV instructions
	Considerations when creating parameters
	Passing arguments to parameters by reference or by value
	Selecting a data type for a parameter
	Creating an alias parameter for a local tag
	Using a single dimension array as an InOut parameter
	Determining which parameters to make visible or required
	Using standard and safety tags
	Data access control

	Planning your Add-On Instruction design
	Intended behavior
	Parameters
	Naming conventions
	Source protection
	Nesting - reuse instructions
	Local tags
	Programming languages
	Scan mode routines
	Test
	Help documentation

	2- Defining Add-On Instructions
	Create an Add-On Instruction
	Create a parameter
	Create a module reference parameter
	Create local tags
	Editing parameters and local tags
	Updates to arguments following parameter edits
	Copy parameter or local tag default values
	Creating logic for the Add-On instruction
	Execution considerations for Add-On Instructions
	Optimizing performance

	Defining operation in different scan modes
	Enabling scan modes
	Create a prescan routine
	Create a postscan routine
	Create an EnableInFalse routine

	Using the EnableIn and EnableOut parameters
	EnableIn parameter and ladder diagrams
	EnableIn parameter and function blocks
	EnableIn parameter and structured text

	Change the class of an Add-On Instruction
	Testing the Add-On Instruction
	Prepare to test an Add-On Instruction
	Test the flow
	Monitor logic with data context views
	Verifying individual scan modes

	Source protection for an Add-On Instruction
	Enable the source protection feature

	Generating an Add-On Instruction signature
	Generate, remove, or copy an instruction signature
	Create a signature history entry
	Generate a safety instruction signature
	View and print the instruction signature

	Create an alarm definition
	Access attributes from Add-On Instruction alarm sets

	Creating instruction help
	Write clear descriptions
	Document an Add-On Instruction
	Project documentation

	Motor starter instruction example
	Simulation instruction example
	Ladder diagram configuration
	Function block diagram configuration
	Structured text configuration

	3- Using Add-On Instructions
	Introduction
	Access Add-On Instructions
	Use the Add Ladder Element dialog box
	Including an Add-On Instruction in a routine
	Track an Add-On Instruction
	Reference a hardware module
	Tips for using an Add-On Instruction
	Programmatically access a parameter
	Using the Jog command in ladder diagram
	Use the Jog command in a function block diagram
	Using the Jog command in structured text

	Monitor the value of a parameter
	View logic and monitor with data context
	Determine if the Add-On Instruction is source protected
	Copy an Add-On Instruction
	Store Add-On Instructions

	4- Importing and Exporting Add-On Instructions
	Create an export file
	Export to separate files
	Export to a single file

	Importing an Add-On Instruction
	Import considerations
	Import configuration

	Update an Add-On Instruction to a newer revision through import

	Index

	Back cover

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.6

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /LeaveColorUnchanged

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams true

 /MaxSubsetPct 1

 /Optimize true

 /OPM 1

 /ParseDSCComments false

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Remove

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Average

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 2.00000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages false

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Average

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 2.00000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages false

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Average

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /NoConversion

 /DestinationProfileName ()

 /DestinationProfileSelector /NA

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure true

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /NA

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /LeaveUntagged

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

