ALLEN-BRADLEY

IMC 110 Motion Control System

Programming Reference Manual

.
.
A
. o

- Z
e

S

.

o

.

o

o
...

.

Important User Information

Because of the variety of uses for this product and because of the
differences between solid state products and electromechanical products,
those responsible for applying and using this product must satisfy
themselves as to the acceptability of each application and use of this
product. For more information, refer to publication SGI-1.1 (Safety
Guidelines For The Application, Installation and Maintenance of Solid
State Control).

The illustrations, charts, and layout examples shown in this manual are
intended solely to illustrate the text of this manual. Because of the many
variables and requirements associated with any particular installation,
Allen—Bradley Company cannot assume responsibility or liability for
actual use based upon the illustrative uses and applications.

No patent liability is assumed by Allen-Bradley Company with respect to
use of information, circuits, equipment or software described in this text.

Reproduction of the contents of this manual, in whole or in part, without
written permission of the Allen-Bradley Company is prohibited.

Throughout this manual we make notes to alert you to possible injury to
people or damage to equipment under specific circumstances.

WARNING: Tells readers where people may be hurt if
procedures are not followed properly.

economic loss can occur if procedures are not followed

Q CAUTION: Tells readers where machinery may be damaged or
properly.

Warnings and Cautions:
- Identify a possible trouble spot.
- Tell what causes the trouble.
- Give the result of improper action.
- Tell the reader how to avoid trouble.

Important: We recommend you frequently backup your application
programs on appropriate storage medium to avoid possible data loss.

© 1989 Allen-Bradley Company, Inc.
PLC is a registered trademark of Allen-Bradley Company, Inc.

Using This Manual

Overview of IMC 110
Programming

Syntax Directed Editor

Text Editor for MML

Table of Contents

Chapter 1

Chapter OVervViewottt it ittt 1-1
Manual Purpose and Audience oL, 1-1
Manual Contentscouiinintin et innanaeenns 1-2
UsingThisManual o i i it 1-4
Finding More Information o ... 1-6
Chapter 2

Chapter OVeIVIEW . ..ottt i i et e ei i 2-1
IMC 110 Offline Development System (Cat. No. 8100-HS110) . 2-1
MM e e 2-2
MML Syntax Directed EditorinODS 2-2
MML Text Editorin ODS i, 2-2
MML CompilerinODS i i 2-3
IMC 110 File Management ThroughODS 2-3
Discrete Communications with SLCs 2-3
Chapter 3

Chapter OVErVIEW ittt i e e e 3-1
Introductionto SDE i 3-2
Starting SDE e 3-6
Displaying SDE Revision Levelc..c..o.... 3-8
Getting General Help Aboutthe SDE 3-9
Creating or Openinga Program 3-10
Moving the Cursorc.oviiniiiiii i, 3-16
Inserting Statementso ittt i i 3-18
Error Checking i 3-31
Editing Functions i i e 3-34
Recoveringa BackupFile 3-51
Saving the Program ...ttt 3-52
Quitting the Editor i 3-55
Chapter 4

Chapter OVEIVIEWttt it i e et e e 4-1
Accessing the Text Editor 4-1

Table of Contents

MML Compiler

MML Upload/Download

IMC 110 File Management

Introduction To Motion
Management Language

Chapter 5

Chapter OVerviewttt ittt ei i, 5-1
Accessing the Compile Utility, 5-2
Selecting Formand Options coiiiiiiinan.. 5-4
Usingthe Compiler ittt 5-5
Reading the Program Listing 5-10
Displaying EImorso it i i e 5-12
Quitting the Compiler i, 5-12
Chapter 6

Chapter OVeIVIEWttt ittt ittt et it eeaaann 6-1
Connecting ODS and the Controller 6-1
Storing Programs on ODS and on the Controller 6-1
Downloading MML Programs to the Controller 6-2
Uploading an MML Program from the Controller 6-5
Chapter 7

Chapter OVeIvVIEWt i ittt e e 7-1
St Up oo e 7-
Displaying the Directory i, 7-3
Renaming aProgram i ... 7-4
CopyingaProgramcoiiuiiiiniininiannnnnnn. 7-5
DeletingaFile it 7-7
Deleting ALLFiles i i i e e 7-9
Exiting IMC 110 File Management 7-10
Chapter 8

Chapter OVEIVIEW ...ttt e e i e 8-1
Developing, Compiling and Running Programs 8-1
Formatofan MML Program o iiiat. 8-2
Permitted Charactersc.ciiniiiiinniinenennn 8-6
Statementsand Lines i, 8-7
Predefined Words it 8-8
System Variables i e 8-9
Routines i e e 8-11
Identifierst e 8-12
COomMmENtS ...t e e 8-13
% INCLUDE Statementottt 8-14
Program Execution Environment oL 8-16

Declaring Constants and
Variables

Programming Assignments
and Expressions

Altering and Controlling
Program Flow

Programming Routines

Programming Input and
Output Arrays

Table of Contents

Chapter 9
Chapter OVEIVIEWititt ittt ittt ittt 9-1
Declaring Constantsoeutineenetneneeneeneeennnnn 9-1
Declaring Variablescoiuiiiiiiiiiiiiiiinnn. 9-4
Boolean Data TyPe . .« o v vviie et i it 9-5
Integer Data Type iiit ittt i i 9-5
Real Data TyPe .o oottt ie e ettt et e et eeas 9-7
Position Data Typeo iiiii it i i 9-9
Array Data Type . . .o v e e 9-10
Uninitialized Variables — Teaching Values and Positions 9-12
Chapter 10
Chapter OVerviewottt 10-1
Assignment Statement i i e 10-1
CEXPIeSSIONS . oottt 10-2
Mixing Integer and Real Data Types 10-8
Rules for Evaluating Expressionson... 10-9
Chapter 11
Chapter OVEIVIEWottt ittt ittt iiannnn 11-1
IF Statement — Performing Alternative Statements 11-2
FOR Statement — Loop a Numberof Times 11-3
WHILE Statement — Loop While Conditionis True 11-6
REPEAT Statement — Loop While Conditionis False 11-7
GOTO Statement — Branch Without Conditions 11-9
Suspending or Ending Program Execution 11-11
Chapter 12
Chapter OVEIVIEW iiiti ittt 12-1
Declaring Routinesc.coiuiiiiiiiiniinennnnn. oo 1222
Calling Routines e 12-7
Using The RETURN Statementooiiiiiinn... 12-10
Scope of Declarations, e 12-13
Passing Arguments to Parameters 12-14
Built-In ROULNEScvtiitiii it 12-18
Chapter 13
Chapter OVEIVIEW ottt 13-1
I/O Arrays for User-Defined Signals e 13-2
FastI/O—FINand FOUT ity 13-2

Digital /O-DINand DOUT 13-3

Table of Contents

Programming Motion
Control

Programming Condition
Handlers and Fast Interrupt
Statements

IMC 110/SLC
~ Communications

Example MML and SLC
Application Programs

MML Language Quick
Reference

Templates Programmed by
the Syntax Directed Editor

v

Chapter 14

Chapter OVeIVIEWottt ittt i it e 14-1
Motion Control Capabilitiesccoviiiiininian.. 14-1
Types of Controlled AXiSc.viiiiiiii i, 14-1
Establishing A Reference Position — Homing the Axis 14-3
Motion/Velocity Profiles — Acceleration and Deceleration 14-5
Asynchronous Motion — MOVE Statements 14-6
Suspending or Ending Motion Execution 14-28
AxisMonitorModet e 14-36
Chapter 15

Chapter OVeIVIEWttt it i 15-1
What Are Condition Handlers? 15-1
Defining Global Condition Handlers 15-7
Defining Local Condition Handlers 15-11
Programming Conditions ittt 15-15
Programming AcCtionsc.cciiiiiiiiiiiiiien.. 15-20
Programming Fast Interrupt Statements 15-24
Chapter 16

Chapter OVEIVIEWttt it it i i 16-1
Output Data (SLCtoIMC 110) 16-1
Input Data (IMC 110to SLC) ittt 16-6
SLC Programming For The IMC 110 16-9
Chapter 17

Chapter Overviewttt 17-1
Example —Drill Operationo, 17-1
Appendix A

AppendiX OVEIVIEWttt ittt et et ee i A-1
Predefined Wordso i i A-2
OPeTatOTS . . ittt e e A-2
Language Symbols i A-2
Predefined Constantsot A-3
Alphabetical Listing of the MML Language A-4
Alphabetical Listing of System Variables. A-63

Appendix B

Table of Contents

Placeholders of the Syntax Appendix C
Directed Editor e e C-1

Error Messages Appendix D

...

Terse Messages for the SDE ~ Appendix E
Utility Appendix OVeIViEWttt e i E-1

Chapter Overview

Manual Purpose and Audience

Chapter

Using This Manual

This chapter introduces you to this manual. It provides the following
information:

= who we wrote this manual for

» what this manual contains

= how to use this manual effectively
» where to find more information

We wrote this manual for those who must perform the following tasks for
the IMC 110 motion control system:

* use Motion Management Language (MML) to program the sequences
of axis motion to be executed by the IMC 110 motion controller.

= programs SLC in which the IMC 110 is installed to communicate with
the IMC 110

Developing MML programs require use of the Allen—Bradley Offline
Development System (ODS).

We assume that if you are using this manual, you know or are familiar
with:

= the application in which you are using the IMC 110 motion control
system

= motion systems in general

= use of a personal computer with the MS-DOS or PC-DOS operating
system

1-1

Chapter 1

Using This Manual

Manual Contents

This manual contains two sections:

= using the MML utilities to develop, compile, upload/download MML
Programs—chapters 3 — 7

= MML programming, IMC 110 — SLC Communication reference, and
SLC programming for the IMC 110; — chapter 8 — 17

Before you read the sections using the MML utilities, you should read
ODS Users Manual, Publication MCD-5.1 to become familiar with
Offline Development Software.

Table 1.A gives a brief description of each chapter.

Table 1.A
What This Manual Contains
Chapter Title Contents
2 Overview of MML The process of programming the IMC 110 motion controlier
Programming
3 Syntax Directed Editor ~ Using the syntax directed editor to create and edit MML programs on ODS
4 Using a Text Editor Using a user—supplied text editor to create and edit MML programs
5 MML Compiler Compiling MML programs created with the syntax directed editor or a text editor
into code that can be downloaded to the IMC 110 motion controller.
6 MML Upload/Download Downloading compiled MML programs for ODS to the IMC 110 motion
controller, and uploading MML programs from the IMC 110 to ODS
7 IMC 110 File Using ODS to rename, copy, and delete MML programs stored on the IMC 110
Management motion controller
8 Introduction to MMI MML program development process, program format, and general language
conventions.
9 Declaring Constants Declaring constants and variables, uninitialized variables
and Variables
10 Programming Programming expressions and operators; operator priority
Expressions

Chapter 1

Using This Manual

Chapter Title Contents

11 Altering and Controlling Programming IF, FOR, WHILE, REPEAT, GOTO, ABORT, DELAY, PAUSE, and
Program Flow WAIT FOR statements

12 Programming Routines Declaring, calling, and returning from routines; scope of declarations;

parameters and arguments; built-in routines

13 Programming Input and ~ Arrays for user—defined signals, FINs and FOUTs, DiNs and DOUTSs
Output Arrays

14 Programming Motion Types of controlled axes; accel/decel; homing; move statements; motion system
Control variables; motion timing and termination types; suspending or ending motion;

axis monitor mode

15 Programming Condition ~ Global and local condition handlers; conditions and actions; fast interrupt
Handlers and Fast statements
Interrupt Statements

16 IMC 110/SLC I/O transfer to the SLC
Communications

17 Ladder Logic Ladder logic programming examples
Programming Examples

A MML Language Quick Predefined words, operators, and symbols; predefined constants; alphabetical
Reference listing of MML statements; system variables

B Templates of Syntax Quick reference for formating MML commands in Syntax Directed Editor
Directed Editor

C Placeholders in Syntax Quick reference for command placeholders in Syntax Directed Editor.
Directed Editor

D Error Messages and Numerical list of IMC 110 error messages, their causes, and recovery steps
Diagnostics

E MML Utility Terse Error Numerical list of MML utility terse error messages

Messages

1-3

Chapter 1

Using This Manual

Using This Manual

This manual is one of a series of manuals designed to help you install,
program, test and operate an IMC 110 motion control system. Figure 1.1
shows how this manual relates to the others in the series.

Figure 1.1
Where This Manual Fits In

Start

Termination Panel,

Wiring, and Tuning
Servos with

Installing
oDs

IMC-110 ODS
Software User's
Manual

Developihg ahd
Downloading
AMP Parameters

Developing SLC

Ladder Diagram
Program

IMC-110 AMP IMC-110
Reference Manual Programming
Manual
IMC-110

Testing MML and SLC Operator's

Ladder Diagram Manual

Programs with

Handheld Pendant

v 18307

End

Chapter 1

Using This Manual

WARNINGs, CAUTIONS, and Important Information

We use the labels WARNING, CAUTION, and Important to identify the
following kinds of information:

Warning: identifies information about practices or circumstances that
can lead to personal injury as well as damage to the control, your
machine, or other equipment

CAUTION: identifies information about practices or circumstances that
can lead to damage to the control, machine, or other equipment

Important: identifies information that is especially important for
successful application of the control

Terms and Conventions

In this manual, we use the following terms and conventions:

IMC 110 motion controller — the controller, or the IMC 110

<x> — the key on the computer keyboard marked x, where x is the letter
or key label

<ENTER> - the key on the computer keyboard marked ENTER or
RETURN. Some ENTER or RETURN keys may be marked with
arrows or other designations.

AMP — Adjustable Machine Parameters — parameters that specify axis
and controller characteristics

ODS - Offline Development System — application software that lets
you use certain personal computers to create AMP and MML files and

download them to the IMC110 motion controller

SDE - Syntax Directed Editor — an ODS utility for creating and editing
MML programs

MML - Motion Management Language for programming the motion
of the axis the IMC 110 motion controller controls

1-5

Chapter 1

Using This Manual

Finding More Information

1-6

For more information on the IMC 110 motion control system, please
contact your local Allen-Bradley sales office or distributor, or refer to

these related publications:

Catalog Publication
Number Title Number
IMC 110 Product Overview 1746-2.30
1746-HS IMC 110 Installation Manual 1746-ND001
1746-HHDOC IMC 110 Handheld Pendant Operator’s Manual 1746-ND002
8100-HS110 IMC 110 Programming Reference Manual 1746-ND004
IMC 110 AMP Reference Manual 1746-ND003
ODS Users Manual MCD-5.1
1746-HCDOC IMC110 Installation Manual 1746-ND001
IMC 110 Programming Reference Manual 1746-ND004
IMC 110 Handheld Pendant Operators Manual 1746-ND002
IMC110 AMP Reference Manual 1746-ND003
ODS Users Manual MCD-5.1
1746-HT IMC 110 Termination Panel Installation Data 1746-2.31

Chapter Overview

IMC 110 Offline Development
System (Cat. No. 8100-HS110)

Chapter

Overview of IMC 110 Programming

This manual aids in the performance of the following tasks:

= developing MML programs using ODS
= programming the SLC to communicate with the IMC

This chapter gives an overview of these tasks and how ODS helps you
perform them.

The Offline Development System (ODS, cat. no. 8100-HS110) lets you
use an IBM PC XT/AT or 100% compatible computer to create, edit, and
document Adjustable Machine Parameters (AMP) and Motion
Management Language (MML) files for the IMC 110 motion controller
module.

By connecting the computer to the RS—232/RS—485 converter that is
connected to the RS485 port of the IMC 110 motion controller module,
you can directly download AMP and MML files from ODS to the module.
It is also possible to upload AMP and MML files from the module to your
computer for further editing.

When development and debug of your AMP and MML files is complete,
you can back up a complete set of files for a motion controller to diskette,
which means you can restore a backed-up project for further use at a later
date.

The main features of ODS include:

« easy to use human interface with pull down menus for convenient
access to options

= context sensitive help system for information about the operation you
are performing at each step

= convenient file organization by project that lets you keep track of
dozens of files easily

2-1

Chapter 2

QOverview of IMC 110 Programming

MML

MML Syntax Directed Editor in
oDS

MML Text Editor in ODS

= available on 5-1/4 and 3-1/2 inch diskettes
= access to DOS partition during use of ODS

* file management feature lets you copy, rename, and delete one or all
MML files stored in memory on the IMC 110 module

Easy to learn and use, MML uses simple English— like statements to
command a full range of motions and actions. With MML you can easily
program axis motion and coordinate it with external events, do arithmetic
and logical operations on variables, program your own routmes and
functions, and much more.

You develop MML programs using ODS. ODS provides a syntax
directed editor that automatically programs statements with correct syntax
(statement elements in correct order). ODS can also call a user—supplied
text editor for use in developing MML source programs.

The syntax directed editor (SDE) lets you create and edit MML programs
for the IMC 110. But, because the SDE supplies the syntax for the
elements of the MML language, it is far more than a text editor. Using
the SDE make programming easier, and virtually guarantees a program
with correct syntax, one that will compile easily.

When you create a new program, the SDE automatically supplies the
keywords required for correct program format (PROGRAM, CONST,
VAR, BEGIN, END) and inserts placeholders for statements.

To insert statements in your program, select the type of statement you
want from a pull-down menu. SDE automatically inserts required
keywords for the selected statement and placeholders for values and
user—supplied data. You need only fill in the blanks.

ODS gives you the flexibility of using a text editor of your choice to
create and edit MML programs. When you configure ODS, you can
specify a text editor program that should be called when you select the
MML text editor utility. You can then create or edit MML programs
using that text editor. A text editor is particularly useful for editing
programs that have already been created.

MML Compiler in ODS

IMC 110 File Management
Through ODS

Communications between IMC
110 and SLCs

Chapter 2

Overview of IMC 110 Programming

After creating or editing an MML program, you compile it into executable
code and download it to the IMC 110 motion controller module. The
compiler lets you do this, and can also:

= check program syntax and display error messages at the error points in
the program

= add code to the program to facilitate creating break points for
debugging the program '

= include code from other files by using the %INCLUDE directive in the
compiled program

= create a program listing file that you can display on the computer or
output to a printer. The list file includes:

error messages generated during syntax checking (if any)

expanded error messages to help you understand and correct syntax
errors (optional)

possible break points for debugging (optional)

text of files called for by %INCLUDE directives

Through ODS you can rename, delete, and copy files stored in memory
on the IMC 110 motion controller module. With the module connected to
your computer, you can access a menu that gives you these selections, and
the option to delete all the files on the module. You can also display a
directory of all files stored on the module.

1/0 updates transfer critical real-time information. It lets the SLC
quickly tell any IMC 110 motion controller to stop, start, pause, or
perform other controlled operations. The IMC 110 uses I/O update to
keep the SLC constantly informed of its working status.

2-3

Chapter Overview

Chapter

Syntax Directed Editor

This chapter describes how to use the Syntax Directed Editor (SDE) to
create and edit MML source programs for the IMC-110 motion controller.

With the SDE, you can:

create MML source programs. A source program is one written in the
language described in chapters 8 — 17. The source program must be
compiled (chapter 5) before it can be downloaded (chapter 6) to the
IMC 110 motion controller and executed.

edit MML source programs that were created with the SDE

The SDE cannot:

edit MML source programs that were created using a text editor
(chapter 4)

create or edit include files

An include file is a group of MML statements stored in a separate file
and called for execution in an MML program by the %INCLUDE
directive. You must use a text editor to create or edit include files.

support programming variations

The SDE limits you to only one structure for each statement. For
example, you might use the SDE to program the following IF
statement:

IF DOUT[1] = ON THEN
MOVE TO posn_1
ENDIF

31

Chapter 3

Syntax Directed Editor

Introduction to SDE

32

This is the only form the statement can take when programmed with the
SDE. If you were using a text editor, you could program it the same
way, but could also program it other ways. For example:

IF DOUT[1] = ON
THEN
MOVE TO posn_1
ENDIF

In this example, THEN has been moved to the second line, and the
MOVE statement indented under THEN. Both IF statements are correct,
but neither of the changes made in the second example is allowed in the
SDE.

Who Should Use the SDE?

The SDE is particularly well suited to beginning programmers or those
who program infrequently. Being able to select statements from pull
down menus and be assured of correct syntax helps reduce programming
errors. More experienced programmers may find it faster and more
convenient to use a text editor and rely on their own knowledge of correct
syntax.

Important: Although the SDE relieves you of remembering MML
syntax, it does require some knowledge of MML programming. Online
help is available within the SDE to help answer questions that come up
while you are programming. If you need more information than the help
text provides, refer to chapters 8 through 17 of this manual.

The SDE provides a unique and helpful way to program MML statements.
Instead of typing in each statement word by word, as you would have to
do with a text editor, you select the statement you want to program from
one of several pull down menus. The SDE automatically programs the
MML predefined words of the statement you selected. You then type in
identifiers or other data needed to complete the statement. The SDE
provides special function keys to help you move the cursor easily and edit
your program as you would if you were using a text editor.

Chapter 3

Syntax Directed Editor

In addition, the SDE lets you:

= delete, cut, copy, and paste groups of statements
» search the program for a specified character string

= use a pull down menu to select constants, variables, functions,
procedures, labels, and conditions from lists maintained by the SDE

= check your program for errors as you program (You can enable or
disable this feature. The SDE always checks your program when you
open or save it.)

Templates and Placeholders

When you create a new MML program with the SDE, it automatically
programs (inserts at the cursor location) the following:

PROGRAM <name>
CONST v
<<statement>>
VAR
<<statement>>
—-- routine declarations
<<statement>>
BEGIN
<<statement>>
END <name>
—--routine declarations
<<statement>>

This is an example of a template. This particular template is for an entire
MML program. Other templates are for individual statements. Appendix
B lists the templates of the SDE.

The program template contains the different segments you can include in
a program (constant declarations, variable declarations, routine
declarations, executable segment, and more routine declarations). The
SDE has programmed these segments in the required order. Notice the
following elements of the template:

* PROGRAM, CONST, VAR, BEGIN, END - These are MML
predefined words. The SDE has programmed them automatically in
the correct order. The SDE programs predefined words in CAPITAL
LETTERS.

3-3

Chapter 3

Syntax Directed Editor

34

* <name> - This is an example of a placeholder. This placeholder
indicates the location at which you must program the name of the
program. To fill in the placeholder in the SDE, you move the SDE’s
cursor into the placeholder and type in the program name, then press
<ENTER>. There are many other placeholders the SDE programs in
various MML statements. All placeholders that appear in single angle
brackets — <placeholder> — indicate that you must type in some
program data (78 characters maximum). Appendix C lists the
placeholders the SDE can program.

* <<statement>> —This is another kind of placeholder. It holds the
place of one or more MML statements. Notice that there is a
<<statement>> placeholder in each program segment. Each of these
must be replaced with the kind of statement required in its program
segment.

To fill in a statement placeholder, you move the SDE’s cursor to the
placeholder, then select the kind of statement you want to program from
one of the available pull down menus. The SDE restricts the menus you
can pull down according to the location of the statement placeholder the
cursor is on. Menus that cannot be used are ghosted on the menu bar.

When you select a statement from a pull down menu, the SDE
automatically programs a template for that statement. For example, if you
move the cursor to the <<statement>> placeholder in the executable
segment of the program and select the IF statement from the F3-Control
menu, the SDE programs '

PROGRAM <name>

CONST

<<statement>>

VAR

<<statement>>

—-- routine declarations

<<statement>>

BEGIN
IF <boolean condition> THEN

<<statement>>

ENDIF

END <name>
—--routine declarations
<<statement>>

Chapter 3

Syntax Directed Editor

Notice that this template also contains predefined words (IF, THEN,
ENDIF) and placeholders(<boolean condition> and <<statement>>). To
replace the <boolean condition> placeholder, you must type in the
boolean condition the IF statement is to test. To replace the
<<statement>> placeholder, you must select from the pull down menus
the statements that are to be executed IF the boolean condition is true, just
as you did to program the original IF statement.

There are two placeholders that appear in double angle brackets
<<statement>> and <<action>>. Actions are similar to statements, but
are programmed only within condition handlers. Appendix C further
defines these two placeholders.

Both the <<statement>>> and <<action>> placeholders define a program
segment. A program segment includes all the statements programmed to
replace a <<statement>> placeholder or all the actions programmed to
replace an <<action>> placeholder. This concept becomes important
when you are performing editing functions (section entitled Editing
Functions).

Error Checking: Syntax and Semantics

The SDE has a built in error checking feature that checks your program
for syntax and semantic errors.

Syntax is the order in which predefined words, identifiers, and other
elements are programmed to form a statement. The SDE helps ensure
correct syntax by automatically programming predefined words and
placeholders in correct order when you select a statement from a pull
down menu.

Semantics refers to the meaning of the elements you program to form
statements (constants, variables, and other identifiers). When you
program with the SDE, you type in identifiers to take the place of
placeholders.

If you enable the error checking feature of the SDE, it checks your entries
for correct semantics as you program them.

The SDE always checks your program for errors when you save it to the
hard disk after editing, and when you open it for editing. In addition, the
SDE can check for errors as you program if you enable this feature.

35

Chapter 3

Syntax Directed Editor

Online Help

Like all ODS utilities, the SDE contains extensive online help. To get
help, just press <ALT — H>. The help feature is context sensitive -- the
help text displayed depends on the current state of the SDE and the task
being performed. For example, if you have pulled down the F3—Control
menu and have highlighted the If option, pressing <ALT — H> displays
help text about the IF statement.

Starting SDE Use the following procedure to start the SDE. We assume that the ODS
top level screen is displayed (see chapter 3 of ODS Users Manual,
MCD-5.1), and that the project for which you want to edit an MML
program is active (see chapter 5 of ODS Users Manual, MCD-5.1).

1. Check the status line to see if MML is the active application. If it is
not, pull down the F3— Application menu and select the MML

option.
/ \
Proj: PROJECT1 Appl: AMP Uti: none
Fi-File F2-Project ~F3-Application F4-Utility = F5-Configuration
N 4
2. Pull down the F4-Utility menu and select the MML Syntax Edit
option.
- N

Proj: PROJECT1 Appl: AMP i
Fi-File F2-Project F3-Application

Chapter 3

Syntax Directed Editor

3. ODS displays the SDE menu bar and a window with a flashing
cursor in the upper left comer. You can now use the F1-File menu
to:

find out about the version of SDE you are using (section entitled
Displaying SDE Revision Level)

get help on the SDE (section entitled Getting General Help About
the SDE)

create a new program (section Creating a New Program)

open an existing program (section entitled Opening an Existing
Program)

copy, rename, delete, or copy from another project MML files (see
chapter 6 of ODS Users Manual, MCD-5.1)

The F1-File menu also lets you save MML files you open for editing
(section entitled Saving the Program) and quit the editor (section entitled
Quitting the Editor).

/ Proj: IMC110 Appl: MML Util: MML Syntaxm
Fi-File F2-Edit F3-Control F4-Motion F5-Conditon = F6-Fastl/O F7-Action

F8-Define Fo-list F10-Errors

37

Chapter 3

Syntax Directed Editor

Displaying SDE Revision Level

You can use the About option of the F1-File menu to display some
information about the version of SDE you are using. Use the following
procedure. We assume that you have started the SDE as described above.

1. Pull down the F1-File menu and select the About option.

j: PROJECT1 Appl: MML Utl: MML Syntax Edit
| F3-Control F4-Motion ~F5-Condition ~ F6-Fastl/O F7-Action

\ _/

2. The SDE displays a screen of information. Press any key to clear the
information display.

Proj: IMC 110 Appl: MML Util: MML Syntax Edit
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condition F6-Fastl/O F7-Action
F8-Define F9-list F190-Errors

MML Syntax Directed Editor

Copyright 1989 Allen-Bradley Company, Inc
Revision 02.00

Press any key to continue...

Chapter 3

Syntax Directed Editor

Getting General Help Aboutthe The Help option of the F1-File menu lets you display general help about

SDE the SDE at any time.. Once you have opened a program to edit, you must
use this menu option to display the general SDE help text. When a '
program is not opened, you can display this help text by pressing <ALT —
H>.

Use the following procedure to display general SDE help. We assume
that you have started the SDE as described in section titled Starting SDE.

1. Pull down the F1-File menu and select the Help option.

_Proj: PROJECTH Appl: MML Util: MML Syntax Edit
F2-Edit F3-Control F4-Motion F5-Condition Fe-Fast /O F7-Action

Chapter 3

Syntax Directed Editor

2. The SDE displays help text that provides general information about
the SDE. Use the <PG-DN> and <PG-UP> keys to display the help
pages. Press the <ESC> key to clear the help from the screen.

/ Proj: IMC110 Appl: MML Util: MML Syntax Edit \
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condition]

Help selections
F8-Define F-9-List F-10-Errors

Previous Page <PgUp>

Help on: Help Page 10f 1
FUNCTION
This option displays oniine hlep text that covers the following topics:
~ Cursor movement and editing keys ~ Templates and placeholders
~ Function on SDE - Inserting statements
~ Limitations of SDE - Filling in placeholders
- Pull down menus - Error checking

K—Programming statements ~ Online help for the SDE /

Creating or Opening a Program Before you can edit a program, you must first either create a new MML
program oOr open an existing program for editing. The following sections
describe these operations.

Creating a New Program

Use the following procedure to create a new program and open it for
editing. We assume that you have started the SDE and that the SDE menu
bar is displayed.

3-10

Chapter 3

Syntax Directed Editor

1. Pull down the F1-File menu and select the New... option.
Proj: IMC110 Appl: MML Util: MML Syntax Edit \
_IFo-Edit F3-Control F4-Motion F5-Condition F&-Fast O F7-Action

The SDE displays the message Create New Program... and a
directory of existing MML programs for the active project that were
created with the SDE. The SDE asks for the name you want the new
program to be stored under in ODS. Type in the name you want to
store the program under, then press <KENTER>. You must enter a
name that does not already exist in the directory or that has been
assigned to a source file created with a text editor.

/

Proj: IMC110 Appl: MML Util: MML Syntax Edit
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condiion Fé-Fast VO F7-Action

F8-Define F9-List E9-List F10-Error

" Enter name: |] | l Create New Program |

[Type in name. Press ENTER when done, or ESC to cancel J

PROG_1

PROG 2 SAMPLE

&

3-11

Chapter 3

Syntax Directed Editor

Important: Although source files created with a text editor are not
displayed in the directory, you must not type in a name already assigned
to such a file. If you do, the SDE will display an error message and
request another name.

3. The SDE creates a new program, opens it for editing, and programs
the template for a new MML program. This template appears on the
screen.

Proj: PROJECT 1 Appl: MML Util: MML Syntax Edit
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condition Fé-Fast /O F7-Action
F8-Define F9-List F10-Emors

PROGRAM <name>
CONST
<<statement>>
VAR

<<statement>>

- routine declarations
<< statements >>
EGIN
<<statement>>
END <name>
- routine declarations
<< statements >>

S =/

The cursor is located in the <name placeholder at the top of the program.
Type in the name you want to give the program, then press <ENTER>.
The name you enter does not have to be the same as the one you entered
in step 2, but we recommend that you use the same name to help avoid
confusion.

3-12

Chapter 3

Syntax Directed Editor

The SDE inserts the name you type in at both the beginning and END of
the program. You have to type in the name only once (at either location)
and the SDE automatically inserts it at the other location. The cursor
moves to the <<statement>> placeholder under CONST. You are now
ready to insert statements and edit the program.

/ Proj: PROJECT 1 Appl: MML Util: MML Syntax Edit
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condiion F6-Fast /O F7-Action
F8-Define Fo-list F10-Errors

PROGRAM program3
CONST

<<statement>>
VAR

<<statement>>

- routine declarations
<< statements >>
BEGIN

<<statement>>
END program3
- routine declarations
<< statements >>

NS —/

313~

Chapter 3

Syntax Directed Editor

314

Opening an Existing Program

Use the following procedure to open an existing MML program for
editing. We assume that you have accessed the SDE as described above
(section titled Starting SDE) and that the SDE menu bar is displayed.

1. Pull down the F1-File menu and select the Open... option.

Proj: IMC110
=

Appl: MML

Util: MML Syntax Edit

F2-Edit F3-Control F4-Motion F5-Condition F6-Fast /O F7-Action

\

2. ODS displays the message Open Existing Program... and a
directory of existing MML programs for the active project that were
created with the SDE. Select the program you want to edit.

Proj: IMC110
Fi1-Flle F2-Edit F3-Control

F8-Define F9-List F10-Ermors

Appl: MML

F4-Motion F5-Condition

Util: MML Syntax Edit
F6-Fast 110 F7-Action

\

[Open Existing Program...

]

Use ARROW keys or type in name. Press ENTER when done, or ESC to cancel. ’

PROGRAM3

PROG_1

PROG_2

SAMPLE

Chapter 3

Syntax Directed Editor

3. ODS opens the selected program for editing and checks the program
for syntax and semantic errors. While it is performing the error
check, the SDE displays the message:

Performing error check

If the SDE finds no errors in the program, it displays the following
message:

No errors and no empty placeholders found in check.

If the SDE finds errors in the program, it displays the following
message, where X is the number of errors:

X Errors (s) were found in check

To continue with editing in either case, press any key.

315

Chapter 3

Syntax Directed Editor

The SDE displays the first 20 lines of the program. Here is an example
screen.

roj: PROJECT1 “Appl MML Util; MML Syntax Edit
Fi1-Flle F2-Edit F3-Control F4-Motion F5-Conditon F6-Fast VO F7-Action
F8-Define Fo-list F10-Errors

PROGRAM sample_1
CONST
c =15

b1,b2, b3 : boolean

ij,k : integer

p0, p1,p2 : position
- routine declarations
<< statements >>

BEGIN
-VARIABLE INITIALIZATION SECTION
$SPEED =300

B1=5

PO =POS (0)

-~ MAIN PROGRAM
FORI=113 DO

el

Na =/

Moving the Cursor The SDE cursor appears in the SDE window. The location of the cursor
in the program being edited determines what pull down menus are
available and what editing operations you can perform.

You can move the cursor both from statement to statement or within the
text that replaces a single angle bracket placeholder. When the cursor is
within the text of a placeholder, some of the cursor movement keys have
different functions than when the cursor is not in a placeholder. (When
the cursor is in a placeholder, the SDE highlights the placeholder.)

Table 3.A shows the keys you can use to move the cursor among
statements and within placeholders. The keys listed correspond to those
on the IBM PC XT or AT.

3-16

Chapter 3

Syntax Directed Editor

Table 3.A
Keys for Cursor Movement

Cursor

Location Keys Function

AtaStatement <> To the next statement in the

Location ! <|> indicated direction
<CNTL - Forward into the next placeholder
_—
<CNTL- Reverse into the previous
—_ placeholder
<PG UP> To the previous screen
<PG DN> To the next screen
<HOME> To the beginnings of the program
<END> To the end of the program
<—> Into the first placeholder of the

statement, if any

In a single <—> To the next character to the right

bracket in the placeholder

placeholder?
<> To the next character to the left in

the placeholder

<CNTL- Forward into the next placeholder
_—D

<PG UP> To the previous word

<PG DN> To the next word

<HOME> To the beginning of the
placeholder

<END> To the end of the placeholder

<ENTER> To the next placeholder to the
right, if any

317

Chapter 3

Syntax Directed Editor

Inserting Statements

3-18

Cursor
Location Keys Function
<|> Out of the placeholder to the next
<|> statement in the indicated
direction
NOTES:

1. The cursor is at a statement location when it is on a <<statement>>
or <<action>> placeholder, on a predefined word, or in a blank line
between statements.

2. Single bracket placeholders are all placeholders except the
<<statement>> and <<action>> placeholders (appendix C.)

You can insert a statement in the MML program you are editing when the
cursor is on a <<statement>> placeholder, a predefined word, or in a
blank line between statements.

In all cases the procedure for inserting a statement is the same:
1. Select a statement from the available pull down menus.
2. Fill in the placeholders.

The menus available for selecting statements vary depending on cursor
location. The following sections describe the pull down menus from
which statements can be selected, when they are available, and what
statements can be selected from them. For detailed information about the
various MML statements, refer to chapters 8 — 17.

Optional Parts

Some of the pull down menus have options that are indented (for
example, the Else option in the F3— Control menu). This indicates that
the menu item is an optional part of a statement and cannot be
programmed unless the statement of which it is a part is programmed.

For example, the Else option on the F3—Control menu, which is indented
under the If option, is not available unless the cursor is on an IF statement
and that IF statement does not already contain an ELSE. The SDE keeps
these optional parts ghosted in the menus unless the cursor is on the
statement in which they can be programmed.

Chapter 3

Syntax Directed Editor

F3-Control Menu

Function

The F3—Control menu lets you program statements that govern the flow
of program execution. Note that the Else option is indented under the If
option to indicate that it is an optional part that can be selected only when
the cursor is on an IF statement that does not already contain an ELSE.

In addition, this menu lets you program comments, assignment
statements, and routine calls in the executable segment of your program.

For more information about the individual menu options, refer to chapters
8 — 17 or consult online help.

Availability
The F3—Control menu is available when the cursor is in the executable

segment of a program or routine (between BEGIN and END) and:

* on a <<statement>> placeholder
* on a predefined word
* in a blank line between statements.

/

F8-Define F9-Lis b

Appl: MML Util: MML Syntax Edit
F4-Motion F5-Condition F6-Fast /O F7-Action

Proj: PROJECT1
Fi-Flle F2-Edit

\

PROGRAM program3

CONST
<<stateme!
VAR
<<statement
- routine dec
<<statement>>
BEGIN
<<statement>>

END program3
- routine declarations

<<statement>>

3-19

Chapter 3

Syntax Directed Editor

3-20

F4—-Moticn Menu

Function

The F4—Motion menu lets you program MOVE TO, MOVE BY, and
MOVE AT SPEED statements. The items indented under Move To,
Move At Speed, and Move By are local conditions that become available
when the cursor is on one of the MOVE statements. Note that the SDE
inserts the local conditions under the MOVE statement, except for the
With option, which it inserts before the MOVE statement.

The F4—Motion menu also lets you program statements that control
motion execution (CANCEL, STOP, RESUME, HOLD, UNHOLD).

Availability

The F4—Motion menu is available when the cursor is in the executable
segment of a program or routine (between BEGIN and END) and:

* on a <<statement>> placeholder
= on a predefined word
= in a blank line between statements.

m: IMC110 Appl: MML Util: MML Syntax Edit \
F5—Condition F6-Fast I/O F7-Action

F1-Flle F2-Edit F3-Control
F8-Define F9-List F10-Errol

P%%ﬁ@%M program3

<<sStatement>>

<<statement>>
- routine declarations
<<statement>>
BEGIN
<<statement>>

ENDprogram3
-- routine declarations
<<statement>>

= —— =

Chapter 3

Syntax Directed Editor

F5-Condition Menu

Function

The F5-Condition menu lets you program global condition handlers
(Condition and When options) and statements that enable and disable
them (Enable, Disable, and Purge options). The When option is available
only when the cursor is on a condition handler, and lets you add WHEN
clauses.

Availability

The F5-Condition menu is available when the cursor is in the executable
segment of a program or routine (between BEGIN and END) and:

* 0n a <<statement>> placeholder
= on a predefined word
= in a blank line between statements.

ﬁoj: PROJECT? Appl: MML

Fi-Flle F2-Edit F3-Control F4-Motion
F8-Define F9-List F10-Error

‘ PROGRAM program3

CONST

VAR«statement»

<<statement>>
-- routine declaration
<<statement>>
BEGIN

Util: MML Syntax Edit
F6-Fast I/ F7-Action

<<statement>>

END program3
-- routine declaration
<<statement>>

\Z ~/

3-21

Chapter 3

Syntax Directed Editor

F6-Fast I/O Menu
Function
The F6-Fast I/O menu lets you program fast interrupt statements (When

FIN and When FOUT options), and statements to enable and disable them
(Enable and Disable options).

Availability
The F6-Fast I/O menu is available when the cursor is in the executable

segment of a program or routine (between BEGIN and END) and:

* on a <<statement>> placeholder
» on a predefined word
* in a blank line between statements.

Proj: IMC110 Appl: MML

Fi-Flle F2-Edit F3-Control F4-Motion F5-Condition | }
F8-Define Fo-list F10-Error 5
PROGRAM program3

CONST

VAR <<statement>>

<<statement>>
— routine declarations
<<statement>>
BEGIN
<<statement>>
END program3
— routine declarations
<<statement>>

\Z

Chapter 3

Syntax Directed Editor

F7-Action Menu

Function

The F7—-Action menu lets you program actions within condition handlers
(global or local). Many of the options duplicate options that are available
in other menus. However, the F7—Action menu is the only source of these
statements when the cursor is in a condition handler. The other menus are
not available to program actions. An additional menu must be accessed to
enable and disable Fast I/O events.

ﬂoj: IMC110 Appl: MML Util: MML Syntax Edit \
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condiion F6-FastlO E
F8-Define F9-list F10-Error

PROGRAM program3

CONST alement>
VAR <<Statement>>

<<statement>>
- routine declarations
<<statement>>
BEGIN
CONDITION [<integer expr> :
WHEN <global condition> DO
<<action>>

ENDCONDITION

END program3

- routine declarations
<<statement>>

3-23

Chapter 3

Syntax Directed Editor

To insert an enable or disable Fast I/O:
1. Select Fast /O option.
2. SDE displays the enable and disable FIN and FOUT events.

ﬁj IMC110 Appl: MML Util: MML Syntax Edit \
Fi-Flle F2-Edit F3-Control _F4-Motion F5-Condiion F6-Fastl/O F7-Action
F8-Define F9-List F10-Error
PROGRAM program3
CONST atements
VAR <Statement>>
<<statements>s Enable FIN + E
— routine declarations S{;ﬂfe?m: i
<<statement>> Disable FIN - }
BEGIN Enable FOUT + h)
CONDITION | <integer expr> J: E&?ﬂ% f;%lgﬂ 8
WHEN <global condition> DO Disable FOUT -
<<action>>
ENDCONDITION
END program3
| —routine declarations
\«statemem» j
Availability

The F7—-Action menu is available when the cursor is in the executable
segment of a program or routine (between BEGIN and END) and:

* on an <<action>> placeholder
* on a predefined word in an action in a global or local condition handler
* in a blank line after an action in a global or local condition handler

F8-Define Menu

Function

The F8-Define menu lets you program:

= constant declarations (availablé only in the CONST segment of the
program or routine)

» variable declarations (available only in the VAR segment of the
program or routine)

» routine declarations (available only within the routine declaration
segment of the program)

3-24

Chapter 3

Syntax Directed Editor

= parameters and return type for routines (available only in the routine
declaration segment of the program when the cursor is on the
predefined word ROUTINE)

= comments

= the %INCLUDE directive

ﬁroj: PROJECT1 Appl: MML Utl: MML Syntax Edit \
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condition F6-Fasti/O F7-Action

| Fo-List F10-Error

ons

gerexpr>]:
WHEN <global condition> DO
<<action>>

ENDCONDITON

END program3
— routine declarations
<<statement>>

\C —/

Availability

The F8-Define menu is available when the cursor is within the CONST,
VAR, or routine declaration segment of a program.

Filling In Placeholders
Once you’ve inserted a statement template in the program, you must fill
in the placeholders of the statement (if any) to complete the statement.

Use the following procedure to fill in the placeholders in a statement:

1. Use the right arrow key to move the cursor into the placeholder you
want to fill in. (When you select a statement from a pull down
menu, the SDE automatically moves the cursor into the first
placeholder of the statement.) :

3-25

Chapter 3

Syntax Directed Editor

2. The placeholder the cursor is in becomes highlighted. Either type in
your entry for the placeholder or select an entry from the F9—List
pulldown menu, if available (described below).

3. Press <ENTER> to move the cursor into the next placeholder. If
there are no other placeholders in the statement, the cursor moves to
the next statement location.

4. If error checking is enabled (section titled Error Checking), the SDE
checks the value you entered for syntax and semantic errors. If it
detects an error, it displays an error message in a window on the
screen. If you wish, you can edit the statement now to correct the
error. Or you can leave the error uncorrected for the time being and
return Jater to correct it. If you leave the error, the SDE highlights
the placeholder (red on a color monitor) to indicate that it contains an
€ITor.

You can move the cursor out of a placeholder without typing in a value
for it. If you do this, the SDE highlights the placeholder (green on a color
monitor) to indicate that you must program a value for it.

3-26

Chapter 3

Syntax Directed Editor

Using the F9-List Menu

When the cursor is in a placeholder that requires a user—defined or
predefined constant or variable identifier, a function or procedure name, a
label identifier, or a condition identifier, the F9— List menu becomes
available. This pulldown menu lets you insert these identifiers and names
into the program by selecting them from lists that are maintained by the
SDE. Here’s how to use the feature:

1. When the cursor is in a placeholder and the F9— List menu is
available, pull it down and select one of the available lists from the
menu Table 3.B). The SDE controls the availability of the lists
according to the type of placeholder the cursor is in.

/ Proj: PROJECTH Appl: MML Util: MML Syntax Edit \
Fi-Flle Fo-Edit F3-Control F4-Motion F5-Condiion Fé-FastlO F7-Action

=/

2. The SDE displays a box on the screen that lists the available
identifiers. Lists that cannot fit on one screen are presented in pages.
To see the next page, press<PG DN>.To see the previous page,
press<PG UP>. To cancel the list box, press <ESC>. Select the item
you want from the list.

3-27

Chapter 3

Syntax Directed Editor

3-28

For example, here is the first page of the system variables list:

\

Proj: IMC110 Appl: MML Util: MML Syntax Edit
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condiion F6-Fastl/O F7-Action
F8-Define F9-List F10-Error
PROGRAM progron}

CONSTP System Variables
A§<stateme
$ACCDEC WRITE
<<.S'atgmf $ALT_HOME READ ESS.LT.ON é;
— routine dec $AT POSN_TOL WRITE AL C
Eéﬁtatemenw $CURPROGM READ INTEGER D
$DISABLE_OVR WRITE BOOLEAN E
$CURPROGM | $DISABLE PLC WRITE BOOLEAN F
CONDITION[| $DRY RUN READ BOOLEAN G)
WHEN <glo| $ERROR READ INTEGER H)
ENDCONDITION| $ESTOP READ BOLEAN |
$GAIN READ REAL J)
END program# Previous P PgU
— routine decl revious Page <rgup>
Next Page PgDn
<cstatement>> | Next Fag ESCy

N

=/

3. The SDE inserts the item you selected at the current cursor location.
You can now edit the placeholder, treating the text inserted from the
list as you would any text you typed in.

Chapter 3

Syntax Directed Editor

Table 3.B
Selections of the F9-List Menu
List Contents Information Provided
User Constants declared in the Name
Constants CONST segment of the Scope (global or local)
program or routine Type (integer, rea!, or boolean)
Predefined Constants predefinedin MML ~ Name
Constants (Refer to chapter 9) Type (integer, real, or boolean)
User Variables declared in the VAR Name
Variables segment of the program or Scope (global or local)
routine ' Type (integer, real, boolean, or position
Array Size (if applicable)
System Variables predefinedin MML ~ Name
Variables (Refer to chapter 8) Access (read only or read/write)
Type (integer, real, boolean, or position)
Array Size (if applicable)
User User defined functions Name
Functions declared in the program Return type (integer, real, boolean, or position)
Number of Parameters
Built-in Functions predefined and Name
Functions included in MML Return type (integer, real, boolean, or position)
Number of Parameters
User User defined procedures Name
Procedures declared in the program Number of Parameters
Built-in Procedures predefined and Name
Procedures included in MML Number of Parameters
Labels Label identifiers already Name
programmed
Conditions Predefined Conditions Name
(defined in MML)
Port IDs Available /0 ports Name
Access (read only or read/write)
Type (boolean)

3-29

Chapter 3

Syntax Directed Editor

3-30

Automatic Variable and Constant Declaration

If error checking during programming is on (section entitled Error
Checking) and you fill in a placeholder in the executable segment of a
program with an identifier that has not been declared in the CONST or
VAR segment, the SDE displays an error message. When you press a key
to clear the error message, the SDE displays the following box, where
IDENTIFIER is the undeclared identifier you typed in:

IDENTIFIER is Undeclared

Declare as Variable (V
Declare as Constant (C)

Cancel <ESC>

Select one of the options provided. You can declare the identifier either
as a variable or as a constant (chapter 9).

= If you select Declare as Variable, the SDE displays:

Select Variable Type

INTEGER (
REAL (
POSITION. (
(
(
(

~

BOOLEAN
INTEGER ARRAY
REAL ARRAY

BOOLEAN ARRAY (0)

Cancel <ESC>

R
P
B
N
L

S — o~

Select one of the variable types. If you select an array type, the SDE
will ask you to specify the size of the array. Type in the number of
elements in the array (from 1 to 255) and press <ENTER>. The SDE
automatically inserts a variable declaration statement in the VAR
segment of the program or routine the identifier is in.

Error Checking

Chapter 3

Syntax Directed Editor

= If you select Declare as Constant, the SDE displays the following:

Enter Constant Value
(<ESC> to CANCEL)

Type in the value you want to assign to the identifier and press
<ENTER>. The SDE automatically inserts a constant declaration
statement in the CONST segment of the program or routine the
identifier is in.

The F10-Errors menu lets you:

* turn error checking during programming on or off
» initiate an error check of the program being edited

In addition to the error checking options provided by the F10—Errors
menu, the SDE checks for errors each time you open or save a program.
This error check is always enabled, and is not affected by any F10-Errors
menu options.

Important: Note that the error checking feature of the SDE checks your
programs only for compile errors. It does not check for run time errors.

Error Checking During Programming

When error checking during programming is on, the SDE checks the
program for errors each time you program a statement or placeholder.
You will see one of three responses each time you program a placeholder:

= If the SDE displays a specific error message, the placeholder you just
programmed contains the error.

= If you see a message that shows the number of errors found in the error
check, there are errors elsewhere in the program. These errors may
have been caused by the placeholder you just programmed.

= If you see no error message, no errors were detected in the placeholder
you just programmed.

3-31

Chapter 3

Syntax Directed Editor

Here is an example error message display:

Proj: PROJECT1 Appl: MML Util: MML Syntax Edit
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condion Fe-Fastl/O F7-Action

F8-Define F9-List F10-Ermor

|
PROGRAM 1program3
CONS

|
: <<stateme| IMC~110 semantic error at or near “‘DRILL_AN".
drill o| !d mustbe declared before use or has been

home, s| improperly declared.

- routine de
<<statement>>

BEGIN
- nibble executable section
dril _an=on
drill off = off
WHENFIN{ 1] + DO
HOLD

ENDWHEN

END program3 :
\ - routine declarations Press any key to continue ... T j

When you see an error message display, you can:

= correct the error by editing the placeholder

* choose to leave the error uncorrected by moving the cursor out of the
placeholder

If you choose to leave the error uncorrected, the SDE highlights the
placeholder that contains the error (red on a color monitor). This lets you
easily identify placeholders that contain errors when you are editing the
program.

If you leave a placeholder empty (you programmed no value for it), error
checking may be incomplete. For example, if you program the following
statement, and P1 is undefined or declared as a REAL data type instead of
the required POSITION, then the SDE will not detect the error in P1
because the <constraints> placeholder is not filled in.

WITH <constraints>
MOVE TO P1

3-32

Chapter 3

Syntax Directed Editor

When error checking during programming is off, the SDE does not check
for errors as you program each statement or placeholder. Consequently,
no error messages are displayed, even if a statement or placeholder does
contain an error. The advantage in turning error checking off is that the
SDE may run somewhat faster since it isn’t asked to make error checks as
each statement is programmed. The program will be checked for errors
when it is saved, or when you request an error check from the F10-Errors
menu.

To turn error checking on or off, pull down the F10- Errors menu and
select Error checking ON or Error checking OFF. A check mark appears
next to the current selection on the menu.

Proj: PROJECT1 Appl: MML Util: MML Syntax Edit
Fi-Flle F2-Edit 4-Motion F5-Condition ~ F6-Fastl/O F7-Action

F8-Define F9-List

PROGRAM 1programS
CONS
<<statement>>
AR
<<statement>

-- routine declarations
<<statement>>

BEGIN
CONDITION [integer expr>]:
WHEN <global condition> DO
<<action>>
ENDCONDITION

END program3

- routine declarations
<<statement>>

3-33

Chapter 3

Syntax Directed Editor

Editing Functions

3-34

Starting an Erfor Check

The F10-Errors menu lets you start an error check at any time during
editing. To start an error check, pull down the F10-Errors menu and
select the Error check option. The SDE checks the entire program for
errors. If it detects any errors, the SDE displays the number of errors
found and marks the error locations in (red on a color monitor). For

example:

Proj: PROJECT1 Appl: MML Util: MML Syntax Edit
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condition F6-Fastl/O F7-Action
F8-Define F3-List F10-Emor

PROGRAM program3
CONST
VAaétatemEl 3 Error(s) were found in check
drll_o
home, start,_pos, end_pos : position .
-- routine declarations
<<statement>>
BEGIN
- ,nibble executable section
dril _an=on
drill_off = off

WHENFIN[1] +DO
HOLD

dout pcb_drilj=drill_off
ENDWHEN

K END program3 [Press any key to continue ... J j

In addition to inserting statements in a program, you can use the F2-Edit
menu to perform several editing functions:

= deleting statements, actions, and placeholders—section title Deleting
Statements, Actions, and Placeholders

= cutting, copying, and pasting statements and actions—section titled
Cutting, Copying, and Pasting

= searching for a character string—section titled Searching for a
Character String

= replacing a character string—section titled Replacing a Character
String

» undoing a statement that you deleted, cut, or pasted—section titled
Undoing Statements, Actions, and Placeholders

Chapter 3

Syntax Directed Editor

Deleting Statements, Actions, and Placeholders

Important: Once you delete a statement, action, or placeholder, you can
recover it by using an undo command (see section entitled Undoing
Statements, Actions, and Placeholders).

To delete an entire statement or action:
1. Move the cursor to the statement or action location (Table 3.A)

2. Pull down the F2-Edit menu and select the Delete option.

/ Proj: PROJECT! Appl: MML Util: MML Syntax Edit
: F4-Motion F5—Condition F6—Fastl/O F7-Action

ENDIF
WHEN FIN[1] +DO
HOLD

K dout[peb_drillj=drill_off /

ODS deletes the selected statement or action. If the deleted statement or
action was the only statement in a segment (CONS, VAR, or BEGIN -
END) the SDE inserts a <<statement>> or <<action>> placeholder in
place of the statement or action.

3-35

Chapter 3

Syntax Directed Editor

Important: The SDE deletes the entire statement or action, including any
statements that are part of it. For example, if you move the cursor to the
IF in the following example, then select Delete from the F2-Edit menu,
the SDE will delete everything from IF through ENDIF, including all
statements under THEN and ELSE. If you move the cursor to ELSE

before selecting the Delete option, the SDE deletes only the ELSE and
the statements under it.

/ F1 _PI_E gelete in F3-Cont] Select statements using up and down arrows. \
Fg-p| "Togress t F10-E| Press <ENTER> when selected, or <ESC> to cancel.
PROGRAM program3 PROGRAM program3
CONST CONST
<<statement>> <<statement>>
VAR] VAR
drill_off, drill_on : boolean N drill_off, drili_on : boolean
home, start_pos, end_pos : position home, start_pos, end_pos : position
- routine declarations - routine declarations
<<statement>> <<statement>>
BEGIN BEGIN
- nibble executable section - nibble executable section
drill_an=on drill_an = on
drill_off = off drill”off = off
WHENFIN[1]+ DO
HOLD
dout [pcb_drillj=drill_off
R ENDWHEN
WHENFIN[1] +DO
HOLD END program3

k dout [pcb_drillj=dill_off /

To delete a placeholder, use the following procedure:

1. Move the cursor into the placeholder. (Use the right arrow key and
<CNTL - right arrow> and <CNTL - left arrow>.) The placeholder
is highlighted when the cursor is in it.

3-36

Chapter 3

Syntax Directed Editor

2. Pull down the F2-Edit menu and select the Delete option.

Proj: PROJECT1

Appl: MML
F4-Motion

Util: MML Syntax Edit
F6-Fast /0 F7-Action

\

F5-Condition

ean
position

dout{peb_drill}
ENDWHEN
&END program3 /

The SDE deletes the placeholder value that was in the placeholder and
replaces it with the template for the placeholder (name in angle brackets).
Here is an example:

/ Fi 5; Deletein
Fe-D Progress t

F3-Cont| Select statements using up and down arrows.
F10-E| Press <ENTER> when selected, or <ESC> to cancel.
PROGRAM program3 PROGRAM program3
CONST CONST
<<statement>> <<statement>>

AR
drill_off, drill_on : boolean
home, start_pos, end_pos : position
- routine declarations
<<statement>>
BEGIN
-- nibble executable section
drill_an =on
drill_off = off
WHENFIN[1]+DO

ENDWHEN

VAR
drill_off, drill_on : boolean)
home, start_pos, end_pos : position

- routine declarations
<<statement>>
BEGIN
-- nibble executabie section
drill_an = on
drill_off = off
WHENFIN[1]+ DO
HOLD

ENDWHEN

END program3
-- routine declzarations

\ END program3

=/

337

Chapter 3

Syntax Directed Editor

3-38

Cutting, Copying, and Pasting
Cutting and Copying

You can cut statements or actions from one program segment and paste
them in similar segments. You can also copy statements or actions from a
segment of a program (without removing it from its current location) and
paste it in other locations.

For purposes of editing, a program segment comprises the statements or
actions that replace a <<statement>> or <<action>> placeholder. For
example, the original program template has five segments:

* the <<statement>> placeholder under CONST

= the <<statement>> placeholder under VAR

= the <<statement>> placeholder under routine declarations
= the <<statement>> placeholder between BEGIN and END
= the <<statement>> under more routine declarations.

Some statements also contain other segments. For example, the IF
statement contains a <<statement>> placeholder that defines a program
segment. Similarly, the ELSE optional part contains a <<statement>>
placeholder that defines a program segment.

Important: You can cut or copy statements from only one segment at a
time. And you can paste statements cut or copied from a segment only in
a similar segment. For example, if you cut statements from the CONST
segment of a program, you can paste them only in the CONST segment of
another program or routine.

Use the following procedure to cut or copy a program segment:

1. Move the cursor to the first statement you want to cut or copy.

Chapter 3

Syntax Directed Editor

2. Pull down the F2-Edit menu and select the Cut or Copy option.

/ Proj: PROJECT1 Appl: MML Util: MML Syntax Edit
Fi-Fllef: F3-Control F4-Motion F5-Condition F6-Fast!//O F7-Action

R

ENDWHEN
END program3

i

\ — routine declarations /

3. The SDE asks you to select the statements you want to cut or copy

by pressing the up and down arrow keys.

/

F:é Delete in F3-Cont| Select statements using up and down arrows.
Fgp| Progress t F10-E| Press <ENTER> when selected, or <ESC> to cancel.
PROGRAM program3
CONST
<<statement>>

VAR
drill_off, drill_on : boolean
home, start_pos, end_pos : position

-- routine declarations
<<statement>>

BEGIN
-- nibble executable section

drill_an=on

\

END program3 /

» Press the up arrow key to select the statement above the current
cursor location.

= Press the down arrow key to select the statement the cursor is on.

3-39

Chapter 3

Syntax Directed Editor

= If you used the down arrow key to select a statement, you can
deselect it by pressing the up arrow key.

= If you used the up arrow key to select a statement, you can
deselect it by pressing the down arrow key.

The SDE highlights the selected statements (gray on a color monitor).

Important: You can select statements only from the segment the cursor
started in. A segment comprises the statements or actions that have been
programmed to replace a <<statement>> or <<action>> placeholder. If
you try to select statements beyond the segment boundary, the SDE
displays an error message.

4. When you have selected all the statements you want to cut or copy,
press <ENTER>.

The SDE copies the selected statements or actions into a buffer. If you
selected the Cut option from the F2-Edit menu, the SDE removes the
selected statements or actions from their current location in the
program and closes up the resulting gap. If you selected the Copy
option from the F2-Edit menu, the SDE leaves the selected statements
in place, but deselects them.

You are now ready to paste the segment you just cut or copied into other
locations in the program.

Pasting

To paste a cut or copied program segment in another location, use the
following procedure:

1. Move the cursor to the statement before which you want to insert the
program segment.

Important: You can paste statements or actions only into program
segments similar to the one from which the statements or actions were cut
or copied. For example, statements from the VAR segment can be pasted
only into another VAR segment.

3-40

Chapter 3

Syntax Directed Editor

2. Pull down the F2-Edit menu and select the Paste option.

Proj: PROJECT1 Appl: MML Util: MML Syntax Edit
F3-Control F4-Motion F5-Condion = F6-Fast//O F7-Action

<<statement>:
— routine declarations

Na _/

The SDE inserts the program segment from its buffer (the last one cut or
copied) at the cursor location, if the segment is compatible with the
segment from which the statements or actions were copied or cut. If the
paste segment is not the same as the cut or copy segment, the SDE does
not allow the paste operation (the menu item will be ghosted).

The statement the cursor is on, and all following statements, are shifted
down to accommodate the new segment.

Important: Once you paste a statement, action, or placeholder, you can
remove it by using an undo command (see section titled Undoing
Statements, Actions, and Placeholders).

Searching for a Character String
Starting at any point in the program, you can search the text placeholders

of the program for a specified character string and move the cursor to it.

Important: The SDE searches only the text placeholders of the program
(single angle bracket placeholders). You cannot search for a predefined
word.

3-41

Chapter 3

Syntax Directed Editor

Use the following procedure:

1. Pull down the F2-Edit menu and select the Find String option.

/ Proj: PROJECT! Appl: MML Ut: MML Syntax Edit \
Fm}gn F3-Control F4-Motion F5-Condion ~ Fé-FastlO F7-Action

H S
doutpcb_drillj=drill_off
ENDWHEN

\END program3 j

2. The SDE displays a box that asks for the string you want to search
for.

Proj: PROJECTH Appl: MML Util: MML Syntax Edit \
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condiion F6Fastl/O F7-Action

F8-Define Fo-list F10-Errors

PROGRAM program3
CONST
<<statemen
ARdriu_off Enter Search String
home, star (>ESC> to CANCEL)

- routine decla|

<<statement>>

BEGIN []
- nibble exe
home = 4.00
drill_an = on
drill_off = off
MOVE TO home
WHENFIN[1]+DO

HOLD

\ ENDWHEN /

Type in the string for which you want to search, then press <ENTER>.
The string can be up to 40 characters long.

3-42

Chapter 3

Syntax Directed Editor

3. The SDE displays a box that asks which direction you want to search
in. Select either forward (towards the bottom of the program) or
reverse (towards the top of the program).

/ Proj: PROJECTH Appl: MML Util: MML Syntax Edit \
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condition Fé6-Fastl/O F7-Action

F8-Define F9-List F10-Errors

PROGRAM program3
CONST
<<statement>>
ARd ill_off, drill
ri
ety Forward
h_°me’ stan_?os, Reverse R)
- routine declarations
<<statement>> Cancel <ESC>
BEGIN

-n
home = 4.00
drill_an=on
drill_off = off
MOVE TO home
WHENFIN[1]+DO

HOLD

K ENDWHEN /

4. The SDE searches in the selected direction for the specified string.
If it finds an occurrence of the string in a text placeholder, the search
stops and the cursor is located on the string. If it does not find an
occurrence of the string it displays the following message:

Select Direction:

String NOT found in text placeholders
in requested direction

5. If you want to search for another occurrence of the same string, pull
down the F2—-Edit menu and select either the Find Next or Find
Previous option:

» Find Next — the SDE searches in the forward direction for the last
specified string

* Find Previous — the SDE searches in the reverse direction for the
last string specified

Chapter 3

Syntax Directed Editor

Replacing a Character String

If the text placeholders of a program contain several occurrences of a
character string that must be replaced with another character string, you
can use the replace option to perform the task automatically. Use the
following procedure:

1. Pull down the F2—-Edit menu and select the
Replace... Option.

Proj: PROJECTS Appl: MML Util: MML Syntax Edit \
Fi-Flle} £ { F3-Control F4-Motion F5-Condition ~ F6~Fastl/O F7-Action

<cstate |
BEGIN

M

WHENFIN[1]+ DO
- sto%nibbling

HOL

\ENDWHEN /

3-44

Chapter 3

Syntax Directed Editor

2. The SDE asks for the string you want to replace. Type in the string,
up to 40 characters long, then press <ENTER>.

Proj: PROJECT1 Appl: MML Util: MML Syntax Edit \
Fi1-Flle F2-Edit F3-Control F4-Motion F5-Condition

F6-Fastl/O F7-Action
F8-Define F9-List F10-Errors i

PROGRAM program3
CONST
<<statemen

VARdrill_off Enter Old String
home, star (<ESC> to CANCEL)

- routine decla
<<statement>>

BEGIN []

- nibble exe

home = 4.00

drill_an=on

drill_off = off

MOVE TO home

WHENFIN[1]+ DO
-- stop nibbling
HOLD

\ ENDWHEN /

The SDE asks for the string to replace the old string with. Type in

the new string you want inserted, up to 40 characters long, then press
<ENTER>.

/ Proj: PROJECTT Appl: MML Util: MML Syntax Edit
Fi-Flle F2-Edit F3-Control F4-Motion

F5-Conditon =~ F6-Fast /O F7-Action
F8-Define Fo-List F10-Errors

PROGRAM program3
CONST

<<statemen
VAR

drill_off Enter New String
home, star (<ESC> to CANCEL)
— routine declar
<<statement>>
BEGN []
- nibble exe
home = 4.00
drill_an=on
drill_off = off
MOVE TO home
WHENFIN[1 }+DO
-- stop nibbling
HOLD

\ ENDWHEN /

3-45

Chapter 3

Syntax Directed Editor

3-46

4.

The SDE asks which direction you want to search and replace in.

Select either forward (toward the bottom of the program) or reverse
(toward the top of the program).

-

Proj: PROJECT1

Fi-Flle F2-Edit
F8-Define F9-List

F3—Control

Appl: MML
F4-Motion F5-Condition

F10-Errors

Util: MML Syntax Edit
Fé-Fast /O F7-Action

\

PROGRAM program3

CONST
<<statement>>

AR
drill_off, drill_
home, start_pos,
- routine declarations
<<statement>>
BEGIN

- nibble executablg

Select Direction:
Forward F)
(&)

Reverse

Cancel <ESC>

home = 4.00
drill_an=on
drill_off = off
MOVE TO home
WHENFIN[1]+ DO
- stop nibbling
HOLD

KENDWHEN

Chapter 3

Syntax Directed Editor

5. The SDE searches the text placeholders of the program in the
selected direction for the old string. When it finds an occurrence of
the old string, it asks whether you want to replace only the current
instance of the old string, replace all occurrences of the old string in
the selected direction, or leave this occurrence as it is and search for
the next occurrence. Select one of the options.

/ Proj: PROJECTT Appl: MML Ut: MML Syntax Edit \
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condiion F6-Fastl/O F7-Action

F8-Define F9-list F10-Errors

PROGRAM program3 Select Action:

CONST
<<statement>> Replace Al A)
VAR Replace Current C;
drill_off, drill_ Skip To Next S
home, start_pos, Quit/Cancel <ESC>
- routine declarations
<<statement>>
BEGIN
-- nibble executable
home = 4.00
drill_an =on
drill_off = off
MOVE TO home
WHENFIN[1]+DO
- stop nibbling
HOLD

\ ENDWHEN /

= If you selected Replace All, the SDE searches in the selected direction
and replaces all occurrences of the old string in text placeholders with
the specified new string.

= If you selected Replace Current, the SDE replaces the current instance
of the old string with the specified new string, then searches in the
selected direction for the next occurrence of the old string in a text
placeholder. When it finds another occurrence, the SDE offers you the
Replace All, Replace Current, and Skip to Next choices again.

= If you select Skip to Next, the SDE leaves the current instance of the
old string as is and searches in the selected direction for the next
occurrence of the old string in a text placeholder. When it finds another
occurrence, the SDE offers you the Replace All, Replace Current, and
Skip to Next choices again.

3-47

Chapter 3

Syntax Directed Editor

3-48

When the SDE has searched as far as it can in the selected direction, it
displays the number of occurrences of the old string it found and how

many were replaced.

F8-Define Fo-List F10-Errors

/ Proj: PROJECT1 Appl: MML
Fi-Flle F2-Edit F3-Control F4-Motion

F5-Condition

Util: MML Syntax Edit \
F6-Fast /O F7-Action

PROGRAM program3

CONST
<<statement>>

R
drill_off, drill_on : boolean .
home, start_pos, end_pos : position

- routine declarations
<<statement>>
BEGIN
-- nibble executable section
home =4.00
drill_an=on
drill_off = off
MOVE TO home
WHENFIN[1]+ DO

HOLD

Found:

Replaced:

-- stop nibbling
\ ENDWHEN

Dr%s any key to continue... J

Undoing Statements, Actions, and Placeholders

If you deleted, cut, or pasted a statement, action, or placeholder by
mistake, you can recover from your mistake by using the undo command.

The undo command:

= restores the most recently deleted or cut statement, action, or
placeholder to the same location where it was deleted or cut.

= deletes the most recently pasted statement, action, or placeholder at the
same location where it was pasted.

Chapter 3

Syntax Directed Editor

To undo the most recently deleted, cut, or pasted statement, action, or
placeholder:

1. Pull down the F2—-Edit menu and select the Undo option.

/ Proj: PROJECT! Appl: MML Ut MML Syntax Edt \
. ; F4-Motion F5-Condition Fe-FastlO F7-Action

MOV i S
WHEN <global condition> DO
<<action>>
ENDCONDITION

\END program3 /

2. SDE undoes the most recently deleted, cut, or pasted segment.

For instance if a MOVE TO statement was deleted from the middle of a
program that statement will be replaced in the exact location it was
deleted from.

3-49

Chapter 3

Syntax Directed Editor

Paging a Program

You can put page breaks in your program by using the Form Feed
command option. The form feed command enters a form feed character
at the cursor. This will cause a page feed at that location when the source
file is printed.

If you need to change a page break location, use the Delete option
command to delete the current page break and then use the Form Feed
option to insert a page break at the desired location.

To Put a Page Break in an MML program:
1. Move the cursor to where you want a new page feed.

2. Pull down the F2-Edit menu and select the Form Feed option.

/ Proj: PR Appl: MML Util: MML Syntax Edit \
F1-Flie|

- - F3-Control F4-Motion F5-Condition =~ F6-Fastl/O F7-Action
F8-Defirt: T

T

PROGRAM b
CONST

diil
i Form Feed (E)

MOVE
WHEN <global condition> DO
<<action>>

ENDCONDITION
QND program3 J

SDE enters a form feed character (L) at the cursor.

3-50

Recovering a Backup File

Chapter 3

Syntax Directed Editor

You can recover a backup copy of the currently selected file by using the
Recover Backup File option.

To Recover a backup file:

1.

Pull down the F/-File menu and select the Recover Backup File
option.

/

Recover Backup File

Proj: PROJECTH Appl: MML Util: MML Syntax Edit
F2-Edit F3-Control F4-Motion F5-Conditon F6~Fast/O F7-Action

boolean
_pos : position

ENDCONDITION

\END program3 /

2.

SDE recovers the backup copy of the currently selected file. While
it is recovering the backup file, the SDE displays the message:

Recover Program

If you have not saved the current copy of the file, SDE asks you if
you want to save it. If you save it, it becomes the backup file and the
previous backup file is displayed. If you don’t save it, you will lost
it.

3-51

Chapter 3

Syntax Directed Editor

Saving the Program

3-52

When you’re through editing or creating a program, you must save it to
the hard disk if you want to retain it. You have two options:

= Save — Store the edited program on the hard disk, replacing the original
program.

= Save As — Store the edited program on the hard disk under a new name,
and retain the unedited version of the program under its original name.

Use the following procedure:

1. Pull down the FI-File menu and select either the Save or Save as...
option.

j: PROJECTH Appl: MML Util: MML Syntax Edit
F2-Edit F3-Control F4-Motion F5-Condition F6-Fastl/O F7-Action

\< =/

2. The SDE checks the program for syntax and semantic errors and
empty placeholders (placeholders that have not been filled in).
While it is performing the error check, the SDE displays the message

Performing error check

If the SDE finds no errors or empty placeholders, it displays the
following message:

No errors and no empty placeholders found in check

Chapter 3

Syntax Directed Editor

If the SDE finds errors in the program, it displays the following
message, where X is the number of errors:

X Error(s) were found in check

To continue with saving in either case, press any key. -

If errors were found in the program or if the program contains empty
placeholders, the SDE asks what you want to do.

WARNING

Program contains errors
and/or empty placeholders

Desired Action:

Continue save (S)
Returnto edit <ESC>

You can either continue saving the program or return to the editor.
Select one of the options. If you choose to continue saving,
proceed to step 4. If you choose to return to the editor, the SDE
cancels the save operation.

3-53

Chapter 3

Syntax Directed Editor

3-54

4. If you selected the Save option in step 1, proceed to step 5.

If you selected the Save as... option in step 1, SDE asks what name
you want to store the edited file under. It displays a directory of
existing programs to help you avoid duplicating an existing
program name. Type in the name you want to store the edited
program under, then press <ENTER>.

/ Proj: PROJECT1 Appl: MML) Util: MML Syntax Edit \
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condition F6-Motion /O F7-Action
F8-Define F9-List F10-Errors
PROGRAM
CONST | Enter name: |] Save Program As...
cl

Type in name. Press ENER when done, or ESC to cancel.

PROGRAM3 PROG_1 PROG_2 SAMPLE

\Z —/

5. . The SDE saves the program as specified.

After saving, the program is still open, and you can do more
editing. If you are through editing, quit the editor (section titled
Quitting the Editor)

Chapter 3

Syntax Directed Editor

Quitting the Editor When you are through editing and have saved the program, quit the editor
by pulling down the F/—-File menu and selecting the Quiz option. ODS
returns to its top level menu bar.

Proj: PROJECTI Appl: MML Util: MML Syntax Edit \

F2-Edit F3-Control F4-Motion F5-Condition F6-Fastl/O F7-Action

boolean

\S =/

If you pull down the F1-File menu and select the Quit option without first
saving the program, the SDE warns you that the program has not been
saved and gives you 3 options.

Proﬁ: PROJECT1 (Appl: MML Util: MML Syntax Edit
Fi-Flle F2-Edit F3-Control F4-Motion F5-Condition F6-Fast /O F7-Action
F8-Define F9-list F10-Errors
PROGRAM sample_1
CONST

c=15
2= 136 WARNING
VAR Active program has not ben saved
b1, EZ, b3 : boolean
L] . integer . .
pol, p1,p2 : postion Desired Action:
- routine declarations Save S
<< statements >> Save as A
Discard D
BEGIN
—VARIABLE INITIALIZA Cancel <ESC>
$SPEED = 300
B1=5
PO = POS (0)
-- MAIN PROGRAM

FOR |=1T04 DO
\ FOUT ([= OFF J

Select one of the options. Save and Save As... work as described in
section titled Saving the Program. If you discard the edited program,
none of the changes you have made to the program are saved, and ODS
returns to the top level menu bar.

3-55

Chapter Overview

Accessing the Text Editor

Chapter

Text Editor for MML

From the ODS environment, you can call a text editor to use for creating
and editing MML source and include files. We do not supply a text
editor. Before you can call a text editor to edit MML programs, you must:

» supply a text editor and install it in your computer
= set up ODS to call the text editor you supplied when you select the Text
Edit option from the F4— Utility menu

A procedure for configuring ODS to call the text editor is given in chapter
5.

This chapter describes how to access the text editor from ODS.

To access the text editor from ODS, use the following procedure. We
assume that:

= ODS is displaying its top level screen

= you have set up ODS for your text editor as described in chapter 5

= the project for which you want to edit an MML file is the active project
= MML is the active application

1. Pull down the F4-Utility menu and select the Text Edit option.

Proj: IMC110 Appl: MML . Util: none
Fi-File F2-Project F3-Application F5-Configuration

Chapter 4

Text Editor for MML

2. ODS asks what kind of MML file you want to edit. Select either
Source or Include.

A source file is a program written in the MML language.

An include file is a group of statements in the MML language that is
stored as a separate file and called for inclusion in a source program by

the %INCLUDE directive.
Proj: PROJECTS Appl: MML Ut Text Edit

Fi-File F2-Project F3-Application =~ F4-Utility = F5-Configuration
— o . : — P

Select MML File Type:
Source (S)
U
<ESC>

4-2

Chapter 4

Text Editor for MML

3. ODS displays a directory of existing files of the selected type for the
active project. Either select the file you want to edit, or type in the
name of a new file you want to create and press <ENTER>.

Proj: PROJECT8 Appl: MML Util: Text Edit
Fi-File F2-Project F3-Application F4-Utility = F5-Configuration

S

1 Use ARROW keys or type in name. Press ENTER when done, or ESC to cancel.

s

30_1 30.2 30_4 305 3055 30 6
30_6A ABORTSDE ANGUS BIG BIGONE2 BUILT2
DEMO E18 F5_F7 FOR LISTTEST LSTTEST
MAXERRS MJH MM! MMLBUG NESTED NEWLST
NEWONE NEWTEST NEWTST ORG1 PASTEBUG PLC4B
ROUT ROUTTST SDE1 TEMPLATE WAITFOR

ODS clears the screen and starts the text editor. The text editor is now the
active program. Edit the file according to the instructions for your text
editor.

When you are through editing, exit the text editor in the usual way. ODS
will display its top level screen again.

4-3

Chapter Overview

Chapter

MML Compiler

A MML program you create using the syntax directed editor (chapter 3)
or text editor (chapter 4) cannot be downloaded to the IMC 110 controller
as is. Before downloading, you must first compile the program into code
the controller can use. The compile utility of the MML application lets
you do this.

The compiler checks your program for proper syntax and semantics (pass
1) and informs you of any errors it finds. If it finds no errors in the
program, the compiler goes on to create code that can be executed by the
IMC 110 controller (pass 2). If it detects errors in pass 1, the compiler
does not execute pass 2, but aborts the compilation. You must correct the
errors before compilation can be completed.

The compiler offers several options:

= creation of a program listing file that can be printed or displayed on the
CRT

* inclusion of expanded error messages at the end of the program listing

= inclusion of statements called by the %INCLUDE directive

* inclusion of debug code in the compiled program

This chapter shows how to use the MML compile utility:

= accessing the compile utility—(section titled Accessing the Compile
Utility)

» selecting Form and Options—(section titled Selecting Form and
Options)

» using the Compiler—(section titled Using the Compiler)

= reading the program listing—(section titled Reading the Program
Listing)

= displaying errors—(section titled Displaying Errors)

= quitting the compile utility—(section titled Quitting the Compiler)

5-1

Chapter 5

MML Compiler

Accessing the Compile Utility

52

To access the compile utility, use the following procedure. We assume
that a project is active, and that MML is displayed on the status line as the
active application. (If MML is not the active application, pull down the
F3-Application menu and select it.)

= Proj: PROJECT!
Fi-File

N—

F2—Project

Util: none

F4-Utility ~ F5-Configuration

\

_

1. Pull down the F4-Utility menu and select the Compile option.

Proj: PROJECT1
Fi-File

N—

F2-Project

Util: none

Appl: MML
F3-Applicatio

™

2. ODS displays the MML Compiler menu bar.

Proj: PROJECT1
Fi-File

F2-Form

F3-Options
bl

Appl: MML
F4—Erors

Util: Compile

Chapter 5

MML Compiler

The menu bar provides the following options:

= F1-File: Provides ODS file management functions for MML files (see
Offline Development System Users Manual, MCD-5.1). It also
includes the Select... and Quit options, which are described in this
chapter. Select... lets you select a file to compile. Quit exits the
compiler utility.

= F2-Form: Lets you select the form in which the optional program
listing file is printed or displayed (long or short, narrow or wide). The

options in this menu are not available unless the list option is selected.

= F3-Options: Lets you select some compiler options (program listing
file, debug indications, verbose error messages, and %include).

» F4-Errors!: Displays a list of compiler errors for the currently selected
file.

5-3

Chapter 5

MML Compiler

Selecting Form and Options The F2-Form and F3-Options menus of the compiler utility let you

specify some features of compiler output (Table 5.A)

Table 5.A
F2-Form and F3-Options Choices

Menu

Option

Meaning

Notes

F2-Form

Narrow

Wide

If the Listing option in the F3-Options
menu is selected, each line of the
listing is 80 columns wide

If the Listing option in the F3—Options
menu is selected, each line of the
listing is 115 columns wide.

These options are available only if
the Listing option in the F3-Options
menu is selected

Short

Long

If the Listing option in the F3-Options
menu is selected, each page of the
listing is 58 lines.

If the Listing option in the F3-Options
menu is selected, each page of the
listing is 64 lines.

These options are available only if
the Listing option in the F3-Options
menu is selected.

F3-Options

Listing

No Listing

The compiler creates a program
listing that can be output to a printer
or displayed on the CRT.

The compiler does not create a
program listing.

The verbose/terse, short/long, and
narrow/wide options are available
only if the Listing option is selected.

Verbose

Terse

Explanatory error messages for
errors detected in the program will be
included at the end of the program
listing.

The program listing will contain only
short error messages at the error
locations.

These options are available only
when the Listing option is selected.

F3-Options

Debug On

Debug Off

The compiler generates additional
code to help in debugging the file. If
the Listing option is selected, the
program listing will show the possible
break points in the program.

No additional code for debugging is
generated.

Warnings On

Warnings Off

Warning messages will appear in the
program listing at the line that they
occur.

Warning messages will not appear in
the program listing.

Using the Compiler

Chapter 5

MML Compiler

Menu

Option Meaning Notes

Include On The compiler includes the code
.called for by any %INCLUDE
statements in the program.

Include Off The code called for by % INCLUDE
statements is not included in the
compiled program.

Use the following procedure to compile a source file into machine code.
We assume that the desired project is active, and that ODS is displaying
the compiler menu bar.

1. Pull down the F3-Options menu and make sure the options you want
are selected. A check mark next to an option indicates that it is
selected. If an option you want is not selected, select it now. Repeat
for each option you need to select.

If you have selected the Listing option, pull down the F2-Form
menu and make sure that the options you want are selected.

Refer to Table 5.A for information about the options.

Important: ODS saves the form and options choices you make until other
choices are selected. Each time you start ODS, the last selected choices
become active. Consequently, you don’t have to change the choices each
time you use the compiler, unless they have been changed since you last
set them.

2. Pull down the FI-File menu and select the Select... option.

: / Proj: PROJECT1 Appl: MML Util: Compile
F2-Form F3-Options F4-Erors

55

Chapter 5

MML Compiler

3. ODS displays the message Select file to compile... and a directory of
MML source files for the active project. Select the file you want to
compile. You must select an existing file.

Proj: PROJECT1 Appl: MML Util: Compile
Fi-File F2-Form F3-Option F4-Errors

Select file to compile.

PROG_1 PROG_2 SAMPLE

4. ODS begins pass 1 of the compiler, which checks the selected
program for correct syntax and semantics. The message MML
Compiler Pass 1 appears on the screen along with the name of the
file being compiled. For example:

Proj: PROJECT1 Appl: MML Util: Compile
Fi-File F2-Form F3-Options F4-Errors

s

MML Compiler Pass 1
Revision 2.00
File: sample

S.

Chapter 5
MML Compiler

If the compiler detects syntax or semantic errors in the source
program, it displays them on the screen. The error listing on the
screen scrolls upwards as errors are added to the list. If no errors are

detected, the error window does not appear. Here is an example of
such an error listing.

Proj: PROJECT1 Appl: MML Util: Compile
Fi-File F2-Form F3-Options F4-Errors

MML Compiler Pass 1
Revision 2.00

File: sample

Summary of errors for file: sample
Semantic error in or prior to listing line #12.
Data type of expression is incompatible with id left o “=”

Semantic error in or prior to listing line #19.
REAL data type expected..

When pass 1 is complete, ODS displays a screen similar to the one
shown below if errors were detected. Press any key to continue. If
no errors were detected, this screen does not appear.

ﬂroj: PROJECTH Appl: MML Util: Compile

F1-File

F2-Form F3-Options F4-Errors

1 Total number of errors: 2 : ; MM}%&?&T?&)%“

File: sample

Summary of errors for file: sample
Semantic error in or prior to listing line #12.
Data type of expression is incompatible with id left 0 “=”

Semantic error in or prior to listing line #19.
REAL data type expected..

Press any key to continue

Chapter 5

MML Compiler

5-8

6.

7.

If the Listing option is selected, the compiler creates the program
listing file, and displays the following message:

Proj: PROJECT1 Appl: MML Util: Compile
Fi-File F2-Form F3-Options F4-Errors

e

MML Compiler Pass 1
Revision 2.00

File:

If it detected errors during pass 1, the compiler halts and returns you
to the compiler menu bar.

If it detected no errors in pass 1, the compiler begins executing pass
2 automatically, and displays the message

Proj: PROJECT1 Appl: MML Util: Compile
Fi-File F2-Form F3-Options F4-Errors
v . REe——

s s S
%ﬁ ; S

S

MML Compiler Pass 2
Revision 2.00

File: sample

Chapter 5.

MML Compiler

8. When pass 2 is complete, the compiler displays some data about the

compilation.

s

MML Compiler Pass 2
Revision 2.00

Program Name: SAMPLE_1 F"ei sample

Number of Symbols: 7
Program Steps: 15
IMC-110 Code Size: 1216 bytes
Static Data Size: 12 bytes
Debug Symbol Size 168 bytes
Total File Size: 1446 bytes

Compile Completed Without Errors

Press any key to continue..

Proj: PROJECT1 Appl: MML Util: Compile
Fi-File F2-Form F3-Options F4-Errors

* Program Steps — the number of lines at which a break point can be set

for debugging

* Number of Symbols — The number of user defined symbols (variables,

for instance) in the program
* IMC 110 Code size - the size of the compiled program in bytes

» Static Data Size — the amount of memory in the IMC 110 needed to
store the user defined variables in the program

* Debug Symbol Size — The IMC 110 memory needed to store the
names of user defined variables (for display on the teach pendant).
When the user deletes the debugging code after debugging, he gains
this amount of memory.

» Total File Size — the total size of the compiled program that is
downloaded to the IMC 110

Press any key to return to the compiler menu bar.

Chapter 5
MML Compiler

Reading the Program Listing

5-10

[

— > 11* dril_on=0n
— 12" drill_off = off

—> 14" ifa=3.4then

If you select the Listing option from the F3— Options menu before
compiling, the compiler creates a program listing file that you can display
on the CRT (F1-File Type... option) or print (F1-File Print... option).
When displayed or printed, the program listing has the form shown in
Figure 5.1. Use the figure to learn how to read the listing file.

Figure 5.1
Program Listing File

program3 7/10/90 21:04:46 PAGE 1

PROGRAM program3
VAR
drill_off,drill_on: boolean
home,start_pos, end_pos: position
BEGIN
—nibble executable section

COONOONAWN =

* move to pi

***IMC 110 ERROR #13 in or just prior to listing line #9

Id must be declared before use or has been improperly declared N
Near: P1

10

13

*** IMC 110 ERROR #13 in or just prior to listing line #14
;\? must be declared before use or has been improperly declared
ear: A

14
16
17 END program3 Terse Error Messages

*** IMC 110 ERROR #162 in or just prior to listing line #17

Statement expected. Compile using the verbose switch for many more details.
Near: End

*** IMC 110 ERROR #209 in or just prior to listing line #17 3
Missing END, ENDFOR, ENDIF, or ENDWHILE earlier in program.

*** IMC 110 ERROR #162 in or just prior to listing line #17
Statement expected. Compile using the verbose switch for many more details.

Possible Break Points

(Debug ON option in F3-Options menu enabled)
(Points at which you can stop program execution during testing)

Chapter 5

MML Compiler

program3 7/10/90 21:04:46 PAGE 2
Status Of Switches: Listing = ON
Page Width =80
Page Length = 58
Verbose =ON
{/r&clude = 8&
arning = | -
Debug =ON -——[Compiler Summary

ERROR SUMMARY

LINENUMBER ERROR NUMBER

9 13
14 13
17 162
17 209
17 162

Errors/Warnings Encountered:

***IMC 110 ERROR #162 .

Id must be declared before use or has been improperly declared. Either the id has not been
declared or an error has caused the id to be declared improperly. Declare the id or

correct the declaration error.

***IMC 110 ERROR #162 o
Statement expected. If coding a local condition handler, you probably forgot the “,” after the

MOVE clause. Forgetting the “,” lead a horrendous number of errors. Don’t be alarmed
just put the “c” in and watch the succeeding errors disappear. Otherwise, there may

be an error at the end of the last statement or some kind of misspelling. Possible the MML
statements have not been partitioned by a “,” or newline. Speaking of partitioning one very
common cause is that an END, ENDFOR, ENDIF, or ENDWHILE has been omitted or
misspelled and therefore comiler thinks it should continue seeing statements. Other
possibilities include a bad label definition, an assignment statement gone awry, or a
procedure call has been fouled up some way. This error has the nasty habit of cr%pping
up when an earlier error has caused the compiler tos tray off of the beaten path. Fix
earlier errors if any exist before worrying about this guy.

*** [MC 110 ERROR #290

Missing END, ENDFOR, ENDIF, or ENDWHILE earlier in program. Ommission of one or

more of these keywords is a grave mistake which may lead to many other errors

(especially “statement expected” errors). If you have forgotten or misspelled one of these

%uys, you will probably get at least one “statement expected” error earlier in your program.
xamine your program closely to ensure that you are terminating all of your control structures

with the appropriate keyword in the correct location.

Total number of warnings: 0
Total number of errors: 5

Verbose Error Messages
(Verbose Option in F3-Options menu enabled)

5-11

Chapter 5

MML Compiler

Displaying Errors If you compile a file and it contains syntax or semantic errors, the
compiler displays the errors on the screen as compilation takes place.
After compilation is complete, ODS retains the list of errors. To display
the list of errors for the selected file, select the F4—Errors! option from
the menu bar. ODS displays the errors just as it did when the program
was compiled. Use the <PG DN> and <PG UP> keys to move from page

s

to page of the display.
ﬂroj: PROJECT1 Appl: MML Util: Compile
Fi-File F2-Form F3-Options F4-Errors

s

Select Display Option

Previous Page <PgUp>

Next Page <PgDn>
Cancel <EgC>

Summary of errors for file: sample

Semantic error in or prior to listing line #12.
Data type of expression is incompatible with id left 0 “="

Semantic error in or prior to listing line #19.
REAL data type expected..

Quitting the Compiler When you are through using the compiler, pull down the F1-File menu
and select the Quit option. ODS returns to the top level menu bar.

5-12

Chapter Overview

Connecting ODS and the
Controller

Storing Programs on ODS and
on the Controller

Chapter

MML Upload/Download

After you’ve created or edited a MML program in ODS, you’ll want to
download it to your IMC 110 controller where it can be executed. If you
have a program stored on the controller that you want to edit, you may
want to upload it to ODS.

This chapter shows how to:

* download MML programs from ODS to the controller
* upload MML programs from the controller to ODS

In order to upload or download MML programs, your controller must be
connected to the computer that runs ODS. To connect the motion
controller to your computer:

« Disconnect the handheld pendant from the motion controller module.

= Connect a cable from the serial port of your computer to the DH-485
connector on the motion controller module. You will need to use an
RS-232/DH485 converter to make this connection. Refer to the IMC
110 Installation Manual, publication 1746-ND001, for more
information.

To help avoid confusion, it is important to know how files are stored in
ODS and in the controller:

= An MML program stored in ODS is stored under a file name that is
assigned when the program is created or uploaded. File names meet
the conditions specified in chapter 3. Note that a file name used by
ODS to store a MML program may or may not be the same as the name
in the PROGRAM statement of the MML program.

= An MML program stored on the controller is stored under a number
between 1 and 15 that is assigned when the program is downloaded to
the controller. ’

6-1

Chapter 6

MML Upload/Download

Downloading MML Programs to
the Controller

6-2

Use the following procedure to download a MML program from ODS to
the controller. We assume that ODS is displaying the top level menu bar
with an active project.

1. Check the status line on the ODS screen.

Proj: SW2 App!: Download Utit: none

F1-File F2-Project = F3-Application F4-Utility =~ F5—Configuration
;c:{.g’_r\ Do %:gy ' ¥

s

= If the status line shows Download as the active application, skip
the rest of this step and go to step 2.

= If the status line does not show Download as the active
application, pull down the F3— Application menu and select the
Download option.

Chapter 6

MML Upload/Download

2. Download appears on the status line as the active application. Pull
down the F4— Utility menu and select the Send MML progs option.

Proj: SW2 Appl: Download Util: none
Fi-File ~ F2-Project F3-Application =~ F4-Utility =~ F5-Configuration

s

Send AMP params ﬁ
Send MMLprogs (

3. ODS displays the message Downloading... and a directory of
compiled MML programs stored on ODS (ODS file names). Select
the file you want to download. You must select an existing file.

Proj: SW2 Appl: Download Util: Send MML progs
Fi-File F2-Project ~ F3-Application ~ F4-Utility = F5-Configuration

ABORTH BAT2 BHATT D1 DINT DIN2
DIN2_A DIN3 DRIVE EXAMPLE! MA1 MAs
MA3~ MA4 MAS MA6 MA7 MAS
MASTER1 MAV4 MM1 MON13 MON13B MON13C
01 OPS1 OPS1A ORG ORG1 PLCO
PLCV PLCXARR RATIO! RATIO2 RATIO2A RATIOB
RATIO4 REPEAT1 REPEATIA ROTARY1 ROTARY2 SERVOT
W1

6-3

Chapter 6

MML Upload/Download

4. ODS displays the message Destination filename... and a directory of
MML programs stored on the controller (program numbers and the
names from PROGRAM statements). Type in the number you want
to assign to the downloaded program, then press <ENTER>. You
must enter a number between 1 and 15 that is not already assigned.

Proj: SW2 Appl: Download Util: Send MML proﬁ
Fi-File ~ F2-Project =~ F3-Application ~ F4-Utility = F5-Configuration

1_DRIVES_TEST 2_BAT 7_DINt

5. ODS displays the message:

Download in progress

When downloading is complete, ODS displays:

Download in complete

Download Another
File?

NN

If you want to download another file, press <Y>. ODS returns to
step 3. If you do not want to downlcad another file, press <N>.
ODS returns to the top level screen.

6-4

Chapter 6

MML Upload/Download

Uploading an MML Program Use the following procedure to upload a MML program from the
from the Controller controller to ODS. We assume that ODS is displaying its top level menu
bar and that a project is active.

1. Check the status line of the ODS screen.

Proj: SW2 Appl: Upload Util: none
Fi-File F2-Project F3-Application F4-Utilty F5-Configuration

s s e

= If the status line shows Upload as the active application, skip the rest of
this step and go to step 2.

= If the status line does not show Upload as the active application, pull
down the F3-Application menu and select the Upload option.

MML Upload/Download

6-6

2. The status line now shows Upload as the active application. Pull
down the F4— Utility menu and select the Get MML progs option.

Proj: SW2 Appl: Upload Util: none
Fi-File F2-Project _ F3-Application Fa-Utility _F5-Configuration
T Get AMP params m
Get MMLprogs

R

3. ODS displays the message Uploading... and a directory of MML
programs stored on the controller (numbers and PROGRAM names).
Select the program you want to upload to ODS. (Use the arrow keys
to highlight the program name or type in the program number, then
press <ENTER>.)

Proj: SW2 Appl: Upload Util: Get MML progs
Fi-File F2-Project Fe-Application =~ F4-Utility ~ F5-Configuration

i B i
e ~

i i

7| Use ARROW keys or type in name. Press ENTER when done, or ESC to cancel

1_DRIVES_TEST 2_BAT1 3_MASTERT 7_DIN{

Chapter 6

MML Upload/Download

4. ODS displays the message Upload to... and a directory of MML
programs stored in ODS (ODS file names). Select the file you want
to upload into, or type in a new file name and press <ENTER>. If
you type in a new name, an entry box appears on the screen.

/ Proj: SW2 Appl: Upload Util: Get MML progs
Fi-File F2-Project = F3-Application =~ F4-Utility =~ F5-Configuration

e R

Upload to...

ABORT! BAT2 BHATT D1 DIN1 DIN2
DIN2_A DING DRIVE EXAMPLET MAf s
MA3 ™ MA4 MAS MAG MA7 MAS
MASTER1 MAV4 MM1 MON13 MON3B MON13C
01 OPS1 OPS1A ORG ORG1 PLCO
PLCV PLCXARR RATIO1 RATIO2 RATIO2A RATIO3
RATIOA REPEAT REPEATIA ROTARY: ROTARY2 SERVOf

5. If you typed in a new file name, upload begins. Proceed to step 6.

If you selected an existing file, ODS displays the following box.
Select one of the 3 choices offered.

File Already Exists
Enter option

Rename (R)
Overwrite (O)

Abort (A)

» If you select Rename, ODS displays the message Rename io...
and a directory of existing files, and asks you to type in a new file
name. This must be a name that is not in the directory. Type in
the new name, then press <ENTER>. ODS renames the file stored
in ODS, then uploads the file from the IMC 110 motion controller
into the originally selected ODS file name.

= If you select Overwrite, ODS begins uploading. Go to step 6.

6-7

Chapter 6

MML Upload/Download

6-8

6.

= If you select Abort, ODS cancels the upload operation and returns
to the top level menu.

ODS displays the message:

Upload in progress

When uploading is complete, ODS displays:

Upload complete

Press any key to return to the top level menu bar.

Chapter Overview

Set Up

Chapter

IMC 110 File Management

If you have your controller connected to the computer that runs ODS, you
can copy, rename, and delete the MML programs you have stored on the
IMC 110 motion controller from the ODS computer.

This chapter shows how to use ODS to copy, rename, and delete MML
programs stored on the IMC 110 motion controller.

In order to perform the functions described in this chapter, you must
connect the computer that runs ODS to the motion controller module. To
connect the motion controller to your computer:

= Disconnect the handheld pendant from the motion controller module.

» Connect a cable from the serial port of your computer to the DH485
connector on the motion controller module. You need to use an
RS232/DH485 converter to make this connection. Refer to the IMC
110 Installation Manual, publication 1746-ND001, for more
information.

In addition, in ODS you must select the MML application and the File
Management utility. Use the following procedure.

1. With the top level menu bar displayed and the project you want to
work in active, pull down the F3-Application menu and select the
MML application.

Util: none \

F4-Utiity ~ F5~Configuration

- Proj: PROJECTH
F1-File F2-Project

7-1

Chapter 7

IMC 110 File Management

2. ODS displays MML on the status line as the active application. Pull
down the F4-Utility menu and select the File management utility.

Proj: PROJECT1 Appl: MML Util: none
Fi-File F2-Project F5-Configuration
e

- /

File Management appears on the status line as the active utility and a file
utility and a file utility menu appears on the screen. From this menu, you
can access all the functions described in the following sections.

/ Proj: PROJECT1 Appl: MML Util: File Managemenx
Fi-File F2-Project F3-Application ~ F4-Utility = F5-Configuration

File Utility
Desired

Directory
Rename file
Copy file
Delete file
Delete all
Exit

m>o0xnrC

Chapter 7

IMC 110 File Management

Displaying the Directory To display a directory of MML programs stored on the controller, use the
following procedure. We assume that you have selected the file
management utility of the MML application, and that ODS is displaying
the file utility menu.

1. Select the Directory option from the file utility menu.

Proj: PROJECT1 Appl: MML Util: File Management \
F1-File F2-Project F3-Application F4-Utility F5-Configuration

File Utility
Desired
e R
Copy file
Deﬁzte file Sz
Delete all A
Exit E;

N /

2. ODS reads the directory of files from the controller and displays it
on the ODS screen in the form shown below. Press any key to return
to the file utility menu.

ﬁroj: PROJECT1 Appl: MML Util: File Management \
Fi-File F2-Project F3-Application ~ F4-Utility = F5-Configuration
‘ Press any key to continue.
1_MOVE_TO

7-3

Chapter 7

IMC 110 File Management

Renaming a Program Use the following procedure to rename a file stored on the IMC 110. We
assume that you have selected the file management utility of the MML
application, and that ODS is displaying the file utility menu.

1. Select the Rename file option from the file utility menu.

Proj: PROJECT1 Appl: MML Util: File Management
Fi-File F2-Project F3-Application ~ F4-Utility ~ F5-Configuration

File Utility
Desired

opy file
Delete file
Delete all
Exit

_ /

2. ODS displays the message Rename From... and a directory of MML
programs stored on the IMC 110. Select the file you want to rename.
MML programs on the IMC 110 motion controller are stored by
number. Each entry in the directory begins with a number. If you
type in the “name” of the file you want to select, that name must be a
number from 1 to 15.

/Proj: PROJECT1 Appl: MML Util: File Management \
Fi-File F2-Project F3-Application ~ F4-Utility =~ F5-Configuration

Rename From ... I

Use ARROW keys or type in name. Pres ENTER when done, or ESC to cancel.

1_MOVE_TO

NG =/

7-4

Copying a Program

Chapter 7

IMC 110 File Management

3. ODS displays the message Rename To... and the directory of MML
programs stored on the controller. Type in a number between 1 and
15 that is not already assigned to another program, then press
<ENTER>.

Proj: PROJECT1 Appl: MML Util: File Management
Fi-File ~ F2-Project F3-Application F4-Utility ~ F5-Configuration
[Enternumber: [] Rename To... ,

I Typeinname. Press ENTER when done, or ESC to cancel. l

1_MOVE_TO

- /

4. ODS briefly displays the message:

Renaming file |

ODS then returns to the file utility menu.

Use the following procedure to copy a program stored on the controller
into another program. We assume that you have selected the file
management utility of the MML application, and that ODS is displaying
the file utility menu.

7-5

Chapter 7

IMC 110 File Management

7-6

1. Select the Copy file option from the file utility menu.

/ Proj: PROJECT1 Appl: MML Util: File Management \
Fi-File F2-Project ~F3-Application ~ F4-Utility ~ F5-Configuration

File Utility
Desired

Directory
Rena

N _/

2. ODS displays the message Copy From File... and a directory of
MML programs stored on the controller. Select the file you want to

copy.
Proj: PROJECTY Appl: MML Utl: File Management \
Fi-File F2-Project F3-Applicaton F4-Utility — F5~Configuration

Copy From File ... I

Use ARROW keys or type in name. Pres ENTER when done, or ESC to cancel. |

1_MOVE_TO

Deleting a File

Chapter 7

IMC 110 File Management

3. ODS displays the message Copy To File... and again displays the
directory of programs stored on the controller. Type in a number
between 1 and 15 to assign to the copied program, then press
<ENTER>. You must specify a number that is not already assigned
to a program.

ﬂ PROJECT1 Appl: MML Util: File Management
Fi-File F2-Project F3-Application F4-Utility = F5-Configuration
[Enternumber: [] IrCopy To File \

‘ Typeinname. Press ENTER when done, or ESC to cancel. l

1_MOVE_TO

\J —/

4. ODS briefly displays the message:

Copying file

When copying is complete, ODS returns to the file utility menu.

Use the following procedure to delete a MML program stored on the
controller. We assume that you have selected the file management utility
of the MML application, and that ODS is displaying the file utility menu.

7-7

Chapter 7

IMC 110 File Management

1. Select the Delete file option from the file utility menu.

Proj; PROJECTA Appl: MML Utii: File Management \
Fi-File ~ F2-Project =~ F3-Application ~ F4-Utility =~ F5~Configuration

File Utility
Desired

Directory
Rename file
Copy fil

e _/

2. ODS displays the message Delete File... and a directory of MML
programs stored on the controller. Select the file you want to delete.

Important: when you select a file to delete, ODS deletes it immediately.
It does not ask for confirmation of your desire to delete. Be careful,
therefore, and make sure you select the correct file.

Proj: PROJECT1 Appl: MML Util: File Management
Fi-File F2-Project =~ F3-Application ~ F4-Utility =~ F5-Configuration

Delete Flle.... !

use ARROW keys or type in name. Pres ENTER when done, or ESC to cancel. |

1_MOVE_TO

o _/

7-8

Deleting All Files

Chapter 7

IMC 110 File Management

3. ODS briefly displays the message:

Deleting file

When the deletion is completed, ODS returns to the file utility menu.

Use the following procedure to delete all the MML programs stored on
the controller. We assume that you have selected the file management
utility of the MML application, and that ODS is displaying the file utility
menu.

1. Select the Delete all option from the file utility menu.

/ Proj: PROJECT1 Appl: MML Util: File Management \
Fi-File = F2-Project F3-Application = F4-Utility F5—Configuration

File Utility
Desired

Directory
Rename file

file
F};e file

N _/

2. ODS asks if you’re sure you want to delete all the MML programs
stored on the controller:

Are yoursure [17 (Y/N)

Answer by pressing <Y><ENTER> (yes) or <N><ENTER> (no).

7-9

Chapter 7

IMC 110 File Management

3. If you press <N><ENTER>, ODS cancels the delete operation and
returns to the file utility menu. If you press <Y><ENTER>, ODS
briefly displays the message:

Deleting file

When all files are deleted, ODS returns to the file utility menu.

Exiting File Management To exit file management, select the Exiz option on the file utility menu.
ODS returns to the top level menu bar.

/ Proj: PROJECTY Aopl: MML Util: File Management \
Fi-File F2-Project F3-Application ~ F4-Utility ~ F5-Configuration

File Utility
Desired

Directory L
Rename file R)
Copy file
Delete file
all

7-10

Chapter Overview

Developing, Compiling and
Running Programs

Chapter

Introduction To Motion Management Language

This chapter introduces you to Motion Management Language (MML).
You’ll read about some basic concepts of the MML language:

= developing, compiling and running programs
= general program format

= permitted characters

= system variables

= routines

* identifiers

= comments

= %INCLUDE statement

To develop a MML program, you first need to produce a source program.
A source program is one that contains the statements and logic of your
application, and can be read by you. A source program cannot be
executed by the IMC 1i0. To have the program read and executed by the
IMC 110, it must be compiled into executable code and then downloaded
to the IMC 110.

To produce the source program, you can use either:

= a text editor of your choice (chapter 4) — essentially, a
word—processing program, compatible with DOS, that will produce the
text of your program. In this case, you need to format the program
properly yourself.

» the Syntax Directed Editor (chapter 3) — available in ODS that
provides menu selections for MML statements with automatic
formatting

Once you have produced a source program, you must compile it using the
MML compiler utility (chapter 5). The compiler converts the source
program into executable code that you can download to the IMC 110
motion controller module (chapter 6). The compiler will also catch errors
in the syntax and semantics of the source program that may occur
especially if you use a text editor to develop the source program. If there
are errors, you must correct the source program and re-compile it before

8-1

Chapter 8

Introduction To Motion Management
Language

Format of an MML Program

8-2

downloading the executable code to the module. ODS will only let you
download executable code that is “error free.”

When you have a program downloaded to the module, you can run the
program and debug it using the handheld pendant. The handheld pendant
will let you select the mode of program execution, run the program, teach
positions and initialize variables in the program, among other functions.

An MML program has 2 basic parts:

* declaration section — statements for declaring constants, variables
and routines, found before BEGIN and after END in the program

= executable section — statements that actually run in the program,
found between BEGIN and END in the program

For example, here is an SDE template for a MML program:

PROGRAM <name>
—-— this is a declaration section for constants,
—— variables and routines

CONST
<<statement>>
VAR
<<statement>>

—-— routine declarations
<<statement>>

BEGIN
<<statement>>

—— this is the executable section of the program

END <name>
—-— routine declarations
<<statement>>

—— this is also a declaration section for routines only

Important: The two dashes (--) always precede a comment in a program.

Important: We show MML “predefined words™ with upper case letters in
this manual. Predefined words have specific meanings in MML. They
are part of the system, and you cannot use them for other purposes. For
example, PROGRAM, CONST, and VAR predefined words.

Chapter 8
Introduction To Motion Management

Language

When You Use a Text Editor to Program

* The PROGRAM statement identifies the program and is required. It
must be the first statement in the program. The name you choose for
the program must also appear in the END statement. The name cannot
be used for another purpose in your program.

* Define CONST (constant) and VAR (variable) after the PROGRAM
statement. They are optional. There can be any number of CONST and
VAR declarations and you can program them in any order. CONST and
VAR declarations are not required.

= Define any routines after the CONST and VAR sections of the
program. Routines are optional, and you can have any number of them.
Routines are similar to “subprograms” and come in 2 types:

- procedures — perform specific tasks without passing values
back to the program after running. A procedure can be defined
at any point in a declaration section of your program.

- functions — return values after running. You must declare a
function before you call it for use in your program.

You can define other routines after the END statement.

= BEGIN marks the start of executable statements. It is required. END
marks the end of the executable statements, is required, and must
contain the same name as the PROGRAM statement.

8-3

Chapter 8

Introduction To Motion Management
Language

Simple Program Example
This simple example program illustrates some of the properties and
concepts of the language that you will find in the following sections.

Important: On the next page, we have added comments to this program
to make it more understandable. We strongly encourage you to use
comments throughout your program.

PROGRAM drill 1

CONST

drill speed = 50
rapid = 400

home = 12

depth = -0.123
VAR

r_plane, depth pt : POSITION

BEGIN
S$SPEED = rapid
r plane = {home}
depth_pt = {depth}
MOVE TO r_plane
WITH SSPEED = drill speed, S$TERMTYPE = COARSE
MOVE TO depth_pt
MOVE TO r_plane

END drill 1

Chapter 8
Introduction To Motion Management

Language

PROGRAM drill 1 -- program statement and name

—— This program drills 1 hole 1 time (down and up),
—— then turns itself off

CONST -- start constant declarations
drill speed = 50 -—- speed for drilling
rapid = 400 —— rapid speed
home = 12 —- home (rapid plane) dimension
depth = -0.123 —-— hole depth dimension
VAR —-- start variable declarations
r plane : POSITION -- a position variable

depth pt : POSITION -- a position variable

BEGIN —-- start program drill 1
—- this is the executable section
$SPEED = rapid -- system variable for motion speed
-— set to rapid
r_plane = {home} -- r_plane variable set to home
-- using curly

brackets

depth_pt = {depth} —- depth pt set to depth

MOVE TO r_plane -- moves to r_plane at rapid

WITH S$SSPEED=drill_speed, STERMIYPE = COARSE
—-— The WITH statement defines how to perform the
-- following move. In this case, the next move

—— be performed with the system variables $SPEED
-— set to drill speed and STERMTYPE set to COARSE.
—— See chapter 14.

MOVE TO depth pt -- move to depth dimension

MOVE TO r_plane —— retract to r_plane at rapid

END drill 1 -- end of the executable section
—-— and the end of the program

8-5

Chapter 8

Introduction To Motion Management
Language

Permitted Characters The MML language recognizes the following characters:

01234567829
< > =/ *x + -, ; : . $ [1 () & 5

blank (or space) tab form feed new line

\ ABCDEFGHIJKLMNOPQRSTUVWIXYZ
abcdefghijklmnrnopgrstuvwsxysz

= Tab characters are equivalent to blanks. Form feeds are treated as new
lines.

= There is no distinction between upper and lower case letters, and you
can use both freely inside a program. For example, the following
variable names are identical:

- next_pos - neXt_pos
- Next_pos - NEXT_POS
= Blanks (or spaces) are significant. They separate predefined words

and identifiers. Use an underscore between the separate words in
identifiers, not blanks. For example:

predefined word
|

VA var _ name -— this is valid
|
identifier
V ARvar _ name - this is invalid, no blanks allowed

-- in VAR, and leave a blank between
-— VAR and var_name

VAR var name -— this is invalid, no blanks
' -— allowed in an identifier

You can use blanks between operators and operands, but they are not
required. For example, these expressions are equivalent:

c = a * Db c = a*b

You can also use blanks to indent lines in a program.

Statements and Lines

Chapter 8

Introduction To Motion Management
Language

The MML programming language looks and reads similar to English text.
Where English contains sentences, MML contains statements.

The syntax directed editor usually places one MML statement on one line
in your program. However, if you are using a text editor to generate your
program, you can write several statements on a line if you separate the
statements with semicolons (;).

A statement can occupy several lines, but you cannot break the statement
just anywhere. You can start a new line after any operator (+, —, etc.),
comma, or left parenthesis.

If you must break a statement in an unusual place, you can continue the
statement on a new line by ending the first portion of the statement with
an ampersand (&).

This example illustrates using semicolons and ampersands:

PROGRAM &
test_prog -- The PROGRAM statement is normally written
-— on 1 line, so the ampersand is required at
-— the break point of the statement
VAR a, b, ¢, d : INTEGER
BEGIN
a=b; c¢=d -- 2 statements on 1 line with ;

END test_prog

Chapter 8

Introduction To Motion Management
Language

Predefined Words Predefined words are an integral part of the language. They are used to
identify:

= sections of the program—for example, PROGRAM, VAR, CONST,
BEGIN, and END.

= executable statements—for example, HOLD and WITH

= data types—for example INTEGER AND REAL

You cannot use a predefined word for other than its defined purpose in
your program.

The following is a list of the predefined words in the system.

Predefined Words

ABORT ELSE HOLD RESUME
ARM ENABLE IF RETURN
ARRAY END INTEGER ROUTINE
AT ENDCONDITION MOVE SIGNAL
BEGIN ENDFOR NOPAUSE SPEED
BOOLEAN ENDIF NOWAIT STOP
BY ENDMOVE OF THEN
CANCEL ENDWHEN PAUSE TO
CONDITION ENDWHILE POSITION UNHOLD
CONST ERROR PROGRAM UNTIL
DELAY EVENT PURGE VAR
DISABLE FOR REAL WAIT
DO GO REPEAT WHEN
DOWNTO GOTO RESULT WHILE

WITH

8-8

Chapter 8

Introduction To Motion Management
Language

System Variables MML has predefined system variables that let you access various features
in the system. System variables are a special class of variables that begin
with a dollar sign (§). You cannot redefine system variables in your
program.

There are 2 types of system variables:

» read only system variables — you can read the value of these
variables in your program, but you cannot write to or alter their values
in the program. For example, SDRY_RUN indicates whether the
motion controller is in dry run mode or not, but you cannot change this
value in your program.

= read/write system variables — you can read the value of these
variables and write to or alter them in your program. For example
$SPEED determines the speed for the next programmed move. You
can read the current value of $SPEED and change its value in the
program.

In addition, system variables have two methods of access depending on
how they are defined in the language:

= direct access — you can use the name of the variable directly in your
program to access the variable. For example, to read the value of
$ERROR, which contains the code for the last system error that has not
been reset, and store this value in a variable called temp, the statement
would be:

temp = $ERROR

= built-in access — with this access, the program must call a built-in
function to access the variable. For example, use the ALT_HOME
built—in function to change the value of the SALT _HOME variable to a
value specified by new_ home:

success = ALT_HOME (new_home)

ALT_HOME is a built—in function with 1 parameter. It returns a value
of TRUE if $ALT_HOME is modified successfully. Otherwise, it
returns a value of FALSE.

89

Chapter 8

Introduction To Motion Management
Language

System variables use either direct access or built-in access for reading
and writing. For details of how system variables work and their methods
of access, see appendix A, MML Language Quick Reference.

Direct Read Only System Variables

$CURPROGM $ESTOP $OT_PLUS
$DRY_RUN $INPOSITION $PGM_STATUS
$ERROR $OT_MINUS $STEP

Direct Read/Direct Write System Variables

$ACCDEC $DISABLE_OVR $SPEED
$AT_POSN_TOL $OFFSET $SPEED_OVR
$DISABLE_PLC $PHASE $TERMTYPE

Direct Read/Built-in Write System Variables

Variable Write Built=in

$ALT_HOME ALT_HOME built-in function
$GAIN GAIN built-in function

$RESULT RESULT condition handler action
$UNITS UNITS built-in function

8-10

Routines

Chapter 8

Introduction To Motion Management
Language

We discussed routines more fully in chapter 12, but this section serves as
a brief introduction to what routines are.

A routine is similar to a “subprogram,” and it has a structure similar to a
full MML program. A routine can include VAR and CONST declarations
and executable statements. Optionally, you can pass parameter values,
called arguments, to a routine for its use.

There are 2 kinds of routines:

* user—defined routines — you declare these routines in your program
and determine how the work

* built-in routines — these are predefined in the system and you can
use them for various purposes according to their definitions (see
chapter 12, and the list below)

Both kinds of routines come in 2 types:

* functions — a routine that returns a value. Function routines can only
be used in expressions. Expressions calculate or assign values in the
program.

» procedures — perform operations, but do not return a value. A
procedure routine can only be used as an executable statement written
on separate line, not as part of an expression.

Here is a list of built-in routines by general operation and name (the
variables in parentheses indicate parameters passed to the routine):

Math Built-In Routines

ABS (x) ROUND (x) SQRT (x) TRUNC (x)

Single Axis Motion Built-In Routines

ALT_HOME (X) CURSPEED CURPOS DIST_TO_NULL
ENDMONITOR FOLLOW ERROR GAIN (x MONITOR
ORG (x)) POS (x) UNPOS (p.x)

Miscellaneous Built-in Routines

UNINIT (X) UNITS (X)

8-11

Chapter 8

Introduction To Motion Management
Language

Identifiers There are 2 kinds of identifiers that you can use:

= user—defined identifiers — names for programs, constants, variables,
routines and labels that you define

= predefined identifiers — names for some constants and built—in
routines that are already defined in the language

User Defined Identifiers
= always starts with a letter

* can include numbers and underscores ()
* can have maximum of 12 characters
= can have upper and lower case letters

= always has only one meaning in your program (for example, you
cannot use the same identifier for a constant and a routine name).

Some valid identifiers are:

* name = point _2
= pts_on_path = point _A

Some invalid examples:

= Real —real is a predefined word

® 2nd_point — must begin with a letter, not a number
= points_on_path — more than 12 characters

= point—— use only _, not —

When you write your program, you should choose identifiers that will
have definite meanings to other people who will read your program. In
the example program of section entitled Simple Program Example, we
used the following user—defined identifiers:

= program identifier:
drill_1
» constant identifiers:

drill_speed
rapid
home
depth

8-12

Comments

Chapter 8

Introduction To Motion Management
Language

» variable identifiers:

r_plane
depth_pt

Predefined ldentifiers

MML has predefined identifiers for some values of predefined constants
and system variables. Predefined identifiers are an integral part of the
system, so they cannot be used by you for other purposes. They are
different from predefined words because they stand for values in the
system, but these names may not be redefined by you in your program.

Here is a list of predefined identifiers:

Predefined Constants:

TRUE FALSE ON OFF

YES NO MAXINT MININT
Motion Termination Types for STERMTYPE System Variable:

FINE COARSE NOSETTLE NODECEL
Unit Types for SUNITS System Variable:

INCH MM DEGREE REV

Mark the beginning of a comment with a pair of hyphens (--). Anything
on the line to the right of hyphens is treated as a comment and does not
affect program execution.

Using comments in your program will make the program easier to
understand. Comments provide documentation about what the program
does. All comments found in a source program are ignored by the
compiler. When using a text editor, a comment can be inserted in a
program on a line by itself or at the end of any line.

8-13

Chapter 8

Introduction To Motion Management
Language

Some examples of comments are:

PROGRAM comment_test -- Text that follows hyphens is a
-- comment

-- So is this. It is on & line by itself.

BEGIN
END comment_test

% INCLUDE Statement Use the %INCLUDE statement to include another file into a program
when you compile it. Usually, the other file will contain declarations such
as CONST or VAR, but it can contain any portion of a program including
Executable statements and even other %INCLUDE statements.

The compiler includes the file at the position where the %INCLUDE
statement was found, just as if it were part of the compiling program.
When the file has been fully included, the compiler resumes with the
current program.

Included files can themselves include other files up to a maximum of 3
nested included files. There is no limit on the total number of included
files.

The %INCLUDE statement must appear at the beginning of a line, with
nothing after it except a new line, not even a comment.

The following example shows how to use the %INCLUDE statement
(also see Figure 8.1):

PROGRAM includes_inc

$INCLUDE inc

-- includes a text file stored as inc which contains
—— declarations. The inc file must have been

—- developed with a text editor on ODS

BEGIN
—- executable statements of the includes_inc program

END includes_inc

Figure 8.1 shows how you could use the %INCLUDE statement to create
an entire program from standard “fragments.”

8-14

% INCLUDE prog *~_
% INCLUDE consts

Chapter 8

Introduction To Motion Management
Language

Use the text editor to set up files for constants, variables, etc., such as

those shown on the right in Figure 8.1. Then, use the text editor to create
a file that contains the %INCLUDE statements that call these files. When
this file is compiled, the files will be included.

Figure 8.1
Using the %INCLUDE Statement

PROGRAM example

EOF

CONSTS
[constant declarations]

EOF

% INCLUDE vars—=

% INCLUDE routs
% INCLUDE begin_sect

EOF

example

VAR
[variable declarations

EOF

ROUTINE
[routine statements]
|

|
L

EOF

BEGIN
[executable statements)

END example.-

EOF

prog

consts

vars

routs

begin_sect

15978

8-15

Chapter 8
Introduction To Motion Management

Language

Program Execution Environment

8-16

To understand how the IMC 110 runs your application programs, you can
think of IMC 110 software as having 3 distinct areas of program
execution that run in parallel (Figure 8.2):

program interpreter — interprets all the statements in your
application program and assigns them to the motion execution
environment or the condition execution environment to perform their
specific tasks

motion execution environment — plans and executes motion
statement

condition execution environment — executes local and global
condition handlers

When the program interpreter comes to a motion statement in your
application program, it passes the motion statement to the motion
execution environment. Similarly, if the program interpreter encounters a
condition handler in the program, it assigns it to the condition execution
environment.

Since the motion execution environment and condition execution
environment run in parallel with the program interpreter, your MML
program can execute motion and evaluate conditions at the same time.

Figure 8.2
Program Execution Environment

Condition
Execution
Environment

MML

Program
Program

Interpreter

Motion
Execution
Environment

15977

Chapter 8

Introduction To Motion Management
Language

Motion Execution Environment

Within the motion execution environment there are a number of areas that
you need to be aware of (Figure 8.3):

= programmed motion queue — receives the motion statements from
the program interpreter and holds them for the motion planner

* motion planner — plans individual motions and assigns them to the
planned motion queue when they are ready for execution, or to the
motion stack when a STOP statement or action is encountered

= planned motion queue — receives the motion statements from the
motion planner and holds them for the motion performer

= motion stack — a last—in—first—out stack that holds pending motions
when a STOP statement or action is executed. Pending motions can be
resumed with the RESUME statement or action

= motion performer — executes the motion statements by creating
velocity commands for the servo drives

The interaction of these areas becomes important when you use
statements in your program that stop, hold, cancel and pause or abort
programs and motion (see section entitled Suspending or Ending Motion
Execution, chapter 14).

Figure 8.3
Motion Execution Environment
Motion Programmed . Planned)
Statements —= Motion Motion Motion Motion
from Program Queue Planner Queue Performer Velocty
Interpreter Command

A to Servo

15976

8-17

Chapter 8

Introduction To Motion Management
Language

8-18

Condition Execution Environment

The language supports entities called condition handlers that you program
in the executable section of your program.

Condition handlers let you specify conditions that the IMC 110 should
monitor in parallel with program execution (see Chapter 15, Programming
Condition Handlers and Fast Interrupt Statements). The conditions have
an associated set of actions that IMC 110 should take when the conditions
OCCUur.

Condition handlers come in 2 forms:

= global condition handlers — monitor conditions throughout your
program once they are defined and enabled

= local condition handlers — monitor conditions associated with a
particular motion statement

Condition handlers generally run in parallel with the motion execution
environment. However, local condition handler must be synchronized
with the motion environment. See chapter 14, Programming Motion
Control for details. '

Chapter Overview

Declaring Constants

Chapter

Declaring Constants and Variables

This chapter covers how to declare constants and variables in your
program, and the data types associated with constants and variables:

* constant — fixed values that remain constant throughout program
execution

= variable — values that can change during program execution

= data type — determines the kinds of values that you can assign to
variables, and the kinds of operations you can perform with variables
and constants; the valid data types are integer, real, boolean, position
and array.

The CONST section of the program is where you declare constants. To
declare a constant, make a value equal to a constant identifier. The value
you assign to a constant identifier determines the data type of the
constant.

The VAR section of the program is where you declare variables. To
declare a variable, associate a variable identifier with a data type.

If a variable is not assigned a specific value, it is considered
“uninitialized.” If the program comes to an uninitialized variable, a run
time error occurs and the program pauses. This lets you assign a value to
the variable with the handheld pendant, then resume program execution.

Declaring a constant is a matter of associating a value with an identifier.
The value remains constant during program execution. After you declare
the constant, you can use the identifier throughout the program to stand
for the value. The advantages of using an identifier are:

= if you need to change the value, you only need to change it once in the
CONST section of the program, not throughout the entire program

* a meaningful identifier, such as drill_speed, rather than 10, makes the
program easier for someone else to read

Chapter 9

Declaring Constants and Variables

Declare constants in the CONST section of the program using the
following syntax:

CONST
<constant name> = <value>

where:
constant name is a valid identifier

value is a valid literal value such as 3 or 10.25, or any previously defined
constant identifier such as “parts” or “term_1"

For example:

CONST
-— real constants
sigma = 2.567; top_num = 3.0e9

-— integer constants
delayl = 40
class_size

3
class_size

class_work

—-— boolean constants
din_done = FALSE
din_ready = TRUE

Constants always have simple data types: INTEGER, REAL, or
BOOLEAN.

You do not need to declare a data type for a constant. The program infers
the data type of the constant from the value you assign.

If the value you assign to a new identifier is a previously defined constant,
such as:

class_work = class_size

the program assumes that the new identifier has the same data type as the
previously defined constant.

Chapter 9

Declaring Constants and Variables

There are some predefined constants in MML:

Boolean Literal Constants

Name Description

TRUE boolean literal value of true

FALSE boolean literal value of false

ON boolean literal value equivalent to true
OFF boolean literal value equivalent to false
YES boolean literal value equivalent to true
NO boolean literal value equivalent to false

Integer Literal Constants

Name Description
MAXINT Maximum integer value = +2147483647
MININT Minimum integer value = 2147483647

$TERMTYPE Values - Motion Termination

Types

Name Description

FINE Within fine in—position tolerance, integer
value =3

COARSE Within coarse in—position tolerance, integer
value =2

NOSETTLE Point at which following error begins to clo-

se—out, integer
value = 1, default value for STERMTYPE

NODECEL Point at which deceleration must begin, in-
teger value =0

$UNITS Values - Motion Unit Types

Name Description

INCH/DEGREE Specifies degree units for rotary axis
motion, or inch units for linear motion, inte-
gervalue =0

MM/REV Specifies millimeter units for rotary axis mo-
tion, or

revolutions for rotary axis motion, integer
value = 1

9-3

Chapter 9

Declaring Constants and Variables

Declaring Variables

9-4

Declaring a variable is a matter of associating an identifier with a data
type. In the executable section of the program you can assign a variable
any value. But, this value must match the data type you declared for the
variable. Every variable you use in the program must be declared in the
VAR section of the program.

The syntax of a VAR declaration is:

VAR
<variable, variable> : <type>

where

variable i$ any valid identifier. You can declare 2 or more variables
that have the same data type on the same line by separating the identifiers
with commas.

t ype is any valid data type. Each variable identifier is assigned the data
type that follows it: integer, real, boolean, position, and array data types.

For example:

VAR
count, val_1, val 2: INTEGER
X_position: REAL
test_flag 1, test_flag_2: BOOLEAN
part_ids: ARRAY[8] OF INTEGER
part_pos: POSITION

Boolean Data Type

Integer Data Type

Chapter 9

Declaring Constants and Variables

Boolean data types stand for these predefined constants:

= TRUE and FALSE
= ON and OFF — equivalent to true and false, respectively
* YES and NO — equivalent to true and false, respectively

Here is an example of boolean data types used in CONST and VAR
declarations:

CONST
Y = YES; N = NO
high = TRUE; low = FALSE

VAR
can_off, state_on: BOOLEAN

These operators can be used in boolean expressions:

AND OR NOT > >= e <> < <=

The integer data type stands for whole numbers in the range:
—-2147483647 to +2147483647

Important: Spaces, commas or any other punctuation marks or symbols
(other than an optional + or — at the front) are not permitted in an integer
literal.

Here are examples of correct integer literals:

. 3 w —-24356 w +183

And, some incorrect integer literals:

» 2.4 -- decimal point not allowed (this is a real)
= 4,278 -- commas not allowed
= 88888888888 -- out of range

9-5

Chapter 9

Declaring Constants and Variables

9-6

Here are some examples of how to use the integer data type to declare
constants and variables:

CONST
initial_cnt = 2100
min_number = MININT
term 2 = 1

VAR
sum, total, error_sig: INTEGER

You can use these arithmetic and relational operators in INTEGER
expressions:

You can also use AND, OR, and NOT with integer operands in bitwise
operations. For example:

VAR
first, second, find : INTEGER

BEGIN
first = 12
second = 5
find = first AND second

The example above puts the result of 12 AND 5 into the integer variable
“ﬁnd,,:

=
[\S]
Il

1100

0100 —-- find = 4

Real Data Type

Chapter 9

Declaring Constants and Variables

The real data type stands for values with a a decimal point, or expressed
in scientific notation (powers of 10).

The range of real values is:

-30.4028236E+38 ~30.4028236E+38
| I

|< >l 0 I< >|

.
-1.175494E-38 +1.175494E-38

Important: Real values have seven significant decimal digits. For
example, you can program a value like 9.8765432666, but the system will
round it off to 9.8765433.

You can represent a real value as an integer with a decimal point and a
fraction. For example,

integer part

|
34.5F

fractional part

You can leave off the fractional part or the integer part, but you must
include the decimal point. For example, 34. and .56 are both correct.
When you use scientific notation:

= shift the decimal point so that only 1 digit remains in the integer part.
= follow the fractional part with the letter E (upper or lower case)
= follow E with a signed integer

For example, 34.56 is equal to 3.456E1 in scientific notation.

With scientific notation, you can leave off the fractional part if it is 0.
When you leave off the trailing zero, you can also leave off the decimal
point. For example, 2000.0 is equivalent to 2.0E3, 2.E3, and 2E3.

9-7

Chapter 9

Declaring Constants and Variables

9-8

Here are some valid real literals:

s 234 w3. w4.E4 w-2e20

And, some invalid real literals:

= 78 -- decimal point required, this is an integer
= 3,567.7 -- commas not allowed

= 4.5E50 -- out of range

= 4.5e -30 -- no space allowed

Here are some examples of how to use the real data type to declare
constants and variables:

CONST
pitch = 4.45
depth = 50.5

lower_lim = 2.10E-2

VAR
roll, distance: REAL

You can use these operators in real expressions:

+ - * [/ > >= = <> < <=

Position Data Type

Chapter 9

Declaring Constants and Variables

A position contains one real component. The real component specifies
the linear or rotary position of the single axis controlled by the IMC 110
motion controller module.

The POSITION data type can be represented using two different methods.
The POS function builds a position from a real constant, variable or
literal. The same result can be achieved by enclosing a real constant,
variable, or literal in curly braces: For example:

CONST
home = 12.5 -- a literal constant
VAR
r_plane: POSITION -- a position variable
BEGIN
r_plane = POS(home) —-- r: plane variable set to home
-— using POS built-in routine
or
r plane = {home} -— r_plane variable set to home
-— using curly braces
MOVE TO r_plane —-— moves to r_plane

The UNPOS built-in procedure creates a real variable from a position.
For example:

UNPOS (r_plane, home_2)

-— 1f r_plane is a position variable, then home_ 2 will
—— contain the real equivalent of the r_plane position
—-- after execution of this procedure

g9

Chapter 9

Declaring Constants and Variables

Array Data Type An array is a collection of values that all have the same data type. The
following arrays are allowed:

= ARRAY OF INTEGER
= ARRAY OF REAL
= ARRAY OF BOOLEAN

The number of values in an array determines the “size” of the array. You
can have up to 255 values in an array, depending on the available memory
of the motion controller.

You declare an array in the VAR section of the program using the
following form:

name : ARRAY[n] OF type

where:

name is a valid identifier

n is an INTEGER constant or literal,

0< n<=255

type is INTEGER, REAL or BOOLEAN

For example, here are some valid array declarations:

CONST
-— integer constants to be used for array sizes
n_switch = 8

VAR

X : ARRAY[5] OF REAL
-— X 1s an array of 5 real elements

z : ARRAY[1] OF BOOLEAN
—- size of 1 is ok, it is the minimum size

switch : ARRAY[n switch] OF BOOLEAN

—— ok since n_switch was defined as an INTEGER
—-— constant. In this case, switch is an array of
—-— 8 boolean elements

9-10

Chapter 9

Declaring Constants and Variables

Here are some invalid array declarations:

* y: ARRAY[-5] OF REAL -- This is illegal, the size must be positive,
greater than 0O, and less than or equal to 255

= p: ARRAY[10] OF POSITION -- an array of position is illegal

Each value in an array has a corresponding subscript (or index) that tells
where the value is in the array. Subscripts are always integers. They are
always numbered starting with 1 and going up to the size of the array.

When you want to use a specific value from an array:

= Write the name of the array.

= Follow the name with the subscript in brackets. You can use an
INTEGER constant, variable, literal, or expression for the subscript.

For example:

= port[2] -- refers to the second value in the array variable port

= index[i] -- if i is 10, refers to the tenth value in the array variable index

= set_up[2*x] -- if x is 3, refers to the sixth value in the array variable
set_up

The values in an array can be used wherever the data type of the array can
be used. For example, a value from an array of boolean can be used
wherever a boolean value is valid.

However, an array variable itself can only be used in an assignment
statement. In this case, both array variables must have the same size and
type. For example, the following is correct:

VAR
i : INTEGER
table_1, table 2 : array[10] of BOOLEAN

BEGIN
-— FOR loop to initialize values in table_1
FOR 1 =1 TO 10 DO
table_1[i] = OFF
ENDFOR
table 2 = table 1
—-- assignment statement to set values in table 2 to
—-— those in table_1

If the sizes are different, the program will compile correctly but will cause
a run—time error during execution.
9-11

Chapter 9

Declaring Constants and Variables

There are no operators for entire array variables. For example, the
following is not allowed:

table 3 = table_1 + table 2
~- This is illegal when table_3, table 1 and table_2
-— are arrays

But, you can use individual values in expressions For example,
var_1 = table_1[3] + table_2[2]

The operators you can use will depend on the data type of the individual
values. For example, you can use AND, OR, NOT and relational
operators with individual elements of an array of boolean.

Uninitialized Variables - An uninitialized variable is one that you have not directly assigned a
Teaching Values and Positions value in your program.

¢

Uninitialized variables are important because they give you the
opportunity of assigning them values with the handheld pendant when
you run the program. They let you give the program values, such as
positions.

When you run the program for the first time, the program will not execute
beyond an uninitialized variable. The program will PAUSE at the point
where the uninitialized variable occurs, and you can then use the handheld
pendant to:

= enter a value if the uninitialized variable is a boolean, integer, or real
type variable

= jog to a destination, and teach it if the uninitialized variable is a
position type variable

9-12

Chapter 9

Declaring Constants and Variables

Here is an example of an uninitialized position variable:

VAR
pos_1 : POSITION

-- pos_1 is not assigned a value in any previous
—-- expression

BEGIN

MOVE TO pos_1

An initialized variable has a value. Here is an example:

VAR
point_1 : REAL
pos_1 : POSITION

pos_1 = {10.25} -- pos_1 is assigned a value 10.25
MOVE TO pos_1

9-13

Chapter Overview

Assignment Statement

Chapter

Programming Assignments and Expressions

This chapter explains the assignment statement. An assignment statement
sets available to the result of an expression. An expression uses operators
and operands like a mathematical equation to come up with the result.

An assignment statement evaluates an expression and then makes a
variable equal to the result of the expression. The syntax of the
assignment statement is :

<variable> = <expression> .

where:

variable is a system variable with write access, an array with write
access, or user—defined variable.

expression iS an expression

The data type of the variable must be the same type as data type of the
expression. There is one exception: an integer expression can be
assigned to a real variable.

Here are some examples of assignment statements:

new_pos = {home}
——-assigns position value to a position variable

set = set - 2
-- assigns integer value to integer variable if set is
—-— an integer variable

bucket [index] = ROUND (num_1 * num_2)
—-- assigns integer value to array element

SOFFSET = 20.25
—-— assigns real value to system variable for position
-— offset

10-1

Chapter 10

Programming Assignments and
Expressions

Expressions Operators and operands make up expressions. For example:
— operator
1'3.5 - 2i4
[— operands

Valid Operators

Symbol Meaning Notes

+ Plus " integer and real addition

- Minus integer and real subtraction

* Multiply integer and real multiplication

/ Divide integer and real division, real result

DIV Divide integer division, integer result

MOD Remainder integer division, finds remainder, positive

integer result

AND Logical And boolean/bitwise integer AND

OR Logical Or boolean/bitwise integer OR

NOT Logical Not boolean/bitwise integer NOT

= Equal To 2 operands are equal

<> Not Equal To 2 operands are not equal

> Greater Than 1st operand is greater than the 2nd

>= Greater Than Or 1st operand is greater than or equal to the

Equal To 2nd
< Less Than 1st operand is less than the 2nd
<= Less Than Or 1st operand is less than or equal to the 2nd
Equal To

10-2

Valid Operands

Chapter 10

Programming Assignments and
Expressions

Type

Notes

Boolean literal
Integer literal

Real literal
Constant

Variable
System Variables

User-Defined
Functions

Built-in Functions

TRUE, FALSE, ON, OFF, YES, NO

Numbers without decimal points or exponents
(e.g., 2, 4,211)

Numbers with decimal points and/or exponents
(e.g., 2.4, 56.98, 4.25E-5)

Data type of the value assigned in the CONST
section

Data type declared in the VAR section
Predefined data types (see appendix A)

Data type specified in declaration (see chapter 22,
Programming Routines)

Predefined data types (see chapter 22,
Programming Routines)

Each operator requires a particular operand type and produces a particular
data type as a result. Some operators let you mix both integer and real

operands.

The following table shows the data type of the result of expressions for
operands of various types.

Results for Expressions

Operands
Operators Integer Real Boolean Mixed*
+-" integer real - real
/ real real - real
DIv, MOD integer - - -
=< > <=>>= boolean boolean boolean boolean
>
AND, OR,NOT integer - boolean -

** Mixed means one operand of integer and one operand of real in either order.

Important: Note the difference between division operators: /, DIV, MOD.
The DIV is for integer division, and results in a truncated integer. The
MOD is for determining the remainder of integer division. Its result is
also a truncated integer.

10-3

Chapter 10

Programming Assignments and
Expressions

10-4

Rules for Integer Expressions

Integer expressions with +, —, * follow normal arithmetic rules. For
example:

w N
* o+
NN
I
I
o
[

If the result of an integer expression is outside the range of integers
(+£2147483647), the program will abort with a run—time error message
displayed on the handheld pendant. For example:

MAXINT * 2 -- will abort program
MININT - 1 —— will abort program

The MOD operator finds the remainder of dividing the operand on the left
by the operand on the right. For example:

15 MOD 6 -- = 3 (15/6 = 2 w/remainder 3)

With the MOD operator, the remainder will always have the sign of the
operand on the left. For example:

-20 MOD 3 -- = =2 20 MOD -3 - = 2
-20 MOD -3 —-- = -2 20 MOD 3 - 2

The DIV operator truncates the result if it is not a whole number. For
example:

11ID3 -- = 3

If the right operand of DIV or MOD is 0, the program will abort with a
run—time error displayed on the handheld pendant. For example:

11 DIV varl -- will abort program if varl is 0
13 MOD varl -- will abort program if varl is 0

Important: It is good programming practice to test for 0 before dividing
by a number. This lets you determine what action the program should
take, rather than let it undergo an abort.

Chapter 10

Programming Assignments and
Expressions

The operators AND, OR, NOT with integer operands produce the result of
a bit by bit binary operation on the integer values. For example:

Expressions Result Note

NOT 4 -5 4 = 0000 0100
NOT -18 17 -18= 11101110
-7AND 5 1 -7 = 1111 1001
-70R5 253 5= 0000 0101
12AND 8 8 12= 0000 1100
120R 8 12 8 = 0000 1000
53 AND 31 21 53 = 0011 0101
53 OR 31 63 23 = 0001 1111

Important: **Negative integers are represented in 2’s complement.

Rules for Real expressions

In real expressions with +, —, * follow normal arithmetic rules. For
example:

* +
w w
e
GG

:
nn
S o
o wm

[NV I N
o o

If the result of a real expression is greater than +3.3028236E+38 or less
than —3.4028236E+38, the program will abort with a run—time error
message displayed on the handheld pendant. For example:

3.5E37 * varl
-—- will abort program if |varl| > 9.722353

If the result of a real expression is too small for a real number, i.e.,
between —1.175494E-38 and +1.175494E-38,the program will abort with
a run-time error message displayed on the handheld pendant. For
example:

1.1E-38/varl
—— will abort program if wvarl = 0

10-5

Chapter 10

Programming Assignments and
Expressions

10-6

With real division (/), if the divisor is zero, the program will abort with a
run—time error message displayed on the handheld pendant. For example:

5.6/varl
-- will abort program if varl = 0

Important: It is good programming practice to test for 0 before dividing
by a number. This lets you determine what action the program should
take, rather than let it undergo an abort.

Rules for Relational Expressions

Relational expressions use the following operators:

Operator Name Meaning

= Equal To 2 operands are equal

<> Not Equal To 2 operands are not equal

> Greater Than 1st operand is greater than the 2nd

>= Greater Than 1st operand is greater than or equal
or Equal To to 2nd

< Less Than 1st operand is less than the 2nd

<= Less Than Or 1st operand is less than or equal to
Equal To the 2nd

Relational expressions produce results that are true or false depending on
the relation you specify. For example:

flag = (8 < > 8)
—-— flag = FALSE since 8 = 8

Both operands in an relational expression must have the same data type
(with 1 exception). For example:

count < sample
-—- both count and ample must be boolean, integer or
-- real

Chapter 10

Programming Assignments and
Expressions

You can mix real and integer operands in relational expressions. The
language will treat the integer as a real when it compares the values. For
example:

1.0 =1 -- will evaluate to true (but see important note
on next page

Relational operators work with real and integer values in the usual way.
For example:

.4 >=
.3E24
< 7

.8 ——- evaluates to true
6.2E35 -~ evaluates to false
-- evaluates to false

@ J w;

The value TRUE > FALSE. For example:

FALSE >= TRUE -- evaluates to FALSE
TRUE >= FALSE -- evaluates to TRUE

Important: Because of the way that the system treats real values, you
should avoid testing for equality (=) or inequality (< >) between two real
values. Two real values may not be equal when you think they should be.
Rather than = or < >, use one of the following:

* > =or < = where appropriate
= set some variable to a tolerance that you use to test around a real value.
For example, the following tests whether varl is within 0.02 of var2:

sigma = 0.02

IF (varl - sigma <+ var2) AND
(varl + sigma <+ var2) THEN

The value of sigma can be set as small as you like, but should not be
less than or equal to zero.

10-7

Chapter 10
Programming Assignments and

Expressions

Rules for Boolean Expressions

The operators AND, OR, and NOT with boolean operands produce the
usual results as shown by the following truth tables:

NOT(b = NOT a) OR(c=aORDb) AND (c=a AND b)

a b a b c a b c

FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE
TRUE FALSE TRUE TRUE FALSE FALSE
TRUE TRUE TRUE TRUE TRUE TRUE

Examples of boolean expressions:

(a => z) AND (b <> ¢)
-— evaluates to TRUE only if a => z and if b <> ¢)

FIN [2] OR NOT FIN[3]
-— evaluates to FALSE only if FIN[2] is FALSE and FIN[3] is

TRUE
(a=24) OR (b=75) -- evaluates to TRUE only if a = 24 or if
b =175
Mixing Integer and Real Data Generally, you cannot mix data types in expressions. For example:
Types flagl OR flag2

—— in this case, both operands must be boolean

count OR flag2
-- is illegal if count is real

There is one exception to this rule:

= You can use an integer in an expression where a real number is usually
required. The language converts the integer to a real number when it
evaluates the expression.

For example:

count + sample
-— ok if count is an integer and sample is real
-— order of operands is not important

sample/count
--ok if count is an integer and sample is real
-—-order of operands is not important

10-8

Rules for Evaluating
Expressions

Chapter 10

Programming Assignments and
Expressions

Important: You cannot use a real number where an integer value is
usually required. However, you can convert a real value to an integer
with the ROUND or TRUNC built-in functions (see section entitled
Built-In Math Routines in Chapter 12). For example:

count DIV sample
-— not of if either count or sample is real

count DIV ROUND (sample)
——of if sample is real, but will be rounded off

The language follows the usual mathematical and computer science rules
to evaluate expressions. The rules are:

= Evaluate expressions inside the innermost parentheses first.
= Inside parentheses, evaluates expressions starting with the operators

that have the highest priority. Then, proceed in priority to the operators
with the lowest priority. Here are the priority levels of operators:

Priority
Level Operators
1 NOT
2 *, 7, AND. DIV, MOD
3 +,_, OR unary + and -
4 <>, = <> <x>=

* Inside the same level of parentheses and at the same operator priority,
evaluate expressions from left to right.

In general, you don’t need to worry about using parentheses too much.
They have little or no effect on the executable size of your program or
how long it takes to run. You should use parentheses freely to:

» make your program easier to read
= make sure the sequence of evaluation if what you intend

Here are some examples of using parentheses to establish the order of
evaluating an expression. Note the differing results.

Expression Result
5'2-2/7+3 12.714286
(5*2-2)/(7+3) 0.8
B*2-(M)+3 11.571429

10-9

Chapter Overview

Chapter

Altering and Controlling Program Flow

This chapter describes the statements you can use to alter the normally
sequential flow of execution in your programs or routines. It also
describes statements that end or suspend program execution.

The language offers these statements to alter program flow:

= IF-THEN-ELSE-ENDIF statement -- choose alternative statements to
run depending on the state of some boolean condition

* FOR-TO(DOWNTO)-ENDFOR statement -- perform a sequence of
statements a number of times

= WHILE-ENDWHILE statement -- perform a sequence of statements
while a boolean condition is true

= REPEAT-UNTIL statement -- perform a sequence of statements until a
boolean condition becomes true (or, looking at it another way, perform

a sequence of statements as long as a boolean condition is false)

* GOTO statement -- branch unconditionally to another location in the
program

We will also discuss these statements for ending or suspending program
execution.

= DELAY -- suspends program execution for a number of milliseconds

» PAUSE -- suspends program execution until a NOPAUSE, handheld
pendant RUN, or SLC resume operation occurs

= WAIT FOR -- suspends program execution until a global condition is
satisfied

= ABORT -- ends program execution and stops any motion in progress.
The program cannot be resumed.

11-1

Chapter 11

Altering and Controlling Program Flow

IF Statement - Performing The IF statement lets you choose 1 or 2 different sequences of statements

Alternative Statements to run depending on the result of a boolean expression. If the boolean
expression is true, then the program chooses the first sequence. If it is
false, the program chooses the second sequence, if it is programmed.

There are 2 forms of the IF statement:

IF <boolean condition> THEN
<<statements>>
ENDIF

or

IF <boolean condition> THEN
<<statements>>

ELSE
<<statements>>

ENDIF

where:

boolean condition 1S a boolean expression that evaluates to true or
false

statements

= following THEN - run if the boolean expression is true
= following ELSE — run if the boolean expression is false

Here is the way that the program interprets an IF statement.

TRUE Perform the
Evaluate boolean THEN statements
expression following THEN

IS ELSE
Programmed?

Perform the
statements
following ELSE

|
ENDIF |« /

17488

11-2

FOR Statement - Loop a Number
of Times

Chapter 11

Altering and Controlling Program Flow

Here is an example of using the IF statement to select different motions
based on the state of a DIN element:

—— Set alternative depths. This could be done with
—-— real expressions on the right rather than literals.

21.5
35.0

depth ptl
depth_pt2

—— The state of DIN[2] determines which depth is
-— performed. If DIN([2] = TRUE, then it is
-— depth_ptl, otherwise it is depth_pt2.

IF DIN[2] THEN
depth = POS(depth ptl)
ELSE
depth
ENDIF

POS (depth_pt2)

—— The next statement sets speed, positioning type,
—-— and performs the move

WITH $SPEED = drill speed, S$TERMIYPE = FINE
MOVE TO depth

Use FOR statement for situations where you should perform some tasks a
certain number of times. The FOR statement has 2 forms that permit
either counting up or down in the range:

FOR <integer variable> = <integer expr> TO <integer expr> DO
<<statements>>
ENDFOR

or

FOR <integer variable> = <integer expr> DOWNTO <integer expr> DO

<<statements>>
ENDFOR

where:
integer variable 1S an integer literal, user—defined constant, or variable

integer expr are integer expressions

statements are executable statements

1-3

Chapter 11

Altering and Controlling Program Flow

If you use the form with TO, the program executes the FOR statement in
this way. Assume:

FOR step = start TO finish DO
<<statements>>
ENDFOR

—{(FoR]— gl sr

Perform t
statemen

step = step + 1
ENDFOR

If you use DOWNTO, the program executes the FOR statement in this
way. Assume:

17484

FOR step = start DOWNTO finish DO
<<statements>>
ENDFOR

R - S

Y

step = start

v

Evaluate finish
integer expr

YES

NO
AR

v

step = step + 1

ENDFOR 17483

11-4

Chapter 11

Altering and Controlling Program Flow

Looking at these forms, notice the following rules:

= If step > finish, or step < finish the first time through the loop, the
statements are never executed.

= If step = finish the first time through the loop, the statements will be
executed once.

= Since the program evaluates the integer expressions start and finish
before entering the loop, if you can change these values in the loop,
they will not affect the number times the loop is performed.

Important: You can change the value of the step variable inside the FOR
loop, but we do not recommend it. Normally, if the loop is executed at
least once, this will be the value of the step upon exit from the loop:

* TO form -- step = finish + 1
= DOWNTO form -- step = finish — 1

Important: The MML compiler will not let you exit or enter a FOR loop
with a GOTO statement. The compiler will catch this error when you
compile the program (see section entitled GOTO Statement — Branch
Without Conditions for more information on the GOTO statement).

Here is an example of using the FOR statement:

-- This example causes a move by an incremental amount
—-- a given number of times.

VAR
step, end _move : INTEGER
increment : REAL

BEGIN

FOR step = 1 to end_move DO
MOVE BY increment
ENDFOR

Chapter 11

Altering and Controlling Program Flow

WHILE Statement - Loop While ~ Use the WHILE statement when a sequence of statements should run as
Condition is True long as some boolean condition is true.

The form of the WHILE statement is:

WHILE <boolean condition> DO
<<statements>>
ENDWHILE

where

boolean condition 1s a boolean expression that evaluates to true or
false statements are executable statements

The program performs the WHILE statement in this way:

— WHILE

1

FALSE
Evaluate boolean
expression ENDWHILE

{ TRUE
DO

!

Perform
statements
following DO

17489

From this diagram, notice the following rules:

= Statements are executed only as long as the boolean condition is true.

= The program tests the boolean condition before executing the
statements. Therefore, the program may execute the statements:

- 0 times if the boolean condition is false when the WHILE is .
encountered

- 1 or more times if the boolean condition is true.

11-6

REPEAT Statement — Loop While
Condition is False

Chapter 11

Altering and Controlling Program Flow

Important: The WHILE statement can result in an infinitely repeating
loop. It is up to you to decide whether this should be allowed or not.
Generally, you should avoid using an infinitely repeating loop, and you
should take steps to end the WHILE loop correctly.

Here is an example of using the WHILE statement:

—— This WHILE loop turns on a digital output for 3
then turns it off of 3 seconds. It does
or until digital input is turned off.

-- seconds,
-- this 8 times,

counter = 0
timer = 3000

WHILE counter < 8 AND DIN[1l] DO
DOUT[1] = ON
DELAY timer
DOUT[1] = OFF
DELAY timer
counter =
ENDWHILE

counter + 1

Use the REPEAT statement when a sequence of statements should run at
least once, and for as long as some boolean condition is false.

The form for the REPEAT statement is:

REPEAT
<<statements>>
UNTIL <boolean condition>

where
statements are executable statements

boolean condition is a boolean expression that evaluates to true or
false '

11-7

Chapter 11

Altering and Controlling Program Flow

The program performs the REPEAT statement in this way:

REPEAT

!

Perform
- statements
following REPEAT

FALSE UNTIL

Evalute boolean
expression

l TRUE

17490

From this diagram, notice the following rules:

= Statements are executed only as long as the boolean condition is
FALSE.

= The program executes the statements before testing the boolean
condition. Therefore, the program may execute the statements:

- 1 time if the boolean condition is true when the REPEAT is
encountered ‘

- 2 or more times if the boolean condition is false.

Important: The REPEAT statement can result in an infinitely repeating
loop. It is up to you to decide whether this should be allowed or not.
Generally, you should avoid using an infinitely repeating loop, and you
should take steps to end the REPEAT loop correctly.

11-8

GOTO Statement - Branch
Without Conditions

Chapter 11

Altering and Controlling Program Flow

Here is an example of using the REPEAT statement:

—— This program fragment causes a move of an

-- additional 0.25 until DIN[flag 1] is set on. This
-- would occur when a switch input to the SLC is

-— set on.

distance = 0 .
length = POS (distance)
SSPEED 100

Il

REPEAT
MOVE TO length
distance = distance + .25
length = POS (distance)
UNTIL DIN[flag 1]

Use the GOTO statement when you need to transfer program execution
from one place in the program to another, unconditionally. In other
words, when you need to branch in the program without depending on the
result of a boolean expression or some other test.

A GOTO statement has this form:

GOTO <label>

<label>::
where
label is a valid label name (12 characters or less, beginning with a letter)

Labels are the destination of the GOTO statement. You should program
the label just before the statements to which it applies. At that point, you
must follow the label with 2 colons (::). You can program executable
statements on the same line with the label, or begin them on the next line.

Important: The MML compiler will not allow you to use the GOTO
statement or labels to transfer execution into or out of a FOR-loop.

11-9

Chapter 11

Altering and Controlling Program Flow

@)

11-10

The following example shows how the GOTO statement work:

next_part:: part_count = part_count + 1

IF part_count = 100 THEN
GOTO carry_on
ENDIF
-— next_part and end part form a loop of sorts, the IF
—— statement will get us out of it

GOTO end_part

end_part::
GOTO next _part

carry on:: —-- more statements

It is usually easier and more convenient to use the IF, FOR, WHILE or
REPEAT statements to alter program flow. Generally, you should use the
GOTO statement only when you cannot express the logic of your program
using IF or looping statements.

The IF, FOR, WHILE and REPEAT statements offer these advantages
over the GOTO statement:

= Generally, the compiler will produce code that is more efficient.

= The logic of the program will be easier to read and debug than similar
logic using a GOTO statement.

These examples show the advantages of using a FOR statement to
initialize an ARRAY, rather than a GOTO:

Using FOR:

FOR i =1 TO 10 DO
array_x[i] = 0
ENDFOR

Using GOTO:

i=1
next:: array x[i] = 0
i=1+1
IF 1 <= 10 THEN
GOTO next
ENDIF

Suspending or Ending Program
Execution

Chapter 11

Altering and Controlling Program Flow

These statements let you suspend or end program execution:

= DELAY -- suspends program execution for a number of milliseconds

= PAUSE -- suspends program execution until a NOPAUSE, handheld
pendant RUN, or SLC resume operation occurs

= WAIT FOR -- suspends program execution until a global condition is
satisfied

» ABORT -- ends program execution and stops any motion in progress.
The program cannot be resumed.

See the following sections for how to use these statements. See also

chapter 15, Programming Condition Handlers and Fast Interrupt
Statements, for more on global conditions, PAUSE and ABORT.

DELAY Statement - Timed Delay of Execution

Use the DELAY statement when you need to suspend program execution
for a definite period of time.

The form of the DELAY statement is:
DELAY <integer expr>
where

integer expr is an integer expression for the number of milliseconds of
DELAY.

Here is an example of the DELAY statement:

-- This program fragment causes a DELAY of 1 second if
—-- digital input 1 is ON

wait_time =1
IF DIN[1] THEN

DELAY wait_time * 1000
ENDIF

11-11

Chapter 11

Altering and Controlling Program Flow

Note the following rules on DELAY:

* A delay time of 0 is valid, but will not generate a delay

* The maximum delay is 86400000 msec. (1 day). A value greater than 1
day or less than O will ABORT the program with a BAD TIME VALUE
eITor.

* The resolution of the delay time is 10 msec. That is, the time you
specify will be rounded up to the nearest multiple of 10 msec. For
example, if you specify 3243, the actual delay time will be 3250 msec.
(3.25 seconds)

* A DELAY continues to time out if a PAUSE occurs. If the DELAY
times out during the PAUSE, execution will start with the first
statement after the DELAY when the program is resumed. If the
DELAY does not time out during PAUSE, timing continues after the
program is resumed.

» All delays are ended if:
- you ABORT the program
- a SLC resume command occurs during a PAUSE

- a handheld pendant RUN command occurs during a PAUSE

= If a motion has begun when the DELAY is executed, the motion
continues.

= During a DELAY, the program continues to run condition handlers and
fast interrupt statements. (see chapter 15, Programming Condition
Handlers and Fast Interrupt Statements).

* During a DELAY, the handheld pendant will show a status of DELAY.

11-12

Chapter 11

Altering and Controlling Program Flow

PAUSE Statement - Suspend Execution Until an Action Occurs
The PAUSE statement suspends program execution until:

= the operator presses the RUN key on the handheld pendant
= a SLC resume command occurs
= a NOPAUSE action in a condition handler occurs

The form of the PAUSE statement is:
PAUSE
Here is an example of the PAUSE statement:

—-- This program fragment causes a program interpreter
—- PAUSE if digital input 1 is ON

strt_pause = DIN[1]

IF strt_pause THEN
PAUSE
ENDIF

- Note these rules on PAUSE:
= If a motion has already started when the PAUSE is reached, the motion
continues.

* Condition handlers continue to execute during a PAUSE.

* Any routine calls that are the actions of condition handlers (interrupt
routines) are not executed during a PAUSE. They are executed when
the program resumes. All other actions in condition handlers are
executed during a PAUSE.

11-13

Chapter 11

Altering and Controlling Program Flow

11-14

WAIT FOR Statement — Suspend Execution Until Conditions

The WAIT FOR statement suspends program execution until a specified
condition (for example, a digital input turning ON) is satisfied.

The form of the WAIT FOR statement is:
WAIT FOR <global condition>
where

global condition is any conditions that may be used in global
condition handlers (see chapter 15)

Here is an example of the WAIT FOR statement:

—- This program fragment causes drilling only if
—- digital input 1 is ON, drilling stops when digital
-- input 4 is ON.

SSPEED = drill speed

REPEAT
WAIT FOR DIN[flag_1]
WITH $TERMTYPE = FINE
MOVE TO end_pos
WITH S$SPEED = rapid
MOVE TO start_pos
UNTIL DIN[flag_ 4]

Note these rules on the WAIT FOR statement:

= The global conditions can be any number of valid global conditions
linked together with AND or OR to create conditions to be met. The
conditions must evaluate to true before execution can continue.

= If a motion has already started when the WAIT FOR is reached, the
motion continues.

» Condition handlers and their actions (including interrupt routines)
continue to execute during a WAIT FOR.

Chapter 11

Altering and Controlling Program Flow

ABORT Statement — End Program Execution Without Conditions

Use the ABORT statement to immediately end program execution, along
with any motion in progress.

The form of the ABORT statement is:

ABORT

A typical use of the ABORT statement would be to respond to an error
condition:

IF total_fail THEN
ABORT
ENDIF

Note these rules on ABORT:

* Once you ABORT a program, you cannot resume it. You can only start
it again from the beginning using the RUN command from the
handheld pendant, or the resume command from the SLC.

* You can program actions in condition handlers that respond to the
ABORT. The system will perform the actions when the ABORT
occurs. However, routine calls that are part of the actions (interrupt
routines) will not be performed.

11-15

Chapter Overview

Chapter

Programming Routines

This chapter covers programming routines and using them in your
application program:

* declaring routines

= calling and nesting routines

* returning from routines

* using parameters and arguments in routines
= using built-in routines

Routines are similar to “subprograms.” Use a routine when you want to
make a set of statements perform a very specific, repeated task that you
call with a single statement in your program.

There are two kinds of routines:

* procedures — a set of statements that performs only a specific task.
Essentially, a procedure lets you design your own executable statement.

= functions — a set of statements that performs calculations and returns
a single value. You can call a function routine from inside an
expression, or use it as an expression. Essentially, a function lets you
design your own operation that returns a value.

The language also gives you predefined procedures and functions that we
call built-in routines. Built-in routines let you perform many common
programming tasks.

When you call a routine, execution passes to the routine. After the
routine is finished, execution returns to the next point in the program after
the routine call.

Declaring parameters in a routine lets you pass data to the routine when
you call it. The data that you pass, referred to as arguments, can affect the
way that the routine executes.

12-1

Chapter 12

Programming Routines

Declaring Routines

12-2

Declaring a routine is a matter of specifying its name, parameters (if any),
and its executable statements. You must declare a routine if you intend to
call it:

* in the executable section of the program, or
= in the executable section of any routine in the program

You can declare routines:

= before the BEGIN statement in the program
= after the END statement in the program

* in any order, but function routines must be declared before they are
called.

**Important: The ROUTINE statement is not allowed in a routine. In
other words, you cannot declare a routine inside a routine.

The structure of a routine is very much like a program. Use this structure
to declare both procedure and function routines:

ROUTINE <name>
CONST
<<statement>>
VAR
<<statement>>
BEGIN
<<statement>>
END <name>

where:

name i$ a valid identifier (12 characters maximum beginning with a
letter). The same name must appear after ROUTINE and END.

statement stands for constant and variable declarations and executable
statements

Chapter 12

Programming Rountines

For example:

—— This program fragment illustrates how to declare and
-- call a routine. In this case, we have a procedure
-— routine that pauses the program if digital input 5
-- is on.

PROGRAM rout_test

ROUTINE terminate
CONST
end_input = 5
BEGIN
IF DIN[end input] THEN
PAUSE
ENDIF
END terminate

BEGIN -- rout_test begin statement
-- the executable statements of rout_test appear here

terminate -- a single executable statement that calls the
—— procedure routine “terminate”

-— more executable statements

END rout_test

12-3

Chapter 12

Programming Routines

12-4

Declaring Parameters

Parameters let you pass data to the routine at the time that you call it. The
actual data that you pass when the routine is called is referred to as
arguments.

You can include an optional parameter list in the routine declaration using
this form:

ROUTINE <name> (parameter, ..., parameter : type;
paraz;z:eter, ..., parameter : type)

where:

parameter is a valid identifier

type is the data type of the parameter and is any valid data type

**Important: If you are not using parameters in your routine, leave off
the parentheses to avoid a compiler error.

For example, the following parameter list declares 2 boolean parameters,
1 real, and 3 integer parameters:

ROUTINE test (on_tst, off_tst : BOOLEAN;
sample_rate : REAL;
part_no, i, accum : INTEGER)

And, this parameter list declares 2 array parameters:

ROUTINE init (signals : ARRAY OF BOOLEAN;
list : ARRAY OF INTEGER)

**Important: When you declare an array parameter, you cannot specify a
size. The compiler will not allow it. But, more importantly, this lets you
pass an array of any size, up to 255, as the argument for the parameter.

Chapter 12

Programming Rountines

Declaring Procedure Routines
A procedure is a set of statements that:

= perform a specific task
* do not return a value
* act as a single executable statement

Here is an example of declaring procedures:

PROGRAM prcdr_test

ROUTINE half sec
—-- A procedure, without parameters, to delay for 0.5
-- seconds
BEGIN
DELAY 500
END half_sec

ROUTINE start_array (limit : INTEGER; val : INTEGER;
int_array : ARRAY OF INTEGER)

-- A procedure, with 3 parameters, to initialize an ARRAY

—-— OF INTEGER of any size with any value

VAR

indx: INTEGER —— this declares a local variable (one
-— that 1s “local” to the routine, see section entitled
-— Scope of Declarations)

BEGIN -- start_array routine

-- This FOR loop initializes an integer array (int_array)
-— of any size (limit) with any value (val). Note that
—--— all 3 parameters are used.
FOR indx = 1 TO limit DO

int_array([indx] = val
ENDFOR

END start_array
BEGIN

—-—- executable statements appear here

END prcdr_test

ROUTINE mover (point : REAL) -- A procedure with 1
—-—- parameter. Note that this comes after the executable
—- section of the prcdr_test program.

BEGIN
MOVE BY point -- reference to point parameter
END mover

12-5

Chapter 12

Programming Routines

12-6

Declaring Function Routines

A function is a set of statements that:

= performs calculations

= returns a single value

= is called as all or part of an expression

**Important: You must declare a function in your program at some point

before you call it for use. This is in contrast to procedures that you may
declare before or after you call them.

The syntax for declaring a function is:

ROUTINE <name> <<parameter list>> : <return type>
CONST
<<statement>>
VAR
<<statement>>
BEGIN
<<statements>>
END <name>

where:

parameter list 1S an optional parameter list

return type is required and is the data type of the value returned by the
function. The return type can be boolean, integer, real, or position (not an
array).

Here is an example of declaring a function routine:
PROGRAM functions

ROUTINE find percent (x, y : REAL) : REAL
—- This function returns a real value for how much x is
-— a percent of y

VAR
percent : REAL -- this is a dynamic local variable

BEGIN
percent = (x/y) * 100
RETURN (percent)

END find percent

BEGIN
-—- executable section of functions

END functions

Calling Routines

Chapter 12

Programming Rountines

You can call routines that you declare in a program:

= from inside the executable section of the program, or
= from inside the executable section of any routine contained in the
program. ‘

When you call a routine, execution passes to the routine. When the
routine finishes running, execution returns to the next statement, or part of
an expression after the one that called the routine.

To call both procedure and function routines:

If The

Routine Has: Then Program:

Parameters An argument for each parameter
and enclose the argument list in
parentheses

No Parameters Routine name only

Calling Procedures

Calling a procedure routine like programming an executable statement.
For example:

ROUTINE half_ sec
BEGIN

DELAY 500
END half_ sec

ROUTINE mover (point : REAL)
BEGIN

MOVE BY point
END mover

BEGIN

—-— procedure calls

half sec -- calls half_ sec procedure

mover (increment)

-- calls mover procedure and passes increment as
-— a real argument the point parameter

- -

12-7

Chapter 12

Programming Routines

12-8

Calling Functions

Because a function returns a value, you must call a function from inside
an expression. When execution returns to the calling program or routine,
it uses the returned value to evaluate the expression. For example:

ROUTINE find percent (X, y : REAL) : REAL
VAR
percent : REAL
BEGIN
percent = (x/y) * 100
RETURN (percent)
END find_percent

BEGIN

-- function call
new_value = percent (numerator, denominator)/2

—— The percent function is called as part of an expression.
-— The arguments, numerator and denominator correspond to
—- the parameters x and y. The returned value is divided by
—— 2 before assigning it to new_value

Nesting Routine Calls

Routines can call other routines. This is called nesting routines. For
example:

PROGRAM nest_test

ROUTINE nestl
—— nestl routine declaration
END nestl

ROUTINE larger
BEGIN

nestl
END larger

—— note that nestl is called by, or nested in, larger
Remember that a function routine must be declared before it is called. It

is good programming practice, therefore, to declare function routines first
in the program.

Chapter 12

Programming Rountines

Of course, a routine can call another routine, that calls another routine,
etc. The only limit on the number of times that this can occur is how you
are using the program interpreter stack. The program interpreter stack is a
memory area that temporarily stores parameters, local variables, and other
data.

When you call a routine, information is placed on the stack. When the
routine comes to its RETURN or END statement, this information is
taken off the stack.

If you make too many routine calls without information being removed
from the stack, the program will run out of stack space. The system will
give you a RUN TIME STACK OVERFLOW error.

The size of the stack is 252 bytes. You can calculate how much space on
the stack you are using by considering:

» each routine call uses a minimum of 6 bytes on the stack

= each parameter and local variable in the routine uses additional space
on the stack depending on the variable or parameter type:

Bytes for: Bytes for:
Data Type Parameter " Variable
BOOLEAN * 8 2
INTEGER 8 4
REAL 8 4
POSITION 8 4
ARRAY OF BOOLEAN 4 (array size) + 4
ARRAY OF INTEGER 4 (array size) "4 + 6
ARRAY OF REAL 4 (array size) *4 + 6

**Boolean data types occupy 1 byte. As long as boolean data types are declared one after
another, memory is efficiently organized. However, due to the nature of the processor of the
IMC 110, bytes for boolean data types will be padded to align a variable on an even
address. Therefore, it is to your benefit to declare alt boolean data types together.

12-9

Chapter 12

Programming Routines

Using The RETURN Statement

12-10

The language allows recursive routines, that is, routines that call
themselves. In the following example, factor calls itself to calculate a
factorial value:

ROUTINE factor(x : INTEGER) : INTEGER

—-— recursive call to factor, note that this
-— will run out of stack quickly!

BEGIN
IF x = 0 THEN
RETURN (1)
ELSE RETURN (x * factor(x-1))
ENDIF
END factor

Use the RETURN statement to immediately restore execution from a
routine to the calling program or routine.

The form of the RETURN statement in a procedure is simply:
RETURN

The form of the RETURN s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>